linux/fs/xfs/libxfs/xfs_rmap_btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2014 Red Hat, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_trans.h"
  14#include "xfs_alloc.h"
  15#include "xfs_btree.h"
  16#include "xfs_btree_staging.h"
  17#include "xfs_rmap.h"
  18#include "xfs_rmap_btree.h"
  19#include "xfs_trace.h"
  20#include "xfs_error.h"
  21#include "xfs_extent_busy.h"
  22#include "xfs_ag.h"
  23#include "xfs_ag_resv.h"
  24
  25/*
  26 * Reverse map btree.
  27 *
  28 * This is a per-ag tree used to track the owner(s) of a given extent. With
  29 * reflink it is possible for there to be multiple owners, which is a departure
  30 * from classic XFS. Owner records for data extents are inserted when the
  31 * extent is mapped and removed when an extent is unmapped.  Owner records for
  32 * all other block types (i.e. metadata) are inserted when an extent is
  33 * allocated and removed when an extent is freed. There can only be one owner
  34 * of a metadata extent, usually an inode or some other metadata structure like
  35 * an AG btree.
  36 *
  37 * The rmap btree is part of the free space management, so blocks for the tree
  38 * are sourced from the agfl. Hence we need transaction reservation support for
  39 * this tree so that the freelist is always large enough. This also impacts on
  40 * the minimum space we need to leave free in the AG.
  41 *
  42 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
  43 * but it is the only way to enforce unique keys when a block can be owned by
  44 * multiple files at any offset. There's no need to order/search by extent
  45 * size for online updating/management of the tree. It is intended that most
  46 * reverse lookups will be to find the owner(s) of a particular block, or to
  47 * try to recover tree and file data from corrupt primary metadata.
  48 */
  49
  50static struct xfs_btree_cur *
  51xfs_rmapbt_dup_cursor(
  52        struct xfs_btree_cur    *cur)
  53{
  54        return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
  55                                cur->bc_ag.agbp, cur->bc_ag.pag);
  56}
  57
  58STATIC void
  59xfs_rmapbt_set_root(
  60        struct xfs_btree_cur    *cur,
  61        union xfs_btree_ptr     *ptr,
  62        int                     inc)
  63{
  64        struct xfs_buf          *agbp = cur->bc_ag.agbp;
  65        struct xfs_agf          *agf = agbp->b_addr;
  66        int                     btnum = cur->bc_btnum;
  67
  68        ASSERT(ptr->s != 0);
  69
  70        agf->agf_roots[btnum] = ptr->s;
  71        be32_add_cpu(&agf->agf_levels[btnum], inc);
  72        cur->bc_ag.pag->pagf_levels[btnum] += inc;
  73
  74        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
  75}
  76
  77STATIC int
  78xfs_rmapbt_alloc_block(
  79        struct xfs_btree_cur    *cur,
  80        union xfs_btree_ptr     *start,
  81        union xfs_btree_ptr     *new,
  82        int                     *stat)
  83{
  84        struct xfs_buf          *agbp = cur->bc_ag.agbp;
  85        struct xfs_agf          *agf = agbp->b_addr;
  86        struct xfs_perag        *pag = cur->bc_ag.pag;
  87        int                     error;
  88        xfs_agblock_t           bno;
  89
  90        /* Allocate the new block from the freelist. If we can't, give up.  */
  91        error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
  92                                       &bno, 1);
  93        if (error)
  94                return error;
  95
  96        trace_xfs_rmapbt_alloc_block(cur->bc_mp, pag->pag_agno, bno, 1);
  97        if (bno == NULLAGBLOCK) {
  98                *stat = 0;
  99                return 0;
 100        }
 101
 102        xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
 103
 104        new->s = cpu_to_be32(bno);
 105        be32_add_cpu(&agf->agf_rmap_blocks, 1);
 106        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 107
 108        xfs_ag_resv_rmapbt_alloc(cur->bc_mp, pag->pag_agno);
 109
 110        *stat = 1;
 111        return 0;
 112}
 113
 114STATIC int
 115xfs_rmapbt_free_block(
 116        struct xfs_btree_cur    *cur,
 117        struct xfs_buf          *bp)
 118{
 119        struct xfs_buf          *agbp = cur->bc_ag.agbp;
 120        struct xfs_agf          *agf = agbp->b_addr;
 121        struct xfs_perag        *pag = cur->bc_ag.pag;
 122        xfs_agblock_t           bno;
 123        int                     error;
 124
 125        bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
 126        trace_xfs_rmapbt_free_block(cur->bc_mp, pag->pag_agno,
 127                        bno, 1);
 128        be32_add_cpu(&agf->agf_rmap_blocks, -1);
 129        xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
 130        error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 131        if (error)
 132                return error;
 133
 134        xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
 135                              XFS_EXTENT_BUSY_SKIP_DISCARD);
 136
 137        xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
 138        return 0;
 139}
 140
 141STATIC int
 142xfs_rmapbt_get_minrecs(
 143        struct xfs_btree_cur    *cur,
 144        int                     level)
 145{
