linux/include/linux/skbuff.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 *      Definitions for the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:
   6 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   7 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   8 */
   9
  10#ifndef _LINUX_SKBUFF_H
  11#define _LINUX_SKBUFF_H
  12
  13#include <linux/kernel.h>
  14#include <linux/compiler.h>
  15#include <linux/time.h>
  16#include <linux/bug.h>
  17#include <linux/bvec.h>
  18#include <linux/cache.h>
  19#include <linux/rbtree.h>
  20#include <linux/socket.h>
  21#include <linux/refcount.h>
  22
  23#include <linux/atomic.h>
  24#include <asm/types.h>
  25#include <linux/spinlock.h>
  26#include <linux/net.h>
  27#include <linux/textsearch.h>
  28#include <net/checksum.h>
  29#include <linux/rcupdate.h>
  30#include <linux/hrtimer.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/netdev_features.h>
  33#include <linux/sched.h>
  34#include <linux/sched/clock.h>
  35#include <net/flow_dissector.h>
  36#include <linux/splice.h>
  37#include <linux/in6.h>
  38#include <linux/if_packet.h>
  39#include <net/flow.h>
  40#include <net/page_pool.h>
  41#if IS_ENABLED(CONFIG_NF_CONNTRACK)
  42#include <linux/netfilter/nf_conntrack_common.h>
  43#endif
  44
  45/* The interface for checksum offload between the stack and networking drivers
  46 * is as follows...
  47 *
  48 * A. IP checksum related features
  49 *
  50 * Drivers advertise checksum offload capabilities in the features of a device.
  51 * From the stack's point of view these are capabilities offered by the driver.
  52 * A driver typically only advertises features that it is capable of offloading
  53 * to its device.
  54 *
  55 * The checksum related features are:
  56 *
  57 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  58 *                        IP (one's complement) checksum for any combination
  59 *                        of protocols or protocol layering. The checksum is
  60 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  61 *                        interface (see below).
  62 *
  63 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  64 *                        TCP or UDP packets over IPv4. These are specifically
  65 *                        unencapsulated packets of the form IPv4|TCP or
  66 *                        IPv4|UDP where the Protocol field in the IPv4 header
  67 *                        is TCP or UDP. The IPv4 header may contain IP options.
  68 *                        This feature cannot be set in features for a device
  69 *                        with NETIF_F_HW_CSUM also set. This feature is being
  70 *                        DEPRECATED (see below).
  71 *
  72 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  73 *                        TCP or UDP packets over IPv6. These are specifically
  74 *                        unencapsulated packets of the form IPv6|TCP or
  75 *                        IPv6|UDP where the Next Header field in the IPv6
  76 *                        header is either TCP or UDP. IPv6 extension headers
  77 *                        are not supported with this feature. This feature
  78 *                        cannot be set in features for a device with
  79 *                        NETIF_F_HW_CSUM also set. This feature is being
  80 *                        DEPRECATED (see below).
  81 *
  82 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  83 *                       This flag is only used to disable the RX checksum
  84 *                       feature for a device. The stack will accept receive
  85 *                       checksum indication in packets received on a device
  86 *                       regardless of whether NETIF_F_RXCSUM is set.
  87 *
  88 * B. Checksumming of received packets by device. Indication of checksum
  89 *    verification is set in skb->ip_summed. Possible values are:
  90 *
  91 * CHECKSUM_NONE:
  92 *
  93 *   Device did not checksum this packet e.g. due to lack of capabilities.
  94 *   The packet contains full (though not verified) checksum in packet but
  95 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  96 *
  97 * CHECKSUM_UNNECESSARY:
  98 *
  99 *   The hardware you're dealing with doesn't calculate the full checksum
 100 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 101 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 102 *   if their checksums are okay. skb->csum is still undefined in this case
 103 *   though. A driver or device must never modify the checksum field in the
 104 *   packet even if checksum is verified.
 105 *
 106 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 107 *     TCP: IPv6 and IPv4.
 108 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 109 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 110 *       may perform further validation in this case.
 111 *     GRE: only if the checksum is present in the header.
 112 *     SCTP: indicates the CRC in SCTP header has been validated.
 113 *     FCOE: indicates the CRC in FC frame has been validated.
 114 *
 115 *   skb->csum_level indicates the number of consecutive checksums found in
 116 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 117 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 118 *   and a device is able to verify the checksums for UDP (possibly zero),
 119 *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
 120 *   two. If the device were only able to verify the UDP checksum and not
 121 *   GRE, either because it doesn't support GRE checksum or because GRE
 122 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 123 *   not considered in this case).
 124 *
 125 * CHECKSUM_COMPLETE:
 126 *
 127 *   This is the most generic way. The device supplied checksum of the _whole_
 128 *   packet as seen by netif_rx() and fills in skb->csum. This means the
 129 *   hardware doesn't need to parse L3/L4 headers to implement this.
 130 *
 131 *   Notes:
 132 *   - Even if device supports only some protocols, but is able to produce
 133 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 134 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 135 *
 136 * CHECKSUM_PARTIAL:
 137 *
 138 *   A checksum is set up to be offloaded to a device as described in the
 139 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 140 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 141 *   on the same host, or it may be set in the input path in GRO or remote
 142 *   checksum offload. For the purposes of checksum verification, the checksum
 143 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 144 *   checksums in the packet are considered verified. Any checksums in the
 145 *   packet that are after the checksum being offloaded are not considered to
 146 *   be verified.
 147 *
 148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 149 *    in the skb->ip_summed for a packet. Values are:
 150 *
 151 * CHECKSUM_PARTIAL:
 152 *
 153 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 154 *   from skb->csum_start up to the end, and to record/write the checksum at
 155 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 156 *   csum_start and csum_offset values are valid values given the length and
 157 *   offset of the packet, but it should not attempt to validate that the
 158 *   checksum refers to a legitimate transport layer checksum -- it is the
 159 *   purview of the stack to validate that csum_start and csum_offset are set
 160 *   correctly.
 161 *
 162 *   When the stack requests checksum offload for a packet, the driver MUST
 163 *   ensure that the checksum is set correctly. A driver can either offload the
 164 *   checksum calculation to the device, or call skb_checksum_help (in the case
 165 *   that the device does not support offload for a particular checksum).
 166 *
 167 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 168 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 169 *   checksum offload capability.
 170 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 171 *   on network device checksumming capabilities: if a packet does not match
 172 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 173 *   csum_not_inet, see item D.) is called to resolve the checksum.
 174 *
 175 * CHECKSUM_NONE:
 176 *
 177 *   The skb was already checksummed by the protocol, or a checksum is not
 178 *   required.
 179 *
 180 * CHECKSUM_UNNECESSARY:
 181 *
 182 *   This has the same meaning as CHECKSUM_NONE for checksum offload on
 183 *   output.
 184 *
 185 * CHECKSUM_COMPLETE:
 186 *   Not used in checksum output. If a driver observes a packet with this value
 187 *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
 188 *
 189 * D. Non-IP checksum (CRC) offloads
 190 *
 191 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 192 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 193 *     will set csum_start and csum_offset accordingly, set ip_summed to
 194 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 195 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 196 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 197 *     must verify which offload is configured for a packet by testing the
 198 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 199 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 200 *
 201 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 202 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 203 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 204 *     accordingly. Note that there is no indication in the skbuff that the
 205 *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
 206 *     both IP checksum offload and FCOE CRC offload must verify which offload
 207 *     is configured for a packet, presumably by inspecting packet headers.
 208 *
 209 * E. Checksumming on output with GSO.
 210 *
 211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 214 * part of the GSO operation is implied. If a checksum is being offloaded
 215 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
 216 * csum_offset are set to refer to the outermost checksum being offloaded
 217 * (two offloaded checksums are possible with UDP encapsulation).
 218 */
 219
 220/* Don't change this without changing skb_csum_unnecessary! */
 221#define CHECKSUM_NONE           0
 222#define CHECKSUM_UNNECESSARY    1
 223#define CHECKSUM_COMPLETE       2
 224#define CHECKSUM_PARTIAL        3
 225
 226/* Maximum value in skb->csum_level */
 227#define SKB_MAX_CSUM_LEVEL      3
 228
 229#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 230#define SKB_WITH_OVERHEAD(X)    \
 231        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 232#define SKB_MAX_ORDER(X, ORDER) \
 233        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 234#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 235#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 236
 237/* return minimum truesize of one skb containing X bytes of data */
 238#define SKB_TRUESIZE(X) ((X) +                                          \
 239                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 240                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 241
 242struct ahash_request;
 243struct net_device;
 244struct scatterlist;
 245struct pipe_inode_info;
 246struct iov_iter;
 247struct napi_struct;
 248struct bpf_prog;
 249union bpf_attr;
 250struct skb_ext;
 251
 252#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 253struct nf_bridge_info {
 254        enum {
 255                BRNF_PROTO_UNCHANGED,
 256                BRNF_PROTO_8021Q,
 257                BRNF_PROTO_PPPOE
 258        } orig_proto:8;
 259        u8                      pkt_otherhost:1;
 260        u8                      in_prerouting:1;
 261        u8                      bridged_dnat:1;
 262        __u16                   frag_max_size;
 263        struct net_device       *physindev;
 264
 265        /* always valid & non-NULL from FORWARD on, for physdev match */
 266        struct net_device       *physoutdev;
 267        union {
 268                /* prerouting: detect dnat in orig/reply direction */
 269                __be32          ipv4_daddr;
 270                struct in6_addr ipv6_daddr;
 271
 272                /* after prerouting + nat detected: store original source
 273                 * mac since neigh resolution overwrites it, only used while
 274                 * skb is out in neigh layer.
 275                 */
 276                char neigh_header[8];
 277        };
 278};
 279#endif
 280
 281#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 282/* Chain in tc_skb_ext will be used to share the tc chain with
 283 * ovs recirc_id. It will be set to the current chain by tc
 284 * and read by ovs to recirc_id.
 285 */
 286struct tc_skb_ext {
 287        __u32 chain;
 288        __u16 mru;
 289        bool post_ct;
 290};
 291#endif
 292
 293struct sk_buff_head {
 294        /* These two members must be first. */
 295        struct sk_buff  *next;
 296        struct sk_buff  *prev;
 297
 298        __u32           qlen;
 299        spinlock_t      lock;
 300};
 301
 302struct sk_buff;
 303
 304/* To allow 64K frame to be packed as single skb without frag_list we
 305 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 306 * buffers which do not start on a page boundary.
 307 *
 308 * Since GRO uses frags we allocate at least 16 regardless of page
 309 * size.
 310 */
 311#if (65536/PAGE_SIZE + 1) < 16
 312#define MAX_SKB_FRAGS 16UL
 313#else
 314#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 315#endif
 316extern int sysctl_max_skb_frags;
 317
 318/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 319 * segment using its current segmentation instead.
 320 */
 321#define GSO_BY_FRAGS    0xFFFF
 322
 323typedef struct bio_vec skb_frag_t;
 324
 325/**
 326 * skb_frag_size() - Returns the size of a skb fragment
 327 * @frag: skb fragment
 328 */
 329static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 330{
 331        return frag->bv_len;
 332}
 333
 334/**
 335 * skb_frag_size_set() - Sets the size of a skb fragment
 336 * @frag: skb fragment
 337 * @size: size of fragment
 338 */
 339static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 340{
 341        frag->bv_len = size;
 342}
 343
 344/**
 345 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
 346 * @frag: skb fragment
 347 * @delta: value to add
 348 */
 349static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 350{
 351        frag->bv_len += delta;
 352}
 353
 354/**
 355 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
 356 * @frag: skb fragment
 357 * @delta: value to subtract
 358 */
 359static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 360{
 361        frag->bv_len -= delta;
 362}
 363
 364/**
 365 * skb_frag_must_loop - Test if %p is a high memory page
 366 * @p: fragment's page
 367 */
 368static inline bool skb_frag_must_loop(struct page *p)
 369{
 370#if defined(CONFIG_HIGHMEM)
 371        if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
 372                return true;
 373#endif
 374        return false;
 375}
 376
 377/**
 378 *      skb_frag_foreach_page - loop over pages in a fragment
 379 *
 380 *      @f:             skb frag to operate on
 381 *      @f_off:         offset from start of f->bv_page
 382 *      @f_len:         length from f_off to loop over
 383 *      @p:             (temp var) current page
 384 *      @p_off:         (temp var) offset from start of current page,
 385 *                                 non-zero only on first page.
 386 *      @p_len:         (temp var) length in current page,
 387 *                                 < PAGE_SIZE only on first and last page.
 388 *      @copied:        (temp var) length so far, excluding current p_len.
 389 *
 390 *      A fragment can hold a compound page, in which case per-page
 391 *      operations, notably kmap_atomic, must be called for each
 392 *      regular page.
 393 */
 394#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
 395        for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
 396             p_off = (f_off) & (PAGE_SIZE - 1),                         \
 397             p_len = skb_frag_must_loop(p) ?                            \
 398             min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
 399             copied = 0;                                                \
 400             copied < f_len;                                            \
 401             copied += p_len, p++, p_off = 0,                           \
 402             p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
 403
 404#define HAVE_HW_TIME_STAMP
 405
 406/**
 407 * struct skb_shared_hwtstamps - hardware time stamps
 408 * @hwtstamp:   hardware time stamp transformed into duration
 409 *              since arbitrary point in time
 410 *
 411 * Software time stamps generated by ktime_get_real() are stored in
 412 * skb->tstamp.
 413 *
 414 * hwtstamps can only be compared against other hwtstamps from
 415 * the same device.
 416 *
 417 * This structure is attached to packets as part of the
 418 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 419 */
 420struct skb_shared_hwtstamps {
 421        ktime_t hwtstamp;
 422};
 423
 424/* Definitions for tx_flags in struct skb_shared_info */
 425enum {
 426        /* generate hardware time stamp */
 427        SKBTX_HW_TSTAMP = 1 << 0,
 428
 429        /* generate software time stamp when queueing packet to NIC */
 430        SKBTX_SW_TSTAMP = 1 << 1,
 431
 432        /* device driver is going to provide hardware time stamp */
 433        SKBTX_IN_PROGRESS = 1 << 2,
 434
 435        /* generate wifi status information (where possible) */
 436        SKBTX_WIFI_STATUS = 1 << 4,
 437
 438        /* generate software time stamp when entering packet scheduling */
 439        SKBTX_SCHED_TSTAMP = 1 << 6,
 440};
 441
 442#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 443                                 SKBTX_SCHED_TSTAMP)
 444#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 445
 446/* Definitions for flags in struct skb_shared_info */
 447enum {
 448        /* use zcopy routines */
 449        SKBFL_ZEROCOPY_ENABLE = BIT(0),
 450
 451        /* This indicates at least one fragment might be overwritten
 452         * (as in vmsplice(), sendfile() ...)
 453         * If we need to compute a TX checksum, we'll need to copy
 454         * all frags to avoid possible bad checksum
 455         */
 456        SKBFL_SHARED_FRAG = BIT(1),
 457};
 458
 459#define SKBFL_ZEROCOPY_FRAG     (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
 460
 461/*
 462 * The callback notifies userspace to release buffers when skb DMA is done in
 463 * lower device, the skb last reference should be 0 when calling this.
 464 * The zerocopy_success argument is true if zero copy transmit occurred,
 465 * false on data copy or out of memory error caused by data copy attempt.
 466 * The ctx field is used to track device context.
 467 * The desc field is used to track userspace buffer index.
 468 */
 469struct ubuf_info {
 470        void (*callback)(struct sk_buff *, struct ubuf_info *,
 471                         bool zerocopy_success);
 472        union {
 473                struct {
 474                        unsigned long desc;
 475                        void *ctx;
 476                };
 477                struct {
 478                        u32 id;
 479                        u16 len;
 480                        u16 zerocopy:1;
 481                        u32 bytelen;
 482                };
 483        };
 484        refcount_t refcnt;
 485        u8 flags;
 486
 487        struct mmpin {
 488                struct user_struct *user;
 489                unsigned int num_pg;
 490        } mmp;
 491};
 492
 493#define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
 494
 495int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
 496void mm_unaccount_pinned_pages(struct mmpin *mmp);
 497
 498struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
 499struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
 500                                       struct ubuf_info *uarg);
 501
 502void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
 503
 504void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
 505                           bool success);
 506
 507int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
 508int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
 509                             struct msghdr *msg, int len,
 510                             struct ubuf_info *uarg);
 511
 512/* This data is invariant across clones and lives at
 513 * the end of the header data, ie. at skb->end.
