linux/kernel/bpf/hashtab.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 */
   5#include <linux/bpf.h>
   6#include <linux/btf.h>
   7#include <linux/jhash.h>
   8#include <linux/filter.h>
   9#include <linux/rculist_nulls.h>
  10#include <linux/random.h>
  11#include <uapi/linux/btf.h>
  12#include <linux/rcupdate_trace.h>
  13#include "percpu_freelist.h"
  14#include "bpf_lru_list.h"
  15#include "map_in_map.h"
  16
  17#define HTAB_CREATE_FLAG_MASK                                           \
  18        (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |    \
  19         BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
  20
  21#define BATCH_OPS(_name)                        \
  22        .map_lookup_batch =                     \
  23        _name##_map_lookup_batch,               \
  24        .map_lookup_and_delete_batch =          \
  25        _name##_map_lookup_and_delete_batch,    \
  26        .map_update_batch =                     \
  27        generic_map_update_batch,               \
  28        .map_delete_batch =                     \
  29        generic_map_delete_batch
  30
  31/*
  32 * The bucket lock has two protection scopes:
  33 *
  34 * 1) Serializing concurrent operations from BPF programs on different
  35 *    CPUs
  36 *
  37 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
  38 *
  39 * BPF programs can execute in any context including perf, kprobes and
  40 * tracing. As there are almost no limits where perf, kprobes and tracing
  41 * can be invoked from the lock operations need to be protected against
  42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
  43 * the lock held section when functions which acquire this lock are invoked
  44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
  45 * variable bpf_prog_active, which prevents BPF programs attached to perf
  46 * events, kprobes and tracing to be invoked before the prior invocation
  47 * from one of these contexts completed. sys_bpf() uses the same mechanism
  48 * by pinning the task to the current CPU and incrementing the recursion
  49 * protection across the map operation.
  50 *
  51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
  52 * operations like memory allocations (even with GFP_ATOMIC) from atomic
  53 * contexts. This is required because even with GFP_ATOMIC the memory
  54 * allocator calls into code paths which acquire locks with long held lock
  55 * sections. To ensure the deterministic behaviour these locks are regular
  56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
  57 * true atomic contexts on an RT kernel are the low level hardware
  58 * handling, scheduling, low level interrupt handling, NMIs etc. None of
  59 * these contexts should ever do memory allocations.
  60 *
  61 * As regular device interrupt handlers and soft interrupts are forced into
  62 * thread context, the existing code which does
  63 *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
  64 * just works.
  65 *
  66 * In theory the BPF locks could be converted to regular spinlocks as well,
  67 * but the bucket locks and percpu_freelist locks can be taken from
  68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
  69 * atomic contexts even on RT. These mechanisms require preallocated maps,
  70 * so there is no need to invoke memory allocations within the lock held
  71 * sections.
  72 *
  73 * BPF maps which need dynamic allocation are only used from (forced)
  74 * thread context on RT and can therefore use regular spinlocks which in
  75 * turn allows to invoke memory allocations from the lock held section.
  76 *
  77 * On a non RT kernel this distinction is neither possible nor required.
  78 * spinlock maps to raw_spinlock and the extra code is optimized out by the
  79 * compiler.
  80 */
  81struct bucket {
  82        struct hlist_nulls_head head;
  83        union {
  84                raw_spinlock_t raw_lock;
  85                spinlock_t     lock;
  86        };
  87};
  88
  89#define HASHTAB_MAP_LOCK_COUNT 8
  90#define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
  91
  92struct bpf_htab {
  93        struct bpf_map map;
  94        struct bucket *buckets;
  95        void *elems;
  96        union {
  97                struct pcpu_freelist freelist;
  98                struct bpf_lru lru;
  99        };
 100        struct htab_elem *__percpu *extra_elems;
 101        atomic_t count; /* number of elements in this hashtable */
 102        u32 n_buckets;  /* number of hash buckets */
 103        u32 elem_size;  /* size of each element in bytes */
 104        u32 hashrnd;
 105        struct lock_class_key lockdep_key;
 106        int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
 107};
 108
 109/* each htab element is struct htab_elem + key + value */
 110struct htab_elem {
 111        union {
 112                struct hlist_nulls_node hash_node;
 113                struct {
 114                        void *padding;
 115                        union {
 116                                struct bpf_htab *htab;
 117                                struct pcpu_freelist_node fnode;
 118                                struct htab_elem *batch_flink;
 119                        };
 120                };
 121        };
 122        union {
 123                struct rcu_head rcu;
 124                struct bpf_lru_node lru_node;
 125        };
 126        u32 hash;
 127        char key[] __aligned(8);
 128};
 129
 130static inline bool htab_is_prealloc(const struct bpf_htab *htab)
 131{
 132        return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
 133}
 134
 135static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
 136{
 137        return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
 138}
 139
 140static void htab_init_buckets(struct bpf_htab *htab)
 141{
 142        unsigned i;
 143
 144        for (i = 0; i < htab->n_buckets; i++) {
 145                INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
 146                if (htab_use_raw_lock(htab)) {
 147                        raw_spin_lock_init(&htab->buckets[i].raw_lock);
 148                        lockdep_set_class(&htab->buckets[i].raw_lock,
 149                                          &htab->lockdep_key);
 150                } else {
 151                        spin_lock_init(&htab->buckets[i].lock);
 152                        lockdep_set_class(&htab->buckets[i].lock,
 153                                          &htab->lockdep_key);
 154                }
 155                cond_resched();
 156        }
 157}
 158
 159static inline int htab_lock_bucket(const struct bpf_htab *htab,
 160                                   struct bucket *b, u32 hash,
 161                                   unsigned long *pflags)
 162{
 163        unsigned long flags;
 164
 165        hash = hash & HASHTAB_MAP_LOCK_MASK;
 166
 167        migrate_disable();
 168        if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
 169                __this_cpu_dec(*(htab->map_locked[hash]));
 170                migrate_enable();
 171                return -EBUSY;
 172        }
 173
 174        if (htab_use_raw_lock(htab))
 175                raw_spin_lock_irqsave(&b->raw_lock, flags);
 176        else
 177                spin_lock_irqsave(&b->lock, flags);
 178        *pflags = flags;
 179
 180        return 0;
 181}
 182
 183static inline void htab_unlock_bucket(const struct bpf_htab *htab,
 184                                      struct bucket *b, u32 hash,
 185                                      unsigned long flags)
 186{
 187        hash = hash & HASHTAB_MAP_LOCK_MASK;
 188        if (htab_use_raw_lock(htab))
 189                raw_spin_unlock_irqrestore(&b->raw_lock, flags);
 190        else
 191                spin_unlock_irqrestore(&b->lock, flags);
 192        __this_cpu_dec(*(htab->map_locked[hash]));
 193        migrate_enable();
 194}
 195
 196static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
 197
 198static bool htab_is_lru(const struct bpf_htab *htab)
 199{
 200        return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
 201                htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 202}
 203
 204static bool htab_is_percpu(const struct bpf_htab *htab)
 205{
 206        return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 207                htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
 208}
 209
 210static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
 211                                     void __percpu *pptr)
 212{
 213        *(void __percpu **)(l->key + key_size) = pptr;
 214}
 215
 216static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
 217{
 218        return *(void __percpu **)(l->key + key_size);
 219}
 220
 221static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
 222{
 223        return *(void **)(l->key + roundup(map->key_size, 8));
 224}
 225
 226static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
 227{
 228        return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
 229}
 230
 231static void htab_free_elems(struct bpf_htab *htab)
 232{
 233        int i;
 234
 235        if (!htab_is_percpu(htab))
 236                goto free_elems;
 237
 238        for (i = 0; i < htab->map.max_entries; i++) {
 239                void __percpu *pptr;
 240
 241                pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
 242                                         htab->map.key_size);
 243                free_percpu(pptr);
 244                cond_resched();
 245        }
 246free_elems:
 247        bpf_map_area_free(htab->elems);
 248}
 249
 250/* The LRU list has a lock (lru_lock). Each htab bucket has a lock
 251 * (bucket_lock). If both locks need to be acquired together, the lock
 252 * order is always lru_lock -> bucket_lock and this only happens in
 253 * bpf_lru_list.c logic. For example, certain code path of
 254 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
 255 * will acquire lru_lock first followed by acquiring bucket_lock.
 256 *
 257 * In hashtab.c, to avoid deadlock, lock acquisition of
 258 * bucket_lock followed by lru_lock is not allowed. In such cases,
 259 * bucket_lock needs to be released first before acquiring lru_lock.