 146        return cur->bc_mp->m_rmap_mnr[level != 0];
 147}
 148
 149STATIC int
 150xfs_rmapbt_get_maxrecs(
 151        struct xfs_btree_cur    *cur,
 152        int                     level)
 153{
 154        return cur->bc_mp->m_rmap_mxr[level != 0];
 155}
 156
 157STATIC void
 158xfs_rmapbt_init_key_from_rec(
 159        union xfs_btree_key     *key,
 160        union xfs_btree_rec     *rec)
 161{
 162        key->rmap.rm_startblock = rec->rmap.rm_startblock;
 163        key->rmap.rm_owner = rec->rmap.rm_owner;
 164        key->rmap.rm_offset = rec->rmap.rm_offset;
 165}
 166
 167/*
 168 * The high key for a reverse mapping record can be computed by shifting
 169 * the startblock and offset to the highest value that would still map
 170 * to that record.  In practice this means that we add blockcount-1 to
 171 * the startblock for all records, and if the record is for a data/attr
 172 * fork mapping, we add blockcount-1 to the offset too.
 173 */
 174STATIC void
 175xfs_rmapbt_init_high_key_from_rec(
 176        union xfs_btree_key     *key,
 177        union xfs_btree_rec     *rec)
 178{
 179        uint64_t                off;
 180        int                     adj;
 181
 182        adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
 183
 184        key->rmap.rm_startblock = rec->rmap.rm_startblock;
 185        be32_add_cpu(&key->rmap.rm_startblock, adj);
 186        key->rmap.rm_owner = rec->rmap.rm_owner;
 187        key->rmap.rm_offset = rec->rmap.rm_offset;
 188        if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
 189            XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
 190                return;
 191        off = be64_to_cpu(key->rmap.rm_offset);
 192        off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
 193        key->rmap.rm_offset = cpu_to_be64(off);
 194}
 195
 196STATIC void
 197xfs_rmapbt_init_rec_from_cur(
 198        struct xfs_btree_cur    *cur,
 199        union xfs_btree_rec     *rec)
 200{
 201        rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
 202        rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
 203        rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
 204        rec->rmap.rm_offset = cpu_to_be64(
 205                        xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
 206}
 207
 208STATIC void
 209xfs_rmapbt_init_ptr_from_cur(
 210        struct xfs_btree_cur    *cur,
 211        union xfs_btree_ptr     *ptr)
 212{
 213        struct xfs_agf          *agf = cur->bc_ag.agbp->b_addr;
 214
 215        ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
 216
 217        ptr->s = agf->agf_roots[cur->bc_btnum];
 218}
 219
 220STATIC int64_t
 221xfs_rmapbt_key_diff(
 222        struct xfs_btree_cur    *cur,
 223        union xfs_btree_key     *key)
 224{
 225        struct xfs_rmap_irec    *rec = &cur->bc_rec.r;
 226        struct xfs_rmap_key     *kp = &key->rmap;
 227        __u64                   x, y;
 228        int64_t                 d;
 229
 230        d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
 231        if (d)
 232                return d;
 233
 234        x = be64_to_cpu(kp->rm_owner);
 235        y = rec->rm_owner;
 236        if (x > y)
 237                return 1;
 238        else if (y > x)
 239                return -1;
 240
 241        x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
 242        y = rec->rm_offset;
 243        if (x > y)
 244                return 1;
 245        else if (y > x)
 246                return -1;
 247        return 0;
 248}
 249
 250STATIC int64_t
 251xfs_rmapbt_diff_two_keys(
 252        struct xfs_btree_cur    *cur,
 253        union xfs_btree_key     *k1,
 254        union xfs_btree_key     *k2)
 255{
 256        struct xfs_rmap_key     *kp1 = &k1->rmap;
 257        struct xfs_rmap_key     *kp2 = &k2->rmap;
 258        int64_t                 d;
 259        __u64                   x, y;
 260
 261        d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
 262                       be32_to_cpu(kp2->rm_startblock);
 263        if (d)
 264                return d;
 265
 266        x = be64_to_cpu(kp1->rm_owner);
 267        y = be64_to_cpu(kp2->rm_owner);
 268        if (x > y)
 269                return 1;
 270        else if (y > x)
 271                return -1;
 272
 273        x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
 274        y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
 275        if (x > y)
 276                return 1;
 277        else if (y > x)
 278                return -1;
 279        return 0;
 280}
 281
 282static xfs_failaddr_t
 283xfs_rmapbt_verify(
 284        struct xfs_buf          *bp)
 285{
 286        struct xfs_mount        *mp = bp->b_mount;
 287        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 288        struct xfs_perag        *pag = bp->b_pag;
 289        xfs_failaddr_t          fa;
 290        unsigned int            level;
 291
 292        /*
 293         * magic number and level verification
 294         *
 295         * During growfs operations, we can't verify the exact level or owner as
 296         * the perag is not fully initialised and hence not attached to the
 297         * buffer.  In this case, check against the maximum tree depth.
