linux/include/linux/memcontrol.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* memcontrol.h - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 */
  10
  11#ifndef _LINUX_MEMCONTROL_H
  12#define _LINUX_MEMCONTROL_H
  13#include <linux/cgroup.h>
  14#include <linux/vm_event_item.h>
  15#include <linux/hardirq.h>
  16#include <linux/jump_label.h>
  17#include <linux/page_counter.h>
  18#include <linux/vmpressure.h>
  19#include <linux/eventfd.h>
  20#include <linux/mm.h>
  21#include <linux/vmstat.h>
  22#include <linux/writeback.h>
  23#include <linux/page-flags.h>
  24
  25struct mem_cgroup;
  26struct obj_cgroup;
  27struct page;
  28struct mm_struct;
  29struct kmem_cache;
  30
  31/* Cgroup-specific page state, on top of universal node page state */
  32enum memcg_stat_item {
  33        MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
  34        MEMCG_SOCK,
  35        MEMCG_PERCPU_B,
  36        MEMCG_NR_STAT,
  37};
  38
  39enum memcg_memory_event {
  40        MEMCG_LOW,
  41        MEMCG_HIGH,
  42        MEMCG_MAX,
  43        MEMCG_OOM,
  44        MEMCG_OOM_KILL,
  45        MEMCG_SWAP_HIGH,
  46        MEMCG_SWAP_MAX,
  47        MEMCG_SWAP_FAIL,
  48        MEMCG_NR_MEMORY_EVENTS,
  49};
  50
  51struct mem_cgroup_reclaim_cookie {
  52        pg_data_t *pgdat;
  53        unsigned int generation;
  54};
  55
  56#ifdef CONFIG_MEMCG
  57
  58#define MEM_CGROUP_ID_SHIFT     16
  59#define MEM_CGROUP_ID_MAX       USHRT_MAX
  60
  61struct mem_cgroup_id {
  62        int id;
  63        refcount_t ref;
  64};
  65
  66/*
  67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
  68 * it will be incremented by the number of pages. This counter is used
  69 * to trigger some periodic events. This is straightforward and better
  70 * than using jiffies etc. to handle periodic memcg event.
  71 */
  72enum mem_cgroup_events_target {
  73        MEM_CGROUP_TARGET_THRESH,
  74        MEM_CGROUP_TARGET_SOFTLIMIT,
  75        MEM_CGROUP_NTARGETS,
  76};
  77
  78struct memcg_vmstats_percpu {
  79        /* Local (CPU and cgroup) page state & events */
  80        long                    state[MEMCG_NR_STAT];
  81        unsigned long           events[NR_VM_EVENT_ITEMS];
  82
  83        /* Delta calculation for lockless upward propagation */
  84        long                    state_prev[MEMCG_NR_STAT];
  85        unsigned long           events_prev[NR_VM_EVENT_ITEMS];
  86
  87        /* Cgroup1: threshold notifications & softlimit tree updates */
  88        unsigned long           nr_page_events;
  89        unsigned long           targets[MEM_CGROUP_NTARGETS];
  90};
  91
  92struct memcg_vmstats {
  93        /* Aggregated (CPU and subtree) page state & events */
  94        long                    state[MEMCG_NR_STAT];
  95        unsigned long           events[NR_VM_EVENT_ITEMS];
  96
  97        /* Pending child counts during tree propagation */
  98        long                    state_pending[MEMCG_NR_STAT];
  99        unsigned long           events_pending[NR_VM_EVENT_ITEMS];
 100};
 101
 102struct mem_cgroup_reclaim_iter {
 103        struct mem_cgroup *position;
 104        /* scan generation, increased every round-trip */
 105        unsigned int generation;
 106};
 107
 108struct lruvec_stat {
 109        long count[NR_VM_NODE_STAT_ITEMS];
 110};
 111
 112struct batched_lruvec_stat {
 113        s32 count[NR_VM_NODE_STAT_ITEMS];
 114};
 115
 116/*
 117 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
 118 * shrinkers, which have elements charged to this memcg.
 119 */
 120struct shrinker_info {
 121        struct rcu_head rcu;
 122        atomic_long_t *nr_deferred;
 123        unsigned long *map;
 124};
 125
 126/*
 127 * per-node information in memory controller.
 128 */
 129struct mem_cgroup_per_node {
 130        struct lruvec           lruvec;
 131
 132        /*
 133         * Legacy local VM stats. This should be struct lruvec_stat and
 134         * cannot be optimized to struct batched_lruvec_stat. Because
 135         * the threshold of the lruvec_stat_cpu can be as big as
 136         * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
 137         * filed has no upper limit.
 138         */
 139        struct lruvec_stat __percpu *lruvec_stat_local;
 140
 141        /* Subtree VM stats (batched updates) */
 142        struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
 143        atomic_long_t           lruvec_stat[NR_VM_NODE_STAT_ITEMS];
 144
 145        unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
 146
 147        struct mem_cgroup_reclaim_iter  iter;
 148
 149        struct shrinker_info __rcu      *shrinker_info;
 150
 151        struct rb_node          tree_node;      /* RB tree node */
 152        unsigned long           usage_in_excess;/* Set to the value by which */
 153                                                /* the soft limit is exceeded*/
 154        bool                    on_tree;
 155        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 156                                                /* use container_of        */
 157};
 158
 159struct mem_cgroup_threshold {
 160        struct eventfd_ctx *eventfd;
 161        unsigned long threshold;
 162};
 163
 164/* For threshold */
 165struct mem_cgroup_threshold_ary {
 166        /* An array index points to threshold just below or equal to usage. */
 167        int current_threshold;
 168        /* Size of entries[] */
 169        unsigned int size;
 170        /* Array of thresholds */
 171        struct mem_cgroup_threshold entries[];
 172};
 173
 174struct mem_cgroup_thresholds {
 175        /* Primary thresholds array */
 176        struct mem_cgroup_threshold_ary *primary;
 177        /*
 178         * Spare threshold array.
