linux/include/linux/log2.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* Integer base 2 logarithm calculation
   3 *
   4 * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#ifndef _LINUX_LOG2_H
   9#define _LINUX_LOG2_H
  10
  11#include <linux/types.h>
  12#include <linux/bitops.h>
  13
  14/*
  15 * non-constant log of base 2 calculators
  16 * - the arch may override these in asm/bitops.h if they can be implemented
  17 *   more efficiently than using fls() and fls64()
  18 * - the arch is not required to handle n==0 if implementing the fallback
  19 */
  20#ifndef CONFIG_ARCH_HAS_ILOG2_U32
  21static inline __attribute__((const))
  22int __ilog2_u32(u32 n)
  23{
  24        return fls(n) - 1;
  25}
  26#endif
  27
  28#ifndef CONFIG_ARCH_HAS_ILOG2_U64
  29static inline __attribute__((const))
  30int __ilog2_u64(u64 n)
  31{
  32        return fls64(n) - 1;
  33}
  34#endif
  35
  36/**
  37 * is_power_of_2() - check if a value is a power of two
  38 * @n: the value to check
  39 *
  40 * Determine whether some value is a power of two, where zero is
  41 * *not* considered a power of two.
  42 * Return: true if @n is a power of 2, otherwise false.
  43 */
  44static inline __attribute__((const))
  45bool is_power_of_2(unsigned long n)
  46{
  47        return (n != 0 && ((n & (n - 1)) == 0));
  48}
  49
  50/**
  51 * __roundup_pow_of_two() - round up to nearest power of two
  52 * @n: value to round up
  53 */
  54static inline __attribute__((const))
  55unsigned long __roundup_pow_of_two(unsigned long n)
  56{
  57        return 1UL << fls_long(n - 1);
  58}
  59
  60/**
  61 * __rounddown_pow_of_two() - round down to nearest power of two
  62 * @n: value to round down
  63 */
  64static inline __attribute__((const))
  65unsigned long __rounddown_pow_of_two(unsigned long n)
  66{
  67        return 1UL << (fls_long(n) - 1);
  68}
  69
  70/**
  71 * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value
  72 * @n: parameter
  73 *
  74 * Use this where sparse expects a true constant expression, e.g. for array
  75 * indices.
  76 */
  77#define const_ilog2(n)                          \
  78(                                               \
  79        __builtin_constant_p(n) ? (             \
  80                (n) < 2 ? 0 :                   \
  81                (n) & (1ULL << 63) ? 63 :       \
  82                (n) & (1ULL << 62) ? 62 :       \
  83                (n) & (1ULL << 61) ? 61 :       \
  84                (n) & (1ULL << 60) ? 60 :       \
  85                (n) & (1ULL << 59) ? 59 :       \
  86                (n) & (1ULL << 58) ? 58 :       \
  87                (n) & (1ULL << 57) ? 57 :       \
  88                (n) & (1ULL << 56) ? 56 :       \
  89                (n) & (1ULL << 55) ? 55 :       \
  90                (n) & (1ULL << 54) ? 54 :       \
  91                (n) & (1ULL << 53) ? 53 :       \
  92                (n) & (1ULL << 52) ? 52 :       \
  93                (n) & (1ULL << 51) ? 51 :       \
  94                (n) & (1ULL << 50) ? 50 :       \
  95                (n) & (1ULL << 49) ? 49 :       \
  96                (n) & (1ULL << 48) ? 48 :       \
  97                (n) & (1ULL << 47) ? 47 :       \
  98                (n) & (1ULL << 46) ? 46 :       \
  99                (n) & (1ULL << 45) ? 45 :       \
 100                (n) & (1ULL << 44) ? 44 :       \
 101                (n) & (1ULL << 43) ? 43 :       \
 102                (n) & (1ULL << 42) ? 42 :       \
 103                (n) & (1ULL << 41) ? 41 :       \
 104                (n) & (1ULL << 40) ? 40 :       \
 105                (n) & (1ULL << 39) ? 39 :       \
 106                (n) & (1ULL << 38) ? 38 :       \
 107                (n) & (1ULL << 37) ? 37 :       \
 108                (n) & (1ULL << 36) ? 36 :       \
 109                (n) & (1ULL << 35) ? 35 :       \
 110                (n) & (1ULL << 34) ? 34 :       \
 111                (n) & (1ULL << 33) ? 33 :       \
 112                (n) & (1ULL << 32) ? 32 :       \
 113                (n) & (1ULL << 31) ? 31 :       \
 114                (n) & (1ULL << 30) ? 30 :       \
 115                (n) & (1ULL << 29) ? 29 :       \
 116                (n) & (1ULL << 28) ? 28 :       \
 117                (n) & (1ULL << 27) ? 27 :       \
 118                (n) & (1ULL << 26) ? 26 :       \
 119                (n) & (1ULL << 25) ? 25 :       \
 120                (n) & (1ULL << 24) ? 24 :       \
 121                (n) & (1ULL << 23) ? 23 :       \
 122                (n) & (1ULL << 22) ? 22 :       \
 123                (n) & (1ULL << 21) ? 21 :       \
 124                (n) & (1ULL << 20) ? 20 :       \
 125                (n) & (1ULL << 19) ? 19 :       \
 126                (n) & (1ULL << 18) ? 18 :       \
