linux/kernel/bpf/verifier.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
   4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
   5 */
   6#include <uapi/linux/btf.h>
   7#include <linux/kernel.h>
   8#include <linux/types.h>
   9#include <linux/slab.h>
  10#include <linux/bpf.h>
  11#include <linux/btf.h>
  12#include <linux/bpf_verifier.h>
  13#include <linux/filter.h>
  14#include <net/netlink.h>
  15#include <linux/file.h>
  16#include <linux/vmalloc.h>
  17#include <linux/stringify.h>
  18#include <linux/bsearch.h>
  19#include <linux/sort.h>
  20#include <linux/perf_event.h>
  21#include <linux/ctype.h>
  22#include <linux/error-injection.h>
  23#include <linux/bpf_lsm.h>
  24#include <linux/btf_ids.h>
  25
  26#include "disasm.h"
  27
  28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
  29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
  30        [_id] = & _name ## _verifier_ops,
  31#define BPF_MAP_TYPE(_id, _ops)
  32#define BPF_LINK_TYPE(_id, _name)
  33#include <linux/bpf_types.h>
  34#undef BPF_PROG_TYPE
  35#undef BPF_MAP_TYPE
  36#undef BPF_LINK_TYPE
  37};
  38
  39/* bpf_check() is a static code analyzer that walks eBPF program
  40 * instruction by instruction and updates register/stack state.
  41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
  42 *
  43 * The first pass is depth-first-search to check that the program is a DAG.
  44 * It rejects the following programs:
  45 * - larger than BPF_MAXINSNS insns
  46 * - if loop is present (detected via back-edge)
  47 * - unreachable insns exist (shouldn't be a forest. program = one function)
  48 * - out of bounds or malformed jumps
  49 * The second pass is all possible path descent from the 1st insn.
  50 * Since it's analyzing all paths through the program, the length of the
  51 * analysis is limited to 64k insn, which may be hit even if total number of
  52 * insn is less then 4K, but there are too many branches that change stack/regs.
  53 * Number of 'branches to be analyzed' is limited to 1k
  54 *
  55 * On entry to each instruction, each register has a type, and the instruction
  56 * changes the types of the registers depending on instruction semantics.
  57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
  58 * copied to R1.
  59 *
  60 * All registers are 64-bit.
  61 * R0 - return register
  62 * R1-R5 argument passing registers
  63 * R6-R9 callee saved registers
  64 * R10 - frame pointer read-only
  65 *
  66 * At the start of BPF program the register R1 contains a pointer to bpf_context
  67 * and has type PTR_TO_CTX.
  68 *
  69 * Verifier tracks arithmetic operations on pointers in case:
  70 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  71 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
  72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
  73 * and 2nd arithmetic instruction is pattern matched to recognize
  74 * that it wants to construct a pointer to some element within stack.
  75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
  76 * (and -20 constant is saved for further stack bounds checking).
  77 * Meaning that this reg is a pointer to stack plus known immediate constant.
  78 *
  79 * Most of the time the registers have SCALAR_VALUE type, which
  80 * means the register has some value, but it's not a valid pointer.
  81 * (like pointer plus pointer becomes SCALAR_VALUE type)
  82 *
  83 * When verifier sees load or store instructions the type of base register
  84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
  85 * four pointer types recognized by check_mem_access() function.
  86 *
  87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
  88 * and the range of [ptr, ptr + map's value_size) is accessible.
  89 *
  90 * registers used to pass values to function calls are checked against
  91 * function argument constraints.
  92 *
  93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
  94 * It means that the register type passed to this function must be
  95 * PTR_TO_STACK and it will be used inside the function as
  96 * 'pointer to map element key'
  97 *
  98 * For example the argument constraints for bpf_map_lookup_elem():
  99 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 100 *   .arg1_type = ARG_CONST_MAP_PTR,
 101 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 102 *
 103 * ret_type says that this function returns 'pointer to map elem value or null'
 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 105 * 2nd argument should be a pointer to stack, which will be used inside
 106 * the helper function as a pointer to map element key.
 107 *
 108 * On the kernel side the helper function looks like:
 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 110 * {
 111 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 112 *    void *key = (void *) (unsigned long) r2;
 113 *    void *value;
 114 *
 115 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 116 *    [key, key + map->key_size) bytes are valid and were initialized on
 117 *    the stack of eBPF program.
 118 * }
 119 *
 120 * Corresponding eBPF program may look like:
 121 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 122 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 123 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 124 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 125 * here verifier looks at prototype of map_lookup_elem() and sees:
 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 128 *
 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 131 * and were initialized prior to this call.
 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 135 * returns either pointer to map value or NULL.
 136 *
 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 138 * insn, the register holding that pointer in the true branch changes state to
 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 140 * branch. See check_cond_jmp_op().
 141 *
 142 * After the call R0 is set to return type of the function and registers R1-R5
 143 * are set to NOT_INIT to indicate that they are no longer readable.
 144 *
 145 * The following reference types represent a potential reference to a kernel
 146 * resource which, after first being allocated, must be checked and freed by
 147 * the BPF program:
 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
 149 *
 150 * When the verifier sees a helper call return a reference type, it allocates a
 151 * pointer id for the reference and stores it in the current function state.
 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
 154 * passes through a NULL-check conditional. For the branch wherein the state is
 155 * changed to CONST_IMM, the verifier releases the reference.
 156 *
 157 * For each helper function that allocates a reference, such as
 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
 159 * bpf_sk_release(). When a reference type passes into the release function,
 160 * the verifier also releases the reference. If any unchecked or unreleased
 161 * reference remains at the end of the program, the verifier rejects it.
