linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
  17#include "xfs_dir2.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_ialloc.h"
  24#include "xfs_bmap.h"
  25#include "xfs_bmap_util.h"
  26#include "xfs_errortag.h"
  27#include "xfs_error.h"
  28#include "xfs_quota.h"
  29#include "xfs_filestream.h"
  30#include "xfs_trace.h"
  31#include "xfs_icache.h"
  32#include "xfs_symlink.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_log.h"
  35#include "xfs_bmap_btree.h"
  36#include "xfs_reflink.h"
  37#include "xfs_ag.h"
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define XFS_ITRUNC_MAX_EXTENTS  2
  46
  47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  48STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  49        struct xfs_inode *);
  50
  51/*
  52 * helper function to extract extent size hint from inode
  53 */
  54xfs_extlen_t
  55xfs_get_extsz_hint(
  56        struct xfs_inode        *ip)
  57{
  58        /*
  59         * No point in aligning allocations if we need to COW to actually
  60         * write to them.
  61         */
  62        if (xfs_is_always_cow_inode(ip))
  63                return 0;
  64        if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  65                return ip->i_extsize;
  66        if (XFS_IS_REALTIME_INODE(ip))
  67                return ip->i_mount->m_sb.sb_rextsize;
  68        return 0;
  69}
  70
  71/*
  72 * Helper function to extract CoW extent size hint from inode.
  73 * Between the extent size hint and the CoW extent size hint, we
  74 * return the greater of the two.  If the value is zero (automatic),
  75 * use the default size.
  76 */
  77xfs_extlen_t
  78xfs_get_cowextsz_hint(
  79        struct xfs_inode        *ip)
  80{
  81        xfs_extlen_t            a, b;
  82
  83        a = 0;
  84        if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  85                a = ip->i_cowextsize;
  86        b = xfs_get_extsz_hint(ip);
  87
  88        a = max(a, b);
  89        if (a == 0)
  90                return XFS_DEFAULT_COWEXTSZ_HINT;
  91        return a;
  92}
  93
  94/*
  95 * These two are wrapper routines around the xfs_ilock() routine used to
  96 * centralize some grungy code.  They are used in places that wish to lock the
  97 * inode solely for reading the extents.  The reason these places can't just
  98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  99 * bringing in of the extents from disk for a file in b-tree format.  If the
 100 * inode is in b-tree format, then we need to lock the inode exclusively until
 101 * the extents are read in.  Locking it exclusively all the time would limit
 102 * our parallelism unnecessarily, though.  What we do instead is check to see
 103 * if the extents have been read in yet, and only lock the inode exclusively
 104 * if they have not.
 105 *
 106 * The functions return a value which should be given to the corresponding
 107 * xfs_iunlock() call.
 108 */
 109uint
 110xfs_ilock_data_map_shared(
 111        struct xfs_inode        *ip)
 112{
 113        uint                    lock_mode = XFS_ILOCK_SHARED;
 114
 115        if (xfs_need_iread_extents(&ip->i_df))
 116                lock_mode = XFS_ILOCK_EXCL;
 117        xfs_ilock(ip, lock_mode);
 118        return lock_mode;
 119}
 120
 121uint
 122xfs_ilock_attr_map_shared(
 123        struct xfs_inode        *ip)
 124{
 125        uint                    lock_mode = XFS_ILOCK_SHARED;
 126
 127        if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
 128                lock_mode = XFS_ILOCK_EXCL;
 129        xfs_ilock(ip, lock_mode);
 130        return lock_mode;
 131}
 132
 133/*
 134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 135 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 136 * various combinations of the locks to be obtained.
 137 *
 138 * The 3 locks should always be ordered so that the IO lock is obtained first,
 139 * the mmap lock second and the ilock last in order to prevent deadlock.
 140 *
 141 * Basic locking order:
 142 *
 143 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 144 *
 145 * mmap_lock locking order:
 146 *
 147 * i_rwsem -> page lock -> mmap_lock
 148 * mmap_lock -> i_mmap_lock -> page_lock
 149 *
 150 * The difference in mmap_lock locking order mean that we cannot hold the
 151 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 152 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
 153 * in get_user_pages() to map the user pages into the kernel address space for
 154 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 155 * page faults already hold the mmap_lock.
 156 *
 157 * Hence to serialise fully against both syscall and mmap based IO, we need to
 158 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 159 * taken in places where we need to invalidate the page cache in a race
 160 * free manner (e.g. truncate, hole punch and other extent manipulation
 161 * functions).
 162 */
 163void
 164xfs_ilock(
 165        xfs_inode_t             *ip,
 166        uint                    lock_flags)
 167{
 168        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 169
 170        /*
 171         * You can't set both SHARED and EXCL for the same lock,
 172         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 173         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 174         */
 175        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 176               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 177        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 178               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 179        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 180               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 181        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 182
 183        if (lock_flags & XFS_IOLOCK_EXCL) {
 184                down_write_nested(&VFS_I(ip)->i_rwsem,
 185                                  XFS_IOLOCK_DEP(lock_flags));
 186        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 187                down_read_nested(&VFS_I(ip)->i_rwsem,
 188                                 XFS_IOLOCK_DEP(lock_flags));
 189        }
 190
 191        if (lock_flags & XFS_MMAPLOCK_EXCL)
 192                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 193        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 194                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 195
 196        if (lock_flags & XFS_ILOCK_EXCL)
 197                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 198        else if (lock_flags & XFS_ILOCK_SHARED)
 199                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200}
 201
 202/*
 203 * This is just like xfs_ilock(), except that the caller
 204 * is guaranteed not to sleep.  It returns 1 if it gets
 205 * the requested locks and 0 otherwise.  If the IO lock is
 206 * obtained but the inode lock cannot be, then the IO lock
 207 * is dropped before returning.
 208 *
 209 * ip -- the inode being locked
 210 * lock_flags -- this parameter indicates the inode's locks to be
 211 *       to be locked.  See the comment for xfs_ilock() for a list
 212 *       of valid values.
 213 */
 214int
 215xfs_ilock_nowait(
 216        xfs_inode_t             *ip,
 217        uint                    lock_flags)
 218{
 219        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 220
 221        /*
 222         * You can't set both SHARED and EXCL for the same lock,
 223         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 224         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 225         */
 226        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 227               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 228        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 229               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 230        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 231               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 232        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 233
 234        if (lock_flags & XFS_IOLOCK_EXCL) {
 235                if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 236                        goto out;
 237        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 238                if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 239                        goto out;
 240        }
 241
 242        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 243                if (!mrtryupdate(&ip->i_mmaplock))
 244                        goto out_undo_iolock;
 245        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 246                if (!mrtryaccess(&ip->i_mmaplock))
 247                        goto out_undo_iolock;
 248        }
 249
 250        if (lock_flags & XFS_ILOCK_EXCL) {
 251                if (!mrtryupdate(&ip->i_lock))
 252                        goto out_undo_mmaplock;
 253        } else if (lock_flags & XFS_ILOCK_SHARED) {
 254                if (!mrtryaccess(&ip->i_lock))
 255                        goto out_undo_mmaplock;
 256        }
 257        return 1;
 258
 259out_undo_mmaplock:
 260        if (lock_flags & XFS_MMAPLOCK_EXCL)
 261                mrunlock_excl(&ip->i_mmaplock);
 262        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 263                mrunlock_shared(&ip->i_mmaplock);
 264out_undo_iolock:
 265        if (lock_flags & XFS_IOLOCK_EXCL)
 266                up_write(&VFS_I(ip)->i_rwsem);
 267        else if (lock_flags & XFS_IOLOCK_SHARED)
 268                up_read(&VFS_I(ip)->i_rwsem);
 269out:
 270        return 0;
 271}
 272
 273/*
 274 * xfs_iunlock() is used to drop the inode locks acquired with
 275 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 276 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 277 * that we know which locks to drop.
 278 *
 279 * ip -- the inode being unlocked
 280 * lock_flags -- this parameter indicates the inode's locks to be
 281 *       to be unlocked.  See the comment for xfs_ilock() for a list
 282 *       of valid values for this parameter.
 283 *
 284 */
 285void
 286xfs_iunlock(
 287        xfs_inode_t             *ip,
 288        uint                    lock_flags)
 289{
 290        /*
 291         * You can't set both SHARED and EXCL for the same lock,
 292         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 293         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 294         */
 295        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 296               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 297        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 298               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 299        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 300               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 301        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 302        ASSERT(lock_flags != 0);
 303
 304        if (lock_flags & XFS_IOLOCK_EXCL)
 305                up_write(&VFS_I(ip)->i_rwsem);
 306        else if (lock_flags & XFS_IOLOCK_SHARED)
 307                up_read(&VFS_I(ip)->i_rwsem);
 308
 309        if (lock_flags & XFS_MMAPLOCK_EXCL)
 310                mrunlock_excl(&ip->i_mmaplock);
 311        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 312                mrunlock_shared(&ip->i_mmaplock);
 313
 314        if (lock_flags & XFS_ILOCK_EXCL)
 315                mrunlock_excl(&ip->i_lock);
 316        else if (lock_flags & XFS_ILOCK_SHARED)
 317                mrunlock_shared(&ip->i_lock);
 318
 319        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 320}
 321
 322/*
 323 * give up write locks.  the i/o lock cannot be held nested
 324 * if it is being demoted.
 325 */
 326void
 327xfs_ilock_demote(
 328        xfs_inode_t             *ip,
 329        uint                    lock_flags)
 330{
 331        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 332        ASSERT((lock_flags &
 333                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 334
 335        if (lock_flags & XFS_ILOCK_EXCL)
 336                mrdemote(&ip->i_lock);
 337        if (lock_flags & XFS_MMAPLOCK_EXCL)
 338                mrdemote(&ip->i_mmaplock);
 339        if (lock_flags & XFS_IOLOCK_EXCL)
 340                downgrade_write(&VFS_I(ip)->i_rwsem);
 341
 342        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 343}
 344
 345#if defined(DEBUG) || defined(XFS_WARN)
 346int
 347xfs_isilocked(
 348        xfs_inode_t             *ip,
 349        uint                    lock_flags)
 350{
 351        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 352                if (!(lock_flags & XFS_ILOCK_SHARED))
 353                        return !!ip->i_lock.mr_writer;
 354                return rwsem_is_locked(&ip->i_lock.mr_lock);
 355        }
 356
 357        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 358                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 359                        return !!ip->i_mmaplock.mr_writer;
 360                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 361        }
 362
 363        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 364                if (!(lock_flags & XFS_IOLOCK_SHARED))
 365                        return !debug_locks ||
 366                                lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 367                return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 368        }
 369
 370        ASSERT(0);
 371        return 0;
 372}
 373#endif
 374
 375/*
 376 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 377 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 378 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 379 * errors and warnings.
 380 */
 381#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 382static bool
 383xfs_lockdep_subclass_ok(
 384        int subclass)
 385{
 386        return subclass < MAX_LOCKDEP_SUBCLASSES;
 387}
 388#else
 389#define xfs_lockdep_subclass_ok(subclass)       (true)
 390#endif
 391
 392/*
 393 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 394 * value. This can be called for any type of inode lock combination, including
 395 * parent locking. Care must be taken to ensure we don't overrun the subclass
 396 * storage fields in the class mask we build.
 397 */
 398static inline int
 399xfs_lock_inumorder(int lock_mode, int subclass)
 400{
 401        int     class = 0;
 402
 403        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 404                              XFS_ILOCK_RTSUM)));
 405        ASSERT(xfs_lockdep_subclass_ok(subclass));
 406
 407        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 408                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 409                class += subclass << XFS_IOLOCK_SHIFT;
 410        }
 411
 412        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 413                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 414                class += subclass << XFS_MMAPLOCK_SHIFT;
 415        }
 416
 417        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 418                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 419                class += subclass << XFS_ILOCK_SHIFT;
 420        }
 421
 422        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 423}
 424
 425/*
 426 * The following routine will lock n inodes in exclusive mode.  We assume the
 427 * caller calls us with the inodes in i_ino order.
 428 *
 429 * We need to detect deadlock where an inode that we lock is in the AIL and we
 430 * start waiting for another inode that is locked by a thread in a long running
 431 * transaction (such as truncate). This can result in deadlock since the long
 432 * running trans might need to wait for the inode we just locked in order to
 433 * push the tail and free space in the log.
 434 *
 435 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 436 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 437 * lock more than one at a time, lockdep will report false positives saying we
 438 * have violated locking orders.
 439 */
 440static void
 441xfs_lock_inodes(
 442        struct xfs_inode        **ips,
 443        int                     inodes,
 444        uint                    lock_mode)
 445{
 446        int                     attempts = 0, i, j, try_lock;
 447        struct xfs_log_item     *lp;
 448
 449        /*
 450         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 451         * support an arbitrary depth of locking here, but absolute limits on
 452         * inodes depend on the type of locking and the limits placed by
 453         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 454         * the asserts.
 455         */
 456        ASSERT(ips && inodes >= 2 && inodes <= 5);
 457        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 458                            XFS_ILOCK_EXCL));
 459        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 460                              XFS_ILOCK_SHARED)));
 461        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 462                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 463        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 464                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 465
 466        if (lock_mode & XFS_IOLOCK_EXCL) {
 467                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 468        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 469                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 470
 471        try_lock = 0;
 472        i = 0;
 473again:
 474        for (; i < inodes; i++) {
 475                ASSERT(ips[i]);
 476
 477                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 478                        continue;
 479
 480                /*
 481                 * If try_lock is not set yet, make sure all locked inodes are
 482                 * not in the AIL.  If any are, set try_lock to be used later.
 483                 */
 484                if (!try_lock) {
 485                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 486                                lp = &ips[j]->i_itemp->ili_item;
 487                                if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 488                                        try_lock++;
 489                        }
 490                }
 491
 492                /*
 493                 * If any of the previous locks we have locked is in the AIL,
 494                 * we must TRY to get the second and subsequent locks. If
 495                 * we can't get any, we must release all we have
 496                 * and try again.
 497                 */
 498                if (!try_lock) {
 499                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 500                        continue;
 501                }
 502
 503                /* try_lock means we have an inode locked that is in the AIL. */
 504                ASSERT(i != 0);
 505                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 506                        continue;
 507
 508                /*
 509                 * Unlock all previous guys and try again.  xfs_iunlock will try
 510                 * to push the tail if the inode is in the AIL.
