linux/include/linux/filter.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Linux Socket Filter Data Structures
   4 */
   5#ifndef __LINUX_FILTER_H__
   6#define __LINUX_FILTER_H__
   7
   8#include <stdarg.h>
   9
  10#include <linux/atomic.h>
  11#include <linux/refcount.h>
  12#include <linux/compat.h>
  13#include <linux/skbuff.h>
  14#include <linux/linkage.h>
  15#include <linux/printk.h>
  16#include <linux/workqueue.h>
  17#include <linux/sched.h>
  18#include <linux/capability.h>
  19#include <linux/set_memory.h>
  20#include <linux/kallsyms.h>
  21#include <linux/if_vlan.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sockptr.h>
  24#include <crypto/sha1.h>
  25#include <linux/u64_stats_sync.h>
  26
  27#include <net/sch_generic.h>
  28
  29#include <asm/byteorder.h>
  30#include <uapi/linux/filter.h>
  31#include <uapi/linux/bpf.h>
  32
  33struct sk_buff;
  34struct sock;
  35struct seccomp_data;
  36struct bpf_prog_aux;
  37struct xdp_rxq_info;
  38struct xdp_buff;
  39struct sock_reuseport;
  40struct ctl_table;
  41struct ctl_table_header;
  42
  43/* ArgX, context and stack frame pointer register positions. Note,
  44 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
  45 * calls in BPF_CALL instruction.
  46 */
  47#define BPF_REG_ARG1    BPF_REG_1
  48#define BPF_REG_ARG2    BPF_REG_2
  49#define BPF_REG_ARG3    BPF_REG_3
  50#define BPF_REG_ARG4    BPF_REG_4
  51#define BPF_REG_ARG5    BPF_REG_5
  52#define BPF_REG_CTX     BPF_REG_6
  53#define BPF_REG_FP      BPF_REG_10
  54
  55/* Additional register mappings for converted user programs. */
  56#define BPF_REG_A       BPF_REG_0
  57#define BPF_REG_X       BPF_REG_7
  58#define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
  59#define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
  60#define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
  61
  62/* Kernel hidden auxiliary/helper register. */
  63#define BPF_REG_AX              MAX_BPF_REG
  64#define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
  65#define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
  66
  67/* unused opcode to mark special call to bpf_tail_call() helper */
  68#define BPF_TAIL_CALL   0xf0
  69
  70/* unused opcode to mark special load instruction. Same as BPF_ABS */
  71#define BPF_PROBE_MEM   0x20
  72
  73/* unused opcode to mark call to interpreter with arguments */
  74#define BPF_CALL_ARGS   0xe0
  75
  76/* unused opcode to mark speculation barrier for mitigating
  77 * Speculative Store Bypass
  78 */
  79#define BPF_NOSPEC      0xc0
  80
  81/* As per nm, we expose JITed images as text (code) section for
  82 * kallsyms. That way, tools like perf can find it to match
  83 * addresses.
  84 */
  85#define BPF_SYM_ELF_TYPE        't'
  86
  87/* BPF program can access up to 512 bytes of stack space. */
  88#define MAX_BPF_STACK   512
  89
  90/* Helper macros for filter block array initializers. */
  91
  92/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
  93
  94#define BPF_ALU64_REG(OP, DST, SRC)                             \
  95        ((struct bpf_insn) {                                    \
  96                .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
  97                .dst_reg = DST,                                 \
  98                .src_reg = SRC,                                 \
  99                .off   = 0,                                     \
 100                .imm   = 0 })
 101
 102#define BPF_ALU32_REG(OP, DST, SRC)                             \
 103        ((struct bpf_insn) {                                    \
 104                .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
 105                .dst_reg = DST,                                 \
 106                .src_reg = SRC,                                 \
 107                .off   = 0,                                     \
 108                .imm   = 0 })
 109
 110/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
 111
 112#define BPF_ALU64_IMM(OP, DST, IMM)                             \
 113        ((struct bpf_insn) {                                    \
 114                .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
 115                .dst_reg = DST,                                 \
 116                .src_reg = 0,                                   \
 117                .off   = 0,                                     \
 118                .imm   = IMM })
 119
 120#define BPF_ALU32_IMM(OP, DST, IMM)                             \
 121        ((struct bpf_insn) {                                    \
 122                .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
 123                .dst_reg = DST,                                 \
 124                .src_reg = 0,                                   \
 125                .off   = 0,                                     \
 126                .imm   = IMM })
 127
 128/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
 129
 130#define BPF_ENDIAN(TYPE, DST, LEN)                              \
 131        ((struct bpf_insn) {                                    \
 132                .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
 133                .dst_reg = DST,                                 \
 134                .src_reg = 0,                                   \
 135                .off   = 0,                                     \
 136                .imm   = LEN })
 137
 138/* Short form of mov, dst_reg = src_reg */
 139
 140#define BPF_MOV64_REG(DST, SRC)                                 \
 141        ((struct bpf_insn) {                                    \
 142                .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
 143                .dst_reg = DST,                                 \
 144                .src_reg = SRC,                                 \
 145                .off   = 0,                                     \
 146                .imm   = 0 })
 147
 148#define BPF_MOV32_REG(DST, SRC)                                 \
 149        ((struct bpf_insn) {                                    \
 150                .code  = BPF_ALU | BPF_MOV | BPF_X,             \
 151                .dst_reg = DST,                                 \
 152                .src_reg = SRC,                                 \
 153                .off   = 0,                                     \
 154                .imm   = 0 })
 155
 156/* Short form of mov, dst_reg = imm32 */
 157
 158#define BPF_MOV64_IMM(DST, IMM)                                 \
 159        ((struct bpf_insn) {                                    \
 160                .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
 161                .dst_reg = DST,                                 \
 162                .src_reg = 0,                                   \
 163                .off   = 0,                                     \
 164                .imm   = IMM })
 165
 166#define BPF_MOV32_IMM(DST, IMM)                                 \
 167        ((struct bpf_insn) {                                    \
 168                .code  = BPF_ALU | BPF_MOV | BPF_K,             \
 169                .dst_reg = DST,                                 \
 170                .src_reg = 0,                                   \
 171                .off   = 0,                                     \
 172                .imm   = IMM })
 173
 174/* Special form of mov32, used for doing explicit zero extension on dst. */
 175#define BPF_ZEXT_REG(DST)                                       \
 176        ((struct bpf_insn) {                                    \
 177                .code  = BPF_ALU | BPF_MOV | BPF_X,             \
 178                .dst_reg = DST,                                 \
 179                .src_reg = DST,                                 \
 180                .off   = 0,                                     \
 181                .imm   = 1 })
 182
 183static inline bool insn_is_zext(const struct bpf_insn *insn)
 184{
 185        return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
 186}
 187
 188/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
 189#define BPF_LD_IMM64(DST, IMM)                                  \
 190        BPF_LD_IMM64_RAW(DST, 0, IMM)
 191
 192#define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
 193        ((struct bpf_insn) {                                    \
 194                .code  = BPF_LD | BPF_DW | BPF_IMM,             \
 195                .dst_reg = DST,                                 \
 196                .src_reg = SRC,                                 \
 197                .off   = 0,                                     \