 179         * This is needed to make mem_cgroup_unregister_event() "never fail".
 180         * It must be able to store at least primary->size - 1 entries.
 181         */
 182        struct mem_cgroup_threshold_ary *spare;
 183};
 184
 185enum memcg_kmem_state {
 186        KMEM_NONE,
 187        KMEM_ALLOCATED,
 188        KMEM_ONLINE,
 189};
 190
 191#if defined(CONFIG_SMP)
 192struct memcg_padding {
 193        char x[0];
 194} ____cacheline_internodealigned_in_smp;
 195#define MEMCG_PADDING(name)      struct memcg_padding name
 196#else
 197#define MEMCG_PADDING(name)
 198#endif
 199
 200/*
 201 * Remember four most recent foreign writebacks with dirty pages in this
 202 * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
 203 * one in a given round, we're likely to catch it later if it keeps
 204 * foreign-dirtying, so a fairly low count should be enough.
 205 *
 206 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
 207 */
 208#define MEMCG_CGWB_FRN_CNT      4
 209
 210struct memcg_cgwb_frn {
 211        u64 bdi_id;                     /* bdi->id of the foreign inode */
 212        int memcg_id;                   /* memcg->css.id of foreign inode */
 213        u64 at;                         /* jiffies_64 at the time of dirtying */
 214        struct wb_completion done;      /* tracks in-flight foreign writebacks */
 215};
 216
 217/*
 218 * Bucket for arbitrarily byte-sized objects charged to a memory
 219 * cgroup. The bucket can be reparented in one piece when the cgroup
 220 * is destroyed, without having to round up the individual references
 221 * of all live memory objects in the wild.
 222 */
 223struct obj_cgroup {
 224        struct percpu_ref refcnt;
 225        struct mem_cgroup *memcg;
 226        atomic_t nr_charged_bytes;
 227        union {
 228                struct list_head list;
 229                struct rcu_head rcu;
 230        };
 231};
 232
 233/*
 234 * The memory controller data structure. The memory controller controls both
 235 * page cache and RSS per cgroup. We would eventually like to provide
 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 237 * to help the administrator determine what knobs to tune.
 238 */
 239struct mem_cgroup {
 240        struct cgroup_subsys_state css;
 241
 242        /* Private memcg ID. Used to ID objects that outlive the cgroup */
 243        struct mem_cgroup_id id;
 244
 245        /* Accounted resources */
 246        struct page_counter memory;             /* Both v1 & v2 */
 247
 248        union {
 249                struct page_counter swap;       /* v2 only */
 250                struct page_counter memsw;      /* v1 only */
 251        };
 252
 253        /* Legacy consumer-oriented counters */
 254        struct page_counter kmem;               /* v1 only */
 255        struct page_counter tcpmem;             /* v1 only */
 256
 257        /* Range enforcement for interrupt charges */
 258        struct work_struct high_work;
 259
 260        unsigned long soft_limit;
 261
 262        /* vmpressure notifications */
 263        struct vmpressure vmpressure;
 264
 265        /*
 266         * Should the OOM killer kill all belonging tasks, had it kill one?
 267         */
 268        bool oom_group;
 269
 270        /* protected by memcg_oom_lock */
 271        bool            oom_lock;
 272        int             under_oom;
 273
 274        int     swappiness;
 275        /* OOM-Killer disable */
 276        int             oom_kill_disable;
 277
 278        /* memory.events and memory.events.local */
 279        struct cgroup_file events_file;
 280        struct cgroup_file events_local_file;
 281
 282        /* handle for "memory.swap.events" */
 283        struct cgroup_file swap_events_file;
 284
 285        /* protect arrays of thresholds */
 286        struct mutex thresholds_lock;
 287
 288        /* thresholds for memory usage. RCU-protected */
 289        struct mem_cgroup_thresholds thresholds;
 290
 291        /* thresholds for mem+swap usage. RCU-protected */
 292        struct mem_cgroup_thresholds memsw_thresholds;
 293
 294        /* For oom notifier event fd */
 295        struct list_head oom_notify;
 296
 297        /*
 298         * Should we move charges of a task when a task is moved into this
 299         * mem_cgroup ? And what type of charges should we move ?
 300         */
 301        unsigned long move_charge_at_immigrate;
 302        /* taken only while moving_account > 0 */
 303        spinlock_t              move_lock;
 304        unsigned long           move_lock_flags;
 305
 306        MEMCG_PADDING(_pad1_);
 307
 308        /* memory.stat */
 309        struct memcg_vmstats    vmstats;
 310
 311        /* memory.events */
 312        atomic_long_t           memory_events[MEMCG_NR_MEMORY_EVENTS];
 313        atomic_long_t           memory_events_local[MEMCG_NR_MEMORY_EVENTS];
 314
 315        unsigned long           socket_pressure;
 316
 317        /* Legacy tcp memory accounting */
 318        bool                    tcpmem_active;
 319        int                     tcpmem_pressure;
 320
 321#ifdef CONFIG_MEMCG_KMEM
 322        int kmemcg_id;
 323        enum memcg_kmem_state kmem_state;
 324        struct obj_cgroup __rcu *objcg;
 325        struct list_head objcg_list; /* list of inherited objcgs */
 326#endif
 327
 328        MEMCG_PADDING(_pad2_);
 329
 330        /*
 331         * set > 0 if pages under this cgroup are moving to other cgroup.
 332         */
 333        atomic_t                moving_account;
 334        struct task_struct      *move_lock_task;
 335
 336        struct memcg_vmstats_percpu __percpu *vmstats_percpu;
 337
 338#ifdef CONFIG_CGROUP_WRITEBACK
 339        struct list_head cgwb_list;
 340        struct wb_domain cgwb_domain;
 341        struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
 342#endif
 343
 344        /* List of events which userspace want to receive */
 345        struct list_head event_list;
 346        spinlock_t event_list_lock;
 347
 348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 349        struct deferred_split deferred_split_queue;
 350#endif
 351
 352        struct mem_cgroup_per_node *nodeinfo[];
 353};
 354
 355/*
 356 * size of first charge trial. "32" comes from vmscan.c's magic value.
