linux/include/linux/mm_types.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_TYPES_H
   3#define _LINUX_MM_TYPES_H
   4
   5#include <linux/mm_types_task.h>
   6
   7#include <linux/auxvec.h>
   8#include <linux/list.h>
   9#include <linux/spinlock.h>
  10#include <linux/rbtree.h>
  11#include <linux/rwsem.h>
  12#include <linux/completion.h>
  13#include <linux/cpumask.h>
  14#include <linux/uprobes.h>
  15#include <linux/page-flags-layout.h>
  16#include <linux/workqueue.h>
  17#include <linux/seqlock.h>
  18
  19#include <asm/mmu.h>
  20
  21#ifndef AT_VECTOR_SIZE_ARCH
  22#define AT_VECTOR_SIZE_ARCH 0
  23#endif
  24#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  25
  26#define INIT_PASID      0
  27
  28struct address_space;
  29struct mem_cgroup;
  30
  31/*
  32 * Each physical page in the system has a struct page associated with
  33 * it to keep track of whatever it is we are using the page for at the
  34 * moment. Note that we have no way to track which tasks are using
  35 * a page, though if it is a pagecache page, rmap structures can tell us
  36 * who is mapping it.
  37 *
  38 * If you allocate the page using alloc_pages(), you can use some of the
  39 * space in struct page for your own purposes.  The five words in the main
  40 * union are available, except for bit 0 of the first word which must be
  41 * kept clear.  Many users use this word to store a pointer to an object
  42 * which is guaranteed to be aligned.  If you use the same storage as
  43 * page->mapping, you must restore it to NULL before freeing the page.
  44 *
  45 * If your page will not be mapped to userspace, you can also use the four
  46 * bytes in the mapcount union, but you must call page_mapcount_reset()
  47 * before freeing it.
  48 *
  49 * If you want to use the refcount field, it must be used in such a way
  50 * that other CPUs temporarily incrementing and then decrementing the
  51 * refcount does not cause problems.  On receiving the page from
  52 * alloc_pages(), the refcount will be positive.
  53 *
  54 * If you allocate pages of order > 0, you can use some of the fields
  55 * in each subpage, but you may need to restore some of their values
  56 * afterwards.
  57 *
  58 * SLUB uses cmpxchg_double() to atomically update its freelist and
  59 * counters.  That requires that freelist & counters be adjacent and
  60 * double-word aligned.  We align all struct pages to double-word
  61 * boundaries, and ensure that 'freelist' is aligned within the
  62 * struct.
  63 */
  64#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
  65#define _struct_page_alignment  __aligned(2 * sizeof(unsigned long))
  66#else
  67#define _struct_page_alignment
  68#endif
  69
  70struct page {
  71        unsigned long flags;            /* Atomic flags, some possibly
  72                                         * updated asynchronously */
  73        /*
  74         * Five words (20/40 bytes) are available in this union.
  75         * WARNING: bit 0 of the first word is used for PageTail(). That
  76         * means the other users of this union MUST NOT use the bit to
  77         * avoid collision and false-positive PageTail().
  78         */
  79        union {
  80                struct {        /* Page cache and anonymous pages */
  81                        /**
  82                         * @lru: Pageout list, eg. active_list protected by
  83                         * lruvec->lru_lock.  Sometimes used as a generic list
  84                         * by the page owner.
  85                         */
  86                        struct list_head lru;
  87                        /* See page-flags.h for PAGE_MAPPING_FLAGS */
  88                        struct address_space *mapping;
  89                        pgoff_t index;          /* Our offset within mapping. */
  90                        /**
  91                         * @private: Mapping-private opaque data.
  92                         * Usually used for buffer_heads if PagePrivate.
  93                         * Used for swp_entry_t if PageSwapCache.
  94                         * Indicates order in the buddy system if PageBuddy.
  95                         */
  96                        unsigned long private;
  97                };
  98                struct {        /* page_pool used by netstack */
  99                        /**
 100                         * @pp_magic: magic value to avoid recycling non
 101                         * page_pool allocated pages.
 102                         */
 103                        unsigned long pp_magic;
 104                        struct page_pool *pp;
 105                        unsigned long _pp_mapping_pad;
 106                        /**
 107                         * @dma_addr: might require a 64-bit value on
 108                         * 32-bit architectures.