 260 */
 261static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
 262                                          u32 hash)
 263{
 264        struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
 265        struct htab_elem *l;
 266
 267        if (node) {
 268                l = container_of(node, struct htab_elem, lru_node);
 269                memcpy(l->key, key, htab->map.key_size);
 270                return l;
 271        }
 272
 273        return NULL;
 274}
 275
 276static int prealloc_init(struct bpf_htab *htab)
 277{
 278        u32 num_entries = htab->map.max_entries;
 279        int err = -ENOMEM, i;
 280
 281        if (!htab_is_percpu(htab) && !htab_is_lru(htab))
 282                num_entries += num_possible_cpus();
 283
 284        htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
 285                                         htab->map.numa_node);
 286        if (!htab->elems)
 287                return -ENOMEM;
 288
 289        if (!htab_is_percpu(htab))
 290                goto skip_percpu_elems;
 291
 292        for (i = 0; i < num_entries; i++) {
 293                u32 size = round_up(htab->map.value_size, 8);
 294                void __percpu *pptr;
 295
 296                pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
 297                                            GFP_USER | __GFP_NOWARN);
 298                if (!pptr)
 299                        goto free_elems;
 300                htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
 301                                  pptr);
 302                cond_resched();
 303        }
 304
 305skip_percpu_elems:
 306        if (htab_is_lru(htab))
 307                err = bpf_lru_init(&htab->lru,
 308                                   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
 309                                   offsetof(struct htab_elem, hash) -
 310                                   offsetof(struct htab_elem, lru_node),
 311                                   htab_lru_map_delete_node,
 312                                   htab);
 313        else
 314                err = pcpu_freelist_init(&htab->freelist);
 315
 316        if (err)
 317                goto free_elems;
 318
 319        if (htab_is_lru(htab))
 320                bpf_lru_populate(&htab->lru, htab->elems,
 321                                 offsetof(struct htab_elem, lru_node),
 322                                 htab->elem_size, num_entries);
 323        else
 324                pcpu_freelist_populate(&htab->freelist,
 325                                       htab->elems + offsetof(struct htab_elem, fnode),
 326                                       htab->elem_size, num_entries);
 327
 328        return 0;
 329
 330free_elems:
 331        htab_free_elems(htab);
 332        return err;
 333}
 334
 335static void prealloc_destroy(struct bpf_htab *htab)
 336{
 337        htab_free_elems(htab);
 338
 339        if (htab_is_lru(htab))
 340                bpf_lru_destroy(&htab->lru);
 341        else
 342                pcpu_freelist_destroy(&htab->freelist);
 343}
 344
 345static int alloc_extra_elems(struct bpf_htab *htab)
 346{
 347        struct htab_elem *__percpu *pptr, *l_new;
 348        struct pcpu_freelist_node *l;
 349        int cpu;
 350
 351        pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
 352                                    GFP_USER | __GFP_NOWARN);
 353        if (!pptr)
 354                return -ENOMEM;
 355
 356        for_each_possible_cpu(cpu) {
 357                l = pcpu_freelist_pop(&htab->freelist);
 358                /* pop will succeed, since prealloc_init()
 359                 * preallocated extra num_possible_cpus elements
 360                 */
 361                l_new = container_of(l, struct htab_elem, fnode);
 362                *per_cpu_ptr(pptr, cpu) = l_new;
 363        }
 364        htab->extra_elems = pptr;
 365        return 0;
 366}
 367
 368/* Called from syscall */
 369static int htab_map_alloc_check(union bpf_attr *attr)
 370{
 371        bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 372                       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 373        bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 374                    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 375        /* percpu_lru means each cpu has its own LRU list.
 376         * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 377         * the map's value itself is percpu.  percpu_lru has
 378         * nothing to do with the map's value.
 379         */
 380        bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 381        bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 382        bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
 383        int numa_node = bpf_map_attr_numa_node(attr);
 384
 385        BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
 386                     offsetof(struct htab_elem, hash_node.pprev));
 387        BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
 388                     offsetof(struct htab_elem, hash_node.pprev));
 389
 390        if (lru && !bpf_capable())
 391                /* LRU implementation is much complicated than other
 392                 * maps.  Hence, limit to CAP_BPF.
 393                 */
 394                return -EPERM;
 395
 396        if (zero_seed && !capable(CAP_SYS_ADMIN))
 397                /* Guard against local DoS, and discourage production use. */
 398                return -EPERM;
 399
 400        if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
 401            !bpf_map_flags_access_ok(attr->map_flags))
 402                return -EINVAL;
 403
 404        if (!lru && percpu_lru)
 405                return -EINVAL;
 406
 407        if (lru && !prealloc)
 408                return -ENOTSUPP;
 409
 410        if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
 411                return -EINVAL;
 412
 413        /* check sanity of attributes.
 414         * value_size == 0 may be allowed in the future to use map as a set
 415         */
 416        if (attr->max_entries == 0 || attr->key_size == 0 ||
 417            attr->value_size == 0)
 418                return -EINVAL;
 419
 420        if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
 421           sizeof(struct htab_elem))
 422                /* if key_size + value_size is bigger, the user space won't be
 423                 * able to access the elements via bpf syscall. This check
 424                 * also makes sure that the elem_size doesn't overflow and it's
 425                 * kmalloc-able later in htab_map_update_elem()
 426                 */
 427                return -E2BIG;
 428
 429        return 0;
 430}
 431
 432static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
 433{
 434        bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
 435                       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 436        bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
 437                    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
 438        /* percpu_lru means each cpu has its own LRU list.
 439         * it is different from BPF_MAP_TYPE_PERCPU_HASH where
 440         * the map's value itself is percpu.  percpu_lru has
 441         * nothing to do with the map's value.
 442         */
 443        bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
 444        bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
 445        struct bpf_htab *htab;
 446        int err, i;
 447
 448        htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
 449        if (!htab)
 450                return ERR_PTR(-ENOMEM);
 451
 452        lockdep_register_key(&htab->lockdep_key);
 453
 454        bpf_map_init_from_attr(&htab->map, attr);
 455
 456        if (percpu_lru) {
 457                /* ensure each CPU's lru list has >=1 elements.
 458                 * since we are at it, make each lru list has the same
 459                 * number of elements.
 460                 */
 461                htab->map.max_entries = roundup(attr->max_entries,
 462                                                num_possible_cpus());
 463                if (htab->map.max_entries < attr->max_entries)
 464                        htab->map.max_entries = rounddown(attr->max_entries,
 465                                                          num_possible_cpus());
 466        }
 467
 468        /* hash table size must be power of 2 */
 469        htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
 470
 471        htab->elem_size = sizeof(struct htab_elem) +
 472                          round_up(htab->map.key_size, 8);
 473        if (percpu)
 474                htab->elem_size += sizeof(void *);
 475        else
 476                htab->elem_size += round_up(htab->map.value_size, 8);
 477
 478        err = -E2BIG;
 479        /* prevent zero size kmalloc and check for u32 overflow */
 480        if (htab->n_buckets == 0 ||
 481            htab->n_buckets > U32_MAX / sizeof(struct bucket))
 482                goto free_htab;
 483
 484        err = -ENOMEM;
 485        htab->buckets = bpf_map_area_alloc(htab->n_buckets *
 486                                           sizeof(struct bucket),
 487                                           htab->map.numa_node);
 488        if (!htab->buckets)
 489                goto free_htab;
 490
 491        for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
 492                htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
 493                                                           sizeof(int),
 494                                                           sizeof(int),
 495                                                           GFP_USER);
 496                if (!htab->map_locked[i])
 497                        goto free_map_locked;
 498        }
 499
 500        if (htab->map.map_flags & BPF_F_ZERO_SEED)
 501                htab->hashrnd = 0;
 502        else
 503                htab->hashrnd = get_random_int();
 504
 505        htab_init_buckets(htab);
 506
 507        if (prealloc) {
 508                err = prealloc_init(htab);
 509                if (err)
 510                        goto free_map_locked;
 511
 512                if (!percpu && !lru) {
 513                        /* lru itself can remove the least used element, so
 514                         * there is no need for an extra elem during map_update.
 515                         */
 516                        err = alloc_extra_elems(htab);
 517                        if (err)
 518                                goto free_prealloc;
 519                }
 520        }
 521
 522        return &htab->map;
 523
 524free_prealloc:
 525        prealloc_destroy(htab);
 526free_map_locked:
 527        for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
 528                free_percpu(htab->map_locked[i]);
 529        bpf_map_area_free(htab->buckets);
 530free_htab:
 531        lockdep_unregister_key(&htab->lockdep_key);
 532        kfree(htab);
 533        return ERR_PTR(err);
 534}
 535
 536static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
 537{
 538        return jhash(key, key_len, hashrnd);
 539}
 540
 541static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
 542{
 543        return &htab->buckets[hash & (htab->n_buckets - 1)];
 544}
 545
 546static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
 547{
 548        return &__select_bucket(htab, hash)->head;
 549}
 550
 551/* this lookup function can only be called with bucket lock taken */
 552static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
 553                                         void *key, u32 key_size)
 554{
 555        struct hlist_nulls_node *n;
 556        struct htab_elem *l;
 557
 558        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 559                if (l->hash == hash && !memcmp(&l->key, key, key_size))
 560                        return l;
 561
 562        return NULL;
 563}
 564
 565/* can be called without bucket lock. it will repeat the loop in
 566 * the unlikely event when elements moved from one bucket into another
 567 * while link list is being walked
 568 */
 569static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
 570                                               u32 hash, void *key,
 571                                               u32 key_size, u32 n_buckets)
 572{
 573        struct hlist_nulls_node *n;
 574        struct htab_elem *l;
 575
 576again:
 577        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 578                if (l->hash == hash && !memcmp(&l->key, key, key_size))
 579                        return l;
 580
 581        if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
 582                goto again;
 583
 584        return NULL;
 585}
 586
 587/* Called from syscall or from eBPF program directly, so
 588 * arguments have to match bpf_map_lookup_elem() exactly.