 357 * TODO: maybe necessary to use big numbers in big irons.
 358 */
 359#define MEMCG_CHARGE_BATCH 32U
 360
 361extern struct mem_cgroup *root_mem_cgroup;
 362
 363enum page_memcg_data_flags {
 364        /* page->memcg_data is a pointer to an objcgs vector */
 365        MEMCG_DATA_OBJCGS = (1UL << 0),
 366        /* page has been accounted as a non-slab kernel page */
 367        MEMCG_DATA_KMEM = (1UL << 1),
 368        /* the next bit after the last actual flag */
 369        __NR_MEMCG_DATA_FLAGS  = (1UL << 2),
 370};
 371
 372#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
 373
 374static inline bool PageMemcgKmem(struct page *page);
 375
 376/*
 377 * After the initialization objcg->memcg is always pointing at
 378 * a valid memcg, but can be atomically swapped to the parent memcg.
 379 *
 380 * The caller must ensure that the returned memcg won't be released:
 381 * e.g. acquire the rcu_read_lock or css_set_lock.
 382 */
 383static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
 384{
 385        return READ_ONCE(objcg->memcg);
 386}
 387
 388/*
 389 * __page_memcg - get the memory cgroup associated with a non-kmem page
 390 * @page: a pointer to the page struct
 391 *
 392 * Returns a pointer to the memory cgroup associated with the page,
 393 * or NULL. This function assumes that the page is known to have a
 394 * proper memory cgroup pointer. It's not safe to call this function
 395 * against some type of pages, e.g. slab pages or ex-slab pages or
 396 * kmem pages.
 397 */
 398static inline struct mem_cgroup *__page_memcg(struct page *page)
 399{
 400        unsigned long memcg_data = page->memcg_data;
 401
 402        VM_BUG_ON_PAGE(PageSlab(page), page);
 403        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
 404        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 405
 406        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 407}
 408
 409/*
 410 * __page_objcg - get the object cgroup associated with a kmem page
 411 * @page: a pointer to the page struct
 412 *
 413 * Returns a pointer to the object cgroup associated with the page,
 414 * or NULL. This function assumes that the page is known to have a
 415 * proper object cgroup pointer. It's not safe to call this function
 416 * against some type of pages, e.g. slab pages or ex-slab pages or
 417 * LRU pages.
 418 */
 419static inline struct obj_cgroup *__page_objcg(struct page *page)
 420{
 421        unsigned long memcg_data = page->memcg_data;
 422
 423        VM_BUG_ON_PAGE(PageSlab(page), page);
 424        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
 425        VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
 426
 427        return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 428}
 429
 430/*
 431 * page_memcg - get the memory cgroup associated with a page
 432 * @page: a pointer to the page struct
 433 *
 434 * Returns a pointer to the memory cgroup associated with the page,
 435 * or NULL. This function assumes that the page is known to have a
 436 * proper memory cgroup pointer. It's not safe to call this function
 437 * against some type of pages, e.g. slab pages or ex-slab pages.
 438 *
 439 * For a non-kmem page any of the following ensures page and memcg binding
 440 * stability:
 441 *
 442 * - the page lock
 443 * - LRU isolation
 444 * - lock_page_memcg()
 445 * - exclusive reference
 446 *
 447 * For a kmem page a caller should hold an rcu read lock to protect memcg
 448 * associated with a kmem page from being released.
 449 */
 450static inline struct mem_cgroup *page_memcg(struct page *page)
 451{
 452        if (PageMemcgKmem(page))
 453                return obj_cgroup_memcg(__page_objcg(page));
 454        else
 455                return __page_memcg(page);
 456}
 457
 458/*
 459 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
 460 * @page: a pointer to the page struct
 461 *
 462 * Returns a pointer to the memory cgroup associated with the page,
 463 * or NULL. This function assumes that the page is known to have a
 464 * proper memory cgroup pointer. It's not safe to call this function
 465 * against some type of pages, e.g. slab pages or ex-slab pages.
 466 */
 467static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
 468{
 469        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 470
 471        VM_BUG_ON_PAGE(PageSlab(page), page);
 472        WARN_ON_ONCE(!rcu_read_lock_held());
 473
 474        if (memcg_data & MEMCG_DATA_KMEM) {
 475                struct obj_cgroup *objcg;
 476
 477                objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 478                return obj_cgroup_memcg(objcg);
 479        }
 480
 481        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 482}
 483
 484/*
 485 * page_memcg_check - get the memory cgroup associated with a page
 486 * @page: a pointer to the page struct
 487 *
 488 * Returns a pointer to the memory cgroup associated with the page,
 489 * or NULL. This function unlike page_memcg() can take any page
 490 * as an argument. It has to be used in cases when it's not known if a page
 491 * has an associated memory cgroup pointer or an object cgroups vector or
 492 * an object cgroup.
 493 *
 494 * For a non-kmem page any of the following ensures page and memcg binding
 495 * stability:
 496 *
 497 * - the page lock
 498 * - LRU isolation
 499 * - lock_page_memcg()
 500 * - exclusive reference
 501 *
 502 * For a kmem page a caller should hold an rcu read lock to protect memcg
 503 * associated with a kmem page from being released.
 504 */
 505static inline struct mem_cgroup *page_memcg_check(struct page *page)
 506{
 507        /*
 508         * Because page->memcg_data might be changed asynchronously
 509         * for slab pages, READ_ONCE() should be used here.
 510         */
 511        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 512
 513        if (memcg_data & MEMCG_DATA_OBJCGS)
 514                return NULL;
 515
 516        if (memcg_data & MEMCG_DATA_KMEM) {
 517                struct obj_cgroup *objcg;
 518
 519                objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 520                return obj_cgroup_memcg(objcg);
 521        }
 522
 523        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 524}
 525
 526#ifdef CONFIG_MEMCG_KMEM
 527/*
 528 * PageMemcgKmem - check if the page has MemcgKmem flag set
 529 * @page: a pointer to the page struct
 530 *
 531 * Checks if the page has MemcgKmem flag set. The caller must ensure that
 532 * the page has an associated memory cgroup. It's not safe to call this function
 533 * against some types of pages, e.g. slab pages.