 514 */
 515struct skb_shared_info {
 516        __u8            flags;
 517        __u8            meta_len;
 518        __u8            nr_frags;
 519        __u8            tx_flags;
 520        unsigned short  gso_size;
 521        /* Warning: this field is not always filled in (UFO)! */
 522        unsigned short  gso_segs;
 523        struct sk_buff  *frag_list;
 524        struct skb_shared_hwtstamps hwtstamps;
 525        unsigned int    gso_type;
 526        u32             tskey;
 527
 528        /*
 529         * Warning : all fields before dataref are cleared in __alloc_skb()
 530         */
 531        atomic_t        dataref;
 532
 533        /* Intermediate layers must ensure that destructor_arg
 534         * remains valid until skb destructor */
 535        void *          destructor_arg;
 536
 537        /* must be last field, see pskb_expand_head() */
 538        skb_frag_t      frags[MAX_SKB_FRAGS];
 539};
 540
 541/* We divide dataref into two halves.  The higher 16 bits hold references
 542 * to the payload part of skb->data.  The lower 16 bits hold references to
 543 * the entire skb->data.  A clone of a headerless skb holds the length of
 544 * the header in skb->hdr_len.
 545 *
 546 * All users must obey the rule that the skb->data reference count must be
 547 * greater than or equal to the payload reference count.
 548 *
 549 * Holding a reference to the payload part means that the user does not
 550 * care about modifications to the header part of skb->data.
 551 */
 552#define SKB_DATAREF_SHIFT 16
 553#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 554
 555
 556enum {
 557        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 558        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 559        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 560};
 561
 562enum {
 563        SKB_GSO_TCPV4 = 1 << 0,
 564
 565        /* This indicates the skb is from an untrusted source. */
 566        SKB_GSO_DODGY = 1 << 1,
 567
 568        /* This indicates the tcp segment has CWR set. */
 569        SKB_GSO_TCP_ECN = 1 << 2,
 570
 571        SKB_GSO_TCP_FIXEDID = 1 << 3,
 572
 573        SKB_GSO_TCPV6 = 1 << 4,
 574
 575        SKB_GSO_FCOE = 1 << 5,
 576
 577        SKB_GSO_GRE = 1 << 6,
 578
 579        SKB_GSO_GRE_CSUM = 1 << 7,
 580
 581        SKB_GSO_IPXIP4 = 1 << 8,
 582
 583        SKB_GSO_IPXIP6 = 1 << 9,
 584
 585        SKB_GSO_UDP_TUNNEL = 1 << 10,
 586
 587        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 588
 589        SKB_GSO_PARTIAL = 1 << 12,
 590
 591        SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
 592
 593        SKB_GSO_SCTP = 1 << 14,
 594
 595        SKB_GSO_ESP = 1 << 15,
 596
 597        SKB_GSO_UDP = 1 << 16,
 598
 599        SKB_GSO_UDP_L4 = 1 << 17,
 600
 601        SKB_GSO_FRAGLIST = 1 << 18,
 602};
 603
 604#if BITS_PER_LONG > 32
 605#define NET_SKBUFF_DATA_USES_OFFSET 1
 606#endif
 607
 608#ifdef NET_SKBUFF_DATA_USES_OFFSET
 609typedef unsigned int sk_buff_data_t;
 610#else
 611typedef unsigned char *sk_buff_data_t;
 612#endif
 613
 614/**
 615 *      struct sk_buff - socket buffer
 616 *      @next: Next buffer in list
 617 *      @prev: Previous buffer in list
 618 *      @tstamp: Time we arrived/left
 619 *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
 620 *              for retransmit timer
 621 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 622 *      @list: queue head
 623 *      @sk: Socket we are owned by
 624 *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
 625 *              fragmentation management
 626 *      @dev: Device we arrived on/are leaving by
 627 *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
 628 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 629 *      @_skb_refdst: destination entry (with norefcount bit)
 630 *      @sp: the security path, used for xfrm
 631 *      @len: Length of actual data
 632 *      @data_len: Data length
 633 *      @mac_len: Length of link layer header
 634 *      @hdr_len: writable header length of cloned skb
 635 *      @csum: Checksum (must include start/offset pair)
 636 *      @csum_start: Offset from skb->head where checksumming should start
 637 *      @csum_offset: Offset from csum_start where checksum should be stored
 638 *      @priority: Packet queueing priority
 639 *      @ignore_df: allow local fragmentation
 640 *      @cloned: Head may be cloned (check refcnt to be sure)
 641 *      @ip_summed: Driver fed us an IP checksum
 642 *      @nohdr: Payload reference only, must not modify header
 643 *      @pkt_type: Packet class
 644 *      @fclone: skbuff clone status
 645 *      @ipvs_property: skbuff is owned by ipvs
 646 *      @inner_protocol_type: whether the inner protocol is
 647 *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
 648 *      @remcsum_offload: remote checksum offload is enabled
 649 *      @offload_fwd_mark: Packet was L2-forwarded in hardware
 650 *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
 651 *      @tc_skip_classify: do not classify packet. set by IFB device
 652 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 653 *      @redirected: packet was redirected by packet classifier
 654 *      @from_ingress: packet was redirected from the ingress path
 655 *      @peeked: this packet has been seen already, so stats have been
 656 *              done for it, don't do them again
 657 *      @nf_trace: netfilter packet trace flag
 658 *      @protocol: Packet protocol from driver
 659 *      @destructor: Destruct function
 660 *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
 661 *      @_sk_redir: socket redirection information for skmsg
 662 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 663 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 664 *      @skb_iif: ifindex of device we arrived on
 665 *      @tc_index: Traffic control index
 666 *      @hash: the packet hash
 667 *      @queue_mapping: Queue mapping for multiqueue devices
 668 *      @head_frag: skb was allocated from page fragments,
 669 *              not allocated by kmalloc() or vmalloc().
 670 *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
 671 *      @pp_recycle: mark the packet for recycling instead of freeing (implies
 672 *              page_pool support on driver)
 673 *      @active_extensions: active extensions (skb_ext_id types)
 674 *      @ndisc_nodetype: router type (from link layer)
 675 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 676 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 677 *              ports.
 678 *      @sw_hash: indicates hash was computed in software stack
 679 *      @wifi_acked_valid: wifi_acked was set
 680 *      @wifi_acked: whether frame was acked on wifi or not
 681 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 682 *      @encapsulation: indicates the inner headers in the skbuff are valid
 683 *      @encap_hdr_csum: software checksum is needed
 684 *      @csum_valid: checksum is already valid
 685 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 686 *      @csum_complete_sw: checksum was completed by software
 687 *      @csum_level: indicates the number of consecutive checksums found in
 688 *              the packet minus one that have been verified as
 689 *              CHECKSUM_UNNECESSARY (max 3)
 690 *      @dst_pending_confirm: need to confirm neighbour
 691 *      @decrypted: Decrypted SKB
 692 *      @napi_id: id of the NAPI struct this skb came from
 693 *      @sender_cpu: (aka @napi_id) source CPU in XPS
 694 *      @secmark: security marking
 695 *      @mark: Generic packet mark
 696 *      @reserved_tailroom: (aka @mark) number of bytes of free space available
 697 *              at the tail of an sk_buff
 698 *      @vlan_present: VLAN tag is present
 699 *      @vlan_proto: vlan encapsulation protocol
 700 *      @vlan_tci: vlan tag control information
 701 *      @inner_protocol: Protocol (encapsulation)
 702 *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
 703 *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
 704 *      @inner_transport_header: Inner transport layer header (encapsulation)
 705 *      @inner_network_header: Network layer header (encapsulation)
 706 *      @inner_mac_header: Link layer header (encapsulation)
 707 *      @transport_header: Transport layer header
 708 *      @network_header: Network layer header
 709 *      @mac_header: Link layer header
 710 *      @kcov_handle: KCOV remote handle for remote coverage collection
 711 *      @tail: Tail pointer
 712 *      @end: End pointer
 713 *      @head: Head of buffer
 714 *      @data: Data head pointer
 715 *      @truesize: Buffer size
 716 *      @users: User count - see {datagram,tcp}.c
 717 *      @extensions: allocated extensions, valid if active_extensions is nonzero
 718 */
 719
 720struct sk_buff {
 721        union {
 722                struct {
 723                        /* These two members must be first. */
 724                        struct sk_buff          *next;
 725                        struct sk_buff          *prev;
 726
 727                        union {
 728                                struct net_device       *dev;
 729                                /* Some protocols might use this space to store information,
 730                                 * while device pointer would be NULL.
 731                                 * UDP receive path is one user.
 732                                 */
 733                                unsigned long           dev_scratch;
 734                        };
 735                };
 736                struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
 737                struct list_head        list;
 738        };
 739
 740        union {
 741                struct sock             *sk;
 742                int                     ip_defrag_offset;
 743        };
 744
 745        union {
 746                ktime_t         tstamp;
 747                u64             skb_mstamp_ns; /* earliest departure time */
 748        };
 749        /*
 750         * This is the control buffer. It is free to use for every
 751         * layer. Please put your private variables there. If you
 752         * want to keep them across layers you have to do a skb_clone()
 753         * first. This is owned by whoever has the skb queued ATM.
 754         */
 755        char                    cb[48] __aligned(8);
 756
 757        union {
 758                struct {
 759                        unsigned long   _skb_refdst;
 760                        void            (*destructor)(struct sk_buff *skb);
 761                };
 762                struct list_head        tcp_tsorted_anchor;
 763#ifdef CONFIG_NET_SOCK_MSG
 764                unsigned long           _sk_redir;
 765#endif
 766        };
 767
 768#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 769        unsigned long            _nfct;
 770#endif
 771        unsigned int            len,
 772                                data_len;
 773        __u16                   mac_len,
 774                                hdr_len;
 775
 776        /* Following fields are _not_ copied in __copy_skb_header()
 777         * Note that queue_mapping is here mostly to fill a hole.
 778         */
 779        __u16                   queue_mapping;
 780
 781/* if you move cloned around you also must adapt those constants */
 782#ifdef __BIG_ENDIAN_BITFIELD
 783#define CLONED_MASK     (1 << 7)
 784#else
 785#define CLONED_MASK     1
 786#endif
 787#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 788
 789        /* private: */
 790        __u8                    __cloned_offset[0];
 791        /* public: */
 792        __u8                    cloned:1,
 793                                nohdr:1,
 794                                fclone:2,
 795                                peeked:1,
 796                                head_frag:1,
 797                                pfmemalloc:1,
 798                                pp_recycle:1; /* page_pool recycle indicator */
 799#ifdef CONFIG_SKB_EXTENSIONS
 800        __u8                    active_extensions;
 801#endif
 802
 803        /* fields enclosed in headers_start/headers_end are copied
 804         * using a single memcpy() in __copy_skb_header()
 805         */
 806        /* private: */
 807        __u32                   headers_start[0];
 808        /* public: */
 809
 810/* if you move pkt_type around you also must adapt those constants */
 811#ifdef __BIG_ENDIAN_BITFIELD
 812#define PKT_TYPE_MAX    (7 << 5)
 813#else
 814#define PKT_TYPE_MAX    7
 815#endif
 816#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 817
 818        /* private: */
 819        __u8                    __pkt_type_offset[0];
 820        /* public: */
 821        __u8                    pkt_type:3;
 822        __u8                    ignore_df:1;
 823        __u8                    nf_trace:1;
 824        __u8                    ip_summed:2;
 825        __u8                    ooo_okay:1;
 826
 827        __u8                    l4_hash:1;
 828        __u8                    sw_hash:1;
 829        __u8                    wifi_acked_valid:1;
 830        __u8                    wifi_acked:1;
 831        __u8                    no_fcs:1;
 832        /* Indicates the inner headers are valid in the skbuff. */
 833        __u8                    encapsulation:1;
 834        __u8                    encap_hdr_csum:1;
 835        __u8                    csum_valid:1;
 836
 837#ifdef __BIG_ENDIAN_BITFIELD
 838#define PKT_VLAN_PRESENT_BIT    7
 839#else
 840#define PKT_VLAN_PRESENT_BIT    0
 841#endif
 842#define PKT_VLAN_PRESENT_OFFSET()       offsetof(struct sk_buff, __pkt_vlan_present_offset)
 843        /* private: */
 844        __u8                    __pkt_vlan_present_offset[0];
 845        /* public: */
 846        __u8                    vlan_present:1;
 847        __u8                    csum_complete_sw:1;
 848        __u8                    csum_level:2;
 849        __u8                    csum_not_inet:1;
 850        __u8                    dst_pending_confirm:1;
 851#ifdef CONFIG_IPV6_NDISC_NODETYPE
 852        __u8                    ndisc_nodetype:2;
 853#endif
 854
 855        __u8                    ipvs_property:1;
 856        __u8                    inner_protocol_type:1;
 857        __u8                    remcsum_offload:1;
 858#ifdef CONFIG_NET_SWITCHDEV
 859        __u8                    offload_fwd_mark:1;
 860        __u8                    offload_l3_fwd_mark:1;
 861#endif
 862#ifdef CONFIG_NET_CLS_ACT
 863        __u8                    tc_skip_classify:1;
 864        __u8                    tc_at_ingress:1;
 865#endif
 866#ifdef CONFIG_NET_REDIRECT
 867        __u8                    redirected:1;
 868        __u8                    from_ingress:1;
 869#endif
 870#ifdef CONFIG_TLS_DEVICE
 871        __u8                    decrypted:1;
 872#endif
 873
 874#ifdef CONFIG_NET_SCHED
 875        __u16                   tc_index;       /* traffic control index */
 876#endif
 877
 878        union {
 879                __wsum          csum;
 880                struct {
 881                        __u16   csum_start;
 882                        __u16   csum_offset;
 883                };
 884        };
 885        __u32                   priority;
 886        int                     skb_iif;
 887        __u32                   hash;
 888        __be16                  vlan_proto;
 889        __u16                   vlan_tci;
 890#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 891        union {
 892                unsigned int    napi_id;
 893                unsigned int    sender_cpu;
 894        };
 895#endif
 896#ifdef CONFIG_NETWORK_SECMARK
 897        __u32           secmark;
 898#endif
 899
 900        union {
 901                __u32           mark;
 902                __u32           reserved_tailroom;
 903        };
 904
 905        union {
 906                __be16          inner_protocol;
 907                __u8            inner_ipproto;
 908        };
 909
 910        __u16                   inner_transport_header;
 911        __u16                   inner_network_header;
 912        __u16                   inner_mac_header;
 913
 914        __be16                  protocol;
 915        __u16                   transport_header;
 916        __u16                   network_header;
 917        __u16                   mac_header;
 918
 919#ifdef CONFIG_KCOV
 920        u64                     kcov_handle;
 921#endif
 922
 923        /* private: */
 924        __u32                   headers_end[0];
 925        /* public: */
 926
 927        /* These elements must be at the end, see alloc_skb() for details.  */
 928        sk_buff_data_t          tail;
 929        sk_buff_data_t          end;
 930        unsigned char           *head,
 931                                *data;
 932        unsigned int            truesize;
 933        refcount_t              users;
 934
 935#ifdef CONFIG_SKB_EXTENSIONS
 936        /* only useable after checking ->active_extensions != 0 */
 937        struct skb_ext          *extensions;
 938#endif
 939};
 940
 941#ifdef __KERNEL__
 942/*
 943 *      Handling routines are only of interest to the kernel
 944 */
 945
 946#define SKB_ALLOC_FCLONE        0x01
 947#define SKB_ALLOC_RX            0x02
 948#define SKB_ALLOC_NAPI          0x04
 949
 950/**
 951 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
 952 * @skb: buffer
 953 */
 954static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 955{
 956        return unlikely(skb->pfmemalloc);
 957}
 958
 959/*
 960 * skb might have a dst pointer attached, refcounted or not.
 961 * _skb_refdst low order bit is set if refcount was _not_ taken
 962 */
 963#define SKB_DST_NOREF   1UL
 964#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 965
 966/**
 967 * skb_dst - returns skb dst_entry
 968 * @skb: buffer
 969 *
 970 * Returns skb dst_entry, regardless of reference taken or not.
 971 */
 972static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 973{
 974        /* If refdst was not refcounted, check we still are in a
 975         * rcu_read_lock section
 976         */
 977        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 978                !rcu_read_lock_held() &&
 979                !rcu_read_lock_bh_held());
 980        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 981}
 982
 983/**
 984 * skb_dst_set - sets skb dst
 985 * @skb: buffer
 986 * @dst: dst entry
 987 *
 988 * Sets skb dst, assuming a reference was taken on dst and should
 989 * be released by skb_dst_drop()
 990 */
 991static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 992{
 993        skb->_skb_refdst = (unsigned long)dst;
 994}
 995
 996/**
 997 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 998 * @skb: buffer
 999 * @dst: dst entry
1000 *
1001 * Sets skb dst, assuming a reference was not taken on dst.
1002 * If dst entry is cached, we do not take reference and dst_release
1003 * will be avoided by refdst_drop. If dst entry is not cached, we take
1004 * reference, so that last dst_release can destroy the dst immediately.
1005 */
1006static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1007{
1008        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1009        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1010}
1011
1012/**
1013 * skb_dst_is_noref - Test if skb dst isn't refcounted
1014 * @skb: buffer
1015 */
1016static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1017{
1018        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1019}
1020
1021/**
1022 * skb_rtable - Returns the skb &rtable
1023 * @skb: buffer
1024 */
1025static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1026{
1027        return (struct rtable *)skb_dst(skb);
1028}
1029
1030/* For mangling skb->pkt_type from user space side from applications
1031 * such as nft, tc, etc, we only allow a conservative subset of
1032 * possible pkt_types to be set.