 589 * The return value is adjusted by BPF instructions
 590 * in htab_map_gen_lookup().
 591 */
 592static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
 593{
 594        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 595        struct hlist_nulls_head *head;
 596        struct htab_elem *l;
 597        u32 hash, key_size;
 598
 599        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 600                     !rcu_read_lock_bh_held());
 601
 602        key_size = map->key_size;
 603
 604        hash = htab_map_hash(key, key_size, htab->hashrnd);
 605
 606        head = select_bucket(htab, hash);
 607
 608        l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 609
 610        return l;
 611}
 612
 613static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
 614{
 615        struct htab_elem *l = __htab_map_lookup_elem(map, key);
 616
 617        if (l)
 618                return l->key + round_up(map->key_size, 8);
 619
 620        return NULL;
 621}
 622
 623/* inline bpf_map_lookup_elem() call.
 624 * Instead of:
 625 * bpf_prog
 626 *   bpf_map_lookup_elem
 627 *     map->ops->map_lookup_elem
 628 *       htab_map_lookup_elem
 629 *         __htab_map_lookup_elem
 630 * do:
 631 * bpf_prog
 632 *   __htab_map_lookup_elem
 633 */
 634static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
 635{
 636        struct bpf_insn *insn = insn_buf;
 637        const int ret = BPF_REG_0;
 638
 639        BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 640                     (void *(*)(struct bpf_map *map, void *key))NULL));
 641        *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 642        *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
 643        *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 644                                offsetof(struct htab_elem, key) +
 645                                round_up(map->key_size, 8));
 646        return insn - insn_buf;
 647}
 648
 649static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
 650                                                        void *key, const bool mark)
 651{
 652        struct htab_elem *l = __htab_map_lookup_elem(map, key);
 653
 654        if (l) {
 655                if (mark)
 656                        bpf_lru_node_set_ref(&l->lru_node);
 657                return l->key + round_up(map->key_size, 8);
 658        }
 659
 660        return NULL;
 661}
 662
 663static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
 664{
 665        return __htab_lru_map_lookup_elem(map, key, true);
 666}
 667
 668static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
 669{
 670        return __htab_lru_map_lookup_elem(map, key, false);
 671}
 672
 673static int htab_lru_map_gen_lookup(struct bpf_map *map,
 674                                   struct bpf_insn *insn_buf)
 675{
 676        struct bpf_insn *insn = insn_buf;
 677        const int ret = BPF_REG_0;
 678        const int ref_reg = BPF_REG_1;
 679
 680        BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
 681                     (void *(*)(struct bpf_map *map, void *key))NULL));
 682        *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
 683        *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
 684        *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
 685                              offsetof(struct htab_elem, lru_node) +
 686                              offsetof(struct bpf_lru_node, ref));
 687        *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
 688        *insn++ = BPF_ST_MEM(BPF_B, ret,
 689                             offsetof(struct htab_elem, lru_node) +
 690                             offsetof(struct bpf_lru_node, ref),
 691                             1);
 692        *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
 693                                offsetof(struct htab_elem, key) +
 694                                round_up(map->key_size, 8));
 695        return insn - insn_buf;
 696}
 697
 698/* It is called from the bpf_lru_list when the LRU needs to delete
 699 * older elements from the htab.
 700 */
 701static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
 702{
 703        struct bpf_htab *htab = (struct bpf_htab *)arg;
 704        struct htab_elem *l = NULL, *tgt_l;
 705        struct hlist_nulls_head *head;
 706        struct hlist_nulls_node *n;
 707        unsigned long flags;
 708        struct bucket *b;
 709        int ret;
 710
 711        tgt_l = container_of(node, struct htab_elem, lru_node);
 712        b = __select_bucket(htab, tgt_l->hash);
 713        head = &b->head;
 714
 715        ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
 716        if (ret)
 717                return false;
 718
 719        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
 720                if (l == tgt_l) {
 721                        hlist_nulls_del_rcu(&l->hash_node);
 722                        break;
 723                }
 724
 725        htab_unlock_bucket(htab, b, tgt_l->hash, flags);
 726
 727        return l == tgt_l;
 728}
 729
 730/* Called from syscall */
 731static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 732{
 733        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 734        struct hlist_nulls_head *head;
 735        struct htab_elem *l, *next_l;
 736        u32 hash, key_size;
 737        int i = 0;
 738
 739        WARN_ON_ONCE(!rcu_read_lock_held());
 740
 741        key_size = map->key_size;
 742
 743        if (!key)
 744                goto find_first_elem;
 745
 746        hash = htab_map_hash(key, key_size, htab->hashrnd);
 747
 748        head = select_bucket(htab, hash);
 749
 750        /* lookup the key */
 751        l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
 752
 753        if (!l)
 754                goto find_first_elem;
 755
 756        /* key was found, get next key in the same bucket */
 757        next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
 758                                  struct htab_elem, hash_node);
 759
 760        if (next_l) {
 761                /* if next elem in this hash list is non-zero, just return it */
 762                memcpy(next_key, next_l->key, key_size);
 763                return 0;
 764        }
 765
 766        /* no more elements in this hash list, go to the next bucket */
 767        i = hash & (htab->n_buckets - 1);
 768        i++;
 769
 770find_first_elem:
 771        /* iterate over buckets */
 772        for (; i < htab->n_buckets; i++) {
 773                head = select_bucket(htab, i);
 774
 775                /* pick first element in the bucket */
 776                next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
 777                                          struct htab_elem, hash_node);
 778                if (next_l) {
 779                        /* if it's not empty, just return it */
 780                        memcpy(next_key, next_l->key, key_size);
 781                        return 0;
 782                }
 783        }
 784
 785        /* iterated over all buckets and all elements */
 786        return -ENOENT;
 787}
 788
 789static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
 790{
 791        if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
 792                free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
 793        kfree(l);
 794}
 795
 796static void htab_elem_free_rcu(struct rcu_head *head)
 797{
 798        struct htab_elem *l = container_of(head, struct htab_elem, rcu);
 799        struct bpf_htab *htab = l->htab;
 800
 801        htab_elem_free(htab, l);
 802}
 803
 804static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
 805{
 806        struct bpf_map *map = &htab->map;
 807        void *ptr;
 808
 809        if (map->ops->map_fd_put_ptr) {
 810                ptr = fd_htab_map_get_ptr(map, l);
 811                map->ops->map_fd_put_ptr(ptr);
 812        }
 813}
 814
 815static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
 816{
 817        htab_put_fd_value(htab, l);
 818
 819        if (htab_is_prealloc(htab)) {
 820                __pcpu_freelist_push(&htab->freelist, &l->fnode);
 821        } else {
 822                atomic_dec(&htab->count);
 823                l->htab = htab;
 824                call_rcu(&l->rcu, htab_elem_free_rcu);
 825        }
 826}
 827
 828static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
 829                            void *value, bool onallcpus)
 830{
 831        if (!onallcpus) {
 832                /* copy true value_size bytes */
 833                memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
 834        } else {
 835                u32 size = round_up(htab->map.value_size, 8);
 836                int off = 0, cpu;
 837
 838                for_each_possible_cpu(cpu) {
 839                        bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
 840                                        value + off, size);
 841                        off += size;
 842                }
 843        }
 844}
 845
 846static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
 847                            void *value, bool onallcpus)
 848{
 849        /* When using prealloc and not setting the initial value on all cpus,
 850         * zero-fill element values for other cpus (just as what happens when
 851         * not using prealloc). Otherwise, bpf program has no way to ensure
 852         * known initial values for cpus other than current one
 853         * (onallcpus=false always when coming from bpf prog).