 109                         */
 110                        unsigned long dma_addr[2];
 111                };
 112                struct {        /* slab, slob and slub */
 113                        union {
 114                                struct list_head slab_list;
 115                                struct {        /* Partial pages */
 116                                        struct page *next;
 117#ifdef CONFIG_64BIT
 118                                        int pages;      /* Nr of pages left */
 119                                        int pobjects;   /* Approximate count */
 120#else
 121                                        short int pages;
 122                                        short int pobjects;
 123#endif
 124                                };
 125                        };
 126                        struct kmem_cache *slab_cache; /* not slob */
 127                        /* Double-word boundary */
 128                        void *freelist;         /* first free object */
 129                        union {
 130                                void *s_mem;    /* slab: first object */
 131                                unsigned long counters;         /* SLUB */
 132                                struct {                        /* SLUB */
 133                                        unsigned inuse:16;
 134                                        unsigned objects:15;
 135                                        unsigned frozen:1;
 136                                };
 137                        };
 138                };
 139                struct {        /* Tail pages of compound page */
 140                        unsigned long compound_head;    /* Bit zero is set */
 141
 142                        /* First tail page only */
 143                        unsigned char compound_dtor;
 144                        unsigned char compound_order;
 145                        atomic_t compound_mapcount;
 146                        unsigned int compound_nr; /* 1 << compound_order */
 147                };
 148                struct {        /* Second tail page of compound page */
 149                        unsigned long _compound_pad_1;  /* compound_head */
 150                        atomic_t hpage_pinned_refcount;
 151                        /* For both global and memcg */
 152                        struct list_head deferred_list;
 153                };
 154                struct {        /* Page table pages */
 155                        unsigned long _pt_pad_1;        /* compound_head */
 156                        pgtable_t pmd_huge_pte; /* protected by page->ptl */
 157                        unsigned long _pt_pad_2;        /* mapping */
 158                        union {
 159                                struct mm_struct *pt_mm; /* x86 pgds only */
 160                                atomic_t pt_frag_refcount; /* powerpc */
 161                        };
 162#if ALLOC_SPLIT_PTLOCKS
 163                        spinlock_t *ptl;
 164#else
 165                        spinlock_t ptl;
 166#endif
 167                };
 168                struct {        /* ZONE_DEVICE pages */
 169                        /** @pgmap: Points to the hosting device page map. */
 170                        struct dev_pagemap *pgmap;
 171                        void *zone_device_data;
 172                        /*
 173                         * ZONE_DEVICE private pages are counted as being
 174                         * mapped so the next 3 words hold the mapping, index,
 175                         * and private fields from the source anonymous or
 176                         * page cache page while the page is migrated to device
 177                         * private memory.
 178                         * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
 179                         * use the mapping, index, and private fields when
 180                         * pmem backed DAX files are mapped.
 181                         */
 182                };
 183
 184                /** @rcu_head: You can use this to free a page by RCU. */
 185                struct rcu_head rcu_head;
 186        };
 187
 188        union {         /* This union is 4 bytes in size. */
 189                /*
 190                 * If the page can be mapped to userspace, encodes the number
 191                 * of times this page is referenced by a page table.
 192                 */
 193                atomic_t _mapcount;
 194
 195                /*
 196                 * If the page is neither PageSlab nor mappable to userspace,
 197                 * the value stored here may help determine what this page
 198                 * is used for.  See page-flags.h for a list of page types
 199                 * which are currently stored here.
 200                 */
 201                unsigned int page_type;
 202
 203                unsigned int active;            /* SLAB */
 204                int units;                      /* SLOB */
 205        };
 206
 207        /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
 208        atomic_t _refcount;
 209
 210#ifdef CONFIG_MEMCG
 211        unsigned long memcg_data;
 212#endif
 213
 214        /*
 215         * On machines where all RAM is mapped into kernel address space,
 216         * we can simply calculate the virtual address. On machines with
 217         * highmem some memory is mapped into kernel virtual memory
 218         * dynamically, so we need a place to store that address.