 162 */
 163
 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
 165struct bpf_verifier_stack_elem {
 166        /* verifer state is 'st'
 167         * before processing instruction 'insn_idx'
 168         * and after processing instruction 'prev_insn_idx'
 169         */
 170        struct bpf_verifier_state st;
 171        int insn_idx;
 172        int prev_insn_idx;
 173        struct bpf_verifier_stack_elem *next;
 174        /* length of verifier log at the time this state was pushed on stack */
 175        u32 log_pos;
 176};
 177
 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ    8192
 179#define BPF_COMPLEXITY_LIMIT_STATES     64
 180
 181#define BPF_MAP_KEY_POISON      (1ULL << 63)
 182#define BPF_MAP_KEY_SEEN        (1ULL << 62)
 183
 184#define BPF_MAP_PTR_UNPRIV      1UL
 185#define BPF_MAP_PTR_POISON      ((void *)((0xeB9FUL << 1) +     \
 186                                          POISON_POINTER_DELTA))
 187#define BPF_MAP_PTR(X)          ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
 188
 189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
 190{
 191        return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
 192}
 193
 194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
 195{
 196        return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
 197}
 198
 199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
 200                              const struct bpf_map *map, bool unpriv)
 201{
 202        BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
 203        unpriv |= bpf_map_ptr_unpriv(aux);
 204        aux->map_ptr_state = (unsigned long)map |
 205                             (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
 206}
 207
 208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
 209{
 210        return aux->map_key_state & BPF_MAP_KEY_POISON;
 211}
 212
 213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
 214{
 215        return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
 216}
 217
 218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
 219{
 220        return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
 221}
 222
 223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
 224{
 225        bool poisoned = bpf_map_key_poisoned(aux);
 226
 227        aux->map_key_state = state | BPF_MAP_KEY_SEEN |
 228                             (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
 229}
 230
 231static bool bpf_pseudo_call(const struct bpf_insn *insn)
 232{
 233        return insn->code == (BPF_JMP | BPF_CALL) &&
 234               insn->src_reg == BPF_PSEUDO_CALL;
 235}
 236
 237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
 238{
 239        return insn->code == (BPF_JMP | BPF_CALL) &&
 240               insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
 241}
 242
 243static bool bpf_pseudo_func(const struct bpf_insn *insn)
 244{
 245        return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
 246               insn->src_reg == BPF_PSEUDO_FUNC;
 247}
 248
 249struct bpf_call_arg_meta {
 250        struct bpf_map *map_ptr;
 251        bool raw_mode;
 252        bool pkt_access;
 253        int regno;
 254        int access_size;
 255        int mem_size;
 256        u64 msize_max_value;
 257        int ref_obj_id;
 258        int func_id;
 259        struct btf *btf;
 260        u32 btf_id;
 261        struct btf *ret_btf;
 262        u32 ret_btf_id;
 263        u32 subprogno;
 264};
 265
 266struct btf *btf_vmlinux;
 267
 268static DEFINE_MUTEX(bpf_verifier_lock);
 269
 270static const struct bpf_line_info *
 271find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
 272{
 273        const struct bpf_line_info *linfo;
 274        const struct bpf_prog *prog;
 275        u32 i, nr_linfo;
 276
 277        prog = env->prog;
 278        nr_linfo = prog->aux->nr_linfo;
 279
 280        if (!nr_linfo || insn_off >= prog->len)
 281                return NULL;
 282
 283        linfo = prog->aux->linfo;
 284        for (i = 1; i < nr_linfo; i++)
 285                if (insn_off < linfo[i].insn_off)
 286                        break;
 287
 288        return &linfo[i - 1];
 289}
 290
 291void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
 292                       va_list args)
 293{
 294        unsigned int n;
 295
 296        n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
 297
 298        WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
 299                  "verifier log line truncated - local buffer too short\n");
 300
 301        n = min(log->len_total - log->len_used - 1, n);
 302        log->kbuf[n] = '\0';
 303
 304        if (log->level == BPF_LOG_KERNEL) {
 305                pr_err("BPF:%s\n", log->kbuf);
 306                return;
 307        }
 308        if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
 309                log->len_used += n;
 310        else
 311                log->ubuf = NULL;
 312}
 313
 314static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
 315{
 316        char zero = 0;
 317
 318        if (!bpf_verifier_log_needed(log))
 319                return;
 320
 321        log->len_used = new_pos;
 322        if (put_user(zero, log->ubuf + new_pos))
 323                log->ubuf = NULL;
 324}
 325
 326/* log_level controls verbosity level of eBPF verifier.
 327 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 328 * so the user can figure out what's wrong with the program
 329 */
 330__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 331                                           const char *fmt, ...)
 332{
 333        va_list args;
 334
 335        if (!bpf_verifier_log_needed(&env->log))
 336                return;
 337
 338        va_start(args, fmt);
 339        bpf_verifier_vlog(&env->log, fmt, args);
 340        va_end(args);
 341}
 342EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
 343
 344__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
 345{
 346        struct bpf_verifier_env *env = private_data;
 347        va_list args;
 348
 349        if (!bpf_verifier_log_needed(&env->log))
 350                return;
 351
 352        va_start(args, fmt);
 353        bpf_verifier_vlog(&env->log, fmt, args);
 354        va_end(args);
 355}
 356
 357__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
 358                            const char *fmt, ...)
 359{
 360        va_list args;
 361
 362        if (!bpf_verifier_log_needed(log))
 363                return;
 364
 365        va_start(args, fmt);
 366        bpf_verifier_vlog(log, fmt, args);
 367        va_end(args);
 368}
 369
 370static const char *ltrim(const char *s)
 371{
 372        while (isspace(*s))
 373                s++;
 374
 375        return s;
 376}
 377
 378__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
 379                                         u32 insn_off,
 380                                         const char *prefix_fmt, ...)
 381{
 382        const struct bpf_line_info *linfo;
 383
 384        if (!bpf_verifier_log_needed(&env->log))
 385                return;
 386
 387        linfo = find_linfo(env, insn_off);
 388        if (!linfo || linfo == env->prev_linfo)
 389                return;
 390
 391        if (prefix_fmt) {
 392                va_list args;
 393
 394                va_start(args, prefix_fmt);
 395                bpf_verifier_vlog(&env->log, prefix_fmt, args);
 396                va_end(args);
 397        }
 398
 399        verbose(env, "%s\n",
 400                ltrim(btf_name_by_offset(env->prog->aux->btf,
 401                                         linfo->line_off)));
 402
 403        env->prev_linfo = linfo;
 404}
 405
 406static void verbose_invalid_scalar(struct bpf_verifier_env *env,
 407                                   struct bpf_reg_state *reg,
 408                                   struct tnum *range, const char *ctx,
 409                                   const char *reg_name)
 410{
 411        char tn_buf[48];
 412
 413        verbose(env, "At %s the register %s ", ctx, reg_name);
 414        if (!tnum_is_unknown(reg->var_off)) {
 415                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 416                verbose(env, "has value %s", tn_buf);
 417        } else {
 418                verbose(env, "has unknown scalar value");
 419        }
 420        tnum_strn(tn_buf, sizeof(tn_buf), *range);
 421        verbose(env, " should have been in %s\n", tn_buf);
 422}
 423
 424static bool type_is_pkt_pointer(enum bpf_reg_type type)
 425{
 426        return type == PTR_TO_PACKET ||
 427               type == PTR_TO_PACKET_META;
 428}
 429
 430static bool type_is_sk_pointer(enum bpf_reg_type type)
 431{
 432        return type == PTR_TO_SOCKET ||
 433                type == PTR_TO_SOCK_COMMON ||
 434                type == PTR_TO_TCP_SOCK ||
 435                type == PTR_TO_XDP_SOCK;
 436}
 437
 438static bool reg_type_not_null(enum bpf_reg_type type)
 439{
 440        return type == PTR_TO_SOCKET ||
 441                type == PTR_TO_TCP_SOCK ||
 442                type == PTR_TO_MAP_VALUE ||
 443                type == PTR_TO_MAP_KEY ||
 444                type == PTR_TO_SOCK_COMMON;
 445}
 446
 447static bool reg_type_may_be_null(enum bpf_reg_type type)
 448{
 449        return type == PTR_TO_MAP_VALUE_OR_NULL ||
 450               type == PTR_TO_SOCKET_OR_NULL ||
 451               type == PTR_TO_SOCK_COMMON_OR_NULL ||
 452               type == PTR_TO_TCP_SOCK_OR_NULL ||
 453               type == PTR_TO_BTF_ID_OR_NULL ||
 454               type == PTR_TO_MEM_OR_NULL ||
 455               type == PTR_TO_RDONLY_BUF_OR_NULL ||
 456               type == PTR_TO_RDWR_BUF_OR_NULL;
 457}
 458
 459static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
 460{
 461        return reg->type == PTR_TO_MAP_VALUE &&
 462                map_value_has_spin_lock(reg->map_ptr);
 463}
 464
 465static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
 466{
 467        return type == PTR_TO_SOCKET ||
 468                type == PTR_TO_SOCKET_OR_NULL ||
 469                type == PTR_TO_TCP_SOCK ||
 470                type == PTR_TO_TCP_SOCK_OR_NULL ||
 471                type == PTR_TO_MEM ||
 472                type == PTR_TO_MEM_OR_NULL;
 473}
 474
 475static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
 476{
 477        return type == ARG_PTR_TO_SOCK_COMMON;
 478}
 479
 480static bool arg_type_may_be_null(enum bpf_arg_type type)
 481{
 482        return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
 483               type == ARG_PTR_TO_MEM_OR_NULL ||
 484               type == ARG_PTR_TO_CTX_OR_NULL ||
 485               type == ARG_PTR_TO_SOCKET_OR_NULL ||
 486               type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
 487               type == ARG_PTR_TO_STACK_OR_NULL;
 488}
 489
 490/* Determine whether the function releases some resources allocated by another
 491 * function call. The first reference type argument will be assumed to be
 492 * released by release_reference().
