linux/include/linux/bpf_verifier.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 */
   4#ifndef _LINUX_BPF_VERIFIER_H
   5#define _LINUX_BPF_VERIFIER_H 1
   6
   7#include <linux/bpf.h> /* for enum bpf_reg_type */
   8#include <linux/btf.h> /* for struct btf and btf_id() */
   9#include <linux/filter.h> /* for MAX_BPF_STACK */
  10#include <linux/tnum.h>
  11
  12/* Maximum variable offset umax_value permitted when resolving memory accesses.
  13 * In practice this is far bigger than any realistic pointer offset; this limit
  14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
  15 */
  16#define BPF_MAX_VAR_OFF (1 << 29)
  17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
  18 * that converting umax_value to int cannot overflow.
  19 */
  20#define BPF_MAX_VAR_SIZ (1 << 29)
  21
  22/* Liveness marks, used for registers and spilled-regs (in stack slots).
  23 * Read marks propagate upwards until they find a write mark; they record that
  24 * "one of this state's descendants read this reg" (and therefore the reg is
  25 * relevant for states_equal() checks).
  26 * Write marks collect downwards and do not propagate; they record that "the
  27 * straight-line code that reached this state (from its parent) wrote this reg"
  28 * (and therefore that reads propagated from this state or its descendants
  29 * should not propagate to its parent).
  30 * A state with a write mark can receive read marks; it just won't propagate
  31 * them to its parent, since the write mark is a property, not of the state,
  32 * but of the link between it and its parent.  See mark_reg_read() and
  33 * mark_stack_slot_read() in kernel/bpf/verifier.c.
  34 */
  35enum bpf_reg_liveness {
  36        REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
  37        REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
  38        REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
  39        REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
  40        REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
  41        REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
  42};
  43
  44struct bpf_reg_state {
  45        /* Ordering of fields matters.  See states_equal() */
  46        enum bpf_reg_type type;
  47        /* Fixed part of pointer offset, pointer types only */
  48        s32 off;
  49        union {
  50                /* valid when type == PTR_TO_PACKET */
  51                int range;
  52
  53                /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  54                 *   PTR_TO_MAP_VALUE_OR_NULL
  55                 */
  56                struct bpf_map *map_ptr;
  57
  58                /* for PTR_TO_BTF_ID */
  59                struct {
  60                        struct btf *btf;
  61                        u32 btf_id;
  62                };
  63
  64                u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
  65
  66                /* Max size from any of the above. */
  67                struct {
  68                        unsigned long raw1;
  69                        unsigned long raw2;
  70                } raw;
  71
  72                u32 subprogno; /* for PTR_TO_FUNC */
  73        };
  74        /* For PTR_TO_PACKET, used to find other pointers with the same variable
  75         * offset, so they can share range knowledge.
  76         * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
  77         * came from, when one is tested for != NULL.
  78         * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
  79         * for the purpose of tracking that it's freed.
  80         * For PTR_TO_SOCKET this is used to share which pointers retain the
  81         * same reference to the socket, to determine proper reference freeing.
  82         */
  83        u32 id;
  84        /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
  85         * from a pointer-cast helper, bpf_sk_fullsock() and
  86         * bpf_tcp_sock().
  87         *
  88         * Consider the following where "sk" is a reference counted
  89         * pointer returned from "sk = bpf_sk_lookup_tcp();":
  90         *
  91         * 1: sk = bpf_sk_lookup_tcp();
  92         * 2: if (!sk) { return 0; }
  93         * 3: fullsock = bpf_sk_fullsock(sk);
  94         * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
  95         * 5: tp = bpf_tcp_sock(fullsock);
  96         * 6: if (!tp) { bpf_sk_release(sk); return 0; }
  97         * 7: bpf_sk_release(sk);
  98         * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
  99         *
 100         * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
 101         * "tp" ptr should be invalidated also.  In order to do that,
 102         * the reg holding "fullsock" and "sk" need to remember
 103         * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
 104         * such that the verifier can reset all regs which have
 105         * ref_obj_id matching the sk_reg->id.