 198                .imm   = (__u32) (IMM) }),                      \
 199        ((struct bpf_insn) {                                    \
 200                .code  = 0, /* zero is reserved opcode */       \
 201                .dst_reg = 0,                                   \
 202                .src_reg = 0,                                   \
 203                .off   = 0,                                     \
 204                .imm   = ((__u64) (IMM)) >> 32 })
 205
 206/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
 207#define BPF_LD_MAP_FD(DST, MAP_FD)                              \
 208        BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
 209
 210/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
 211
 212#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
 213        ((struct bpf_insn) {                                    \
 214                .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
 215                .dst_reg = DST,                                 \
 216                .src_reg = SRC,                                 \
 217                .off   = 0,                                     \
 218                .imm   = IMM })
 219
 220#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
 221        ((struct bpf_insn) {                                    \
 222                .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
 223                .dst_reg = DST,                                 \
 224                .src_reg = SRC,                                 \
 225                .off   = 0,                                     \
 226                .imm   = IMM })
 227
 228/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
 229
 230#define BPF_LD_ABS(SIZE, IMM)                                   \
 231        ((struct bpf_insn) {                                    \
 232                .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
 233                .dst_reg = 0,                                   \
 234                .src_reg = 0,                                   \
 235                .off   = 0,                                     \
 236                .imm   = IMM })
 237
 238/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
 239
 240#define BPF_LD_IND(SIZE, SRC, IMM)                              \
 241        ((struct bpf_insn) {                                    \
 242                .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
 243                .dst_reg = 0,                                   \
 244                .src_reg = SRC,                                 \
 245                .off   = 0,                                     \
 246                .imm   = IMM })
 247
 248/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
 249
 250#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
 251        ((struct bpf_insn) {                                    \
 252                .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
 253                .dst_reg = DST,                                 \
 254                .src_reg = SRC,                                 \
 255                .off   = OFF,                                   \
 256                .imm   = 0 })
 257
 258/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
 259
 260#define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
 261        ((struct bpf_insn) {                                    \
 262                .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
 263                .dst_reg = DST,                                 \
 264                .src_reg = SRC,                                 \
 265                .off   = OFF,                                   \
 266                .imm   = 0 })
 267
 268
 269/*
 270 * Atomic operations:
 271 *
 272 *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
 273 *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
 274 *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
 275 *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
 276 *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
 277 *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
 278 *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
 279 *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
 280 *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
 281 *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
 282 */
 283
 284#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
 285        ((struct bpf_insn) {                                    \
 286                .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
 287                .dst_reg = DST,                                 \
 288                .src_reg = SRC,                                 \
 289                .off   = OFF,                                   \
 290                .imm   = OP })
 291
 292/* Legacy alias */
 293#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
 294
 295/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
 296
 297#define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
 298        ((struct bpf_insn) {                                    \
 299                .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
 300                .dst_reg = DST,                                 \
 301                .src_reg = 0,                                   \
 302                .off   = OFF,                                   \
 303                .imm   = IMM })
 304
 305/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
 306
 307#define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
 308        ((struct bpf_insn) {                                    \
 309                .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
 310                .dst_reg = DST,                                 \
 311                .src_reg = SRC,                                 \
 312                .off   = OFF,                                   \
 313                .imm   = 0 })
 314
 315/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
 316
 317#define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
 318        ((struct bpf_insn) {                                    \
 319                .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
 320                .dst_reg = DST,                                 \
 321                .src_reg = 0,                                   \
 322                .off   = OFF,                                   \
 323                .imm   = IMM })
 324
 325/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
 326
 327#define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
 328        ((struct bpf_insn) {                                    \
 329                .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
 330                .dst_reg = DST,                                 \
 331                .src_reg = SRC,                                 \
 332                .off   = OFF,                                   \
 333                .imm   = 0 })
 334
 335/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
 336
 337#define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
 338        ((struct bpf_insn) {                                    \
 339                .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
 340                .dst_reg = DST,                                 \
 341                .src_reg = 0,                                   \
 342                .off   = OFF,                                   \
 343                .imm   = IMM })
 344
 345/* Unconditional jumps, goto pc + off16 */
 346
 347#define BPF_JMP_A(OFF)                                          \
 348        ((struct bpf_insn) {                                    \
 349                .code  = BPF_JMP | BPF_JA,                      \
 350                .dst_reg = 0,                                   \
 351                .src_reg = 0,                                   \
 352                .off   = OFF,                                   \
 353                .imm   = 0 })
 354
 355/* Relative call */
 356
 357#define BPF_CALL_REL(TGT)                                       \
 358        ((struct bpf_insn) {                                    \
 359                .code  = BPF_JMP | BPF_CALL,                    \
 360                .dst_reg = 0,                                   \
 361                .src_reg = BPF_PSEUDO_CALL,                     \
 362                .off   = 0,                                     \
 363                .imm   = TGT })
 364
 365/* Function call */
 366
 367#define BPF_CAST_CALL(x)                                        \