 493 */
 494static bool is_release_function(enum bpf_func_id func_id)
 495{
 496        return func_id == BPF_FUNC_sk_release ||
 497               func_id == BPF_FUNC_ringbuf_submit ||
 498               func_id == BPF_FUNC_ringbuf_discard;
 499}
 500
 501static bool may_be_acquire_function(enum bpf_func_id func_id)
 502{
 503        return func_id == BPF_FUNC_sk_lookup_tcp ||
 504                func_id == BPF_FUNC_sk_lookup_udp ||
 505                func_id == BPF_FUNC_skc_lookup_tcp ||
 506                func_id == BPF_FUNC_map_lookup_elem ||
 507                func_id == BPF_FUNC_ringbuf_reserve;
 508}
 509
 510static bool is_acquire_function(enum bpf_func_id func_id,
 511                                const struct bpf_map *map)
 512{
 513        enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
 514
 515        if (func_id == BPF_FUNC_sk_lookup_tcp ||
 516            func_id == BPF_FUNC_sk_lookup_udp ||
 517            func_id == BPF_FUNC_skc_lookup_tcp ||
 518            func_id == BPF_FUNC_ringbuf_reserve)
 519                return true;
 520
 521        if (func_id == BPF_FUNC_map_lookup_elem &&
 522            (map_type == BPF_MAP_TYPE_SOCKMAP ||
 523             map_type == BPF_MAP_TYPE_SOCKHASH))
 524                return true;
 525
 526        return false;
 527}
 528
 529static bool is_ptr_cast_function(enum bpf_func_id func_id)
 530{
 531        return func_id == BPF_FUNC_tcp_sock ||
 532                func_id == BPF_FUNC_sk_fullsock ||
 533                func_id == BPF_FUNC_skc_to_tcp_sock ||
 534                func_id == BPF_FUNC_skc_to_tcp6_sock ||
 535                func_id == BPF_FUNC_skc_to_udp6_sock ||
 536                func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
 537                func_id == BPF_FUNC_skc_to_tcp_request_sock;
 538}
 539
 540static bool is_cmpxchg_insn(const struct bpf_insn *insn)
 541{
 542        return BPF_CLASS(insn->code) == BPF_STX &&
 543               BPF_MODE(insn->code) == BPF_ATOMIC &&
 544               insn->imm == BPF_CMPXCHG;
 545}
 546
 547/* string representation of 'enum bpf_reg_type' */
 548static const char * const reg_type_str[] = {
 549        [NOT_INIT]              = "?",
 550        [SCALAR_VALUE]          = "inv",
 551        [PTR_TO_CTX]            = "ctx",
 552        [CONST_PTR_TO_MAP]      = "map_ptr",
 553        [PTR_TO_MAP_VALUE]      = "map_value",
 554        [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
 555        [PTR_TO_STACK]          = "fp",
 556        [PTR_TO_PACKET]         = "pkt",
 557        [PTR_TO_PACKET_META]    = "pkt_meta",
 558        [PTR_TO_PACKET_END]     = "pkt_end",
 559        [PTR_TO_FLOW_KEYS]      = "flow_keys",
 560        [PTR_TO_SOCKET]         = "sock",
 561        [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
 562        [PTR_TO_SOCK_COMMON]    = "sock_common",
 563        [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
 564        [PTR_TO_TCP_SOCK]       = "tcp_sock",
 565        [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
 566        [PTR_TO_TP_BUFFER]      = "tp_buffer",
 567        [PTR_TO_XDP_SOCK]       = "xdp_sock",
 568        [PTR_TO_BTF_ID]         = "ptr_",
 569        [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
 570        [PTR_TO_PERCPU_BTF_ID]  = "percpu_ptr_",
 571        [PTR_TO_MEM]            = "mem",
 572        [PTR_TO_MEM_OR_NULL]    = "mem_or_null",
 573        [PTR_TO_RDONLY_BUF]     = "rdonly_buf",
 574        [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
 575        [PTR_TO_RDWR_BUF]       = "rdwr_buf",
 576        [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
 577        [PTR_TO_FUNC]           = "func",
 578        [PTR_TO_MAP_KEY]        = "map_key",
 579};
 580
 581static char slot_type_char[] = {
 582        [STACK_INVALID] = '?',
 583        [STACK_SPILL]   = 'r',
 584        [STACK_MISC]    = 'm',
 585        [STACK_ZERO]    = '0',
 586};
 587
 588static void print_liveness(struct bpf_verifier_env *env,
 589                           enum bpf_reg_liveness live)
 590{
 591        if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
 592            verbose(env, "_");
 593        if (live & REG_LIVE_READ)
 594                verbose(env, "r");
 595        if (live & REG_LIVE_WRITTEN)
 596                verbose(env, "w");
 597        if (live & REG_LIVE_DONE)
 598                verbose(env, "D");
 599}
 600
 601static struct bpf_func_state *func(struct bpf_verifier_env *env,
 602                                   const struct bpf_reg_state *reg)
 603{
 604        struct bpf_verifier_state *cur = env->cur_state;
 605
 606        return cur->frame[reg->frameno];
 607}
 608
 609static const char *kernel_type_name(const struct btf* btf, u32 id)
 610{
 611        return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
 612}
 613
 614static void print_verifier_state(struct bpf_verifier_env *env,
 615                                 const struct bpf_func_state *state)
 616{
 617        const struct bpf_reg_state *reg;
 618        enum bpf_reg_type t;
 619        int i;
 620
 621        if (state->frameno)
 622                verbose(env, " frame%d:", state->frameno);
 623        for (i = 0; i < MAX_BPF_REG; i++) {
 624                reg = &state->regs[i];
 625                t = reg->type;
 626                if (t == NOT_INIT)
 627                        continue;
 628                verbose(env, " R%d", i);
 629                print_liveness(env, reg->live);
 630                verbose(env, "=%s", reg_type_str[t]);
 631                if (t == SCALAR_VALUE && reg->precise)
 632                        verbose(env, "P");
 633                if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
 634                    tnum_is_const(reg->var_off)) {
 635                        /* reg->off should be 0 for SCALAR_VALUE */
 636                        verbose(env, "%lld", reg->var_off.value + reg->off);
 637                } else {
 638                        if (t == PTR_TO_BTF_ID ||
 639                            t == PTR_TO_BTF_ID_OR_NULL ||
 640                            t == PTR_TO_PERCPU_BTF_ID)
 641                                verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
 642                        verbose(env, "(id=%d", reg->id);
 643                        if (reg_type_may_be_refcounted_or_null(t))
 644                                verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
 645                        if (t != SCALAR_VALUE)
 646                                verbose(env, ",off=%d", reg->off);
 647                        if (type_is_pkt_pointer(t))