 511                 */
 512                attempts++;
 513                for (j = i - 1; j >= 0; j--) {
 514                        /*
 515                         * Check to see if we've already unlocked this one.  Not
 516                         * the first one going back, and the inode ptr is the
 517                         * same.
 518                         */
 519                        if (j != (i - 1) && ips[j] == ips[j + 1])
 520                                continue;
 521
 522                        xfs_iunlock(ips[j], lock_mode);
 523                }
 524
 525                if ((attempts % 5) == 0) {
 526                        delay(1); /* Don't just spin the CPU */
 527                }
 528                i = 0;
 529                try_lock = 0;
 530                goto again;
 531        }
 532}
 533
 534/*
 535 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 536 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 537 * more than one at a time, lockdep will report false positives saying we have
 538 * violated locking orders.  The iolock must be double-locked separately since
 539 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 540 * SHARED.
 541 */
 542void
 543xfs_lock_two_inodes(
 544        struct xfs_inode        *ip0,
 545        uint                    ip0_mode,
 546        struct xfs_inode        *ip1,
 547        uint                    ip1_mode)
 548{
 549        struct xfs_inode        *temp;
 550        uint                    mode_temp;
 551        int                     attempts = 0;
 552        struct xfs_log_item     *lp;
 553
 554        ASSERT(hweight32(ip0_mode) == 1);
 555        ASSERT(hweight32(ip1_mode) == 1);
 556        ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 557        ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 558        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 559               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 560        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562        ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563               !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564        ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565               !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566
 567        ASSERT(ip0->i_ino != ip1->i_ino);
 568
 569        if (ip0->i_ino > ip1->i_ino) {
 570                temp = ip0;
 571                ip0 = ip1;
 572                ip1 = temp;
 573                mode_temp = ip0_mode;
 574                ip0_mode = ip1_mode;
 575                ip1_mode = mode_temp;
 576        }
 577
 578 again:
 579        xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 580
 581        /*
 582         * If the first lock we have locked is in the AIL, we must TRY to get
 583         * the second lock. If we can't get it, we must release the first one
 584         * and try again.
 585         */
 586        lp = &ip0->i_itemp->ili_item;
 587        if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 588                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 589                        xfs_iunlock(ip0, ip0_mode);
 590                        if ((++attempts % 5) == 0)
 591                                delay(1); /* Don't just spin the CPU */
 592                        goto again;
 593                }
 594        } else {
 595                xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 596        }
 597}
 598
 599uint
 600xfs_ip2xflags(
 601        struct xfs_inode        *ip)
 602{
 603        uint                    flags = 0;
 604
 605        if (ip->i_diflags & XFS_DIFLAG_ANY) {
 606                if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 607                        flags |= FS_XFLAG_REALTIME;
 608                if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 609                        flags |= FS_XFLAG_PREALLOC;
 610                if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 611                        flags |= FS_XFLAG_IMMUTABLE;
 612                if (ip->i_diflags & XFS_DIFLAG_APPEND)
 613                        flags |= FS_XFLAG_APPEND;
 614                if (ip->i_diflags & XFS_DIFLAG_SYNC)
 615                        flags |= FS_XFLAG_SYNC;
 616                if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 617                        flags |= FS_XFLAG_NOATIME;
 618                if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 619                        flags |= FS_XFLAG_NODUMP;
 620                if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 621                        flags |= FS_XFLAG_RTINHERIT;
 622                if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 623                        flags |= FS_XFLAG_PROJINHERIT;
 624                if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 625                        flags |= FS_XFLAG_NOSYMLINKS;
 626                if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 627                        flags |= FS_XFLAG_EXTSIZE;
 628                if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 629                        flags |= FS_XFLAG_EXTSZINHERIT;
 630                if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 631                        flags |= FS_XFLAG_NODEFRAG;
 632                if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 633                        flags |= FS_XFLAG_FILESTREAM;
 634        }
 635
 636        if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 637                if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 638                        flags |= FS_XFLAG_DAX;
 639                if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 640                        flags |= FS_XFLAG_COWEXTSIZE;
 641        }
 642
 643        if (XFS_IFORK_Q(ip))
 644                flags |= FS_XFLAG_HASATTR;
 645        return flags;
 646}
 647
 648/*
 649 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 650 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 651 * ci_name->name will point to a the actual name (caller must free) or
 652 * will be set to NULL if an exact match is found.
 653 */
 654int
 655xfs_lookup(
 656        xfs_inode_t             *dp,
 657        struct xfs_name         *name,
 658        xfs_inode_t             **ipp,
 659        struct xfs_name         *ci_name)
 660{
 661        xfs_ino_t               inum;
 662        int                     error;
 663
 664        trace_xfs_lookup(dp, name);
 665
 666        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 667                return -EIO;
 668
 669        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 670        if (error)
 671                goto out_unlock;
 672
 673        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 674        if (error)
 675                goto out_free_name;
 676
 677        return 0;
 678
 679out_free_name:
 680        if (ci_name)
 681                kmem_free(ci_name->name);
 682out_unlock:
 683        *ipp = NULL;
 684        return error;
 685}
 686
 687/* Propagate di_flags from a parent inode to a child inode. */
 688static void
 689xfs_inode_inherit_flags(
 690        struct xfs_inode        *ip,
 691        const struct xfs_inode  *pip)
 692{
 693        unsigned int            di_flags = 0;
 694        xfs_failaddr_t          failaddr;
 695        umode_t                 mode = VFS_I(ip)->i_mode;
 696
 697        if (S_ISDIR(mode)) {
 698                if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 699                        di_flags |= XFS_DIFLAG_RTINHERIT;
 700                if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 701                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 702                        ip->i_extsize = pip->i_extsize;
 703                }
 704                if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 705                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 706        } else if (S_ISREG(mode)) {
 707                if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 708                    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
 709                        di_flags |= XFS_DIFLAG_REALTIME;
 710                if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 711                        di_flags |= XFS_DIFLAG_EXTSIZE;
 712                        ip->i_extsize = pip->i_extsize;
 713                }
 714        }
 715        if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 716            xfs_inherit_noatime)
 717                di_flags |= XFS_DIFLAG_NOATIME;
 718        if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 719            xfs_inherit_nodump)
 720                di_flags |= XFS_DIFLAG_NODUMP;
 721        if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 722            xfs_inherit_sync)
 723                di_flags |= XFS_DIFLAG_SYNC;
 724        if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 725            xfs_inherit_nosymlinks)
 726                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 727        if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 728            xfs_inherit_nodefrag)
 729                di_flags |= XFS_DIFLAG_NODEFRAG;
 730        if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 731                di_flags |= XFS_DIFLAG_FILESTREAM;
 732
 733        ip->i_diflags |= di_flags;
 734
 735        /*
 736         * Inode verifiers on older kernels only check that the extent size
 737         * hint is an integer multiple of the rt extent size on realtime files.
 738         * They did not check the hint alignment on a directory with both
 739         * rtinherit and extszinherit flags set.  If the misaligned hint is
 740         * propagated from a directory into a new realtime file, new file
 741         * allocations will fail due to math errors in the rt allocator and/or
 742         * trip the verifiers.  Validate the hint settings in the new file so
 743         * that we don't let broken hints propagate.
 744         */
 745        failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 746                        VFS_I(ip)->i_mode, ip->i_diflags);
 747        if (failaddr) {
 748                ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 749                                   XFS_DIFLAG_EXTSZINHERIT);
 750                ip->i_extsize = 0;
 751        }
 752}
 753
 754/* Propagate di_flags2 from a parent inode to a child inode. */
 755static void
 756xfs_inode_inherit_flags2(
 757        struct xfs_inode        *ip,
 758        const struct xfs_inode  *pip)
 759{
 760        xfs_failaddr_t          failaddr;
 761
 762        if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 763                ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 764                ip->i_cowextsize = pip->i_cowextsize;
 765        }
 766        if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 767                ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 768
 769        /* Don't let invalid cowextsize hints propagate. */
 770        failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 771                        VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 772        if (failaddr) {
 773                ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 774                ip->i_cowextsize = 0;
 775        }
 776}
 777
 778/*
 779 * Initialise a newly allocated inode and return the in-core inode to the
 780 * caller locked exclusively.
 781 */
 782int
 783xfs_init_new_inode(
 784        struct user_namespace   *mnt_userns,
 785        struct xfs_trans        *tp,
 786        struct xfs_inode        *pip,
 787        xfs_ino_t               ino,
 788        umode_t                 mode,
 789        xfs_nlink_t             nlink,
 790        dev_t                   rdev,
 791        prid_t                  prid,
 792        bool                    init_xattrs,
 793        struct xfs_inode        **ipp)
 794{
 795        struct inode            *dir = pip ? VFS_I(pip) : NULL;
 796        struct xfs_mount        *mp = tp->t_mountp;
 797        struct xfs_inode        *ip;
 798        unsigned int            flags;
 799        int                     error;
 800        struct timespec64       tv;
 801        struct inode            *inode;
 802
 803        /*
 804         * Protect against obviously corrupt allocation btree records. Later
 805         * xfs_iget checks will catch re-allocation of other active in-memory
 806         * and on-disk inodes. If we don't catch reallocating the parent inode
 807         * here we will deadlock in xfs_iget() so we have to do these checks
 808         * first.
 809         */
 810        if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 811                xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 812                return -EFSCORRUPTED;
 813        }
 814
 815        /*
 816         * Get the in-core inode with the lock held exclusively to prevent
 817         * others from looking at until we're done.
 818         */
 819        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 820        if (error)
 821                return error;
 822
 823        ASSERT(ip != NULL);
 824        inode = VFS_I(ip);
 825        set_nlink(inode, nlink);
 826        inode->i_rdev = rdev;
 827        ip->i_projid = prid;
 828
 829        if (dir && !(dir->i_mode & S_ISGID) &&
 830            (mp->m_flags & XFS_MOUNT_GRPID)) {
 831                inode_fsuid_set(inode, mnt_userns);
 832                inode->i_gid = dir->i_gid;
 833                inode->i_mode = mode;
 834        } else {
 835                inode_init_owner(mnt_userns, inode, dir, mode);
 836        }
 837
 838        /*
 839         * If the group ID of the new file does not match the effective group
 840         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 841         * (and only if the irix_sgid_inherit compatibility variable is set).
 842         */
 843        if (irix_sgid_inherit &&
 844            (inode->i_mode & S_ISGID) &&
 845            !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
 846                inode->i_mode &= ~S_ISGID;
 847
 848        ip->i_disk_size = 0;
 849        ip->i_df.if_nextents = 0;
 850        ASSERT(ip->i_nblocks == 0);
 851
 852        tv = current_time(inode);
 853        inode->i_mtime = tv;
 854        inode->i_atime = tv;
 855        inode->i_ctime = tv;
 856
 857        ip->i_extsize = 0;
 858        ip->i_diflags = 0;
 859
 860        if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 861                inode_set_iversion(inode, 1);
 862                ip->i_cowextsize = 0;
 863                ip->i_crtime = tv;
 864        }
 865
 866        flags = XFS_ILOG_CORE;
 867        switch (mode & S_IFMT) {
 868        case S_IFIFO:
 869        case S_IFCHR:
 870        case S_IFBLK:
 871        case S_IFSOCK:
 872                ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 873                flags |= XFS_ILOG_DEV;
 874                break;
 875        case S_IFREG:
 876        case S_IFDIR:
 877                if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 878                        xfs_inode_inherit_flags(ip, pip);
 879                if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 880                        xfs_inode_inherit_flags2(ip, pip);
 881                fallthrough;
 882        case S_IFLNK:
 883                ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 884                ip->i_df.if_bytes = 0;
 885                ip->i_df.if_u1.if_root = NULL;
 886                break;
 887        default:
 888                ASSERT(0);
 889        }
 890
 891        /*
 892         * If we need to create attributes immediately after allocating the
 893         * inode, initialise an empty attribute fork right now. We use the
 894         * default fork offset for attributes here as we don't know exactly what
 895         * size or how many attributes we might be adding. We can do this
 896         * safely here because we know the data fork is completely empty and
 897         * this saves us from needing to run a separate transaction to set the
 898         * fork offset in the immediate future.
 899         */
 900        if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
 901                ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 902                ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
 903        }
 904
 905        /*
 906         * Log the new values stuffed into the inode.
 907         */
 908        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 909        xfs_trans_log_inode(tp, ip, flags);
 910
 911        /* now that we have an i_mode we can setup the inode structure */
 912        xfs_setup_inode(ip);
 913
 914        *ipp = ip;
 915        return 0;
 916}
 917
 918/*
 919 * Decrement the link count on an inode & log the change.  If this causes the
 920 * link count to go to zero, move the inode to AGI unlinked list so that it can
 921 * be freed when the last active reference goes away via xfs_inactive().
 922 */
 923static int                      /* error */
 924xfs_droplink(
 925        xfs_trans_t *tp,
 926        xfs_inode_t *ip)
 927{
 928        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 929
 930        drop_nlink(VFS_I(ip));
 931        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 932
 933        if (VFS_I(ip)->i_nlink)
 934                return 0;
 935
 936        return xfs_iunlink(tp, ip);
 937}
 938
 939/*
 940 * Increment the link count on an inode & log the change.
 941 */
 942static void
 943xfs_bumplink(
 944        xfs_trans_t *tp,
 945        xfs_inode_t *ip)
 946{
 947        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 948
 949        inc_nlink(VFS_I(ip));
 950        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 951}
 952
 953int
 954xfs_create(
 955        struct user_namespace   *mnt_userns,
 956        xfs_inode_t             *dp,
 957        struct xfs_name         *name,
 958        umode_t                 mode,
 959        dev_t                   rdev,
 960        bool                    init_xattrs,
 961        xfs_inode_t             **ipp)
 962{
 963        int                     is_dir = S_ISDIR(mode);
 964        struct xfs_mount        *mp = dp->i_mount;
 965        struct xfs_inode        *ip = NULL;
 966        struct xfs_trans        *tp = NULL;
 967        int                     error;
 968        bool                    unlock_dp_on_error = false;
 969        prid_t                  prid;
 970        struct xfs_dquot        *udqp = NULL;
 971        struct xfs_dquot        *gdqp = NULL;
 972        struct xfs_dquot        *pdqp = NULL;
 973        struct xfs_trans_res    *tres;
 974        uint                    resblks;
 975        xfs_ino_t               ino;
 976
 977        trace_xfs_create(dp, name);
 978
 979        if (XFS_FORCED_SHUTDOWN(mp))
 980                return -EIO;
 981
 982        prid = xfs_get_initial_prid(dp);
 983
 984        /*
 985         * Make sure that we have allocated dquot(s) on disk.
