linux/include/net/sock.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the AF_INET socket handler.
   8 *
   9 * Version:     @(#)sock.h      1.0.4   05/13/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *              Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *              Alan Cox        :       Volatiles in skbuff pointers. See
  18 *                                      skbuff comments. May be overdone,
  19 *                                      better to prove they can be removed
  20 *                                      than the reverse.
  21 *              Alan Cox        :       Added a zapped field for tcp to note
  22 *                                      a socket is reset and must stay shut up
  23 *              Alan Cox        :       New fields for options
  24 *      Pauline Middelink       :       identd support
  25 *              Alan Cox        :       Eliminate low level recv/recvfrom
  26 *              David S. Miller :       New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  29 *                                      protinfo be just a void pointer, as the
  30 *                                      protocol specific parts were moved to
  31 *                                      respective headers and ipv4/v6, etc now
  32 *                                      use private slabcaches for its socks
  33 *              Pedro Hortas    :       New flags field for socket options
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>       /* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63#include <linux/indirect_call_wrapper.h>
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82                                        printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96        spinlock_t              slock;
  97        int                     owned;
  98        wait_queue_head_t       wq;
  99        /*
 100         * We express the mutex-alike socket_lock semantics
 101         * to the lock validator by explicitly managing
 102         * the slock as a lock variant (in addition to
 103         * the slock itself):
 104         */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106        struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *      struct sock_common - minimal network layer representation of sockets
 119 *      @skc_daddr: Foreign IPv4 addr
 120 *      @skc_rcv_saddr: Bound local IPv4 addr
 121 *      @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 122 *      @skc_hash: hash value used with various protocol lookup tables
 123 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 124 *      @skc_dport: placeholder for inet_dport/tw_dport
 125 *      @skc_num: placeholder for inet_num/tw_num
 126 *      @skc_portpair: __u32 union of @skc_dport & @skc_num
 127 *      @skc_family: network address family
 128 *      @skc_state: Connection state
 129 *      @skc_reuse: %SO_REUSEADDR setting
 130 *      @skc_reuseport: %SO_REUSEPORT setting
 131 *      @skc_ipv6only: socket is IPV6 only
 132 *      @skc_net_refcnt: socket is using net ref counting
 133 *      @skc_bound_dev_if: bound device index if != 0
 134 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 135 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 136 *      @skc_prot: protocol handlers inside a network family
 137 *      @skc_net: reference to the network namespace of this socket
 138 *      @skc_v6_daddr: IPV6 destination address
 139 *      @skc_v6_rcv_saddr: IPV6 source address
 140 *      @skc_cookie: socket's cookie value
 141 *      @skc_node: main hash linkage for various protocol lookup tables
 142 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 143 *      @skc_tx_queue_mapping: tx queue number for this connection
 144 *      @skc_rx_queue_mapping: rx queue number for this connection
 145 *      @skc_flags: place holder for sk_flags
 146 *              %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 147 *              %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 148 *      @skc_listener: connection request listener socket (aka rsk_listener)
 149 *              [union with @skc_flags]
 150 *      @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 151 *              [union with @skc_flags]
 152 *      @skc_incoming_cpu: record/match cpu processing incoming packets
 153 *      @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 154 *              [union with @skc_incoming_cpu]
 155 *      @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 156 *              [union with @skc_incoming_cpu]
 157 *      @skc_refcnt: reference count
 158 *
 159 *      This is the minimal network layer representation of sockets, the header
 160 *      for struct sock and struct inet_timewait_sock.
 161 */
 162struct sock_common {
 163        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 164         * address on 64bit arches : cf INET_MATCH()
 165         */
 166        union {
 167                __addrpair      skc_addrpair;
 168                struct {
 169                        __be32  skc_daddr;
 170                        __be32  skc_rcv_saddr;
 171                };
 172        };
 173        union  {
 174                unsigned int    skc_hash;
 175                __u16           skc_u16hashes[2];
 176        };
 177        /* skc_dport && skc_num must be grouped as well */
 178        union {
 179                __portpair      skc_portpair;
 180                struct {
 181                        __be16  skc_dport;
 182                        __u16   skc_num;
 183                };
 184        };
 185
 186        unsigned short          skc_family;
 187        volatile unsigned char  skc_state;
 188        unsigned char           skc_reuse:4;
 189        unsigned char           skc_reuseport:1;
 190        unsigned char           skc_ipv6only:1;
 191        unsigned char           skc_net_refcnt:1;
 192        int                     skc_bound_dev_if;
 193        union {
 194                struct hlist_node       skc_bind_node;
 195                struct hlist_node       skc_portaddr_node;
 196        };
 197        struct proto            *skc_prot;
 198        possible_net_t          skc_net;
 199
 200#if IS_ENABLED(CONFIG_IPV6)
 201        struct in6_addr         skc_v6_daddr;
 202        struct in6_addr         skc_v6_rcv_saddr;
 203#endif
 204
 205        atomic64_t              skc_cookie;
 206
 207        /* following fields are padding to force
 208         * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 209         * assuming IPV6 is enabled. We use this padding differently
 210         * for different kind of 'sockets'
 211         */
 212        union {
 213                unsigned long   skc_flags;
 214                struct sock     *skc_listener; /* request_sock */
 215                struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 216        };
 217        /*
 218         * fields between dontcopy_begin/dontcopy_end
 219         * are not copied in sock_copy()
 220         */
 221        /* private: */
 222        int                     skc_dontcopy_begin[0];
 223        /* public: */
 224        union {
 225                struct hlist_node       skc_node;
 226                struct hlist_nulls_node skc_nulls_node;
 227        };
 228        unsigned short          skc_tx_queue_mapping;
 229#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 230        unsigned short          skc_rx_queue_mapping;
 231#endif
 232        union {
 233                int             skc_incoming_cpu;
 234                u32             skc_rcv_wnd;
 235                u32             skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 236        };
 237
 238        refcount_t              skc_refcnt;
 239        /* private: */
 240        int                     skc_dontcopy_end[0];
 241        union {
 242                u32             skc_rxhash;
 243                u32             skc_window_clamp;
 244                u32             skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 245        };
 246        /* public: */
 247};
 248
 249struct bpf_local_storage;
 250
 251/**
 252  *     struct sock - network layer representation of sockets
 253  *     @__sk_common: shared layout with inet_timewait_sock
 254  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 255  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 256  *     @sk_lock:       synchronizer
 257  *     @sk_kern_sock: True if sock is using kernel lock classes
 258  *     @sk_rcvbuf: size of receive buffer in bytes
 259  *     @sk_wq: sock wait queue and async head
 260  *     @sk_rx_dst: receive input route used by early demux
 261  *     @sk_dst_cache: destination cache
 262  *     @sk_dst_pending_confirm: need to confirm neighbour
 263  *     @sk_policy: flow policy
 264  *     @sk_rx_skb_cache: cache copy of recently accessed RX skb
 265  *     @sk_receive_queue: incoming packets
 266  *     @sk_wmem_alloc: transmit queue bytes committed
 267  *     @sk_tsq_flags: TCP Small Queues flags
 268  *     @sk_write_queue: Packet sending queue
 269  *     @sk_omem_alloc: "o" is "option" or "other"
 270  *     @sk_wmem_queued: persistent queue size
 271  *     @sk_forward_alloc: space allocated forward
 272  *     @sk_napi_id: id of the last napi context to receive data for sk
 273  *     @sk_ll_usec: usecs to busypoll when there is no data
 274  *     @sk_allocation: allocation mode
 275  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 276  *     @sk_pacing_status: Pacing status (requested, handled by sch_fq)
 277  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 278  *     @sk_sndbuf: size of send buffer in bytes
 279  *     @__sk_flags_offset: empty field used to determine location of bitfield
 280  *     @sk_padding: unused element for alignment
 281  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 282  *     @sk_no_check_rx: allow zero checksum in RX packets
 283  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 284  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 285  *     @sk_route_forced_caps: static, forced route capabilities
 286  *             (set in tcp_init_sock())
 287  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 288  *     @sk_gso_max_size: Maximum GSO segment size to build
 289  *     @sk_gso_max_segs: Maximum number of GSO segments
 290  *     @sk_pacing_shift: scaling factor for TCP Small Queues
 291  *     @sk_lingertime: %SO_LINGER l_linger setting
 292  *     @sk_backlog: always used with the per-socket spinlock held
 293  *     @sk_callback_lock: used with the callbacks in the end of this struct
 294  *     @sk_error_queue: rarely used
 295  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 296  *                       IPV6_ADDRFORM for instance)
 297  *     @sk_err: last error
 298  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 299  *                   persistent failure not just 'timed out'
 300  *     @sk_drops: raw/udp drops counter
 301  *     @sk_ack_backlog: current listen backlog
 302  *     @sk_max_ack_backlog: listen backlog set in listen()
 303  *     @sk_uid: user id of owner
 304  *     @sk_prefer_busy_poll: prefer busypolling over softirq processing
 305  *     @sk_busy_poll_budget: napi processing budget when busypolling
 306  *     @sk_priority: %SO_PRIORITY setting
 307  *     @sk_type: socket type (%SOCK_STREAM, etc)
 308  *     @sk_protocol: which protocol this socket belongs in this network family
 309  *     @sk_peer_pid: &struct pid for this socket's peer
 310  *     @sk_peer_cred: %SO_PEERCRED setting
 311  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 312  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 313  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 314  *     @sk_txhash: computed flow hash for use on transmit
 315  *     @sk_filter: socket filtering instructions
 316  *     @sk_timer: sock cleanup timer
 317  *     @sk_stamp: time stamp of last packet received
 318  *     @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 319  *     @sk_tsflags: SO_TIMESTAMPING flags
 320  *     @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
 321  *                   for timestamping
 322  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 323  *     @sk_zckey: counter to order MSG_ZEROCOPY notifications
 324  *     @sk_socket: Identd and reporting IO signals
 325  *     @sk_user_data: RPC layer private data
 326  *     @sk_frag: cached page frag
 327  *     @sk_peek_off: current peek_offset value
 328  *     @sk_send_head: front of stuff to transmit
 329  *     @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 330  *     @sk_tx_skb_cache: cache copy of recently accessed TX skb
 331  *     @sk_security: used by security modules
 332  *     @sk_mark: generic packet mark
 333  *     @sk_cgrp_data: cgroup data for this cgroup
 334  *     @sk_memcg: this socket's memory cgroup association
 335  *     @sk_write_pending: a write to stream socket waits to start
 336  *     @sk_state_change: callback to indicate change in the state of the sock
 337  *     @sk_data_ready: callback to indicate there is data to be processed
 338  *     @sk_write_space: callback to indicate there is bf sending space available
 339  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 340  *     @sk_backlog_rcv: callback to process the backlog
 341  *     @sk_validate_xmit_skb: ptr to an optional validate function
 342  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 343  *     @sk_reuseport_cb: reuseport group container
 344  *     @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 345  *     @sk_rcu: used during RCU grace period
 346  *     @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 347  *     @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 348  *     @sk_txtime_report_errors: set report errors mode for SO_TXTIME
 349  *     @sk_txtime_unused: unused txtime flags
 350  */
 351struct sock {
 352        /*
 353         * Now struct inet_timewait_sock also uses sock_common, so please just
 354         * don't add nothing before this first member (__sk_common) --acme
 355         */
 356        struct sock_common      __sk_common;
 357#define sk_node                 __sk_common.skc_node
 358#define sk_nulls_node           __sk_common.skc_nulls_node
 359#define sk_refcnt               __sk_common.skc_refcnt
 360#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 361#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 362#define sk_rx_queue_mapping     __sk_common.skc_rx_queue_mapping
 363#endif
 364
 365#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 366#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 367#define sk_hash                 __sk_common.skc_hash
 368#define sk_portpair             __sk_common.skc_portpair
 369#define sk_num                  __sk_common.skc_num
 370#define sk_dport                __sk_common.skc_dport
 371#define sk_addrpair             __sk_common.skc_addrpair
 372#define sk_daddr                __sk_common.skc_daddr
 373#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 374#define sk_family               __sk_common.skc_family
 375#define sk_state                __sk_common.skc_state
 376#define sk_reuse                __sk_common.skc_reuse
 377#define sk_reuseport            __sk_common.skc_reuseport
 378#define sk_ipv6only             __sk_common.skc_ipv6only
 379#define sk_net_refcnt           __sk_common.skc_net_refcnt
 380#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 381#define sk_bind_node            __sk_common.skc_bind_node
 382#define sk_prot                 __sk_common.skc_prot
 383#define sk_net                  __sk_common.skc_net
 384#define sk_v6_daddr             __sk_common.skc_v6_daddr
 385#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 386#define sk_cookie               __sk_common.skc_cookie
 387#define sk_incoming_cpu         __sk_common.skc_incoming_cpu
 388#define sk_flags                __sk_common.skc_flags
 389#define sk_rxhash               __sk_common.skc_rxhash
 390
 391        socket_lock_t           sk_lock;
 392        atomic_t                sk_drops;
 393        int                     sk_rcvlowat;
 394        struct sk_buff_head     sk_error_queue;
 395        struct sk_buff          *sk_rx_skb_cache;
 396        struct sk_buff_head     sk_receive_queue;
 397        /*
 398         * The backlog queue is special, it is always used with
 399         * the per-socket spinlock held and requires low latency
 400         * access. Therefore we special case it's implementation.
