linux/include/linux/scatterlist.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCATTERLIST_H
   3#define _LINUX_SCATTERLIST_H
   4
   5#include <linux/string.h>
   6#include <linux/types.h>
   7#include <linux/bug.h>
   8#include <linux/mm.h>
   9#include <asm/io.h>
  10
  11struct scatterlist {
  12        unsigned long   page_link;
  13        unsigned int    offset;
  14        unsigned int    length;
  15        dma_addr_t      dma_address;
  16#ifdef CONFIG_NEED_SG_DMA_LENGTH
  17        unsigned int    dma_length;
  18#endif
  19};
  20
  21/*
  22 * These macros should be used after a dma_map_sg call has been done
  23 * to get bus addresses of each of the SG entries and their lengths.
  24 * You should only work with the number of sg entries dma_map_sg
  25 * returns, or alternatively stop on the first sg_dma_len(sg) which
  26 * is 0.
  27 */
  28#define sg_dma_address(sg)      ((sg)->dma_address)
  29
  30#ifdef CONFIG_NEED_SG_DMA_LENGTH
  31#define sg_dma_len(sg)          ((sg)->dma_length)
  32#else
  33#define sg_dma_len(sg)          ((sg)->length)
  34#endif
  35
  36struct sg_table {
  37        struct scatterlist *sgl;        /* the list */
  38        unsigned int nents;             /* number of mapped entries */
  39        unsigned int orig_nents;        /* original size of list */
  40};
  41
  42/*
  43 * Notes on SG table design.
  44 *
  45 * We use the unsigned long page_link field in the scatterlist struct to place
  46 * the page pointer AND encode information about the sg table as well. The two
  47 * lower bits are reserved for this information.
  48 *
  49 * If bit 0 is set, then the page_link contains a pointer to the next sg
  50 * table list. Otherwise the next entry is at sg + 1.
  51 *
  52 * If bit 1 is set, then this sg entry is the last element in a list.
  53 *
  54 * See sg_next().
  55 *
  56 */
  57
  58#define SG_CHAIN        0x01UL
  59#define SG_END          0x02UL
  60
  61/*
  62 * We overload the LSB of the page pointer to indicate whether it's
  63 * a valid sg entry, or whether it points to the start of a new scatterlist.
  64 * Those low bits are there for everyone! (thanks mason :-)
  65 */
  66#define sg_is_chain(sg)         ((sg)->page_link & SG_CHAIN)
  67#define sg_is_last(sg)          ((sg)->page_link & SG_END)
  68#define sg_chain_ptr(sg)        \
  69        ((struct scatterlist *) ((sg)->page_link & ~(SG_CHAIN | SG_END)))
  70
  71/**
  72 * sg_assign_page - Assign a given page to an SG entry
  73 * @sg:             SG entry
  74 * @page:           The page
  75 *
  76 * Description:
  77 *   Assign page to sg entry. Also see sg_set_page(), the most commonly used
  78 *   variant.
  79 *
  80 **/
  81static inline void sg_assign_page(struct scatterlist *sg, struct page *page)
  82{
  83        unsigned long page_link = sg->page_link & (SG_CHAIN | SG_END);
  84
  85        /*
  86         * In order for the low bit stealing approach to work, pages
  87         * must be aligned at a 32-bit boundary as a minimum.
  88         */
  89        BUG_ON((unsigned long) page & (SG_CHAIN | SG_END));
  90#ifdef CONFIG_DEBUG_SG
  91        BUG_ON(sg_is_chain(sg));
  92#endif
  93        sg->page_link = page_link | (unsigned long) page;
  94}
  95
  96/**
  97 * sg_set_page - Set sg entry to point at given page
  98 * @sg:          SG entry
  99 * @page:        The page
 100 * @len:         Length of data
 101 * @offset:      Offset into page
 102 *
 103 * Description:
 104 *   Use this function to set an sg entry pointing at a page, never assign
 105 *   the page directly. We encode sg table information in the lower bits
 106 *   of the page pointer. See sg_page() for looking up the page belonging
 107 *   to an sg entry.