 986         */
 987        error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
 988                        mapped_fsgid(mnt_userns), prid,
 989                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 990                        &udqp, &gdqp, &pdqp);
 991        if (error)
 992                return error;
 993
 994        if (is_dir) {
 995                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 996                tres = &M_RES(mp)->tr_mkdir;
 997        } else {
 998                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 999                tres = &M_RES(mp)->tr_create;
1000        }
1001
1002        /*
1003         * Initially assume that the file does not exist and
1004         * reserve the resources for that case.  If that is not
1005         * the case we'll drop the one we have and get a more
1006         * appropriate transaction later.
1007         */
1008        error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1009                        &tp);
1010        if (error == -ENOSPC) {
1011                /* flush outstanding delalloc blocks and retry */
1012                xfs_flush_inodes(mp);
1013                error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1014                                resblks, &tp);
1015        }
1016        if (error)
1017                goto out_release_dquots;
1018
1019        xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1020        unlock_dp_on_error = true;
1021
1022        error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1023                        XFS_IEXT_DIR_MANIP_CNT(mp));
1024        if (error)
1025                goto out_trans_cancel;
1026
1027        /*
1028         * A newly created regular or special file just has one directory
1029         * entry pointing to them, but a directory also the "." entry
1030         * pointing to itself.
1031         */
1032        error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1033        if (!error)
1034                error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1035                                is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1036        if (error)
1037                goto out_trans_cancel;
1038
1039        /*
1040         * Now we join the directory inode to the transaction.  We do not do it
1041         * earlier because xfs_dialloc might commit the previous transaction
1042         * (and release all the locks).  An error from here on will result in
1043         * the transaction cancel unlocking dp so don't do it explicitly in the
1044         * error path.
1045         */
1046        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1047        unlock_dp_on_error = false;
1048
1049        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1050                                        resblks - XFS_IALLOC_SPACE_RES(mp));
1051        if (error) {
1052                ASSERT(error != -ENOSPC);
1053                goto out_trans_cancel;
1054        }
1055        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1056        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1057
1058        if (is_dir) {
1059                error = xfs_dir_init(tp, ip, dp);
1060                if (error)
1061                        goto out_trans_cancel;
1062
1063                xfs_bumplink(tp, dp);
1064        }
1065
1066        /*
1067         * If this is a synchronous mount, make sure that the
1068         * create transaction goes to disk before returning to
1069         * the user.
1070         */
1071        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1072                xfs_trans_set_sync(tp);
1073
1074        /*
1075         * Attach the dquot(s) to the inodes and modify them incore.
1076         * These ids of the inode couldn't have changed since the new
1077         * inode has been locked ever since it was created.
1078         */
1079        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1080
1081        error = xfs_trans_commit(tp);
1082        if (error)
1083                goto out_release_inode;
1084
1085        xfs_qm_dqrele(udqp);
1086        xfs_qm_dqrele(gdqp);
1087        xfs_qm_dqrele(pdqp);
1088
1089        *ipp = ip;
1090        return 0;
1091
1092 out_trans_cancel:
1093        xfs_trans_cancel(tp);
1094 out_release_inode:
1095        /*
1096         * Wait until after the current transaction is aborted to finish the
1097         * setup of the inode and release the inode.  This prevents recursive
1098         * transactions and deadlocks from xfs_inactive.
1099         */
1100        if (ip) {
1101                xfs_finish_inode_setup(ip);
1102                xfs_irele(ip);
1103        }
1104 out_release_dquots:
1105        xfs_qm_dqrele(udqp);
1106        xfs_qm_dqrele(gdqp);
1107        xfs_qm_dqrele(pdqp);
1108
1109        if (unlock_dp_on_error)
1110                xfs_iunlock(dp, XFS_ILOCK_EXCL);
1111        return error;
1112}
1113
1114int
1115xfs_create_tmpfile(
1116        struct user_namespace   *mnt_userns,
1117        struct xfs_inode        *dp,
1118        umode_t                 mode,
1119        struct xfs_inode        **ipp)
1120{
1121        struct xfs_mount        *mp = dp->i_mount;
1122        struct xfs_inode        *ip = NULL;
1123        struct xfs_trans        *tp = NULL;
1124        int                     error;
1125        prid_t                  prid;
1126        struct xfs_dquot        *udqp = NULL;
1127        struct xfs_dquot        *gdqp = NULL;
1128        struct xfs_dquot        *pdqp = NULL;
1129        struct xfs_trans_res    *tres;
1130        uint                    resblks;
1131        xfs_ino_t               ino;
1132
1133        if (XFS_FORCED_SHUTDOWN(mp))
1134                return -EIO;
1135
1136        prid = xfs_get_initial_prid(dp);
1137
1138        /*
1139         * Make sure that we have allocated dquot(s) on disk.
1140         */
1141        error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1142                        mapped_fsgid(mnt_userns), prid,
1143                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1144                        &udqp, &gdqp, &pdqp);
1145        if (error)
1146                return error;
1147
1148        resblks = XFS_IALLOC_SPACE_RES(mp);
1149        tres = &M_RES(mp)->tr_create_tmpfile;
1150
1151        error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1152                        &tp);
1153        if (error)
1154                goto out_release_dquots;
1155
1156        error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1157        if (!error)
1158                error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1159                                0, 0, prid, false, &ip);
1160        if (error)
1161                goto out_trans_cancel;
1162
1163        if (mp->m_flags & XFS_MOUNT_WSYNC)
1164                xfs_trans_set_sync(tp);
1165
1166        /*
1167         * Attach the dquot(s) to the inodes and modify them incore.
1168         * These ids of the inode couldn't have changed since the new
1169         * inode has been locked ever since it was created.
1170         */
1171        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1172
1173        error = xfs_iunlink(tp, ip);
1174        if (error)
1175                goto out_trans_cancel;
1176
1177        error = xfs_trans_commit(tp);
1178        if (error)
1179                goto out_release_inode;
1180
1181        xfs_qm_dqrele(udqp);
1182        xfs_qm_dqrele(gdqp);
1183        xfs_qm_dqrele(pdqp);
1184
1185        *ipp = ip;
1186        return 0;
1187
1188 out_trans_cancel:
1189        xfs_trans_cancel(tp);
1190 out_release_inode:
1191        /*
1192         * Wait until after the current transaction is aborted to finish the
1193         * setup of the inode and release the inode.  This prevents recursive
1194         * transactions and deadlocks from xfs_inactive.
1195         */
1196        if (ip) {
1197                xfs_finish_inode_setup(ip);
1198                xfs_irele(ip);
1199        }
1200 out_release_dquots:
1201        xfs_qm_dqrele(udqp);
1202        xfs_qm_dqrele(gdqp);
1203        xfs_qm_dqrele(pdqp);
1204
1205        return error;
1206}
1207
1208int
1209xfs_link(
1210        xfs_inode_t             *tdp,
1211        xfs_inode_t             *sip,
1212        struct xfs_name         *target_name)
1213{
1214        xfs_mount_t             *mp = tdp->i_mount;
1215        xfs_trans_t             *tp;
1216        int                     error;
1217        int                     resblks;
1218
1219        trace_xfs_link(tdp, target_name);
1220
1221        ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1222
1223        if (XFS_FORCED_SHUTDOWN(mp))
1224                return -EIO;
1225
1226        error = xfs_qm_dqattach(sip);
1227        if (error)
1228                goto std_return;
1229
1230        error = xfs_qm_dqattach(tdp);
1231        if (error)
1232                goto std_return;
1233
1234        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1235        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1236        if (error == -ENOSPC) {
1237                resblks = 0;
1238                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1239        }
1240        if (error)
1241                goto std_return;
1242
1243        xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1244
1245        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1246        xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1247
1248        error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1249                        XFS_IEXT_DIR_MANIP_CNT(mp));
1250        if (error)
1251                goto error_return;
1252
1253        /*
1254         * If we are using project inheritance, we only allow hard link
1255         * creation in our tree when the project IDs are the same; else
1256         * the tree quota mechanism could be circumvented.
1257         */
1258        if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1259                     tdp->i_projid != sip->i_projid)) {
1260                error = -EXDEV;
1261                goto error_return;
1262        }
1263
1264        if (!resblks) {
1265                error = xfs_dir_canenter(tp, tdp, target_name);
1266                if (error)
1267                        goto error_return;
1268        }
1269
1270        /*
1271         * Handle initial link state of O_TMPFILE inode
1272         */
1273        if (VFS_I(sip)->i_nlink == 0) {
1274                struct xfs_perag        *pag;
1275
1276                pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1277                error = xfs_iunlink_remove(tp, pag, sip);
1278                xfs_perag_put(pag);
1279                if (error)
1280                        goto error_return;
1281        }
1282
1283        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1284                                   resblks);
1285        if (error)
1286                goto error_return;
1287        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1288        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1289
1290        xfs_bumplink(tp, sip);
1291
1292        /*
1293         * If this is a synchronous mount, make sure that the
1294         * link transaction goes to disk before returning to
1295         * the user.
1296         */
1297        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1298                xfs_trans_set_sync(tp);
1299
1300        return xfs_trans_commit(tp);
1301
1302 error_return:
1303        xfs_trans_cancel(tp);
1304 std_return:
1305        return error;
1306}
1307
1308/* Clear the reflink flag and the cowblocks tag if possible. */
1309static void
1310xfs_itruncate_clear_reflink_flags(
1311        struct xfs_inode        *ip)
1312{
1313        struct xfs_ifork        *dfork;
1314        struct xfs_ifork        *cfork;
1315
1316        if (!xfs_is_reflink_inode(ip))
1317                return;
1318        dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1319        cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1320        if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1321                ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1322        if (cfork->if_bytes == 0)
1323                xfs_inode_clear_cowblocks_tag(ip);
1324}
1325
1326/*
1327 * Free up the underlying blocks past new_size.  The new size must be smaller
1328 * than the current size.  This routine can be used both for the attribute and
1329 * data fork, and does not modify the inode size, which is left to the caller.
1330 *
1331 * The transaction passed to this routine must have made a permanent log
1332 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1333 * given transaction and start new ones, so make sure everything involved in
1334 * the transaction is tidy before calling here.  Some transaction will be
1335 * returned to the caller to be committed.  The incoming transaction must
1336 * already include the inode, and both inode locks must be held exclusively.
1337 * The inode must also be "held" within the transaction.  On return the inode
1338 * will be "held" within the returned transaction.  This routine does NOT
1339 * require any disk space to be reserved for it within the transaction.
1340 *
1341 * If we get an error, we must return with the inode locked and linked into the
1342 * current transaction. This keeps things simple for the higher level code,
1343 * because it always knows that the inode is locked and held in the transaction
1344 * that returns to it whether errors occur or not.  We don't mark the inode
1345 * dirty on error so that transactions can be easily aborted if possible.
1346 */
1347int
1348xfs_itruncate_extents_flags(
1349        struct xfs_trans        **tpp,
1350        struct xfs_inode        *ip,
1351        int                     whichfork,
1352        xfs_fsize_t             new_size,
1353        int                     flags)
1354{
1355        struct xfs_mount        *mp = ip->i_mount;
1356        struct xfs_trans        *tp = *tpp;
1357        xfs_fileoff_t           first_unmap_block;
1358        xfs_filblks_t           unmap_len;
1359        int                     error = 0;
1360
1361        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1362        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1363               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364        ASSERT(new_size <= XFS_ISIZE(ip));
1365        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1366        ASSERT(ip->i_itemp != NULL);
1367        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1368        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1369
1370        trace_xfs_itruncate_extents_start(ip, new_size);
1371
1372        flags |= xfs_bmapi_aflag(whichfork);
1373
1374        /*
1375         * Since it is possible for space to become allocated beyond
1376         * the end of the file (in a crash where the space is allocated
1377         * but the inode size is not yet updated), simply remove any
1378         * blocks which show up between the new EOF and the maximum
1379         * possible file size.
1380         *
1381         * We have to free all the blocks to the bmbt maximum offset, even if
1382         * the page cache can't scale that far.
1383         */
1384        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1385        if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1386                WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1387                return 0;
1388        }
1389
1390        unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1391        while (unmap_len > 0) {
1392                ASSERT(tp->t_firstblock == NULLFSBLOCK);
1393                error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1394                                flags, XFS_ITRUNC_MAX_EXTENTS);
1395                if (error)
1396                        goto out;
1397
1398                /* free the just unmapped extents */
1399                error = xfs_defer_finish(&tp);
1400                if (error)
1401                        goto out;
1402        }
1403
1404        if (whichfork == XFS_DATA_FORK) {
1405                /* Remove all pending CoW reservations. */
1406                error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1407                                first_unmap_block, XFS_MAX_FILEOFF, true);
1408                if (error)
1409                        goto out;
1410
1411                xfs_itruncate_clear_reflink_flags(ip);
1412        }
1413
1414        /*
1415         * Always re-log the inode so that our permanent transaction can keep
1416         * on rolling it forward in the log.
1417         */
1418        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1419
1420        trace_xfs_itruncate_extents_end(ip, new_size);
1421
1422out:
1423        *tpp = tp;
1424        return error;
1425}
1426
1427int
1428xfs_release(
1429        xfs_inode_t     *ip)
1430{
1431        xfs_mount_t     *mp = ip->i_mount;
1432        int             error = 0;
1433
1434        if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1435                return 0;
1436
1437        /* If this is a read-only mount, don't do this (would generate I/O) */
1438        if (mp->m_flags & XFS_MOUNT_RDONLY)
1439                return 0;
1440
1441        if (!XFS_FORCED_SHUTDOWN(mp)) {
1442                int truncated;
1443
1444                /*
1445                 * If we previously truncated this file and removed old data
1446                 * in the process, we want to initiate "early" writeout on
1447                 * the last close.  This is an attempt to combat the notorious
1448                 * NULL files problem which is particularly noticeable from a
1449                 * truncate down, buffered (re-)write (delalloc), followed by
1450                 * a crash.  What we are effectively doing here is
1451                 * significantly reducing the time window where we'd otherwise
1452                 * be exposed to that problem.