 854         */
 855        if (htab_is_prealloc(htab) && !onallcpus) {
 856                u32 size = round_up(htab->map.value_size, 8);
 857                int current_cpu = raw_smp_processor_id();
 858                int cpu;
 859
 860                for_each_possible_cpu(cpu) {
 861                        if (cpu == current_cpu)
 862                                bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
 863                                                size);
 864                        else
 865                                memset(per_cpu_ptr(pptr, cpu), 0, size);
 866                }
 867        } else {
 868                pcpu_copy_value(htab, pptr, value, onallcpus);
 869        }
 870}
 871
 872static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
 873{
 874        return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
 875               BITS_PER_LONG == 64;
 876}
 877
 878static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
 879                                         void *value, u32 key_size, u32 hash,
 880                                         bool percpu, bool onallcpus,
 881                                         struct htab_elem *old_elem)
 882{
 883        u32 size = htab->map.value_size;
 884        bool prealloc = htab_is_prealloc(htab);
 885        struct htab_elem *l_new, **pl_new;
 886        void __percpu *pptr;
 887
 888        if (prealloc) {
 889                if (old_elem) {
 890                        /* if we're updating the existing element,
 891                         * use per-cpu extra elems to avoid freelist_pop/push
 892                         */
 893                        pl_new = this_cpu_ptr(htab->extra_elems);
 894                        l_new = *pl_new;
 895                        htab_put_fd_value(htab, old_elem);
 896                        *pl_new = old_elem;
 897                } else {
 898                        struct pcpu_freelist_node *l;
 899
 900                        l = __pcpu_freelist_pop(&htab->freelist);
 901                        if (!l)
 902                                return ERR_PTR(-E2BIG);
 903                        l_new = container_of(l, struct htab_elem, fnode);
 904                }
 905        } else {
 906                if (atomic_inc_return(&htab->count) > htab->map.max_entries)
 907                        if (!old_elem) {
 908                                /* when map is full and update() is replacing
 909                                 * old element, it's ok to allocate, since
 910                                 * old element will be freed immediately.
 911                                 * Otherwise return an error
 912                                 */
 913                                l_new = ERR_PTR(-E2BIG);
 914                                goto dec_count;
 915                        }
 916                l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
 917                                             GFP_ATOMIC | __GFP_NOWARN,
 918                                             htab->map.numa_node);
 919                if (!l_new) {
 920                        l_new = ERR_PTR(-ENOMEM);
 921                        goto dec_count;
 922                }
 923                check_and_init_map_lock(&htab->map,
 924                                        l_new->key + round_up(key_size, 8));
 925        }
 926
 927        memcpy(l_new->key, key, key_size);
 928        if (percpu) {
 929                size = round_up(size, 8);
 930                if (prealloc) {
 931                        pptr = htab_elem_get_ptr(l_new, key_size);
 932                } else {
 933                        /* alloc_percpu zero-fills */
 934                        pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
 935                                                    GFP_ATOMIC | __GFP_NOWARN);
 936                        if (!pptr) {
 937                                kfree(l_new);
 938                                l_new = ERR_PTR(-ENOMEM);
 939                                goto dec_count;
 940                        }
 941                }
 942
 943                pcpu_init_value(htab, pptr, value, onallcpus);
 944
 945                if (!prealloc)
 946                        htab_elem_set_ptr(l_new, key_size, pptr);
 947        } else if (fd_htab_map_needs_adjust(htab)) {
 948                size = round_up(size, 8);
 949                memcpy(l_new->key + round_up(key_size, 8), value, size);
 950        } else {
 951                copy_map_value(&htab->map,
 952                               l_new->key + round_up(key_size, 8),
 953                               value);
 954        }
 955
 956        l_new->hash = hash;
 957        return l_new;
 958dec_count:
 959        atomic_dec(&htab->count);
 960        return l_new;
 961}
 962
 963static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
 964                       u64 map_flags)
 965{
 966        if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
 967                /* elem already exists */
 968                return -EEXIST;
 969
 970        if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
 971                /* elem doesn't exist, cannot update it */
 972                return -ENOENT;
 973
 974        return 0;
 975}
 976
 977/* Called from syscall or from eBPF program */
 978static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
 979                                u64 map_flags)
 980{
 981        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
 982        struct htab_elem *l_new = NULL, *l_old;
 983        struct hlist_nulls_head *head;
 984        unsigned long flags;
 985        struct bucket *b;
 986        u32 key_size, hash;
 987        int ret;
 988
 989        if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
 990                /* unknown flags */
 991                return -EINVAL;
 992
 993        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
 994                     !rcu_read_lock_bh_held());
 995
 996        key_size = map->key_size;
 997
 998        hash = htab_map_hash(key, key_size, htab->hashrnd);
 999
1000        b = __select_bucket(htab, hash);
1001        head = &b->head;
1002
1003        if (unlikely(map_flags & BPF_F_LOCK)) {
1004                if (unlikely(!map_value_has_spin_lock(map)))
1005                        return -EINVAL;
1006                /* find an element without taking the bucket lock */
1007                l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1008                                              htab->n_buckets);
1009                ret = check_flags(htab, l_old, map_flags);
1010                if (ret)
1011                        return ret;
1012                if (l_old) {
1013                        /* grab the element lock and update value in place */
1014                        copy_map_value_locked(map,
1015                                              l_old->key + round_up(key_size, 8),
1016                                              value, false);
1017                        return 0;
1018                }
1019                /* fall through, grab the bucket lock and lookup again.
1020                 * 99.9% chance that the element won't be found,
1021                 * but second lookup under lock has to be done.
1022                 */
1023        }
1024
1025        ret = htab_lock_bucket(htab, b, hash, &flags);
1026        if (ret)
1027                return ret;
1028
1029        l_old = lookup_elem_raw(head, hash, key, key_size);
1030
1031        ret = check_flags(htab, l_old, map_flags);
1032        if (ret)
1033                goto err;
1034
1035        if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1036                /* first lookup without the bucket lock didn't find the element,
1037                 * but second lookup with the bucket lock found it.
1038                 * This case is highly unlikely, but has to be dealt with:
1039                 * grab the element lock in addition to the bucket lock
1040                 * and update element in place
1041                 */
1042                copy_map_value_locked(map,
1043                                      l_old->key + round_up(key_size, 8),
1044                                      value, false);
1045                ret = 0;
1046                goto err;
1047        }
1048
1049        l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1050                                l_old);
1051        if (IS_ERR(l_new)) {
1052                /* all pre-allocated elements are in use or memory exhausted */
1053                ret = PTR_ERR(l_new);
1054                goto err;
1055        }
1056
1057        /* add new element to the head of the list, so that
1058         * concurrent search will find it before old elem
1059         */
1060        hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1061        if (l_old) {
1062                hlist_nulls_del_rcu(&l_old->hash_node);
1063                if (!htab_is_prealloc(htab))
1064                        free_htab_elem(htab, l_old);
1065        }
1066        ret = 0;
1067err:
1068        htab_unlock_bucket(htab, b, hash, flags);
1069        return ret;
1070}
1071
1072static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1073                                    u64 map_flags)
1074{
1075        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1076        struct htab_elem *l_new, *l_old = NULL;
1077        struct hlist_nulls_head *head;
1078        unsigned long flags;
1079        struct bucket *b;
1080        u32 key_size, hash;
1081        int ret;
1082
1083        if (unlikely(map_flags > BPF_EXIST))
1084                /* unknown flags */
1085                return -EINVAL;
1086
1087        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1088                     !rcu_read_lock_bh_held());
1089
1090        key_size = map->key_size;
1091
1092        hash = htab_map_hash(key, key_size, htab->hashrnd);
1093
1094        b = __select_bucket(htab, hash);
1095        head = &b->head;
1096
1097        /* For LRU, we need to alloc before taking bucket's
1098         * spinlock because getting free nodes from LRU may need
1099         * to remove older elements from htab and this removal
1100         * operation will need a bucket lock.
1101         */
1102        l_new = prealloc_lru_pop(htab, key, hash);
1103        if (!l_new)
1104                return -ENOMEM;
1105        memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1106
1107        ret = htab_lock_bucket(htab, b, hash, &flags);
1108        if (ret)
1109                return ret;
1110
1111        l_old = lookup_elem_raw(head, hash, key, key_size);
1112
1113        ret = check_flags(htab, l_old, map_flags);
1114        if (ret)
1115                goto err;
1116
1117        /* add new element to the head of the list, so that
1118         * concurrent search will find it before old elem
1119         */
1120        hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1121        if (l_old) {
1122                bpf_lru_node_set_ref(&l_new->lru_node);
1123                hlist_nulls_del_rcu(&l_old->hash_node);
1124        }
1125        ret = 0;
1126
1127err:
1128        htab_unlock_bucket(htab, b, hash, flags);
1129
1130        if (ret)
1131                bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1132        else if (l_old)
1133                bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1134
1135        return ret;
1136}
1137
1138static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1139                                         void *value, u64 map_flags,
1140                                         bool onallcpus)
1141{
1142        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1143        struct htab_elem *l_new = NULL, *l_old;
1144        struct hlist_nulls_head *head;
1145        unsigned long flags;
1146        struct bucket *b;
1147        u32 key_size, hash;
1148        int ret;
1149
1150        if (unlikely(map_flags > BPF_EXIST))
1151                /* unknown flags */
1152                return -EINVAL;
1153
1154        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1155                     !rcu_read_lock_bh_held());
1156
1157        key_size = map->key_size;
1158
1159        hash = htab_map_hash(key, key_size, htab->hashrnd);
1160
1161        b = __select_bucket(htab, hash);
1162        head = &b->head;
1163
1164        ret = htab_lock_bucket(htab, b, hash, &flags);
1165        if (ret)
1166                return ret;
1167
1168        l_old = lookup_elem_raw(head, hash, key, key_size);
1169
1170        ret = check_flags(htab, l_old, map_flags);
1171        if (ret)
1172                goto err;
1173
1174        if (l_old) {
1175                /* per-cpu hash map can update value in-place */
1176                pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1177                                value, onallcpus);
1178        } else {
1179                l_new = alloc_htab_elem(htab, key, value, key_size,
1180                                        hash, true, onallcpus, NULL);
1181                if (IS_ERR(l_new)) {
1182                        ret = PTR_ERR(l_new);
1183                        goto err;
1184                }
1185                hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1186        }
1187        ret = 0;
1188err:
1189        htab_unlock_bucket(htab, b, hash, flags);
1190        return ret;
1191}
1192
1193static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1194                                             void *value, u64 map_flags,
1195                                             bool onallcpus)
1196{
1197        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1198        struct htab_elem *l_new = NULL, *l_old;
1199        struct hlist_nulls_head *head;
1200        unsigned long flags;
1201        struct bucket *b;
1202        u32 key_size, hash;
1203        int ret;
1204
1205        if (unlikely(map_flags > BPF_EXIST))
1206                /* unknown flags */
1207                return -EINVAL;
1208
1209        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1210                     !rcu_read_lock_bh_held());
1211
1212        key_size = map->key_size;
1213
1214        hash = htab_map_hash(key, key_size, htab->hashrnd);
1215
1216        b = __select_bucket(htab, hash);
1217        head = &b->head;
1218
1219        /* For LRU, we need to alloc before taking bucket's
1220         * spinlock because LRU's elem alloc may need
1221         * to remove older elem from htab and this removal
1222         * operation will need a bucket lock.