 298         *
 299         * Similarly, during log recovery we will have a perag structure
 300         * attached, but the agf information will not yet have been initialised
 301         * from the on disk AGF. Again, we can only check against maximum limits
 302         * in this case.
 303         */
 304        if (!xfs_verify_magic(bp, block->bb_magic))
 305                return __this_address;
 306
 307        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 308                return __this_address;
 309        fa = xfs_btree_sblock_v5hdr_verify(bp);
 310        if (fa)
 311                return fa;
 312
 313        level = be16_to_cpu(block->bb_level);
 314        if (pag && pag->pagf_init) {
 315                if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
 316                        return __this_address;
 317        } else if (level >= mp->m_rmap_maxlevels)
 318                return __this_address;
 319
 320        return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
 321}
 322
 323static void
 324xfs_rmapbt_read_verify(
 325        struct xfs_buf  *bp)
 326{
 327        xfs_failaddr_t  fa;
 328
 329        if (!xfs_btree_sblock_verify_crc(bp))
 330                xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 331        else {
 332                fa = xfs_rmapbt_verify(bp);
 333                if (fa)
 334                        xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 335        }
 336
 337        if (bp->b_error)
 338                trace_xfs_btree_corrupt(bp, _RET_IP_);
 339}
 340
 341static void
 342xfs_rmapbt_write_verify(
 343        struct xfs_buf  *bp)
 344{
 345        xfs_failaddr_t  fa;
 346
 347        fa = xfs_rmapbt_verify(bp);
 348        if (fa) {
 349                trace_xfs_btree_corrupt(bp, _RET_IP_);
 350                xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 351                return;
 352        }
 353        xfs_btree_sblock_calc_crc(bp);
 354
 355}
 356
 357const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
 358        .name                   = "xfs_rmapbt",
 359        .magic                  = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
 360        .verify_read            = xfs_rmapbt_read_verify,
 361        .verify_write           = xfs_rmapbt_write_verify,
 362        .verify_struct          = xfs_rmapbt_verify,
 363};
 364
 365STATIC int
 366xfs_rmapbt_keys_inorder(
 367        struct xfs_btree_cur    *cur,
 368        union xfs_btree_key     *k1,
 369        union xfs_btree_key     *k2)
 370{
 371        uint32_t                x;
 372        uint32_t                y;
 373        uint64_t                a;
 374        uint64_t                b;
 375
 376        x = be32_to_cpu(k1->rmap.rm_startblock);
 377        y = be32_to_cpu(k2->rmap.rm_startblock);
 378        if (x < y)
 379                return 1;
 380        else if (x > y)
 381                return 0;
 382        a = be64_to_cpu(k1->rmap.rm_owner);
 383        b = be64_to_cpu(k2->rmap.rm_owner);
 384        if (a < b)
 385                return 1;
 386        else if (a > b)
 387                return 0;
 388        a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
 389        b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
 390        if (a <= b)
 391                return 1;
 392        return 0;
 393}
 394
 395STATIC int
 396xfs_rmapbt_recs_inorder(
 397        struct xfs_btree_cur    *cur,
 398        union xfs_btree_rec     *r1,
 399        union xfs_btree_rec     *r2)
 400{
 401        uint32_t                x;
 402        uint32_t                y;
 403        uint64_t                a;
 404        uint64_t                b;
 405
 406        x = be32_to_cpu(r1->rmap.rm_startblock);
