linux/kernel/bpf/lpm_trie.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Longest prefix match list implementation
   4 *
   5 * Copyright (c) 2016,2017 Daniel Mack
   6 * Copyright (c) 2016 David Herrmann
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/btf.h>
  11#include <linux/err.h>
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/vmalloc.h>
  15#include <net/ipv6.h>
  16#include <uapi/linux/btf.h>
  17
  18/* Intermediate node */
  19#define LPM_TREE_NODE_FLAG_IM BIT(0)
  20
  21struct lpm_trie_node;
  22
  23struct lpm_trie_node {
  24        struct rcu_head rcu;
  25        struct lpm_trie_node __rcu      *child[2];
  26        u32                             prefixlen;
  27        u32                             flags;
  28        u8                              data[];
  29};
  30
  31struct lpm_trie {
  32        struct bpf_map                  map;
  33        struct lpm_trie_node __rcu      *root;
  34        size_t                          n_entries;
  35        size_t                          max_prefixlen;
  36        size_t                          data_size;
  37        spinlock_t                      lock;
  38};
  39
  40/* This trie implements a longest prefix match algorithm that can be used to
  41 * match IP addresses to a stored set of ranges.
  42 *
  43 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
  44 * interpreted as big endian, so data[0] stores the most significant byte.
  45 *
  46 * Match ranges are internally stored in instances of struct lpm_trie_node
  47 * which each contain their prefix length as well as two pointers that may
  48 * lead to more nodes containing more specific matches. Each node also stores
  49 * a value that is defined by and returned to userspace via the update_elem
  50 * and lookup functions.
  51 *
  52 * For instance, let's start with a trie that was created with a prefix length
  53 * of 32, so it can be used for IPv4 addresses, and one single element that
  54 * matches 192.168.0.0/16. The data array would hence contain
  55 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
  56 * stick to IP-address notation for readability though.
  57 *
  58 * As the trie is empty initially, the new node (1) will be places as root
  59 * node, denoted as (R) in the example below. As there are no other node, both
  60 * child pointers are %NULL.
  61 *
  62 *              +----------------+
  63 *              |       (1)  (R) |
  64 *              | 192.168.0.0/16 |
  65 *              |    value: 1    |
  66 *              |   [0]    [1]   |
  67 *              +----------------+
  68 *
  69 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
  70 * a node with the same data and a smaller prefix (ie, a less specific one),
  71 * node (2) will become a child of (1). In child index depends on the next bit
  72 * that is outside of what (1) matches, and that bit is 0, so (2) will be
  73 * child[0] of (1):
  74 *
  75 *              +----------------+
  76 *              |       (1)  (R) |
  77 *              | 192.168.0.0/16 |
  78 *              |    value: 1    |
  79 *              |   [0]    [1]   |
  80 *              +----------------+
  81 *                   |
  82 *    +----------------+
  83 *    |       (2)      |
  84 *    | 192.168.0.0/24 |
  85 *    |    value: 2    |
  86 *    |   [0]    [1]   |
  87 *    +----------------+
  88 *
  89 * The child[1] slot of (1) could be filled with another node which has bit #17
  90 * (the next bit after the ones that (1) matches on) set to 1. For instance,
  91 * 192.168.128.0/24:
  92 *
  93 *              +----------------+
  94 *              |       (1)  (R) |
  95 *              | 192.168.0.0/16 |
  96 *              |    value: 1    |
  97 *              |   [0]    [1]   |
  98 *              +----------------+
  99 *                   |      |
 100 *    +----------------+  +------------------+
 101 *    |       (2)      |  |        (3)       |
 102 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 103 *    |    value: 2    |  |     value: 3     |
 104 *    |   [0]    [1]   |  |    [0]    [1]    |
 105 *    +----------------+  +------------------+
 106 *
 107 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 108 * it, node (1) is looked at first, and because (4) of the semantics laid out
 109 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 110 * However, that slot is already allocated, so a new node is needed in between.