 106         *
 107         * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
 108         * sk_reg->id will stay as NULL-marking purpose only.
 109         * After NULL-marking is done, sk_reg->id can be reset to 0.
 110         *
 111         * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
 112         * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
 113         *
 114         * After "tp = bpf_tcp_sock(fullsock);" at line 5,
 115         * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
 116         * which is the same as sk_reg->ref_obj_id.
 117         *
 118         * From the verifier perspective, if sk, fullsock and tp
 119         * are not NULL, they are the same ptr with different
 120         * reg->type.  In particular, bpf_sk_release(tp) is also
 121         * allowed and has the same effect as bpf_sk_release(sk).
 122         */
 123        u32 ref_obj_id;
 124        /* For scalar types (SCALAR_VALUE), this represents our knowledge of
 125         * the actual value.
 126         * For pointer types, this represents the variable part of the offset
 127         * from the pointed-to object, and is shared with all bpf_reg_states
 128         * with the same id as us.
 129         */
 130        struct tnum var_off;
 131        /* Used to determine if any memory access using this register will
 132         * result in a bad access.
 133         * These refer to the same value as var_off, not necessarily the actual
 134         * contents of the register.
 135         */
 136        s64 smin_value; /* minimum possible (s64)value */
 137        s64 smax_value; /* maximum possible (s64)value */
 138        u64 umin_value; /* minimum possible (u64)value */
 139        u64 umax_value; /* maximum possible (u64)value */
 140        s32 s32_min_value; /* minimum possible (s32)value */
 141        s32 s32_max_value; /* maximum possible (s32)value */
 142        u32 u32_min_value; /* minimum possible (u32)value */
 143        u32 u32_max_value; /* maximum possible (u32)value */
 144        /* parentage chain for liveness checking */
 145        struct bpf_reg_state *parent;
 146        /* Inside the callee two registers can be both PTR_TO_STACK like
 147         * R1=fp-8 and R2=fp-8, but one of them points to this function stack
 148         * while another to the caller's stack. To differentiate them 'frameno'
 149         * is used which is an index in bpf_verifier_state->frame[] array
 150         * pointing to bpf_func_state.
 151         */
 152        u32 frameno;
 153        /* Tracks subreg definition. The stored value is the insn_idx of the
 154         * writing insn. This is safe because subreg_def is used before any insn
 155         * patching which only happens after main verification finished.
 156         */
 157        s32 subreg_def;
 158        enum bpf_reg_liveness live;
 159        /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
 160        bool precise;
 161};
 162
 163enum bpf_stack_slot_type {
 164        STACK_INVALID,    /* nothing was stored in this stack slot */
 165        STACK_SPILL,      /* register spilled into stack */
 166        STACK_MISC,       /* BPF program wrote some data into this slot */
 167        STACK_ZERO,       /* BPF program wrote constant zero */
 168};
 169
 170#define BPF_REG_SIZE 8  /* size of eBPF register in bytes */
 171
 172struct bpf_stack_state {
 173        struct bpf_reg_state spilled_ptr;
 174        u8 slot_type[BPF_REG_SIZE];
 175};
 176
 177struct bpf_reference_state {
 178        /* Track each reference created with a unique id, even if the same
 179         * instruction creates the reference multiple times (eg, via CALL).
 180         */
 181        int id;
 182        /* Instruction where the allocation of this reference occurred. This
 183         * is used purely to inform the user of a reference leak.
 184         */
 185        int insn_idx;
 186};
 187
 188/* state of the program:
 189 * type of all registers and stack info
 190 */
 191struct bpf_func_state {
 192        struct bpf_reg_state regs[MAX_BPF_REG];
 193        /* index of call instruction that called into this func */
 194        int callsite;
 195        /* stack frame number of this function state from pov of
 196         * enclosing bpf_verifier_state.