 368                ((u64 (*)(u64, u64, u64, u64, u64))(x))
 369
 370#define BPF_EMIT_CALL(FUNC)                                     \
 371        ((struct bpf_insn) {                                    \
 372                .code  = BPF_JMP | BPF_CALL,                    \
 373                .dst_reg = 0,                                   \
 374                .src_reg = 0,                                   \
 375                .off   = 0,                                     \
 376                .imm   = ((FUNC) - __bpf_call_base) })
 377
 378/* Raw code statement block */
 379
 380#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
 381        ((struct bpf_insn) {                                    \
 382                .code  = CODE,                                  \
 383                .dst_reg = DST,                                 \
 384                .src_reg = SRC,                                 \
 385                .off   = OFF,                                   \
 386                .imm   = IMM })
 387
 388/* Program exit */
 389
 390#define BPF_EXIT_INSN()                                         \
 391        ((struct bpf_insn) {                                    \
 392                .code  = BPF_JMP | BPF_EXIT,                    \
 393                .dst_reg = 0,                                   \
 394                .src_reg = 0,                                   \
 395                .off   = 0,                                     \
 396                .imm   = 0 })
 397
 398/* Speculation barrier */
 399
 400#define BPF_ST_NOSPEC()                                         \
 401        ((struct bpf_insn) {                                    \
 402                .code  = BPF_ST | BPF_NOSPEC,                   \
 403                .dst_reg = 0,                                   \
 404                .src_reg = 0,                                   \
 405                .off   = 0,                                     \
 406                .imm   = 0 })
 407
 408/* Internal classic blocks for direct assignment */
 409
 410#define __BPF_STMT(CODE, K)                                     \
 411        ((struct sock_filter) BPF_STMT(CODE, K))
 412
 413#define __BPF_JUMP(CODE, K, JT, JF)                             \
 414        ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
 415
 416#define bytes_to_bpf_size(bytes)                                \
 417({                                                              \
 418        int bpf_size = -EINVAL;                                 \
 419                                                                \
 420        if (bytes == sizeof(u8))                                \
 421                bpf_size = BPF_B;                               \
 422        else if (bytes == sizeof(u16))                          \
 423                bpf_size = BPF_H;                               \
 424        else if (bytes == sizeof(u32))                          \
 425                bpf_size = BPF_W;                               \
 426        else if (bytes == sizeof(u64))                          \
 427                bpf_size = BPF_DW;                              \
 428                                                                \
 429        bpf_size;                                               \
 430})
 431
 432#define bpf_size_to_bytes(bpf_size)                             \
 433({                                                              \
 434        int bytes = -EINVAL;                                    \
 435                                                                \
 436        if (bpf_size == BPF_B)                                  \
 437                bytes = sizeof(u8);                             \
 438        else if (bpf_size == BPF_H)                             \
 439                bytes = sizeof(u16);                            \
 440        else if (bpf_size == BPF_W)                             \
 441                bytes = sizeof(u32);                            \
 442        else if (bpf_size == BPF_DW)                            \
 443                bytes = sizeof(u64);                            \
 444                                                                \
 445        bytes;                                                  \
 446})
 447
 448#define BPF_SIZEOF(type)                                        \
 449        ({                                                      \
 450                const int __size = bytes_to_bpf_size(sizeof(type)); \
 451                BUILD_BUG_ON(__size < 0);                       \
 452                __size;                                         \
 453        })
 454
 455#define BPF_FIELD_SIZEOF(type, field)                           \
 456        ({                                                      \
 457                const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
 458                BUILD_BUG_ON(__size < 0);                       \
 459                __size;                                         \
 460        })
 461
 462#define BPF_LDST_BYTES(insn)                                    \
 463        ({                                                      \
 464                const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
 465                WARN_ON(__size < 0);                            \
 466                __size;                                         \
 467        })
 468
 469#define __BPF_MAP_0(m, v, ...) v
 470#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
 471#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
 472#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
 473#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
 474#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
 475
 476#define __BPF_REG_0(...) __BPF_PAD(5)
 477#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
 478#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
 479#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
 480#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
 481#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
 482
 483#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
 484#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
 485
 486#define __BPF_CAST(t, a)                                                       \
 487        (__force t)                                                            \
 488        (__force                                                               \
 489         typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
 490                                      (unsigned long)0, (t)0))) a
 491#define __BPF_V void
 492#define __BPF_N
 493
 494#define __BPF_DECL_ARGS(t, a) t   a
 495#define __BPF_DECL_REGS(t, a) u64 a
 496
 497#define __BPF_PAD(n)                                                           \
 498        __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
 499                  u64, __ur_3, u64, __ur_4, u64, __ur_5)
 500
 501#define BPF_CALL_x(x, name, ...)                                               \
 502        static __always_inline                                                 \
 503        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
 504        typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
 505        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
 506        u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
 507        {                                                                      \
 508                return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
 509        }                                                                      \
 510        static __always_inline                                                 \
 511        u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
 512
 513#define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
 514#define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
 515#define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
 516#define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
 517#define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
 518#define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
 519
 520#define bpf_ctx_range(TYPE, MEMBER)                                             \
 521        offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 522#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
 523        offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
 524#if BITS_PER_LONG == 64
 525# define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