 401         * Note : rmem_alloc is in this structure to fill a hole
 402         * on 64bit arches, not because its logically part of
 403         * backlog.
 404         */
 405        struct {
 406                atomic_t        rmem_alloc;
 407                int             len;
 408                struct sk_buff  *head;
 409                struct sk_buff  *tail;
 410        } sk_backlog;
 411#define sk_rmem_alloc sk_backlog.rmem_alloc
 412
 413        int                     sk_forward_alloc;
 414#ifdef CONFIG_NET_RX_BUSY_POLL
 415        unsigned int            sk_ll_usec;
 416        /* ===== mostly read cache line ===== */
 417        unsigned int            sk_napi_id;
 418#endif
 419        int                     sk_rcvbuf;
 420
 421        struct sk_filter __rcu  *sk_filter;
 422        union {
 423                struct socket_wq __rcu  *sk_wq;
 424                /* private: */
 425                struct socket_wq        *sk_wq_raw;
 426                /* public: */
 427        };
 428#ifdef CONFIG_XFRM
 429        struct xfrm_policy __rcu *sk_policy[2];
 430#endif
 431        struct dst_entry        *sk_rx_dst;
 432        struct dst_entry __rcu  *sk_dst_cache;
 433        atomic_t                sk_omem_alloc;
 434        int                     sk_sndbuf;
 435
 436        /* ===== cache line for TX ===== */
 437        int                     sk_wmem_queued;
 438        refcount_t              sk_wmem_alloc;
 439        unsigned long           sk_tsq_flags;
 440        union {
 441                struct sk_buff  *sk_send_head;
 442                struct rb_root  tcp_rtx_queue;
 443        };
 444        struct sk_buff          *sk_tx_skb_cache;
 445        struct sk_buff_head     sk_write_queue;
 446        __s32                   sk_peek_off;
 447        int                     sk_write_pending;
 448        __u32                   sk_dst_pending_confirm;
 449        u32                     sk_pacing_status; /* see enum sk_pacing */
 450        long                    sk_sndtimeo;
 451        struct timer_list       sk_timer;
 452        __u32                   sk_priority;
 453        __u32                   sk_mark;
 454        unsigned long           sk_pacing_rate; /* bytes per second */
 455        unsigned long           sk_max_pacing_rate;
 456        struct page_frag        sk_frag;
 457        netdev_features_t       sk_route_caps;
 458        netdev_features_t       sk_route_nocaps;
 459        netdev_features_t       sk_route_forced_caps;
 460        int                     sk_gso_type;
 461        unsigned int            sk_gso_max_size;
 462        gfp_t                   sk_allocation;
 463        __u32                   sk_txhash;
 464
 465        /*
 466         * Because of non atomicity rules, all
 467         * changes are protected by socket lock.
 468         */
 469        u8                      sk_padding : 1,
 470                                sk_kern_sock : 1,
 471                                sk_no_check_tx : 1,
 472                                sk_no_check_rx : 1,
 473                                sk_userlocks : 4;
 474        u8                      sk_pacing_shift;
 475        u16                     sk_type;
 476        u16                     sk_protocol;
 477        u16                     sk_gso_max_segs;
 478        unsigned long           sk_lingertime;
 479        struct proto            *sk_prot_creator;
 480        rwlock_t                sk_callback_lock;
 481        int                     sk_err,
 482                                sk_err_soft;
 483        u32                     sk_ack_backlog;
 484        u32                     sk_max_ack_backlog;
 485        kuid_t                  sk_uid;
 486#ifdef CONFIG_NET_RX_BUSY_POLL
 487        u8                      sk_prefer_busy_poll;
 488        u16                     sk_busy_poll_budget;
 489#endif
 490        struct pid              *sk_peer_pid;
 491        const struct cred       *sk_peer_cred;
 492        long                    sk_rcvtimeo;
 493        ktime_t                 sk_stamp;
 494#if BITS_PER_LONG==32
 495        seqlock_t               sk_stamp_seq;
 496#endif
 497        u16                     sk_tsflags;
 498        int                     sk_bind_phc;
 499        u8                      sk_shutdown;
 500        u32                     sk_tskey;
 501        atomic_t                sk_zckey;
 502
 503        u8                      sk_clockid;
 504        u8                      sk_txtime_deadline_mode : 1,
 505                                sk_txtime_report_errors : 1,
 506                                sk_txtime_unused : 6;
 507
 508        struct socket           *sk_socket;
 509        void                    *sk_user_data;
 510#ifdef CONFIG_SECURITY
 511        void                    *sk_security;
 512#endif
 513        struct sock_cgroup_data sk_cgrp_data;
 514        struct mem_cgroup       *sk_memcg;
 515        void                    (*sk_state_change)(struct sock *sk);
 516        void                    (*sk_data_ready)(struct sock *sk);
 517        void                    (*sk_write_space)(struct sock *sk);
 518        void                    (*sk_error_report)(struct sock *sk);
 519        int                     (*sk_backlog_rcv)(struct sock *sk,
 520                                                  struct sk_buff *skb);
 521#ifdef CONFIG_SOCK_VALIDATE_XMIT
 522        struct sk_buff*         (*sk_validate_xmit_skb)(struct sock *sk,
 523                                                        struct net_device *dev,
 524                                                        struct sk_buff *skb);
 525#endif
 526        void                    (*sk_destruct)(struct sock *sk);
 527        struct sock_reuseport __rcu     *sk_reuseport_cb;
 528#ifdef CONFIG_BPF_SYSCALL
 529        struct bpf_local_storage __rcu  *sk_bpf_storage;
 530#endif
 531        struct rcu_head         sk_rcu;
 532};
 533
 534enum sk_pacing {
 535        SK_PACING_NONE          = 0,
 536        SK_PACING_NEEDED        = 1,
 537        SK_PACING_FQ            = 2,
 538};
 539
 540/* Pointer stored in sk_user_data might not be suitable for copying
 541 * when cloning the socket. For instance, it can point to a reference
 542 * counted object. sk_user_data bottom bit is set if pointer must not
 543 * be copied.
 544 */
 545#define SK_USER_DATA_NOCOPY     1UL
 546#define SK_USER_DATA_BPF        2UL     /* Managed by BPF */
 547#define SK_USER_DATA_PTRMASK    ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 548
 549/**
 550 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 551 * @sk: socket
 552 */
 553static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 554{
 555        return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 556}
 557
 558#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 559
 560#define rcu_dereference_sk_user_data(sk)                                \
 561({                                                                      \
 562        void *__tmp = rcu_dereference(__sk_user_data((sk)));            \
 563        (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);              \
 564})
 565#define rcu_assign_sk_user_data(sk, ptr)                                \
 566({                                                                      \
 567        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 568        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 569        rcu_assign_pointer(__sk_user_data((sk)), __tmp);                \
 570})
 571#define rcu_assign_sk_user_data_nocopy(sk, ptr)                         \
 572({                                                                      \
 573        uintptr_t __tmp = (uintptr_t)(ptr);                             \
 574        WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);                    \
 575        rcu_assign_pointer(__sk_user_data((sk)),                        \
 576                           __tmp | SK_USER_DATA_NOCOPY);                \
 577})
 578
 579/*
 580 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 581 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 582 * on a socket means that the socket will reuse everybody else's port
 583 * without looking at the other's sk_reuse value.