1033*/
1034static inline bool skb_pkt_type_ok(u32 ptype)
1035{
1036        return ptype <= PACKET_OTHERHOST;
1037}
1038
1039/**
1040 * skb_napi_id - Returns the skb's NAPI id
1041 * @skb: buffer
1042 */
1043static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1044{
1045#ifdef CONFIG_NET_RX_BUSY_POLL
1046        return skb->napi_id;
1047#else
1048        return 0;
1049#endif
1050}
1051
1052/**
1053 * skb_unref - decrement the skb's reference count
1054 * @skb: buffer
1055 *
1056 * Returns true if we can free the skb.
1057 */
1058static inline bool skb_unref(struct sk_buff *skb)
1059{
1060        if (unlikely(!skb))
1061                return false;
1062        if (likely(refcount_read(&skb->users) == 1))
1063                smp_rmb();
1064        else if (likely(!refcount_dec_and_test(&skb->users)))
1065                return false;
1066
1067        return true;
1068}
1069
1070void skb_release_head_state(struct sk_buff *skb);
1071void kfree_skb(struct sk_buff *skb);
1072void kfree_skb_list(struct sk_buff *segs);
1073void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1074void skb_tx_error(struct sk_buff *skb);
1075
1076#ifdef CONFIG_TRACEPOINTS
1077void consume_skb(struct sk_buff *skb);
1078#else
1079static inline void consume_skb(struct sk_buff *skb)
1080{
1081        return kfree_skb(skb);
1082}
1083#endif
1084
1085void __consume_stateless_skb(struct sk_buff *skb);
1086void  __kfree_skb(struct sk_buff *skb);
1087extern struct kmem_cache *skbuff_head_cache;
1088
1089void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1090bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1091                      bool *fragstolen, int *delta_truesize);
1092
1093struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1094                            int node);
1095struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1096struct sk_buff *build_skb(void *data, unsigned int frag_size);
1097struct sk_buff *build_skb_around(struct sk_buff *skb,
1098                                 void *data, unsigned int frag_size);
1099
1100struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1101
1102/**
1103 * alloc_skb - allocate a network buffer
1104 * @size: size to allocate
1105 * @priority: allocation mask
1106 *
1107 * This function is a convenient wrapper around __alloc_skb().
1108 */
1109static inline struct sk_buff *alloc_skb(unsigned int size,
1110                                        gfp_t priority)
1111{
1112        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1113}
1114
1115struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1116                                     unsigned long data_len,
1117                                     int max_page_order,
1118                                     int *errcode,
1119                                     gfp_t gfp_mask);
1120struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1121
1122/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1123struct sk_buff_fclones {
1124        struct sk_buff  skb1;
1125
1126        struct sk_buff  skb2;
1127
1128        refcount_t      fclone_ref;
1129};
1130
1131/**
1132 *      skb_fclone_busy - check if fclone is busy
1133 *      @sk: socket
1134 *      @skb: buffer
1135 *
1136 * Returns true if skb is a fast clone, and its clone is not freed.
1137 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1138 * so we also check that this didnt happen.
1139 */
1140static inline bool skb_fclone_busy(const struct sock *sk,
1141                                   const struct sk_buff *skb)
1142{
1143        const struct sk_buff_fclones *fclones;
1144
1145        fclones = container_of(skb, struct sk_buff_fclones, skb1);
1146
1147        return skb->fclone == SKB_FCLONE_ORIG &&
1148               refcount_read(&fclones->fclone_ref) > 1 &&
1149               READ_ONCE(fclones->skb2.sk) == sk;
1150}
1151
1152/**
1153 * alloc_skb_fclone - allocate a network buffer from fclone cache
1154 * @size: size to allocate
1155 * @priority: allocation mask
1156 *
1157 * This function is a convenient wrapper around __alloc_skb().
1158 */
1159static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1160                                               gfp_t priority)
1161{
1162        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1163}
1164
1165struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1166void skb_headers_offset_update(struct sk_buff *skb, int off);
1167int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1168struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1169void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1170struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1171struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1172                                   gfp_t gfp_mask, bool fclone);
1173static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1174                                          gfp_t gfp_mask)
1175{
1176        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1177}
1178
1179int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1180struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1181                                     unsigned int headroom);
1182struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1183                                int newtailroom, gfp_t priority);
1184int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1185                                     int offset, int len);
1186int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1187                              int offset, int len);
1188int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1189int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1190
1191/**
1192 *      skb_pad                 -       zero pad the tail of an skb
1193 *      @skb: buffer to pad
1194 *      @pad: space to pad
1195 *
1196 *      Ensure that a buffer is followed by a padding area that is zero
1197 *      filled. Used by network drivers which may DMA or transfer data
1198 *      beyond the buffer end onto the wire.
1199 *
1200 *      May return error in out of memory cases. The skb is freed on error.
1201 */
1202static inline int skb_pad(struct sk_buff *skb, int pad)
1203{
1204        return __skb_pad(skb, pad, true);
1205}
1206#define dev_kfree_skb(a)        consume_skb(a)
1207
1208int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1209                         int offset, size_t size);
1210
1211struct skb_seq_state {
1212        __u32           lower_offset;
1213        __u32           upper_offset;
1214        __u32           frag_idx;
1215        __u32           stepped_offset;
1216        struct sk_buff  *root_skb;
1217        struct sk_buff  *cur_skb;
1218        __u8            *frag_data;
1219        __u32           frag_off;
1220};
1221
1222void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1223                          unsigned int to, struct skb_seq_state *st);
1224unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1225                          struct skb_seq_state *st);
1226void skb_abort_seq_read(struct skb_seq_state *st);
1227
1228unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1229                           unsigned int to, struct ts_config *config);
1230
1231/*
1232 * Packet hash types specify the type of hash in skb_set_hash.
1233 *
1234 * Hash types refer to the protocol layer addresses which are used to
1235 * construct a packet's hash. The hashes are used to differentiate or identify
1236 * flows of the protocol layer for the hash type. Hash types are either
1237 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1238 *
1239 * Properties of hashes:
1240 *
1241 * 1) Two packets in different flows have different hash values
1242 * 2) Two packets in the same flow should have the same hash value
1243 *
1244 * A hash at a higher layer is considered to be more specific. A driver should
1245 * set the most specific hash possible.
1246 *
1247 * A driver cannot indicate a more specific hash than the layer at which a hash
1248 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1249 *
1250 * A driver may indicate a hash level which is less specific than the
1251 * actual layer the hash was computed on. For instance, a hash computed
1252 * at L4 may be considered an L3 hash. This should only be done if the
1253 * driver can't unambiguously determine that the HW computed the hash at
1254 * the higher layer. Note that the "should" in the second property above
1255 * permits this.
1256 */
1257enum pkt_hash_types {
1258        PKT_HASH_TYPE_NONE,     /* Undefined type */
1259        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1260        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1261        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1262};
1263
1264static inline void skb_clear_hash(struct sk_buff *skb)
1265{
1266        skb->hash = 0;
1267        skb->sw_hash = 0;
1268        skb->l4_hash = 0;
1269}
1270
1271static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1272{
1273        if (!skb->l4_hash)
1274                skb_clear_hash(skb);
1275}
1276
1277static inline void
1278__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1279{
1280        skb->l4_hash = is_l4;
1281        skb->sw_hash = is_sw;
1282        skb->hash = hash;
1283}
1284
1285static inline void
1286skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1287{
1288        /* Used by drivers to set hash from HW */
1289        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1290}
1291
1292static inline void
1293__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1294{
1295        __skb_set_hash(skb, hash, true, is_l4);
1296}
1297
1298void __skb_get_hash(struct sk_buff *skb);
1299u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1300u32 skb_get_poff(const struct sk_buff *skb);
1301u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1302                   const struct flow_keys_basic *keys, int hlen);
1303__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1304                            const void *data, int hlen_proto);
1305
1306static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1307                                        int thoff, u8 ip_proto)
1308{
1309        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1310}
1311
1312void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1313                             const struct flow_dissector_key *key,
1314                             unsigned int key_count);
1315
1316struct bpf_flow_dissector;
1317bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1318                      __be16 proto, int nhoff, int hlen, unsigned int flags);
1319
1320bool __skb_flow_dissect(const struct net *net,
1321                        const struct sk_buff *skb,
1322                        struct flow_dissector *flow_dissector,
1323                        void *target_container, const void *data,
1324                        __be16 proto, int nhoff, int hlen, unsigned int flags);
1325
1326static inline bool skb_flow_dissect(const struct sk_buff *skb,
1327                                    struct flow_dissector *flow_dissector,
1328                                    void *target_container, unsigned int flags)
1329{
1330        return __skb_flow_dissect(NULL, skb, flow_dissector,
1331                                  target_container, NULL, 0, 0, 0, flags);
1332}
1333
1334static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1335                                              struct flow_keys *flow,
1336                                              unsigned int flags)
1337{
1338        memset(flow, 0, sizeof(*flow));
1339        return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1340                                  flow, NULL, 0, 0, 0, flags);
1341}
1342
1343static inline bool
1344skb_flow_dissect_flow_keys_basic(const struct net *net,
1345                                 const struct sk_buff *skb,
1346                                 struct flow_keys_basic *flow,
1347                                 const void *data, __be16 proto,
1348                                 int nhoff, int hlen, unsigned int flags)
1349{
1350        memset(flow, 0, sizeof(*flow));
1351        return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1352                                  data, proto, nhoff, hlen, flags);
1353}
1354
1355void skb_flow_dissect_meta(const struct sk_buff *skb,
1356                           struct flow_dissector *flow_dissector,
1357                           void *target_container);
1358
1359/* Gets a skb connection tracking info, ctinfo map should be a
1360 * map of mapsize to translate enum ip_conntrack_info states
1361 * to user states.
1362 */
1363void
1364skb_flow_dissect_ct(const struct sk_buff *skb,
1365                    struct flow_dissector *flow_dissector,
1366                    void *target_container,
1367                    u16 *ctinfo_map, size_t mapsize,
1368                    bool post_ct);
1369void
1370skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1371                             struct flow_dissector *flow_dissector,
1372                             void *target_container);
1373
1374void skb_flow_dissect_hash(const struct sk_buff *skb,
1375                           struct flow_dissector *flow_dissector,
1376                           void *target_container);
1377
1378static inline __u32 skb_get_hash(struct sk_buff *skb)
1379{
1380        if (!skb->l4_hash && !skb->sw_hash)
1381                __skb_get_hash(skb);
1382
1383        return skb->hash;
1384}
1385
1386static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1387{
1388        if (!skb->l4_hash && !skb->sw_hash) {
1389                struct flow_keys keys;
1390                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1391
1392                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1393        }
1394
1395        return skb->hash;
1396}
1397
1398__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1399                           const siphash_key_t *perturb);
1400
1401static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1402{
1403        return skb->hash;
1404}
1405
1406static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1407{
1408        to->hash = from->hash;
1409        to->sw_hash = from->sw_hash;
1410        to->l4_hash = from->l4_hash;
1411};
1412
1413static inline void skb_copy_decrypted(struct sk_buff *to,
1414                                      const struct sk_buff *from)
1415{
1416#ifdef CONFIG_TLS_DEVICE
1417        to->decrypted = from->decrypted;
1418#endif
1419}
1420
1421#ifdef NET_SKBUFF_DATA_USES_OFFSET
1422static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1423{
1424        return skb->head + skb->end;
1425}
1426
1427static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1428{
1429        return skb->end;
1430}
1431#else
1432static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1433{
1434        return skb->end;
1435}
1436
1437static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1438{
1439        return skb->end - skb->head;
1440}
1441#endif
1442
1443/* Internal */
1444#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1445
1446static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1447{
1448        return &skb_shinfo(skb)->hwtstamps;
1449}
1450
1451static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1452{
1453        bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1454
1455        return is_zcopy ? skb_uarg(skb) : NULL;
1456}
1457
1458static inline void net_zcopy_get(struct ubuf_info *uarg)
1459{
1460        refcount_inc(&uarg->refcnt);
1461}
1462
1463static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1464{
1465        skb_shinfo(skb)->destructor_arg = uarg;
1466        skb_shinfo(skb)->flags |= uarg->flags;
1467}
1468
1469static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1470                                 bool *have_ref)
1471{
1472        if (skb && uarg && !skb_zcopy(skb)) {
1473                if (unlikely(have_ref && *have_ref))
1474                        *have_ref = false;
1475                else
1476                        net_zcopy_get(uarg);
1477                skb_zcopy_init(skb, uarg);
1478        }
1479}
1480
1481static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1482{
1483        skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1484        skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1485}
1486
1487static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1488{
1489        return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1490}
1491
1492static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1493{
1494        return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1495}
1496
1497static inline void net_zcopy_put(struct ubuf_info *uarg)
1498{
1499        if (uarg)
1500                uarg->callback(NULL, uarg, true);
1501}
1502
1503static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1504{
1505        if (uarg) {
1506                if (uarg->callback == msg_zerocopy_callback)
1507                        msg_zerocopy_put_abort(uarg, have_uref);
1508                else if (have_uref)
1509                        net_zcopy_put(uarg);
1510        }
1511}
1512
1513/* Release a reference on a zerocopy structure */
1514static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1515{
1516        struct ubuf_info *uarg = skb_zcopy(skb);
1517
1518        if (uarg) {
1519                if (!skb_zcopy_is_nouarg(skb))
1520                        uarg->callback(skb, uarg, zerocopy_success);
1521
1522                skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1523        }
1524}
1525
1526static inline void skb_mark_not_on_list(struct sk_buff *skb)
1527{
1528        skb->next = NULL;
1529}
1530
1531/* Iterate through singly-linked GSO fragments of an skb. */
1532#define skb_list_walk_safe(first, skb, next_skb)                               \
1533        for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1534             (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1535
1536static inline void skb_list_del_init(struct sk_buff *skb)
1537{
1538        __list_del_entry(&skb->list);
1539        skb_mark_not_on_list(skb);
1540}
1541
1542/**
1543 *      skb_queue_empty - check if a queue is empty
1544 *      @list: queue head
1545 *
1546 *      Returns true if the queue is empty, false otherwise.
1547 */
1548static inline int skb_queue_empty(const struct sk_buff_head *list)
1549{
1550        return list->next == (const struct sk_buff *) list;
1551}
1552
1553/**
1554 *      skb_queue_empty_lockless - check if a queue is empty
1555 *      @list: queue head
1556 *
1557 *      Returns true if the queue is empty, false otherwise.
1558 *      This variant can be used in lockless contexts.
1559 */
1560static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1561{
1562        return READ_ONCE(list->next) == (const struct sk_buff *) list;
1563}
1564
1565
1566/**
1567 *      skb_queue_is_last - check if skb is the last entry in the queue
1568 *      @list: queue head
1569 *      @skb: buffer
1570 *
1571 *      Returns true if @skb is the last buffer on the list.
1572 */
1573static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1574                                     const struct sk_buff *skb)
1575{
1576        return skb->next == (const struct sk_buff *) list;
1577}
1578
1579/**
1580 *      skb_queue_is_first - check if skb is the first entry in the queue
1581 *      @list: queue head
1582 *      @skb: buffer
1583 *
1584 *      Returns true if @skb is the first buffer on the list.
1585 */
1586static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1587                                      const struct sk_buff *skb)
1588{
1589        return skb->prev == (const struct sk_buff *) list;
1590}
1591
1592/**
1593 *      skb_queue_next - return the next packet in the queue
1594 *      @list: queue head
1595 *      @skb: current buffer
1596 *
1597 *      Return the next packet in @list after @skb.  It is only valid to
1598 *      call this if skb_queue_is_last() evaluates to false.
1599 */
1600static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1601                                             const struct sk_buff *skb)
1602{
1603        /* This BUG_ON may seem severe, but if we just return then we
1604         * are going to dereference garbage.
1605         */
1606        BUG_ON(skb_queue_is_last(list, skb));
1607        return skb->next;
1608}
1609
1610/**
1611 *      skb_queue_prev - return the prev packet in the queue
1612 *      @list: queue head
1613 *      @skb: current buffer
1614 *
1615 *      Return the prev packet in @list before @skb.  It is only valid to
1616 *      call this if skb_queue_is_first() evaluates to false.
1617 */
1618static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1619                                             const struct sk_buff *skb)
1620{
1621        /* This BUG_ON may seem severe, but if we just return then we
1622         * are going to dereference garbage.
1623         */
1624        BUG_ON(skb_queue_is_first(list, skb));
1625        return skb->prev;
1626}
1627
1628/**
1629 *      skb_get - reference buffer
1630 *      @skb: buffer to reference
1631 *
1632 *      Makes another reference to a socket buffer and returns a pointer
1633 *      to the buffer.