 197         * 0 = main function, 1 = first callee.
 198         */
 199        u32 frameno;
 200        /* subprog number == index within subprog_info
 201         * zero == main subprog
 202         */
 203        u32 subprogno;
 204
 205        /* The following fields should be last. See copy_func_state() */
 206        int acquired_refs;
 207        struct bpf_reference_state *refs;
 208        int allocated_stack;
 209        bool in_callback_fn;
 210        struct bpf_stack_state *stack;
 211};
 212
 213struct bpf_idx_pair {
 214        u32 prev_idx;
 215        u32 idx;
 216};
 217
 218struct bpf_id_pair {
 219        u32 old;
 220        u32 cur;
 221};
 222
 223/* Maximum number of register states that can exist at once */
 224#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
 225#define MAX_CALL_FRAMES 8
 226struct bpf_verifier_state {
 227        /* call stack tracking */
 228        struct bpf_func_state *frame[MAX_CALL_FRAMES];
 229        struct bpf_verifier_state *parent;
 230        /*
 231         * 'branches' field is the number of branches left to explore:
 232         * 0 - all possible paths from this state reached bpf_exit or
 233         * were safely pruned
 234         * 1 - at least one path is being explored.
 235         * This state hasn't reached bpf_exit
 236         * 2 - at least two paths are being explored.
 237         * This state is an immediate parent of two children.
 238         * One is fallthrough branch with branches==1 and another
 239         * state is pushed into stack (to be explored later) also with
 240         * branches==1. The parent of this state has branches==1.
 241         * The verifier state tree connected via 'parent' pointer looks like:
 242         * 1
 243         * 1
 244         * 2 -> 1 (first 'if' pushed into stack)
 245         * 1
 246         * 2 -> 1 (second 'if' pushed into stack)
 247         * 1
 248         * 1
 249         * 1 bpf_exit.
 250         *
 251         * Once do_check() reaches bpf_exit, it calls update_branch_counts()
 252         * and the verifier state tree will look:
 253         * 1
 254         * 1
 255         * 2 -> 1 (first 'if' pushed into stack)
 256         * 1
 257         * 1 -> 1 (second 'if' pushed into stack)
 258         * 0
 259         * 0
 260         * 0 bpf_exit.
 261         * After pop_stack() the do_check() will resume at second 'if'.
 262         *
 263         * If is_state_visited() sees a state with branches > 0 it means
 264         * there is a loop. If such state is exactly equal to the current state
 265         * it's an infinite loop. Note states_equal() checks for states
 266         * equvalency, so two states being 'states_equal' does not mean
 267         * infinite loop. The exact comparison is provided by
 268         * states_maybe_looping() function. It's a stronger pre-check and
 269         * much faster than states_equal().
 270         *
 271         * This algorithm may not find all possible infinite loops or
 272         * loop iteration count may be too high.
 273         * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
 274         */
 275        u32 branches;
 276        u32 insn_idx;
 277        u32 curframe;
 278        u32 active_spin_lock;
 279        bool speculative;
 280
 281        /* first and last insn idx of this verifier state */
 282        u32 first_insn_idx;
 283        u32 last_insn_idx;
 284        /* jmp history recorded from first to last.
 285         * backtracking is using it to go from last to first.
 286         * For most states jmp_history_cnt is [0-3].
 287         * For loops can go up to ~40.