 648                                verbose(env, ",r=%d", reg->range);
 649                        else if (t == CONST_PTR_TO_MAP ||
 650                                 t == PTR_TO_MAP_KEY ||
 651                                 t == PTR_TO_MAP_VALUE ||
 652                                 t == PTR_TO_MAP_VALUE_OR_NULL)
 653                                verbose(env, ",ks=%d,vs=%d",
 654                                        reg->map_ptr->key_size,
 655                                        reg->map_ptr->value_size);
 656                        if (tnum_is_const(reg->var_off)) {
 657                                /* Typically an immediate SCALAR_VALUE, but
 658                                 * could be a pointer whose offset is too big
 659                                 * for reg->off
 660                                 */
 661                                verbose(env, ",imm=%llx", reg->var_off.value);
 662                        } else {
 663                                if (reg->smin_value != reg->umin_value &&
 664                                    reg->smin_value != S64_MIN)
 665                                        verbose(env, ",smin_value=%lld",
 666                                                (long long)reg->smin_value);
 667                                if (reg->smax_value != reg->umax_value &&
 668                                    reg->smax_value != S64_MAX)
 669                                        verbose(env, ",smax_value=%lld",
 670                                                (long long)reg->smax_value);
 671                                if (reg->umin_value != 0)
 672                                        verbose(env, ",umin_value=%llu",
 673                                                (unsigned long long)reg->umin_value);
 674                                if (reg->umax_value != U64_MAX)
 675                                        verbose(env, ",umax_value=%llu",
 676                                                (unsigned long long)reg->umax_value);
 677                                if (!tnum_is_unknown(reg->var_off)) {
 678                                        char tn_buf[48];
 679
 680                                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
 681                                        verbose(env, ",var_off=%s", tn_buf);
 682                                }
 683                                if (reg->s32_min_value != reg->smin_value &&
 684                                    reg->s32_min_value != S32_MIN)
 685                                        verbose(env, ",s32_min_value=%d",
 686                                                (int)(reg->s32_min_value));
 687                                if (reg->s32_max_value != reg->smax_value &&
 688                                    reg->s32_max_value != S32_MAX)
 689                                        verbose(env, ",s32_max_value=%d",
 690                                                (int)(reg->s32_max_value));
 691                                if (reg->u32_min_value != reg->umin_value &&
 692                                    reg->u32_min_value != U32_MIN)
 693                                        verbose(env, ",u32_min_value=%d",
 694                                                (int)(reg->u32_min_value));
 695                                if (reg->u32_max_value != reg->umax_value &&
 696                                    reg->u32_max_value != U32_MAX)
 697                                        verbose(env, ",u32_max_value=%d",
 698                                                (int)(reg->u32_max_value));
 699                        }
 700                        verbose(env, ")");
 701                }
 702        }
 703        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
 704                char types_buf[BPF_REG_SIZE + 1];
 705                bool valid = false;
 706                int j;
 707
 708                for (j = 0; j < BPF_REG_SIZE; j++) {
 709                        if (state->stack[i].slot_type[j] != STACK_INVALID)
 710                                valid = true;
 711                        types_buf[j] = slot_type_char[
 712                                        state->stack[i].slot_type[j]];
 713                }
 714                types_buf[BPF_REG_SIZE] = 0;
 715                if (!valid)
 716                        continue;
 717                verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
 718                print_liveness(env, state->stack[i].spilled_ptr.live);
 719                if (state->stack[i].slot_type[0] == STACK_SPILL) {
 720                        reg = &state->stack[i].spilled_ptr;
 721                        t = reg->type;
 722                        verbose(env, "=%s", reg_type_str[t]);
 723                        if (t == SCALAR_VALUE && reg->precise)
 724                                verbose(env, "P");
 725                        if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
 726                                verbose(env, "%lld", reg->var_off.value + reg->off);
 727                } else {
 728                        verbose(env, "=%s", types_buf);
 729                }
 730        }
 731        if (state->acquired_refs && state->refs[0].id) {
 732                verbose(env, " refs=%d", state->refs[0].id);
 733                for (i = 1; i < state->acquired_refs; i++)
 734                        if (state->refs[i].id)
 735                                verbose(env, ",%d", state->refs[i].id);
 736        }
 737        verbose(env, "\n");
 738}
 739
 740/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
 741 * small to hold src. This is different from krealloc since we don't want to preserve
 742 * the contents of dst.
 743 *
 744 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
 745 * not be allocated.
 746 */
 747static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
 748{
 749        size_t bytes;
 750
 751        if (ZERO_OR_NULL_PTR(src))
 752                goto out;
 753
 754        if (unlikely(check_mul_overflow(n, size, &bytes)))
 755                return NULL;
 756
 757        if (ksize(dst) < bytes) {
 758                kfree(dst);
 759                dst = kmalloc_track_caller(bytes, flags);
 760                if (!dst)
 761                        return NULL;
 762        }
 763
 764        memcpy(dst, src, bytes);
 765out:
 766        return dst ? dst : ZERO_SIZE_PTR;
 767}
 768
 769/* resize an array from old_n items to new_n items. the array is reallocated if it's too
 770 * small to hold new_n items. new items are zeroed out if the array grows.
 771 *
 772 * Contrary to krealloc_array, does not free arr if new_n is zero.