 111 * That node does not have a value attached to it and it will never be
 112 * returned to users as result of a lookup. It is only there to differentiate
 113 * the traversal further. It will get a prefix as wide as necessary to
 114 * distinguish its two children:
 115 *
 116 *                      +----------------+
 117 *                      |       (1)  (R) |
 118 *                      | 192.168.0.0/16 |
 119 *                      |    value: 1    |
 120 *                      |   [0]    [1]   |
 121 *                      +----------------+
 122 *                           |      |
 123 *            +----------------+  +------------------+
 124 *            |       (4)  (I) |  |        (3)       |
 125 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 126 *            |    value: ---  |  |     value: 3     |
 127 *            |   [0]    [1]   |  |    [0]    [1]    |
 128 *            +----------------+  +------------------+
 129 *                 |      |
 130 *  +----------------+  +----------------+
 131 *  |       (2)      |  |       (5)      |
 132 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 133 *  |    value: 2    |  |     value: 5   |
 134 *  |   [0]    [1]   |  |   [0]    [1]   |
 135 *  +----------------+  +----------------+
 136 *
 137 * 192.168.1.1/32 would be a child of (5) etc.
 138 *
 139 * An intermediate node will be turned into a 'real' node on demand. In the
 140 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 141 *
 142 * A fully populated trie would have a height of 32 nodes, as the trie was
 143 * created with a prefix length of 32.
 144 *
 145 * The lookup starts at the root node. If the current node matches and if there
 146 * is a child that can be used to become more specific, the trie is traversed
 147 * downwards. The last node in the traversal that is a non-intermediate one is
 148 * returned.
 149 */
 150
 151static inline int extract_bit(const u8 *data, size_t index)
 152{
 153        return !!(data[index / 8] & (1 << (7 - (index % 8))));
 154}
 155
 156/**
 157 * longest_prefix_match() - determine the longest prefix
 158 * @trie:       The trie to get internal sizes from
 159 * @node:       The node to operate on
 160 * @key:        The key to compare to @node
 161 *
 162 * Determine the longest prefix of @node that matches the bits in @key.
 163 */
 164static size_t longest_prefix_match(const struct lpm_trie *trie,
 165                                   const struct lpm_trie_node *node,
 166                                   const struct bpf_lpm_trie_key *key)
 167{
 168        u32 limit = min(node->prefixlen, key->prefixlen);
 169        u32 prefixlen = 0, i = 0;
 170
 171        BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
 172        BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
 173
 174#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
 175
 176        /* data_size >= 16 has very small probability.
 177         * We do not use a loop for optimal code generation.
 178         */
 179        if (trie->data_size >= 8) {
 180                u64 diff = be64_to_cpu(*(__be64 *)node->data ^
 181                                       *(__be64 *)key->data);
 182
 183                prefixlen = 64 - fls64(diff);
 184                if (prefixlen >= limit)
 185                        return limit;
 186                if (diff)
 187                        return prefixlen;
 188                i = 8;
 189        }
 190#endif
 191
 192        while (trie->data_size >= i + 4) {
 193                u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
 194                                       *(__be32 *)&key->data[i]);
 195
 196                prefixlen += 32 - fls(diff);
 197                if (prefixlen >= limit)
 198                        return limit;
 199                if (diff)
 200                        return prefixlen;
 201                i += 4;
 202        }
 203
 204        if (trie->data_size >= i + 2) {
 205                u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
 206                                       *(__be16 *)&key->data[i]);
 207
 208                prefixlen += 16 - fls(diff);
 209                if (prefixlen >= limit)
 210                        return limit;
 211                if (diff)
 212                        return prefixlen;
 213                i += 2;
 214        }
 215
 216        if (trie->data_size >= i + 1) {
 217                prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
 218
 219                if (prefixlen >= limit)
 220                        return limit;
 221        }
 222
 223        return prefixlen;
 224}
 225
 226/* Called from syscall or from eBPF program */
 227static void *trie_lookup_elem(struct bpf_map *map, void *_key)
 228{
 229        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 230        struct lpm_trie_node *node, *found = NULL;
 231        struct bpf_lpm_trie_key *key = _key;
 232
 233        /* Start walking the trie from the root node ... */
 234
 235        for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
 236             node;) {
 237                unsigned int next_bit;
 238                size_t matchlen;
 239
 240                /* Determine the longest prefix of @node that matches @key.
 241                 * If it's the maximum possible prefix for this trie, we have
 242                 * an exact match and can return it directly.
 243                 */
 244                matchlen = longest_prefix_match(trie, node, key);
 245                if (matchlen == trie->max_prefixlen) {
 246                        found = node;
 247                        break;
 248                }
 249
 250                /* If the number of bits that match is smaller than the prefix
 251                 * length of @node, bail out and return the node we have seen
 252                 * last in the traversal (ie, the parent).