 584 */
 585
 586#define SK_NO_REUSE     0
 587#define SK_CAN_REUSE    1
 588#define SK_FORCE_REUSE  2
 589
 590int sk_set_peek_off(struct sock *sk, int val);
 591
 592static inline int sk_peek_offset(struct sock *sk, int flags)
 593{
 594        if (unlikely(flags & MSG_PEEK)) {
 595                return READ_ONCE(sk->sk_peek_off);
 596        }
 597
 598        return 0;
 599}
 600
 601static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 602{
 603        s32 off = READ_ONCE(sk->sk_peek_off);
 604
 605        if (unlikely(off >= 0)) {
 606                off = max_t(s32, off - val, 0);
 607                WRITE_ONCE(sk->sk_peek_off, off);
 608        }
 609}
 610
 611static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 612{
 613        sk_peek_offset_bwd(sk, -val);
 614}
 615
 616/*
 617 * Hashed lists helper routines
 618 */
 619static inline struct sock *sk_entry(const struct hlist_node *node)
 620{
 621        return hlist_entry(node, struct sock, sk_node);
 622}
 623
 624static inline struct sock *__sk_head(const struct hlist_head *head)
 625{
 626        return hlist_entry(head->first, struct sock, sk_node);
 627}
 628
 629static inline struct sock *sk_head(const struct hlist_head *head)
 630{
 631        return hlist_empty(head) ? NULL : __sk_head(head);
 632}
 633
 634static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 635{
 636        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 637}
 638
 639static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 640{
 641        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 642}
 643
 644static inline struct sock *sk_next(const struct sock *sk)
 645{
 646        return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 647}
 648
 649static inline struct sock *sk_nulls_next(const struct sock *sk)
 650{
 651        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 652                hlist_nulls_entry(sk->sk_nulls_node.next,
 653                                  struct sock, sk_nulls_node) :
 654                NULL;
 655}
 656
 657static inline bool sk_unhashed(const struct sock *sk)
 658{
 659        return hlist_unhashed(&sk->sk_node);
 660}
 661
 662static inline bool sk_hashed(const struct sock *sk)
 663{
 664        return !sk_unhashed(sk);
 665}
 666
 667static inline void sk_node_init(struct hlist_node *node)
 668{
 669        node->pprev = NULL;
 670}
 671
 672static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 673{
 674        node->pprev = NULL;
 675}
 676
 677static inline void __sk_del_node(struct sock *sk)
 678{
 679        __hlist_del(&sk->sk_node);
 680}
 681
 682/* NB: equivalent to hlist_del_init_rcu */
 683static inline bool __sk_del_node_init(struct sock *sk)
 684{
 685        if (sk_hashed(sk)) {
 686                __sk_del_node(sk);
 687                sk_node_init(&sk->sk_node);
 688                return true;
 689        }
 690        return false;
 691}
 692
 693/* Grab socket reference count. This operation is valid only
 694   when sk is ALREADY grabbed f.e. it is found in hash table
 695   or a list and the lookup is made under lock preventing hash table
 696   modifications.
 697 */
 698
 699static __always_inline void sock_hold(struct sock *sk)
 700{
 701        refcount_inc(&sk->sk_refcnt);
 702}
 703
 704/* Ungrab socket in the context, which assumes that socket refcnt
 705   cannot hit zero, f.e. it is true in context of any socketcall.
 706 */
 707static __always_inline void __sock_put(struct sock *sk)
 708{
 709        refcount_dec(&sk->sk_refcnt);
 710}
 711
 712static inline bool sk_del_node_init(struct sock *sk)
 713{
 714        bool rc = __sk_del_node_init(sk);
 715
 716        if (rc) {
 717                /* paranoid for a while -acme */
 718                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 719                __sock_put(sk);
 720        }
 721        return rc;
 722}
 723#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 724
 725static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 726{
 727        if (sk_hashed(sk)) {
 728                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 729                return true;
 730        }
 731        return false;
 732}
 733
 734static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 735{
 736        bool rc = __sk_nulls_del_node_init_rcu(sk);
 737
 738        if (rc) {
 739                /* paranoid for a while -acme */
 740                WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 741                __sock_put(sk);
 742        }
 743        return rc;
 744}
 745
 746static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 747{
 748        hlist_add_head(&sk->sk_node, list);
 749}
 750
 751static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 752{
 753        sock_hold(sk);
 754        __sk_add_node(sk, list);
 755}
 756
 757static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 758{
 759        sock_hold(sk);
 760        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 761            sk->sk_family == AF_INET6)
 762                hlist_add_tail_rcu(&sk->sk_node, list);
 763        else
 764                hlist_add_head_rcu(&sk->sk_node, list);
 765}
 766
 767static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 768{
 769        sock_hold(sk);
 770        hlist_add_tail_rcu(&sk->sk_node, list);
 771}
 772
 773static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 774{
 775        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 776}
 777
 778static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 779{
 780        hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 781}
 782
 783static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 784{
 785        sock_hold(sk);
 786        __sk_nulls_add_node_rcu(sk, list);
 787}
 788
 789static inline void __sk_del_bind_node(struct sock *sk)
 790{
 791        __hlist_del(&sk->sk_bind_node);
 792}
 793
 794static inline void sk_add_bind_node(struct sock *sk,
 795                                        struct hlist_head *list)
 796{
 797        hlist_add_head(&sk->sk_bind_node, list);
 798}
 799
 800#define sk_for_each(__sk, list) \
 801        hlist_for_each_entry(__sk, list, sk_node)
 802#define sk_for_each_rcu(__sk, list) \
 803        hlist_for_each_entry_rcu(__sk, list, sk_node)
 804#define sk_nulls_for_each(__sk, node, list) \
 805        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 806#define sk_nulls_for_each_rcu(__sk, node, list) \
 807        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 808#define sk_for_each_from(__sk) \
 809        hlist_for_each_entry_from(__sk, sk_node)
 810#define sk_nulls_for_each_from(__sk, node) \
 811        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 812                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 813#define sk_for_each_safe(__sk, tmp, list) \
 814        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 815#define sk_for_each_bound(__sk, list) \
 816        hlist_for_each_entry(__sk, list, sk_bind_node)
 817
 818/**
 819 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 820 * @tpos:       the type * to use as a loop cursor.
 821 * @pos:        the &struct hlist_node to use as a loop cursor.
 822 * @head:       the head for your list.
 823 * @offset:     offset of hlist_node within the struct.
 824 *
 825 */
 826#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 827        for (pos = rcu_dereference(hlist_first_rcu(head));                     \
 828             pos != NULL &&                                                    \
 829                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 830             pos = rcu_dereference(hlist_next_rcu(pos)))
 831
 832static inline struct user_namespace *sk_user_ns(struct sock *sk)
 833{
 834        /* Careful only use this in a context where these parameters
 835         * can not change and must all be valid, such as recvmsg from
 836         * userspace.
 837         */
 838        return sk->sk_socket->file->f_cred->user_ns;
 839}
 840
 841/* Sock flags */
 842enum sock_flags {
 843        SOCK_DEAD,
 844        SOCK_DONE,
 845        SOCK_URGINLINE,
 846        SOCK_KEEPOPEN,
 847        SOCK_LINGER,
 848        SOCK_DESTROY,
 849        SOCK_BROADCAST,
 850        SOCK_TIMESTAMP,
 851        SOCK_ZAPPED,
 852        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 853        SOCK_DBG, /* %SO_DEBUG setting */
 854        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 855        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 856        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 857        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 858        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 859        SOCK_FASYNC, /* fasync() active */
 860        SOCK_RXQ_OVFL,
 861        SOCK_ZEROCOPY, /* buffers from userspace */
 862        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 863        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 864                     * Will use last 4 bytes of packet sent from
 865                     * user-space instead.
 866                     */
 867        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 868        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 869        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 870        SOCK_TXTIME,
 871        SOCK_XDP, /* XDP is attached */
 872        SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 873};
 874
 875#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 876
 877static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 878{
 879        nsk->sk_flags = osk->sk_flags;
 880}
 881
 882static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 883{
 884        __set_bit(flag, &sk->sk_flags);
 885}
 886
 887static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 888{
 889        __clear_bit(flag, &sk->sk_flags);
 890}
 891
 892static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 893                                     int valbool)
 894{
 895        if (valbool)
 896                sock_set_flag(sk, bit);
 897        else
 898                sock_reset_flag(sk, bit);
 899}
 900
 901static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 902{
 903        return test_bit(flag, &sk->sk_flags);
 904}
 905
 906#ifdef CONFIG_NET
 907DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 908static inline int sk_memalloc_socks(void)
 909{
 910        return static_branch_unlikely(&memalloc_socks_key);
 911}
 912
 913void __receive_sock(struct file *file);
 914#else
 915
 916static inline int sk_memalloc_socks(void)
 917{
 918        return 0;
 919}
 920
 921static inline void __receive_sock(struct file *file)
 922{ }
 923#endif
 924
 925static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 926{
 927        return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 928}
 929
 930static inline void sk_acceptq_removed(struct sock *sk)
 931{
 932        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 933}
 934
 935static inline void sk_acceptq_added(struct sock *sk)
 936{
 937        WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 938}
 939
 940/* Note: If you think the test should be:
 941 *      return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
 942 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
 943 */
 944static inline bool sk_acceptq_is_full(const struct sock *sk)
 945{
 946        return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 947}
 948
 949/*
 950 * Compute minimal free write space needed to queue new packets.
 951 */
 952static inline int sk_stream_min_wspace(const struct sock *sk)
 953{
 954        return READ_ONCE(sk->sk_wmem_queued) >> 1;
 955}
 956
 957static inline int sk_stream_wspace(const struct sock *sk)
 958{
 959        return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 960}
 961
 962static inline void sk_wmem_queued_add(struct sock *sk, int val)
 963{
 964        WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 965}
 966
 967void sk_stream_write_space(struct sock *sk);
 968
 969/* OOB backlog add */
 970static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 971{
 972        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 973        skb_dst_force(skb);
 974
 975        if (!sk->sk_backlog.tail)
 976                WRITE_ONCE(sk->sk_backlog.head, skb);
 977        else
 978                sk->sk_backlog.tail->next = skb;
 979
 980        WRITE_ONCE(sk->sk_backlog.tail, skb);
 981        skb->next = NULL;
 982}
 983
 984/*
 985 * Take into account size of receive queue and backlog queue
 986 * Do not take into account this skb truesize,
 987 * to allow even a single big packet to come.