1223         */
1224        if (map_flags != BPF_EXIST) {
1225                l_new = prealloc_lru_pop(htab, key, hash);
1226                if (!l_new)
1227                        return -ENOMEM;
1228        }
1229
1230        ret = htab_lock_bucket(htab, b, hash, &flags);
1231        if (ret)
1232                return ret;
1233
1234        l_old = lookup_elem_raw(head, hash, key, key_size);
1235
1236        ret = check_flags(htab, l_old, map_flags);
1237        if (ret)
1238                goto err;
1239
1240        if (l_old) {
1241                bpf_lru_node_set_ref(&l_old->lru_node);
1242
1243                /* per-cpu hash map can update value in-place */
1244                pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1245                                value, onallcpus);
1246        } else {
1247                pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1248                                value, onallcpus);
1249                hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1250                l_new = NULL;
1251        }
1252        ret = 0;
1253err:
1254        htab_unlock_bucket(htab, b, hash, flags);
1255        if (l_new)
1256                bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1257        return ret;
1258}
1259
1260static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1261                                       void *value, u64 map_flags)
1262{
1263        return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1264}
1265
1266static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1267                                           void *value, u64 map_flags)
1268{
1269        return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1270                                                 false);
1271}
1272
1273/* Called from syscall or from eBPF program */
1274static int htab_map_delete_elem(struct bpf_map *map, void *key)
1275{
1276        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1277        struct hlist_nulls_head *head;
1278        struct bucket *b;
1279        struct htab_elem *l;
1280        unsigned long flags;
1281        u32 hash, key_size;
1282        int ret;
1283
1284        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1285                     !rcu_read_lock_bh_held());
1286
1287        key_size = map->key_size;
1288
1289        hash = htab_map_hash(key, key_size, htab->hashrnd);
1290        b = __select_bucket(htab, hash);
1291        head = &b->head;
1292
1293        ret = htab_lock_bucket(htab, b, hash, &flags);
1294        if (ret)
1295                return ret;
1296
1297        l = lookup_elem_raw(head, hash, key, key_size);
1298
1299        if (l) {
1300                hlist_nulls_del_rcu(&l->hash_node);
1301                free_htab_elem(htab, l);
1302        } else {
1303                ret = -ENOENT;
1304        }
1305
1306        htab_unlock_bucket(htab, b, hash, flags);
1307        return ret;
1308}
1309
1310static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1311{
1312        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1313        struct hlist_nulls_head *head;
1314        struct bucket *b;
1315        struct htab_elem *l;
1316        unsigned long flags;
1317        u32 hash, key_size;
1318        int ret;
1319
1320        WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1321                     !rcu_read_lock_bh_held());
1322
1323        key_size = map->key_size;
1324
1325        hash = htab_map_hash(key, key_size, htab->hashrnd);
1326        b = __select_bucket(htab, hash);
1327        head = &b->head;
1328
1329        ret = htab_lock_bucket(htab, b, hash, &flags);
1330        if (ret)
1331                return ret;
1332
1333        l = lookup_elem_raw(head, hash, key, key_size);
1334
1335        if (l)
1336                hlist_nulls_del_rcu(&l->hash_node);
1337        else
1338                ret = -ENOENT;
1339
1340        htab_unlock_bucket(htab, b, hash, flags);
1341        if (l)
1342                bpf_lru_push_free(&htab->lru, &l->lru_node);
1343        return ret;
1344}
1345
1346static void delete_all_elements(struct bpf_htab *htab)
1347{
1348        int i;
1349
1350        for (i = 0; i < htab->n_buckets; i++) {
1351                struct hlist_nulls_head *head = select_bucket(htab, i);
1352                struct hlist_nulls_node *n;
1353                struct htab_elem *l;
1354
1355                hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1356                        hlist_nulls_del_rcu(&l->hash_node);
1357                        htab_elem_free(htab, l);
1358                }
1359        }
1360}
1361
1362/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1363static void htab_map_free(struct bpf_map *map)
1364{
1365        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1366        int i;
1367
1368        /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1369         * bpf_free_used_maps() is called after bpf prog is no longer executing.
1370         * There is no need to synchronize_rcu() here to protect map elements.
1371         */
1372
1373        /* some of free_htab_elem() callbacks for elements of this map may
1374         * not have executed. Wait for them.
1375         */
1376        rcu_barrier();
1377        if (!htab_is_prealloc(htab))
1378                delete_all_elements(htab);
1379        else
1380                prealloc_destroy(htab);
1381
1382        free_percpu(htab->extra_elems);
1383        bpf_map_area_free(htab->buckets);
1384        for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1385                free_percpu(htab->map_locked[i]);
1386        lockdep_unregister_key(&htab->lockdep_key);
1387        kfree(htab);
1388}
1389
1390static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1391                                   struct seq_file *m)
1392{
1393        void *value;
1394
1395        rcu_read_lock();
1396
1397        value = htab_map_lookup_elem(map, key);
1398        if (!value) {
1399                rcu_read_unlock();
1400                return;
1401        }
1402
1403        btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1404        seq_puts(m, ": ");
1405        btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1406        seq_puts(m, "\n");
1407
1408        rcu_read_unlock();
1409}
1410
1411static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1412                                             void *value, bool is_lru_map,
1413                                             bool is_percpu, u64 flags)
1414{
1415        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1416        struct hlist_nulls_head *head;
1417        unsigned long bflags;
1418        struct htab_elem *l;
1419        u32 hash, key_size;
1420        struct bucket *b;
1421        int ret;
1422
1423        key_size = map->key_size;
1424
1425        hash = htab_map_hash(key, key_size, htab->hashrnd);
1426        b = __select_bucket(htab, hash);
1427        head = &b->head;
1428
1429        ret = htab_lock_bucket(htab, b, hash, &bflags);
1430        if (ret)
1431                return ret;
1432
1433        l = lookup_elem_raw(head, hash, key, key_size);
1434        if (!l) {
1435                ret = -ENOENT;
1436        } else {
1437                if (is_percpu) {
1438                        u32 roundup_value_size = round_up(map->value_size, 8);
1439                        void __percpu *pptr;
1440                        int off = 0, cpu;
1441
1442                        pptr = htab_elem_get_ptr(l, key_size);
1443                        for_each_possible_cpu(cpu) {
1444                                bpf_long_memcpy(value + off,
1445                                                per_cpu_ptr(pptr, cpu),
1446                                                roundup_value_size);
1447                                off += roundup_value_size;
1448                        }
1449                } else {
1450                        u32 roundup_key_size = round_up(map->key_size, 8);
1451
1452                        if (flags & BPF_F_LOCK)
1453                                copy_map_value_locked(map, value, l->key +
1454                                                      roundup_key_size,
1455                                                      true);
1456                        else
1457                                copy_map_value(map, value, l->key +
1458                                               roundup_key_size);
1459                        check_and_init_map_lock(map, value);
1460                }
1461
1462                hlist_nulls_del_rcu(&l->hash_node);
1463                if (!is_lru_map)
1464                        free_htab_elem(htab, l);
1465        }
1466
1467        htab_unlock_bucket(htab, b, hash, bflags);
1468
1469        if (is_lru_map && l)
1470                bpf_lru_push_free(&htab->lru, &l->lru_node);
1471
1472        return ret;
1473}
1474
1475static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1476                                           void *value, u64 flags)
1477{
1478        return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1479                                                 flags);
1480}
1481
1482static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1483                                                  void *key, void *value,
1484                                                  u64 flags)
1485{
1486        return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1487                                                 flags);
1488}
1489
1490static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1491                                               void *value, u64 flags)
1492{
1493        return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1494                                                 flags);
1495}
1496
1497static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1498                                                      void *key, void *value,
1499                                                      u64 flags)
1500{
1501        return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1502                                                 flags);
1503}
1504
1505static int
1506__htab_map_lookup_and_delete_batch(struct bpf_map *map,
1507                                   const union bpf_attr *attr,
1508                                   union bpf_attr __user *uattr,
1509                                   bool do_delete, bool is_lru_map,
1510                                   bool is_percpu)
1511{
1512        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1513        u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1514        void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1515        void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1516        void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1517        void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1518        u32 batch, max_count, size, bucket_size;
1519        struct htab_elem *node_to_free = NULL;
1520        u64 elem_map_flags, map_flags;
1521        struct hlist_nulls_head *head;
1522        struct hlist_nulls_node *n;
1523        unsigned long flags = 0;
1524        bool locked = false;
1525        struct htab_elem *l;
1526        struct bucket *b;
1527        int ret = 0;
1528
1529        elem_map_flags = attr->batch.elem_flags;
1530        if ((elem_map_flags & ~BPF_F_LOCK) ||
1531            ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1532                return -EINVAL;
1533
1534        map_flags = attr->batch.flags;
1535        if (map_flags)
1536                return -EINVAL;
1537
1538        max_count = attr->batch.count;
1539        if (!max_count)
1540                return 0;
1541
1542        if (put_user(0, &uattr->batch.count))
1543                return -EFAULT;
1544
1545        batch = 0;
1546        if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1547                return -EFAULT;
1548
1549        if (batch >= htab->n_buckets)
1550                return -ENOENT;
1551
1552        key_size = htab->map.key_size;
1553        roundup_key_size = round_up(htab->map.key_size, 8);
1554        value_size = htab->map.value_size;
1555        size = round_up(value_size, 8);
1556        if (is_percpu)
1557                value_size = size * num_possible_cpus();
1558        total = 0;
1559        /* while experimenting with hash tables with sizes ranging from 10 to
1560         * 1000, it was observed that a bucket can have upto 5 entries.