1453                 */
1454                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1455                if (truncated) {
1456                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1457                        if (ip->i_delayed_blks > 0) {
1458                                error = filemap_flush(VFS_I(ip)->i_mapping);
1459                                if (error)
1460                                        return error;
1461                        }
1462                }
1463        }
1464
1465        if (VFS_I(ip)->i_nlink == 0)
1466                return 0;
1467
1468        /*
1469         * If we can't get the iolock just skip truncating the blocks past EOF
1470         * because we could deadlock with the mmap_lock otherwise. We'll get
1471         * another chance to drop them once the last reference to the inode is
1472         * dropped, so we'll never leak blocks permanently.
1473         */
1474        if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1475                return 0;
1476
1477        if (xfs_can_free_eofblocks(ip, false)) {
1478                /*
1479                 * Check if the inode is being opened, written and closed
1480                 * frequently and we have delayed allocation blocks outstanding
1481                 * (e.g. streaming writes from the NFS server), truncating the
1482                 * blocks past EOF will cause fragmentation to occur.
1483                 *
1484                 * In this case don't do the truncation, but we have to be
1485                 * careful how we detect this case. Blocks beyond EOF show up as
1486                 * i_delayed_blks even when the inode is clean, so we need to
1487                 * truncate them away first before checking for a dirty release.
1488                 * Hence on the first dirty close we will still remove the
1489                 * speculative allocation, but after that we will leave it in
1490                 * place.
1491                 */
1492                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1493                        goto out_unlock;
1494
1495                error = xfs_free_eofblocks(ip);
1496                if (error)
1497                        goto out_unlock;
1498
1499                /* delalloc blocks after truncation means it really is dirty */
1500                if (ip->i_delayed_blks)
1501                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1502        }
1503
1504out_unlock:
1505        xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1506        return error;
1507}
1508
1509/*
1510 * xfs_inactive_truncate
1511 *
1512 * Called to perform a truncate when an inode becomes unlinked.
1513 */
1514STATIC int
1515xfs_inactive_truncate(
1516        struct xfs_inode *ip)
1517{
1518        struct xfs_mount        *mp = ip->i_mount;
1519        struct xfs_trans        *tp;
1520        int                     error;
1521
1522        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1523        if (error) {
1524                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1525                return error;
1526        }
1527        xfs_ilock(ip, XFS_ILOCK_EXCL);
1528        xfs_trans_ijoin(tp, ip, 0);
1529
1530        /*
1531         * Log the inode size first to prevent stale data exposure in the event
1532         * of a system crash before the truncate completes. See the related
1533         * comment in xfs_vn_setattr_size() for details.
1534         */
1535        ip->i_disk_size = 0;
1536        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537
1538        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1539        if (error)
1540                goto error_trans_cancel;
1541
1542        ASSERT(ip->i_df.if_nextents == 0);
1543
1544        error = xfs_trans_commit(tp);
1545        if (error)
1546                goto error_unlock;
1547
1548        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1549        return 0;
1550
1551error_trans_cancel:
1552        xfs_trans_cancel(tp);
1553error_unlock:
1554        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1555        return error;
1556}
1557
1558/*
1559 * xfs_inactive_ifree()
1560 *
1561 * Perform the inode free when an inode is unlinked.
1562 */
1563STATIC int
1564xfs_inactive_ifree(
1565        struct xfs_inode *ip)
1566{
1567        struct xfs_mount        *mp = ip->i_mount;
1568        struct xfs_trans        *tp;
1569        int                     error;
1570
1571        /*
1572         * We try to use a per-AG reservation for any block needed by the finobt
1573         * tree, but as the finobt feature predates the per-AG reservation
1574         * support a degraded file system might not have enough space for the
1575         * reservation at mount time.  In that case try to dip into the reserved
1576         * pool and pray.
1577         *
1578         * Send a warning if the reservation does happen to fail, as the inode
1579         * now remains allocated and sits on the unlinked list until the fs is
1580         * repaired.
1581         */
1582        if (unlikely(mp->m_finobt_nores)) {
1583                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1584                                XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1585                                &tp);
1586        } else {
1587                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1588        }
1589        if (error) {
1590                if (error == -ENOSPC) {
1591                        xfs_warn_ratelimited(mp,
1592                        "Failed to remove inode(s) from unlinked list. "
1593                        "Please free space, unmount and run xfs_repair.");
1594                } else {
1595                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1596                }
1597                return error;
1598        }
1599
1600        /*
1601         * We do not hold the inode locked across the entire rolling transaction
1602         * here. We only need to hold it for the first transaction that
1603         * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1604         * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1605         * here breaks the relationship between cluster buffer invalidation and
1606         * stale inode invalidation on cluster buffer item journal commit
1607         * completion, and can result in leaving dirty stale inodes hanging
1608         * around in memory.
1609         *
1610         * We have no need for serialising this inode operation against other
1611         * operations - we freed the inode and hence reallocation is required
1612         * and that will serialise on reallocating the space the deferops need
1613         * to free. Hence we can unlock the inode on the first commit of
1614         * the transaction rather than roll it right through the deferops. This
1615         * avoids relogging the XFS_ISTALE inode.
1616         *
1617         * We check that xfs_ifree() hasn't grown an internal transaction roll
1618         * by asserting that the inode is still locked when it returns.
1619         */
1620        xfs_ilock(ip, XFS_ILOCK_EXCL);
1621        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1622
1623        error = xfs_ifree(tp, ip);
1624        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1625        if (error) {
1626                /*
1627                 * If we fail to free the inode, shut down.  The cancel
1628                 * might do that, we need to make sure.  Otherwise the
1629                 * inode might be lost for a long time or forever.
1630                 */
1631                if (!XFS_FORCED_SHUTDOWN(mp)) {
1632                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1633                                __func__, error);
1634                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1635                }
1636                xfs_trans_cancel(tp);
1637                return error;
1638        }
1639
1640        /*
1641         * Credit the quota account(s). The inode is gone.
1642         */
1643        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1644
1645        /*
1646         * Just ignore errors at this point.  There is nothing we can do except
1647         * to try to keep going. Make sure it's not a silent error.
1648         */
1649        error = xfs_trans_commit(tp);
1650        if (error)
1651                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1652                        __func__, error);
1653
1654        return 0;
1655}
1656
1657/*
1658 * xfs_inactive
1659 *
1660 * This is called when the vnode reference count for the vnode
1661 * goes to zero.  If the file has been unlinked, then it must
1662 * now be truncated.  Also, we clear all of the read-ahead state
1663 * kept for the inode here since the file is now closed.
1664 */
1665void
1666xfs_inactive(
1667        xfs_inode_t     *ip)
1668{
1669        struct xfs_mount        *mp;
1670        int                     error;
1671        int                     truncate = 0;
1672
1673        /*
1674         * If the inode is already free, then there can be nothing
1675         * to clean up here.
1676         */
1677        if (VFS_I(ip)->i_mode == 0) {
1678                ASSERT(ip->i_df.if_broot_bytes == 0);
1679                goto out;
1680        }
1681
1682        mp = ip->i_mount;
1683        ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1684
1685        /* If this is a read-only mount, don't do this (would generate I/O) */
1686        if (mp->m_flags & XFS_MOUNT_RDONLY)
1687                goto out;
1688
1689        /* Metadata inodes require explicit resource cleanup. */
1690        if (xfs_is_metadata_inode(ip))
1691                goto out;
1692
1693        /* Try to clean out the cow blocks if there are any. */
1694        if (xfs_inode_has_cow_data(ip))
1695                xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1696
1697        if (VFS_I(ip)->i_nlink != 0) {
1698                /*
1699                 * force is true because we are evicting an inode from the
1700                 * cache. Post-eof blocks must be freed, lest we end up with
1701                 * broken free space accounting.
1702                 *
1703                 * Note: don't bother with iolock here since lockdep complains
1704                 * about acquiring it in reclaim context. We have the only
1705                 * reference to the inode at this point anyways.
1706                 */
1707                if (xfs_can_free_eofblocks(ip, true))
1708                        xfs_free_eofblocks(ip);
1709
1710                goto out;
1711        }
1712
1713        if (S_ISREG(VFS_I(ip)->i_mode) &&
1714            (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1715             ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1716                truncate = 1;
1717
1718        error = xfs_qm_dqattach(ip);
1719        if (error)
1720                goto out;
1721
1722        if (S_ISLNK(VFS_I(ip)->i_mode))
1723                error = xfs_inactive_symlink(ip);
1724        else if (truncate)
1725                error = xfs_inactive_truncate(ip);
1726        if (error)
1727                goto out;
1728
1729        /*
1730         * If there are attributes associated with the file then blow them away
1731         * now.  The code calls a routine that recursively deconstructs the
1732         * attribute fork. If also blows away the in-core attribute fork.
1733         */
1734        if (XFS_IFORK_Q(ip)) {
1735                error = xfs_attr_inactive(ip);
1736                if (error)
1737                        goto out;
1738        }
1739
1740        ASSERT(!ip->i_afp);
1741        ASSERT(ip->i_forkoff == 0);
1742
1743        /*
1744         * Free the inode.
1745         */
1746        xfs_inactive_ifree(ip);
1747
1748out:
1749        /*
1750         * We're done making metadata updates for this inode, so we can release
1751         * the attached dquots.
1752         */
1753        xfs_qm_dqdetach(ip);
1754}
1755
1756/*
1757 * In-Core Unlinked List Lookups
1758 * =============================
1759 *
1760 * Every inode is supposed to be reachable from some other piece of metadata
1761 * with the exception of the root directory.  Inodes with a connection to a
1762 * file descriptor but not linked from anywhere in the on-disk directory tree
1763 * are collectively known as unlinked inodes, though the filesystem itself
1764 * maintains links to these inodes so that on-disk metadata are consistent.
1765 *
1766 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1767 * header contains a number of buckets that point to an inode, and each inode
1768 * record has a pointer to the next inode in the hash chain.  This
1769 * singly-linked list causes scaling problems in the iunlink remove function
1770 * because we must walk that list to find the inode that points to the inode
1771 * being removed from the unlinked hash bucket list.
1772 *
1773 * What if we modelled the unlinked list as a collection of records capturing
1774 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1775 * have a fast way to look up unlinked list predecessors, which avoids the
1776 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1777 * rhashtable.
1778 *
1779 * Because this is a backref cache, we ignore operational failures since the
1780 * iunlink code can fall back to the slow bucket walk.  The only errors that
1781 * should bubble out are for obviously incorrect situations.
1782 *
1783 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1784 * access or have otherwise provided for concurrency control.
1785 */
1786
1787/* Capture a "X.next_unlinked = Y" relationship. */
1788struct xfs_iunlink {
1789        struct rhash_head       iu_rhash_head;
1790        xfs_agino_t             iu_agino;               /* X */
1791        xfs_agino_t             iu_next_unlinked;       /* Y */
1792};
1793
1794/* Unlinked list predecessor lookup hashtable construction */
1795static int
1796xfs_iunlink_obj_cmpfn(
1797        struct rhashtable_compare_arg   *arg,
1798        const void                      *obj)
1799{
1800        const xfs_agino_t               *key = arg->key;
1801        const struct xfs_iunlink        *iu = obj;
1802
1803        if (iu->iu_next_unlinked != *key)
1804                return 1;
1805        return 0;
1806}
1807
1808static const struct rhashtable_params xfs_iunlink_hash_params = {
1809        .min_size               = XFS_AGI_UNLINKED_BUCKETS,
1810        .key_len                = sizeof(xfs_agino_t),
1811        .key_offset             = offsetof(struct xfs_iunlink,
1812                                           iu_next_unlinked),
1813        .head_offset            = offsetof(struct xfs_iunlink, iu_rhash_head),
1814        .automatic_shrinking    = true,
1815        .obj_cmpfn              = xfs_iunlink_obj_cmpfn,
1816};
1817
1818/*
1819 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1820 * relation is found.
1821 */
1822static xfs_agino_t
1823xfs_iunlink_lookup_backref(
1824        struct xfs_perag        *pag,
1825        xfs_agino_t             agino)
1826{
1827        struct xfs_iunlink      *iu;
1828
1829        iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1830                        xfs_iunlink_hash_params);
1831        return iu ? iu->iu_agino : NULLAGINO;
1832}
1833
1834/*
1835 * Take ownership of an iunlink cache entry and insert it into the hash table.
1836 * If successful, the entry will be owned by the cache; if not, it is freed.
1837 * Either way, the caller does not own @iu after this call.
1838 */
1839static int
1840xfs_iunlink_insert_backref(
1841        struct xfs_perag        *pag,
1842        struct xfs_iunlink      *iu)
1843{
1844        int                     error;
1845
1846        error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1847                        &iu->iu_rhash_head, xfs_iunlink_hash_params);
1848        /*
1849         * Fail loudly if there already was an entry because that's a sign of
1850         * corruption of in-memory data.  Also fail loudly if we see an error
1851         * code we didn't anticipate from the rhashtable code.  Currently we
1852         * only anticipate ENOMEM.
1853         */
1854        if (error) {
1855                WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1856                kmem_free(iu);
1857        }
1858        /*
1859         * Absorb any runtime errors that aren't a result of corruption because
1860         * this is a cache and we can always fall back to bucket list scanning.
1861         */
1862        if (error != 0 && error != -EEXIST)
1863                error = 0;
1864        return error;
1865}
1866
1867/* Remember that @prev_agino.next_unlinked = @this_agino. */
1868static int
1869xfs_iunlink_add_backref(
1870        struct xfs_perag        *pag,
1871        xfs_agino_t             prev_agino,
1872        xfs_agino_t             this_agino)
1873{
1874        struct xfs_iunlink      *iu;
1875
1876        if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1877                return 0;
1878
1879        iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1880        iu->iu_agino = prev_agino;
1881        iu->iu_next_unlinked = this_agino;
1882
1883        return xfs_iunlink_insert_backref(pag, iu);
1884}
1885
1886/*
1887 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1888 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1889 * wasn't any such entry then we don't bother.
1890 */
1891static int
1892xfs_iunlink_change_backref(
1893        struct xfs_perag        *pag,
1894        xfs_agino_t             agino,
1895        xfs_agino_t             next_unlinked)
1896{
1897        struct xfs_iunlink      *iu;
1898        int                     error;
1899
1900        /* Look up the old entry; if there wasn't one then exit. */
1901        iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1902                        xfs_iunlink_hash_params);
1903        if (!iu)
1904                return 0;
1905
1906        /*
1907         * Remove the entry.  This shouldn't ever return an error, but if we
1908         * couldn't remove the old entry we don't want to add it again to the
1909         * hash table, and if the entry disappeared on us then someone's
1910         * violated the locking rules and we need to fail loudly.  Either way
1911         * we cannot remove the inode because internal state is or would have
1912         * been corrupt.