 988 */
 989static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 990{
 991        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 992
 993        return qsize > limit;
 994}
 995
 996/* The per-socket spinlock must be held here. */
 997static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 998                                              unsigned int limit)
 999{
1000        if (sk_rcvqueues_full(sk, limit))
1001                return -ENOBUFS;
1002
1003        /*
1004         * If the skb was allocated from pfmemalloc reserves, only
1005         * allow SOCK_MEMALLOC sockets to use it as this socket is
1006         * helping free memory
1007         */
1008        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1009                return -ENOMEM;
1010
1011        __sk_add_backlog(sk, skb);
1012        sk->sk_backlog.len += skb->truesize;
1013        return 0;
1014}
1015
1016int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1017
1018static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1019{
1020        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1021                return __sk_backlog_rcv(sk, skb);
1022
1023        return sk->sk_backlog_rcv(sk, skb);
1024}
1025
1026static inline void sk_incoming_cpu_update(struct sock *sk)
1027{
1028        int cpu = raw_smp_processor_id();
1029
1030        if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1031                WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1032}
1033
1034static inline void sock_rps_record_flow_hash(__u32 hash)
1035{
1036#ifdef CONFIG_RPS
1037        struct rps_sock_flow_table *sock_flow_table;
1038
1039        rcu_read_lock();
1040        sock_flow_table = rcu_dereference(rps_sock_flow_table);
1041        rps_record_sock_flow(sock_flow_table, hash);
1042        rcu_read_unlock();
1043#endif
1044}
1045
1046static inline void sock_rps_record_flow(const struct sock *sk)
1047{
1048#ifdef CONFIG_RPS
1049        if (static_branch_unlikely(&rfs_needed)) {
1050                /* Reading sk->sk_rxhash might incur an expensive cache line
1051                 * miss.
1052                 *
1053                 * TCP_ESTABLISHED does cover almost all states where RFS
1054                 * might be useful, and is cheaper [1] than testing :
1055                 *      IPv4: inet_sk(sk)->inet_daddr
1056                 *      IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1057                 * OR   an additional socket flag
1058                 * [1] : sk_state and sk_prot are in the same cache line.
1059                 */
1060                if (sk->sk_state == TCP_ESTABLISHED)
1061                        sock_rps_record_flow_hash(sk->sk_rxhash);
1062        }
1063#endif
1064}
1065
1066static inline void sock_rps_save_rxhash(struct sock *sk,
1067                                        const struct sk_buff *skb)
1068{
1069#ifdef CONFIG_RPS
1070        if (unlikely(sk->sk_rxhash != skb->hash))
1071                sk->sk_rxhash = skb->hash;
1072#endif
1073}
1074
1075static inline void sock_rps_reset_rxhash(struct sock *sk)
1076{
1077#ifdef CONFIG_RPS
1078        sk->sk_rxhash = 0;
1079#endif
1080}
1081
1082#define sk_wait_event(__sk, __timeo, __condition, __wait)               \
1083        ({      int __rc;                                               \
1084                release_sock(__sk);                                     \
1085                __rc = __condition;                                     \
1086                if (!__rc) {                                            \
1087                        *(__timeo) = wait_woken(__wait,                 \
1088                                                TASK_INTERRUPTIBLE,     \
1089                                                *(__timeo));            \
1090                }                                                       \
1091                sched_annotate_sleep();                                 \
1092                lock_sock(__sk);                                        \
1093                __rc = __condition;                                     \
1094                __rc;                                                   \
1095        })
1096
1097int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1098int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1099void sk_stream_wait_close(struct sock *sk, long timeo_p);
1100int sk_stream_error(struct sock *sk, int flags, int err);
1101void sk_stream_kill_queues(struct sock *sk);
1102void sk_set_memalloc(struct sock *sk);
1103void sk_clear_memalloc(struct sock *sk);
1104
1105void __sk_flush_backlog(struct sock *sk);
1106
1107static inline bool sk_flush_backlog(struct sock *sk)
1108{
1109        if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1110                __sk_flush_backlog(sk);
1111                return true;
1112        }
1113        return false;
1114}
1115
1116int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1117
1118struct request_sock_ops;
1119struct timewait_sock_ops;
1120struct inet_hashinfo;
1121struct raw_hashinfo;
1122struct smc_hashinfo;
1123struct module;
1124struct sk_psock;
1125
1126/*
1127 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1128 * un-modified. Special care is taken when initializing object to zero.
1129 */
1130static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1131{
1132        if (offsetof(struct sock, sk_node.next) != 0)
1133                memset(sk, 0, offsetof(struct sock, sk_node.next));
1134        memset(&sk->sk_node.pprev, 0,
1135               size - offsetof(struct sock, sk_node.pprev));
1136}
1137
1138/* Networking protocol blocks we attach to sockets.
1139 * socket layer -> transport layer interface
1140 */
1141struct proto {
1142        void                    (*close)(struct sock *sk,
1143                                        long timeout);
1144        int                     (*pre_connect)(struct sock *sk,
1145                                        struct sockaddr *uaddr,
1146                                        int addr_len);
1147        int                     (*connect)(struct sock *sk,
1148                                        struct sockaddr *uaddr,
1149                                        int addr_len);
1150        int                     (*disconnect)(struct sock *sk, int flags);
1151
1152        struct sock *           (*accept)(struct sock *sk, int flags, int *err,
1153                                          bool kern);
1154
1155        int                     (*ioctl)(struct sock *sk, int cmd,
1156                                         unsigned long arg);
1157        int                     (*init)(struct sock *sk);
1158        void                    (*destroy)(struct sock *sk);
1159        void                    (*shutdown)(struct sock *sk, int how);
1160        int                     (*setsockopt)(struct sock *sk, int level,
1161                                        int optname, sockptr_t optval,
1162                                        unsigned int optlen);
1163        int                     (*getsockopt)(struct sock *sk, int level,
1164                                        int optname, char __user *optval,
1165                                        int __user *option);
1166        void                    (*keepalive)(struct sock *sk, int valbool);
1167#ifdef CONFIG_COMPAT
1168        int                     (*compat_ioctl)(struct sock *sk,
1169                                        unsigned int cmd, unsigned long arg);
1170#endif
1171        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
1172                                           size_t len);
1173        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
1174                                           size_t len, int noblock, int flags,
1175                                           int *addr_len);
1176        int                     (*sendpage)(struct sock *sk, struct page *page,
1177                                        int offset, size_t size, int flags);
1178        int                     (*bind)(struct sock *sk,
1179                                        struct sockaddr *addr, int addr_len);
1180        int                     (*bind_add)(struct sock *sk,
1181                                        struct sockaddr *addr, int addr_len);
1182
1183        int                     (*backlog_rcv) (struct sock *sk,
1184                                                struct sk_buff *skb);
1185        bool                    (*bpf_bypass_getsockopt)(int level,
1186                                                         int optname);
1187
1188        void            (*release_cb)(struct sock *sk);
1189
1190        /* Keeping track of sk's, looking them up, and port selection methods. */
1191        int                     (*hash)(struct sock *sk);
1192        void                    (*unhash)(struct sock *sk);
1193        void                    (*rehash)(struct sock *sk);
1194        int                     (*get_port)(struct sock *sk, unsigned short snum);
1195#ifdef CONFIG_BPF_SYSCALL
1196        int                     (*psock_update_sk_prot)(struct sock *sk,
1197                                                        struct sk_psock *psock,
1198                                                        bool restore);
1199#endif
1200
1201        /* Keeping track of sockets in use */
1202#ifdef CONFIG_PROC_FS
1203        unsigned int            inuse_idx;
1204#endif
1205
1206        bool                    (*stream_memory_free)(const struct sock *sk, int wake);
1207        bool                    (*stream_memory_read)(const struct sock *sk);
1208        /* Memory pressure */
1209        void                    (*enter_memory_pressure)(struct sock *sk);
1210        void                    (*leave_memory_pressure)(struct sock *sk);
1211        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1212        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1213        /*
1214         * Pressure flag: try to collapse.
1215         * Technical note: it is used by multiple contexts non atomically.
1216         * All the __sk_mem_schedule() is of this nature: accounting
1217         * is strict, actions are advisory and have some latency.
1218         */
1219        unsigned long           *memory_pressure;
1220        long                    *sysctl_mem;
1221
1222        int                     *sysctl_wmem;
1223        int                     *sysctl_rmem;
1224        u32                     sysctl_wmem_offset;
1225        u32                     sysctl_rmem_offset;
1226
1227        int                     max_header;
1228        bool                    no_autobind;
1229
1230        struct kmem_cache       *slab;
1231        unsigned int            obj_size;
1232        slab_flags_t            slab_flags;
1233        unsigned int            useroffset;     /* Usercopy region offset */
1234        unsigned int            usersize;       /* Usercopy region size */
1235
1236        struct percpu_counter   *orphan_count;
1237
1238        struct request_sock_ops *rsk_prot;
1239        struct timewait_sock_ops *twsk_prot;
1240
1241        union {
1242                struct inet_hashinfo    *hashinfo;
1243                struct udp_table        *udp_table;
1244                struct raw_hashinfo     *raw_hash;
1245                struct smc_hashinfo     *smc_hash;
1246        } h;
1247
1248        struct module           *owner;
1249
1250        char                    name[32];
1251
1252        struct list_head        node;
1253#ifdef SOCK_REFCNT_DEBUG
1254        atomic_t                socks;
1255#endif
1256        int                     (*diag_destroy)(struct sock *sk, int err);
1257} __randomize_layout;
1258
1259int proto_register(struct proto *prot, int alloc_slab);
1260void proto_unregister(struct proto *prot);
1261int sock_load_diag_module(int family, int protocol);
1262
1263#ifdef SOCK_REFCNT_DEBUG
1264static inline void sk_refcnt_debug_inc(struct sock *sk)
1265{
1266        atomic_inc(&sk->sk_prot->socks);
1267}
1268
1269static inline void sk_refcnt_debug_dec(struct sock *sk)
1270{
1271        atomic_dec(&sk->sk_prot->socks);
1272        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1273               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1274}
1275
1276static inline void sk_refcnt_debug_release(const struct sock *sk)
1277{
1278        if (refcount_read(&sk->sk_refcnt) != 1)
1279                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1280                       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1281}
1282#else /* SOCK_REFCNT_DEBUG */
1283#define sk_refcnt_debug_inc(sk) do { } while (0)
1284#define sk_refcnt_debug_dec(sk) do { } while (0)
1285#define sk_refcnt_debug_release(sk) do { } while (0)
1286#endif /* SOCK_REFCNT_DEBUG */
1287
1288INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1289
1290static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1291{
1292        if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1293                return false;
1294
1295#ifdef CONFIG_INET
1296        return sk->sk_prot->stream_memory_free ?