 253                 */
 254                if (matchlen < node->prefixlen)
 255                        break;
 256
 257                /* Consider this node as return candidate unless it is an
 258                 * artificially added intermediate one.
 259                 */
 260                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 261                        found = node;
 262
 263                /* If the node match is fully satisfied, let's see if we can
 264                 * become more specific. Determine the next bit in the key and
 265                 * traverse down.
 266                 */
 267                next_bit = extract_bit(key->data, node->prefixlen);
 268                node = rcu_dereference_check(node->child[next_bit],
 269                                             rcu_read_lock_bh_held());
 270        }
 271
 272        if (!found)
 273                return NULL;
 274
 275        return found->data + trie->data_size;
 276}
 277
 278static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
 279                                                 const void *value)
 280{
 281        struct lpm_trie_node *node;
 282        size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
 283
 284        if (value)
 285                size += trie->map.value_size;
 286
 287        node = bpf_map_kmalloc_node(&trie->map, size, GFP_ATOMIC | __GFP_NOWARN,
 288                                    trie->map.numa_node);
 289        if (!node)
 290                return NULL;
 291
 292        node->flags = 0;
 293
 294        if (value)
 295                memcpy(node->data + trie->data_size, value,
 296                       trie->map.value_size);
 297
 298        return node;
 299}
 300
 301/* Called from syscall or from eBPF program */
 302static int trie_update_elem(struct bpf_map *map,
 303                            void *_key, void *value, u64 flags)
 304{
 305        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 306        struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
 307        struct lpm_trie_node __rcu **slot;
 308        struct bpf_lpm_trie_key *key = _key;
 309        unsigned long irq_flags;
 310        unsigned int next_bit;
 311        size_t matchlen = 0;
 312        int ret = 0;
 313
 314        if (unlikely(flags > BPF_EXIST))
 315                return -EINVAL;
 316
 317        if (key->prefixlen > trie->max_prefixlen)
 318                return -EINVAL;
 319
 320        spin_lock_irqsave(&trie->lock, irq_flags);
 321
 322        /* Allocate and fill a new node */
 323
 324        if (trie->n_entries == trie->map.max_entries) {
 325                ret = -ENOSPC;
 326                goto out;
 327        }
 328
 329        new_node = lpm_trie_node_alloc(trie, value);
 330        if (!new_node) {
 331                ret = -ENOMEM;
 332                goto out;
 333        }
 334
 335        trie->n_entries++;
 336
 337        new_node->prefixlen = key->prefixlen;
 338        RCU_INIT_POINTER(new_node->child[0], NULL);
 339        RCU_INIT_POINTER(new_node->child[1], NULL);
 340        memcpy(new_node->data, key->data, trie->data_size);
 341
 342        /* Now find a slot to attach the new node. To do that, walk the tree
 343         * from the root and match as many bits as possible for each node until
 344         * we either find an empty slot or a slot that needs to be replaced by
 345         * an intermediate node.
 346         */
 347        slot = &trie->root;
 348
 349        while ((node = rcu_dereference_protected(*slot,
 350                                        lockdep_is_held(&trie->lock)))) {
 351                matchlen = longest_prefix_match(trie, node, key);
 352
 353                if (node->prefixlen != matchlen ||
 354                    node->prefixlen == key->prefixlen ||
 355                    node->prefixlen == trie->max_prefixlen)
 356                        break;
 357
 358                next_bit = extract_bit(key->data, node->prefixlen);
 359                slot = &node->child[next_bit];
 360        }
 361
 362        /* If the slot is empty (a free child pointer or an empty root),
 363         * simply assign the @new_node to that slot and be done.
 364         */
 365        if (!node) {
 366                rcu_assign_pointer(*slot, new_node);
 367                goto out;
 368        }
 369
 370        /* If the slot we picked already exists, replace it with @new_node
 371         * which already has the correct data array set.
 372         */
 373        if (node->prefixlen == matchlen) {
 374                new_node->child[0] = node->child[0];
 375                new_node->child[1] = node->child[1];
 376
 377                if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
 378                        trie->n_entries--;
 379
 380                rcu_assign_pointer(*slot, new_node);
 381                kfree_rcu(node, rcu);
 382
 383                goto out;
 384        }
 385
 386        /* If the new node matches the prefix completely, it must be inserted
 387         * as an ancestor. Simply insert it between @node and *@slot.