 773 */
 774static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
 775{
 776        if (!new_n || old_n == new_n)
 777                goto out;
 778
 779        arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
 780        if (!arr)
 781                return NULL;
 782
 783        if (new_n > old_n)
 784                memset(arr + old_n * size, 0, (new_n - old_n) * size);
 785
 786out:
 787        return arr ? arr : ZERO_SIZE_PTR;
 788}
 789
 790static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
 791{
 792        dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
 793                               sizeof(struct bpf_reference_state), GFP_KERNEL);
 794        if (!dst->refs)
 795                return -ENOMEM;
 796
 797        dst->acquired_refs = src->acquired_refs;
 798        return 0;
 799}
 800
 801static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
 802{
 803        size_t n = src->allocated_stack / BPF_REG_SIZE;
 804
 805        dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
 806                                GFP_KERNEL);
 807        if (!dst->stack)
 808                return -ENOMEM;
 809
 810        dst->allocated_stack = src->allocated_stack;
 811        return 0;
 812}
 813
 814static int resize_reference_state(struct bpf_func_state *state, size_t n)
 815{
 816        state->refs = realloc_array(state->refs, state->acquired_refs, n,
 817                                    sizeof(struct bpf_reference_state));
 818        if (!state->refs)
 819                return -ENOMEM;
 820
 821        state->acquired_refs = n;
 822        return 0;
 823}
 824
 825static int grow_stack_state(struct bpf_func_state *state, int size)
 826{
 827        size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
 828
 829        if (old_n >= n)
 830                return 0;
 831
 832        state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
 833        if (!state->stack)
 834                return -ENOMEM;
 835
 836        state->allocated_stack = size;
 837        return 0;
 838}
 839
 840/* Acquire a pointer id from the env and update the state->refs to include
 841 * this new pointer reference.
 842 * On success, returns a valid pointer id to associate with the register
 843 * On failure, returns a negative errno.
 844 */
 845static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
 846{
 847        struct bpf_func_state *state = cur_func(env);
 848        int new_ofs = state->acquired_refs;
 849        int id, err;
 850
 851        err = resize_reference_state(state, state->acquired_refs + 1);
 852        if (err)
 853                return err;
 854        id = ++env->id_gen;
 855        state->refs[new_ofs].id = id;
 856        state->refs[new_ofs].insn_idx = insn_idx;
 857
 858        return id;
 859}
 860
 861/* release function corresponding to acquire_reference_state(). Idempotent. */
 862static int release_reference_state(struct bpf_func_state *state, int ptr_id)
 863{
 864        int i, last_idx;
 865
 866        last_idx = state->acquired_refs - 1;
 867        for (i = 0; i < state->acquired_refs; i++) {
 868                if (state->refs[i].id == ptr_id) {
 869                        if (last_idx && i != last_idx)
 870                                memcpy(&state->refs[i], &state->refs[last_idx],
 871                                       sizeof(*state->refs));
 872                        memset(&state->refs[last_idx], 0, sizeof(*state->refs));
 873                        state->acquired_refs--;
 874                        return 0;
 875                }
 876        }
 877        return -EINVAL;
 878}
 879
 880static void free_func_state(struct bpf_func_state *state)
 881{
 882        if (!state)
 883                return;
 884        kfree(state->refs);
 885        kfree(state->stack);
 886        kfree(state);
 887}
 888
 889static void clear_jmp_history(struct bpf_verifier_state *state)
 890{
 891        kfree(state->jmp_history);
 892        state->jmp_history = NULL;
 893        state->jmp_history_cnt = 0;
 894}
 895
 896static void free_verifier_state(struct bpf_verifier_state *state,
 897                                bool free_self)
 898{
 899        int i;
 900
 901        for (i = 0; i <= state->curframe; i++) {
 902                free_func_state(state->frame[i]);
 903                state->frame[i] = NULL;
 904        }
 905        clear_jmp_history(state);
 906        if (free_self)
 907                kfree(state);
 908}
 909
 910/* copy verifier state from src to dst growing dst stack space
 911 * when necessary to accommodate larger src stack
 912 */
 913static int copy_func_state(struct bpf_func_state *dst,
 914                           const struct bpf_func_state *src)
 915{
 916        int err;
 917
 918        memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
 919        err = copy_reference_state(dst, src);
 920        if (err)
 921                return err;
 922        return copy_stack_state(dst, src);
 923}
 924
 925static int copy_verifier_state(struct bpf_verifier_state *dst_state,
 926                               const struct bpf_verifier_state *src)
 927{
 928        struct bpf_func_state *dst;
 929        int i, err;
 930
 931        dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
 932                                            src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
 933                                            GFP_USER);
 934        if (!dst_state->jmp_history)
 935                return -ENOMEM;
 936        dst_state->jmp_history_cnt = src->jmp_history_cnt;
 937
 938        /* if dst has more stack frames then src frame, free them */
 939        for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
 940                free_func_state(dst_state->frame[i]);
 941                dst_state->frame[i] = NULL;
 942        }
 943        dst_state->speculative = src->speculative;
 944        dst_state->curframe = src->curframe;
 945        dst_state->active_spin_lock = src->active_spin_lock;
 946        dst_state->branches = src->branches;
 947        dst_state->parent = src->parent;
 948        dst_state->first_insn_idx = src->first_insn_idx;
 949        dst_state->last_insn_idx = src->last_insn_idx;
 950        for (i = 0; i <= src->curframe; i++) {
 951                dst = dst_state->frame[i];
 952                if (!dst) {
 953                        dst = kzalloc(sizeof(*dst), GFP_KERNEL);
 954                        if (!dst)
 955                                return -ENOMEM;
 956                        dst_state->frame[i] = dst;
 957                }
 958                err = copy_func_state(dst, src->frame[i]);
 959                if (err)
 960                        return err;
 961        }
 962        return 0;
 963}
 964
 965static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
 966{
 967        while (st) {
 968                u32 br = --st->branches;
 969
 970                /* WARN_ON(br > 1) technically makes sense here,
 971                 * but see comment in push_stack(), hence:
 972                 */
 973                WARN_ONCE((int)br < 0,
 974                          "BUG update_branch_counts:branches_to_explore=%d\n",
 975                          br);
 976                if (br)
 977                        break;
 978                st = st->parent;
 979        }
 980}
 981
 982static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
 983                     int *insn_idx, bool pop_log)
 984{
 985        struct bpf_verifier_state *cur = env->cur_state;
 986        struct bpf_verifier_stack_elem *elem, *head = env->head;
 987        int err;
 988
 989        if (env->head == NULL)
 990                return -ENOENT;
 991
 992        if (cur) {
 993                err = copy_verifier_state(cur, &head->st);
 994                if (err)
 995                        return err;
 996        }
 997        if (pop_log)
 998                bpf_vlog_reset(&env->log, head->log_pos);
 999        if (insn_idx)
1000                *insn_idx = head->insn_idx;
1001        if (prev_insn_idx)
1002                *prev_insn_idx = head->prev_insn_idx;
1003        elem = head->next;
1004        free_verifier_state(&head->st, false);
1005        kfree(head);
1006        env->head = elem;
1007        env->stack_size--;
1008        return 0;
1009}
1010
1011static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1012                                             int insn_idx, int prev_insn_idx,
1013                                             bool speculative)
1014{
1015        struct bpf_verifier_state *cur = env->cur_state;
1016        struct bpf_verifier_stack_elem *elem;
1017        int err;
1018
1019        elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1020        if (!elem)
1021                goto err;
1022
1023        elem->insn_idx = insn_idx;
1024        elem->prev_insn_idx = prev_insn_idx;
1025        elem->next = env->head;
1026        elem->log_pos = env->log.len_used;
1027        env->head = elem;
1028        env->stack_size++;
1029        err = copy_verifier_state(&elem->st, cur);
1030        if (err)
1031                goto err;
1032        elem->st.speculative |= speculative;
1033        if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034                verbose(env, "The sequence of %d jumps is too complex.\n",
1035                        env->stack_size);
1036                goto err;
1037        }
1038        if (elem->st.parent) {
1039                ++elem->st.parent->branches;
1040                /* WARN_ON(branches > 2) technically makes sense here,
1041                 * but
1042                 * 1. speculative states will bump 'branches' for non-branch
1043                 * instructions
1044                 * 2. is_state_visited() heuristics may decide not to create
1045                 * a new state for a sequence of branches and all such current
1046                 * and cloned states will be pointing to a single parent state
1047                 * which might have large 'branches' count.