1634 */
1635static inline struct sk_buff *skb_get(struct sk_buff *skb)
1636{
1637        refcount_inc(&skb->users);
1638        return skb;
1639}
1640
1641/*
1642 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1643 */
1644
1645/**
1646 *      skb_cloned - is the buffer a clone
1647 *      @skb: buffer to check
1648 *
1649 *      Returns true if the buffer was generated with skb_clone() and is
1650 *      one of multiple shared copies of the buffer. Cloned buffers are
1651 *      shared data so must not be written to under normal circumstances.
1652 */
1653static inline int skb_cloned(const struct sk_buff *skb)
1654{
1655        return skb->cloned &&
1656               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1657}
1658
1659static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1660{
1661        might_sleep_if(gfpflags_allow_blocking(pri));
1662
1663        if (skb_cloned(skb))
1664                return pskb_expand_head(skb, 0, 0, pri);
1665
1666        return 0;
1667}
1668
1669/**
1670 *      skb_header_cloned - is the header a clone
1671 *      @skb: buffer to check
1672 *
1673 *      Returns true if modifying the header part of the buffer requires
1674 *      the data to be copied.
1675 */
1676static inline int skb_header_cloned(const struct sk_buff *skb)
1677{
1678        int dataref;
1679
1680        if (!skb->cloned)
1681                return 0;
1682
1683        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1684        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1685        return dataref != 1;
1686}
1687
1688static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1689{
1690        might_sleep_if(gfpflags_allow_blocking(pri));
1691
1692        if (skb_header_cloned(skb))
1693                return pskb_expand_head(skb, 0, 0, pri);
1694
1695        return 0;
1696}
1697
1698/**
1699 *      __skb_header_release - release reference to header
1700 *      @skb: buffer to operate on
1701 */
1702static inline void __skb_header_release(struct sk_buff *skb)
1703{
1704        skb->nohdr = 1;
1705        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1706}
1707
1708
1709/**
1710 *      skb_shared - is the buffer shared
1711 *      @skb: buffer to check
1712 *
1713 *      Returns true if more than one person has a reference to this
1714 *      buffer.
1715 */
1716static inline int skb_shared(const struct sk_buff *skb)
1717{
1718        return refcount_read(&skb->users) != 1;
1719}
1720
1721/**
1722 *      skb_share_check - check if buffer is shared and if so clone it
1723 *      @skb: buffer to check
1724 *      @pri: priority for memory allocation
1725 *
1726 *      If the buffer is shared the buffer is cloned and the old copy
1727 *      drops a reference. A new clone with a single reference is returned.
1728 *      If the buffer is not shared the original buffer is returned. When
1729 *      being called from interrupt status or with spinlocks held pri must
1730 *      be GFP_ATOMIC.
1731 *
1732 *      NULL is returned on a memory allocation failure.
1733 */
1734static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1735{
1736        might_sleep_if(gfpflags_allow_blocking(pri));
1737        if (skb_shared(skb)) {
1738                struct sk_buff *nskb = skb_clone(skb, pri);
1739
1740                if (likely(nskb))
1741                        consume_skb(skb);
1742                else
1743                        kfree_skb(skb);
1744                skb = nskb;
1745        }
1746        return skb;
1747}
1748
1749/*
1750 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1751 *      packets to handle cases where we have a local reader and forward
1752 *      and a couple of other messy ones. The normal one is tcpdumping
1753 *      a packet thats being forwarded.
1754 */
1755
1756/**
1757 *      skb_unshare - make a copy of a shared buffer
1758 *      @skb: buffer to check
1759 *      @pri: priority for memory allocation
1760 *
1761 *      If the socket buffer is a clone then this function creates a new
1762 *      copy of the data, drops a reference count on the old copy and returns
1763 *      the new copy with the reference count at 1. If the buffer is not a clone
1764 *      the original buffer is returned. When called with a spinlock held or
1765 *      from interrupt state @pri must be %GFP_ATOMIC
1766 *
1767 *      %NULL is returned on a memory allocation failure.
1768 */
1769static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1770                                          gfp_t pri)
1771{
1772        might_sleep_if(gfpflags_allow_blocking(pri));
1773        if (skb_cloned(skb)) {
1774                struct sk_buff *nskb = skb_copy(skb, pri);
1775
1776                /* Free our shared copy */
1777                if (likely(nskb))
1778                        consume_skb(skb);
1779                else
1780                        kfree_skb(skb);
1781                skb = nskb;
1782        }
1783        return skb;
1784}
1785
1786/**
1787 *      skb_peek - peek at the head of an &sk_buff_head
1788 *      @list_: list to peek at
1789 *
1790 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1791 *      be careful with this one. A peek leaves the buffer on the
1792 *      list and someone else may run off with it. You must hold
1793 *      the appropriate locks or have a private queue to do this.
1794 *
1795 *      Returns %NULL for an empty list or a pointer to the head element.
1796 *      The reference count is not incremented and the reference is therefore
1797 *      volatile. Use with caution.
1798 */
1799static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1800{
1801        struct sk_buff *skb = list_->next;
1802
1803        if (skb == (struct sk_buff *)list_)
1804                skb = NULL;
1805        return skb;
1806}
1807
1808/**
1809 *      __skb_peek - peek at the head of a non-empty &sk_buff_head
1810 *      @list_: list to peek at
1811 *
1812 *      Like skb_peek(), but the caller knows that the list is not empty.
1813 */
1814static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1815{
1816        return list_->next;
1817}
1818
1819/**
1820 *      skb_peek_next - peek skb following the given one from a queue
1821 *      @skb: skb to start from
1822 *      @list_: list to peek at
1823 *
1824 *      Returns %NULL when the end of the list is met or a pointer to the
1825 *      next element. The reference count is not incremented and the
1826 *      reference is therefore volatile. Use with caution.
1827 */
1828static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1829                const struct sk_buff_head *list_)
1830{
1831        struct sk_buff *next = skb->next;
1832
1833        if (next == (struct sk_buff *)list_)
1834                next = NULL;
1835        return next;
1836}
1837
1838/**
1839 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1840 *      @list_: list to peek at
1841 *
1842 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1843 *      be careful with this one. A peek leaves the buffer on the
1844 *      list and someone else may run off with it. You must hold
1845 *      the appropriate locks or have a private queue to do this.
1846 *
1847 *      Returns %NULL for an empty list or a pointer to the tail element.
1848 *      The reference count is not incremented and the reference is therefore
1849 *      volatile. Use with caution.
1850 */
1851static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1852{
1853        struct sk_buff *skb = READ_ONCE(list_->prev);
1854
1855        if (skb == (struct sk_buff *)list_)
1856                skb = NULL;
1857        return skb;
1858
1859}
1860
1861/**
1862 *      skb_queue_len   - get queue length
1863 *      @list_: list to measure
1864 *
1865 *      Return the length of an &sk_buff queue.
1866 */
1867static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1868{
1869        return list_->qlen;
1870}
1871
1872/**
1873 *      skb_queue_len_lockless  - get queue length
1874 *      @list_: list to measure
1875 *
1876 *      Return the length of an &sk_buff queue.
1877 *      This variant can be used in lockless contexts.
1878 */
1879static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1880{
1881        return READ_ONCE(list_->qlen);
1882}
1883
1884/**
1885 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1886 *      @list: queue to initialize
1887 *
1888 *      This initializes only the list and queue length aspects of
1889 *      an sk_buff_head object.  This allows to initialize the list
1890 *      aspects of an sk_buff_head without reinitializing things like
1891 *      the spinlock.  It can also be used for on-stack sk_buff_head
1892 *      objects where the spinlock is known to not be used.
1893 */
1894static inline void __skb_queue_head_init(struct sk_buff_head *list)
1895{
1896        list->prev = list->next = (struct sk_buff *)list;
1897        list->qlen = 0;
1898}
1899
1900/*
1901 * This function creates a split out lock class for each invocation;
1902 * this is needed for now since a whole lot of users of the skb-queue
1903 * infrastructure in drivers have different locking usage (in hardirq)
1904 * than the networking core (in softirq only). In the long run either the
1905 * network layer or drivers should need annotation to consolidate the
1906 * main types of usage into 3 classes.
1907 */
1908static inline void skb_queue_head_init(struct sk_buff_head *list)
1909{
1910        spin_lock_init(&list->lock);
1911        __skb_queue_head_init(list);
1912}
1913
1914static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1915                struct lock_class_key *class)
1916{
1917        skb_queue_head_init(list);
1918        lockdep_set_class(&list->lock, class);
1919}
1920
1921/*
1922 *      Insert an sk_buff on a list.
1923 *
1924 *      The "__skb_xxxx()" functions are the non-atomic ones that
1925 *      can only be called with interrupts disabled.
1926 */
1927static inline void __skb_insert(struct sk_buff *newsk,
1928                                struct sk_buff *prev, struct sk_buff *next,
1929                                struct sk_buff_head *list)
1930{
1931        /* See skb_queue_empty_lockless() and skb_peek_tail()
1932         * for the opposite READ_ONCE()
1933         */
1934        WRITE_ONCE(newsk->next, next);
1935        WRITE_ONCE(newsk->prev, prev);
1936        WRITE_ONCE(next->prev, newsk);
1937        WRITE_ONCE(prev->next, newsk);
1938        list->qlen++;
1939}
1940
1941static inline void __skb_queue_splice(const struct sk_buff_head *list,
1942                                      struct sk_buff *prev,
1943                                      struct sk_buff *next)
1944{
1945        struct sk_buff *first = list->next;
1946        struct sk_buff *last = list->prev;
1947
1948        WRITE_ONCE(first->prev, prev);
1949        WRITE_ONCE(prev->next, first);
1950
1951        WRITE_ONCE(last->next, next);
1952        WRITE_ONCE(next->prev, last);
1953}
1954
1955/**
1956 *      skb_queue_splice - join two skb lists, this is designed for stacks
1957 *      @list: the new list to add
1958 *      @head: the place to add it in the first list
1959 */
1960static inline void skb_queue_splice(const struct sk_buff_head *list,
1961                                    struct sk_buff_head *head)
1962{
1963        if (!skb_queue_empty(list)) {
1964                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1965                head->qlen += list->qlen;
1966        }
1967}
1968
1969/**
1970 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1971 *      @list: the new list to add
1972 *      @head: the place to add it in the first list
1973 *
1974 *      The list at @list is reinitialised
1975 */
1976static inline void skb_queue_splice_init(struct sk_buff_head *list,
1977                                         struct sk_buff_head *head)
1978{
1979        if (!skb_queue_empty(list)) {
1980                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1981                head->qlen += list->qlen;
1982                __skb_queue_head_init(list);
1983        }
1984}
1985
1986/**
1987 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1988 *      @list: the new list to add
1989 *      @head: the place to add it in the first list
1990 */
1991static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1992                                         struct sk_buff_head *head)
1993{
1994        if (!skb_queue_empty(list)) {
1995                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1996                head->qlen += list->qlen;
1997        }
1998}
1999
2000/**
2001 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2002 *      @list: the new list to add
2003 *      @head: the place to add it in the first list
2004 *
2005 *      Each of the lists is a queue.
2006 *      The list at @list is reinitialised
2007 */
2008static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2009                                              struct sk_buff_head *head)
2010{
2011        if (!skb_queue_empty(list)) {
2012                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2013                head->qlen += list->qlen;
2014                __skb_queue_head_init(list);
2015        }
2016}
2017
2018/**
2019 *      __skb_queue_after - queue a buffer at the list head
2020 *      @list: list to use
2021 *      @prev: place after this buffer
2022 *      @newsk: buffer to queue
2023 *
2024 *      Queue a buffer int the middle of a list. This function takes no locks
2025 *      and you must therefore hold required locks before calling it.
2026 *
2027 *      A buffer cannot be placed on two lists at the same time.
2028 */
2029static inline void __skb_queue_after(struct sk_buff_head *list,
2030                                     struct sk_buff *prev,
2031                                     struct sk_buff *newsk)
2032{
2033        __skb_insert(newsk, prev, prev->next, list);
2034}
2035
2036void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2037                struct sk_buff_head *list);
2038
2039static inline void __skb_queue_before(struct sk_buff_head *list,
2040                                      struct sk_buff *next,
2041                                      struct sk_buff *newsk)
2042{
2043        __skb_insert(newsk, next->prev, next, list);
2044}
2045
2046/**
2047 *      __skb_queue_head - queue a buffer at the list head
2048 *      @list: list to use
2049 *      @newsk: buffer to queue
2050 *
2051 *      Queue a buffer at the start of a list. This function takes no locks
2052 *      and you must therefore hold required locks before calling it.
2053 *
2054 *      A buffer cannot be placed on two lists at the same time.
2055 */
2056static inline void __skb_queue_head(struct sk_buff_head *list,
2057                                    struct sk_buff *newsk)
2058{
2059        __skb_queue_after(list, (struct sk_buff *)list, newsk);
2060}
2061void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2062
2063/**
2064 *      __skb_queue_tail - queue a buffer at the list tail
2065 *      @list: list to use
2066 *      @newsk: buffer to queue
2067 *
2068 *      Queue a buffer at the end of a list. This function takes no locks
2069 *      and you must therefore hold required locks before calling it.
2070 *
2071 *      A buffer cannot be placed on two lists at the same time.
2072 */
2073static inline void __skb_queue_tail(struct sk_buff_head *list,
2074                                   struct sk_buff *newsk)
2075{
2076        __skb_queue_before(list, (struct sk_buff *)list, newsk);
2077}
2078void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2079
2080/*
2081 * remove sk_buff from list. _Must_ be called atomically, and with
2082 * the list known..
2083 */
2084void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2085static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2086{
2087        struct sk_buff *next, *prev;
2088
2089        WRITE_ONCE(list->qlen, list->qlen - 1);
2090        next       = skb->next;
2091        prev       = skb->prev;
2092        skb->next  = skb->prev = NULL;
2093        WRITE_ONCE(next->prev, prev);
2094        WRITE_ONCE(prev->next, next);
2095}
2096
2097/**
2098 *      __skb_dequeue - remove from the head of the queue
2099 *      @list: list to dequeue from
2100 *
2101 *      Remove the head of the list. This function does not take any locks
2102 *      so must be used with appropriate locks held only. The head item is
2103 *      returned or %NULL if the list is empty.
2104 */
2105static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2106{
2107        struct sk_buff *skb = skb_peek(list);
2108        if (skb)
2109                __skb_unlink(skb, list);
2110        return skb;
2111}
2112struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2113
2114/**
2115 *      __skb_dequeue_tail - remove from the tail of the queue
2116 *      @list: list to dequeue from
2117 *
2118 *      Remove the tail of the list. This function does not take any locks
2119 *      so must be used with appropriate locks held only. The tail item is
2120 *      returned or %NULL if the list is empty.
2121 */
2122static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2123{
2124        struct sk_buff *skb = skb_peek_tail(list);
2125        if (skb)
2126                __skb_unlink(skb, list);
2127        return skb;
2128}
2129struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2130
2131
2132static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2133{
2134        return skb->data_len;
2135}
2136
2137static inline unsigned int skb_headlen(const struct sk_buff *skb)
2138{
2139        return skb->len - skb->data_len;
2140}
2141
2142static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2143{
2144        unsigned int i, len = 0;
2145
2146        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2147                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2148        return len;
2149}
2150
2151static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2152{
2153        return skb_headlen(skb) + __skb_pagelen(skb);
2154}
2155
2156/**
2157 * __skb_fill_page_desc - initialise a paged fragment in an skb
2158 * @skb: buffer containing fragment to be initialised
2159 * @i: paged fragment index to initialise
2160 * @page: the page to use for this fragment
2161 * @off: the offset to the data with @page
2162 * @size: the length of the data
2163 *
2164 * Initialises the @i'th fragment of @skb to point to &size bytes at
2165 * offset @off within @page.
2166 *
2167 * Does not take any additional reference on the fragment.
2168 */
2169static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2170                                        struct page *page, int off, int size)
2171{
2172        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2173
2174        /*
2175         * Propagate page pfmemalloc to the skb if we can. The problem is
2176         * that not all callers have unique ownership of the page but rely
2177         * on page_is_pfmemalloc doing the right thing(tm).
2178         */
2179        frag->bv_page             = page;
2180        frag->bv_offset           = off;
2181        skb_frag_size_set(frag, size);
2182
2183        page = compound_head(page);
2184        if (page_is_pfmemalloc(page))
2185                skb->pfmemalloc = true;
2186}
2187
2188/**
2189 * skb_fill_page_desc - initialise a paged fragment in an skb
2190 * @skb: buffer containing fragment to be initialised
2191 * @i: paged fragment index to initialise
2192 * @page: the page to use for this fragment
2193 * @off: the offset to the data with @page
2194 * @size: the length of the data
2195 *
2196 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2197 * @skb to point to @size bytes at offset @off within @page. In
2198 * addition updates @skb such that @i is the last fragment.
2199 *
2200 * Does not take any additional reference on the fragment.