 288         */
 289        struct bpf_idx_pair *jmp_history;
 290        u32 jmp_history_cnt;
 291};
 292
 293#define bpf_get_spilled_reg(slot, frame)                                \
 294        (((slot < frame->allocated_stack / BPF_REG_SIZE) &&             \
 295          (frame->stack[slot].slot_type[0] == STACK_SPILL))             \
 296         ? &frame->stack[slot].spilled_ptr : NULL)
 297
 298/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
 299#define bpf_for_each_spilled_reg(iter, frame, reg)                      \
 300        for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);          \
 301             iter < frame->allocated_stack / BPF_REG_SIZE;              \
 302             iter++, reg = bpf_get_spilled_reg(iter, frame))
 303
 304/* linked list of verifier states used to prune search */
 305struct bpf_verifier_state_list {
 306        struct bpf_verifier_state state;
 307        struct bpf_verifier_state_list *next;
 308        int miss_cnt, hit_cnt;
 309};
 310
 311/* Possible states for alu_state member. */
 312#define BPF_ALU_SANITIZE_SRC            (1U << 0)
 313#define BPF_ALU_SANITIZE_DST            (1U << 1)
 314#define BPF_ALU_NEG_VALUE               (1U << 2)
 315#define BPF_ALU_NON_POINTER             (1U << 3)
 316#define BPF_ALU_IMMEDIATE               (1U << 4)
 317#define BPF_ALU_SANITIZE                (BPF_ALU_SANITIZE_SRC | \
 318                                         BPF_ALU_SANITIZE_DST)
 319
 320struct bpf_insn_aux_data {
 321        union {
 322                enum bpf_reg_type ptr_type;     /* pointer type for load/store insns */
 323                unsigned long map_ptr_state;    /* pointer/poison value for maps */
 324                s32 call_imm;                   /* saved imm field of call insn */
 325                u32 alu_limit;                  /* limit for add/sub register with pointer */
 326                struct {
 327                        u32 map_index;          /* index into used_maps[] */
 328                        u32 map_off;            /* offset from value base address */
 329                };
 330                struct {
 331                        enum bpf_reg_type reg_type;     /* type of pseudo_btf_id */
 332                        union {
 333                                struct {
 334                                        struct btf *btf;
 335                                        u32 btf_id;     /* btf_id for struct typed var */
 336                                };
 337                                u32 mem_size;   /* mem_size for non-struct typed var */
 338                        };
 339                } btf_var;
 340        };
 341        u64 map_key_state; /* constant (32 bit) key tracking for maps */
 342        int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
 343        u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
 344        bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
 345        bool zext_dst; /* this insn zero extends dst reg */
 346        u8 alu_state; /* used in combination with alu_limit */
 347
 348        /* below fields are initialized once */
 349        unsigned int orig_idx; /* original instruction index */
 350        bool prune_point;
 351};
 352
 353#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
 354#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
 355
 356#define BPF_VERIFIER_TMP_LOG_SIZE       1024
 357
 358struct bpf_verifier_log {
 359        u32 level;
 360        char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
 361        char __user *ubuf;
 362        u32 len_used;
 363        u32 len_total;
 364};
 365
 366static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
 367{
 368        return log->len_used >= log->len_total - 1;
 369}
 370
 371#define BPF_LOG_LEVEL1  1
 372#define BPF_LOG_LEVEL2  2
 373#define BPF_LOG_STATS   4
 374#define BPF_LOG_LEVEL   (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
 375#define BPF_LOG_MASK    (BPF_LOG_LEVEL | BPF_LOG_STATS)
 376#define BPF_LOG_KERNEL  (BPF_LOG_MASK + 1) /* kernel internal flag */
 377
 378static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
 379{
 380        return log &&
 381                ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
 382                 log->level == BPF_LOG_KERNEL);
 383}
 384
 385#define BPF_MAX_SUBPROGS 256
 386
 387struct bpf_subprog_info {
 388        /* 'start' has to be the first field otherwise find_subprog() won't work */
 389        u32 start; /* insn idx of function entry point */
 390        u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
 391        u16 stack_depth; /* max. stack depth used by this function */
 392        bool has_tail_call;
 393        bool tail_call_reachable;
 394        bool has_ld_abs;
 395};
 396
 397/* single container for all structs
 398 * one verifier_env per bpf_check() call
 399 */
 400struct bpf_verifier_env {
 401        u32 insn_idx;
 402        u32 prev_insn_idx;
 403        struct bpf_prog *prog;          /* eBPF program being verified */
 404        const struct bpf_verifier_ops *ops;