 526        offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 527#else
 528# define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
 529        offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
 530#endif /* BITS_PER_LONG == 64 */
 531
 532#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
 533        ({                                                                      \
 534                BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
 535                *(PTR_SIZE) = (SIZE);                                           \
 536                offsetof(TYPE, MEMBER);                                         \
 537        })
 538
 539/* A struct sock_filter is architecture independent. */
 540struct compat_sock_fprog {
 541        u16             len;
 542        compat_uptr_t   filter; /* struct sock_filter * */
 543};
 544
 545struct sock_fprog_kern {
 546        u16                     len;
 547        struct sock_filter      *filter;
 548};
 549
 550/* Some arches need doubleword alignment for their instructions and/or data */
 551#define BPF_IMAGE_ALIGNMENT 8
 552
 553struct bpf_binary_header {
 554        u32 pages;
 555        u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
 556};
 557
 558struct bpf_prog_stats {
 559        u64 cnt;
 560        u64 nsecs;
 561        u64 misses;
 562        struct u64_stats_sync syncp;
 563} __aligned(2 * sizeof(u64));
 564
 565struct bpf_prog {
 566        u16                     pages;          /* Number of allocated pages */
 567        u16                     jited:1,        /* Is our filter JIT'ed? */
 568                                jit_requested:1,/* archs need to JIT the prog */
 569                                gpl_compatible:1, /* Is filter GPL compatible? */
 570                                cb_access:1,    /* Is control block accessed? */
 571                                dst_needed:1,   /* Do we need dst entry? */
 572                                blinded:1,      /* Was blinded */
 573                                is_func:1,      /* program is a bpf function */
 574                                kprobe_override:1, /* Do we override a kprobe? */
 575                                has_callchain_buf:1, /* callchain buffer allocated? */
 576                                enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
 577                                call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
 578        enum bpf_prog_type      type;           /* Type of BPF program */
 579        enum bpf_attach_type    expected_attach_type; /* For some prog types */
 580        u32                     len;            /* Number of filter blocks */
 581        u32                     jited_len;      /* Size of jited insns in bytes */
 582        u8                      tag[BPF_TAG_SIZE];
 583        struct bpf_prog_stats __percpu *stats;
 584        int __percpu            *active;
 585        unsigned int            (*bpf_func)(const void *ctx,
 586                                            const struct bpf_insn *insn);
 587        struct bpf_prog_aux     *aux;           /* Auxiliary fields */
 588        struct sock_fprog_kern  *orig_prog;     /* Original BPF program */
 589        /* Instructions for interpreter */
 590        struct sock_filter      insns[0];
 591        struct bpf_insn         insnsi[];
 592};
 593
 594struct sk_filter {
 595        refcount_t      refcnt;
 596        struct rcu_head rcu;
 597        struct bpf_prog *prog;
 598};
 599
 600DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
 601
 602#define __BPF_PROG_RUN(prog, ctx, dfunc)        ({                      \
 603        u32 __ret;                                                      \
 604        cant_migrate();                                                 \
 605        if (static_branch_unlikely(&bpf_stats_enabled_key)) {           \
 606                struct bpf_prog_stats *__stats;                         \
 607                u64 __start = sched_clock();                            \
 608                __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
 609                __stats = this_cpu_ptr(prog->stats);                    \
 610                u64_stats_update_begin(&__stats->syncp);                \
 611                __stats->cnt++;                                         \
 612                __stats->nsecs += sched_clock() - __start;              \
 613                u64_stats_update_end(&__stats->syncp);                  \
 614        } else {                                                        \
 615                __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);   \
 616        }                                                               \
 617        __ret; })
 618
 619#define BPF_PROG_RUN(prog, ctx)                                         \
 620        __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
 621
 622/*
 623 * Use in preemptible and therefore migratable context to make sure that
 624 * the execution of the BPF program runs on one CPU.
 625 *
 626 * This uses migrate_disable/enable() explicitly to document that the
 627 * invocation of a BPF program does not require reentrancy protection
 628 * against a BPF program which is invoked from a preempting task.
 629 *
 630 * For non RT enabled kernels migrate_disable/enable() maps to
 631 * preempt_disable/enable(), i.e. it disables also preemption.
 632 */
 633static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
 634                                          const void *ctx)
 635{
 636        u32 ret;
 637
 638        migrate_disable();
 639        ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
 640        migrate_enable();
 641        return ret;
 642}
 643
 644#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
 645
 646struct bpf_skb_data_end {
 647        struct qdisc_skb_cb qdisc_cb;
 648        void *data_meta;
 649        void *data_end;
 650};
 651
 652struct bpf_nh_params {
 653        u32 nh_family;
 654        union {
 655                u32 ipv4_nh;
 656                struct in6_addr ipv6_nh;
 657        };
 658};
 659
 660struct bpf_redirect_info {
 661        u32 flags;
 662        u32 tgt_index;
 663        void *tgt_value;
 664        struct bpf_map *map;
 665        u32 map_id;
 666        enum bpf_map_type map_type;
 667        u32 kern_flags;
 668        struct bpf_nh_params nh;
 669};
 670
 671DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
 672
 673/* flags for bpf_redirect_info kern_flags */
 674#define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
 675
 676/* Compute the linear packet data range [data, data_end) which
 677 * will be accessed by various program types (cls_bpf, act_bpf,
 678 * lwt, ...). Subsystems allowing direct data access must (!)
 679 * ensure that cb[] area can be written to when BPF program is
 680 * invoked (otherwise cb[] save/restore is necessary).
 681 */
 682static inline void bpf_compute_data_pointers(struct sk_buff *skb)
 683{
 684        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 685
 686        BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
 687        cb->data_meta = skb->data - skb_metadata_len(skb);
 688        cb->data_end  = skb->data + skb_headlen(skb);
 689}
 690
 691/* Similar to bpf_compute_data_pointers(), except that save orginal
 692 * data in cb->data and cb->meta_data for restore.
 693 */
 694static inline void bpf_compute_and_save_data_end(
 695        struct sk_buff *skb, void **saved_data_end)
 696{
 697        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 698
 699        *saved_data_end = cb->data_end;
 700        cb->data_end  = skb->data + skb_headlen(skb);
 701}
 702
 703/* Restore data saved by bpf_compute_data_pointers(). */
 704static inline void bpf_restore_data_end(
 705        struct sk_buff *skb, void *saved_data_end)
 706{
 707        struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 708
 709        cb->data_end = saved_data_end;
 710}
 711
 712static inline u8 *bpf_skb_cb(struct sk_buff *skb)
 713{
 714        /* eBPF programs may read/write skb->cb[] area to transfer meta
 715         * data between tail calls. Since this also needs to work with
 716         * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
 717         *
 718         * In some socket filter cases, the cb unfortunately needs to be
 719         * saved/restored so that protocol specific skb->cb[] data won't
 720         * be lost. In any case, due to unpriviledged eBPF programs
 721         * attached to sockets, we need to clear the bpf_skb_cb() area
 722         * to not leak previous contents to user space.