2201 */
2202static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2203                                      struct page *page, int off, int size)
2204{
2205        __skb_fill_page_desc(skb, i, page, off, size);
2206        skb_shinfo(skb)->nr_frags = i + 1;
2207}
2208
2209void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2210                     int size, unsigned int truesize);
2211
2212void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2213                          unsigned int truesize);
2214
2215#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2216
2217#ifdef NET_SKBUFF_DATA_USES_OFFSET
2218static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2219{
2220        return skb->head + skb->tail;
2221}
2222
2223static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2224{
2225        skb->tail = skb->data - skb->head;
2226}
2227
2228static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2229{
2230        skb_reset_tail_pointer(skb);
2231        skb->tail += offset;
2232}
2233
2234#else /* NET_SKBUFF_DATA_USES_OFFSET */
2235static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2236{
2237        return skb->tail;
2238}
2239
2240static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2241{
2242        skb->tail = skb->data;
2243}
2244
2245static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2246{
2247        skb->tail = skb->data + offset;
2248}
2249
2250#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2251
2252/*
2253 *      Add data to an sk_buff
2254 */
2255void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2256void *skb_put(struct sk_buff *skb, unsigned int len);
2257static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2258{
2259        void *tmp = skb_tail_pointer(skb);
2260        SKB_LINEAR_ASSERT(skb);
2261        skb->tail += len;
2262        skb->len  += len;
2263        return tmp;
2264}
2265
2266static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2267{
2268        void *tmp = __skb_put(skb, len);
2269
2270        memset(tmp, 0, len);
2271        return tmp;
2272}
2273
2274static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2275                                   unsigned int len)
2276{
2277        void *tmp = __skb_put(skb, len);
2278
2279        memcpy(tmp, data, len);
2280        return tmp;
2281}
2282
2283static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2284{
2285        *(u8 *)__skb_put(skb, 1) = val;
2286}
2287
2288static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2289{
2290        void *tmp = skb_put(skb, len);
2291
2292        memset(tmp, 0, len);
2293
2294        return tmp;
2295}
2296
2297static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2298                                 unsigned int len)
2299{
2300        void *tmp = skb_put(skb, len);
2301
2302        memcpy(tmp, data, len);
2303
2304        return tmp;
2305}
2306
2307static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2308{
2309        *(u8 *)skb_put(skb, 1) = val;
2310}
2311
2312void *skb_push(struct sk_buff *skb, unsigned int len);
2313static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2314{
2315        skb->data -= len;
2316        skb->len  += len;
2317        return skb->data;
2318}
2319
2320void *skb_pull(struct sk_buff *skb, unsigned int len);
2321static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2322{
2323        skb->len -= len;
2324        BUG_ON(skb->len < skb->data_len);
2325        return skb->data += len;
2326}
2327
2328static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2329{
2330        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2331}
2332
2333void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2334
2335static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2336{
2337        if (len > skb_headlen(skb) &&
2338            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2339                return NULL;
2340        skb->len -= len;
2341        return skb->data += len;
2342}
2343
2344static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2345{
2346        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2347}
2348
2349static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2350{
2351        if (likely(len <= skb_headlen(skb)))
2352                return true;
2353        if (unlikely(len > skb->len))
2354                return false;
2355        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2356}
2357
2358void skb_condense(struct sk_buff *skb);
2359
2360/**
2361 *      skb_headroom - bytes at buffer head
2362 *      @skb: buffer to check
2363 *
2364 *      Return the number of bytes of free space at the head of an &sk_buff.
2365 */
2366static inline unsigned int skb_headroom(const struct sk_buff *skb)
2367{
2368        return skb->data - skb->head;
2369}
2370
2371/**
2372 *      skb_tailroom - bytes at buffer end
2373 *      @skb: buffer to check
2374 *
2375 *      Return the number of bytes of free space at the tail of an sk_buff
2376 */
2377static inline int skb_tailroom(const struct sk_buff *skb)
2378{
2379        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2380}
2381
2382/**
2383 *      skb_availroom - bytes at buffer end
2384 *      @skb: buffer to check
2385 *
2386 *      Return the number of bytes of free space at the tail of an sk_buff
2387 *      allocated by sk_stream_alloc()
2388 */
2389static inline int skb_availroom(const struct sk_buff *skb)
2390{
2391        if (skb_is_nonlinear(skb))
2392                return 0;
2393
2394        return skb->end - skb->tail - skb->reserved_tailroom;
2395}
2396
2397/**
2398 *      skb_reserve - adjust headroom
2399 *      @skb: buffer to alter
2400 *      @len: bytes to move
2401 *
2402 *      Increase the headroom of an empty &sk_buff by reducing the tail
2403 *      room. This is only allowed for an empty buffer.
2404 */
2405static inline void skb_reserve(struct sk_buff *skb, int len)
2406{
2407        skb->data += len;
2408        skb->tail += len;
2409}
2410
2411/**
2412 *      skb_tailroom_reserve - adjust reserved_tailroom
2413 *      @skb: buffer to alter
2414 *      @mtu: maximum amount of headlen permitted
2415 *      @needed_tailroom: minimum amount of reserved_tailroom
2416 *
2417 *      Set reserved_tailroom so that headlen can be as large as possible but
2418 *      not larger than mtu and tailroom cannot be smaller than
2419 *      needed_tailroom.
2420 *      The required headroom should already have been reserved before using
2421 *      this function.
2422 */
2423static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2424                                        unsigned int needed_tailroom)
2425{
2426        SKB_LINEAR_ASSERT(skb);
2427        if (mtu < skb_tailroom(skb) - needed_tailroom)
2428                /* use at most mtu */
2429                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2430        else
2431                /* use up to all available space */
2432                skb->reserved_tailroom = needed_tailroom;
2433}
2434
2435#define ENCAP_TYPE_ETHER        0
2436#define ENCAP_TYPE_IPPROTO      1
2437
2438static inline void skb_set_inner_protocol(struct sk_buff *skb,
2439                                          __be16 protocol)
2440{
2441        skb->inner_protocol = protocol;
2442        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2443}
2444
2445static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2446                                         __u8 ipproto)
2447{
2448        skb->inner_ipproto = ipproto;
2449        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2450}
2451
2452static inline void skb_reset_inner_headers(struct sk_buff *skb)
2453{
2454        skb->inner_mac_header = skb->mac_header;
2455        skb->inner_network_header = skb->network_header;
2456        skb->inner_transport_header = skb->transport_header;
2457}
2458
2459static inline void skb_reset_mac_len(struct sk_buff *skb)
2460{
2461        skb->mac_len = skb->network_header - skb->mac_header;
2462}
2463
2464static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2465                                                        *skb)
2466{
2467        return skb->head + skb->inner_transport_header;
2468}
2469
2470static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2471{
2472        return skb_inner_transport_header(skb) - skb->data;
2473}
2474
2475static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2476{
2477        skb->inner_transport_header = skb->data - skb->head;
2478}
2479
2480static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2481                                                   const int offset)
2482{
2483        skb_reset_inner_transport_header(skb);
2484        skb->inner_transport_header += offset;
2485}
2486
2487static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2488{
2489        return skb->head + skb->inner_network_header;
2490}
2491
2492static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2493{
2494        skb->inner_network_header = skb->data - skb->head;
2495}
2496
2497static inline void skb_set_inner_network_header(struct sk_buff *skb,
2498                                                const int offset)
2499{
2500        skb_reset_inner_network_header(skb);
2501        skb->inner_network_header += offset;
2502}
2503
2504static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2505{
2506        return skb->head + skb->inner_mac_header;
2507}
2508
2509static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2510{
2511        skb->inner_mac_header = skb->data - skb->head;
2512}
2513
2514static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2515                                            const int offset)
2516{
2517        skb_reset_inner_mac_header(skb);
2518        skb->inner_mac_header += offset;
2519}
2520static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2521{
2522        return skb->transport_header != (typeof(skb->transport_header))~0U;
2523}
2524
2525static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2526{
2527        return skb->head + skb->transport_header;
2528}
2529
2530static inline void skb_reset_transport_header(struct sk_buff *skb)
2531{
2532        skb->transport_header = skb->data - skb->head;
2533}
2534
2535static inline void skb_set_transport_header(struct sk_buff *skb,
2536                                            const int offset)
2537{
2538        skb_reset_transport_header(skb);
2539        skb->transport_header += offset;
2540}
2541
2542static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2543{
2544        return skb->head + skb->network_header;
2545}
2546
2547static inline void skb_reset_network_header(struct sk_buff *skb)
2548{
2549        skb->network_header = skb->data - skb->head;
2550}
2551
2552static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2553{
2554        skb_reset_network_header(skb);
2555        skb->network_header += offset;
2556}
2557
2558static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2559{
2560        return skb->head + skb->mac_header;
2561}
2562
2563static inline int skb_mac_offset(const struct sk_buff *skb)
2564{
2565        return skb_mac_header(skb) - skb->data;
2566}
2567
2568static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2569{
2570        return skb->network_header - skb->mac_header;
2571}
2572
2573static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2574{
2575        return skb->mac_header != (typeof(skb->mac_header))~0U;
2576}
2577
2578static inline void skb_unset_mac_header(struct sk_buff *skb)
2579{
2580        skb->mac_header = (typeof(skb->mac_header))~0U;
2581}
2582
2583static inline void skb_reset_mac_header(struct sk_buff *skb)
2584{
2585        skb->mac_header = skb->data - skb->head;
2586}
2587
2588static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2589{
2590        skb_reset_mac_header(skb);
2591        skb->mac_header += offset;
2592}
2593
2594static inline void skb_pop_mac_header(struct sk_buff *skb)
2595{
2596        skb->mac_header = skb->network_header;
2597}
2598
2599static inline void skb_probe_transport_header(struct sk_buff *skb)
2600{
2601        struct flow_keys_basic keys;
2602
2603        if (skb_transport_header_was_set(skb))
2604                return;
2605
2606        if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2607                                             NULL, 0, 0, 0, 0))
2608                skb_set_transport_header(skb, keys.control.thoff);
2609}
2610
2611static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2612{
2613        if (skb_mac_header_was_set(skb)) {
2614                const unsigned char *old_mac = skb_mac_header(skb);
2615
2616                skb_set_mac_header(skb, -skb->mac_len);
2617                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2618        }
2619}
2620
2621static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2622{
2623        return skb->csum_start - skb_headroom(skb);
2624}
2625
2626static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2627{
2628        return skb->head + skb->csum_start;
2629}
2630
2631static inline int skb_transport_offset(const struct sk_buff *skb)
2632{
2633        return skb_transport_header(skb) - skb->data;
2634}
2635
2636static inline u32 skb_network_header_len(const struct sk_buff *skb)
2637{
2638        return skb->transport_header - skb->network_header;
2639}
2640
2641static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2642{
2643        return skb->inner_transport_header - skb->inner_network_header;
2644}
2645
2646static inline int skb_network_offset(const struct sk_buff *skb)
2647{
2648        return skb_network_header(skb) - skb->data;
2649}
2650
2651static inline int skb_inner_network_offset(const struct sk_buff *skb)
2652{
2653        return skb_inner_network_header(skb) - skb->data;
2654}
2655
2656static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2657{
2658        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2659}
2660
2661/*
2662 * CPUs often take a performance hit when accessing unaligned memory
2663 * locations. The actual performance hit varies, it can be small if the
2664 * hardware handles it or large if we have to take an exception and fix it
2665 * in software.
2666 *
2667 * Since an ethernet header is 14 bytes network drivers often end up with
2668 * the IP header at an unaligned offset. The IP header can be aligned by
2669 * shifting the start of the packet by 2 bytes. Drivers should do this
2670 * with:
2671 *
2672 * skb_reserve(skb, NET_IP_ALIGN);
2673 *
2674 * The downside to this alignment of the IP header is that the DMA is now
2675 * unaligned. On some architectures the cost of an unaligned DMA is high
2676 * and this cost outweighs the gains made by aligning the IP header.
2677 *
2678 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2679 * to be overridden.
2680 */
2681#ifndef NET_IP_ALIGN
2682#define NET_IP_ALIGN    2
2683#endif
2684
2685/*
2686 * The networking layer reserves some headroom in skb data (via
2687 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2688 * the header has to grow. In the default case, if the header has to grow
2689 * 32 bytes or less we avoid the reallocation.
2690 *
2691 * Unfortunately this headroom changes the DMA alignment of the resulting
2692 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2693 * on some architectures. An architecture can override this value,
2694 * perhaps setting it to a cacheline in size (since that will maintain
2695 * cacheline alignment of the DMA). It must be a power of 2.
2696 *
2697 * Various parts of the networking layer expect at least 32 bytes of
2698 * headroom, you should not reduce this.
2699 *
2700 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2701 * to reduce average number of cache lines per packet.
2702 * get_rps_cpu() for example only access one 64 bytes aligned block :
2703 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2704 */
2705#ifndef NET_SKB_PAD
2706#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2707#endif
2708
2709int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2710
2711static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2712{
2713        if (WARN_ON(skb_is_nonlinear(skb)))
2714                return;
2715        skb->len = len;
2716        skb_set_tail_pointer(skb, len);
2717}
2718
2719static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2720{
2721        __skb_set_length(skb, len);
2722}
2723
2724void skb_trim(struct sk_buff *skb, unsigned int len);
2725
2726static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2727{
2728        if (skb->data_len)
2729                return ___pskb_trim(skb, len);
2730        __skb_trim(skb, len);
2731        return 0;
2732}
2733
2734static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2735{
2736        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2737}
2738
2739/**
2740 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2741 *      @skb: buffer to alter
2742 *      @len: new length
2743 *
2744 *      This is identical to pskb_trim except that the caller knows that
2745 *      the skb is not cloned so we should never get an error due to out-
2746 *      of-memory.
2747 */
2748static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2749{
2750        int err = pskb_trim(skb, len);
2751        BUG_ON(err);
2752}
2753
2754static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2755{
2756        unsigned int diff = len - skb->len;
2757
2758        if (skb_tailroom(skb) < diff) {
2759                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2760                                           GFP_ATOMIC);
2761                if (ret)
2762                        return ret;
2763        }
2764        __skb_set_length(skb, len);
2765        return 0;
2766}
2767
2768/**
2769 *      skb_orphan - orphan a buffer
2770 *      @skb: buffer to orphan
2771 *
2772 *      If a buffer currently has an owner then we call the owner's
2773 *      destructor function and make the @skb unowned. The buffer continues
2774 *      to exist but is no longer charged to its former owner.
2775 */
2776static inline void skb_orphan(struct sk_buff *skb)
2777{
2778        if (skb->destructor) {
2779                skb->destructor(skb);
2780                skb->destructor = NULL;
2781                skb->sk         = NULL;
2782        } else {
2783                BUG_ON(skb->sk);
2784        }
2785}
2786
2787/**
2788 *      skb_orphan_frags - orphan the frags contained in a buffer
2789 *      @skb: buffer to orphan frags from
2790 *      @gfp_mask: allocation mask for replacement pages
2791 *
2792 *      For each frag in the SKB which needs a destructor (i.e. has an
2793 *      owner) create a copy of that frag and release the original
2794 *      page by calling the destructor.
2795 */
2796static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2797{
2798        if (likely(!skb_zcopy(skb)))
2799                return 0;
2800        if (!skb_zcopy_is_nouarg(skb) &&
2801            skb_uarg(skb)->callback == msg_zerocopy_callback)
2802                return 0;
2803        return skb_copy_ubufs(skb, gfp_mask);
2804}
2805
2806/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2807static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2808{
2809        if (likely(!skb_zcopy(skb)))
2810                return 0;
2811        return skb_copy_ubufs(skb, gfp_mask);
2812}
2813
2814/**
2815 *      __skb_queue_purge - empty a list
2816 *      @list: list to empty
2817 *
2818 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2819 *      the list and one reference dropped. This function does not take the
2820 *      list lock and the caller must hold the relevant locks to use it.
2821 */
2822static inline void __skb_queue_purge(struct sk_buff_head *list)
2823{
2824        struct sk_buff *skb;
2825        while ((skb = __skb_dequeue(list)) != NULL)
2826                kfree_skb(skb);
2827}
2828void skb_queue_purge(struct sk_buff_head *list);
2829
2830unsigned int skb_rbtree_purge(struct rb_root *root);
2831
2832void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2833
2834/**
2835 * netdev_alloc_frag - allocate a page fragment
2836 * @fragsz: fragment size
2837 *
2838 * Allocates a frag from a page for receive buffer.
2839 * Uses GFP_ATOMIC allocations.
2840 */
2841static inline void *netdev_alloc_frag(unsigned int fragsz)
2842{
2843        return __netdev_alloc_frag_align(fragsz, ~0u);
2844}
2845
2846static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2847                                            unsigned int align)
2848{
2849        WARN_ON_ONCE(!is_power_of_2(align));
2850        return __netdev_alloc_frag_align(fragsz, -align);
2851}
2852
2853struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2854                                   gfp_t gfp_mask);
2855
2856/**
2857 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2858 *      @dev: network device to receive on
2859 *      @length: length to allocate
2860 *
2861 *      Allocate a new &sk_buff and assign it a usage count of one. The
2862 *      buffer has unspecified headroom built in. Users should allocate
2863 *      the headroom they think they need without accounting for the
2864 *      built in space. The built in space is used for optimisations.