 534 */
 535static inline bool PageMemcgKmem(struct page *page)
 536{
 537        VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
 538        return page->memcg_data & MEMCG_DATA_KMEM;
 539}
 540
 541/*
 542 * page_objcgs - get the object cgroups vector associated with a page
 543 * @page: a pointer to the page struct
 544 *
 545 * Returns a pointer to the object cgroups vector associated with the page,
 546 * or NULL. This function assumes that the page is known to have an
 547 * associated object cgroups vector. It's not safe to call this function
 548 * against pages, which might have an associated memory cgroup: e.g.
 549 * kernel stack pages.
 550 */
 551static inline struct obj_cgroup **page_objcgs(struct page *page)
 552{
 553        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 554
 555        VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
 556        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 557
 558        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 559}
 560
 561/*
 562 * page_objcgs_check - get the object cgroups vector associated with a page
 563 * @page: a pointer to the page struct
 564 *
 565 * Returns a pointer to the object cgroups vector associated with the page,
 566 * or NULL. This function is safe to use if the page can be directly associated
 567 * with a memory cgroup.
 568 */
 569static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 570{
 571        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 572
 573        if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
 574                return NULL;
 575
 576        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 577
 578        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 579}
 580
 581#else
 582static inline bool PageMemcgKmem(struct page *page)
 583{
 584        return false;
 585}
 586
 587static inline struct obj_cgroup **page_objcgs(struct page *page)
 588{
 589        return NULL;
 590}
 591
 592static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 593{
 594        return NULL;
 595}
 596#endif
 597
 598static __always_inline bool memcg_stat_item_in_bytes(int idx)
 599{
 600        if (idx == MEMCG_PERCPU_B)
 601                return true;
 602        return vmstat_item_in_bytes(idx);
 603}
 604
 605static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 606{
 607        return (memcg == root_mem_cgroup);
 608}
 609
 610static inline bool mem_cgroup_disabled(void)
 611{
 612        return !cgroup_subsys_enabled(memory_cgrp_subsys);
 613}
 614
 615static inline void mem_cgroup_protection(struct mem_cgroup *root,
 616                                         struct mem_cgroup *memcg,
 617                                         unsigned long *min,
 618                                         unsigned long *low)
 619{
 620        *min = *low = 0;
 621
 622        if (mem_cgroup_disabled())
 623                return;
 624
 625        /*
 626         * There is no reclaim protection applied to a targeted reclaim.
 627         * We are special casing this specific case here because
 628         * mem_cgroup_protected calculation is not robust enough to keep
 629         * the protection invariant for calculated effective values for
 630         * parallel reclaimers with different reclaim target. This is
 631         * especially a problem for tail memcgs (as they have pages on LRU)
 632         * which would want to have effective values 0 for targeted reclaim
 633         * but a different value for external reclaim.
 634         *
 635         * Example
 636         * Let's have global and A's reclaim in parallel:
 637         *  |
 638         *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
 639         *  |\
 640         *  | C (low = 1G, usage = 2.5G)
 641         *  B (low = 1G, usage = 0.5G)
 642         *
 643         * For the global reclaim
 644         * A.elow = A.low
 645         * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 646         * C.elow = min(C.usage, C.low)
 647         *
 648         * With the effective values resetting we have A reclaim
 649         * A.elow = 0
 650         * B.elow = B.low
 651         * C.elow = C.low
 652         *
 653         * If the global reclaim races with A's reclaim then
 654         * B.elow = C.elow = 0 because children_low_usage > A.elow)
 655         * is possible and reclaiming B would be violating the protection.
 656         *
 657         */
 658        if (root == memcg)
 659                return;
 660
 661        *min = READ_ONCE(memcg->memory.emin);
 662        *low = READ_ONCE(memcg->memory.elow);
 663}
 664
 665void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 666                                     struct mem_cgroup *memcg);
 667
 668static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
 669{
 670        /*
 671         * The root memcg doesn't account charges, and doesn't support
 672         * protection.
 673         */
 674        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
 675
 676}
 677
 678static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
 679{
 680        if (!mem_cgroup_supports_protection(memcg))
 681                return false;
 682
 683        return READ_ONCE(memcg->memory.elow) >=
 684                page_counter_read(&memcg->memory);
 685}
 686
 687static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
 688{
 689        if (!mem_cgroup_supports_protection(memcg))
 690                return false;
 691
 692        return READ_ONCE(memcg->memory.emin) >=
 693                page_counter_read(&memcg->memory);
 694}
 695
 696int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
 697int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
 698                                  gfp_t gfp, swp_entry_t entry);
 699void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
 700
 701void mem_cgroup_uncharge(struct page *page);
 702void mem_cgroup_uncharge_list(struct list_head *page_list);
 703
 704void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
 705
 706/**
 707 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
 708 * @memcg: memcg of the wanted lruvec
 709 * @pgdat: pglist_data
 710 *
 711 * Returns the lru list vector holding pages for a given @memcg &
 712 * @pgdat combination. This can be the node lruvec, if the memory
 713 * controller is disabled.
 714 */
 715static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
 716                                               struct pglist_data *pgdat)
 717{
 718        struct mem_cgroup_per_node *mz;
 719        struct lruvec *lruvec;
 720
 721        if (mem_cgroup_disabled()) {
 722                lruvec = &pgdat->__lruvec;
 723                goto out;
 724        }
 725
 726        if (!memcg)
 727                memcg = root_mem_cgroup;
 728
 729        mz = memcg->nodeinfo[pgdat->node_id];
 730        lruvec = &mz->lruvec;
 731out:
 732        /*
 733         * Since a node can be onlined after the mem_cgroup was created,
 734         * we have to be prepared to initialize lruvec->pgdat here;
 735         * and if offlined then reonlined, we need to reinitialize it.