1297                INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1298                                tcp_stream_memory_free,
1299                                sk, wake) : true;
1300#else
1301        return sk->sk_prot->stream_memory_free ?
1302                sk->sk_prot->stream_memory_free(sk, wake) : true;
1303#endif
1304}
1305
1306static inline bool sk_stream_memory_free(const struct sock *sk)
1307{
1308        return __sk_stream_memory_free(sk, 0);
1309}
1310
1311static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1312{
1313        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1314               __sk_stream_memory_free(sk, wake);
1315}
1316
1317static inline bool sk_stream_is_writeable(const struct sock *sk)
1318{
1319        return __sk_stream_is_writeable(sk, 0);
1320}
1321
1322static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1323                                            struct cgroup *ancestor)
1324{
1325#ifdef CONFIG_SOCK_CGROUP_DATA
1326        return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1327                                    ancestor);
1328#else
1329        return -ENOTSUPP;
1330#endif
1331}
1332
1333static inline bool sk_has_memory_pressure(const struct sock *sk)
1334{
1335        return sk->sk_prot->memory_pressure != NULL;
1336}
1337
1338static inline bool sk_under_memory_pressure(const struct sock *sk)
1339{
1340        if (!sk->sk_prot->memory_pressure)
1341                return false;
1342
1343        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1344            mem_cgroup_under_socket_pressure(sk->sk_memcg))
1345                return true;
1346
1347        return !!*sk->sk_prot->memory_pressure;
1348}
1349
1350static inline long
1351sk_memory_allocated(const struct sock *sk)
1352{
1353        return atomic_long_read(sk->sk_prot->memory_allocated);
1354}
1355
1356static inline long
1357sk_memory_allocated_add(struct sock *sk, int amt)
1358{
1359        return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1360}
1361
1362static inline void
1363sk_memory_allocated_sub(struct sock *sk, int amt)
1364{
1365        atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1366}
1367
1368#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1369
1370static inline void sk_sockets_allocated_dec(struct sock *sk)
1371{
1372        percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1373                                 SK_ALLOC_PERCPU_COUNTER_BATCH);
1374}
1375
1376static inline void sk_sockets_allocated_inc(struct sock *sk)
1377{
1378        percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1379                                 SK_ALLOC_PERCPU_COUNTER_BATCH);
1380}
1381
1382static inline u64
1383sk_sockets_allocated_read_positive(struct sock *sk)
1384{
1385        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1386}
1387
1388static inline int
1389proto_sockets_allocated_sum_positive(struct proto *prot)
1390{
1391        return percpu_counter_sum_positive(prot->sockets_allocated);
1392}
1393
1394static inline long
1395proto_memory_allocated(struct proto *prot)
1396{
1397        return atomic_long_read(prot->memory_allocated);
1398}
1399
1400static inline bool
1401proto_memory_pressure(struct proto *prot)
1402{
1403        if (!prot->memory_pressure)
1404                return false;
1405        return !!*prot->memory_pressure;
1406}
1407
1408
1409#ifdef CONFIG_PROC_FS
1410/* Called with local bh disabled */
1411void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1412int sock_prot_inuse_get(struct net *net, struct proto *proto);
1413int sock_inuse_get(struct net *net);
1414#else
1415static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1416                int inc)
1417{
1418}
1419#endif
1420
1421
1422/* With per-bucket locks this operation is not-atomic, so that
1423 * this version is not worse.
1424 */
1425static inline int __sk_prot_rehash(struct sock *sk)
1426{
1427        sk->sk_prot->unhash(sk);
1428        return sk->sk_prot->hash(sk);
1429}
1430
1431/* About 10 seconds */
1432#define SOCK_DESTROY_TIME (10*HZ)
1433
1434/* Sockets 0-1023 can't be bound to unless you are superuser */
1435#define PROT_SOCK       1024
1436
1437#define SHUTDOWN_MASK   3
1438#define RCV_SHUTDOWN    1
1439#define SEND_SHUTDOWN   2
1440
1441#define SOCK_SNDBUF_LOCK        1
1442#define SOCK_RCVBUF_LOCK        2
1443#define SOCK_BINDADDR_LOCK      4
1444#define SOCK_BINDPORT_LOCK      8
1445
1446struct socket_alloc {
1447        struct socket socket;
1448        struct inode vfs_inode;
1449};
1450
1451static inline struct socket *SOCKET_I(struct inode *inode)
1452{
1453        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1454}
1455
1456static inline struct inode *SOCK_INODE(struct socket *socket)
1457{
1458        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1459}
1460
1461/*
1462 * Functions for memory accounting
1463 */
1464int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1465int __sk_mem_schedule(struct sock *sk, int size, int kind);
1466void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1467void __sk_mem_reclaim(struct sock *sk, int amount);
1468
1469/* We used to have PAGE_SIZE here, but systems with 64KB pages
1470 * do not necessarily have 16x time more memory than 4KB ones.
1471 */
1472#define SK_MEM_QUANTUM 4096
1473#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1474#define SK_MEM_SEND     0
1475#define SK_MEM_RECV     1
1476
1477/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1478static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1479{
1480        long val = sk->sk_prot->sysctl_mem[index];
1481
1482#if PAGE_SIZE > SK_MEM_QUANTUM
1483        val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1484#elif PAGE_SIZE < SK_MEM_QUANTUM
1485        val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1486#endif
1487        return val;
1488}
1489
1490static inline int sk_mem_pages(int amt)
1491{
1492        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1493}
1494
1495static inline bool sk_has_account(struct sock *sk)
1496{
1497        /* return true if protocol supports memory accounting */
1498        return !!sk->sk_prot->memory_allocated;
1499}
1500
1501static inline bool sk_wmem_schedule(struct sock *sk, int size)
1502{
1503        if (!sk_has_account(sk))
1504                return true;
1505        return size <= sk->sk_forward_alloc ||
1506                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1507}
1508
1509static inline bool
1510sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1511{
1512        if (!sk_has_account(sk))
1513                return true;
1514        return size <= sk->sk_forward_alloc ||
1515                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1516                skb_pfmemalloc(skb);
1517}
1518
1519static inline void sk_mem_reclaim(struct sock *sk)
1520{
1521        if (!sk_has_account(sk))
1522                return;
1523        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1524                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1525}
1526
1527static inline void sk_mem_reclaim_partial(struct sock *sk)
1528{
1529        if (!sk_has_account(sk))
1530                return;
1531        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1532                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1533}
1534
1535static inline void sk_mem_charge(struct sock *sk, int size)
1536{
1537        if (!sk_has_account(sk))
1538                return;
1539        sk->sk_forward_alloc -= size;
1540}
1541
1542static inline void sk_mem_uncharge(struct sock *sk, int size)
1543{
1544        if (!sk_has_account(sk))
1545                return;
1546        sk->sk_forward_alloc += size;
1547
1548        /* Avoid a possible overflow.
1549         * TCP send queues can make this happen, if sk_mem_reclaim()
1550         * is not called and more than 2 GBytes are released at once.
1551         *
1552         * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1553         * no need to hold that much forward allocation anyway.
1554         */
1555        if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1556                __sk_mem_reclaim(sk, 1 << 20);
1557}
1558
1559DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1560static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1561{
1562        sk_wmem_queued_add(sk, -skb->truesize);
1563        sk_mem_uncharge(sk, skb->truesize);
1564        if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1565            !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1566                skb_ext_reset(skb);
1567                skb_zcopy_clear(skb, true);
1568                sk->sk_tx_skb_cache = skb;
1569                return;
1570        }
1571        __kfree_skb(skb);
1572}
1573
1574static inline void sock_release_ownership(struct sock *sk)
1575{
1576        if (sk->sk_lock.owned) {
1577                sk->sk_lock.owned = 0;
1578
1579                /* The sk_lock has mutex_unlock() semantics: */
1580                mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1581        }
1582}
1583
1584/*
1585 * Macro so as to not evaluate some arguments when
1586 * lockdep is not enabled.
1587 *
1588 * Mark both the sk_lock and the sk_lock.slock as a
1589 * per-address-family lock class.
1590 */
1591#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1592do {                                                                    \
1593        sk->sk_lock.owned = 0;                                          \
1594        init_waitqueue_head(&sk->sk_lock.wq);                           \
1595        spin_lock_init(&(sk)->sk_lock.slock);                           \
1596        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1597                        sizeof((sk)->sk_lock));                         \
1598        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1599                                (skey), (sname));                               \
1600        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1601} while (0)
1602
1603static inline bool lockdep_sock_is_held(const struct sock *sk)
1604{
1605        return lockdep_is_held(&sk->sk_lock) ||
1606               lockdep_is_held(&sk->sk_lock.slock);
1607}
1608
1609void lock_sock_nested(struct sock *sk, int subclass);
1610
1611static inline void lock_sock(struct sock *sk)
1612{
1613        lock_sock_nested(sk, 0);
1614}
1615
1616void __lock_sock(struct sock *sk);
1617void __release_sock(struct sock *sk);
1618void release_sock(struct sock *sk);
1619
1620/* BH context may only use the following locking interface. */
1621#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1622#define bh_lock_sock_nested(__sk) \
1623                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1624                                SINGLE_DEPTH_NESTING)
1625#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1626
1627bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1628
1629/**
1630 * unlock_sock_fast - complement of lock_sock_fast
1631 * @sk: socket
1632 * @slow: slow mode
1633 *
1634 * fast unlock socket for user context.
1635 * If slow mode is on, we call regular release_sock()
1636 */
1637static inline void unlock_sock_fast(struct sock *sk, bool slow)
1638        __releases(&sk->sk_lock.slock)
1639{
1640        if (slow) {
1641                release_sock(sk);
1642                __release(&sk->sk_lock.slock);
1643        } else {
1644                spin_unlock_bh(&sk->sk_lock.slock);
1645        }
1646}
1647
1648/* Used by processes to "lock" a socket state, so that
1649 * interrupts and bottom half handlers won't change it
1650 * from under us. It essentially blocks any incoming
1651 * packets, so that we won't get any new data or any
1652 * packets that change the state of the socket.