 407        y = be32_to_cpu(r2->rmap.rm_startblock);
 408        if (x < y)
 409                return 1;
 410        else if (x > y)
 411                return 0;
 412        a = be64_to_cpu(r1->rmap.rm_owner);
 413        b = be64_to_cpu(r2->rmap.rm_owner);
 414        if (a < b)
 415                return 1;
 416        else if (a > b)
 417                return 0;
 418        a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
 419        b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
 420        if (a <= b)
 421                return 1;
 422        return 0;
 423}
 424
 425static const struct xfs_btree_ops xfs_rmapbt_ops = {
 426        .rec_len                = sizeof(struct xfs_rmap_rec),
 427        .key_len                = 2 * sizeof(struct xfs_rmap_key),
 428
 429        .dup_cursor             = xfs_rmapbt_dup_cursor,
 430        .set_root               = xfs_rmapbt_set_root,
 431        .alloc_block            = xfs_rmapbt_alloc_block,
 432        .free_block             = xfs_rmapbt_free_block,
 433        .get_minrecs            = xfs_rmapbt_get_minrecs,
 434        .get_maxrecs            = xfs_rmapbt_get_maxrecs,
 435        .init_key_from_rec      = xfs_rmapbt_init_key_from_rec,
 436        .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
 437        .init_rec_from_cur      = xfs_rmapbt_init_rec_from_cur,
 438        .init_ptr_from_cur      = xfs_rmapbt_init_ptr_from_cur,
 439        .key_diff               = xfs_rmapbt_key_diff,
 440        .buf_ops                = &xfs_rmapbt_buf_ops,
 441        .diff_two_keys          = xfs_rmapbt_diff_two_keys,
 442        .keys_inorder           = xfs_rmapbt_keys_inorder,
 443        .recs_inorder           = xfs_rmapbt_recs_inorder,
 444};
 445
 446static struct xfs_btree_cur *
 447xfs_rmapbt_init_common(
 448        struct xfs_mount        *mp,
 449        struct xfs_trans        *tp,
 450        struct xfs_perag        *pag)
 451{
 452        struct xfs_btree_cur    *cur;
 453
 454        cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
 455        cur->bc_tp = tp;
 456        cur->bc_mp = mp;
 457        /* Overlapping btree; 2 keys per pointer. */
 458        cur->bc_btnum = XFS_BTNUM_RMAP;
 459        cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
 460        cur->bc_blocklog = mp->m_sb.sb_blocklog;
 461        cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
 462        cur->bc_ops = &xfs_rmapbt_ops;
 463
 464        /* take a reference for the cursor */
 465        atomic_inc(&pag->pag_ref);
 466        cur->bc_ag.pag = pag;
 467
 468        return cur;
 469}
 470
 471/* Create a new reverse mapping btree cursor. */
 472struct xfs_btree_cur *
 473xfs_rmapbt_init_cursor(
 474        struct xfs_mount        *mp,
 475        struct xfs_trans        *tp,
 476        struct xfs_buf          *agbp,
 477        struct xfs_perag        *pag)
 478{
 479        struct xfs_agf          *agf = agbp->b_addr;
 480        struct xfs_btree_cur    *cur;
 481
 482        cur = xfs_rmapbt_init_common(mp, tp, pag);
 483        cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
 484        cur->bc_ag.agbp = agbp;
 485        return cur;
 486}
 487
 488/* Create a new reverse mapping btree cursor with a fake root for staging. */
 489struct xfs_btree_cur *
 490xfs_rmapbt_stage_cursor(
 491        struct xfs_mount        *mp,
 492        struct xbtree_afakeroot *afake,
 493        struct xfs_perag        *pag)
 494{
 495        struct xfs_btree_cur    *cur;
 496
 497        cur = xfs_rmapbt_init_common(mp, NULL, pag);
 498        xfs_btree_stage_afakeroot(cur, afake);
 499        return cur;
 500}
 501
 502/*
 503 * Install a new reverse mapping btree root.  Caller is responsible for
 504 * invalidating and freeing the old btree blocks.