 736         */
 737        if (unlikely(lruvec->pgdat != pgdat))
 738                lruvec->pgdat = pgdat;
 739        return lruvec;
 740}
 741
 742/**
 743 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 744 * @page: the page
 745 *
 746 * This function relies on page->mem_cgroup being stable.
 747 */
 748static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
 749{
 750        pg_data_t *pgdat = page_pgdat(page);
 751        struct mem_cgroup *memcg = page_memcg(page);
 752
 753        VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
 754        return mem_cgroup_lruvec(memcg, pgdat);
 755}
 756
 757struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
 758
 759struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
 760
 761struct lruvec *lock_page_lruvec(struct page *page);
 762struct lruvec *lock_page_lruvec_irq(struct page *page);
 763struct lruvec *lock_page_lruvec_irqsave(struct page *page,
 764                                                unsigned long *flags);
 765
 766#ifdef CONFIG_DEBUG_VM
 767void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
 768#else
 769static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
 770{
 771}
 772#endif
 773
 774static inline
 775struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
 776        return css ? container_of(css, struct mem_cgroup, css) : NULL;
 777}
 778
 779static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
 780{
 781        return percpu_ref_tryget(&objcg->refcnt);
 782}
 783
 784static inline void obj_cgroup_get(struct obj_cgroup *objcg)
 785{
 786        percpu_ref_get(&objcg->refcnt);
 787}
 788
 789static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
 790                                       unsigned long nr)
 791{
 792        percpu_ref_get_many(&objcg->refcnt, nr);
 793}
 794
 795static inline void obj_cgroup_put(struct obj_cgroup *objcg)
 796{
 797        percpu_ref_put(&objcg->refcnt);
 798}
 799
 800static inline void mem_cgroup_put(struct mem_cgroup *memcg)
 801{
 802        if (memcg)
 803                css_put(&memcg->css);
 804}
 805
 806#define mem_cgroup_from_counter(counter, member)        \
 807        container_of(counter, struct mem_cgroup, member)
 808
 809struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
 810                                   struct mem_cgroup *,
 811                                   struct mem_cgroup_reclaim_cookie *);
 812void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
 813int mem_cgroup_scan_tasks(struct mem_cgroup *,
 814                          int (*)(struct task_struct *, void *), void *);
 815
 816static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 817{
 818        if (mem_cgroup_disabled())
 819                return 0;
 820
 821        return memcg->id.id;
 822}
 823struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
 824
 825static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
 826{
 827        return mem_cgroup_from_css(seq_css(m));
 828}
 829
 830static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 831{
 832        struct mem_cgroup_per_node *mz;
 833
 834        if (mem_cgroup_disabled())
 835                return NULL;
 836
 837        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 838        return mz->memcg;
 839}
 840
 841/**
 842 * parent_mem_cgroup - find the accounting parent of a memcg
 843 * @memcg: memcg whose parent to find
 844 *
 845 * Returns the parent memcg, or NULL if this is the root or the memory
 846 * controller is in legacy no-hierarchy mode.
 847 */
 848static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 849{
 850        if (!memcg->memory.parent)
 851                return NULL;
 852        return mem_cgroup_from_counter(memcg->memory.parent, memory);
 853}
 854
 855static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
 856                              struct mem_cgroup *root)
 857{
 858        if (root == memcg)
 859                return true;
 860        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 861}
 862
 863static inline bool mm_match_cgroup(struct mm_struct *mm,
 864                                   struct mem_cgroup *memcg)
 865{
 866        struct mem_cgroup *task_memcg;
 867        bool match = false;
 868
 869        rcu_read_lock();
 870        task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 871        if (task_memcg)
 872                match = mem_cgroup_is_descendant(task_memcg, memcg);
 873        rcu_read_unlock();
 874        return match;
 875}
 876
 877struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
 878ino_t page_cgroup_ino(struct page *page);
 879
 880static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 881{
 882        if (mem_cgroup_disabled())
 883                return true;
 884        return !!(memcg->css.flags & CSS_ONLINE);
 885}
 886
 887/*
 888 * For memory reclaim.
 889 */
 890int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
 891
 892void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 893                int zid, int nr_pages);
 894
 895static inline
 896unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 897                enum lru_list lru, int zone_idx)
 898{
 899        struct mem_cgroup_per_node *mz;
 900
 901        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 902        return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
 903}
 904
 905void mem_cgroup_handle_over_high(void);
 906
 907unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
 908
 909unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
 910
 911void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
 912                                struct task_struct *p);
 913
 914void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
 915
 916static inline void mem_cgroup_enter_user_fault(void)
 917{
 918        WARN_ON(current->in_user_fault);
 919        current->in_user_fault = 1;
 920}
 921
 922static inline void mem_cgroup_exit_user_fault(void)
 923{
 924        WARN_ON(!current->in_user_fault);
 925        current->in_user_fault = 0;
 926}
 927
 928static inline bool task_in_memcg_oom(struct task_struct *p)
 929{
 930        return p->memcg_in_oom;
 931}
 932
 933bool mem_cgroup_oom_synchronize(bool wait);
 934struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 935                                            struct mem_cgroup *oom_domain);
 936void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
 937
 938#ifdef CONFIG_MEMCG_SWAP
 939extern bool cgroup_memory_noswap;
 940#endif
 941
 942void lock_page_memcg(struct page *page);
 943void unlock_page_memcg(struct page *page);
 944
 945void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
 946
 947/* idx can be of type enum memcg_stat_item or node_stat_item */
 948static inline void mod_memcg_state(struct mem_cgroup *memcg,
 949                                   int idx, int val)
 950{
 951        unsigned long flags;
 952
 953        local_irq_save(flags);
 954        __mod_memcg_state(memcg, idx, val);
 955        local_irq_restore(flags);
 956}
 957
 958static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
 959                                              enum node_stat_item idx)
 960{
 961        struct mem_cgroup_per_node *pn;
 962        long x;
 963
 964        if (mem_cgroup_disabled())
 965                return node_page_state(lruvec_pgdat(lruvec), idx);
 966
 967        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 968        x = atomic_long_read(&pn->lruvec_stat[idx]);