 723         */
 724        BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
 725        BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
 726                     sizeof_field(struct qdisc_skb_cb, data));
 727
 728        return qdisc_skb_cb(skb)->data;
 729}
 730
 731/* Must be invoked with migration disabled */
 732static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
 733                                         struct sk_buff *skb)
 734{
 735        u8 *cb_data = bpf_skb_cb(skb);
 736        u8 cb_saved[BPF_SKB_CB_LEN];
 737        u32 res;
 738
 739        if (unlikely(prog->cb_access)) {
 740                memcpy(cb_saved, cb_data, sizeof(cb_saved));
 741                memset(cb_data, 0, sizeof(cb_saved));
 742        }
 743
 744        res = BPF_PROG_RUN(prog, skb);
 745
 746        if (unlikely(prog->cb_access))
 747                memcpy(cb_data, cb_saved, sizeof(cb_saved));
 748
 749        return res;
 750}
 751
 752static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
 753                                       struct sk_buff *skb)
 754{
 755        u32 res;
 756
 757        migrate_disable();
 758        res = __bpf_prog_run_save_cb(prog, skb);
 759        migrate_enable();
 760        return res;
 761}
 762
 763static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
 764                                        struct sk_buff *skb)
 765{
 766        u8 *cb_data = bpf_skb_cb(skb);
 767        u32 res;
 768
 769        if (unlikely(prog->cb_access))
 770                memset(cb_data, 0, BPF_SKB_CB_LEN);
 771
 772        res = bpf_prog_run_pin_on_cpu(prog, skb);
 773        return res;
 774}
 775
 776DECLARE_BPF_DISPATCHER(xdp)
 777
 778static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
 779                                            struct xdp_buff *xdp)
 780{
 781        /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
 782         * under local_bh_disable(), which provides the needed RCU protection
 783         * for accessing map entries.
 784         */
 785        return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
 786}
 787
 788void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
 789
 790static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
 791{
 792        return prog->len * sizeof(struct bpf_insn);
 793}
 794
 795static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
 796{
 797        return round_up(bpf_prog_insn_size(prog) +
 798                        sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
 799}
 800
 801static inline unsigned int bpf_prog_size(unsigned int proglen)
 802{
 803        return max(sizeof(struct bpf_prog),
 804                   offsetof(struct bpf_prog, insns[proglen]));
 805}
 806
 807static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
 808{
 809        /* When classic BPF programs have been loaded and the arch
 810         * does not have a classic BPF JIT (anymore), they have been
 811         * converted via bpf_migrate_filter() to eBPF and thus always
 812         * have an unspec program type.
 813         */
 814        return prog->type == BPF_PROG_TYPE_UNSPEC;
 815}
 816
 817static inline u32 bpf_ctx_off_adjust_machine(u32 size)
 818{
 819        const u32 size_machine = sizeof(unsigned long);
 820
 821        if (size > size_machine && size % size_machine == 0)
 822                size = size_machine;
 823
 824        return size;
 825}
 826
 827static inline bool
 828bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
 829{
 830        return size <= size_default && (size & (size - 1)) == 0;
 831}
 832
 833static inline u8
 834bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
 835{
 836        u8 access_off = off & (size_default - 1);
 837
 838#ifdef __LITTLE_ENDIAN
 839        return access_off;
 840#else
 841        return size_default - (access_off + size);
 842#endif
 843}
 844
 845#define bpf_ctx_wide_access_ok(off, size, type, field)                  \
 846        (size == sizeof(__u64) &&                                       \
 847        off >= offsetof(type, field) &&                                 \
 848        off + sizeof(__u64) <= offsetofend(type, field) &&              \
 849        off % sizeof(__u64) == 0)
 850
 851#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
 852
 853static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
 854{
 855#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 856        if (!fp->jited) {
 857                set_vm_flush_reset_perms(fp);
 858                set_memory_ro((unsigned long)fp, fp->pages);
 859        }
 860#endif
 861}
 862
 863static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
 864{
 865        set_vm_flush_reset_perms(hdr);
 866        set_memory_ro((unsigned long)hdr, hdr->pages);
 867        set_memory_x((unsigned long)hdr, hdr->pages);
 868}
 869
 870static inline struct bpf_binary_header *
 871bpf_jit_binary_hdr(const struct bpf_prog *fp)
 872{
 873        unsigned long real_start = (unsigned long)fp->bpf_func;
 874        unsigned long addr = real_start & PAGE_MASK;
 875
 876        return (void *)addr;
 877}
 878
 879int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
 880static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
 881{
 882        return sk_filter_trim_cap(sk, skb, 1);
 883}
 884
 885struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
 886void bpf_prog_free(struct bpf_prog *fp);
 887
 888bool bpf_opcode_in_insntable(u8 code);
 889
 890void bpf_prog_free_linfo(struct bpf_prog *prog);
 891void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 892                               const u32 *insn_to_jit_off);
 893int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
 894void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
 895
 896struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
 897struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
 898struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 899                                  gfp_t gfp_extra_flags);
 900void __bpf_prog_free(struct bpf_prog *fp);
 901
 902static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
 903{
 904        __bpf_prog_free(fp);
 905}
 906
 907typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
 908                                       unsigned int flen);
 909
 910int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
 911int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
 912                              bpf_aux_classic_check_t trans, bool save_orig);
 913void bpf_prog_destroy(struct bpf_prog *fp);
 914
 915int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 916int sk_attach_bpf(u32 ufd, struct sock *sk);
 917int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 918int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
 919void sk_reuseport_prog_free(struct bpf_prog *prog);
 920int sk_detach_filter(struct sock *sk);
 921int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
 922                  unsigned int len);
 923
 924bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
 925void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
 926
 927u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
 928#define __bpf_call_base_args \
 929        ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
 930         (void *)__bpf_call_base)
 931
 932struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
 933void bpf_jit_compile(struct bpf_prog *prog);
 934bool bpf_jit_needs_zext(void);
 935bool bpf_jit_supports_kfunc_call(void);
 936bool bpf_helper_changes_pkt_data(void *func);
 937
 938static inline bool bpf_dump_raw_ok(const struct cred *cred)
 939{
 940        /* Reconstruction of call-sites is dependent on kallsyms,
 941         * thus make dump the same restriction.