 127                (n) & (1ULL << 17) ? 17 :       \
 128                (n) & (1ULL << 16) ? 16 :       \
 129                (n) & (1ULL << 15) ? 15 :       \
 130                (n) & (1ULL << 14) ? 14 :       \
 131                (n) & (1ULL << 13) ? 13 :       \
 132                (n) & (1ULL << 12) ? 12 :       \
 133                (n) & (1ULL << 11) ? 11 :       \
 134                (n) & (1ULL << 10) ? 10 :       \
 135                (n) & (1ULL <<  9) ?  9 :       \
 136                (n) & (1ULL <<  8) ?  8 :       \
 137                (n) & (1ULL <<  7) ?  7 :       \
 138                (n) & (1ULL <<  6) ?  6 :       \
 139                (n) & (1ULL <<  5) ?  5 :       \
 140                (n) & (1ULL <<  4) ?  4 :       \
 141                (n) & (1ULL <<  3) ?  3 :       \
 142                (n) & (1ULL <<  2) ?  2 :       \
 143                1) :                            \
 144        -1)
 145
 146/**
 147 * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value
 148 * @n: parameter
 149 *
 150 * constant-capable log of base 2 calculation
 151 * - this can be used to initialise global variables from constant data, hence
 152 * the massive ternary operator construction
 153 *
 154 * selects the appropriately-sized optimised version depending on sizeof(n)
 155 */
 156#define ilog2(n) \
 157( \
 158        __builtin_constant_p(n) ?       \
 159        ((n) < 2 ? 0 :                  \
 160         63 - __builtin_clzll(n)) :     \
 161        (sizeof(n) <= 4) ?              \
 162        __ilog2_u32(n) :                \
 163        __ilog2_u64(n)                  \
 164 )
 165
 166/**
 167 * roundup_pow_of_two - round the given value up to nearest power of two
 168 * @n: parameter
 169 *
 170 * round the given value up to the nearest power of two
 171 * - the result is undefined when n == 0
 172 * - this can be used to initialise global variables from constant data
 173 */
 174#define roundup_pow_of_two(n)                   \
 175(                                               \
 176        __builtin_constant_p(n) ? (             \
 177                ((n) == 1) ? 1 :                \
 178                (1UL << (ilog2((n) - 1) + 1))   \
 179                                   ) :          \
 180        __roundup_pow_of_two(n)                 \
 181 )
 182
 183/**
 184 * rounddown_pow_of_two - round the given value down to nearest power of two
 185 * @n: parameter
 186 *
 187 * round the given value down to the nearest power of two
 188 * - the result is undefined when n == 0
 189 * - this can be used to initialise global variables from constant data
 190 */
 191#define rounddown_pow_of_two(n)                 \
 192(                                               \
 193        __builtin_constant_p(n) ? (             \
 194                (1UL << ilog2(n))) :            \
 195        __rounddown_pow_of_two(n)               \
 196 )
 197
 198static inline __attribute_const__
 199int __order_base_2(unsigned long n)
 200{
 201        return n > 1 ? ilog2(n - 1) + 1 : 0;
 202}
 203
 204/**
 205 * order_base_2 - calculate the (rounded up) base 2 order of the argument
 206 * @n: parameter
 207 *
 208 * The first few values calculated by this routine:
 209 *  ob2(0) = 0
 210 *  ob2(1) = 0
 211 *  ob2(2) = 1
 212 *  ob2(3) = 2
 213 *  ob2(4) = 2
 214 *  ob2(5) = 3
 215 *  ... and so on.
 216 */
 217#define order_base_2(n)                         \
 218(                                               \
 219        __builtin_constant_p(n) ? (             \
 220                ((n) == 0 || (n) == 1) ? 0 :    \
 221                ilog2((n) - 1) + 1) :           \
 222        __order_base_2(n)                       \
 223)
 224
 225static inline __attribute__((const))
 226int __bits_per(unsigned long n)
 227{
 228        if (n < 2)
 229                return 1;
 230        if (is_power_of_2(n))
 231                return order_base_2(n) + 1;
 232        return order_base_2(n);
 233}
 234
 235/**
 236 * bits_per - calculate the number of bits required for the argument
 237 * @n: parameter
 238 *
 239 * This is constant-capable and can be used for compile time
 240 * initializations, e.g bitfields.
 241 *
 242 * The first few values calculated by this routine:
 243 * bf(0) = 1
 244 * bf(1) = 1
 245 * bf(2) = 2
 246 * bf(3) = 2
 247 * bf(4) = 3
 248 * ... and so on.
 249 */
 250#define bits_per(n)                             \
 251(                                               \
 252        __builtin_constant_p(n) ? (             \
 253                ((n) == 0 || (n) == 1)          \
 254                        ? 1 : ilog2(n) + 1      \
 255        ) :                                     \
 256        __bits_per(n)                           \
 257)
 258#endif /* _LINUX_LOG2_H */
 259