 969#ifdef CONFIG_SMP
 970        if (x < 0)
 971                x = 0;
 972#endif
 973        return x;
 974}
 975
 976static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 977                                                    enum node_stat_item idx)
 978{
 979        struct mem_cgroup_per_node *pn;
 980        long x = 0;
 981        int cpu;
 982
 983        if (mem_cgroup_disabled())
 984                return node_page_state(lruvec_pgdat(lruvec), idx);
 985
 986        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 987        for_each_possible_cpu(cpu)
 988                x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
 989#ifdef CONFIG_SMP
 990        if (x < 0)
 991                x = 0;
 992#endif
 993        return x;
 994}
 995
 996void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 997                              int val);
 998void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
 999
1000static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1001                                         int val)
1002{
1003        unsigned long flags;
1004
1005        local_irq_save(flags);
1006        __mod_lruvec_kmem_state(p, idx, val);
1007        local_irq_restore(flags);
1008}
1009
1010static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1011                                          enum node_stat_item idx, int val)
1012{
1013        unsigned long flags;
1014
1015        local_irq_save(flags);
1016        __mod_memcg_lruvec_state(lruvec, idx, val);
1017        local_irq_restore(flags);
1018}
1019
1020void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1021                          unsigned long count);
1022
1023static inline void count_memcg_events(struct mem_cgroup *memcg,
1024                                      enum vm_event_item idx,
1025                                      unsigned long count)
1026{
1027        unsigned long flags;
1028
1029        local_irq_save(flags);
1030        __count_memcg_events(memcg, idx, count);
1031        local_irq_restore(flags);
1032}
1033
1034static inline void count_memcg_page_event(struct page *page,
1035                                          enum vm_event_item idx)
1036{
1037        struct mem_cgroup *memcg = page_memcg(page);
1038
1039        if (memcg)
1040                count_memcg_events(memcg, idx, 1);
1041}
1042
1043static inline void count_memcg_event_mm(struct mm_struct *mm,
1044                                        enum vm_event_item idx)
1045{
1046        struct mem_cgroup *memcg;
1047
1048        if (mem_cgroup_disabled())
1049                return;
1050
1051        rcu_read_lock();
1052        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1053        if (likely(memcg))
1054                count_memcg_events(memcg, idx, 1);
1055        rcu_read_unlock();
1056}
1057
1058static inline void memcg_memory_event(struct mem_cgroup *memcg,
1059                                      enum memcg_memory_event event)
1060{
1061        bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1062                          event == MEMCG_SWAP_FAIL;
1063
1064        atomic_long_inc(&memcg->memory_events_local[event]);
1065        if (!swap_event)
1066                cgroup_file_notify(&memcg->events_local_file);
1067
1068        do {
1069                atomic_long_inc(&memcg->memory_events[event]);
1070                if (swap_event)
1071                        cgroup_file_notify(&memcg->swap_events_file);
1072                else
1073                        cgroup_file_notify(&memcg->events_file);
1074
1075                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1076                        break;
1077                if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1078                        break;
1079        } while ((memcg = parent_mem_cgroup(memcg)) &&
1080                 !mem_cgroup_is_root(memcg));
1081}
1082
1083static inline void memcg_memory_event_mm(struct mm_struct *mm,
1084                                         enum memcg_memory_event event)
1085{
1086        struct mem_cgroup *memcg;
1087
1088        if (mem_cgroup_disabled())
1089                return;
1090
1091        rcu_read_lock();
1092        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1093        if (likely(memcg))
1094                memcg_memory_event(memcg, event);
1095        rcu_read_unlock();
1096}
1097
1098void split_page_memcg(struct page *head, unsigned int nr);
1099
1100unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1101                                                gfp_t gfp_mask,
1102                                                unsigned long *total_scanned);
1103
1104#else /* CONFIG_MEMCG */
1105
1106#define MEM_CGROUP_ID_SHIFT     0
1107#define MEM_CGROUP_ID_MAX       0
1108
1109static inline struct mem_cgroup *page_memcg(struct page *page)
1110{
1111        return NULL;
1112}
1113
1114static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1115{
1116        WARN_ON_ONCE(!rcu_read_lock_held());
1117        return NULL;
1118}
1119
1120static inline struct mem_cgroup *page_memcg_check(struct page *page)
1121{
1122        return NULL;
1123}
1124
1125static inline bool PageMemcgKmem(struct page *page)
1126{
1127        return false;
1128}
1129
1130static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1131{
1132        return true;
1133}
1134
1135static inline bool mem_cgroup_disabled(void)
1136{
1137        return true;
1138}
1139
1140static inline void memcg_memory_event(struct mem_cgroup *memcg,
1141                                      enum memcg_memory_event event)
1142{
1143}
1144
1145static inline void memcg_memory_event_mm(struct mm_struct *mm,
1146                                         enum memcg_memory_event event)
1147{
1148}
1149
1150static inline void mem_cgroup_protection(struct mem_cgroup *root,
1151                                         struct mem_cgroup *memcg,
1152                                         unsigned long *min,
1153                                         unsigned long *low)
1154{
1155        *min = *low = 0;
1156}
1157
1158static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1159                                                   struct mem_cgroup *memcg)
1160{
1161}
1162
1163static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1164{
1165        return false;
1166}
1167
1168static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1169{
1170        return false;
1171}
1172
1173static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1174                                    gfp_t gfp_mask)
1175{
1176        return 0;
1177}
1178
1179static inline int mem_cgroup_swapin_charge_page(struct page *page,
1180                        struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1181{
1182        return 0;
1183}
1184
1185static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1186{
1187}
1188
1189static inline void mem_cgroup_uncharge(struct page *page)
1190{
1191}
1192
1193static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1194{
1195}
1196
1197static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1198{
1199}
1200
1201static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1202                                               struct pglist_data *pgdat)
1203{
1204        return &pgdat->__lruvec;
1205}
1206
1207static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
1208{
1209        pg_data_t *pgdat = page_pgdat(page);
1210