2865 *
2866 *      %NULL is returned if there is no free memory. Although this function
2867 *      allocates memory it can be called from an interrupt.
2868 */
2869static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2870                                               unsigned int length)
2871{
2872        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2873}
2874
2875/* legacy helper around __netdev_alloc_skb() */
2876static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2877                                              gfp_t gfp_mask)
2878{
2879        return __netdev_alloc_skb(NULL, length, gfp_mask);
2880}
2881
2882/* legacy helper around netdev_alloc_skb() */
2883static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2884{
2885        return netdev_alloc_skb(NULL, length);
2886}
2887
2888
2889static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2890                unsigned int length, gfp_t gfp)
2891{
2892        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2893
2894        if (NET_IP_ALIGN && skb)
2895                skb_reserve(skb, NET_IP_ALIGN);
2896        return skb;
2897}
2898
2899static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2900                unsigned int length)
2901{
2902        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2903}
2904
2905static inline void skb_free_frag(void *addr)
2906{
2907        page_frag_free(addr);
2908}
2909
2910void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2911
2912static inline void *napi_alloc_frag(unsigned int fragsz)
2913{
2914        return __napi_alloc_frag_align(fragsz, ~0u);
2915}
2916
2917static inline void *napi_alloc_frag_align(unsigned int fragsz,
2918                                          unsigned int align)
2919{
2920        WARN_ON_ONCE(!is_power_of_2(align));
2921        return __napi_alloc_frag_align(fragsz, -align);
2922}
2923
2924struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2925                                 unsigned int length, gfp_t gfp_mask);
2926static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2927                                             unsigned int length)
2928{
2929        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2930}
2931void napi_consume_skb(struct sk_buff *skb, int budget);
2932
2933void napi_skb_free_stolen_head(struct sk_buff *skb);
2934void __kfree_skb_defer(struct sk_buff *skb);
2935
2936/**
2937 * __dev_alloc_pages - allocate page for network Rx
2938 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2939 * @order: size of the allocation
2940 *
2941 * Allocate a new page.
2942 *
2943 * %NULL is returned if there is no free memory.
2944*/
2945static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2946                                             unsigned int order)
2947{
2948        /* This piece of code contains several assumptions.
2949         * 1.  This is for device Rx, therefor a cold page is preferred.
2950         * 2.  The expectation is the user wants a compound page.
2951         * 3.  If requesting a order 0 page it will not be compound
2952         *     due to the check to see if order has a value in prep_new_page
2953         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2954         *     code in gfp_to_alloc_flags that should be enforcing this.
2955         */
2956        gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2957
2958        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2959}
2960
2961static inline struct page *dev_alloc_pages(unsigned int order)
2962{
2963        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2964}
2965
2966/**
2967 * __dev_alloc_page - allocate a page for network Rx
2968 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2969 *
2970 * Allocate a new page.
2971 *
2972 * %NULL is returned if there is no free memory.
2973 */
2974static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2975{
2976        return __dev_alloc_pages(gfp_mask, 0);
2977}
2978
2979static inline struct page *dev_alloc_page(void)
2980{
2981        return dev_alloc_pages(0);
2982}
2983
2984/**
2985 * dev_page_is_reusable - check whether a page can be reused for network Rx
2986 * @page: the page to test
2987 *
2988 * A page shouldn't be considered for reusing/recycling if it was allocated
2989 * under memory pressure or at a distant memory node.
2990 *
2991 * Returns false if this page should be returned to page allocator, true
2992 * otherwise.
2993 */
2994static inline bool dev_page_is_reusable(const struct page *page)
2995{
2996        return likely(page_to_nid(page) == numa_mem_id() &&
2997                      !page_is_pfmemalloc(page));
2998}
2999
3000/**
3001 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3002 *      @page: The page that was allocated from skb_alloc_page
3003 *      @skb: The skb that may need pfmemalloc set
3004 */
3005static inline void skb_propagate_pfmemalloc(const struct page *page,
3006                                            struct sk_buff *skb)
3007{
3008        if (page_is_pfmemalloc(page))
3009                skb->pfmemalloc = true;
3010}
3011
3012/**
3013 * skb_frag_off() - Returns the offset of a skb fragment
3014 * @frag: the paged fragment
3015 */
3016static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3017{
3018        return frag->bv_offset;
3019}
3020
3021/**
3022 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3023 * @frag: skb fragment
3024 * @delta: value to add
3025 */
3026static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3027{
3028        frag->bv_offset += delta;
3029}
3030
3031/**
3032 * skb_frag_off_set() - Sets the offset of a skb fragment
3033 * @frag: skb fragment
3034 * @offset: offset of fragment
3035 */
3036static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3037{
3038        frag->bv_offset = offset;
3039}
3040
3041/**
3042 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3043 * @fragto: skb fragment where offset is set
3044 * @fragfrom: skb fragment offset is copied from
3045 */
3046static inline void skb_frag_off_copy(skb_frag_t *fragto,
3047                                     const skb_frag_t *fragfrom)
3048{
3049        fragto->bv_offset = fragfrom->bv_offset;
3050}
3051
3052/**
3053 * skb_frag_page - retrieve the page referred to by a paged fragment
3054 * @frag: the paged fragment
3055 *
3056 * Returns the &struct page associated with @frag.
3057 */
3058static inline struct page *skb_frag_page(const skb_frag_t *frag)
3059{
3060        return frag->bv_page;
3061}
3062
3063/**
3064 * __skb_frag_ref - take an addition reference on a paged fragment.
3065 * @frag: the paged fragment
3066 *
3067 * Takes an additional reference on the paged fragment @frag.
3068 */
3069static inline void __skb_frag_ref(skb_frag_t *frag)
3070{
3071        get_page(skb_frag_page(frag));
3072}
3073
3074/**
3075 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3076 * @skb: the buffer
3077 * @f: the fragment offset.
3078 *
3079 * Takes an additional reference on the @f'th paged fragment of @skb.
3080 */
3081static inline void skb_frag_ref(struct sk_buff *skb, int f)
3082{
3083        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3084}
3085
3086/**
3087 * __skb_frag_unref - release a reference on a paged fragment.
3088 * @frag: the paged fragment
3089 * @recycle: recycle the page if allocated via page_pool
3090 *
3091 * Releases a reference on the paged fragment @frag
3092 * or recycles the page via the page_pool API.
3093 */
3094static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3095{
3096        struct page *page = skb_frag_page(frag);
3097
3098#ifdef CONFIG_PAGE_POOL
3099        if (recycle && page_pool_return_skb_page(page))
3100                return;
3101#endif
3102        put_page(page);
3103}
3104
3105/**
3106 * skb_frag_unref - release a reference on a paged fragment of an skb.
3107 * @skb: the buffer
3108 * @f: the fragment offset
3109 *
3110 * Releases a reference on the @f'th paged fragment of @skb.
3111 */
3112static inline void skb_frag_unref(struct sk_buff *skb, int f)
3113{
3114        __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3115}
3116
3117/**
3118 * skb_frag_address - gets the address of the data contained in a paged fragment
3119 * @frag: the paged fragment buffer
3120 *
3121 * Returns the address of the data within @frag. The page must already
3122 * be mapped.
3123 */
3124static inline void *skb_frag_address(const skb_frag_t *frag)
3125{
3126        return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3127}
3128
3129/**
3130 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3131 * @frag: the paged fragment buffer
3132 *
3133 * Returns the address of the data within @frag. Checks that the page
3134 * is mapped and returns %NULL otherwise.
3135 */
3136static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3137{
3138        void *ptr = page_address(skb_frag_page(frag));
3139        if (unlikely(!ptr))
3140                return NULL;
3141
3142        return ptr + skb_frag_off(frag);
3143}
3144
3145/**
3146 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3147 * @fragto: skb fragment where page is set
3148 * @fragfrom: skb fragment page is copied from
3149 */
3150static inline void skb_frag_page_copy(skb_frag_t *fragto,
3151                                      const skb_frag_t *fragfrom)
3152{
3153        fragto->bv_page = fragfrom->bv_page;
3154}
3155
3156/**
3157 * __skb_frag_set_page - sets the page contained in a paged fragment
3158 * @frag: the paged fragment
3159 * @page: the page to set
3160 *
3161 * Sets the fragment @frag to contain @page.
3162 */
3163static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3164{
3165        frag->bv_page = page;
3166}
3167
3168/**
3169 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3170 * @skb: the buffer
3171 * @f: the fragment offset
3172 * @page: the page to set
3173 *
3174 * Sets the @f'th fragment of @skb to contain @page.
3175 */
3176static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3177                                     struct page *page)
3178{
3179        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3180}
3181
3182bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3183
3184/**
3185 * skb_frag_dma_map - maps a paged fragment via the DMA API
3186 * @dev: the device to map the fragment to
3187 * @frag: the paged fragment to map
3188 * @offset: the offset within the fragment (starting at the
3189 *          fragment's own offset)
3190 * @size: the number of bytes to map
3191 * @dir: the direction of the mapping (``PCI_DMA_*``)
3192 *
3193 * Maps the page associated with @frag to @device.
3194 */
3195static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3196                                          const skb_frag_t *frag,
3197                                          size_t offset, size_t size,
3198                                          enum dma_data_direction dir)
3199{
3200        return dma_map_page(dev, skb_frag_page(frag),
3201                            skb_frag_off(frag) + offset, size, dir);
3202}
3203
3204static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3205                                        gfp_t gfp_mask)
3206{
3207        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3208}
3209
3210
3211static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3212                                                  gfp_t gfp_mask)
3213{
3214        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3215}
3216
3217
3218/**
3219 *      skb_clone_writable - is the header of a clone writable
3220 *      @skb: buffer to check
3221 *      @len: length up to which to write
3222 *
3223 *      Returns true if modifying the header part of the cloned buffer
3224 *      does not requires the data to be copied.
3225 */
3226static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3227{
3228        return !skb_header_cloned(skb) &&
3229               skb_headroom(skb) + len <= skb->hdr_len;
3230}
3231
3232static inline int skb_try_make_writable(struct sk_buff *skb,
3233                                        unsigned int write_len)
3234{
3235        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3236               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3237}
3238
3239static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3240                            int cloned)
3241{
3242        int delta = 0;
3243
3244        if (headroom > skb_headroom(skb))
3245                delta = headroom - skb_headroom(skb);
3246
3247        if (delta || cloned)
3248                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3249                                        GFP_ATOMIC);
3250        return 0;
3251}
3252
3253/**
3254 *      skb_cow - copy header of skb when it is required
3255 *      @skb: buffer to cow
3256 *      @headroom: needed headroom
3257 *
3258 *      If the skb passed lacks sufficient headroom or its data part
3259 *      is shared, data is reallocated. If reallocation fails, an error
3260 *      is returned and original skb is not changed.
3261 *
3262 *      The result is skb with writable area skb->head...skb->tail
3263 *      and at least @headroom of space at head.
3264 */
3265static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3266{
3267        return __skb_cow(skb, headroom, skb_cloned(skb));
3268}
3269
3270/**
3271 *      skb_cow_head - skb_cow but only making the head writable
3272 *      @skb: buffer to cow
3273 *      @headroom: needed headroom
3274 *
3275 *      This function is identical to skb_cow except that we replace the
3276 *      skb_cloned check by skb_header_cloned.  It should be used when
3277 *      you only need to push on some header and do not need to modify
3278 *      the data.
3279 */
3280static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3281{
3282        return __skb_cow(skb, headroom, skb_header_cloned(skb));
3283}
3284
3285/**
3286 *      skb_padto       - pad an skbuff up to a minimal size
3287 *      @skb: buffer to pad
3288 *      @len: minimal length
3289 *
3290 *      Pads up a buffer to ensure the trailing bytes exist and are
3291 *      blanked. If the buffer already contains sufficient data it
3292 *      is untouched. Otherwise it is extended. Returns zero on
3293 *      success. The skb is freed on error.
3294 */
3295static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3296{
3297        unsigned int size = skb->len;
3298        if (likely(size >= len))
3299                return 0;
3300        return skb_pad(skb, len - size);
3301}
3302
3303/**
3304 *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3305 *      @skb: buffer to pad
3306 *      @len: minimal length
3307 *      @free_on_error: free buffer on error
3308 *
3309 *      Pads up a buffer to ensure the trailing bytes exist and are
3310 *      blanked. If the buffer already contains sufficient data it
3311 *      is untouched. Otherwise it is extended. Returns zero on
3312 *      success. The skb is freed on error if @free_on_error is true.
3313 */
3314static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3315                                               unsigned int len,
3316                                               bool free_on_error)
3317{
3318        unsigned int size = skb->len;
3319
3320        if (unlikely(size < len)) {
3321                len -= size;
3322                if (__skb_pad(skb, len, free_on_error))
3323                        return -ENOMEM;
3324                __skb_put(skb, len);
3325        }
3326        return 0;
3327}
3328
3329/**
3330 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3331 *      @skb: buffer to pad
3332 *      @len: minimal length
3333 *
3334 *      Pads up a buffer to ensure the trailing bytes exist and are
3335 *      blanked. If the buffer already contains sufficient data it
3336 *      is untouched. Otherwise it is extended. Returns zero on
3337 *      success. The skb is freed on error.
3338 */
3339static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3340{
3341        return __skb_put_padto(skb, len, true);
3342}
3343
3344static inline int skb_add_data(struct sk_buff *skb,
3345                               struct iov_iter *from, int copy)
3346{
3347        const int off = skb->len;
3348
3349        if (skb->ip_summed == CHECKSUM_NONE) {
3350                __wsum csum = 0;
3351                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3352                                                 &csum, from)) {
3353                        skb->csum = csum_block_add(skb->csum, csum, off);
3354                        return 0;
3355                }
3356        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3357                return 0;
3358
3359        __skb_trim(skb, off);
3360        return -EFAULT;
3361}
3362
3363static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3364                                    const struct page *page, int off)
3365{
3366        if (skb_zcopy(skb))
3367                return false;
3368        if (i) {
3369                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3370
3371                return page == skb_frag_page(frag) &&
3372                       off == skb_frag_off(frag) + skb_frag_size(frag);
3373        }
3374        return false;
3375}
3376
3377static inline int __skb_linearize(struct sk_buff *skb)
3378{
3379        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3380}
3381
3382/**
3383 *      skb_linearize - convert paged skb to linear one
3384 *      @skb: buffer to linarize
3385 *
3386 *      If there is no free memory -ENOMEM is returned, otherwise zero
3387 *      is returned and the old skb data released.
3388 */
3389static inline int skb_linearize(struct sk_buff *skb)
3390{
3391        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3392}
3393
3394/**
3395 * skb_has_shared_frag - can any frag be overwritten
3396 * @skb: buffer to test
3397 *
3398 * Return true if the skb has at least one frag that might be modified
3399 * by an external entity (as in vmsplice()/sendfile())
3400 */
3401static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3402{
3403        return skb_is_nonlinear(skb) &&
3404               skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3405}
3406
3407/**
3408 *      skb_linearize_cow - make sure skb is linear and writable
3409 *      @skb: buffer to process
3410 *
3411 *      If there is no free memory -ENOMEM is returned, otherwise zero
3412 *      is returned and the old skb data released.
3413 */
3414static inline int skb_linearize_cow(struct sk_buff *skb)
3415{
3416        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3417               __skb_linearize(skb) : 0;
3418}
3419
3420static __always_inline void
3421__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3422                     unsigned int off)
3423{
3424        if (skb->ip_summed == CHECKSUM_COMPLETE)
3425                skb->csum = csum_block_sub(skb->csum,
3426                                           csum_partial(start, len, 0), off);
3427        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3428                 skb_checksum_start_offset(skb) < 0)
3429                skb->ip_summed = CHECKSUM_NONE;
3430}
3431
3432/**
3433 *      skb_postpull_rcsum - update checksum for received skb after pull
3434 *      @skb: buffer to update
3435 *      @start: start of data before pull
3436 *      @len: length of data pulled
3437 *
3438 *      After doing a pull on a received packet, you need to call this to
3439 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3440 *      CHECKSUM_NONE so that it can be recomputed from scratch.
3441 */
3442static inline void skb_postpull_rcsum(struct sk_buff *skb,
3443                                      const void *start, unsigned int len)
3444{
3445        __skb_postpull_rcsum(skb, start, len, 0);
3446}
3447
3448static __always_inline void
3449__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3450                     unsigned int off)
3451{
3452        if (skb->ip_summed == CHECKSUM_COMPLETE)
3453                skb->csum = csum_block_add(skb->csum,
3454                                           csum_partial(start, len, 0), off);
3455}
3456
3457/**
3458 *      skb_postpush_rcsum - update checksum for received skb after push
3459 *      @skb: buffer to update
3460 *      @start: start of data after push
3461 *      @len: length of data pushed
3462 *
3463 *      After doing a push on a received packet, you need to call this to
3464 *      update the CHECKSUM_COMPLETE checksum.