1653 *
1654 * While locked, BH processing will add new packets to
1655 * the backlog queue.  This queue is processed by the
1656 * owner of the socket lock right before it is released.
1657 *
1658 * Since ~2.3.5 it is also exclusive sleep lock serializing
1659 * accesses from user process context.
1660 */
1661
1662static inline void sock_owned_by_me(const struct sock *sk)
1663{
1664#ifdef CONFIG_LOCKDEP
1665        WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1666#endif
1667}
1668
1669static inline bool sock_owned_by_user(const struct sock *sk)
1670{
1671        sock_owned_by_me(sk);
1672        return sk->sk_lock.owned;
1673}
1674
1675static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1676{
1677        return sk->sk_lock.owned;
1678}
1679
1680/* no reclassification while locks are held */
1681static inline bool sock_allow_reclassification(const struct sock *csk)
1682{
1683        struct sock *sk = (struct sock *)csk;
1684
1685        return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1686}
1687
1688struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1689                      struct proto *prot, int kern);
1690void sk_free(struct sock *sk);
1691void sk_destruct(struct sock *sk);
1692struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1693void sk_free_unlock_clone(struct sock *sk);
1694
1695struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1696                             gfp_t priority);
1697void __sock_wfree(struct sk_buff *skb);
1698void sock_wfree(struct sk_buff *skb);
1699struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1700                             gfp_t priority);
1701void skb_orphan_partial(struct sk_buff *skb);
1702void sock_rfree(struct sk_buff *skb);
1703void sock_efree(struct sk_buff *skb);
1704#ifdef CONFIG_INET
1705void sock_edemux(struct sk_buff *skb);
1706void sock_pfree(struct sk_buff *skb);
1707#else
1708#define sock_edemux sock_efree
1709#endif
1710
1711int sock_setsockopt(struct socket *sock, int level, int op,
1712                    sockptr_t optval, unsigned int optlen);
1713
1714int sock_getsockopt(struct socket *sock, int level, int op,
1715                    char __user *optval, int __user *optlen);
1716int sock_gettstamp(struct socket *sock, void __user *userstamp,
1717                   bool timeval, bool time32);
1718struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1719                                    int noblock, int *errcode);
1720struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1721                                     unsigned long data_len, int noblock,
1722                                     int *errcode, int max_page_order);
1723void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1724void sock_kfree_s(struct sock *sk, void *mem, int size);
1725void sock_kzfree_s(struct sock *sk, void *mem, int size);
1726void sk_send_sigurg(struct sock *sk);
1727
1728struct sockcm_cookie {
1729        u64 transmit_time;
1730        u32 mark;
1731        u16 tsflags;
1732};
1733
1734static inline void sockcm_init(struct sockcm_cookie *sockc,
1735                               const struct sock *sk)
1736{
1737        *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1738}
1739
1740int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1741                     struct sockcm_cookie *sockc);
1742int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1743                   struct sockcm_cookie *sockc);
1744
1745/*
1746 * Functions to fill in entries in struct proto_ops when a protocol
1747 * does not implement a particular function.
1748 */
1749int sock_no_bind(struct socket *, struct sockaddr *, int);
1750int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1751int sock_no_socketpair(struct socket *, struct socket *);
1752int sock_no_accept(struct socket *, struct socket *, int, bool);
1753int sock_no_getname(struct socket *, struct sockaddr *, int);
1754int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1755int sock_no_listen(struct socket *, int);
1756int sock_no_shutdown(struct socket *, int);
1757int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1758int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1759int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1760int sock_no_mmap(struct file *file, struct socket *sock,
1761                 struct vm_area_struct *vma);
1762ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1763                         size_t size, int flags);
1764ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1765                                int offset, size_t size, int flags);
1766
1767/*
1768 * Functions to fill in entries in struct proto_ops when a protocol
1769 * uses the inet style.
1770 */
1771int sock_common_getsockopt(struct socket *sock, int level, int optname,
1772                                  char __user *optval, int __user *optlen);
1773int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1774                        int flags);
1775int sock_common_setsockopt(struct socket *sock, int level, int optname,
1776                           sockptr_t optval, unsigned int optlen);
1777
1778void sk_common_release(struct sock *sk);
1779
1780/*
1781 *      Default socket callbacks and setup code
1782 */
1783
1784/* Initialise core socket variables */
1785void sock_init_data(struct socket *sock, struct sock *sk);
1786
1787/*
1788 * Socket reference counting postulates.
1789 *
1790 * * Each user of socket SHOULD hold a reference count.
1791 * * Each access point to socket (an hash table bucket, reference from a list,
1792 *   running timer, skb in flight MUST hold a reference count.
1793 * * When reference count hits 0, it means it will never increase back.
1794 * * When reference count hits 0, it means that no references from
1795 *   outside exist to this socket and current process on current CPU
1796 *   is last user and may/should destroy this socket.
1797 * * sk_free is called from any context: process, BH, IRQ. When
1798 *   it is called, socket has no references from outside -> sk_free
1799 *   may release descendant resources allocated by the socket, but
1800 *   to the time when it is called, socket is NOT referenced by any
1801 *   hash tables, lists etc.
1802 * * Packets, delivered from outside (from network or from another process)
1803 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1804 *   when they sit in queue. Otherwise, packets will leak to hole, when
1805 *   socket is looked up by one cpu and unhasing is made by another CPU.
1806 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1807 *   (leak to backlog). Packet socket does all the processing inside
1808 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1809 *   use separate SMP lock, so that they are prone too.
1810 */
1811
1812/* Ungrab socket and destroy it, if it was the last reference. */
1813static inline void sock_put(struct sock *sk)
1814{
1815        if (refcount_dec_and_test(&sk->sk_refcnt))
1816                sk_free(sk);
1817}
1818/* Generic version of sock_put(), dealing with all sockets
1819 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1820 */
1821void sock_gen_put(struct sock *sk);
1822
1823int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1824                     unsigned int trim_cap, bool refcounted);
1825static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1826                                 const int nested)
1827{
1828        return __sk_receive_skb(sk, skb, nested, 1, true);
1829}
1830
1831static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1832{
1833        /* sk_tx_queue_mapping accept only upto a 16-bit value */
1834        if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1835                return;
1836        sk->sk_tx_queue_mapping = tx_queue;
1837}
1838
1839#define NO_QUEUE_MAPPING        USHRT_MAX
1840
1841static inline void sk_tx_queue_clear(struct sock *sk)
1842{
1843        sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1844}
1845
1846static inline int sk_tx_queue_get(const struct sock *sk)
1847{
1848        if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1849                return sk->sk_tx_queue_mapping;
1850
1851        return -1;
1852}
1853
1854static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1855{
1856#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1857        if (skb_rx_queue_recorded(skb)) {
1858                u16 rx_queue = skb_get_rx_queue(skb);
1859
1860                if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1861                        return;
1862
1863                sk->sk_rx_queue_mapping = rx_queue;
1864        }
1865#endif
1866}
1867
1868static inline void sk_rx_queue_clear(struct sock *sk)
1869{
1870#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1871        sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1872#endif
1873}
1874
1875static inline int sk_rx_queue_get(const struct sock *sk)
1876{
1877#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1878        if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1879                return sk->sk_rx_queue_mapping;
1880#endif
1881
1882        return -1;
1883}
1884
1885static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1886{
1887        sk->sk_socket = sock;
1888}
1889
1890static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1891{
1892        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1893        return &rcu_dereference_raw(sk->sk_wq)->wait;
1894}
1895/* Detach socket from process context.
1896 * Announce socket dead, detach it from wait queue and inode.
1897 * Note that parent inode held reference count on this struct sock,
1898 * we do not release it in this function, because protocol
1899 * probably wants some additional cleanups or even continuing
1900 * to work with this socket (TCP).