1913         */
1914        error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1915                        &iu->iu_rhash_head, xfs_iunlink_hash_params);
1916        if (error)
1917                return error;
1918
1919        /* If there is no new next entry just free our item and return. */
1920        if (next_unlinked == NULLAGINO) {
1921                kmem_free(iu);
1922                return 0;
1923        }
1924
1925        /* Update the entry and re-add it to the hash table. */
1926        iu->iu_next_unlinked = next_unlinked;
1927        return xfs_iunlink_insert_backref(pag, iu);
1928}
1929
1930/* Set up the in-core predecessor structures. */
1931int
1932xfs_iunlink_init(
1933        struct xfs_perag        *pag)
1934{
1935        return rhashtable_init(&pag->pagi_unlinked_hash,
1936                        &xfs_iunlink_hash_params);
1937}
1938
1939/* Free the in-core predecessor structures. */
1940static void
1941xfs_iunlink_free_item(
1942        void                    *ptr,
1943        void                    *arg)
1944{
1945        struct xfs_iunlink      *iu = ptr;
1946        bool                    *freed_anything = arg;
1947
1948        *freed_anything = true;
1949        kmem_free(iu);
1950}
1951
1952void
1953xfs_iunlink_destroy(
1954        struct xfs_perag        *pag)
1955{
1956        bool                    freed_anything = false;
1957
1958        rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1959                        xfs_iunlink_free_item, &freed_anything);
1960
1961        ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1962}
1963
1964/*
1965 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1966 * is responsible for validating the old value.
1967 */
1968STATIC int
1969xfs_iunlink_update_bucket(
1970        struct xfs_trans        *tp,
1971        struct xfs_perag        *pag,
1972        struct xfs_buf          *agibp,
1973        unsigned int            bucket_index,
1974        xfs_agino_t             new_agino)
1975{
1976        struct xfs_agi          *agi = agibp->b_addr;
1977        xfs_agino_t             old_value;
1978        int                     offset;
1979
1980        ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
1981
1982        old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1983        trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1984                        old_value, new_agino);
1985
1986        /*
1987         * We should never find the head of the list already set to the value
1988         * passed in because either we're adding or removing ourselves from the
1989         * head of the list.
1990         */
1991        if (old_value == new_agino) {
1992                xfs_buf_mark_corrupt(agibp);
1993                return -EFSCORRUPTED;
1994        }
1995
1996        agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1997        offset = offsetof(struct xfs_agi, agi_unlinked) +
1998                        (sizeof(xfs_agino_t) * bucket_index);
1999        xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2000        return 0;
2001}
2002
2003/* Set an on-disk inode's next_unlinked pointer. */
2004STATIC void
2005xfs_iunlink_update_dinode(
2006        struct xfs_trans        *tp,
2007        struct xfs_perag        *pag,
2008        xfs_agino_t             agino,
2009        struct xfs_buf          *ibp,
2010        struct xfs_dinode       *dip,
2011        struct xfs_imap         *imap,
2012        xfs_agino_t             next_agino)
2013{
2014        struct xfs_mount        *mp = tp->t_mountp;
2015        int                     offset;
2016
2017        ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2018
2019        trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2020                        be32_to_cpu(dip->di_next_unlinked), next_agino);
2021
2022        dip->di_next_unlinked = cpu_to_be32(next_agino);
2023        offset = imap->im_boffset +
2024                        offsetof(struct xfs_dinode, di_next_unlinked);
2025
2026        /* need to recalc the inode CRC if appropriate */
2027        xfs_dinode_calc_crc(mp, dip);
2028        xfs_trans_inode_buf(tp, ibp);
2029        xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2030}
2031
2032/* Set an in-core inode's unlinked pointer and return the old value. */
2033STATIC int
2034xfs_iunlink_update_inode(
2035        struct xfs_trans        *tp,
2036        struct xfs_inode        *ip,
2037        struct xfs_perag        *pag,
2038        xfs_agino_t             next_agino,
2039        xfs_agino_t             *old_next_agino)
2040{
2041        struct xfs_mount        *mp = tp->t_mountp;
2042        struct xfs_dinode       *dip;
2043        struct xfs_buf          *ibp;
2044        xfs_agino_t             old_value;
2045        int                     error;
2046
2047        ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2048
2049        error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2050        if (error)
2051                return error;
2052        dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2053
2054        /* Make sure the old pointer isn't garbage. */
2055        old_value = be32_to_cpu(dip->di_next_unlinked);
2056        if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2057                xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2058                                sizeof(*dip), __this_address);
2059                error = -EFSCORRUPTED;
2060                goto out;
2061        }
2062
2063        /*
2064         * Since we're updating a linked list, we should never find that the
2065         * current pointer is the same as the new value, unless we're
2066         * terminating the list.
2067         */
2068        *old_next_agino = old_value;
2069        if (old_value == next_agino) {
2070                if (next_agino != NULLAGINO) {
2071                        xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2072                                        dip, sizeof(*dip), __this_address);
2073                        error = -EFSCORRUPTED;
2074                }
2075                goto out;
2076        }
2077
2078        /* Ok, update the new pointer. */
2079        xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2080                        ibp, dip, &ip->i_imap, next_agino);
2081        return 0;
2082out:
2083        xfs_trans_brelse(tp, ibp);
2084        return error;
2085}
2086
2087/*
2088 * This is called when the inode's link count has gone to 0 or we are creating
2089 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2090 *
2091 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2092 * list when the inode is freed.
2093 */
2094STATIC int
2095xfs_iunlink(
2096        struct xfs_trans        *tp,
2097        struct xfs_inode        *ip)
2098{
2099        struct xfs_mount        *mp = tp->t_mountp;
2100        struct xfs_perag        *pag;
2101        struct xfs_agi          *agi;
2102        struct xfs_buf          *agibp;
2103        xfs_agino_t             next_agino;
2104        xfs_agino_t             agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2105        short                   bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2106        int                     error;
2107
2108        ASSERT(VFS_I(ip)->i_nlink == 0);
2109        ASSERT(VFS_I(ip)->i_mode != 0);
2110        trace_xfs_iunlink(ip);
2111
2112        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2113
2114        /* Get the agi buffer first.  It ensures lock ordering on the list. */
2115        error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2116        if (error)
2117                goto out;
2118        agi = agibp->b_addr;
2119
2120        /*
2121         * Get the index into the agi hash table for the list this inode will
2122         * go on.  Make sure the pointer isn't garbage and that this inode
2123         * isn't already on the list.
2124         */
2125        next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126        if (next_agino == agino ||
2127            !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2128                xfs_buf_mark_corrupt(agibp);
2129                error = -EFSCORRUPTED;
2130                goto out;
2131        }
2132
2133        if (next_agino != NULLAGINO) {
2134                xfs_agino_t             old_agino;
2135
2136                /*
2137                 * There is already another inode in the bucket, so point this
2138                 * inode to the current head of the list.
2139                 */
2140                error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2141                                &old_agino);
2142                if (error)
2143                        goto out;
2144                ASSERT(old_agino == NULLAGINO);
2145
2146                /*
2147                 * agino has been unlinked, add a backref from the next inode
2148                 * back to agino.
2149                 */
2150                error = xfs_iunlink_add_backref(pag, agino, next_agino);
2151                if (error)
2152                        goto out;
2153        }
2154
2155        /* Point the head of the list to point to this inode. */
2156        error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2157out:
2158        xfs_perag_put(pag);
2159        return error;
2160}
2161
2162/* Return the imap, dinode pointer, and buffer for an inode. */
2163STATIC int
2164xfs_iunlink_map_ino(
2165        struct xfs_trans        *tp,
2166        xfs_agnumber_t          agno,
2167        xfs_agino_t             agino,
2168        struct xfs_imap         *imap,
2169        struct xfs_dinode       **dipp,
2170        struct xfs_buf          **bpp)
2171{
2172        struct xfs_mount        *mp = tp->t_mountp;
2173        int                     error;
2174
2175        imap->im_blkno = 0;
2176        error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2177        if (error) {
2178                xfs_warn(mp, "%s: xfs_imap returned error %d.",
2179                                __func__, error);
2180                return error;
2181        }
2182
2183        error = xfs_imap_to_bp(mp, tp, imap, bpp);
2184        if (error) {
2185                xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2186                                __func__, error);
2187                return error;
2188        }
2189
2190        *dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2191        return 0;
2192}
2193
2194/*
2195 * Walk the unlinked chain from @head_agino until we find the inode that
2196 * points to @target_agino.  Return the inode number, map, dinode pointer,
2197 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2198 *
2199 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2200 * @agino, @imap, @dipp, and @bpp are all output parameters.
2201 *
2202 * Do not call this function if @target_agino is the head of the list.
2203 */
2204STATIC int
2205xfs_iunlink_map_prev(
2206        struct xfs_trans        *tp,
2207        struct xfs_perag        *pag,
2208        xfs_agino_t             head_agino,
2209        xfs_agino_t             target_agino,
2210        xfs_agino_t             *agino,
2211        struct xfs_imap         *imap,
2212        struct xfs_dinode       **dipp,
2213        struct xfs_buf          **bpp)
2214{
2215        struct xfs_mount        *mp = tp->t_mountp;
2216        xfs_agino_t             next_agino;
2217        int                     error;
2218
2219        ASSERT(head_agino != target_agino);
2220        *bpp = NULL;
2221
2222        /* See if our backref cache can find it faster. */
2223        *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2224        if (*agino != NULLAGINO) {
2225                error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2226                                dipp, bpp);
2227                if (error)
2228                        return error;
2229
2230                if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2231                        return 0;
2232
2233                /*
2234                 * If we get here the cache contents were corrupt, so drop the
2235                 * buffer and fall back to walking the bucket list.
2236                 */
2237                xfs_trans_brelse(tp, *bpp);
2238                *bpp = NULL;
2239                WARN_ON_ONCE(1);
2240        }
2241
2242        trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2243
2244        /* Otherwise, walk the entire bucket until we find it. */
2245        next_agino = head_agino;
2246        while (next_agino != target_agino) {
2247                xfs_agino_t     unlinked_agino;
2248
2249                if (*bpp)
2250                        xfs_trans_brelse(tp, *bpp);
2251
2252                *agino = next_agino;
2253                error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2254                                dipp, bpp);
2255                if (error)
2256                        return error;
2257
2258                unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2259                /*
2260                 * Make sure this pointer is valid and isn't an obvious
2261                 * infinite loop.
2262                 */
2263                if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2264                    next_agino == unlinked_agino) {
2265                        XFS_CORRUPTION_ERROR(__func__,
2266                                        XFS_ERRLEVEL_LOW, mp,
2267                                        *dipp, sizeof(**dipp));
2268                        error = -EFSCORRUPTED;
2269                        return error;
2270                }
2271                next_agino = unlinked_agino;
2272        }
2273
2274        return 0;
2275}
2276
2277/*
2278 * Pull the on-disk inode from the AGI unlinked list.
2279 */
2280STATIC int
2281xfs_iunlink_remove(
2282        struct xfs_trans        *tp,
2283        struct xfs_perag        *pag,
2284        struct xfs_inode        *ip)
2285{
2286        struct xfs_mount        *mp = tp->t_mountp;
2287        struct xfs_agi          *agi;
2288        struct xfs_buf          *agibp;
2289        struct xfs_buf          *last_ibp;
2290        struct xfs_dinode       *last_dip = NULL;
2291        xfs_agino_t             agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2292        xfs_agino_t             next_agino;
2293        xfs_agino_t             head_agino;
2294        short                   bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2295        int                     error;
2296
2297        trace_xfs_iunlink_remove(ip);
2298
2299        /* Get the agi buffer first.  It ensures lock ordering on the list. */
2300        error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2301        if (error)
2302                return error;
2303        agi = agibp->b_addr;
2304
2305        /*
2306         * Get the index into the agi hash table for the list this inode will
2307         * go on.  Make sure the head pointer isn't garbage.
2308         */
2309        head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2310        if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2311                XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2312                                agi, sizeof(*agi));
2313                return -EFSCORRUPTED;
2314        }
2315
2316        /*
2317         * Set our inode's next_unlinked pointer to NULL and then return
2318         * the old pointer value so that we can update whatever was previous
2319         * to us in the list to point to whatever was next in the list.
2320         */
2321        error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2322        if (error)
2323                return error;
2324
2325        /*
2326         * If there was a backref pointing from the next inode back to this
2327         * one, remove it because we've removed this inode from the list.
2328         *
2329         * Later, if this inode was in the middle of the list we'll update
2330         * this inode's backref to point from the next inode.
2331         */
2332        if (next_agino != NULLAGINO) {
2333                error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2334                if (error)
2335                        return error;
2336        }
2337
2338        if (head_agino != agino) {
2339                struct xfs_imap imap;
2340                xfs_agino_t     prev_agino;
2341
2342                /* We need to search the list for the inode being freed. */
2343                error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2344                                &prev_agino, &imap, &last_dip, &last_ibp);
2345                if (error)
2346                        return error;
2347
2348                /* Point the previous inode on the list to the next inode. */
2349                xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2350                                last_dip, &imap, next_agino);
2351
2352                /*
2353                 * Now we deal with the backref for this inode.  If this inode
2354                 * pointed at a real inode, change the backref that pointed to
2355                 * us to point to our old next.  If this inode was the end of
2356                 * the list, delete the backref that pointed to us.  Note that
2357                 * change_backref takes care of deleting the backref if
2358                 * next_agino is NULLAGINO.
2359                 */
2360                return xfs_iunlink_change_backref(agibp->b_pag, agino,
2361                                next_agino);
2362        }
2363
2364        /* Point the head of the list to the next unlinked inode. */
2365        return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2366                        next_agino);
2367}
2368
2369/*
2370 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2371 * mark it stale. We should only find clean inodes in this lookup that aren't
2372 * already stale.