3465 */
3466static inline void skb_postpush_rcsum(struct sk_buff *skb,
3467                                      const void *start, unsigned int len)
3468{
3469        __skb_postpush_rcsum(skb, start, len, 0);
3470}
3471
3472void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3473
3474/**
3475 *      skb_push_rcsum - push skb and update receive checksum
3476 *      @skb: buffer to update
3477 *      @len: length of data pulled
3478 *
3479 *      This function performs an skb_push on the packet and updates
3480 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3481 *      receive path processing instead of skb_push unless you know
3482 *      that the checksum difference is zero (e.g., a valid IP header)
3483 *      or you are setting ip_summed to CHECKSUM_NONE.
3484 */
3485static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3486{
3487        skb_push(skb, len);
3488        skb_postpush_rcsum(skb, skb->data, len);
3489        return skb->data;
3490}
3491
3492int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3493/**
3494 *      pskb_trim_rcsum - trim received skb and update checksum
3495 *      @skb: buffer to trim
3496 *      @len: new length
3497 *
3498 *      This is exactly the same as pskb_trim except that it ensures the
3499 *      checksum of received packets are still valid after the operation.
3500 *      It can change skb pointers.
3501 */
3502
3503static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3504{
3505        if (likely(len >= skb->len))
3506                return 0;
3507        return pskb_trim_rcsum_slow(skb, len);
3508}
3509
3510static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3511{
3512        if (skb->ip_summed == CHECKSUM_COMPLETE)
3513                skb->ip_summed = CHECKSUM_NONE;
3514        __skb_trim(skb, len);
3515        return 0;
3516}
3517
3518static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3519{
3520        if (skb->ip_summed == CHECKSUM_COMPLETE)
3521                skb->ip_summed = CHECKSUM_NONE;
3522        return __skb_grow(skb, len);
3523}
3524
3525#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3526#define skb_rb_first(root) rb_to_skb(rb_first(root))
3527#define skb_rb_last(root)  rb_to_skb(rb_last(root))
3528#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3529#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3530
3531#define skb_queue_walk(queue, skb) \
3532                for (skb = (queue)->next;                                       \
3533                     skb != (struct sk_buff *)(queue);                          \
3534                     skb = skb->next)
3535
3536#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3537                for (skb = (queue)->next, tmp = skb->next;                      \
3538                     skb != (struct sk_buff *)(queue);                          \
3539                     skb = tmp, tmp = skb->next)
3540
3541#define skb_queue_walk_from(queue, skb)                                         \
3542                for (; skb != (struct sk_buff *)(queue);                        \
3543                     skb = skb->next)
3544
3545#define skb_rbtree_walk(skb, root)                                              \
3546                for (skb = skb_rb_first(root); skb != NULL;                     \
3547                     skb = skb_rb_next(skb))
3548
3549#define skb_rbtree_walk_from(skb)                                               \
3550                for (; skb != NULL;                                             \
3551                     skb = skb_rb_next(skb))
3552
3553#define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3554                for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3555                     skb = tmp)
3556
3557#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3558                for (tmp = skb->next;                                           \
3559                     skb != (struct sk_buff *)(queue);                          \
3560                     skb = tmp, tmp = skb->next)
3561
3562#define skb_queue_reverse_walk(queue, skb) \
3563                for (skb = (queue)->prev;                                       \
3564                     skb != (struct sk_buff *)(queue);                          \
3565                     skb = skb->prev)
3566
3567#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3568                for (skb = (queue)->prev, tmp = skb->prev;                      \
3569                     skb != (struct sk_buff *)(queue);                          \
3570                     skb = tmp, tmp = skb->prev)
3571
3572#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3573                for (tmp = skb->prev;                                           \
3574                     skb != (struct sk_buff *)(queue);                          \
3575                     skb = tmp, tmp = skb->prev)
3576
3577static inline bool skb_has_frag_list(const struct sk_buff *skb)
3578{
3579        return skb_shinfo(skb)->frag_list != NULL;
3580}
3581
3582static inline void skb_frag_list_init(struct sk_buff *skb)
3583{
3584        skb_shinfo(skb)->frag_list = NULL;
3585}
3586
3587#define skb_walk_frags(skb, iter)       \
3588        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3589
3590
3591int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3592                                int *err, long *timeo_p,
3593                                const struct sk_buff *skb);
3594struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3595                                          struct sk_buff_head *queue,
3596                                          unsigned int flags,
3597                                          int *off, int *err,
3598                                          struct sk_buff **last);
3599struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3600                                        struct sk_buff_head *queue,
3601                                        unsigned int flags, int *off, int *err,
3602                                        struct sk_buff **last);
3603struct sk_buff *__skb_recv_datagram(struct sock *sk,
3604                                    struct sk_buff_head *sk_queue,
3605                                    unsigned int flags, int *off, int *err);
3606struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3607                                  int *err);
3608__poll_t datagram_poll(struct file *file, struct socket *sock,
3609                           struct poll_table_struct *wait);
3610int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3611                           struct iov_iter *to, int size);
3612static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3613                                        struct msghdr *msg, int size)
3614{
3615        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3616}
3617int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3618                                   struct msghdr *msg);
3619int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3620                           struct iov_iter *to, int len,
3621                           struct ahash_request *hash);
3622int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3623                                 struct iov_iter *from, int len);
3624int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3625void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3626void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3627static inline void skb_free_datagram_locked(struct sock *sk,
3628                                            struct sk_buff *skb)
3629{
3630        __skb_free_datagram_locked(sk, skb, 0);
3631}
3632int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3633int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3634int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3635__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3636                              int len);
3637int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3638                    struct pipe_inode_info *pipe, unsigned int len,
3639                    unsigned int flags);
3640int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3641                         int len);
3642int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3643void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3644unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3645int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3646                 int len, int hlen);
3647void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3648int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3649void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3650bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3651bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3652struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3653struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3654                                 unsigned int offset);
3655struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3656int skb_ensure_writable(struct sk_buff *skb, int write_len);
3657int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3658int skb_vlan_pop(struct sk_buff *skb);
3659int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3660int skb_eth_pop(struct sk_buff *skb);
3661int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3662                 const unsigned char *src);
3663int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3664                  int mac_len, bool ethernet);
3665int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3666                 bool ethernet);
3667int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3668int skb_mpls_dec_ttl(struct sk_buff *skb);
3669struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3670                             gfp_t gfp);
3671
3672static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3673{
3674        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3675}
3676
3677static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3678{
3679        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3680}
3681
3682struct skb_checksum_ops {
3683        __wsum (*update)(const void *mem, int len, __wsum wsum);
3684        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3685};
3686
3687extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3688
3689__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3690                      __wsum csum, const struct skb_checksum_ops *ops);
3691__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3692                    __wsum csum);
3693
3694static inline void * __must_check
3695__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3696                     const void *data, int hlen, void *buffer)
3697{
3698        if (likely(hlen - offset >= len))
3699                return (void *)data + offset;
3700
3701        if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3702                return NULL;
3703
3704        return buffer;
3705}
3706
3707static inline void * __must_check
3708skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3709{
3710        return __skb_header_pointer(skb, offset, len, skb->data,
3711                                    skb_headlen(skb), buffer);
3712}
3713
3714/**
3715 *      skb_needs_linearize - check if we need to linearize a given skb
3716 *                            depending on the given device features.
3717 *      @skb: socket buffer to check
3718 *      @features: net device features
3719 *
3720 *      Returns true if either:
3721 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3722 *      2. skb is fragmented and the device does not support SG.
3723 */
3724static inline bool skb_needs_linearize(struct sk_buff *skb,
3725                                       netdev_features_t features)
3726{
3727        return skb_is_nonlinear(skb) &&
3728               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3729                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3730}
3731
3732static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3733                                             void *to,
3734                                             const unsigned int len)
3735{
3736        memcpy(to, skb->data, len);
3737}
3738
3739static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3740                                                    const int offset, void *to,
3741                                                    const unsigned int len)
3742{
3743        memcpy(to, skb->data + offset, len);
3744}
3745
3746static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3747                                           const void *from,
3748                                           const unsigned int len)
3749{
3750        memcpy(skb->data, from, len);
3751}
3752
3753static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3754                                                  const int offset,
3755                                                  const void *from,
3756                                                  const unsigned int len)
3757{
3758        memcpy(skb->data + offset, from, len);
3759}
3760
3761void skb_init(void);
3762
3763static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3764{
3765        return skb->tstamp;
3766}
3767
3768/**
3769 *      skb_get_timestamp - get timestamp from a skb
3770 *      @skb: skb to get stamp from
3771 *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
3772 *
3773 *      Timestamps are stored in the skb as offsets to a base timestamp.
3774 *      This function converts the offset back to a struct timeval and stores
3775 *      it in stamp.
3776 */
3777static inline void skb_get_timestamp(const struct sk_buff *skb,
3778                                     struct __kernel_old_timeval *stamp)
3779{
3780        *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3781}
3782
3783static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3784                                         struct __kernel_sock_timeval *stamp)
3785{
3786        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3787
3788        stamp->tv_sec = ts.tv_sec;
3789        stamp->tv_usec = ts.tv_nsec / 1000;
3790}
3791
3792static inline void skb_get_timestampns(const struct sk_buff *skb,
3793                                       struct __kernel_old_timespec *stamp)
3794{
3795        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3796
3797        stamp->tv_sec = ts.tv_sec;
3798        stamp->tv_nsec = ts.tv_nsec;
3799}
3800
3801static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3802                                           struct __kernel_timespec *stamp)
3803{
3804        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3805
3806        stamp->tv_sec = ts.tv_sec;
3807        stamp->tv_nsec = ts.tv_nsec;
3808}
3809
3810static inline void __net_timestamp(struct sk_buff *skb)
3811{
3812        skb->tstamp = ktime_get_real();
3813}
3814
3815static inline ktime_t net_timedelta(ktime_t t)
3816{
3817        return ktime_sub(ktime_get_real(), t);
3818}
3819
3820static inline ktime_t net_invalid_timestamp(void)
3821{
3822        return 0;
3823}
3824
3825static inline u8 skb_metadata_len(const struct sk_buff *skb)
3826{
3827        return skb_shinfo(skb)->meta_len;
3828}
3829
3830static inline void *skb_metadata_end(const struct sk_buff *skb)
3831{
3832        return skb_mac_header(skb);
3833}
3834
3835static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3836                                          const struct sk_buff *skb_b,
3837                                          u8 meta_len)
3838{
3839        const void *a = skb_metadata_end(skb_a);
3840        const void *b = skb_metadata_end(skb_b);
3841        /* Using more efficient varaiant than plain call to memcmp(). */
3842#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3843        u64 diffs = 0;
3844
3845        switch (meta_len) {
3846#define __it(x, op) (x -= sizeof(u##op))
3847#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3848        case 32: diffs |= __it_diff(a, b, 64);
3849                fallthrough;
3850        case 24: diffs |= __it_diff(a, b, 64);
3851                fallthrough;
3852        case 16: diffs |= __it_diff(a, b, 64);
3853                fallthrough;
3854        case  8: diffs |= __it_diff(a, b, 64);
3855                break;
3856        case 28: diffs |= __it_diff(a, b, 64);
3857                fallthrough;
3858        case 20: diffs |= __it_diff(a, b, 64);
3859                fallthrough;
3860        case 12: diffs |= __it_diff(a, b, 64);
3861                fallthrough;
3862        case  4: diffs |= __it_diff(a, b, 32);
3863                break;
3864        }
3865        return diffs;
3866#else
3867        return memcmp(a - meta_len, b - meta_len, meta_len);
3868#endif
3869}
3870
3871static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3872                                        const struct sk_buff *skb_b)
3873{
3874        u8 len_a = skb_metadata_len(skb_a);
3875        u8 len_b = skb_metadata_len(skb_b);
3876
3877        if (!(len_a | len_b))
3878                return false;
3879
3880        return len_a != len_b ?
3881               true : __skb_metadata_differs(skb_a, skb_b, len_a);
3882}
3883
3884static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3885{
3886        skb_shinfo(skb)->meta_len = meta_len;
3887}
3888
3889static inline void skb_metadata_clear(struct sk_buff *skb)
3890{
3891        skb_metadata_set(skb, 0);
3892}
3893
3894struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3895
3896#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3897
3898void skb_clone_tx_timestamp(struct sk_buff *skb);
3899bool skb_defer_rx_timestamp(struct sk_buff *skb);
3900
3901#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3902
3903static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3904{
3905}
3906
3907static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3908{
3909        return false;
3910}
3911
3912#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3913
3914/**
3915 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3916 *
3917 * PHY drivers may accept clones of transmitted packets for
3918 * timestamping via their phy_driver.txtstamp method. These drivers
3919 * must call this function to return the skb back to the stack with a
3920 * timestamp.
3921 *
3922 * @skb: clone of the original outgoing packet
3923 * @hwtstamps: hardware time stamps
3924 *
3925 */
3926void skb_complete_tx_timestamp(struct sk_buff *skb,
3927                               struct skb_shared_hwtstamps *hwtstamps);
3928
3929void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3930                     struct skb_shared_hwtstamps *hwtstamps,
3931                     struct sock *sk, int tstype);
3932
3933/**
3934 * skb_tstamp_tx - queue clone of skb with send time stamps
3935 * @orig_skb:   the original outgoing packet
3936 * @hwtstamps:  hardware time stamps, may be NULL if not available
3937 *
3938 * If the skb has a socket associated, then this function clones the
3939 * skb (thus sharing the actual data and optional structures), stores
3940 * the optional hardware time stamping information (if non NULL) or
3941 * generates a software time stamp (otherwise), then queues the clone
3942 * to the error queue of the socket.  Errors are silently ignored.
3943 */
3944void skb_tstamp_tx(struct sk_buff *orig_skb,
3945                   struct skb_shared_hwtstamps *hwtstamps);
3946
3947/**
3948 * skb_tx_timestamp() - Driver hook for transmit timestamping
3949 *
3950 * Ethernet MAC Drivers should call this function in their hard_xmit()
3951 * function immediately before giving the sk_buff to the MAC hardware.
3952 *
3953 * Specifically, one should make absolutely sure that this function is
3954 * called before TX completion of this packet can trigger.  Otherwise
3955 * the packet could potentially already be freed.
3956 *
3957 * @skb: A socket buffer.
3958 */
3959static inline void skb_tx_timestamp(struct sk_buff *skb)
3960{
3961        skb_clone_tx_timestamp(skb);
3962        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3963                skb_tstamp_tx(skb, NULL);
3964}
3965
3966/**
3967 * skb_complete_wifi_ack - deliver skb with wifi status
3968 *
3969 * @skb: the original outgoing packet
3970 * @acked: ack status
3971 *
3972 */
3973void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3974
3975__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3976__sum16 __skb_checksum_complete(struct sk_buff *skb);
3977
3978static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3979{
3980        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3981                skb->csum_valid ||
3982                (skb->ip_summed == CHECKSUM_PARTIAL &&
3983                 skb_checksum_start_offset(skb) >= 0));
3984}
3985
3986/**
3987 *      skb_checksum_complete - Calculate checksum of an entire packet
3988 *      @skb: packet to process
3989 *
3990 *      This function calculates the checksum over the entire packet plus
3991 *      the value of skb->csum.  The latter can be used to supply the
3992 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3993 *      checksum.
3994 *
3995 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3996 *      this function can be used to verify that checksum on received
3997 *      packets.  In that case the function should return zero if the
3998 *      checksum is correct.  In particular, this function will return zero
3999 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4000 *      hardware has already verified the correctness of the checksum.
4001 */
4002static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4003{
4004        return skb_csum_unnecessary(skb) ?
4005               0 : __skb_checksum_complete(skb);
4006}
4007
4008static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4009{
4010        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4011                if (skb->csum_level == 0)
4012                        skb->ip_summed = CHECKSUM_NONE;
4013                else
4014                        skb->csum_level--;
4015        }
4016}
4017
4018static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4019{
4020        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4021                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4022                        skb->csum_level++;
4023        } else if (skb->ip_summed == CHECKSUM_NONE) {
4024                skb->ip_summed = CHECKSUM_UNNECESSARY;
4025                skb->csum_level = 0;
4026        }
4027}
4028
4029static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4030{
4031        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4032                skb->ip_summed = CHECKSUM_NONE;
4033                skb->csum_level = 0;
4034        }
4035}
4036
4037/* Check if we need to perform checksum complete validation.
4038 *
4039 * Returns true if checksum complete is needed, false otherwise
4040 * (either checksum is unnecessary or zero checksum is allowed).
4041 */
4042static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4043                                                  bool zero_okay,
4044                                                  __sum16 check)
4045{
4046        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4047                skb->csum_valid = 1;
4048                __skb_decr_checksum_unnecessary(skb);
4049                return false;
4050        }
4051
4052        return true;
4053}
4054
4055/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4056 * in checksum_init.
4057 */
4058#define CHECKSUM_BREAK 76
4059
4060/* Unset checksum-complete
4061 *
4062 * Unset checksum complete can be done when packet is being modified
4063 * (uncompressed for instance) and checksum-complete value is
4064 * invalidated.
4065 */
4066static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4067{
4068        if (skb->ip_summed == CHECKSUM_COMPLETE)
4069                skb->ip_summed = CHECKSUM_NONE;
4070}
4071
4072/* Validate (init) checksum based on checksum complete.