 942         */
 943        return kallsyms_show_value(cred);
 944}
 945
 946struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 947                                       const struct bpf_insn *patch, u32 len);
 948int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
 949
 950void bpf_clear_redirect_map(struct bpf_map *map);
 951
 952static inline bool xdp_return_frame_no_direct(void)
 953{
 954        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 955
 956        return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
 957}
 958
 959static inline void xdp_set_return_frame_no_direct(void)
 960{
 961        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 962
 963        ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
 964}
 965
 966static inline void xdp_clear_return_frame_no_direct(void)
 967{
 968        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 969
 970        ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
 971}
 972
 973static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
 974                                 unsigned int pktlen)
 975{
 976        unsigned int len;
 977
 978        if (unlikely(!(fwd->flags & IFF_UP)))
 979                return -ENETDOWN;
 980
 981        len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
 982        if (pktlen > len)
 983                return -EMSGSIZE;
 984
 985        return 0;
 986}
 987
 988/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
 989 * same cpu context. Further for best results no more than a single map
 990 * for the do_redirect/do_flush pair should be used. This limitation is
 991 * because we only track one map and force a flush when the map changes.
 992 * This does not appear to be a real limitation for existing software.
 993 */
 994int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
 995                            struct xdp_buff *xdp, struct bpf_prog *prog);
 996int xdp_do_redirect(struct net_device *dev,
 997                    struct xdp_buff *xdp,
 998                    struct bpf_prog *prog);
 999void xdp_do_flush(void);
1000
1001/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1002 * it is no longer only flushing maps. Keep this define for compatibility
1003 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1004 */
1005#define xdp_do_flush_map xdp_do_flush
1006
1007void bpf_warn_invalid_xdp_action(u32 act);
1008
1009#ifdef CONFIG_INET
1010struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1011                                  struct bpf_prog *prog, struct sk_buff *skb,
1012                                  struct sock *migrating_sk,
1013                                  u32 hash);
1014#else
1015static inline struct sock *
1016bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1017                     struct bpf_prog *prog, struct sk_buff *skb,
1018                     struct sock *migrating_sk,
1019                     u32 hash)
1020{
1021        return NULL;
1022}
1023#endif
1024
1025#ifdef CONFIG_BPF_JIT
1026extern int bpf_jit_enable;
1027extern int bpf_jit_harden;
1028extern int bpf_jit_kallsyms;
1029extern long bpf_jit_limit;
1030
1031typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1032
1033struct bpf_binary_header *
1034bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1035                     unsigned int alignment,
1036                     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1037void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1038u64 bpf_jit_alloc_exec_limit(void);
1039void *bpf_jit_alloc_exec(unsigned long size);
1040void bpf_jit_free_exec(void *addr);
1041void bpf_jit_free(struct bpf_prog *fp);
1042
1043int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1044                                struct bpf_jit_poke_descriptor *poke);
1045
1046int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1047                          const struct bpf_insn *insn, bool extra_pass,
1048                          u64 *func_addr, bool *func_addr_fixed);
1049
1050struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1051void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1052
1053static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1054                                u32 pass, void *image)
1055{
1056        pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1057               proglen, pass, image, current->comm, task_pid_nr(current));
1058
1059        if (image)
1060                print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1061                               16, 1, image, proglen, false);
1062}
1063
1064static inline bool bpf_jit_is_ebpf(void)
1065{
1066# ifdef CONFIG_HAVE_EBPF_JIT
1067        return true;
1068# else
1069        return false;
1070# endif
1071}
1072
1073static inline bool ebpf_jit_enabled(void)
1074{
1075        return bpf_jit_enable && bpf_jit_is_ebpf();
1076}
1077
1078static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1079{
1080        return fp->jited && bpf_jit_is_ebpf();
1081}
1082
1083static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1084{
1085        /* These are the prerequisites, should someone ever have the
1086         * idea to call blinding outside of them, we make sure to
1087         * bail out.
1088         */
1089        if (!bpf_jit_is_ebpf())
1090                return false;
1091        if (!prog->jit_requested)
1092                return false;
1093        if (!bpf_jit_harden)
1094                return false;
1095        if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1096                return false;
1097
1098        return true;
1099}
1100
1101static inline bool bpf_jit_kallsyms_enabled(void)
1102{
1103        /* There are a couple of corner cases where kallsyms should
1104         * not be enabled f.e. on hardening.