2373 */
2374static void
2375xfs_ifree_mark_inode_stale(
2376        struct xfs_perag        *pag,
2377        struct xfs_inode        *free_ip,
2378        xfs_ino_t               inum)
2379{
2380        struct xfs_mount        *mp = pag->pag_mount;
2381        struct xfs_inode_log_item *iip;
2382        struct xfs_inode        *ip;
2383
2384retry:
2385        rcu_read_lock();
2386        ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2387
2388        /* Inode not in memory, nothing to do */
2389        if (!ip) {
2390                rcu_read_unlock();
2391                return;
2392        }
2393
2394        /*
2395         * because this is an RCU protected lookup, we could find a recently
2396         * freed or even reallocated inode during the lookup. We need to check
2397         * under the i_flags_lock for a valid inode here. Skip it if it is not
2398         * valid, the wrong inode or stale.
2399         */
2400        spin_lock(&ip->i_flags_lock);
2401        if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2402                goto out_iflags_unlock;
2403
2404        /*
2405         * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2406         * other inodes that we did not find in the list attached to the buffer
2407         * and are not already marked stale. If we can't lock it, back off and
2408         * retry.
2409         */
2410        if (ip != free_ip) {
2411                if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2412                        spin_unlock(&ip->i_flags_lock);
2413                        rcu_read_unlock();
2414                        delay(1);
2415                        goto retry;
2416                }
2417        }
2418        ip->i_flags |= XFS_ISTALE;
2419
2420        /*
2421         * If the inode is flushing, it is already attached to the buffer.  All
2422         * we needed to do here is mark the inode stale so buffer IO completion
2423         * will remove it from the AIL.
2424         */
2425        iip = ip->i_itemp;
2426        if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2427                ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2428                ASSERT(iip->ili_last_fields);
2429                goto out_iunlock;
2430        }
2431
2432        /*
2433         * Inodes not attached to the buffer can be released immediately.
2434         * Everything else has to go through xfs_iflush_abort() on journal
2435         * commit as the flock synchronises removal of the inode from the
2436         * cluster buffer against inode reclaim.
2437         */
2438        if (!iip || list_empty(&iip->ili_item.li_bio_list))
2439                goto out_iunlock;
2440
2441        __xfs_iflags_set(ip, XFS_IFLUSHING);
2442        spin_unlock(&ip->i_flags_lock);
2443        rcu_read_unlock();
2444
2445        /* we have a dirty inode in memory that has not yet been flushed. */
2446        spin_lock(&iip->ili_lock);
2447        iip->ili_last_fields = iip->ili_fields;
2448        iip->ili_fields = 0;
2449        iip->ili_fsync_fields = 0;
2450        spin_unlock(&iip->ili_lock);
2451        ASSERT(iip->ili_last_fields);
2452
2453        if (ip != free_ip)
2454                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2455        return;
2456
2457out_iunlock:
2458        if (ip != free_ip)
2459                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2460out_iflags_unlock:
2461        spin_unlock(&ip->i_flags_lock);
2462        rcu_read_unlock();
2463}
2464
2465/*
2466 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2467 * inodes that are in memory - they all must be marked stale and attached to
2468 * the cluster buffer.
2469 */
2470static int
2471xfs_ifree_cluster(
2472        struct xfs_trans        *tp,
2473        struct xfs_perag        *pag,
2474        struct xfs_inode        *free_ip,
2475        struct xfs_icluster     *xic)
2476{
2477        struct xfs_mount        *mp = free_ip->i_mount;
2478        struct xfs_ino_geometry *igeo = M_IGEO(mp);
2479        struct xfs_buf          *bp;
2480        xfs_daddr_t             blkno;
2481        xfs_ino_t               inum = xic->first_ino;
2482        int                     nbufs;
2483        int                     i, j;
2484        int                     ioffset;
2485        int                     error;
2486
2487        nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2488
2489        for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2490                /*
2491                 * The allocation bitmap tells us which inodes of the chunk were
2492                 * physically allocated. Skip the cluster if an inode falls into
2493                 * a sparse region.
2494                 */
2495                ioffset = inum - xic->first_ino;
2496                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2497                        ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2498                        continue;
2499                }
2500
2501                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2502                                         XFS_INO_TO_AGBNO(mp, inum));
2503
2504                /*
2505                 * We obtain and lock the backing buffer first in the process
2506                 * here to ensure dirty inodes attached to the buffer remain in
2507                 * the flushing state while we mark them stale.
2508                 *
2509                 * If we scan the in-memory inodes first, then buffer IO can
2510                 * complete before we get a lock on it, and hence we may fail
2511                 * to mark all the active inodes on the buffer stale.
2512                 */
2513                error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2514                                mp->m_bsize * igeo->blocks_per_cluster,
2515                                XBF_UNMAPPED, &bp);
2516                if (error)
2517                        return error;
2518
2519                /*
2520                 * This buffer may not have been correctly initialised as we
2521                 * didn't read it from disk. That's not important because we are
2522                 * only using to mark the buffer as stale in the log, and to
2523                 * attach stale cached inodes on it. That means it will never be
2524                 * dispatched for IO. If it is, we want to know about it, and we
2525                 * want it to fail. We can acheive this by adding a write
2526                 * verifier to the buffer.
2527                 */
2528                bp->b_ops = &xfs_inode_buf_ops;
2529
2530                /*
2531                 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2532                 * too. This requires lookups, and will skip inodes that we've
2533                 * already marked XFS_ISTALE.
2534                 */
2535                for (i = 0; i < igeo->inodes_per_cluster; i++)
2536                        xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2537
2538                xfs_trans_stale_inode_buf(tp, bp);
2539                xfs_trans_binval(tp, bp);
2540        }
2541        return 0;
2542}
2543
2544/*
2545 * This is called to return an inode to the inode free list.
2546 * The inode should already be truncated to 0 length and have
2547 * no pages associated with it.  This routine also assumes that
2548 * the inode is already a part of the transaction.
2549 *
2550 * The on-disk copy of the inode will have been added to the list
2551 * of unlinked inodes in the AGI. We need to remove the inode from
2552 * that list atomically with respect to freeing it here.
2553 */
2554int
2555xfs_ifree(
2556        struct xfs_trans        *tp,
2557        struct xfs_inode        *ip)
2558{
2559        struct xfs_mount        *mp = ip->i_mount;
2560        struct xfs_perag        *pag;
2561        struct xfs_icluster     xic = { 0 };
2562        struct xfs_inode_log_item *iip = ip->i_itemp;
2563        int                     error;
2564
2565        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2566        ASSERT(VFS_I(ip)->i_nlink == 0);
2567        ASSERT(ip->i_df.if_nextents == 0);
2568        ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2569        ASSERT(ip->i_nblocks == 0);
2570
2571        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2572
2573        /*
2574         * Pull the on-disk inode from the AGI unlinked list.
2575         */
2576        error = xfs_iunlink_remove(tp, pag, ip);
2577        if (error)
2578                goto out;
2579
2580        error = xfs_difree(tp, pag, ip->i_ino, &xic);
2581        if (error)
2582                goto out;
2583
2584        /*
2585         * Free any local-format data sitting around before we reset the
2586         * data fork to extents format.  Note that the attr fork data has
2587         * already been freed by xfs_attr_inactive.
2588         */
2589        if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2590                kmem_free(ip->i_df.if_u1.if_data);
2591                ip->i_df.if_u1.if_data = NULL;
2592                ip->i_df.if_bytes = 0;
2593        }
2594
2595        VFS_I(ip)->i_mode = 0;          /* mark incore inode as free */
2596        ip->i_diflags = 0;
2597        ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2598        ip->i_forkoff = 0;              /* mark the attr fork not in use */
2599        ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2600        if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2601                xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2602
2603        /* Don't attempt to replay owner changes for a deleted inode */
2604        spin_lock(&iip->ili_lock);
2605        iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2606        spin_unlock(&iip->ili_lock);
2607
2608        /*
2609         * Bump the generation count so no one will be confused
2610         * by reincarnations of this inode.
2611         */
2612        VFS_I(ip)->i_generation++;
2613        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2614
2615        if (xic.deleted)
2616                error = xfs_ifree_cluster(tp, pag, ip, &xic);
2617out:
2618        xfs_perag_put(pag);
2619        return error;
2620}
2621
2622/*
2623 * This is called to unpin an inode.  The caller must have the inode locked
2624 * in at least shared mode so that the buffer cannot be subsequently pinned
2625 * once someone is waiting for it to be unpinned.
2626 */
2627static void
2628xfs_iunpin(
2629        struct xfs_inode        *ip)
2630{
2631        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2632
2633        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2634
2635        /* Give the log a push to start the unpinning I/O */
2636        xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2637
2638}
2639
2640static void
2641__xfs_iunpin_wait(
2642        struct xfs_inode        *ip)
2643{
2644        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2645        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2646
2647        xfs_iunpin(ip);
2648
2649        do {
2650                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2651                if (xfs_ipincount(ip))
2652                        io_schedule();
2653        } while (xfs_ipincount(ip));
2654        finish_wait(wq, &wait.wq_entry);
2655}
2656
2657void
2658xfs_iunpin_wait(
2659        struct xfs_inode        *ip)
2660{
2661        if (xfs_ipincount(ip))
2662                __xfs_iunpin_wait(ip);
2663}
2664
2665/*
2666 * Removing an inode from the namespace involves removing the directory entry
2667 * and dropping the link count on the inode. Removing the directory entry can
2668 * result in locking an AGF (directory blocks were freed) and removing a link
2669 * count can result in placing the inode on an unlinked list which results in
2670 * locking an AGI.
2671 *
2672 * The big problem here is that we have an ordering constraint on AGF and AGI
2673 * locking - inode allocation locks the AGI, then can allocate a new extent for
2674 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2675 * removes the inode from the unlinked list, requiring that we lock the AGI
2676 * first, and then freeing the inode can result in an inode chunk being freed
2677 * and hence freeing disk space requiring that we lock an AGF.
2678 *
2679 * Hence the ordering that is imposed by other parts of the code is AGI before
2680 * AGF. This means we cannot remove the directory entry before we drop the inode
2681 * reference count and put it on the unlinked list as this results in a lock
2682 * order of AGF then AGI, and this can deadlock against inode allocation and
2683 * freeing. Therefore we must drop the link counts before we remove the
2684 * directory entry.
2685 *
2686 * This is still safe from a transactional point of view - it is not until we
2687 * get to xfs_defer_finish() that we have the possibility of multiple
2688 * transactions in this operation. Hence as long as we remove the directory
2689 * entry and drop the link count in the first transaction of the remove
2690 * operation, there are no transactional constraints on the ordering here.
2691 */
2692int
2693xfs_remove(
2694        xfs_inode_t             *dp,
2695        struct xfs_name         *name,
2696        xfs_inode_t             *ip)
2697{
2698        xfs_mount_t             *mp = dp->i_mount;
2699        xfs_trans_t             *tp = NULL;
2700        int                     is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2701        int                     error = 0;
2702        uint                    resblks;
2703
2704        trace_xfs_remove(dp, name);
2705
2706        if (XFS_FORCED_SHUTDOWN(mp))
2707                return -EIO;
2708
2709        error = xfs_qm_dqattach(dp);
2710        if (error)
2711                goto std_return;
2712
2713        error = xfs_qm_dqattach(ip);
2714        if (error)
2715                goto std_return;
2716
2717        /*
2718         * We try to get the real space reservation first,
2719         * allowing for directory btree deletion(s) implying
2720         * possible bmap insert(s).  If we can't get the space
2721         * reservation then we use 0 instead, and avoid the bmap
2722         * btree insert(s) in the directory code by, if the bmap
2723         * insert tries to happen, instead trimming the LAST
2724         * block from the directory.
2725         */
2726        resblks = XFS_REMOVE_SPACE_RES(mp);
2727        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2728        if (error == -ENOSPC) {
2729                resblks = 0;
2730                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2731                                &tp);
2732        }
2733        if (error) {
2734                ASSERT(error != -ENOSPC);
2735                goto std_return;
2736        }
2737
2738        xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2739
2740        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2741        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2742
2743        /*
2744         * If we're removing a directory perform some additional validation.
2745         */
2746        if (is_dir) {
2747                ASSERT(VFS_I(ip)->i_nlink >= 2);
2748                if (VFS_I(ip)->i_nlink != 2) {
2749                        error = -ENOTEMPTY;
2750                        goto out_trans_cancel;
2751                }
2752                if (!xfs_dir_isempty(ip)) {
2753                        error = -ENOTEMPTY;
2754                        goto out_trans_cancel;
2755                }
2756
2757                /* Drop the link from ip's "..".  */
2758                error = xfs_droplink(tp, dp);
2759                if (error)
2760                        goto out_trans_cancel;
2761
2762                /* Drop the "." link from ip to self.  */
2763                error = xfs_droplink(tp, ip);
2764                if (error)
2765                        goto out_trans_cancel;
2766
2767                /*
2768                 * Point the unlinked child directory's ".." entry to the root
2769                 * directory to eliminate back-references to inodes that may
2770                 * get freed before the child directory is closed.  If the fs
2771                 * gets shrunk, this can lead to dirent inode validation errors.
2772                 */
2773                if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2774                        error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2775                                        tp->t_mountp->m_sb.sb_rootino, 0);
2776                        if (error)
2777                                return error;
2778                }
2779        } else {
2780                /*
2781                 * When removing a non-directory we need to log the parent
2782                 * inode here.  For a directory this is done implicitly
2783                 * by the xfs_droplink call for the ".." entry.
2784                 */
2785                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2786        }
2787        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2788
2789        /* Drop the link from dp to ip. */
2790        error = xfs_droplink(tp, ip);
2791        if (error)
2792                goto out_trans_cancel;
2793
2794        error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2795        if (error) {
2796                ASSERT(error != -ENOENT);
2797                goto out_trans_cancel;
2798        }
2799
2800        /*
2801         * If this is a synchronous mount, make sure that the
2802         * remove transaction goes to disk before returning to
2803         * the user.
2804         */
2805        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2806                xfs_trans_set_sync(tp);
2807
2808        error = xfs_trans_commit(tp);
2809        if (error)
2810                goto std_return;
2811
2812        if (is_dir && xfs_inode_is_filestream(ip))
2813                xfs_filestream_deassociate(ip);
2814
2815        return 0;
2816
2817 out_trans_cancel:
2818        xfs_trans_cancel(tp);
2819 std_return:
2820        return error;
2821}
2822
2823/*
2824 * Enter all inodes for a rename transaction into a sorted array.