 219         * Note that this field could be 16 bits on x86 ... ;)
 220         *
 221         * Architectures with slow multiplication can define
 222         * WANT_PAGE_VIRTUAL in asm/page.h
 223         */
 224#if defined(WANT_PAGE_VIRTUAL)
 225        void *virtual;                  /* Kernel virtual address (NULL if
 226                                           not kmapped, ie. highmem) */
 227#endif /* WANT_PAGE_VIRTUAL */
 228
 229#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 230        int _last_cpupid;
 231#endif
 232} _struct_page_alignment;
 233
 234static inline atomic_t *compound_mapcount_ptr(struct page *page)
 235{
 236        return &page[1].compound_mapcount;
 237}
 238
 239static inline atomic_t *compound_pincount_ptr(struct page *page)
 240{
 241        return &page[2].hpage_pinned_refcount;
 242}
 243
 244/*
 245 * Used for sizing the vmemmap region on some architectures
 246 */
 247#define STRUCT_PAGE_MAX_SHIFT   (order_base_2(sizeof(struct page)))
 248
 249#define PAGE_FRAG_CACHE_MAX_SIZE        __ALIGN_MASK(32768, ~PAGE_MASK)
 250#define PAGE_FRAG_CACHE_MAX_ORDER       get_order(PAGE_FRAG_CACHE_MAX_SIZE)
 251
 252#define page_private(page)              ((page)->private)
 253
 254static inline void set_page_private(struct page *page, unsigned long private)
 255{
 256        page->private = private;
 257}
 258
 259struct page_frag_cache {
 260        void * va;
 261#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 262        __u16 offset;
 263        __u16 size;
 264#else
 265        __u32 offset;
 266#endif
 267        /* we maintain a pagecount bias, so that we dont dirty cache line
 268         * containing page->_refcount every time we allocate a fragment.
 269         */
 270        unsigned int            pagecnt_bias;
 271        bool pfmemalloc;
 272};
 273
 274typedef unsigned long vm_flags_t;
 275
 276/*
 277 * A region containing a mapping of a non-memory backed file under NOMMU
 278 * conditions.  These are held in a global tree and are pinned by the VMAs that
 279 * map parts of them.
 280 */
 281struct vm_region {
 282        struct rb_node  vm_rb;          /* link in global region tree */
 283        vm_flags_t      vm_flags;       /* VMA vm_flags */
 284        unsigned long   vm_start;       /* start address of region */
 285        unsigned long   vm_end;         /* region initialised to here */
 286        unsigned long   vm_top;         /* region allocated to here */
 287        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 288        struct file     *vm_file;       /* the backing file or NULL */
 289
 290        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 291        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 292                                                * this region */
 293};
 294
 295#ifdef CONFIG_USERFAULTFD
 296#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
 297struct vm_userfaultfd_ctx {
 298        struct userfaultfd_ctx *ctx;
 299};
 300#else /* CONFIG_USERFAULTFD */
 301#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
 302struct vm_userfaultfd_ctx {};
 303#endif /* CONFIG_USERFAULTFD */
 304
 305/*
 306 * This struct describes a virtual memory area. There is one of these
 307 * per VM-area/task. A VM area is any part of the process virtual memory
 308 * space that has a special rule for the page-fault handlers (ie a shared
 309 * library, the executable area etc).
 310 */
 311struct vm_area_struct {
 312        /* The first cache line has the info for VMA tree walking. */
 313
 314        unsigned long vm_start;         /* Our start address within vm_mm. */
 315        unsigned long vm_end;           /* The first byte after our end address
 316                                           within vm_mm. */
 317
 318        /* linked list of VM areas per task, sorted by address */
 319        struct vm_area_struct *vm_next, *vm_prev;
 320
 321        struct rb_node vm_rb;
 322
 323        /*
 324         * Largest free memory gap in bytes to the left of this VMA.
 325         * Either between this VMA and vma->vm_prev, or between one of the
 326         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 327         * get_unmapped_area find a free area of the right size.
 328         */
 329        unsigned long rb_subtree_gap;
 330
 331        /* Second cache line starts here. */
 332
 333        struct mm_struct *vm_mm;        /* The address space we belong to. */
 334
 335        /*
 336         * Access permissions of this VMA.
 337         * See vmf_insert_mixed_prot() for discussion.
 338         */
 339        pgprot_t vm_page_prot;
 340        unsigned long vm_flags;         /* Flags, see mm.h. */
 341
 342        /*
 343         * For areas with an address space and backing store,
 344         * linkage into the address_space->i_mmap interval tree.