 108 *
 109 **/
 110static inline void sg_set_page(struct scatterlist *sg, struct page *page,
 111                               unsigned int len, unsigned int offset)
 112{
 113        sg_assign_page(sg, page);
 114        sg->offset = offset;
 115        sg->length = len;
 116}
 117
 118static inline struct page *sg_page(struct scatterlist *sg)
 119{
 120#ifdef CONFIG_DEBUG_SG
 121        BUG_ON(sg_is_chain(sg));
 122#endif
 123        return (struct page *)((sg)->page_link & ~(SG_CHAIN | SG_END));
 124}
 125
 126/**
 127 * sg_set_buf - Set sg entry to point at given data
 128 * @sg:          SG entry
 129 * @buf:         Data
 130 * @buflen:      Data length
 131 *
 132 **/
 133static inline void sg_set_buf(struct scatterlist *sg, const void *buf,
 134                              unsigned int buflen)
 135{
 136#ifdef CONFIG_DEBUG_SG
 137        BUG_ON(!virt_addr_valid(buf));
 138#endif
 139        sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf));
 140}
 141
 142/*
 143 * Loop over each sg element, following the pointer to a new list if necessary
 144 */
 145#define for_each_sg(sglist, sg, nr, __i)        \
 146        for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg))
 147
 148/*
 149 * Loop over each sg element in the given sg_table object.
 150 */
 151#define for_each_sgtable_sg(sgt, sg, i)         \
 152        for_each_sg((sgt)->sgl, sg, (sgt)->orig_nents, i)
 153
 154/*
 155 * Loop over each sg element in the given *DMA mapped* sg_table object.
 156 * Please use sg_dma_address(sg) and sg_dma_len(sg) to extract DMA addresses
 157 * of the each element.
 158 */
 159#define for_each_sgtable_dma_sg(sgt, sg, i)     \
 160        for_each_sg((sgt)->sgl, sg, (sgt)->nents, i)
 161
 162static inline void __sg_chain(struct scatterlist *chain_sg,
 163                              struct scatterlist *sgl)
 164{
 165        /*
 166         * offset and length are unused for chain entry. Clear them.
 167         */
 168        chain_sg->offset = 0;
 169        chain_sg->length = 0;
 170
 171        /*
 172         * Set lowest bit to indicate a link pointer, and make sure to clear
 173         * the termination bit if it happens to be set.
 174         */
 175        chain_sg->page_link = ((unsigned long) sgl | SG_CHAIN) & ~SG_END;
 176}
 177
 178/**
 179 * sg_chain - Chain two sglists together
 180 * @prv:        First scatterlist
 181 * @prv_nents:  Number of entries in prv
 182 * @sgl:        Second scatterlist
 183 *
 184 * Description:
 185 *   Links @prv@ and @sgl@ together, to form a longer scatterlist.
 186 *
 187 **/
 188static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents,
 189                            struct scatterlist *sgl)
 190{
 191        __sg_chain(&prv[prv_nents - 1], sgl);
 192}
 193
 194/**
 195 * sg_mark_end - Mark the end of the scatterlist
 196 * @sg:          SG entryScatterlist
 197 *
 198 * Description:
 199 *   Marks the passed in sg entry as the termination point for the sg
 200 *   table. A call to sg_next() on this entry will return NULL.
 201 *
 202 **/
 203static inline void sg_mark_end(struct scatterlist *sg)
 204{
 205        /*
 206         * Set termination bit, clear potential chain bit
 207         */
 208        sg->page_link |= SG_END;
 209        sg->page_link &= ~SG_CHAIN;
 210}
 211
 212/**
 213 * sg_unmark_end - Undo setting the end of the scatterlist
 214 * @sg:          SG entryScatterlist
 215 *
 216 * Description:
 217 *   Removes the termination marker from the given entry of the scatterlist.
 218 *
 219 **/
 220static inline void sg_unmark_end(struct scatterlist *sg)
 221{
 222        sg->page_link &= ~SG_END;
 223}
 224
 225/**
 226 * sg_phys - Return physical address of an sg entry
 227 * @sg:      SG entry
 228 *
 229 * Description:
 230 *   This calls page_to_phys() on the page in this sg entry, and adds the
 231 *   sg offset. The caller must know that it is legal to call page_to_phys()
 232 *   on the sg page.