2825 */
2826#define __XFS_SORT_INODES       5
2827STATIC void
2828xfs_sort_for_rename(
2829        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2830        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2831        struct xfs_inode        *ip1,   /* in: inode of old entry */
2832        struct xfs_inode        *ip2,   /* in: inode of new entry */
2833        struct xfs_inode        *wip,   /* in: whiteout inode */
2834        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2835        int                     *num_inodes)  /* in/out: inodes in array */
2836{
2837        int                     i, j;
2838
2839        ASSERT(*num_inodes == __XFS_SORT_INODES);
2840        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2841
2842        /*
2843         * i_tab contains a list of pointers to inodes.  We initialize
2844         * the table here & we'll sort it.  We will then use it to
2845         * order the acquisition of the inode locks.
2846         *
2847         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2848         */
2849        i = 0;
2850        i_tab[i++] = dp1;
2851        i_tab[i++] = dp2;
2852        i_tab[i++] = ip1;
2853        if (ip2)
2854                i_tab[i++] = ip2;
2855        if (wip)
2856                i_tab[i++] = wip;
2857        *num_inodes = i;
2858
2859        /*
2860         * Sort the elements via bubble sort.  (Remember, there are at
2861         * most 5 elements to sort, so this is adequate.)
2862         */
2863        for (i = 0; i < *num_inodes; i++) {
2864                for (j = 1; j < *num_inodes; j++) {
2865                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2866                                struct xfs_inode *temp = i_tab[j];
2867                                i_tab[j] = i_tab[j-1];
2868                                i_tab[j-1] = temp;
2869                        }
2870                }
2871        }
2872}
2873
2874static int
2875xfs_finish_rename(
2876        struct xfs_trans        *tp)
2877{
2878        /*
2879         * If this is a synchronous mount, make sure that the rename transaction
2880         * goes to disk before returning to the user.
2881         */
2882        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2883                xfs_trans_set_sync(tp);
2884
2885        return xfs_trans_commit(tp);
2886}
2887
2888/*
2889 * xfs_cross_rename()
2890 *
2891 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2892 */
2893STATIC int
2894xfs_cross_rename(
2895        struct xfs_trans        *tp,
2896        struct xfs_inode        *dp1,
2897        struct xfs_name         *name1,
2898        struct xfs_inode        *ip1,
2899        struct xfs_inode        *dp2,
2900        struct xfs_name         *name2,
2901        struct xfs_inode        *ip2,
2902        int                     spaceres)
2903{
2904        int             error = 0;
2905        int             ip1_flags = 0;
2906        int             ip2_flags = 0;
2907        int             dp2_flags = 0;
2908
2909        /* Swap inode number for dirent in first parent */
2910        error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2911        if (error)
2912                goto out_trans_abort;
2913
2914        /* Swap inode number for dirent in second parent */
2915        error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2916        if (error)
2917                goto out_trans_abort;
2918
2919        /*
2920         * If we're renaming one or more directories across different parents,
2921         * update the respective ".." entries (and link counts) to match the new
2922         * parents.
2923         */
2924        if (dp1 != dp2) {
2925                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2926
2927                if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2928                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2929                                                dp1->i_ino, spaceres);
2930                        if (error)
2931                                goto out_trans_abort;
2932
2933                        /* transfer ip2 ".." reference to dp1 */
2934                        if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2935                                error = xfs_droplink(tp, dp2);
2936                                if (error)
2937                                        goto out_trans_abort;
2938                                xfs_bumplink(tp, dp1);
2939                        }
2940
2941                        /*
2942                         * Although ip1 isn't changed here, userspace needs
2943                         * to be warned about the change, so that applications
2944                         * relying on it (like backup ones), will properly
2945                         * notify the change
2946                         */
2947                        ip1_flags |= XFS_ICHGTIME_CHG;
2948                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2949                }
2950
2951                if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2952                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2953                                                dp2->i_ino, spaceres);
2954                        if (error)
2955                                goto out_trans_abort;
2956
2957                        /* transfer ip1 ".." reference to dp2 */
2958                        if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2959                                error = xfs_droplink(tp, dp1);
2960                                if (error)
2961                                        goto out_trans_abort;
2962                                xfs_bumplink(tp, dp2);
2963                        }
2964
2965                        /*
2966                         * Although ip2 isn't changed here, userspace needs
2967                         * to be warned about the change, so that applications
2968                         * relying on it (like backup ones), will properly
2969                         * notify the change
2970                         */
2971                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2972                        ip2_flags |= XFS_ICHGTIME_CHG;
2973                }
2974        }
2975
2976        if (ip1_flags) {
2977                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2978                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2979        }
2980        if (ip2_flags) {
2981                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2982                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2983        }
2984        if (dp2_flags) {
2985                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2986                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2987        }
2988        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2989        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2990        return xfs_finish_rename(tp);
2991
2992out_trans_abort:
2993        xfs_trans_cancel(tp);
2994        return error;
2995}
2996
2997/*
2998 * xfs_rename_alloc_whiteout()
2999 *
3000 * Return a referenced, unlinked, unlocked inode that can be used as a
3001 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3002 * crash between allocating the inode and linking it into the rename transaction
3003 * recovery will free the inode and we won't leak it.
3004 */
3005static int
3006xfs_rename_alloc_whiteout(
3007        struct user_namespace   *mnt_userns,
3008        struct xfs_inode        *dp,
3009        struct xfs_inode        **wip)
3010{
3011        struct xfs_inode        *tmpfile;
3012        int                     error;
3013
3014        error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3015                                   &tmpfile);
3016        if (error)
3017                return error;
3018
3019        /*
3020         * Prepare the tmpfile inode as if it were created through the VFS.
3021         * Complete the inode setup and flag it as linkable.  nlink is already
3022         * zero, so we can skip the drop_nlink.
3023         */
3024        xfs_setup_iops(tmpfile);
3025        xfs_finish_inode_setup(tmpfile);
3026        VFS_I(tmpfile)->i_state |= I_LINKABLE;
3027
3028        *wip = tmpfile;
3029        return 0;
3030}
3031
3032/*
3033 * xfs_rename
3034 */
3035int
3036xfs_rename(
3037        struct user_namespace   *mnt_userns,
3038        struct xfs_inode        *src_dp,
3039        struct xfs_name         *src_name,
3040        struct xfs_inode        *src_ip,
3041        struct xfs_inode        *target_dp,
3042        struct xfs_name         *target_name,
3043        struct xfs_inode        *target_ip,
3044        unsigned int            flags)
3045{
3046        struct xfs_mount        *mp = src_dp->i_mount;
3047        struct xfs_trans        *tp;
3048        struct xfs_inode        *wip = NULL;            /* whiteout inode */
3049        struct xfs_inode        *inodes[__XFS_SORT_INODES];
3050        int                     i;
3051        int                     num_inodes = __XFS_SORT_INODES;
3052        bool                    new_parent = (src_dp != target_dp);
3053        bool                    src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3054        int                     spaceres;
3055        int                     error;
3056
3057        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3058
3059        if ((flags & RENAME_EXCHANGE) && !target_ip)
3060                return -EINVAL;
3061
3062        /*
3063         * If we are doing a whiteout operation, allocate the whiteout inode
3064         * we will be placing at the target and ensure the type is set
3065         * appropriately.
3066         */
3067        if (flags & RENAME_WHITEOUT) {
3068                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3069                error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3070                if (error)
3071                        return error;
3072
3073                /* setup target dirent info as whiteout */
3074                src_name->type = XFS_DIR3_FT_CHRDEV;
3075        }
3076
3077        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3078                                inodes, &num_inodes);
3079
3080        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3081        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3082        if (error == -ENOSPC) {
3083                spaceres = 0;
3084                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3085                                &tp);
3086        }
3087        if (error)
3088                goto out_release_wip;
3089
3090        /*
3091         * Attach the dquots to the inodes
3092         */
3093        error = xfs_qm_vop_rename_dqattach(inodes);
3094        if (error)
3095                goto out_trans_cancel;
3096
3097        /*
3098         * Lock all the participating inodes. Depending upon whether
3099         * the target_name exists in the target directory, and
3100         * whether the target directory is the same as the source
3101         * directory, we can lock from 2 to 4 inodes.
3102         */
3103        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3104
3105        /*
3106         * Join all the inodes to the transaction. From this point on,
3107         * we can rely on either trans_commit or trans_cancel to unlock
3108         * them.
3109         */
3110        xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3111        if (new_parent)
3112                xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3113        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3114        if (target_ip)
3115                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3116        if (wip)
3117                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3118
3119        /*
3120         * If we are using project inheritance, we only allow renames
3121         * into our tree when the project IDs are the same; else the
3122         * tree quota mechanism would be circumvented.
3123         */
3124        if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3125                     target_dp->i_projid != src_ip->i_projid)) {
3126                error = -EXDEV;
3127                goto out_trans_cancel;
3128        }
3129
3130        /* RENAME_EXCHANGE is unique from here on. */
3131        if (flags & RENAME_EXCHANGE)
3132                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3133                                        target_dp, target_name, target_ip,
3134                                        spaceres);
3135
3136        /*
3137         * Check for expected errors before we dirty the transaction
3138         * so we can return an error without a transaction abort.
3139         *
3140         * Extent count overflow check:
3141         *
3142         * From the perspective of src_dp, a rename operation is essentially a
3143         * directory entry remove operation. Hence the only place where we check
3144         * for extent count overflow for src_dp is in
3145         * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3146         * -ENOSPC when it detects a possible extent count overflow and in
3147         * response, the higher layers of directory handling code do the
3148         * following:
3149         * 1. Data/Free blocks: XFS lets these blocks linger until a
3150         *    future remove operation removes them.
3151         * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3152         *    Leaf space and unmaps the last block.
3153         *
3154         * For target_dp, there are two cases depending on whether the
3155         * destination directory entry exists or not.
3156         *
3157         * When destination directory entry does not exist (i.e. target_ip ==
3158         * NULL), extent count overflow check is performed only when transaction
3159         * has a non-zero sized space reservation associated with it.  With a
3160         * zero-sized space reservation, XFS allows a rename operation to
3161         * continue only when the directory has sufficient free space in its
3162         * data/leaf/free space blocks to hold the new entry.
3163         *
3164         * When destination directory entry exists (i.e. target_ip != NULL), all
3165         * we need to do is change the inode number associated with the already
3166         * existing entry. Hence there is no need to perform an extent count
3167         * overflow check.
3168         */
3169        if (target_ip == NULL) {
3170                /*
3171                 * If there's no space reservation, check the entry will
3172                 * fit before actually inserting it.
3173                 */
3174                if (!spaceres) {
3175                        error = xfs_dir_canenter(tp, target_dp, target_name);
3176                        if (error)
3177                                goto out_trans_cancel;
3178                } else {
3179                        error = xfs_iext_count_may_overflow(target_dp,
3180                                        XFS_DATA_FORK,
3181                                        XFS_IEXT_DIR_MANIP_CNT(mp));
3182                        if (error)
3183                                goto out_trans_cancel;
3184                }
3185        } else {
3186                /*
3187                 * If target exists and it's a directory, check that whether
3188                 * it can be destroyed.
3189                 */
3190                if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3191                    (!xfs_dir_isempty(target_ip) ||
3192                     (VFS_I(target_ip)->i_nlink > 2))) {
3193                        error = -EEXIST;
3194                        goto out_trans_cancel;
3195                }
3196        }
3197
3198        /*
3199         * Lock the AGI buffers we need to handle bumping the nlink of the
3200         * whiteout inode off the unlinked list and to handle dropping the
3201         * nlink of the target inode.  Per locking order rules, do this in
3202         * increasing AG order and before directory block allocation tries to
3203         * grab AGFs because we grab AGIs before AGFs.
3204         *
3205         * The (vfs) caller must ensure that if src is a directory then
3206         * target_ip is either null or an empty directory.
3207         */
3208        for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3209                if (inodes[i] == wip ||
3210                    (inodes[i] == target_ip &&
3211                     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3212                        struct xfs_buf  *bp;
3213                        xfs_agnumber_t  agno;
3214
3215                        agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3216                        error = xfs_read_agi(mp, tp, agno, &bp);
3217                        if (error)
3218                                goto out_trans_cancel;
3219                }
3220        }
3221
3222        /*
3223         * Directory entry creation below may acquire the AGF. Remove
3224         * the whiteout from the unlinked list first to preserve correct
3225         * AGI/AGF locking order. This dirties the transaction so failures
3226         * after this point will abort and log recovery will clean up the
3227         * mess.
3228         *
3229         * For whiteouts, we need to bump the link count on the whiteout
3230         * inode. After this point, we have a real link, clear the tmpfile
3231         * state flag from the inode so it doesn't accidentally get misused
3232         * in future.
3233         */
3234        if (wip) {
3235                struct xfs_perag        *pag;
3236
3237                ASSERT(VFS_I(wip)->i_nlink == 0);
3238
3239                pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3240                error = xfs_iunlink_remove(tp, pag, wip);
3241                xfs_perag_put(pag);
3242                if (error)
3243                        goto out_trans_cancel;
3244
3245                xfs_bumplink(tp, wip);
3246                VFS_I(wip)->i_state &= ~I_LINKABLE;
3247        }
3248
3249        /*
3250         * Set up the target.
3251         */
3252        if (target_ip == NULL) {
3253                /*
3254                 * If target does not exist and the rename crosses
3255                 * directories, adjust the target directory link count
3256                 * to account for the ".." reference from the new entry.
3257                 */
3258                error = xfs_dir_createname(tp, target_dp, target_name,
3259                                           src_ip->i_ino, spaceres);
3260                if (error)
3261                        goto out_trans_cancel;
3262
3263                xfs_trans_ichgtime(tp, target_dp,
3264                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3265
3266                if (new_parent && src_is_directory) {
3267                        xfs_bumplink(tp, target_dp);
3268                }
3269        } else { /* target_ip != NULL */
3270                /*
3271                 * Link the source inode under the target name.
3272                 * If the source inode is a directory and we are moving
3273                 * it across directories, its ".." entry will be
3274                 * inconsistent until we replace that down below.
3275                 *
3276                 * In case there is already an entry with the same
3277                 * name at the destination directory, remove it first.
3278                 */
3279                error = xfs_dir_replace(tp, target_dp, target_name,
3280                                        src_ip->i_ino, spaceres);
3281                if (error)
3282                        goto out_trans_cancel;
3283
3284                xfs_trans_ichgtime(tp, target_dp,
3285                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3286
3287                /*
3288                 * Decrement the link count on the target since the target
3289                 * dir no longer points to it.
3290                 */
3291                error = xfs_droplink(tp, target_ip);
3292                if (error)
3293                        goto out_trans_cancel;
3294
3295                if (src_is_directory) {
3296                        /*
3297                         * Drop the link from the old "." entry.