1048                 */
1049        }
1050        return &elem->st;
1051err:
1052        free_verifier_state(env->cur_state, true);
1053        env->cur_state = NULL;
1054        /* pop all elements and return */
1055        while (!pop_stack(env, NULL, NULL, false));
1056        return NULL;
1057}
1058
1059#define CALLER_SAVED_REGS 6
1060static const int caller_saved[CALLER_SAVED_REGS] = {
1061        BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062};
1063
1064static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065                                struct bpf_reg_state *reg);
1066
1067/* This helper doesn't clear reg->id */
1068static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069{
1070        reg->var_off = tnum_const(imm);
1071        reg->smin_value = (s64)imm;
1072        reg->smax_value = (s64)imm;
1073        reg->umin_value = imm;
1074        reg->umax_value = imm;
1075
1076        reg->s32_min_value = (s32)imm;
1077        reg->s32_max_value = (s32)imm;
1078        reg->u32_min_value = (u32)imm;
1079        reg->u32_max_value = (u32)imm;
1080}
1081
1082/* Mark the unknown part of a register (variable offset or scalar value) as
1083 * known to have the value @imm.
1084 */
1085static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086{
1087        /* Clear id, off, and union(map_ptr, range) */
1088        memset(((u8 *)reg) + sizeof(reg->type), 0,
1089               offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090        ___mark_reg_known(reg, imm);
1091}
1092
1093static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094{
1095        reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096        reg->s32_min_value = (s32)imm;
1097        reg->s32_max_value = (s32)imm;
1098        reg->u32_min_value = (u32)imm;
1099        reg->u32_max_value = (u32)imm;
1100}
1101
1102/* Mark the 'variable offset' part of a register as zero.  This should be
1103 * used only on registers holding a pointer type.
1104 */
1105static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1106{
1107        __mark_reg_known(reg, 0);
1108}
1109
1110static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111{
1112        __mark_reg_known(reg, 0);
1113        reg->type = SCALAR_VALUE;
1114}
1115
1116static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117                                struct bpf_reg_state *regs, u32 regno)
1118{
1119        if (WARN_ON(regno >= MAX_BPF_REG)) {
1120                verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1121                /* Something bad happened, let's kill all regs */
1122                for (regno = 0; regno < MAX_BPF_REG; regno++)
1123                        __mark_reg_not_init(env, regs + regno);
1124                return;
1125        }
1126        __mark_reg_known_zero(regs + regno);
1127}
1128
1129static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130{
1131        switch (reg->type) {
1132        case PTR_TO_MAP_VALUE_OR_NULL: {
1133                const struct bpf_map *map = reg->map_ptr;
1134
1135                if (map->inner_map_meta) {
1136                        reg->type = CONST_PTR_TO_MAP;
1137                        reg->map_ptr = map->inner_map_meta;
1138                } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139                        reg->type = PTR_TO_XDP_SOCK;
1140                } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141                           map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142                        reg->type = PTR_TO_SOCKET;
1143                } else {
1144                        reg->type = PTR_TO_MAP_VALUE;
1145                }
1146                break;
1147        }
1148        case PTR_TO_SOCKET_OR_NULL:
1149                reg->type = PTR_TO_SOCKET;
1150                break;
1151        case PTR_TO_SOCK_COMMON_OR_NULL:
1152                reg->type = PTR_TO_SOCK_COMMON;
1153                break;
1154        case PTR_TO_TCP_SOCK_OR_NULL:
1155                reg->type = PTR_TO_TCP_SOCK;
1156                break;
1157        case PTR_TO_BTF_ID_OR_NULL:
1158                reg->type = PTR_TO_BTF_ID;
1159                break;
1160        case PTR_TO_MEM_OR_NULL:
1161                reg->type = PTR_TO_MEM;
1162                break;
1163        case PTR_TO_RDONLY_BUF_OR_NULL:
1164                reg->type = PTR_TO_RDONLY_BUF;
1165                break;
1166        case PTR_TO_RDWR_BUF_OR_NULL:
1167                reg->type = PTR_TO_RDWR_BUF;
1168                break;
1169        default:
1170                WARN_ONCE(1, "unknown nullable register type");
1171        }
1172}
1173
1174static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175{
1176        return type_is_pkt_pointer(reg->type);
1177}
1178
1179static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180{
1181        return reg_is_pkt_pointer(reg) ||
1182               reg->type == PTR_TO_PACKET_END;
1183}
1184
1185/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187                                    enum bpf_reg_type which)
1188{
1189        /* The register can already have a range from prior markings.
1190         * This is fine as long as it hasn't been advanced from its
1191         * origin.