 345         */
 346        struct {
 347                struct rb_node rb;
 348                unsigned long rb_subtree_last;
 349        } shared;
 350
 351        /*
 352         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 353         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 354         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 355         * or brk vma (with NULL file) can only be in an anon_vma list.
 356         */
 357        struct list_head anon_vma_chain; /* Serialized by mmap_lock &
 358                                          * page_table_lock */
 359        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 360
 361        /* Function pointers to deal with this struct. */
 362        const struct vm_operations_struct *vm_ops;
 363
 364        /* Information about our backing store: */
 365        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 366                                           units */
 367        struct file * vm_file;          /* File we map to (can be NULL). */
 368        void * vm_private_data;         /* was vm_pte (shared mem) */
 369
 370#ifdef CONFIG_SWAP
 371        atomic_long_t swap_readahead_info;
 372#endif
 373#ifndef CONFIG_MMU
 374        struct vm_region *vm_region;    /* NOMMU mapping region */
 375#endif
 376#ifdef CONFIG_NUMA
 377        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 378#endif
 379        struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
 380} __randomize_layout;
 381
 382struct core_thread {
 383        struct task_struct *task;
 384        struct core_thread *next;
 385};
 386
 387struct core_state {
 388        atomic_t nr_threads;
 389        struct core_thread dumper;
 390        struct completion startup;
 391};
 392
 393struct kioctx_table;
 394struct mm_struct {
 395        struct {
 396                struct vm_area_struct *mmap;            /* list of VMAs */
 397                struct rb_root mm_rb;
 398                u64 vmacache_seqnum;                   /* per-thread vmacache */
 399#ifdef CONFIG_MMU
 400                unsigned long (*get_unmapped_area) (struct file *filp,
 401                                unsigned long addr, unsigned long len,
 402                                unsigned long pgoff, unsigned long flags);
 403#endif
 404                unsigned long mmap_base;        /* base of mmap area */
 405                unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
 406#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
 407                /* Base addresses for compatible mmap() */
 408                unsigned long mmap_compat_base;
 409                unsigned long mmap_compat_legacy_base;
 410#endif
 411                unsigned long task_size;        /* size of task vm space */
 412                unsigned long highest_vm_end;   /* highest vma end address */
 413                pgd_t * pgd;
 414
 415#ifdef CONFIG_MEMBARRIER
 416                /**
 417                 * @membarrier_state: Flags controlling membarrier behavior.
 418                 *
 419                 * This field is close to @pgd to hopefully fit in the same
 420                 * cache-line, which needs to be touched by switch_mm().
 421                 */
 422                atomic_t membarrier_state;
 423#endif
 424
 425                /**
 426                 * @mm_users: The number of users including userspace.
 427                 *
 428                 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
 429                 * drops to 0 (i.e. when the task exits and there are no other
 430                 * temporary reference holders), we also release a reference on
 431                 * @mm_count (which may then free the &struct mm_struct if
 432                 * @mm_count also drops to 0).
 433                 */
 434                atomic_t mm_users;
 435
 436                /**
 437                 * @mm_count: The number of references to &struct mm_struct
 438                 * (@mm_users count as 1).
 439                 *
 440                 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
 441                 * &struct mm_struct is freed.
 442                 */
 443                atomic_t mm_count;
 444
 445#ifdef CONFIG_MMU
 446                atomic_long_t pgtables_bytes;   /* PTE page table pages */
 447#endif
 448                int map_count;                  /* number of VMAs */
 449
 450                spinlock_t page_table_lock; /* Protects page tables and some
 451                                             * counters
 452                                             */
 453                /*
 454                 * With some kernel config, the current mmap_lock's offset
 455                 * inside 'mm_struct' is at 0x120, which is very optimal, as
 456                 * its two hot fields 'count' and 'owner' sit in 2 different
 457                 * cachelines,  and when mmap_lock is highly contended, both
 458                 * of the 2 fields will be accessed frequently, current layout
 459                 * will help to reduce cache bouncing.
 460                 *
 461                 * So please be careful with adding new fields before
 462                 * mmap_lock, which can easily push the 2 fields into one
 463                 * cacheline.