1105         */
1106        if (bpf_jit_harden)
1107                return false;
1108        if (!bpf_jit_kallsyms)
1109                return false;
1110        if (bpf_jit_kallsyms == 1)
1111                return true;
1112
1113        return false;
1114}
1115
1116const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1117                                 unsigned long *off, char *sym);
1118bool is_bpf_text_address(unsigned long addr);
1119int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1120                    char *sym);
1121
1122static inline const char *
1123bpf_address_lookup(unsigned long addr, unsigned long *size,
1124                   unsigned long *off, char **modname, char *sym)
1125{
1126        const char *ret = __bpf_address_lookup(addr, size, off, sym);
1127
1128        if (ret && modname)
1129                *modname = NULL;
1130        return ret;
1131}
1132
1133void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1134void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1135
1136#else /* CONFIG_BPF_JIT */
1137
1138static inline bool ebpf_jit_enabled(void)
1139{
1140        return false;
1141}
1142
1143static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1144{
1145        return false;
1146}
1147
1148static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1149{
1150        return false;
1151}
1152
1153static inline int
1154bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1155                            struct bpf_jit_poke_descriptor *poke)
1156{
1157        return -ENOTSUPP;
1158}
1159
1160static inline void bpf_jit_free(struct bpf_prog *fp)
1161{
1162        bpf_prog_unlock_free(fp);
1163}
1164
1165static inline bool bpf_jit_kallsyms_enabled(void)
1166{
1167        return false;
1168}
1169
1170static inline const char *
1171__bpf_address_lookup(unsigned long addr, unsigned long *size,
1172                     unsigned long *off, char *sym)
1173{
1174        return NULL;
1175}
1176
1177static inline bool is_bpf_text_address(unsigned long addr)
1178{
1179        return false;
1180}
1181
1182static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1183                                  char *type, char *sym)
1184{
1185        return -ERANGE;
1186}
1187
1188static inline const char *
1189bpf_address_lookup(unsigned long addr, unsigned long *size,
1190                   unsigned long *off, char **modname, char *sym)
1191{
1192        return NULL;
1193}
1194
1195static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1196{
1197}
1198
1199static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1200{
1201}
1202
1203#endif /* CONFIG_BPF_JIT */
1204
1205void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1206
1207#define BPF_ANC         BIT(15)
1208
1209static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1210{
1211        switch (first->code) {
1212        case BPF_RET | BPF_K:
1213        case BPF_LD | BPF_W | BPF_LEN:
1214                return false;
1215
1216        case BPF_LD | BPF_W | BPF_ABS:
1217        case BPF_LD | BPF_H | BPF_ABS:
1218        case BPF_LD | BPF_B | BPF_ABS:
1219                if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1220                        return true;
1221                return false;
1222
1223        default:
1224                return true;
1225        }
1226}
1227
1228static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1229{
1230        BUG_ON(ftest->code & BPF_ANC);
1231
1232        switch (ftest->code) {
1233        case BPF_LD | BPF_W | BPF_ABS:
1234        case BPF_LD | BPF_H | BPF_ABS:
1235        case BPF_LD | BPF_B | BPF_ABS:
1236#define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1237                                return BPF_ANC | SKF_AD_##CODE
1238                switch (ftest->k) {
1239                BPF_ANCILLARY(PROTOCOL);
1240                BPF_ANCILLARY(PKTTYPE);
1241                BPF_ANCILLARY(IFINDEX);
1242                BPF_ANCILLARY(NLATTR);
1243                BPF_ANCILLARY(NLATTR_NEST);
1244                BPF_ANCILLARY(MARK);
1245                BPF_ANCILLARY(QUEUE);
1246                BPF_ANCILLARY(HATYPE);
1247                BPF_ANCILLARY(RXHASH);
1248                BPF_ANCILLARY(CPU);
1249                BPF_ANCILLARY(ALU_XOR_X);
1250                BPF_ANCILLARY(VLAN_TAG);
1251                BPF_ANCILLARY(VLAN_TAG_PRESENT);
1252                BPF_ANCILLARY(PAY_OFFSET);
1253                BPF_ANCILLARY(RANDOM);
1254                BPF_ANCILLARY(VLAN_TPID);
1255                }
1256                fallthrough;
1257        default:
1258                return ftest->code;
1259        }
1260}
1261
1262void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1263                                           int k, unsigned int size);
1264
1265static inline int bpf_tell_extensions(void)
1266{
1267        return SKF_AD_MAX;
1268}
1269
1270struct bpf_sock_addr_kern {
1271        struct sock *sk;
1272        struct sockaddr *uaddr;
1273        /* Temporary "register" to make indirect stores to nested structures
1274         * defined above. We need three registers to make such a store, but
1275         * only two (src and dst) are available at convert_ctx_access time
1276         */
1277        u64 tmp_reg;
1278        void *t_ctx;    /* Attach type specific context. */
1279};
1280
1281struct bpf_sock_ops_kern {
1282        struct  sock *sk;
1283        union {
1284                u32 args[4];
1285                u32 reply;
1286                u32 replylong[4];
1287        };
1288        struct sk_buff  *syn_skb;
1289        struct sk_buff  *skb;
1290        void    *skb_data_end;
1291        u8      op;
1292        u8      is_fullsock;
1293        u8      remaining_opt_len;
1294        u64     temp;                   /* temp and everything after is not
1295                                         * initialized to 0 before calling
1296                                         * the BPF program. New fields that
1297                                         * should be initialized to 0 should
1298                                         * be inserted before temp.
1299                                         * temp is scratch storage used by
1300                                         * sock_ops_convert_ctx_access
1301                                         * as temporary storage of a register.
1302                                         */
1303};
1304
1305struct bpf_sysctl_kern {
1306        struct ctl_table_header *head;
1307        struct ctl_table *table;
1308        void *cur_val;
1309        size_t cur_len;
1310        void *new_val;
1311        size_t new_len;
1312        int new_updated;
1313        int write;
1314        loff_t *ppos;
1315        /* Temporary "register" for indirect stores to ppos. */
1316        u64 tmp_reg;
1317};
1318
1319#define BPF_SOCKOPT_KERN_BUF_SIZE       32
1320struct bpf_sockopt_buf {
1321        u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1322};
1323
1324struct bpf_sockopt_kern {
1325        struct sock     *sk;
1326        u8              *optval;
1327        u8              *optval_end;
1328        s32             level;
1329        s32             optname;
1330        s32             optlen;
1331        s32             retval;
1332};
1333
1334int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1335
1336struct bpf_sk_lookup_kern {
1337        u16             family;
1338        u16             protocol;
1339        __be16          sport;
1340        u16             dport;
1341        struct {
1342                __be32 saddr;
1343                __be32 daddr;
1344        } v4;
1345        struct {
1346                const struct in6_addr *saddr;
1347                const struct in6_addr *daddr;
1348        } v6;
1349        struct sock     *selected_sk;
1350        bool            no_reuseport;
1351};
1352
1353extern struct static_key_false bpf_sk_lookup_enabled;
1354
1355/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1356 *
1357 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1358 * SK_DROP. Their meaning is as follows:
1359 *
1360 *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1361 *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1362 *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1363 *
1364 * This macro aggregates return values and selected sockets from
1365 * multiple BPF programs according to following rules in order:
1366 *
1367 *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1368 *     macro result is SK_PASS and last ctx.selected_sk is used.