1192         */
1193        return reg->type == which &&
1194               reg->id == 0 &&
1195               reg->off == 0 &&
1196               tnum_equals_const(reg->var_off, 0);
1197}
1198
1199/* Reset the min/max bounds of a register */
1200static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201{
1202        reg->smin_value = S64_MIN;
1203        reg->smax_value = S64_MAX;
1204        reg->umin_value = 0;
1205        reg->umax_value = U64_MAX;
1206
1207        reg->s32_min_value = S32_MIN;
1208        reg->s32_max_value = S32_MAX;
1209        reg->u32_min_value = 0;
1210        reg->u32_max_value = U32_MAX;
1211}
1212
1213static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214{
1215        reg->smin_value = S64_MIN;
1216        reg->smax_value = S64_MAX;
1217        reg->umin_value = 0;
1218        reg->umax_value = U64_MAX;
1219}
1220
1221static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222{
1223        reg->s32_min_value = S32_MIN;
1224        reg->s32_max_value = S32_MAX;
1225        reg->u32_min_value = 0;
1226        reg->u32_max_value = U32_MAX;
1227}
1228
1229static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230{
1231        struct tnum var32_off = tnum_subreg(reg->var_off);
1232
1233        /* min signed is max(sign bit) | min(other bits) */
1234        reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235                        var32_off.value | (var32_off.mask & S32_MIN));
1236        /* max signed is min(sign bit) | max(other bits) */
1237        reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238                        var32_off.value | (var32_off.mask & S32_MAX));
1239        reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240        reg->u32_max_value = min(reg->u32_max_value,
1241                                 (u32)(var32_off.value | var32_off.mask));
1242}
1243
1244static void __update_reg64_bounds(struct bpf_reg_state *reg)
1245{
1246        /* min signed is max(sign bit) | min(other bits) */
1247        reg->smin_value = max_t(s64, reg->smin_value,
1248                                reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249        /* max signed is min(sign bit) | max(other bits) */
1250        reg->smax_value = min_t(s64, reg->smax_value,
1251                                reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252        reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253        reg->umax_value = min(reg->umax_value,
1254                              reg->var_off.value | reg->var_off.mask);
1255}
1256
1257static void __update_reg_bounds(struct bpf_reg_state *reg)
1258{
1259        __update_reg32_bounds(reg);
1260        __update_reg64_bounds(reg);
1261}
1262
1263/* Uses signed min/max values to inform unsigned, and vice-versa */
1264static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265{
1266        /* Learn sign from signed bounds.
1267         * If we cannot cross the sign boundary, then signed and unsigned bounds
1268         * are the same, so combine.  This works even in the negative case, e.g.
1269         * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270         */
1271        if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272                reg->s32_min_value = reg->u32_min_value =
1273                        max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274                reg->s32_max_value = reg->u32_max_value =
1275                        min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276                return;
1277        }
1278        /* Learn sign from unsigned bounds.  Signed bounds cross the sign
1279         * boundary, so we must be careful.
1280         */
1281        if ((s32)reg->u32_max_value >= 0) {
1282                /* Positive.  We can't learn anything from the smin, but smax
1283                 * is positive, hence safe.
1284                 */
1285                reg->s32_min_value = reg->u32_min_value;
1286                reg->s32_max_value = reg->u32_max_value =
1287                        min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288        } else if ((s32)reg->u32_min_value < 0) {
1289                /* Negative.  We can't learn anything from the smax, but smin
1290                 * is negative, hence safe.
1291                 */
1292                reg->s32_min_value = reg->u32_min_value =
1293                        max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294                reg->s32_max_value = reg->u32_max_value;
1295        }
1296}
1297
1298static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1299{
1300        /* Learn sign from signed bounds.
1301         * If we cannot cross the sign boundary, then signed and unsigned bounds
1302         * are the same, so combine.  This works even in the negative case, e.g.
1303         * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304         */
1305        if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307                                                          reg->umin_value);
1308                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309                                                          reg->umax_value);
1310                return;
1311        }
1312        /* Learn sign from unsigned bounds.  Signed bounds cross the sign
1313         * boundary, so we must be careful.
1314         */
1315        if ((s64)reg->umax_value >= 0) {
1316                /* Positive.  We can't learn anything from the smin, but smax
1317                 * is positive, hence safe.
1318                 */
1319                reg->smin_value = reg->umin_value;
1320                reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321                                                          reg->umax_value);
1322        } else if ((s64)reg->umin_value < 0) {
1323                /* Negative.  We can't learn anything from the smax, but smin
1324                 * is negative, hence safe.
1325                 */
1326                reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327                                                          reg->umin_value);
1328                reg->smax_value = reg->umax_value;
1329        }
1330}
1331
1332static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333{
1334        __reg32_deduce_bounds(reg);
1335        __reg64_deduce_bounds(reg);
1336}
1337
1338/* Attempts to improve var_off based on unsigned min/max information */
1339static void __reg_bound_offset(struct bpf_reg_state *reg)
1340{
1341        struct tnum var64_off = tnum_intersect(reg->var_off,
1342                                               tnum_range(reg->umin_value,
1343                                                          reg->umax_value));
1344        struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345                                                tnum_range(reg->u32_min_value,
1346                                                           reg->u32_max_value));
1347
1348        reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1349}
1350
1351static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1352{
1353        reg->umin_value = reg->u32_min_value;
1354        reg->umax_value = reg->u32_max_value;
1355        /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356         * but must be positive otherwise set to worse case bounds
1357         * and refine later from tnum.
1358         */
1359        if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1360                reg->smax_value = reg->s32_max_value;
1361        else
1362                reg->smax_value = U32_MAX;
1363        if (reg->s32_min_value >= 0)
1364                reg->smin_value = reg->s32_min_value;
1365        else
1366                reg->smin_value = 0;
1367}
1368
1369static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370{
1371        /* special case when 64-bit register has upper 32-bit register
1372         * zeroed. Typically happens after zext or <<32, >>32 sequence
1373         * allowing us to use 32-bit bounds directly,
1374         */
1375        if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376                __reg_assign_32_into_64(reg);
1377        } else {
1378                /* Otherwise the best we can do is push lower 32bit known and
1379                 * unknown bits into register (var_off set from jmp logic)
1380                 * then learn as much as possible from the 64-bit tnum
1381                 * known and unknown bits. The previous smin/smax bounds are
1382                 * invalid here because of jmp32 compare so mark them unknown
1383                 * so they do not impact tnum bounds calculation.
1384                 */
1385                __mark_reg64_unbounded(reg);
1386                __update_reg_bounds(reg);
1387        }
1388
1389        /* Intersecting with the old var_off might have improved our bounds
1390         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391         * then new var_off is (0; 0x7f...fc) which improves our umax.
1392         */
1393        __reg_deduce_bounds(reg);
1394        __reg_bound_offset(reg);
1395        __update_reg_bounds(reg);
1396}
1397
1398static bool __reg64_bound_s32(s64 a)
1399{
1400        return a > S32_MIN && a < S32_MAX;
1401}
1402
1403static bool __reg64_bound_u32(u64 a)
1404{
1405        return a > U32_MIN && a < U32_MAX;
1406}
1407
1408static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409{
1410        __mark_reg32_unbounded(reg);
1411
1412        if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1413                reg->s32_min_value = (s32)reg->smin_value;
1414                reg->s32_max_value = (s32)reg->smax_value;
1415        }
1416        if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1417                reg->u32_min_value = (u32)reg->umin_value;
1418                reg->u32_max_value = (u32)reg->umax_value;
1419        }
1420
1421        /* Intersecting with the old var_off might have improved our bounds
1422         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423         * then new var_off is (0; 0x7f...fc) which improves our umax.