 464                 */
 465                struct rw_semaphore mmap_lock;
 466
 467                struct list_head mmlist; /* List of maybe swapped mm's. These
 468                                          * are globally strung together off
 469                                          * init_mm.mmlist, and are protected
 470                                          * by mmlist_lock
 471                                          */
 472
 473
 474                unsigned long hiwater_rss; /* High-watermark of RSS usage */
 475                unsigned long hiwater_vm;  /* High-water virtual memory usage */
 476
 477                unsigned long total_vm;    /* Total pages mapped */
 478                unsigned long locked_vm;   /* Pages that have PG_mlocked set */
 479                atomic64_t    pinned_vm;   /* Refcount permanently increased */
 480                unsigned long data_vm;     /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
 481                unsigned long exec_vm;     /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
 482                unsigned long stack_vm;    /* VM_STACK */
 483                unsigned long def_flags;
 484
 485                /**
 486                 * @write_protect_seq: Locked when any thread is write
 487                 * protecting pages mapped by this mm to enforce a later COW,
 488                 * for instance during page table copying for fork().
 489                 */
 490                seqcount_t write_protect_seq;
 491
 492                spinlock_t arg_lock; /* protect the below fields */
 493
 494                unsigned long start_code, end_code, start_data, end_data;
 495                unsigned long start_brk, brk, start_stack;
 496                unsigned long arg_start, arg_end, env_start, env_end;
 497
 498                unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 499
 500                /*
 501                 * Special counters, in some configurations protected by the
 502                 * page_table_lock, in other configurations by being atomic.
 503                 */
 504                struct mm_rss_stat rss_stat;
 505
 506                struct linux_binfmt *binfmt;
 507
 508                /* Architecture-specific MM context */
 509                mm_context_t context;
 510
 511                unsigned long flags; /* Must use atomic bitops to access */
 512
 513                struct core_state *core_state; /* coredumping support */
 514
 515#ifdef CONFIG_AIO
 516                spinlock_t                      ioctx_lock;
 517                struct kioctx_table __rcu       *ioctx_table;
 518#endif
 519#ifdef CONFIG_MEMCG
 520                /*
 521                 * "owner" points to a task that is regarded as the canonical
 522                 * user/owner of this mm. All of the following must be true in
 523                 * order for it to be changed:
 524                 *
 525                 * current == mm->owner
 526                 * current->mm != mm
 527                 * new_owner->mm == mm
 528                 * new_owner->alloc_lock is held
 529                 */
 530                struct task_struct __rcu *owner;
 531#endif
 532                struct user_namespace *user_ns;
 533
 534                /* store ref to file /proc/<pid>/exe symlink points to */
 535                struct file __rcu *exe_file;
 536#ifdef CONFIG_MMU_NOTIFIER
 537                struct mmu_notifier_subscriptions *notifier_subscriptions;
 538#endif
 539#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 540                pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 541#endif
 542#ifdef CONFIG_NUMA_BALANCING
 543                /*
 544                 * numa_next_scan is the next time that the PTEs will be marked
 545                 * pte_numa. NUMA hinting faults will gather statistics and
 546                 * migrate pages to new nodes if necessary.
 547                 */
 548                unsigned long numa_next_scan;
 549
 550                /* Restart point for scanning and setting pte_numa */
 551                unsigned long numa_scan_offset;
 552
 553                /* numa_scan_seq prevents two threads setting pte_numa */
 554                int numa_scan_seq;
 555#endif
 556                /*
 557                 * An operation with batched TLB flushing is going on. Anything
 558                 * that can move process memory needs to flush the TLB when
 559                 * moving a PROT_NONE or PROT_NUMA mapped page.
 560                 */
 561                atomic_t tlb_flush_pending;
 562#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 563                /* See flush_tlb_batched_pending() */
 564                bool tlb_flush_batched;
 565#endif
 566                struct uprobes_state uprobes_state;
 567#ifdef CONFIG_HUGETLB_PAGE
 568                atomic_long_t hugetlb_usage;
 569#endif
 570                struct work_struct async_put_work;
 571
 572#ifdef CONFIG_IOMMU_SUPPORT
 573                u32 pasid;
 574#endif
 575        } __randomize_layout;
 576
 577        /*
 578         * The mm_cpumask needs to be at the end of mm_struct, because it
 579         * is dynamically sized based on nr_cpu_ids.