 233 *
 234 **/
 235static inline dma_addr_t sg_phys(struct scatterlist *sg)
 236{
 237        return page_to_phys(sg_page(sg)) + sg->offset;
 238}
 239
 240/**
 241 * sg_virt - Return virtual address of an sg entry
 242 * @sg:      SG entry
 243 *
 244 * Description:
 245 *   This calls page_address() on the page in this sg entry, and adds the
 246 *   sg offset. The caller must know that the sg page has a valid virtual
 247 *   mapping.
 248 *
 249 **/
 250static inline void *sg_virt(struct scatterlist *sg)
 251{
 252        return page_address(sg_page(sg)) + sg->offset;
 253}
 254
 255/**
 256 * sg_init_marker - Initialize markers in sg table
 257 * @sgl:           The SG table
 258 * @nents:         Number of entries in table
 259 *
 260 **/
 261static inline void sg_init_marker(struct scatterlist *sgl,
 262                                  unsigned int nents)
 263{
 264        sg_mark_end(&sgl[nents - 1]);
 265}
 266
 267int sg_nents(struct scatterlist *sg);
 268int sg_nents_for_len(struct scatterlist *sg, u64 len);
 269struct scatterlist *sg_next(struct scatterlist *);
 270struct scatterlist *sg_last(struct scatterlist *s, unsigned int);
 271void sg_init_table(struct scatterlist *, unsigned int);
 272void sg_init_one(struct scatterlist *, const void *, unsigned int);
 273int sg_split(struct scatterlist *in, const int in_mapped_nents,
 274             const off_t skip, const int nb_splits,
 275             const size_t *split_sizes,
 276             struct scatterlist **out, int *out_mapped_nents,
 277             gfp_t gfp_mask);
 278
 279typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t);
 280typedef void (sg_free_fn)(struct scatterlist *, unsigned int);
 281
 282void __sg_free_table(struct sg_table *, unsigned int, unsigned int,
 283                     sg_free_fn *);
 284void sg_free_table(struct sg_table *);
 285int __sg_alloc_table(struct sg_table *, unsigned int, unsigned int,
 286                     struct scatterlist *, unsigned int, gfp_t, sg_alloc_fn *);
 287int sg_alloc_table(struct sg_table *, unsigned int, gfp_t);
 288struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt,
 289                struct page **pages, unsigned int n_pages, unsigned int offset,
 290                unsigned long size, unsigned int max_segment,
 291                struct scatterlist *prv, unsigned int left_pages,
 292                gfp_t gfp_mask);
 293int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
 294                              unsigned int n_pages, unsigned int offset,
 295                              unsigned long size, gfp_t gfp_mask);
 296
 297#ifdef CONFIG_SGL_ALLOC
 298struct scatterlist *sgl_alloc_order(unsigned long long length,
 299                                    unsigned int order, bool chainable,
 300                                    gfp_t gfp, unsigned int *nent_p);
 301struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 302                              unsigned int *nent_p);
 303void sgl_free_n_order(struct scatterlist *sgl, int nents, int order);
 304void sgl_free_order(struct scatterlist *sgl, int order);
 305void sgl_free(struct scatterlist *sgl);
 306#endif /* CONFIG_SGL_ALLOC */
 307
 308size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 309                      size_t buflen, off_t skip, bool to_buffer);
 310
 311size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 312                           const void *buf, size_t buflen);
 313size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 314                         void *buf, size_t buflen);
 315
 316size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
 317                            const void *buf, size_t buflen, off_t skip);
 318size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
 319                          void *buf, size_t buflen, off_t skip);
 320size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
 321                       size_t buflen, off_t skip);
 322
 323/*
 324 * Maximum number of entries that will be allocated in one piece, if
 325 * a list larger than this is required then chaining will be utilized.