 405        struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
 406        int stack_size;                 /* number of states to be processed */
 407        bool strict_alignment;          /* perform strict pointer alignment checks */
 408        bool test_state_freq;           /* test verifier with different pruning frequency */
 409        struct bpf_verifier_state *cur_state; /* current verifier state */
 410        struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
 411        struct bpf_verifier_state_list *free_list;
 412        struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
 413        struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
 414        u32 used_map_cnt;               /* number of used maps */
 415        u32 used_btf_cnt;               /* number of used BTF objects */
 416        u32 id_gen;                     /* used to generate unique reg IDs */
 417        bool explore_alu_limits;
 418        bool allow_ptr_leaks;
 419        bool allow_uninit_stack;
 420        bool allow_ptr_to_map_access;
 421        bool bpf_capable;
 422        bool bypass_spec_v1;
 423        bool bypass_spec_v4;
 424        bool seen_direct_write;
 425        struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
 426        const struct bpf_line_info *prev_linfo;
 427        struct bpf_verifier_log log;
 428        struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
 429        struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
 430        struct {
 431                int *insn_state;
 432                int *insn_stack;
 433                int cur_stack;
 434        } cfg;
 435        u32 pass_cnt; /* number of times do_check() was called */
 436        u32 subprog_cnt;
 437        /* number of instructions analyzed by the verifier */
 438        u32 prev_insn_processed, insn_processed;
 439        /* number of jmps, calls, exits analyzed so far */
 440        u32 prev_jmps_processed, jmps_processed;
 441        /* total verification time */
 442        u64 verification_time;
 443        /* maximum number of verifier states kept in 'branching' instructions */
 444        u32 max_states_per_insn;
 445        /* total number of allocated verifier states */
 446        u32 total_states;
 447        /* some states are freed during program analysis.
 448         * this is peak number of states. this number dominates kernel
 449         * memory consumption during verification
 450         */
 451        u32 peak_states;
 452        /* longest register parentage chain walked for liveness marking */
 453        u32 longest_mark_read_walk;
 454        bpfptr_t fd_array;
 455};
 456
 457__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
 458                                      const char *fmt, va_list args);
 459__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 460                                           const char *fmt, ...);
 461__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 462                            const char *fmt, ...);
 463
 464static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
 465{
 466        struct bpf_verifier_state *cur = env->cur_state;
 467
 468        return cur->frame[cur->curframe];
 469}
 470
 471static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
 472{
 473        return cur_func(env)->regs;
 474}
 475
 476int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
 477int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
 478                                 int insn_idx, int prev_insn_idx);
 479int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
 480void
 481bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
 482                              struct bpf_insn *insn);
 483void
 484bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
 485
 486int check_ctx_reg(struct bpf_verifier_env *env,
 487                  const struct bpf_reg_state *reg, int regno);
 488int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
 489                   u32 regno, u32 mem_size);
 490
 491/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
 492static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
 493                                             struct btf *btf, u32 btf_id)
 494{
 495        if (tgt_prog)
 496                return ((u64)tgt_prog->aux->id << 32) | btf_id;
 497        else
 498                return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
 499}
 500
 501/* unpack the IDs from the key as constructed above */
 502static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
 503{
 504        if (obj_id)
 505                *obj_id = key >> 32;
 506        if (btf_id)
 507                *btf_id = key & 0x7FFFFFFF;
 508}
 509
 510int bpf_check_attach_target(struct bpf_verifier_log *log,
 511                            const struct bpf_prog *prog,
 512                            const struct bpf_prog *tgt_prog,
 513                            u32 btf_id,
 514                            struct bpf_attach_target_info *tgt_info);
 515
 516#endif /* _LINUX_BPF_VERIFIER_H */
 517