 580         */
 581        unsigned long cpu_bitmap[];
 582};
 583
 584extern struct mm_struct init_mm;
 585
 586/* Pointer magic because the dynamic array size confuses some compilers. */
 587static inline void mm_init_cpumask(struct mm_struct *mm)
 588{
 589        unsigned long cpu_bitmap = (unsigned long)mm;
 590
 591        cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
 592        cpumask_clear((struct cpumask *)cpu_bitmap);
 593}
 594
 595/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 596static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 597{
 598        return (struct cpumask *)&mm->cpu_bitmap;
 599}
 600
 601struct mmu_gather;
 602extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
 603extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
 604extern void tlb_finish_mmu(struct mmu_gather *tlb);
 605
 606static inline void init_tlb_flush_pending(struct mm_struct *mm)
 607{
 608        atomic_set(&mm->tlb_flush_pending, 0);
 609}
 610
 611static inline void inc_tlb_flush_pending(struct mm_struct *mm)
 612{
 613        atomic_inc(&mm->tlb_flush_pending);
 614        /*
 615         * The only time this value is relevant is when there are indeed pages
 616         * to flush. And we'll only flush pages after changing them, which
 617         * requires the PTL.
 618         *
 619         * So the ordering here is:
 620         *
 621         *      atomic_inc(&mm->tlb_flush_pending);
 622         *      spin_lock(&ptl);
 623         *      ...
 624         *      set_pte_at();
 625         *      spin_unlock(&ptl);
 626         *
 627         *                              spin_lock(&ptl)
 628         *                              mm_tlb_flush_pending();
 629         *                              ....
 630         *                              spin_unlock(&ptl);
 631         *
 632         *      flush_tlb_range();
 633         *      atomic_dec(&mm->tlb_flush_pending);
 634         *
 635         * Where the increment if constrained by the PTL unlock, it thus
 636         * ensures that the increment is visible if the PTE modification is
 637         * visible. After all, if there is no PTE modification, nobody cares
 638         * about TLB flushes either.
 639         *
 640         * This very much relies on users (mm_tlb_flush_pending() and
 641         * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
 642         * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
 643         * locks (PPC) the unlock of one doesn't order against the lock of
 644         * another PTL.
 645         *
 646         * The decrement is ordered by the flush_tlb_range(), such that
 647         * mm_tlb_flush_pending() will not return false unless all flushes have
 648         * completed.
 649         */
 650}
 651
 652static inline void dec_tlb_flush_pending(struct mm_struct *mm)
 653{
 654        /*
 655         * See inc_tlb_flush_pending().
 656         *
 657         * This cannot be smp_mb__before_atomic() because smp_mb() simply does
 658         * not order against TLB invalidate completion, which is what we need.
 659         *
 660         * Therefore we must rely on tlb_flush_*() to guarantee order.
 661         */
 662        atomic_dec(&mm->tlb_flush_pending);
 663}
 664
 665static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 666{
 667        /*
 668         * Must be called after having acquired the PTL; orders against that
 669         * PTLs release and therefore ensures that if we observe the modified
 670         * PTE we must also observe the increment from inc_tlb_flush_pending().
 671         *
 672         * That is, it only guarantees to return true if there is a flush
 673         * pending for _this_ PTL.
 674         */
 675        return atomic_read(&mm->tlb_flush_pending);
 676}
 677
 678static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
 679{
 680        /*
 681         * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
 682         * for which there is a TLB flush pending in order to guarantee
 683         * we've seen both that PTE modification and the increment.
 684         *
 685         * (no requirement on actually still holding the PTL, that is irrelevant)
 686         */
 687        return atomic_read(&mm->tlb_flush_pending) > 1;
 688}
 689
 690struct vm_fault;
 691
 692/**
 693 * typedef vm_fault_t - Return type for page fault handlers.
 694 *
 695 * Page fault handlers return a bitmask of %VM_FAULT values.
 696 */
 697typedef __bitwise unsigned int vm_fault_t;
 698
 699/**
 700 * enum vm_fault_reason - Page fault handlers return a bitmask of
 701 * these values to tell the core VM what happened when handling the
 702 * fault. Used to decide whether a process gets delivered SIGBUS or
 703 * just gets major/minor fault counters bumped up.