 326 */
 327#define SG_MAX_SINGLE_ALLOC             (PAGE_SIZE / sizeof(struct scatterlist))
 328
 329/*
 330 * The maximum number of SG segments that we will put inside a
 331 * scatterlist (unless chaining is used). Should ideally fit inside a
 332 * single page, to avoid a higher order allocation.  We could define this
 333 * to SG_MAX_SINGLE_ALLOC to pack correctly at the highest order.  The
 334 * minimum value is 32
 335 */
 336#define SG_CHUNK_SIZE   128
 337
 338/*
 339 * Like SG_CHUNK_SIZE, but for archs that have sg chaining. This limit
 340 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
 341 */
 342#ifdef CONFIG_ARCH_NO_SG_CHAIN
 343#define SG_MAX_SEGMENTS SG_CHUNK_SIZE
 344#else
 345#define SG_MAX_SEGMENTS 2048
 346#endif
 347
 348#ifdef CONFIG_SG_POOL
 349void sg_free_table_chained(struct sg_table *table,
 350                           unsigned nents_first_chunk);
 351int sg_alloc_table_chained(struct sg_table *table, int nents,
 352                           struct scatterlist *first_chunk,
 353                           unsigned nents_first_chunk);
 354#endif
 355
 356/*
 357 * sg page iterator
 358 *
 359 * Iterates over sg entries page-by-page.  On each successful iteration, you
 360 * can call sg_page_iter_page(@piter) to get the current page.
 361 * @piter->sg will point to the sg holding this page and @piter->sg_pgoffset to
 362 * the page's page offset within the sg. The iteration will stop either when a
 363 * maximum number of sg entries was reached or a terminating sg
 364 * (sg_last(sg) == true) was reached.
 365 */
 366struct sg_page_iter {
 367        struct scatterlist      *sg;            /* sg holding the page */
 368        unsigned int            sg_pgoffset;    /* page offset within the sg */
 369
 370        /* these are internal states, keep away */
 371        unsigned int            __nents;        /* remaining sg entries */
 372        int                     __pg_advance;   /* nr pages to advance at the
 373                                                 * next step */
 374};
 375
 376/*
 377 * sg page iterator for DMA addresses
 378 *
 379 * This is the same as sg_page_iter however you can call
 380 * sg_page_iter_dma_address(@dma_iter) to get the page's DMA
 381 * address. sg_page_iter_page() cannot be called on this iterator.
 382 */
 383struct sg_dma_page_iter {
 384        struct sg_page_iter base;
 385};
 386
 387bool __sg_page_iter_next(struct sg_page_iter *piter);
 388bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter);
 389void __sg_page_iter_start(struct sg_page_iter *piter,
 390                          struct scatterlist *sglist, unsigned int nents,
 391                          unsigned long pgoffset);
 392/**
 393 * sg_page_iter_page - get the current page held by the page iterator
 394 * @piter:      page iterator holding the page
 395 */
 396static inline struct page *sg_page_iter_page(struct sg_page_iter *piter)
 397{
 398        return nth_page(sg_page(piter->sg), piter->sg_pgoffset);
 399}
 400
 401/**
 402 * sg_page_iter_dma_address - get the dma address of the current page held by
 403 * the page iterator.
 404 * @dma_iter:   page iterator holding the page
 405 */
 406static inline dma_addr_t
 407sg_page_iter_dma_address(struct sg_dma_page_iter *dma_iter)
 408{
 409        return sg_dma_address(dma_iter->base.sg) +
 410               (dma_iter->base.sg_pgoffset << PAGE_SHIFT);
 411}
 412
 413/**
 414 * for_each_sg_page - iterate over the pages of the given sg list
 415 * @sglist:     sglist to iterate over
 416 * @piter:      page iterator to hold current page, sg, sg_pgoffset
 417 * @nents:      maximum number of sg entries to iterate over
 418 * @pgoffset:   starting page offset (in pages)
 419 *
 420 * Callers may use sg_page_iter_page() to get each page pointer.
 421 * In each loop it operates on PAGE_SIZE unit.