1211        return &pgdat->__lruvec;
1212}
1213
1214static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1215{
1216}
1217
1218static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1219{
1220        return NULL;
1221}
1222
1223static inline bool mm_match_cgroup(struct mm_struct *mm,
1224                struct mem_cgroup *memcg)
1225{
1226        return true;
1227}
1228
1229static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1230{
1231        return NULL;
1232}
1233
1234static inline
1235struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1236{
1237        return NULL;
1238}
1239
1240static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1241{
1242}
1243
1244static inline struct lruvec *lock_page_lruvec(struct page *page)
1245{
1246        struct pglist_data *pgdat = page_pgdat(page);
1247
1248        spin_lock(&pgdat->__lruvec.lru_lock);
1249        return &pgdat->__lruvec;
1250}
1251
1252static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1253{
1254        struct pglist_data *pgdat = page_pgdat(page);
1255
1256        spin_lock_irq(&pgdat->__lruvec.lru_lock);
1257        return &pgdat->__lruvec;
1258}
1259
1260static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1261                unsigned long *flagsp)
1262{
1263        struct pglist_data *pgdat = page_pgdat(page);
1264
1265        spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1266        return &pgdat->__lruvec;
1267}
1268
1269static inline struct mem_cgroup *
1270mem_cgroup_iter(struct mem_cgroup *root,
1271                struct mem_cgroup *prev,
1272                struct mem_cgroup_reclaim_cookie *reclaim)
1273{
1274        return NULL;
1275}
1276
1277static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1278                                         struct mem_cgroup *prev)
1279{
1280}
1281
1282static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1283                int (*fn)(struct task_struct *, void *), void *arg)
1284{
1285        return 0;
1286}
1287
1288static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1289{
1290        return 0;
1291}
1292
1293static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1294{
1295        WARN_ON_ONCE(id);
1296        /* XXX: This should always return root_mem_cgroup */
1297        return NULL;
1298}
1299
1300static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1301{
1302        return NULL;
1303}
1304
1305static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1306{
1307        return NULL;
1308}
1309
1310static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1311{
1312        return true;
1313}
1314
1315static inline
1316unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1317                enum lru_list lru, int zone_idx)
1318{
1319        return 0;
1320}
1321
1322static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1323{
1324        return 0;
1325}
1326
1327static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1328{
1329        return 0;
1330}
1331
1332static inline void
1333mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1334{
1335}
1336
1337static inline void
1338mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1339{
1340}
1341
1342static inline void lock_page_memcg(struct page *page)
1343{
1344}
1345
1346static inline void unlock_page_memcg(struct page *page)
1347{
1348}
1349
1350static inline void mem_cgroup_handle_over_high(void)
1351{
1352}
1353
1354static inline void mem_cgroup_enter_user_fault(void)
1355{
1356}
1357
1358static inline void mem_cgroup_exit_user_fault(void)
1359{
1360}
1361
1362static inline bool task_in_memcg_oom(struct task_struct *p)
1363{
1364        return false;
1365}
1366
1367static inline bool mem_cgroup_oom_synchronize(bool wait)
1368{
1369        return false;
1370}
1371
1372static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1373        struct task_struct *victim, struct mem_cgroup *oom_domain)
1374{
1375        return NULL;
1376}
1377
1378static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1379{
1380}
1381
1382static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1383                                     int idx,
1384                                     int nr)
1385{
1386}
1387
1388static inline void mod_memcg_state(struct mem_cgroup *memcg,
1389                                   int idx,
1390                                   int nr)
1391{
1392}
1393
1394static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1395                                              enum node_stat_item idx)
1396{
1397        return node_page_state(lruvec_pgdat(lruvec), idx);
1398}
1399
1400static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1401                                                    enum node_stat_item idx)
1402{
1403        return node_page_state(lruvec_pgdat(lruvec), idx);
1404}
1405
1406static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1407                                            enum node_stat_item idx, int val)
1408{
1409}
1410
1411static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1412                                           int val)
1413{
1414        struct page *page = virt_to_head_page(p);
1415
1416        __mod_node_page_state(page_pgdat(page), idx, val);
1417}
1418
1419static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1420                                         int val)
1421{
1422        struct page *page = virt_to_head_page(p);
1423
1424        mod_node_page_state(page_pgdat(page), idx, val);
1425}
1426
1427static inline void count_memcg_events(struct mem_cgroup *memcg,
1428                                      enum vm_event_item idx,
1429                                      unsigned long count)
1430{
1431}
1432
1433static inline void __count_memcg_events(struct mem_cgroup *memcg,
1434                                        enum vm_event_item idx,
1435                                        unsigned long count)
1436{
1437}
1438
1439static inline void count_memcg_page_event(struct page *page,
1440                                          int idx)
1441{
1442}
1443
1444static inline
1445void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1446{
1447}
1448
1449static inline void split_page_memcg(struct page *head, unsigned int nr)
1450{
1451}
1452
1453static inline
1454unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1455                                            gfp_t gfp_mask,
1456                                            unsigned long *total_scanned)
1457{
1458        return 0;
1459}
1460#endif /* CONFIG_MEMCG */
1461
1462static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1463{
1464        __mod_lruvec_kmem_state(p, idx, 1);
1465}
1466
1467static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1468{
1469        __mod_lruvec_kmem_state(p, idx, -1);
1470}
1471
1472static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1473{
1474        struct mem_cgroup *memcg;
1475
1476        memcg = lruvec_memcg(lruvec);
1477        if (!memcg)
1478                return NULL;
1479        memcg = parent_mem_cgroup(memcg);
1480        if (!memcg)
1481                return NULL;
1482        return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1483}
1484
1485static inline void unlock_page_lruvec(struct lruvec *lruvec)
1486{
1487        spin_unlock(&lruvec->lru_lock);
1488}
1489
1490static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1491{
1492        spin_unlock_irq(&lruvec->lru_lock);
1493}
1494