1369 *  2. If any program returned SK_DROP return value,
1370 *     macro result is SK_DROP.
1371 *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1372 *
1373 * Caller must ensure that the prog array is non-NULL, and that the
1374 * array as well as the programs it contains remain valid.
1375 */
1376#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1377        ({                                                              \
1378                struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1379                struct bpf_prog_array_item *_item;                      \
1380                struct sock *_selected_sk = NULL;                       \
1381                bool _no_reuseport = false;                             \
1382                struct bpf_prog *_prog;                                 \
1383                bool _all_pass = true;                                  \
1384                u32 _ret;                                               \
1385                                                                        \
1386                migrate_disable();                                      \
1387                _item = &(array)->items[0];                             \
1388                while ((_prog = READ_ONCE(_item->prog))) {              \
1389                        /* restore most recent selection */             \
1390                        _ctx->selected_sk = _selected_sk;               \
1391                        _ctx->no_reuseport = _no_reuseport;             \
1392                                                                        \
1393                        _ret = func(_prog, _ctx);                       \
1394                        if (_ret == SK_PASS && _ctx->selected_sk) {     \
1395                                /* remember last non-NULL socket */     \
1396                                _selected_sk = _ctx->selected_sk;       \
1397                                _no_reuseport = _ctx->no_reuseport;     \
1398                        } else if (_ret == SK_DROP && _all_pass) {      \
1399                                _all_pass = false;                      \
1400                        }                                               \
1401                        _item++;                                        \
1402                }                                                       \
1403                _ctx->selected_sk = _selected_sk;                       \
1404                _ctx->no_reuseport = _no_reuseport;                     \
1405                migrate_enable();                                       \
1406                _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1407         })
1408
1409static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1410                                        const __be32 saddr, const __be16 sport,
1411                                        const __be32 daddr, const u16 dport,
1412                                        struct sock **psk)
1413{
1414        struct bpf_prog_array *run_array;
1415        struct sock *selected_sk = NULL;
1416        bool no_reuseport = false;
1417
1418        rcu_read_lock();
1419        run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1420        if (run_array) {
1421                struct bpf_sk_lookup_kern ctx = {
1422                        .family         = AF_INET,
1423                        .protocol       = protocol,
1424                        .v4.saddr       = saddr,
1425                        .v4.daddr       = daddr,
1426                        .sport          = sport,
1427                        .dport          = dport,
1428                };
1429                u32 act;
1430
1431                act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1432                if (act == SK_PASS) {
1433                        selected_sk = ctx.selected_sk;
1434                        no_reuseport = ctx.no_reuseport;
1435                } else {
1436                        selected_sk = ERR_PTR(-ECONNREFUSED);
1437                }
1438        }
1439        rcu_read_unlock();
1440        *psk = selected_sk;
1441        return no_reuseport;
1442}
1443
1444#if IS_ENABLED(CONFIG_IPV6)
1445static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1446                                        const struct in6_addr *saddr,
1447                                        const __be16 sport,
1448                                        const struct in6_addr *daddr,
1449                                        const u16 dport,
1450                                        struct sock **psk)
1451{
1452        struct bpf_prog_array *run_array;
1453        struct sock *selected_sk = NULL;
1454        bool no_reuseport = false;
1455
1456        rcu_read_lock();
1457        run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1458        if (run_array) {
1459                struct bpf_sk_lookup_kern ctx = {
1460                        .family         = AF_INET6,
1461                        .protocol       = protocol,
1462                        .v6.saddr       = saddr,
1463                        .v6.daddr       = daddr,
1464                        .sport          = sport,
1465                        .dport          = dport,
1466                };
1467                u32 act;
1468
1469                act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1470                if (act == SK_PASS) {
1471                        selected_sk = ctx.selected_sk;
1472                        no_reuseport = ctx.no_reuseport;
1473                } else {
1474                        selected_sk = ERR_PTR(-ECONNREFUSED);
1475                }
1476        }
1477        rcu_read_unlock();
1478        *psk = selected_sk;
1479        return no_reuseport;
1480}
1481#endif /* IS_ENABLED(CONFIG_IPV6) */
1482
1483static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1484                                                  u64 flags, const u64 flag_mask,
1485                                                  void *lookup_elem(struct bpf_map *map, u32 key))
1486{
1487        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1488        const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1489
1490        /* Lower bits of the flags are used as return code on lookup failure */
1491        if (unlikely(flags & ~(action_mask | flag_mask)))
1492                return XDP_ABORTED;
1493
1494        ri->tgt_value = lookup_elem(map, ifindex);
1495        if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1496                /* If the lookup fails we want to clear out the state in the
1497                 * redirect_info struct completely, so that if an eBPF program
1498                 * performs multiple lookups, the last one always takes
1499                 * precedence.
1500                 */
1501                ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1502                ri->map_type = BPF_MAP_TYPE_UNSPEC;
1503                return flags & action_mask;
1504        }
1505
1506        ri->tgt_index = ifindex;
1507        ri->map_id = map->id;
1508        ri->map_type = map->map_type;
1509
1510        if (flags & BPF_F_BROADCAST) {
1511                WRITE_ONCE(ri->map, map);
1512                ri->flags = flags;
1513        } else {
1514                WRITE_ONCE(ri->map, NULL);
1515                ri->flags = 0;
1516        }
1517
1518        return XDP_REDIRECT;
1519}
1520
1521#endif /* __LINUX_FILTER_H__ */
1522