1561         */
1562        bucket_size = 5;
1563
1564alloc:
1565        /* We cannot do copy_from_user or copy_to_user inside
1566         * the rcu_read_lock. Allocate enough space here.
1567         */
1568        keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1569        values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1570        if (!keys || !values) {
1571                ret = -ENOMEM;
1572                goto after_loop;
1573        }
1574
1575again:
1576        bpf_disable_instrumentation();
1577        rcu_read_lock();
1578again_nocopy:
1579        dst_key = keys;
1580        dst_val = values;
1581        b = &htab->buckets[batch];
1582        head = &b->head;
1583        /* do not grab the lock unless need it (bucket_cnt > 0). */
1584        if (locked) {
1585                ret = htab_lock_bucket(htab, b, batch, &flags);
1586                if (ret)
1587                        goto next_batch;
1588        }
1589
1590        bucket_cnt = 0;
1591        hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1592                bucket_cnt++;
1593
1594        if (bucket_cnt && !locked) {
1595                locked = true;
1596                goto again_nocopy;
1597        }
1598
1599        if (bucket_cnt > (max_count - total)) {
1600                if (total == 0)
1601                        ret = -ENOSPC;
1602                /* Note that since bucket_cnt > 0 here, it is implicit
1603                 * that the locked was grabbed, so release it.
1604                 */
1605                htab_unlock_bucket(htab, b, batch, flags);
1606                rcu_read_unlock();
1607                bpf_enable_instrumentation();
1608                goto after_loop;
1609        }
1610
1611        if (bucket_cnt > bucket_size) {
1612                bucket_size = bucket_cnt;
1613                /* Note that since bucket_cnt > 0 here, it is implicit
1614                 * that the locked was grabbed, so release it.
1615                 */
1616                htab_unlock_bucket(htab, b, batch, flags);
1617                rcu_read_unlock();
1618                bpf_enable_instrumentation();
1619                kvfree(keys);
1620                kvfree(values);
1621                goto alloc;
1622        }
1623
1624        /* Next block is only safe to run if you have grabbed the lock */
1625        if (!locked)
1626                goto next_batch;
1627
1628        hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1629                memcpy(dst_key, l->key, key_size);
1630
1631                if (is_percpu) {
1632                        int off = 0, cpu;
1633                        void __percpu *pptr;
1634
1635                        pptr = htab_elem_get_ptr(l, map->key_size);
1636                        for_each_possible_cpu(cpu) {
1637                                bpf_long_memcpy(dst_val + off,
1638                                                per_cpu_ptr(pptr, cpu), size);
1639                                off += size;
1640                        }
1641                } else {
1642                        value = l->key + roundup_key_size;
1643                        if (elem_map_flags & BPF_F_LOCK)
1644                                copy_map_value_locked(map, dst_val, value,
1645                                                      true);
1646                        else
1647                                copy_map_value(map, dst_val, value);
1648                        check_and_init_map_lock(map, dst_val);
1649                }
1650                if (do_delete) {
1651                        hlist_nulls_del_rcu(&l->hash_node);
1652
1653                        /* bpf_lru_push_free() will acquire lru_lock, which
1654                         * may cause deadlock. See comments in function
1655                         * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1656                         * after releasing the bucket lock.
1657                         */
1658                        if (is_lru_map) {
1659                                l->batch_flink = node_to_free;
1660                                node_to_free = l;
1661                        } else {
1662                                free_htab_elem(htab, l);
1663                        }
1664                }
1665                dst_key += key_size;
1666                dst_val += value_size;
1667        }
1668
1669        htab_unlock_bucket(htab, b, batch, flags);
1670        locked = false;
1671
1672        while (node_to_free) {
1673                l = node_to_free;
1674                node_to_free = node_to_free->batch_flink;
1675                bpf_lru_push_free(&htab->lru, &l->lru_node);
1676        }
1677
1678next_batch:
1679        /* If we are not copying data, we can go to next bucket and avoid
1680         * unlocking the rcu.
1681         */
1682        if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1683                batch++;
1684                goto again_nocopy;
1685        }
1686
1687        rcu_read_unlock();
1688        bpf_enable_instrumentation();
1689        if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1690            key_size * bucket_cnt) ||
1691            copy_to_user(uvalues + total * value_size, values,
1692            value_size * bucket_cnt))) {
1693                ret = -EFAULT;
1694                goto after_loop;
1695        }
1696
1697        total += bucket_cnt;
1698        batch++;
1699        if (batch >= htab->n_buckets) {
1700                ret = -ENOENT;
1701                goto after_loop;
1702        }
1703        goto again;
1704
1705after_loop:
1706        if (ret == -EFAULT)
1707                goto out;
1708
1709        /* copy # of entries and next batch */
1710        ubatch = u64_to_user_ptr(attr->batch.out_batch);
1711        if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1712            put_user(total, &uattr->batch.count))
1713                ret = -EFAULT;
1714
1715out:
1716        kvfree(keys);
1717        kvfree(values);
1718        return ret;
1719}
1720
1721static int
1722htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1723                             union bpf_attr __user *uattr)
1724{
1725        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1726                                                  false, true);
1727}
1728
1729static int
1730htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1731                                        const union bpf_attr *attr,
1732                                        union bpf_attr __user *uattr)
1733{
1734        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1735                                                  false, true);
1736}
1737
1738static int
1739htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1740                      union bpf_attr __user *uattr)
1741{
1742        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1743                                                  false, false);
1744}
1745
1746static int
1747htab_map_lookup_and_delete_batch(struct bpf_map *map,
1748                                 const union bpf_attr *attr,
1749                                 union bpf_attr __user *uattr)
1750{
1751        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1752                                                  false, false);
1753}
1754
1755static int
1756htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1757                                 const union bpf_attr *attr,
1758                                 union bpf_attr __user *uattr)
1759{
1760        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1761                                                  true, true);
1762}
1763
1764static int
1765htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1766                                            const union bpf_attr *attr,
1767                                            union bpf_attr __user *uattr)
1768{
1769        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1770                                                  true, true);
1771}
1772
1773static int
1774htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1775                          union bpf_attr __user *uattr)
1776{
1777        return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1778                                                  true, false);
1779}
1780
1781static int
1782htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1783                                     const union bpf_attr *attr,
1784                                     union bpf_attr __user *uattr)
1785{
1786        return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1787                                                  true, false);
1788}
1789
1790struct bpf_iter_seq_hash_map_info {
1791        struct bpf_map *map;
1792        struct bpf_htab *htab;
1793        void *percpu_value_buf; // non-zero means percpu hash
1794        u32 bucket_id;
1795        u32 skip_elems;
1796};
1797
1798static struct htab_elem *
1799bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1800                           struct htab_elem *prev_elem)
1801{
1802        const struct bpf_htab *htab = info->htab;
1803        u32 skip_elems = info->skip_elems;
1804        u32 bucket_id = info->bucket_id;
1805        struct hlist_nulls_head *head;
1806        struct hlist_nulls_node *n;
1807        struct htab_elem *elem;
1808        struct bucket *b;
1809        u32 i, count;
1810
1811        if (bucket_id >= htab->n_buckets)
1812                return NULL;
1813
1814        /* try to find next elem in the same bucket */
1815        if (prev_elem) {
1816                /* no update/deletion on this bucket, prev_elem should be still valid
1817                 * and we won't skip elements.