3298                         */
3299                        error = xfs_droplink(tp, target_ip);
3300                        if (error)
3301                                goto out_trans_cancel;
3302                }
3303        } /* target_ip != NULL */
3304
3305        /*
3306         * Remove the source.
3307         */
3308        if (new_parent && src_is_directory) {
3309                /*
3310                 * Rewrite the ".." entry to point to the new
3311                 * directory.
3312                 */
3313                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3314                                        target_dp->i_ino, spaceres);
3315                ASSERT(error != -EEXIST);
3316                if (error)
3317                        goto out_trans_cancel;
3318        }
3319
3320        /*
3321         * We always want to hit the ctime on the source inode.
3322         *
3323         * This isn't strictly required by the standards since the source
3324         * inode isn't really being changed, but old unix file systems did
3325         * it and some incremental backup programs won't work without it.
3326         */
3327        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3328        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3329
3330        /*
3331         * Adjust the link count on src_dp.  This is necessary when
3332         * renaming a directory, either within one parent when
3333         * the target existed, or across two parent directories.
3334         */
3335        if (src_is_directory && (new_parent || target_ip != NULL)) {
3336
3337                /*
3338                 * Decrement link count on src_directory since the
3339                 * entry that's moved no longer points to it.
3340                 */
3341                error = xfs_droplink(tp, src_dp);
3342                if (error)
3343                        goto out_trans_cancel;
3344        }
3345
3346        /*
3347         * For whiteouts, we only need to update the source dirent with the
3348         * inode number of the whiteout inode rather than removing it
3349         * altogether.
3350         */
3351        if (wip) {
3352                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3353                                        spaceres);
3354        } else {
3355                /*
3356                 * NOTE: We don't need to check for extent count overflow here
3357                 * because the dir remove name code will leave the dir block in
3358                 * place if the extent count would overflow.
3359                 */
3360                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3361                                           spaceres);
3362        }
3363
3364        if (error)
3365                goto out_trans_cancel;
3366
3367        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3368        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3369        if (new_parent)
3370                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3371
3372        error = xfs_finish_rename(tp);
3373        if (wip)
3374                xfs_irele(wip);
3375        return error;
3376
3377out_trans_cancel:
3378        xfs_trans_cancel(tp);
3379out_release_wip:
3380        if (wip)
3381                xfs_irele(wip);
3382        return error;
3383}
3384
3385static int
3386xfs_iflush(
3387        struct xfs_inode        *ip,
3388        struct xfs_buf          *bp)
3389{
3390        struct xfs_inode_log_item *iip = ip->i_itemp;
3391        struct xfs_dinode       *dip;
3392        struct xfs_mount        *mp = ip->i_mount;
3393        int                     error;
3394
3395        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3396        ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3397        ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3398               ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3399        ASSERT(iip->ili_item.li_buf == bp);
3400
3401        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3402
3403        /*
3404         * We don't flush the inode if any of the following checks fail, but we
3405         * do still update the log item and attach to the backing buffer as if
3406         * the flush happened. This is a formality to facilitate predictable
3407         * error handling as the caller will shutdown and fail the buffer.
3408         */
3409        error = -EFSCORRUPTED;
3410        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3411                               mp, XFS_ERRTAG_IFLUSH_1)) {
3412                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3413                        "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3414                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3415                goto flush_out;
3416        }
3417        if (S_ISREG(VFS_I(ip)->i_mode)) {
3418                if (XFS_TEST_ERROR(
3419                    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3420                    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3421                    mp, XFS_ERRTAG_IFLUSH_3)) {
3422                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423                                "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3424                                __func__, ip->i_ino, ip);
3425                        goto flush_out;
3426                }
3427        } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3428                if (XFS_TEST_ERROR(
3429                    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3430                    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3431                    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3432                    mp, XFS_ERRTAG_IFLUSH_4)) {
3433                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3434                                "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3435                                __func__, ip->i_ino, ip);
3436                        goto flush_out;
3437                }
3438        }
3439        if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3440                                ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3441                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3442                        "%s: detected corrupt incore inode %Lu, "
3443                        "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3444                        __func__, ip->i_ino,
3445                        ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3446                        ip->i_nblocks, ip);
3447                goto flush_out;
3448        }
3449        if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3450                                mp, XFS_ERRTAG_IFLUSH_6)) {
3451                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3452                        "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3453                        __func__, ip->i_ino, ip->i_forkoff, ip);
3454                goto flush_out;
3455        }
3456
3457        /*
3458         * Inode item log recovery for v2 inodes are dependent on the flushiter
3459         * count for correct sequencing.  We bump the flush iteration count so
3460         * we can detect flushes which postdate a log record during recovery.
3461         * This is redundant as we now log every change and hence this can't
3462         * happen but we need to still do it to ensure backwards compatibility
3463         * with old kernels that predate logging all inode changes.
3464         */
3465        if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3466                ip->i_flushiter++;
3467
3468        /*
3469         * If there are inline format data / attr forks attached to this inode,
3470         * make sure they are not corrupt.
3471         */
3472        if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3473            xfs_ifork_verify_local_data(ip))
3474                goto flush_out;
3475        if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3476            xfs_ifork_verify_local_attr(ip))
3477                goto flush_out;
3478
3479        /*
3480         * Copy the dirty parts of the inode into the on-disk inode.  We always
3481         * copy out the core of the inode, because if the inode is dirty at all
3482         * the core must be.
3483         */
3484        xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3485
3486        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3487        if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3488                if (ip->i_flushiter == DI_MAX_FLUSH)
3489                        ip->i_flushiter = 0;
3490        }
3491
3492        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3493        if (XFS_IFORK_Q(ip))
3494                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3495
3496        /*
3497         * We've recorded everything logged in the inode, so we'd like to clear
3498         * the ili_fields bits so we don't log and flush things unnecessarily.
3499         * However, we can't stop logging all this information until the data
3500         * we've copied into the disk buffer is written to disk.  If we did we
3501         * might overwrite the copy of the inode in the log with all the data
3502         * after re-logging only part of it, and in the face of a crash we
3503         * wouldn't have all the data we need to recover.
3504         *
3505         * What we do is move the bits to the ili_last_fields field.  When
3506         * logging the inode, these bits are moved back to the ili_fields field.
3507         * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3508         * we know that the information those bits represent is permanently on
3509         * disk.  As long as the flush completes before the inode is logged
3510         * again, then both ili_fields and ili_last_fields will be cleared.
3511         */
3512        error = 0;
3513flush_out:
3514        spin_lock(&iip->ili_lock);
3515        iip->ili_last_fields = iip->ili_fields;
3516        iip->ili_fields = 0;
3517        iip->ili_fsync_fields = 0;
3518        spin_unlock(&iip->ili_lock);
3519
3520        /*
3521         * Store the current LSN of the inode so that we can tell whether the
3522         * item has moved in the AIL from xfs_buf_inode_iodone().
3523         */
3524        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3525                                &iip->ili_item.li_lsn);
3526
3527        /* generate the checksum. */
3528        xfs_dinode_calc_crc(mp, dip);
3529        return error;
3530}
3531
3532/*
3533 * Non-blocking flush of dirty inode metadata into the backing buffer.
3534 *
3535 * The caller must have a reference to the inode and hold the cluster buffer
3536 * locked. The function will walk across all the inodes on the cluster buffer it
3537 * can find and lock without blocking, and flush them to the cluster buffer.
3538 *
3539 * On successful flushing of at least one inode, the caller must write out the
3540 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3541 * the caller needs to release the buffer. On failure, the filesystem will be
3542 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3543 * will be returned.
3544 */
3545int
3546xfs_iflush_cluster(
3547        struct xfs_buf          *bp)
3548{
3549        struct xfs_mount        *mp = bp->b_mount;
3550        struct xfs_log_item     *lip, *n;
3551        struct xfs_inode        *ip;
3552        struct xfs_inode_log_item *iip;
3553        int                     clcount = 0;
3554        int                     error = 0;
3555
3556        /*
3557         * We must use the safe variant here as on shutdown xfs_iflush_abort()
3558         * can remove itself from the list.
3559         */
3560        list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3561                iip = (struct xfs_inode_log_item *)lip;
3562                ip = iip->ili_inode;
3563
3564                /*
3565                 * Quick and dirty check to avoid locks if possible.
3566                 */
3567                if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3568                        continue;
3569                if (xfs_ipincount(ip))
3570                        continue;
3571
3572                /*
3573                 * The inode is still attached to the buffer, which means it is
3574                 * dirty but reclaim might try to grab it. Check carefully for
3575                 * that, and grab the ilock while still holding the i_flags_lock
3576                 * to guarantee reclaim will not be able to reclaim this inode
3577                 * once we drop the i_flags_lock.
3578                 */
3579                spin_lock(&ip->i_flags_lock);
3580                ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3581                if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3582                        spin_unlock(&ip->i_flags_lock);
3583                        continue;
3584                }
3585
3586                /*
3587                 * ILOCK will pin the inode against reclaim and prevent
3588                 * concurrent transactions modifying the inode while we are
3589                 * flushing the inode. If we get the lock, set the flushing
3590                 * state before we drop the i_flags_lock.
3591                 */
3592                if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3593                        spin_unlock(&ip->i_flags_lock);
3594                        continue;
3595                }
3596                __xfs_iflags_set(ip, XFS_IFLUSHING);
3597                spin_unlock(&ip->i_flags_lock);
3598
3599                /*
3600                 * Abort flushing this inode if we are shut down because the
3601                 * inode may not currently be in the AIL. This can occur when
3602                 * log I/O failure unpins the inode without inserting into the
3603                 * AIL, leaving a dirty/unpinned inode attached to the buffer
3604                 * that otherwise looks like it should be flushed.
3605                 */
3606                if (XFS_FORCED_SHUTDOWN(mp)) {
3607                        xfs_iunpin_wait(ip);
3608                        xfs_iflush_abort(ip);
3609                        xfs_iunlock(ip, XFS_ILOCK_SHARED);
3610                        error = -EIO;
3611                        continue;
3612                }
3613
3614                /* don't block waiting on a log force to unpin dirty inodes */
3615                if (xfs_ipincount(ip)) {
3616                        xfs_iflags_clear(ip, XFS_IFLUSHING);
3617                        xfs_iunlock(ip, XFS_ILOCK_SHARED);
3618                        continue;
3619                }
3620
3621                if (!xfs_inode_clean(ip))
3622                        error = xfs_iflush(ip, bp);
3623                else
3624                        xfs_iflags_clear(ip, XFS_IFLUSHING);
3625                xfs_iunlock(ip, XFS_ILOCK_SHARED);
3626                if (error)
3627                        break;
3628                clcount++;
3629        }
3630
3631        if (error) {
3632                bp->b_flags |= XBF_ASYNC;
3633                xfs_buf_ioend_fail(bp);
3634                xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3635                return error;
3636        }
3637
3638        if (!clcount)
3639                return -EAGAIN;
3640
3641        XFS_STATS_INC(mp, xs_icluster_flushcnt);
3642        XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3643        return 0;
3644
3645}
3646
3647/* Release an inode. */
3648void
3649xfs_irele(
3650        struct xfs_inode        *ip)
3651{
3652        trace_xfs_irele(ip, _RET_IP_);
3653        iput(VFS_I(ip));
3654}
3655
3656/*
3657 * Ensure all commited transactions touching the inode are written to the log.
3658 */
3659int
3660xfs_log_force_inode(
3661        struct xfs_inode        *ip)
3662{
3663        xfs_csn_t               seq = 0;
3664
3665        xfs_ilock(ip, XFS_ILOCK_SHARED);
3666        if (xfs_ipincount(ip))
3667                seq = ip->i_itemp->ili_commit_seq;
3668        xfs_iunlock(ip, XFS_ILOCK_SHARED);
3669
3670        if (!seq)
3671                return 0;
3672        return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3673}
3674
3675/*
3676 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3677 * abide vfs locking order (lowest pointer value goes first) and breaking the
3678 * layout leases before proceeding.  The loop is needed because we cannot call
3679 * the blocking break_layout() with the iolocks held, and therefore have to
3680 * back out both locks.
3681 */
3682static int
3683xfs_iolock_two_inodes_and_break_layout(
3684        struct inode            *src,
3685        struct inode            *dest)
3686{
3687        int                     error;
3688
3689        if (src > dest)
3690                swap(src, dest);
3691
3692retry:
3693        /* Wait to break both inodes' layouts before we start locking. */
3694        error = break_layout(src, true);
3695        if (error)
3696                return error;
3697        if (src != dest) {
3698                error = break_layout(dest, true);
3699                if (error)
3700                        return error;
3701        }
3702
3703        /* Lock one inode and make sure nobody got in and leased it. */
3704        inode_lock(src);
3705        error = break_layout(src, false);
3706        if (error) {
3707                inode_unlock(src);
3708                if (error == -EWOULDBLOCK)
3709                        goto retry;
3710                return error;
3711        }
3712
3713        if (src == dest)
3714                return 0;
3715
3716        /* Lock the other inode and make sure nobody got in and leased it. */
3717        inode_lock_nested(dest, I_MUTEX_NONDIR2);
3718        error = break_layout(dest, false);
3719        if (error) {
3720                inode_unlock(src);
3721                inode_unlock(dest);
3722                if (error == -EWOULDBLOCK)
3723                        goto retry;
3724                return error;
3725        }
3726
3727        return 0;
3728}
3729
3730/*
3731 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3732 * mmap activity.
3733 */
3734int
3735xfs_ilock2_io_mmap(
3736        struct xfs_inode        *ip1,
3737        struct xfs_inode        *ip2)
3738{
3739        int                     ret;
3740
3741        ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3742        if (ret)
3743                return ret;
3744        if (ip1 == ip2)
3745                xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3746        else
3747                xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3748                                    ip2, XFS_MMAPLOCK_EXCL);
3749        return 0;
3750}
3751
3752/* Unlock both inodes to allow IO and mmap activity. */
3753void
3754xfs_iunlock2_io_mmap(
3755        struct xfs_inode        *ip1,
3756        struct xfs_inode        *ip2)
3757{
3758        bool                    same_inode = (ip1 == ip2);
3759
3760        xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3761        if (!same_inode)
3762                xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3763        inode_unlock(VFS_I(ip2));
3764        if (!same_inode)
3765                inode_unlock(VFS_I(ip1));
3766}
3767