 388         */
 389        if (matchlen == key->prefixlen) {
 390                next_bit = extract_bit(node->data, matchlen);
 391                rcu_assign_pointer(new_node->child[next_bit], node);
 392                rcu_assign_pointer(*slot, new_node);
 393                goto out;
 394        }
 395
 396        im_node = lpm_trie_node_alloc(trie, NULL);
 397        if (!im_node) {
 398                ret = -ENOMEM;
 399                goto out;
 400        }
 401
 402        im_node->prefixlen = matchlen;
 403        im_node->flags |= LPM_TREE_NODE_FLAG_IM;
 404        memcpy(im_node->data, node->data, trie->data_size);
 405
 406        /* Now determine which child to install in which slot */
 407        if (extract_bit(key->data, matchlen)) {
 408                rcu_assign_pointer(im_node->child[0], node);
 409                rcu_assign_pointer(im_node->child[1], new_node);
 410        } else {
 411                rcu_assign_pointer(im_node->child[0], new_node);
 412                rcu_assign_pointer(im_node->child[1], node);
 413        }
 414
 415        /* Finally, assign the intermediate node to the determined spot */
 416        rcu_assign_pointer(*slot, im_node);
 417
 418out:
 419        if (ret) {
 420                if (new_node)
 421                        trie->n_entries--;
 422
 423                kfree(new_node);
 424                kfree(im_node);
 425        }
 426
 427        spin_unlock_irqrestore(&trie->lock, irq_flags);
 428
 429        return ret;
 430}
 431
 432/* Called from syscall or from eBPF program */
 433static int trie_delete_elem(struct bpf_map *map, void *_key)
 434{
 435        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 436        struct bpf_lpm_trie_key *key = _key;
 437        struct lpm_trie_node __rcu **trim, **trim2;
 438        struct lpm_trie_node *node, *parent;
 439        unsigned long irq_flags;
 440        unsigned int next_bit;
 441        size_t matchlen = 0;
 442        int ret = 0;
 443
 444        if (key->prefixlen > trie->max_prefixlen)
 445                return -EINVAL;
 446
 447        spin_lock_irqsave(&trie->lock, irq_flags);
 448
 449        /* Walk the tree looking for an exact key/length match and keeping
 450         * track of the path we traverse.  We will need to know the node
 451         * we wish to delete, and the slot that points to the node we want
 452         * to delete.  We may also need to know the nodes parent and the
 453         * slot that contains it.
 454         */
 455        trim = &trie->root;
 456        trim2 = trim;
 457        parent = NULL;
 458        while ((node = rcu_dereference_protected(
 459                       *trim, lockdep_is_held(&trie->lock)))) {
 460                matchlen = longest_prefix_match(trie, node, key);
 461
 462                if (node->prefixlen != matchlen ||
 463                    node->prefixlen == key->prefixlen)
 464                        break;
 465
 466                parent = node;
 467                trim2 = trim;
 468                next_bit = extract_bit(key->data, node->prefixlen);
 469                trim = &node->child[next_bit];
 470        }
 471
 472        if (!node || node->prefixlen != key->prefixlen ||
 473            node->prefixlen != matchlen ||
 474            (node->flags & LPM_TREE_NODE_FLAG_IM)) {
 475                ret = -ENOENT;
 476                goto out;
 477        }
 478
 479        trie->n_entries--;
 480
 481        /* If the node we are removing has two children, simply mark it
 482         * as intermediate and we are done.
 483         */
 484        if (rcu_access_pointer(node->child[0]) &&
 485            rcu_access_pointer(node->child[1])) {
 486                node->flags |= LPM_TREE_NODE_FLAG_IM;
 487                goto out;
 488        }
 489
 490        /* If the parent of the node we are about to delete is an intermediate
 491         * node, and the deleted node doesn't have any children, we can delete
 492         * the intermediate parent as well and promote its other child
 493         * up the tree.  Doing this maintains the invariant that all
 494         * intermediate nodes have exactly 2 children and that there are no
 495         * unnecessary intermediate nodes in the tree.