4073 *
4074 * Return values:
4075 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4076 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4077 *      checksum is stored in skb->csum for use in __skb_checksum_complete
4078 *   non-zero: value of invalid checksum
4079 *
4080 */
4081static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4082                                                       bool complete,
4083                                                       __wsum psum)
4084{
4085        if (skb->ip_summed == CHECKSUM_COMPLETE) {
4086                if (!csum_fold(csum_add(psum, skb->csum))) {
4087                        skb->csum_valid = 1;
4088                        return 0;
4089                }
4090        }
4091
4092        skb->csum = psum;
4093
4094        if (complete || skb->len <= CHECKSUM_BREAK) {
4095                __sum16 csum;
4096
4097                csum = __skb_checksum_complete(skb);
4098                skb->csum_valid = !csum;
4099                return csum;
4100        }
4101
4102        return 0;
4103}
4104
4105static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4106{
4107        return 0;
4108}
4109
4110/* Perform checksum validate (init). Note that this is a macro since we only
4111 * want to calculate the pseudo header which is an input function if necessary.
4112 * First we try to validate without any computation (checksum unnecessary) and
4113 * then calculate based on checksum complete calling the function to compute
4114 * pseudo header.
4115 *
4116 * Return values:
4117 *   0: checksum is validated or try to in skb_checksum_complete
4118 *   non-zero: value of invalid checksum
4119 */
4120#define __skb_checksum_validate(skb, proto, complete,                   \
4121                                zero_okay, check, compute_pseudo)       \
4122({                                                                      \
4123        __sum16 __ret = 0;                                              \
4124        skb->csum_valid = 0;                                            \
4125        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4126                __ret = __skb_checksum_validate_complete(skb,           \
4127                                complete, compute_pseudo(skb, proto));  \
4128        __ret;                                                          \
4129})
4130
4131#define skb_checksum_init(skb, proto, compute_pseudo)                   \
4132        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4133
4134#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4135        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4136
4137#define skb_checksum_validate(skb, proto, compute_pseudo)               \
4138        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4139
4140#define skb_checksum_validate_zero_check(skb, proto, check,             \
4141                                         compute_pseudo)                \
4142        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4143
4144#define skb_checksum_simple_validate(skb)                               \
4145        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4146
4147static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4148{
4149        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4150}
4151
4152static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4153{
4154        skb->csum = ~pseudo;
4155        skb->ip_summed = CHECKSUM_COMPLETE;
4156}
4157
4158#define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4159do {                                                                    \
4160        if (__skb_checksum_convert_check(skb))                          \
4161                __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4162} while (0)
4163
4164static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4165                                              u16 start, u16 offset)
4166{
4167        skb->ip_summed = CHECKSUM_PARTIAL;
4168        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4169        skb->csum_offset = offset - start;
4170}
4171
4172/* Update skbuf and packet to reflect the remote checksum offload operation.
4173 * When called, ptr indicates the starting point for skb->csum when
4174 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4175 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4176 */
4177static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4178                                       int start, int offset, bool nopartial)
4179{
4180        __wsum delta;
4181
4182        if (!nopartial) {
4183                skb_remcsum_adjust_partial(skb, ptr, start, offset);
4184                return;
4185        }
4186
4187         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4188                __skb_checksum_complete(skb);
4189                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4190        }
4191
4192        delta = remcsum_adjust(ptr, skb->csum, start, offset);
4193
4194        /* Adjust skb->csum since we changed the packet */
4195        skb->csum = csum_add(skb->csum, delta);
4196}
4197
4198static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4199{
4200#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4201        return (void *)(skb->_nfct & NFCT_PTRMASK);
4202#else
4203        return NULL;
4204#endif
4205}
4206
4207static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4208{
4209#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4210        return skb->_nfct;
4211#else
4212        return 0UL;
4213#endif
4214}
4215
4216static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4217{
4218#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4219        skb->_nfct = nfct;
4220#endif
4221}
4222
4223#ifdef CONFIG_SKB_EXTENSIONS
4224enum skb_ext_id {
4225#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4226        SKB_EXT_BRIDGE_NF,
4227#endif
4228#ifdef CONFIG_XFRM
4229        SKB_EXT_SEC_PATH,
4230#endif
4231#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4232        TC_SKB_EXT,
4233#endif
4234#if IS_ENABLED(CONFIG_MPTCP)
4235        SKB_EXT_MPTCP,
4236#endif
4237        SKB_EXT_NUM, /* must be last */
4238};
4239
4240/**
4241 *      struct skb_ext - sk_buff extensions
4242 *      @refcnt: 1 on allocation, deallocated on 0
4243 *      @offset: offset to add to @data to obtain extension address
4244 *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4245 *      @data: start of extension data, variable sized
4246 *
4247 *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4248 *      to use 'u8' types while allowing up to 2kb worth of extension data.
4249 */
4250struct skb_ext {
4251        refcount_t refcnt;
4252        u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4253        u8 chunks;              /* same */
4254        char data[] __aligned(8);
4255};
4256
4257struct skb_ext *__skb_ext_alloc(gfp_t flags);
4258void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4259                    struct skb_ext *ext);
4260void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4261void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4262void __skb_ext_put(struct skb_ext *ext);
4263
4264static inline void skb_ext_put(struct sk_buff *skb)
4265{
4266        if (skb->active_extensions)
4267                __skb_ext_put(skb->extensions);
4268}
4269
4270static inline void __skb_ext_copy(struct sk_buff *dst,
4271                                  const struct sk_buff *src)
4272{
4273        dst->active_extensions = src->active_extensions;
4274
4275        if (src->active_extensions) {
4276                struct skb_ext *ext = src->extensions;
4277
4278                refcount_inc(&ext->refcnt);
4279                dst->extensions = ext;
4280        }
4281}
4282
4283static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4284{
4285        skb_ext_put(dst);
4286        __skb_ext_copy(dst, src);
4287}
4288
4289static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4290{
4291        return !!ext->offset[i];
4292}
4293
4294static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4295{
4296        return skb->active_extensions & (1 << id);
4297}
4298
4299static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4300{
4301        if (skb_ext_exist(skb, id))
4302                __skb_ext_del(skb, id);
4303}
4304
4305static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4306{
4307        if (skb_ext_exist(skb, id)) {
4308                struct skb_ext *ext = skb->extensions;
4309
4310                return (void *)ext + (ext->offset[id] << 3);
4311        }
4312
4313        return NULL;
4314}
4315
4316static inline void skb_ext_reset(struct sk_buff *skb)
4317{
4318        if (unlikely(skb->active_extensions)) {
4319                __skb_ext_put(skb->extensions);
4320                skb->active_extensions = 0;
4321        }
4322}
4323
4324static inline bool skb_has_extensions(struct sk_buff *skb)
4325{
4326        return unlikely(skb->active_extensions);
4327}
4328#else
4329static inline void skb_ext_put(struct sk_buff *skb) {}
4330static inline void skb_ext_reset(struct sk_buff *skb) {}
4331static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4332static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4333static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4334static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4335#endif /* CONFIG_SKB_EXTENSIONS */
4336
4337static inline void nf_reset_ct(struct sk_buff *skb)
4338{
4339#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4340        nf_conntrack_put(skb_nfct(skb));
4341        skb->_nfct = 0;
4342#endif
4343}
4344
4345static inline void nf_reset_trace(struct sk_buff *skb)
4346{
4347#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4348        skb->nf_trace = 0;
4349#endif
4350}
4351
4352static inline void ipvs_reset(struct sk_buff *skb)
4353{
4354#if IS_ENABLED(CONFIG_IP_VS)
4355        skb->ipvs_property = 0;
4356#endif
4357}
4358
4359/* Note: This doesn't put any conntrack info in dst. */
4360static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4361                             bool copy)
4362{
4363#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4364        dst->_nfct = src->_nfct;
4365        nf_conntrack_get(skb_nfct(src));
4366#endif
4367#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4368        if (copy)
4369                dst->nf_trace = src->nf_trace;
4370#endif
4371}
4372
4373static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4374{
4375#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4376        nf_conntrack_put(skb_nfct(dst));
4377#endif
4378        __nf_copy(dst, src, true);
4379}
4380
4381#ifdef CONFIG_NETWORK_SECMARK
4382static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4383{
4384        to->secmark = from->secmark;
4385}
4386
4387static inline void skb_init_secmark(struct sk_buff *skb)
4388{
4389        skb->secmark = 0;
4390}
4391#else
4392static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4393{ }
4394
4395static inline void skb_init_secmark(struct sk_buff *skb)
4396{ }
4397#endif
4398
4399static inline int secpath_exists(const struct sk_buff *skb)
4400{
4401#ifdef CONFIG_XFRM
4402        return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4403#else
4404        return 0;
4405#endif
4406}
4407
4408static inline bool skb_irq_freeable(const struct sk_buff *skb)
4409{
4410        return !skb->destructor &&
4411                !secpath_exists(skb) &&
4412                !skb_nfct(skb) &&
4413                !skb->_skb_refdst &&
4414                !skb_has_frag_list(skb);
4415}
4416
4417static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4418{
4419        skb->queue_mapping = queue_mapping;
4420}
4421
4422static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4423{
4424        return skb->queue_mapping;
4425}
4426
4427static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4428{
4429        to->queue_mapping = from->queue_mapping;
4430}
4431
4432static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4433{
4434        skb->queue_mapping = rx_queue + 1;
4435}
4436
4437static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4438{
4439        return skb->queue_mapping - 1;
4440}
4441
4442static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4443{
4444        return skb->queue_mapping != 0;
4445}
4446
4447static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4448{
4449        skb->dst_pending_confirm = val;
4450}
4451
4452static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4453{
4454        return skb->dst_pending_confirm != 0;
4455}
4456
4457static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4458{
4459#ifdef CONFIG_XFRM
4460        return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4461#else
4462        return NULL;
4463#endif
4464}
4465
4466/* Keeps track of mac header offset relative to skb->head.
4467 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4468 * For non-tunnel skb it points to skb_mac_header() and for
4469 * tunnel skb it points to outer mac header.
4470 * Keeps track of level of encapsulation of network headers.
4471 */
4472struct skb_gso_cb {
4473        union {
4474                int     mac_offset;
4475                int     data_offset;
4476        };
4477        int     encap_level;
4478        __wsum  csum;
4479        __u16   csum_start;
4480};
4481#define SKB_GSO_CB_OFFSET       32
4482#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4483
4484static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4485{
4486        return (skb_mac_header(inner_skb) - inner_skb->head) -
4487                SKB_GSO_CB(inner_skb)->mac_offset;
4488}
4489
4490static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4491{
4492        int new_headroom, headroom;
4493        int ret;
4494
4495        headroom = skb_headroom(skb);
4496        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4497        if (ret)
4498                return ret;
4499
4500        new_headroom = skb_headroom(skb);
4501        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4502        return 0;
4503}
4504
4505static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4506{
4507        /* Do not update partial checksums if remote checksum is enabled. */
4508        if (skb->remcsum_offload)
4509                return;
4510
4511        SKB_GSO_CB(skb)->csum = res;
4512        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4513}
4514
4515/* Compute the checksum for a gso segment. First compute the checksum value
4516 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4517 * then add in skb->csum (checksum from csum_start to end of packet).
4518 * skb->csum and csum_start are then updated to reflect the checksum of the
4519 * resultant packet starting from the transport header-- the resultant checksum
4520 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4521 * header.
4522 */
4523static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4524{
4525        unsigned char *csum_start = skb_transport_header(skb);
4526        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4527        __wsum partial = SKB_GSO_CB(skb)->csum;
4528
4529        SKB_GSO_CB(skb)->csum = res;
4530        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4531
4532        return csum_fold(csum_partial(csum_start, plen, partial));
4533}
4534
4535static inline bool skb_is_gso(const struct sk_buff *skb)
4536{
4537        return skb_shinfo(skb)->gso_size;
4538}
4539
4540/* Note: Should be called only if skb_is_gso(skb) is true */
4541static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4542{
4543        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4544}
4545
4546/* Note: Should be called only if skb_is_gso(skb) is true */
4547static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4548{
4549        return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4550}
4551
4552/* Note: Should be called only if skb_is_gso(skb) is true */
4553static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4554{
4555        return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4556}
4557
4558static inline void skb_gso_reset(struct sk_buff *skb)
4559{
4560        skb_shinfo(skb)->gso_size = 0;
4561        skb_shinfo(skb)->gso_segs = 0;
4562        skb_shinfo(skb)->gso_type = 0;
4563}
4564
4565static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4566                                         u16 increment)
4567{
4568        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4569                return;
4570        shinfo->gso_size += increment;
4571}
4572
4573static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4574                                         u16 decrement)
4575{
4576        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4577                return;
4578        shinfo->gso_size -= decrement;
4579}
4580
4581void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4582
4583static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4584{
4585        /* LRO sets gso_size but not gso_type, whereas if GSO is really
4586         * wanted then gso_type will be set. */
4587        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4588
4589        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4590            unlikely(shinfo->gso_type == 0)) {
4591                __skb_warn_lro_forwarding(skb);
4592                return true;
4593        }
4594        return false;
4595}
4596
4597static inline void skb_forward_csum(struct sk_buff *skb)
4598{
4599        /* Unfortunately we don't support this one.  Any brave souls? */
4600        if (skb->ip_summed == CHECKSUM_COMPLETE)
4601                skb->ip_summed = CHECKSUM_NONE;
4602}
4603
4604/**
4605 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4606 * @skb: skb to check
4607 *
4608 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4609 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4610 * use this helper, to document places where we make this assertion.
4611 */
4612static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4613{
4614#ifdef DEBUG
4615        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4616#endif
4617}
4618
4619bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4620
4621int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4622struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4623                                     unsigned int transport_len,
4624                                     __sum16(*skb_chkf)(struct sk_buff *skb));
4625
4626/**
4627 * skb_head_is_locked - Determine if the skb->head is locked down
4628 * @skb: skb to check
4629 *
4630 * The head on skbs build around a head frag can be removed if they are
4631 * not cloned.  This function returns true if the skb head is locked down
4632 * due to either being allocated via kmalloc, or by being a clone with
4633 * multiple references to the head.
4634 */
4635static inline bool skb_head_is_locked(const struct sk_buff *skb)
4636{
4637        return !skb->head_frag || skb_cloned(skb);
4638}
4639
4640/* Local Checksum Offload.
4641 * Compute outer checksum based on the assumption that the
4642 * inner checksum will be offloaded later.
4643 * See Documentation/networking/checksum-offloads.rst for
4644 * explanation of how this works.
4645 * Fill in outer checksum adjustment (e.g. with sum of outer
4646 * pseudo-header) before calling.
4647 * Also ensure that inner checksum is in linear data area.
4648 */
4649static inline __wsum lco_csum(struct sk_buff *skb)
4650{
4651        unsigned char *csum_start = skb_checksum_start(skb);
4652        unsigned char *l4_hdr = skb_transport_header(skb);
4653        __wsum partial;
4654
4655        /* Start with complement of inner checksum adjustment */
4656        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4657                                                    skb->csum_offset));
4658
4659        /* Add in checksum of our headers (incl. outer checksum
4660         * adjustment filled in by caller) and return result.
4661         */
4662        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4663}
4664
4665static inline bool skb_is_redirected(const struct sk_buff *skb)
4666{
4667#ifdef CONFIG_NET_REDIRECT
4668        return skb->redirected;
4669#else
4670        return false;
4671#endif
4672}
4673
4674static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4675{
4676#ifdef CONFIG_NET_REDIRECT
4677        skb->redirected = 1;
4678        skb->from_ingress = from_ingress;
4679        if (skb->from_ingress)
4680                skb->tstamp = 0;
4681#endif
4682}
4683
4684static inline void skb_reset_redirect(struct sk_buff *skb)
4685{
4686#ifdef CONFIG_NET_REDIRECT
4687        skb->redirected = 0;
4688#endif
4689}
4690
4691static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4692{
4693        return skb->csum_not_inet;
4694}
4695
4696static inline void skb_set_kcov_handle(struct sk_buff *skb,
4697                                       const u64 kcov_handle)
4698{
4699#ifdef CONFIG_KCOV
4700        skb->kcov_handle = kcov_handle;
4701#endif
4702}
4703
4704static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4705{
4706#ifdef CONFIG_KCOV
4707        return skb->kcov_handle;
4708#else
4709        return 0;
4710#endif
4711}
4712
4713#ifdef CONFIG_PAGE_POOL
4714static inline void skb_mark_for_recycle(struct sk_buff *skb, struct page *page,
4715                                        struct page_pool *pp)
4716{
4717        skb->pp_recycle = 1;
4718        page_pool_store_mem_info(page, pp);
4719}
4720#endif
4721
4722static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4723{
4724        if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4725                return false;
4726        return page_pool_return_skb_page(virt_to_page(data));
4727}
4728
4729#endif  /* __KERNEL__ */
4730#endif  /* _LINUX_SKBUFF_H */
4731