 505 */
 506void
 507xfs_rmapbt_commit_staged_btree(
 508        struct xfs_btree_cur    *cur,
 509        struct xfs_trans        *tp,
 510        struct xfs_buf          *agbp)
 511{
 512        struct xfs_agf          *agf = agbp->b_addr;
 513        struct xbtree_afakeroot *afake = cur->bc_ag.afake;
 514
 515        ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
 516
 517        agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
 518        agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
 519        agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
 520        xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
 521                                    XFS_AGF_RMAP_BLOCKS);
 522        xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
 523}
 524
 525/*
 526 * Calculate number of records in an rmap btree block.
 527 */
 528int
 529xfs_rmapbt_maxrecs(
 530        int                     blocklen,
 531        int                     leaf)
 532{
 533        blocklen -= XFS_RMAP_BLOCK_LEN;
 534
 535        if (leaf)
 536                return blocklen / sizeof(struct xfs_rmap_rec);
 537        return blocklen /
 538                (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
 539}
 540
 541/* Compute the maximum height of an rmap btree. */
 542void
 543xfs_rmapbt_compute_maxlevels(
 544        struct xfs_mount                *mp)
 545{
 546        /*
 547         * On a non-reflink filesystem, the maximum number of rmap
 548         * records is the number of blocks in the AG, hence the max
 549         * rmapbt height is log_$maxrecs($agblocks).  However, with
 550         * reflink each AG block can have up to 2^32 (per the refcount
 551         * record format) owners, which means that theoretically we
 552         * could face up to 2^64 rmap records.
 553         *
 554         * That effectively means that the max rmapbt height must be
 555         * XFS_BTREE_MAXLEVELS.  "Fortunately" we'll run out of AG
 556         * blocks to feed the rmapbt long before the rmapbt reaches
 557         * maximum height.  The reflink code uses ag_resv_critical to
 558         * disallow reflinking when less than 10% of the per-AG metadata
 559         * block reservation since the fallback is a regular file copy.
 560         */
 561        if (xfs_sb_version_hasreflink(&mp->m_sb))
 562                mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
 563        else
 564                mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
 565                                mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
 566}
 567
 568/* Calculate the refcount btree size for some records. */
 569xfs_extlen_t
 570xfs_rmapbt_calc_size(
 571        struct xfs_mount        *mp,
 572        unsigned long long      len)
 573{
 574        return xfs_btree_calc_size(mp->m_rmap_mnr, len);
 575}
 576
 577/*
 578 * Calculate the maximum refcount btree size.
 579 */
 580xfs_extlen_t
 581xfs_rmapbt_max_size(
 582        struct xfs_mount        *mp,
 583        xfs_agblock_t           agblocks)
 584{
 585        /* Bail out if we're uninitialized, which can happen in mkfs. */
 586        if (mp->m_rmap_mxr[0] == 0)
 587                return 0;
 588
 589        return xfs_rmapbt_calc_size(mp, agblocks);
 590}
 591
 592/*
 593 * Figure out how many blocks to reserve and how many are used by this btree.
 594 */
 595int
 596xfs_rmapbt_calc_reserves(
 597        struct xfs_mount        *mp,
 598        struct xfs_trans        *tp,
 599        struct xfs_perag        *pag,
 600        xfs_extlen_t            *ask,
 601        xfs_extlen_t            *used)
 602{
 603        struct xfs_buf          *agbp;
 604        struct xfs_agf          *agf;
 605        xfs_agblock_t           agblocks;
 606        xfs_extlen_t            tree_len;
 607        int                     error;
 608
 609        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 610                return 0;
 611
 612        error = xfs_alloc_read_agf(mp, tp, pag->pag_agno, 0, &agbp);
 613        if (error)
 614                return error;
 615
 616        agf = agbp->b_addr;
 617        agblocks = be32_to_cpu(agf->agf_length);
 618        tree_len = be32_to_cpu(agf->agf_rmap_blocks);
 619        xfs_trans_brelse(tp, agbp);
 620
 621        /*
 622         * The log is permanently allocated, so the space it occupies will
 623         * never be available for the kinds of things that would require btree
 624         * expansion.  We therefore can pretend the space isn't there.
 625         */
 626        if (mp->m_sb.sb_logstart &&
 627            XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == pag->pag_agno)
 628                agblocks -= mp->m_sb.sb_logblocks;
 629
 630        /* Reserve 1% of the AG or enough for 1 block per record. */
 631        *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
 632        *used += tree_len;
 633
 634        return error;
 635}
 636