1495static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1496                unsigned long flags)
1497{
1498        spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1499}
1500
1501/* Test requires a stable page->memcg binding, see page_memcg() */
1502static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec)
1503{
1504        return lruvec_pgdat(lruvec) == page_pgdat(page) &&
1505               lruvec_memcg(lruvec) == page_memcg(page);
1506}
1507
1508/* Don't lock again iff page's lruvec locked */
1509static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1510                struct lruvec *locked_lruvec)
1511{
1512        if (locked_lruvec) {
1513                if (page_matches_lruvec(page, locked_lruvec))
1514                        return locked_lruvec;
1515
1516                unlock_page_lruvec_irq(locked_lruvec);
1517        }
1518
1519        return lock_page_lruvec_irq(page);
1520}
1521
1522/* Don't lock again iff page's lruvec locked */
1523static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1524                struct lruvec *locked_lruvec, unsigned long *flags)
1525{
1526        if (locked_lruvec) {
1527                if (page_matches_lruvec(page, locked_lruvec))
1528                        return locked_lruvec;
1529
1530                unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1531        }
1532
1533        return lock_page_lruvec_irqsave(page, flags);
1534}
1535
1536#ifdef CONFIG_CGROUP_WRITEBACK
1537
1538struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1539void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1540                         unsigned long *pheadroom, unsigned long *pdirty,
1541                         unsigned long *pwriteback);
1542
1543void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1544                                             struct bdi_writeback *wb);
1545
1546static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1547                                                  struct bdi_writeback *wb)
1548{
1549        if (mem_cgroup_disabled())
1550                return;
1551
1552        if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1553                mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1554}
1555
1556void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1557
1558#else   /* CONFIG_CGROUP_WRITEBACK */
1559
1560static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1561{
1562        return NULL;
1563}
1564
1565static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1566                                       unsigned long *pfilepages,
1567                                       unsigned long *pheadroom,
1568                                       unsigned long *pdirty,
1569                                       unsigned long *pwriteback)
1570{
1571}
1572
1573static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1574                                                  struct bdi_writeback *wb)
1575{
1576}
1577
1578static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1579{
1580}
1581
1582#endif  /* CONFIG_CGROUP_WRITEBACK */
1583
1584struct sock;
1585bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1586void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1587#ifdef CONFIG_MEMCG
1588extern struct static_key_false memcg_sockets_enabled_key;
1589#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1590void mem_cgroup_sk_alloc(struct sock *sk);
1591void mem_cgroup_sk_free(struct sock *sk);
1592static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1593{
1594        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1595                return true;
1596        do {
1597                if (time_before(jiffies, memcg->socket_pressure))
1598                        return true;
1599        } while ((memcg = parent_mem_cgroup(memcg)));
1600        return false;
1601}
1602
1603int alloc_shrinker_info(struct mem_cgroup *memcg);
1604void free_shrinker_info(struct mem_cgroup *memcg);
1605void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1606void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1607#else
1608#define mem_cgroup_sockets_enabled 0
1609static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1610static inline void mem_cgroup_sk_free(struct sock *sk) { };
1611static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1612{
1613        return false;
1614}
1615
1616static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1617                                    int nid, int shrinker_id)
1618{
1619}
1620#endif
1621
1622#ifdef CONFIG_MEMCG_KMEM
1623bool mem_cgroup_kmem_disabled(void);
1624int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1625void __memcg_kmem_uncharge_page(struct page *page, int order);
1626
1627struct obj_cgroup *get_obj_cgroup_from_current(void);
1628
1629int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1630void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1631
1632extern struct static_key_false memcg_kmem_enabled_key;
1633
1634extern int memcg_nr_cache_ids;
1635void memcg_get_cache_ids(void);
1636void memcg_put_cache_ids(void);
1637
1638/*
1639 * Helper macro to loop through all memcg-specific caches. Callers must still
1640 * check if the cache is valid (it is either valid or NULL).
1641 * the slab_mutex must be held when looping through those caches
1642 */
1643#define for_each_memcg_cache_index(_idx)        \
1644        for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1645
1646static inline bool memcg_kmem_enabled(void)
1647{
1648        return static_branch_likely(&memcg_kmem_enabled_key);
1649}
1650
1651static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1652                                         int order)
1653{
1654        if (memcg_kmem_enabled())
1655                return __memcg_kmem_charge_page(page, gfp, order);
1656        return 0;
1657}
1658
1659static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1660{
1661        if (memcg_kmem_enabled())
1662                __memcg_kmem_uncharge_page(page, order);
1663}
1664
1665/*
1666 * A helper for accessing memcg's kmem_id, used for getting
1667 * corresponding LRU lists.
1668 */
1669static inline int memcg_cache_id(struct mem_cgroup *memcg)
1670{
1671        return memcg ? memcg->kmemcg_id : -1;
1672}
1673
1674struct mem_cgroup *mem_cgroup_from_obj(void *p);
1675
1676#else
1677static inline bool mem_cgroup_kmem_disabled(void)
1678{
1679        return true;
1680}
1681
1682static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1683                                         int order)
1684{
1685        return 0;
1686}
1687
1688static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1689{
1690}
1691
1692static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1693                                           int order)
1694{
1695        return 0;
1696}
1697
1698static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1699{
1700}
1701
1702#define for_each_memcg_cache_index(_idx)        \
1703        for (; NULL; )
1704
1705static inline bool memcg_kmem_enabled(void)
1706{
1707        return false;
1708}
1709
1710static inline int memcg_cache_id(struct mem_cgroup *memcg)
1711{
1712        return -1;
1713}
1714
1715static inline void memcg_get_cache_ids(void)
1716{
1717}
1718
1719static inline void memcg_put_cache_ids(void)
1720{
1721}
1722
1723static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1724{
1725       return NULL;
1726}
1727
1728#endif /* CONFIG_MEMCG_KMEM */
1729
1730#endif /* _LINUX_MEMCONTROL_H */
1731