 422 */
 423#define for_each_sg_page(sglist, piter, nents, pgoffset)                   \
 424        for (__sg_page_iter_start((piter), (sglist), (nents), (pgoffset)); \
 425             __sg_page_iter_next(piter);)
 426
 427/**
 428 * for_each_sg_dma_page - iterate over the pages of the given sg list
 429 * @sglist:     sglist to iterate over
 430 * @dma_iter:   DMA page iterator to hold current page
 431 * @dma_nents:  maximum number of sg entries to iterate over, this is the value
 432 *              returned from dma_map_sg
 433 * @pgoffset:   starting page offset (in pages)
 434 *
 435 * Callers may use sg_page_iter_dma_address() to get each page's DMA address.
 436 * In each loop it operates on PAGE_SIZE unit.
 437 */
 438#define for_each_sg_dma_page(sglist, dma_iter, dma_nents, pgoffset)            \
 439        for (__sg_page_iter_start(&(dma_iter)->base, sglist, dma_nents,        \
 440                                  pgoffset);                                   \
 441             __sg_page_iter_dma_next(dma_iter);)
 442
 443/**
 444 * for_each_sgtable_page - iterate over all pages in the sg_table object
 445 * @sgt:        sg_table object to iterate over
 446 * @piter:      page iterator to hold current page
 447 * @pgoffset:   starting page offset (in pages)
 448 *
 449 * Iterates over the all memory pages in the buffer described by
 450 * a scatterlist stored in the given sg_table object.
 451 * See also for_each_sg_page(). In each loop it operates on PAGE_SIZE unit.
 452 */
 453#define for_each_sgtable_page(sgt, piter, pgoffset)     \
 454        for_each_sg_page((sgt)->sgl, piter, (sgt)->orig_nents, pgoffset)
 455
 456/**
 457 * for_each_sgtable_dma_page - iterate over the DMA mapped sg_table object
 458 * @sgt:        sg_table object to iterate over
 459 * @dma_iter:   DMA page iterator to hold current page
 460 * @pgoffset:   starting page offset (in pages)
 461 *
 462 * Iterates over the all DMA mapped pages in the buffer described by
 463 * a scatterlist stored in the given sg_table object.
 464 * See also for_each_sg_dma_page(). In each loop it operates on PAGE_SIZE
 465 * unit.
 466 */
 467#define for_each_sgtable_dma_page(sgt, dma_iter, pgoffset)      \
 468        for_each_sg_dma_page((sgt)->sgl, dma_iter, (sgt)->nents, pgoffset)
 469
 470
 471/*
 472 * Mapping sg iterator
 473 *
 474 * Iterates over sg entries mapping page-by-page.  On each successful
 475 * iteration, @miter->page points to the mapped page and
 476 * @miter->length bytes of data can be accessed at @miter->addr.  As
 477 * long as an iteration is enclosed between start and stop, the user
 478 * is free to choose control structure and when to stop.
 479 *
 480 * @miter->consumed is set to @miter->length on each iteration.  It
 481 * can be adjusted if the user can't consume all the bytes in one go.
 482 * Also, a stopped iteration can be resumed by calling next on it.
 483 * This is useful when iteration needs to release all resources and
 484 * continue later (e.g. at the next interrupt).
 485 */
 486
 487#define SG_MITER_ATOMIC         (1 << 0)         /* use kmap_atomic */
 488#define SG_MITER_TO_SG          (1 << 1)        /* flush back to phys on unmap */
 489#define SG_MITER_FROM_SG        (1 << 2)        /* nop */
 490
 491struct sg_mapping_iter {
 492        /* the following three fields can be accessed directly */
 493        struct page             *page;          /* currently mapped page */
 494        void                    *addr;          /* pointer to the mapped area */
 495        size_t                  length;         /* length of the mapped area */
 496        size_t                  consumed;       /* number of consumed bytes */
 497        struct sg_page_iter     piter;          /* page iterator */
 498
 499        /* these are internal states, keep away */
 500        unsigned int            __offset;       /* offset within page */
 501        unsigned int            __remaining;    /* remaining bytes on page */
 502        unsigned int            __flags;
 503};
 504
 505void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 506                    unsigned int nents, unsigned int flags);
 507bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset);
 508bool sg_miter_next(struct sg_mapping_iter *miter);
 509void sg_miter_stop(struct sg_mapping_iter *miter);
 510
 511#endif /* _LINUX_SCATTERLIST_H */
 512