 496         */
 497        if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
 498            !node->child[0] && !node->child[1]) {
 499                if (node == rcu_access_pointer(parent->child[0]))
 500                        rcu_assign_pointer(
 501                                *trim2, rcu_access_pointer(parent->child[1]));
 502                else
 503                        rcu_assign_pointer(
 504                                *trim2, rcu_access_pointer(parent->child[0]));
 505                kfree_rcu(parent, rcu);
 506                kfree_rcu(node, rcu);
 507                goto out;
 508        }
 509
 510        /* The node we are removing has either zero or one child. If there
 511         * is a child, move it into the removed node's slot then delete
 512         * the node.  Otherwise just clear the slot and delete the node.
 513         */
 514        if (node->child[0])
 515                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
 516        else if (node->child[1])
 517                rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
 518        else
 519                RCU_INIT_POINTER(*trim, NULL);
 520        kfree_rcu(node, rcu);
 521
 522out:
 523        spin_unlock_irqrestore(&trie->lock, irq_flags);
 524
 525        return ret;
 526}
 527
 528#define LPM_DATA_SIZE_MAX       256
 529#define LPM_DATA_SIZE_MIN       1
 530
 531#define LPM_VAL_SIZE_MAX        (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
 532                                 sizeof(struct lpm_trie_node))
 533#define LPM_VAL_SIZE_MIN        1
 534
 535#define LPM_KEY_SIZE(X)         (sizeof(struct bpf_lpm_trie_key) + (X))
 536#define LPM_KEY_SIZE_MAX        LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
 537#define LPM_KEY_SIZE_MIN        LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
 538
 539#define LPM_CREATE_FLAG_MASK    (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |  \
 540                                 BPF_F_ACCESS_MASK)
 541
 542static struct bpf_map *trie_alloc(union bpf_attr *attr)
 543{
 544        struct lpm_trie *trie;
 545
 546        if (!bpf_capable())
 547                return ERR_PTR(-EPERM);
 548
 549        /* check sanity of attributes */
 550        if (attr->max_entries == 0 ||
 551            !(attr->map_flags & BPF_F_NO_PREALLOC) ||
 552            attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
 553            !bpf_map_flags_access_ok(attr->map_flags) ||
 554            attr->key_size < LPM_KEY_SIZE_MIN ||
 555            attr->key_size > LPM_KEY_SIZE_MAX ||
 556            attr->value_size < LPM_VAL_SIZE_MIN ||
 557            attr->value_size > LPM_VAL_SIZE_MAX)
 558                return ERR_PTR(-EINVAL);
 559
 560        trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN | __GFP_ACCOUNT);
 561        if (!trie)
 562                return ERR_PTR(-ENOMEM);
 563
 564        /* copy mandatory map attributes */
 565        bpf_map_init_from_attr(&trie->map, attr);
 566        trie->data_size = attr->key_size -
 567                          offsetof(struct bpf_lpm_trie_key, data);
 568        trie->max_prefixlen = trie->data_size * 8;
 569
 570        spin_lock_init(&trie->lock);
 571
 572        return &trie->map;
 573}
 574
 575static void trie_free(struct bpf_map *map)
 576{
 577        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 578        struct lpm_trie_node __rcu **slot;
 579        struct lpm_trie_node *node;
 580
 581        /* Always start at the root and walk down to a node that has no
 582         * children. Then free that node, nullify its reference in the parent
 583         * and start over.
 584         */
 585
 586        for (;;) {
 587                slot = &trie->root;
 588
 589                for (;;) {
 590                        node = rcu_dereference_protected(*slot, 1);
 591                        if (!node)
 592                                goto out;
 593
 594                        if (rcu_access_pointer(node->child[0])) {
 595                                slot = &node->child[0];
 596                                continue;
 597                        }
 598
 599                        if (rcu_access_pointer(node->child[1])) {
 600                                slot = &node->child[1];
 601                                continue;
 602                        }
 603
 604                        kfree(node);
 605                        RCU_INIT_POINTER(*slot, NULL);
 606                        break;
 607                }
 608        }
 609
 610out:
 611        kfree(trie);
 612}
 613
 614static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
 615{
 616        struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
 617        struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
 618        struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
 619        struct lpm_trie_node **node_stack = NULL;
 620        int err = 0, stack_ptr = -1;
 621        unsigned int next_bit;
 622        size_t matchlen;
 623
 624        /* The get_next_key follows postorder. For the 4 node example in
 625         * the top of this file, the trie_get_next_key() returns the following
 626         * one after another:
 627         *   192.168.0.0/24
 628         *   192.168.1.0/24
 629         *   192.168.128.0/24
 630         *   192.168.0.0/16
 631         *
 632         * The idea is to return more specific keys before less specific ones.