1901 */
1902static inline void sock_orphan(struct sock *sk)
1903{
1904        write_lock_bh(&sk->sk_callback_lock);
1905        sock_set_flag(sk, SOCK_DEAD);
1906        sk_set_socket(sk, NULL);
1907        sk->sk_wq  = NULL;
1908        write_unlock_bh(&sk->sk_callback_lock);
1909}
1910
1911static inline void sock_graft(struct sock *sk, struct socket *parent)
1912{
1913        WARN_ON(parent->sk);
1914        write_lock_bh(&sk->sk_callback_lock);
1915        rcu_assign_pointer(sk->sk_wq, &parent->wq);
1916        parent->sk = sk;
1917        sk_set_socket(sk, parent);
1918        sk->sk_uid = SOCK_INODE(parent)->i_uid;
1919        security_sock_graft(sk, parent);
1920        write_unlock_bh(&sk->sk_callback_lock);
1921}
1922
1923kuid_t sock_i_uid(struct sock *sk);
1924unsigned long sock_i_ino(struct sock *sk);
1925
1926static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1927{
1928        return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1929}
1930
1931static inline u32 net_tx_rndhash(void)
1932{
1933        u32 v = prandom_u32();
1934
1935        return v ?: 1;
1936}
1937
1938static inline void sk_set_txhash(struct sock *sk)
1939{
1940        /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1941        WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1942}
1943
1944static inline bool sk_rethink_txhash(struct sock *sk)
1945{
1946        if (sk->sk_txhash) {
1947                sk_set_txhash(sk);
1948                return true;
1949        }
1950        return false;
1951}
1952
1953static inline struct dst_entry *
1954__sk_dst_get(struct sock *sk)
1955{
1956        return rcu_dereference_check(sk->sk_dst_cache,
1957                                     lockdep_sock_is_held(sk));
1958}
1959
1960static inline struct dst_entry *
1961sk_dst_get(struct sock *sk)
1962{
1963        struct dst_entry *dst;
1964
1965        rcu_read_lock();
1966        dst = rcu_dereference(sk->sk_dst_cache);
1967        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1968                dst = NULL;
1969        rcu_read_unlock();
1970        return dst;
1971}
1972
1973static inline void __dst_negative_advice(struct sock *sk)
1974{
1975        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1976
1977        if (dst && dst->ops->negative_advice) {
1978                ndst = dst->ops->negative_advice(dst);
1979
1980                if (ndst != dst) {
1981                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1982                        sk_tx_queue_clear(sk);
1983                        sk->sk_dst_pending_confirm = 0;
1984                }
1985        }
1986}
1987
1988static inline void dst_negative_advice(struct sock *sk)
1989{
1990        sk_rethink_txhash(sk);
1991        __dst_negative_advice(sk);
1992}
1993
1994static inline void
1995__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1996{
1997        struct dst_entry *old_dst;
1998
1999        sk_tx_queue_clear(sk);
2000        sk->sk_dst_pending_confirm = 0;
2001        old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2002                                            lockdep_sock_is_held(sk));
2003        rcu_assign_pointer(sk->sk_dst_cache, dst);
2004        dst_release(old_dst);
2005}
2006
2007static inline void
2008sk_dst_set(struct sock *sk, struct dst_entry *dst)
2009{
2010        struct dst_entry *old_dst;
2011
2012        sk_tx_queue_clear(sk);
2013        sk->sk_dst_pending_confirm = 0;
2014        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2015        dst_release(old_dst);
2016}
2017
2018static inline void
2019__sk_dst_reset(struct sock *sk)
2020{
2021        __sk_dst_set(sk, NULL);
2022}
2023
2024static inline void
2025sk_dst_reset(struct sock *sk)
2026{
2027        sk_dst_set(sk, NULL);
2028}
2029
2030struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2031
2032struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2033
2034static inline void sk_dst_confirm(struct sock *sk)
2035{
2036        if (!READ_ONCE(sk->sk_dst_pending_confirm))
2037                WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2038}
2039
2040static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2041{
2042        if (skb_get_dst_pending_confirm(skb)) {
2043                struct sock *sk = skb->sk;
2044                unsigned long now = jiffies;
2045
2046                /* avoid dirtying neighbour */
2047                if (READ_ONCE(n->confirmed) != now)
2048                        WRITE_ONCE(n->confirmed, now);
2049                if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2050                        WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2051        }
2052}
2053
2054bool sk_mc_loop(struct sock *sk);
2055
2056static inline bool sk_can_gso(const struct sock *sk)
2057{
2058        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2059}
2060
2061void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2062
2063static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2064{
2065        sk->sk_route_nocaps |= flags;
2066        sk->sk_route_caps &= ~flags;
2067}
2068
2069static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2070                                           struct iov_iter *from, char *to,
2071                                           int copy, int offset)
2072{
2073        if (skb->ip_summed == CHECKSUM_NONE) {
2074                __wsum csum = 0;
2075                if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2076                        return -EFAULT;
2077                skb->csum = csum_block_add(skb->csum, csum, offset);
2078        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2079                if (!copy_from_iter_full_nocache(to, copy, from))
2080                        return -EFAULT;
2081        } else if (!copy_from_iter_full(to, copy, from))
2082                return -EFAULT;
2083
2084        return 0;
2085}
2086
2087static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2088                                       struct iov_iter *from, int copy)
2089{
2090        int err, offset = skb->len;
2091
2092        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2093                                       copy, offset);
2094        if (err)
2095                __skb_trim(skb, offset);
2096
2097        return err;
2098}
2099
2100static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2101                                           struct sk_buff *skb,
2102                                           struct page *page,
2103                                           int off, int copy)
2104{
2105        int err;
2106
2107        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2108                                       copy, skb->len);
2109        if (err)
2110                return err;
2111
2112        skb->len             += copy;
2113        skb->data_len        += copy;
2114        skb->truesize        += copy;
2115        sk_wmem_queued_add(sk, copy);
2116        sk_mem_charge(sk, copy);
2117        return 0;
2118}
2119
2120/**
2121 * sk_wmem_alloc_get - returns write allocations
2122 * @sk: socket
2123 *
2124 * Return: sk_wmem_alloc minus initial offset of one
2125 */
2126static inline int sk_wmem_alloc_get(const struct sock *sk)
2127{
2128        return refcount_read(&sk->sk_wmem_alloc) - 1;
2129}
2130
2131/**
2132 * sk_rmem_alloc_get - returns read allocations
2133 * @sk: socket
2134 *
2135 * Return: sk_rmem_alloc
2136 */
2137static inline int sk_rmem_alloc_get(const struct sock *sk)
2138{
2139        return atomic_read(&sk->sk_rmem_alloc);
2140}
2141
2142/**
2143 * sk_has_allocations - check if allocations are outstanding
2144 * @sk: socket
2145 *
2146 * Return: true if socket has write or read allocations
2147 */
2148static inline bool sk_has_allocations(const struct sock *sk)
2149{
2150        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2151}
2152
2153/**
2154 * skwq_has_sleeper - check if there are any waiting processes
2155 * @wq: struct socket_wq
2156 *
2157 * Return: true if socket_wq has waiting processes
2158 *
2159 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2160 * barrier call. They were added due to the race found within the tcp code.
2161 *
2162 * Consider following tcp code paths::
2163 *
2164 *   CPU1                CPU2
2165 *   sys_select          receive packet
2166 *   ...                 ...
2167 *   __add_wait_queue    update tp->rcv_nxt
2168 *   ...                 ...
2169 *   tp->rcv_nxt check   sock_def_readable
2170 *   ...                 {
2171 *   schedule               rcu_read_lock();
2172 *                          wq = rcu_dereference(sk->sk_wq);
2173 *                          if (wq && waitqueue_active(&wq->wait))
2174 *                              wake_up_interruptible(&wq->wait)
2175 *                          ...
2176 *                       }
2177 *
2178 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2179 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2180 * could then endup calling schedule and sleep forever if there are no more
2181 * data on the socket.
2182 *
2183 */
2184static inline bool skwq_has_sleeper(struct socket_wq *wq)
2185{
2186        return wq && wq_has_sleeper(&wq->wait);
2187}
2188
2189/**
2190 * sock_poll_wait - place memory barrier behind the poll_wait call.
2191 * @filp:           file
2192 * @sock:           socket to wait on
2193 * @p:              poll_table
2194 *
2195 * See the comments in the wq_has_sleeper function.
2196 */
2197static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2198                                  poll_table *p)
2199{
2200        if (!poll_does_not_wait(p)) {
2201                poll_wait(filp, &sock->wq.wait, p);
2202                /* We need to be sure we are in sync with the
2203                 * socket flags modification.
2204                 *
2205                 * This memory barrier is paired in the wq_has_sleeper.
2206                 */
2207                smp_mb();
2208        }
2209}
2210
2211static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2212{
2213        /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2214        u32 txhash = READ_ONCE(sk->sk_txhash);
2215
2216        if (txhash) {
2217                skb->l4_hash = 1;
2218                skb->hash = txhash;
2219        }
2220}
2221
2222void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2223
2224/*
2225 *      Queue a received datagram if it will fit. Stream and sequenced
2226 *      protocols can't normally use this as they need to fit buffers in
2227 *      and play with them.
2228 *
2229 *      Inlined as it's very short and called for pretty much every
2230 *      packet ever received.
2231 */
2232static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2233{
2234        skb_orphan(skb);
2235        skb->sk = sk;
2236        skb->destructor = sock_rfree;
2237        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2238        sk_mem_charge(sk, skb->truesize);
2239}
2240
2241static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2242{
2243        if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2244                skb_orphan(skb);
2245                skb->destructor = sock_efree;
2246                skb->sk = sk;
2247                return true;
2248        }
2249        return false;
2250}
2251
2252void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2253                    unsigned long expires);
2254
2255void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2256
2257void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2258
2259int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2260                        struct sk_buff *skb, unsigned int flags,
2261                        void (*destructor)(struct sock *sk,
2262                                           struct sk_buff *skb));
2263int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2264int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2265
2266int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2267struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2268
2269/*
2270 *      Recover an error report and clear atomically
2271 */
2272
2273static inline int sock_error(struct sock *sk)
2274{
2275        int err;
2276
2277        /* Avoid an atomic operation for the common case.
2278         * This is racy since another cpu/thread can change sk_err under us.
2279         */
2280        if (likely(data_race(!sk->sk_err)))
2281                return 0;
2282
2283        err = xchg(&sk->sk_err, 0);
2284        return -err;
2285}
2286
2287void sk_error_report(struct sock *sk);
2288
2289static inline unsigned long sock_wspace(struct sock *sk)
2290{
2291        int amt = 0;
2292
2293        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2294                amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2295                if (amt < 0)
2296                        amt = 0;
2297        }
2298        return amt;
2299}
2300
2301/* Note:
2302 *  We use sk->sk_wq_raw, from contexts knowing this
2303 *  pointer is not NULL and cannot disappear/change.
2304 */
2305static inline void sk_set_bit(int nr, struct sock *sk)
2306{
2307        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2308            !sock_flag(sk, SOCK_FASYNC))
2309                return;
2310
2311        set_bit(nr, &sk->sk_wq_raw->flags);
2312}
2313
2314static inline void sk_clear_bit(int nr, struct sock *sk)
2315{
2316        if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2317            !sock_flag(sk, SOCK_FASYNC))
2318                return;
2319
2320        clear_bit(nr, &sk->sk_wq_raw->flags);
2321}
2322
2323static inline void sk_wake_async(const struct sock *sk, int how, int band)
2324{
2325        if (sock_flag(sk, SOCK_FASYNC)) {
2326                rcu_read_lock();
2327                sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2328                rcu_read_unlock();
2329        }
2330}
2331
2332/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2333 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2334 * Note: for send buffers, TCP works better if we can build two skbs at
2335 * minimum.
2336 */
2337#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2338
2339#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2340#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2341
2342static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2343{
2344        u32 val;
2345
2346        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2347                return;
2348
2349        val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2350
2351        WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2352}
2353
2354struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2355                                    bool force_schedule);
2356
2357/**
2358 * sk_page_frag - return an appropriate page_frag
2359 * @sk: socket
2360 *
2361 * Use the per task page_frag instead of the per socket one for
2362 * optimization when we know that we're in the normal context and owns
2363 * everything that's associated with %current.
2364 *
2365 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2366 * inside other socket operations and end up recursing into sk_page_frag()
2367 * while it's already in use.
2368 *
2369 * Return: a per task page_frag if context allows that,
2370 * otherwise a per socket one.