1818                 */
1819                n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1820                elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1821                if (elem)
1822                        return elem;
1823
1824                /* not found, unlock and go to the next bucket */
1825                b = &htab->buckets[bucket_id++];
1826                rcu_read_unlock();
1827                skip_elems = 0;
1828        }
1829
1830        for (i = bucket_id; i < htab->n_buckets; i++) {
1831                b = &htab->buckets[i];
1832                rcu_read_lock();
1833
1834                count = 0;
1835                head = &b->head;
1836                hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1837                        if (count >= skip_elems) {
1838                                info->bucket_id = i;
1839                                info->skip_elems = count;
1840                                return elem;
1841                        }
1842                        count++;
1843                }
1844
1845                rcu_read_unlock();
1846                skip_elems = 0;
1847        }
1848
1849        info->bucket_id = i;
1850        info->skip_elems = 0;
1851        return NULL;
1852}
1853
1854static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1855{
1856        struct bpf_iter_seq_hash_map_info *info = seq->private;
1857        struct htab_elem *elem;
1858
1859        elem = bpf_hash_map_seq_find_next(info, NULL);
1860        if (!elem)
1861                return NULL;
1862
1863        if (*pos == 0)
1864                ++*pos;
1865        return elem;
1866}
1867
1868static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869{
1870        struct bpf_iter_seq_hash_map_info *info = seq->private;
1871
1872        ++*pos;
1873        ++info->skip_elems;
1874        return bpf_hash_map_seq_find_next(info, v);
1875}
1876
1877static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1878{
1879        struct bpf_iter_seq_hash_map_info *info = seq->private;
1880        u32 roundup_key_size, roundup_value_size;
1881        struct bpf_iter__bpf_map_elem ctx = {};
1882        struct bpf_map *map = info->map;
1883        struct bpf_iter_meta meta;
1884        int ret = 0, off = 0, cpu;
1885        struct bpf_prog *prog;
1886        void __percpu *pptr;
1887
1888        meta.seq = seq;
1889        prog = bpf_iter_get_info(&meta, elem == NULL);
1890        if (prog) {
1891                ctx.meta = &meta;
1892                ctx.map = info->map;
1893                if (elem) {
1894                        roundup_key_size = round_up(map->key_size, 8);
1895                        ctx.key = elem->key;
1896                        if (!info->percpu_value_buf) {
1897                                ctx.value = elem->key + roundup_key_size;
1898                        } else {
1899                                roundup_value_size = round_up(map->value_size, 8);
1900                                pptr = htab_elem_get_ptr(elem, map->key_size);
1901                                for_each_possible_cpu(cpu) {
1902                                        bpf_long_memcpy(info->percpu_value_buf + off,
1903                                                        per_cpu_ptr(pptr, cpu),
1904                                                        roundup_value_size);
1905                                        off += roundup_value_size;
1906                                }
1907                                ctx.value = info->percpu_value_buf;
1908                        }
1909                }
1910                ret = bpf_iter_run_prog(prog, &ctx);
1911        }
1912
1913        return ret;
1914}
1915
1916static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1917{
1918        return __bpf_hash_map_seq_show(seq, v);
1919}
1920
1921static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1922{
1923        if (!v)
1924                (void)__bpf_hash_map_seq_show(seq, NULL);
1925        else
1926                rcu_read_unlock();
1927}
1928
1929static int bpf_iter_init_hash_map(void *priv_data,
1930                                  struct bpf_iter_aux_info *aux)
1931{
1932        struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1933        struct bpf_map *map = aux->map;
1934        void *value_buf;
1935        u32 buf_size;
1936
1937        if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1938            map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1939                buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1940                value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1941                if (!value_buf)
1942                        return -ENOMEM;
1943
1944                seq_info->percpu_value_buf = value_buf;
1945        }
1946
1947        seq_info->map = map;
1948        seq_info->htab = container_of(map, struct bpf_htab, map);
1949        return 0;
1950}
1951
1952static void bpf_iter_fini_hash_map(void *priv_data)
1953{
1954        struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1955
1956        kfree(seq_info->percpu_value_buf);
1957}
1958
1959static const struct seq_operations bpf_hash_map_seq_ops = {
1960        .start  = bpf_hash_map_seq_start,
1961        .next   = bpf_hash_map_seq_next,
1962        .stop   = bpf_hash_map_seq_stop,
1963        .show   = bpf_hash_map_seq_show,
1964};
1965
1966static const struct bpf_iter_seq_info iter_seq_info = {
1967        .seq_ops                = &bpf_hash_map_seq_ops,
1968        .init_seq_private       = bpf_iter_init_hash_map,
1969        .fini_seq_private       = bpf_iter_fini_hash_map,
1970        .seq_priv_size          = sizeof(struct bpf_iter_seq_hash_map_info),
1971};
1972
1973static int bpf_for_each_hash_elem(struct bpf_map *map, void *callback_fn,
1974                                  void *callback_ctx, u64 flags)
1975{
1976        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1977        struct hlist_nulls_head *head;
1978        struct hlist_nulls_node *n;
1979        struct htab_elem *elem;
1980        u32 roundup_key_size;
1981        int i, num_elems = 0;
1982        void __percpu *pptr;
1983        struct bucket *b;
1984        void *key, *val;
1985        bool is_percpu;
1986        u64 ret = 0;
1987
1988        if (flags != 0)
1989                return -EINVAL;
1990
1991        is_percpu = htab_is_percpu(htab);
1992
1993        roundup_key_size = round_up(map->key_size, 8);
1994        /* disable migration so percpu value prepared here will be the
1995         * same as the one seen by the bpf program with bpf_map_lookup_elem().
1996         */
1997        if (is_percpu)
1998                migrate_disable();
1999        for (i = 0; i < htab->n_buckets; i++) {
2000                b = &htab->buckets[i];
2001                rcu_read_lock();
2002                head = &b->head;
2003                hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2004                        key = elem->key;
2005                        if (is_percpu) {
2006                                /* current cpu value for percpu map */
2007                                pptr = htab_elem_get_ptr(elem, map->key_size);
2008                                val = this_cpu_ptr(pptr);
2009                        } else {
2010                                val = elem->key + roundup_key_size;
2011                        }
2012                        num_elems++;
2013                        ret = BPF_CAST_CALL(callback_fn)((u64)(long)map,
2014                                        (u64)(long)key, (u64)(long)val,
2015                                        (u64)(long)callback_ctx, 0);
2016                        /* return value: 0 - continue, 1 - stop and return */
2017                        if (ret) {
2018                                rcu_read_unlock();
2019                                goto out;
2020                        }
2021                }
2022                rcu_read_unlock();
2023        }
2024out:
2025        if (is_percpu)
2026                migrate_enable();
2027        return num_elems;
2028}
2029
2030static int htab_map_btf_id;
2031const struct bpf_map_ops htab_map_ops = {
2032        .map_meta_equal = bpf_map_meta_equal,
2033        .map_alloc_check = htab_map_alloc_check,
2034        .map_alloc = htab_map_alloc,
2035        .map_free = htab_map_free,
2036        .map_get_next_key = htab_map_get_next_key,
2037        .map_lookup_elem = htab_map_lookup_elem,
2038        .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2039        .map_update_elem = htab_map_update_elem,
2040        .map_delete_elem = htab_map_delete_elem,
2041        .map_gen_lookup = htab_map_gen_lookup,
2042        .map_seq_show_elem = htab_map_seq_show_elem,
2043        .map_set_for_each_callback_args = map_set_for_each_callback_args,
2044        .map_for_each_callback = bpf_for_each_hash_elem,
2045        BATCH_OPS(htab),
2046        .map_btf_name = "bpf_htab",
2047        .map_btf_id = &htab_map_btf_id,
2048        .iter_seq_info = &iter_seq_info,
2049};
2050
2051static int htab_lru_map_btf_id;
2052const struct bpf_map_ops htab_lru_map_ops = {
2053        .map_meta_equal = bpf_map_meta_equal,
2054        .map_alloc_check = htab_map_alloc_check,
2055        .map_alloc = htab_map_alloc,
2056        .map_free = htab_map_free,
2057        .map_get_next_key = htab_map_get_next_key,
2058        .map_lookup_elem = htab_lru_map_lookup_elem,
2059        .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2060        .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2061        .map_update_elem = htab_lru_map_update_elem,
2062        .map_delete_elem = htab_lru_map_delete_elem,
2063        .map_gen_lookup = htab_lru_map_gen_lookup,
2064        .map_seq_show_elem = htab_map_seq_show_elem,
2065        .map_set_for_each_callback_args = map_set_for_each_callback_args,
2066        .map_for_each_callback = bpf_for_each_hash_elem,
2067        BATCH_OPS(htab_lru),
2068        .map_btf_name = "bpf_htab",
2069        .map_btf_id = &htab_lru_map_btf_id,
2070        .iter_seq_info = &iter_seq_info,
2071};
2072
2073/* Called from eBPF program */
2074static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2075{
2076        struct htab_elem *l = __htab_map_lookup_elem(map, key);
2077
2078        if (l)
2079                return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2080        else
2081                return NULL;
2082}
2083
2084static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2085{
2086        struct htab_elem *l = __htab_map_lookup_elem(map, key);
2087
2088        if (l) {
2089                bpf_lru_node_set_ref(&l->lru_node);
2090                return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2091        }
2092
2093        return NULL;
2094}
2095
2096int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2097{
2098        struct htab_elem *l;
2099        void __percpu *pptr;
2100        int ret = -ENOENT;
2101        int cpu, off = 0;
2102        u32 size;
2103
2104        /* per_cpu areas are zero-filled and bpf programs can only
2105         * access 'value_size' of them, so copying rounded areas
2106         * will not leak any kernel data
2107         */
2108        size = round_up(map->value_size, 8);
2109        rcu_read_lock();
2110        l = __htab_map_lookup_elem(map, key);
2111        if (!l)
2112                goto out;
2113        /* We do not mark LRU map element here in order to not mess up
2114         * eviction heuristics when user space does a map walk.