 633         */
 634
 635        /* Empty trie */
 636        search_root = rcu_dereference(trie->root);
 637        if (!search_root)
 638                return -ENOENT;
 639
 640        /* For invalid key, find the leftmost node in the trie */
 641        if (!key || key->prefixlen > trie->max_prefixlen)
 642                goto find_leftmost;
 643
 644        node_stack = kmalloc_array(trie->max_prefixlen,
 645                                   sizeof(struct lpm_trie_node *),
 646                                   GFP_ATOMIC | __GFP_NOWARN);
 647        if (!node_stack)
 648                return -ENOMEM;
 649
 650        /* Try to find the exact node for the given key */
 651        for (node = search_root; node;) {
 652                node_stack[++stack_ptr] = node;
 653                matchlen = longest_prefix_match(trie, node, key);
 654                if (node->prefixlen != matchlen ||
 655                    node->prefixlen == key->prefixlen)
 656                        break;
 657
 658                next_bit = extract_bit(key->data, node->prefixlen);
 659                node = rcu_dereference(node->child[next_bit]);
 660        }
 661        if (!node || node->prefixlen != key->prefixlen ||
 662            (node->flags & LPM_TREE_NODE_FLAG_IM))
 663                goto find_leftmost;
 664
 665        /* The node with the exactly-matching key has been found,
 666         * find the first node in postorder after the matched node.
 667         */
 668        node = node_stack[stack_ptr];
 669        while (stack_ptr > 0) {
 670                parent = node_stack[stack_ptr - 1];
 671                if (rcu_dereference(parent->child[0]) == node) {
 672                        search_root = rcu_dereference(parent->child[1]);
 673                        if (search_root)
 674                                goto find_leftmost;
 675                }
 676                if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
 677                        next_node = parent;
 678                        goto do_copy;
 679                }
 680
 681                node = parent;
 682                stack_ptr--;
 683        }
 684
 685        /* did not find anything */
 686        err = -ENOENT;
 687        goto free_stack;
 688
 689find_leftmost:
 690        /* Find the leftmost non-intermediate node, all intermediate nodes
 691         * have exact two children, so this function will never return NULL.
 692         */
 693        for (node = search_root; node;) {
 694                if (node->flags & LPM_TREE_NODE_FLAG_IM) {
 695                        node = rcu_dereference(node->child[0]);
 696                } else {
 697                        next_node = node;
 698                        node = rcu_dereference(node->child[0]);
 699                        if (!node)
 700                                node = rcu_dereference(next_node->child[1]);
 701                }
 702        }
 703do_copy:
 704        next_key->prefixlen = next_node->prefixlen;
 705        memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
 706               next_node->data, trie->data_size);
 707free_stack:
 708        kfree(node_stack);
 709        return err;
 710}
 711
 712static int trie_check_btf(const struct bpf_map *map,
 713                          const struct btf *btf,
 714                          const struct btf_type *key_type,
 715                          const struct btf_type *value_type)
 716{
 717        /* Keys must have struct bpf_lpm_trie_key embedded. */
 718        return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
 719               -EINVAL : 0;
 720}
 721
 722static int trie_map_btf_id;
 723const struct bpf_map_ops trie_map_ops = {
 724        .map_meta_equal = bpf_map_meta_equal,
 725        .map_alloc = trie_alloc,
 726        .map_free = trie_free,
 727        .map_get_next_key = trie_get_next_key,
 728        .map_lookup_elem = trie_lookup_elem,
 729        .map_update_elem = trie_update_elem,
 730        .map_delete_elem = trie_delete_elem,
 731        .map_lookup_batch = generic_map_lookup_batch,
 732        .map_update_batch = generic_map_update_batch,
 733        .map_delete_batch = generic_map_delete_batch,
 734        .map_check_btf = trie_check_btf,
 735        .map_btf_name = "lpm_trie",
 736        .map_btf_id = &trie_map_btf_id,
 737};
 738