2371 */
2372static inline struct page_frag *sk_page_frag(struct sock *sk)
2373{
2374        if (gfpflags_normal_context(sk->sk_allocation))
2375                return &current->task_frag;
2376
2377        return &sk->sk_frag;
2378}
2379
2380bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2381
2382/*
2383 *      Default write policy as shown to user space via poll/select/SIGIO
2384 */
2385static inline bool sock_writeable(const struct sock *sk)
2386{
2387        return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2388}
2389
2390static inline gfp_t gfp_any(void)
2391{
2392        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2393}
2394
2395static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2396{
2397        return noblock ? 0 : sk->sk_rcvtimeo;
2398}
2399
2400static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2401{
2402        return noblock ? 0 : sk->sk_sndtimeo;
2403}
2404
2405static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2406{
2407        int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2408
2409        return v ?: 1;
2410}
2411
2412/* Alas, with timeout socket operations are not restartable.
2413 * Compare this to poll().
2414 */
2415static inline int sock_intr_errno(long timeo)
2416{
2417        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2418}
2419
2420struct sock_skb_cb {
2421        u32 dropcount;
2422};
2423
2424/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2425 * using skb->cb[] would keep using it directly and utilize its
2426 * alignement guarantee.
2427 */
2428#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2429                            sizeof(struct sock_skb_cb)))
2430
2431#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2432                            SOCK_SKB_CB_OFFSET))
2433
2434#define sock_skb_cb_check_size(size) \
2435        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2436
2437static inline void
2438sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2439{
2440        SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2441                                                atomic_read(&sk->sk_drops) : 0;
2442}
2443
2444static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2445{
2446        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2447
2448        atomic_add(segs, &sk->sk_drops);
2449}
2450
2451static inline ktime_t sock_read_timestamp(struct sock *sk)
2452{
2453#if BITS_PER_LONG==32
2454        unsigned int seq;
2455        ktime_t kt;
2456
2457        do {
2458                seq = read_seqbegin(&sk->sk_stamp_seq);
2459                kt = sk->sk_stamp;
2460        } while (read_seqretry(&sk->sk_stamp_seq, seq));
2461
2462        return kt;
2463#else
2464        return READ_ONCE(sk->sk_stamp);
2465#endif
2466}
2467
2468static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2469{
2470#if BITS_PER_LONG==32
2471        write_seqlock(&sk->sk_stamp_seq);
2472        sk->sk_stamp = kt;
2473        write_sequnlock(&sk->sk_stamp_seq);
2474#else
2475        WRITE_ONCE(sk->sk_stamp, kt);
2476#endif
2477}
2478
2479void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2480                           struct sk_buff *skb);
2481void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2482                             struct sk_buff *skb);
2483
2484static inline void
2485sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2486{
2487        ktime_t kt = skb->tstamp;
2488        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2489
2490        /*
2491         * generate control messages if
2492         * - receive time stamping in software requested
2493         * - software time stamp available and wanted
2494         * - hardware time stamps available and wanted
2495         */
2496        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2497            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2498            (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2499            (hwtstamps->hwtstamp &&
2500             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2501                __sock_recv_timestamp(msg, sk, skb);
2502        else
2503                sock_write_timestamp(sk, kt);
2504
2505        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2506                __sock_recv_wifi_status(msg, sk, skb);
2507}
2508
2509void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2510                              struct sk_buff *skb);
2511
2512#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2513static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2514                                          struct sk_buff *skb)
2515{
2516#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2517                           (1UL << SOCK_RCVTSTAMP))
2518#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2519                           SOF_TIMESTAMPING_RAW_HARDWARE)
2520
2521        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2522                __sock_recv_ts_and_drops(msg, sk, skb);
2523        else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2524                sock_write_timestamp(sk, skb->tstamp);
2525        else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2526                sock_write_timestamp(sk, 0);
2527}
2528
2529void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2530
2531/**
2532 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2533 * @sk:         socket sending this packet
2534 * @tsflags:    timestamping flags to use
2535 * @tx_flags:   completed with instructions for time stamping
2536 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2537 *
2538 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2539 */
2540static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2541                                      __u8 *tx_flags, __u32 *tskey)
2542{
2543        if (unlikely(tsflags)) {
2544                __sock_tx_timestamp(tsflags, tx_flags);
2545                if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2546                    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2547                        *tskey = sk->sk_tskey++;
2548        }
2549        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2550                *tx_flags |= SKBTX_WIFI_STATUS;
2551}
2552
2553static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2554                                     __u8 *tx_flags)
2555{
2556        _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2557}
2558
2559static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2560{
2561        _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2562                           &skb_shinfo(skb)->tskey);
2563}
2564
2565DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2566/**
2567 * sk_eat_skb - Release a skb if it is no longer needed
2568 * @sk: socket to eat this skb from
2569 * @skb: socket buffer to eat
2570 *
2571 * This routine must be called with interrupts disabled or with the socket
2572 * locked so that the sk_buff queue operation is ok.
2573*/
2574static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2575{
2576        __skb_unlink(skb, &sk->sk_receive_queue);
2577        if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2578            !sk->sk_rx_skb_cache) {
2579                sk->sk_rx_skb_cache = skb;
2580                skb_orphan(skb);
2581                return;
2582        }
2583        __kfree_skb(skb);
2584}
2585
2586static inline
2587struct net *sock_net(const struct sock *sk)
2588{
2589        return read_pnet(&sk->sk_net);
2590}
2591
2592static inline
2593void sock_net_set(struct sock *sk, struct net *net)
2594{
2595        write_pnet(&sk->sk_net, net);
2596}
2597
2598static inline bool
2599skb_sk_is_prefetched(struct sk_buff *skb)
2600{
2601#ifdef CONFIG_INET
2602        return skb->destructor == sock_pfree;
2603#else
2604        return false;
2605#endif /* CONFIG_INET */
2606}
2607
2608/* This helper checks if a socket is a full socket,
2609 * ie _not_ a timewait or request socket.
2610 */
2611static inline bool sk_fullsock(const struct sock *sk)
2612{
2613        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2614}
2615
2616static inline bool
2617sk_is_refcounted(struct sock *sk)
2618{
2619        /* Only full sockets have sk->sk_flags. */
2620        return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2621}
2622
2623/**
2624 * skb_steal_sock - steal a socket from an sk_buff
2625 * @skb: sk_buff to steal the socket from
2626 * @refcounted: is set to true if the socket is reference-counted
2627 */
2628static inline struct sock *
2629skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2630{
2631        if (skb->sk) {
2632                struct sock *sk = skb->sk;
2633
2634                *refcounted = true;
2635                if (skb_sk_is_prefetched(skb))
2636                        *refcounted = sk_is_refcounted(sk);
2637                skb->destructor = NULL;
2638                skb->sk = NULL;
2639                return sk;
2640        }
2641        *refcounted = false;
2642        return NULL;
2643}
2644
2645/* Checks if this SKB belongs to an HW offloaded socket
2646 * and whether any SW fallbacks are required based on dev.
2647 * Check decrypted mark in case skb_orphan() cleared socket.
2648 */
2649static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2650                                                   struct net_device *dev)
2651{
2652#ifdef CONFIG_SOCK_VALIDATE_XMIT
2653        struct sock *sk = skb->sk;
2654
2655        if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2656                skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2657#ifdef CONFIG_TLS_DEVICE
2658        } else if (unlikely(skb->decrypted)) {
2659                pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2660                kfree_skb(skb);
2661                skb = NULL;
2662#endif
2663        }
2664#endif
2665
2666        return skb;
2667}
2668
2669/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2670 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2671 */
2672static inline bool sk_listener(const struct sock *sk)
2673{
2674        return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2675}
2676
2677void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2678int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2679                       int type);
2680
2681bool sk_ns_capable(const struct sock *sk,
2682                   struct user_namespace *user_ns, int cap);
2683bool sk_capable(const struct sock *sk, int cap);
2684bool sk_net_capable(const struct sock *sk, int cap);
2685
2686void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2687
2688/* Take into consideration the size of the struct sk_buff overhead in the
2689 * determination of these values, since that is non-constant across
2690 * platforms.  This makes socket queueing behavior and performance
2691 * not depend upon such differences.
2692 */
2693#define _SK_MEM_PACKETS         256
2694#define _SK_MEM_OVERHEAD        SKB_TRUESIZE(256)
2695#define SK_WMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2696#define SK_RMEM_MAX             (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2697
2698extern __u32 sysctl_wmem_max;
2699extern __u32 sysctl_rmem_max;
2700
2701extern int sysctl_tstamp_allow_data;
2702extern int sysctl_optmem_max;
2703
2704extern __u32 sysctl_wmem_default;
2705extern __u32 sysctl_rmem_default;
2706
2707DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2708
2709static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2710{
2711        /* Does this proto have per netns sysctl_wmem ? */
2712        if (proto->sysctl_wmem_offset)
2713                return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2714
2715        return *proto->sysctl_wmem;
2716}
2717
2718static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2719{
2720        /* Does this proto have per netns sysctl_rmem ? */
2721        if (proto->sysctl_rmem_offset)
2722                return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2723
2724        return *proto->sysctl_rmem;
2725}
2726
2727/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2728 * Some wifi drivers need to tweak it to get more chunks.
2729 * They can use this helper from their ndo_start_xmit()
2730 */
2731static inline void sk_pacing_shift_update(struct sock *sk, int val)
2732{
2733        if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2734                return;
2735        WRITE_ONCE(sk->sk_pacing_shift, val);
2736}
2737
2738/* if a socket is bound to a device, check that the given device
2739 * index is either the same or that the socket is bound to an L3
2740 * master device and the given device index is also enslaved to
2741 * that L3 master
2742 */
2743static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2744{
2745        int mdif;
2746
2747        if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2748                return true;
2749
2750        mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2751        if (mdif && mdif == sk->sk_bound_dev_if)
2752                return true;
2753
2754        return false;
2755}
2756
2757void sock_def_readable(struct sock *sk);
2758
2759int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2760void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2761int sock_set_timestamping(struct sock *sk, int optname,
2762                          struct so_timestamping timestamping);
2763
2764void sock_enable_timestamps(struct sock *sk);
2765void sock_no_linger(struct sock *sk);
2766void sock_set_keepalive(struct sock *sk);
2767void sock_set_priority(struct sock *sk, u32 priority);
2768void sock_set_rcvbuf(struct sock *sk, int val);
2769void sock_set_mark(struct sock *sk, u32 val);
2770void sock_set_reuseaddr(struct sock *sk);
2771void sock_set_reuseport(struct sock *sk);
2772void sock_set_sndtimeo(struct sock *sk, s64 secs);
2773
2774int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2775
2776#endif  /* _SOCK_H */
2777