 704 *
 705 * @VM_FAULT_OOM:               Out Of Memory
 706 * @VM_FAULT_SIGBUS:            Bad access
 707 * @VM_FAULT_MAJOR:             Page read from storage
 708 * @VM_FAULT_WRITE:             Special case for get_user_pages
 709 * @VM_FAULT_HWPOISON:          Hit poisoned small page
 710 * @VM_FAULT_HWPOISON_LARGE:    Hit poisoned large page. Index encoded
 711 *                              in upper bits
 712 * @VM_FAULT_SIGSEGV:           segmentation fault
 713 * @VM_FAULT_NOPAGE:            ->fault installed the pte, not return page
 714 * @VM_FAULT_LOCKED:            ->fault locked the returned page
 715 * @VM_FAULT_RETRY:             ->fault blocked, must retry
 716 * @VM_FAULT_FALLBACK:          huge page fault failed, fall back to small
 717 * @VM_FAULT_DONE_COW:          ->fault has fully handled COW
 718 * @VM_FAULT_NEEDDSYNC:         ->fault did not modify page tables and needs
 719 *                              fsync() to complete (for synchronous page faults
 720 *                              in DAX)
 721 * @VM_FAULT_HINDEX_MASK:       mask HINDEX value
 722 *
 723 */
 724enum vm_fault_reason {
 725        VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
 726        VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
 727        VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
 728        VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
 729        VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
 730        VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
 731        VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
 732        VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
 733        VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
 734        VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
 735        VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
 736        VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
 737        VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
 738        VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
 739};
 740
 741/* Encode hstate index for a hwpoisoned large page */
 742#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
 743#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
 744
 745#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |        \
 746                        VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |  \
 747                        VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
 748
 749#define VM_FAULT_RESULT_TRACE \
 750        { VM_FAULT_OOM,                 "OOM" },        \
 751        { VM_FAULT_SIGBUS,              "SIGBUS" },     \
 752        { VM_FAULT_MAJOR,               "MAJOR" },      \
 753        { VM_FAULT_WRITE,               "WRITE" },      \
 754        { VM_FAULT_HWPOISON,            "HWPOISON" },   \
 755        { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },     \
 756        { VM_FAULT_SIGSEGV,             "SIGSEGV" },    \
 757        { VM_FAULT_NOPAGE,              "NOPAGE" },     \
 758        { VM_FAULT_LOCKED,              "LOCKED" },     \
 759        { VM_FAULT_RETRY,               "RETRY" },      \
 760        { VM_FAULT_FALLBACK,            "FALLBACK" },   \
 761        { VM_FAULT_DONE_COW,            "DONE_COW" },   \
 762        { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
 763
 764struct vm_special_mapping {
 765        const char *name;       /* The name, e.g. "[vdso]". */
 766
 767        /*
 768         * If .fault is not provided, this points to a
 769         * NULL-terminated array of pages that back the special mapping.
 770         *
 771         * This must not be NULL unless .fault is provided.
 772         */
 773        struct page **pages;
 774
 775        /*
 776         * If non-NULL, then this is called to resolve page faults
 777         * on the special mapping.  If used, .pages is not checked.
 778         */
 779        vm_fault_t (*fault)(const struct vm_special_mapping *sm,
 780                                struct vm_area_struct *vma,
 781                                struct vm_fault *vmf);
 782
 783        int (*mremap)(const struct vm_special_mapping *sm,
 784                     struct vm_area_struct *new_vma);
 785};
 786
 787enum tlb_flush_reason {
 788        TLB_FLUSH_ON_TASK_SWITCH,
 789        TLB_REMOTE_SHOOTDOWN,
 790        TLB_LOCAL_SHOOTDOWN,
 791        TLB_LOCAL_MM_SHOOTDOWN,
 792        TLB_REMOTE_SEND_IPI,
 793        NR_TLB_FLUSH_REASONS,
 794};
 795
 796 /*
 797  * A swap entry has to fit into a "unsigned long", as the entry is hidden
 798  * in the "index" field of the swapper address space.
 799  */
 800typedef struct {
 801        unsigned long val;
 802} swp_entry_t;
 803
 804#endif /* _LINUX_MM_TYPES_H */
 805