2115         */
2116        pptr = htab_elem_get_ptr(l, map->key_size);
2117        for_each_possible_cpu(cpu) {
2118                bpf_long_memcpy(value + off,
2119                                per_cpu_ptr(pptr, cpu), size);
2120                off += size;
2121        }
2122        ret = 0;
2123out:
2124        rcu_read_unlock();
2125        return ret;
2126}
2127
2128int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2129                           u64 map_flags)
2130{
2131        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2132        int ret;
2133
2134        rcu_read_lock();
2135        if (htab_is_lru(htab))
2136                ret = __htab_lru_percpu_map_update_elem(map, key, value,
2137                                                        map_flags, true);
2138        else
2139                ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2140                                                    true);
2141        rcu_read_unlock();
2142
2143        return ret;
2144}
2145
2146static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2147                                          struct seq_file *m)
2148{
2149        struct htab_elem *l;
2150        void __percpu *pptr;
2151        int cpu;
2152
2153        rcu_read_lock();
2154
2155        l = __htab_map_lookup_elem(map, key);
2156        if (!l) {
2157                rcu_read_unlock();
2158                return;
2159        }
2160
2161        btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2162        seq_puts(m, ": {\n");
2163        pptr = htab_elem_get_ptr(l, map->key_size);
2164        for_each_possible_cpu(cpu) {
2165                seq_printf(m, "\tcpu%d: ", cpu);
2166                btf_type_seq_show(map->btf, map->btf_value_type_id,
2167                                  per_cpu_ptr(pptr, cpu), m);
2168                seq_puts(m, "\n");
2169        }
2170        seq_puts(m, "}\n");
2171
2172        rcu_read_unlock();
2173}
2174
2175static int htab_percpu_map_btf_id;
2176const struct bpf_map_ops htab_percpu_map_ops = {
2177        .map_meta_equal = bpf_map_meta_equal,
2178        .map_alloc_check = htab_map_alloc_check,
2179        .map_alloc = htab_map_alloc,
2180        .map_free = htab_map_free,
2181        .map_get_next_key = htab_map_get_next_key,
2182        .map_lookup_elem = htab_percpu_map_lookup_elem,
2183        .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2184        .map_update_elem = htab_percpu_map_update_elem,
2185        .map_delete_elem = htab_map_delete_elem,
2186        .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2187        .map_set_for_each_callback_args = map_set_for_each_callback_args,
2188        .map_for_each_callback = bpf_for_each_hash_elem,
2189        BATCH_OPS(htab_percpu),
2190        .map_btf_name = "bpf_htab",
2191        .map_btf_id = &htab_percpu_map_btf_id,
2192        .iter_seq_info = &iter_seq_info,
2193};
2194
2195static int htab_lru_percpu_map_btf_id;
2196const struct bpf_map_ops htab_lru_percpu_map_ops = {
2197        .map_meta_equal = bpf_map_meta_equal,
2198        .map_alloc_check = htab_map_alloc_check,
2199        .map_alloc = htab_map_alloc,
2200        .map_free = htab_map_free,
2201        .map_get_next_key = htab_map_get_next_key,
2202        .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2203        .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2204        .map_update_elem = htab_lru_percpu_map_update_elem,
2205        .map_delete_elem = htab_lru_map_delete_elem,
2206        .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2207        .map_set_for_each_callback_args = map_set_for_each_callback_args,
2208        .map_for_each_callback = bpf_for_each_hash_elem,
2209        BATCH_OPS(htab_lru_percpu),
2210        .map_btf_name = "bpf_htab",
2211        .map_btf_id = &htab_lru_percpu_map_btf_id,
2212        .iter_seq_info = &iter_seq_info,
2213};
2214
2215static int fd_htab_map_alloc_check(union bpf_attr *attr)
2216{
2217        if (attr->value_size != sizeof(u32))
2218                return -EINVAL;
2219        return htab_map_alloc_check(attr);
2220}
2221
2222static void fd_htab_map_free(struct bpf_map *map)
2223{
2224        struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2225        struct hlist_nulls_node *n;
2226        struct hlist_nulls_head *head;
2227        struct htab_elem *l;
2228        int i;
2229
2230        for (i = 0; i < htab->n_buckets; i++) {
2231                head = select_bucket(htab, i);
2232
2233                hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2234                        void *ptr = fd_htab_map_get_ptr(map, l);
2235
2236                        map->ops->map_fd_put_ptr(ptr);
2237                }
2238        }
2239
2240        htab_map_free(map);
2241}
2242
2243/* only called from syscall */
2244int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2245{
2246        void **ptr;
2247        int ret = 0;
2248
2249        if (!map->ops->map_fd_sys_lookup_elem)
2250                return -ENOTSUPP;
2251
2252        rcu_read_lock();
2253        ptr = htab_map_lookup_elem(map, key);
2254        if (ptr)
2255                *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2256        else
2257                ret = -ENOENT;
2258        rcu_read_unlock();
2259
2260        return ret;
2261}
2262
2263/* only called from syscall */
2264int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2265                                void *key, void *value, u64 map_flags)
2266{
2267        void *ptr;
2268        int ret;
2269        u32 ufd = *(u32 *)value;
2270
2271        ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2272        if (IS_ERR(ptr))
2273                return PTR_ERR(ptr);
2274
2275        ret = htab_map_update_elem(map, key, &ptr, map_flags);
2276        if (ret)
2277                map->ops->map_fd_put_ptr(ptr);
2278
2279        return ret;
2280}
2281
2282static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2283{
2284        struct bpf_map *map, *inner_map_meta;
2285
2286        inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2287        if (IS_ERR(inner_map_meta))
2288                return inner_map_meta;
2289
2290        map = htab_map_alloc(attr);
2291        if (IS_ERR(map)) {
2292                bpf_map_meta_free(inner_map_meta);
2293                return map;
2294        }
2295
2296        map->inner_map_meta = inner_map_meta;
2297
2298        return map;
2299}
2300
2301static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2302{
2303        struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2304
2305        if (!inner_map)
2306                return NULL;
2307
2308        return READ_ONCE(*inner_map);
2309}
2310
2311static int htab_of_map_gen_lookup(struct bpf_map *map,
2312                                  struct bpf_insn *insn_buf)
2313{
2314        struct bpf_insn *insn = insn_buf;
2315        const int ret = BPF_REG_0;
2316
2317        BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2318                     (void *(*)(struct bpf_map *map, void *key))NULL));
2319        *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2320        *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2321        *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2322                                offsetof(struct htab_elem, key) +
2323                                round_up(map->key_size, 8));
2324        *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2325
2326        return insn - insn_buf;
2327}
2328
2329static void htab_of_map_free(struct bpf_map *map)
2330{
2331        bpf_map_meta_free(map->inner_map_meta);
2332        fd_htab_map_free(map);
2333}
2334
2335static int htab_of_maps_map_btf_id;
2336const struct bpf_map_ops htab_of_maps_map_ops = {
2337        .map_alloc_check = fd_htab_map_alloc_check,
2338        .map_alloc = htab_of_map_alloc,
2339        .map_free = htab_of_map_free,
2340        .map_get_next_key = htab_map_get_next_key,
2341        .map_lookup_elem = htab_of_map_lookup_elem,
2342        .map_delete_elem = htab_map_delete_elem,
2343        .map_fd_get_ptr = bpf_map_fd_get_ptr,
2344        .map_fd_put_ptr = bpf_map_fd_put_ptr,
2345        .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2346        .map_gen_lookup = htab_of_map_gen_lookup,
2347        .map_check_btf = map_check_no_btf,
2348        .map_btf_name = "bpf_htab",
2349        .map_btf_id = &htab_of_maps_map_btf_id,
2350};
2351