1424         */
1425        __reg_deduce_bounds(reg);
1426        __reg_bound_offset(reg);
1427        __update_reg_bounds(reg);
1428}
1429
1430/* Mark a register as having a completely unknown (scalar) value. */
1431static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432                               struct bpf_reg_state *reg)
1433{
1434        /*
1435         * Clear type, id, off, and union(map_ptr, range) and
1436         * padding between 'type' and union
1437         */
1438        memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1439        reg->type = SCALAR_VALUE;
1440        reg->var_off = tnum_unknown;
1441        reg->frameno = 0;
1442        reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1443        __mark_reg_unbounded(reg);
1444}
1445
1446static void mark_reg_unknown(struct bpf_verifier_env *env,
1447                             struct bpf_reg_state *regs, u32 regno)
1448{
1449        if (WARN_ON(regno >= MAX_BPF_REG)) {
1450                verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1451                /* Something bad happened, let's kill all regs except FP */
1452                for (regno = 0; regno < BPF_REG_FP; regno++)
1453                        __mark_reg_not_init(env, regs + regno);
1454                return;
1455        }
1456        __mark_reg_unknown(env, regs + regno);
1457}
1458
1459static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460                                struct bpf_reg_state *reg)
1461{
1462        __mark_reg_unknown(env, reg);
1463        reg->type = NOT_INIT;
1464}
1465
1466static void mark_reg_not_init(struct bpf_verifier_env *env,
1467                              struct bpf_reg_state *regs, u32 regno)
1468{
1469        if (WARN_ON(regno >= MAX_BPF_REG)) {
1470                verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1471                /* Something bad happened, let's kill all regs except FP */
1472                for (regno = 0; regno < BPF_REG_FP; regno++)
1473                        __mark_reg_not_init(env, regs + regno);
1474                return;
1475        }
1476        __mark_reg_not_init(env, regs + regno);
1477}
1478
1479static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480                            struct bpf_reg_state *regs, u32 regno,
1481                            enum bpf_reg_type reg_type,
1482                            struct btf *btf, u32 btf_id)
1483{
1484        if (reg_type == SCALAR_VALUE) {
1485                mark_reg_unknown(env, regs, regno);
1486                return;
1487        }
1488        mark_reg_known_zero(env, regs, regno);
1489        regs[regno].type = PTR_TO_BTF_ID;
1490        regs[regno].btf = btf;
1491        regs[regno].btf_id = btf_id;
1492}
1493
1494#define DEF_NOT_SUBREG  (0)
1495static void init_reg_state(struct bpf_verifier_env *env,
1496                           struct bpf_func_state *state)
1497{
1498        struct bpf_reg_state *regs = state->regs;
1499        int i;
1500
1501        for (i = 0; i < MAX_BPF_REG; i++) {
1502                mark_reg_not_init(env, regs, i);
1503                regs[i].live = REG_LIVE_NONE;
1504                regs[i].parent = NULL;
1505                regs[i].subreg_def = DEF_NOT_SUBREG;
1506        }
1507
1508        /* frame pointer */
1509        regs[BPF_REG_FP].type = PTR_TO_STACK;
1510        mark_reg_known_zero(env, regs, BPF_REG_FP);
1511        regs[BPF_REG_FP].frameno = state->frameno;
1512}
1513
1514#define BPF_MAIN_FUNC (-1)
1515static void init_func_state(struct bpf_verifier_env *env,
1516                            struct bpf_func_state *state,
1517                            int callsite, int frameno, int subprogno)
1518{
1519        state->callsite = callsite;
1520        state->frameno = frameno;
1521        state->subprogno = subprogno;
1522        init_reg_state(env, state);
1523}
1524
1525enum reg_arg_type {
1526        SRC_OP,         /* register is used as source operand */
1527        DST_OP,         /* register is used as destination operand */
1528        DST_OP_NO_MARK  /* same as above, check only, don't mark */
1529};
1530
1531static int cmp_subprogs(const void *a, const void *b)
1532{
1533        return ((struct bpf_subprog_info *)a)->start -
1534               ((struct bpf_subprog_info *)b)->start;
1535}
1536
1537static int find_subprog(struct bpf_verifier_env *env, int off)
1538{
1539        struct bpf_subprog_info *p;
1540
1541        p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542                    sizeof(env->subprog_info[0]), cmp_subprogs);
1543        if (!p)
1544                return -ENOENT;
1545        return p - env->subprog_info;
1546
1547}
1548
1549static int add_subprog(struct bpf_verifier_env *env, int off)
1550{
1551        int insn_cnt = env->prog->len;
1552        int ret;
1553
1554        if (off >= insn_cnt || off < 0) {
1555                verbose(env, "call to invalid destination\n");
1556                return -EINVAL;
1557        }
1558        ret = find_subprog(env, off);
1559        if (ret >= 0)
1560                return ret;
1561        if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1562                verbose(env, "too many subprograms\n");
1563                return -E2BIG;
1564        }
1565        /* determine subprog starts. The end is one before the next starts */
1566        env->subprog_info[env->subprog_cnt++].start = off;
1567        sort(env->subprog_info, env->subprog_cnt,
1568             sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1569        return env->subprog_cnt - 1;
1570}
1571
1572struct bpf_kfunc_desc {
1573        struct btf_func_model func_model;
1574        u32 func_id;
1575        s32 imm;
1576};
1577
1578#define MAX_KFUNC_DESCS 256
1579struct bpf_kfunc_desc_tab {
1580        struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581        u32 nr_descs;
1582};
1583
1584static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585{
1586        const struct bpf_kfunc_desc *d0 = a;
1587        const struct bpf_kfunc_desc *d1 = b;
1588
1589        /* func_id is not greater than BTF_MAX_TYPE */
1590        return d0->func_id - d1->func_id;
1591}
1592
1593static const struct bpf_kfunc_desc *
1594find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595{
1596        struct bpf_kfunc_desc desc = {
1597                .func_id = func_id,
1598        };
1599        struct bpf_kfunc_desc_tab *tab;
1600
1601        tab = prog->aux->kfunc_tab;
1602        return bsearch(&desc, tab->descs, tab->nr_descs,
1603                       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604}
1605
1606static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607{
1608        const struct btf_type *func, *func_proto;
1609        struct bpf_kfunc_desc_tab *tab;
1610        struct bpf_prog_aux *prog_aux;
1611        struct bpf_kfunc_desc *desc;
1612        const char *func_name;
1613        unsigned long addr;
1614        int err;
1615
1616        prog_aux = env->prog->aux;
1617        tab = prog_aux->kfunc_tab;
1618        if (!tab) {
1619                if (!btf_vmlinux) {
1620                        verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621                        return -ENOTSUPP;
1622                }
1623
1624                if (!env->prog->jit_requested) {
1625                        verbose(env, "JIT is required for calling kernel function\n");
1626                        return -ENOTSUPP;
1627                }
1628
1629                if (!bpf_jit_supports_kfunc_call()) {
1630                        verbose(env, "JIT does not support calling kernel function\n");
1631                        return -ENOTSUPP;
1632                }
1633
1634                if (!env->prog->gpl_compatible) {
1635                        verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636                        return -EINVAL;
1637                }
1638
1639                tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640                if (!tab)
1641                        return -ENOMEM;
1642                prog_aux->kfunc_tab = tab;
1643        }
1644
1645        if (find_kfunc_desc(env->prog, func_id))
1646                return 0;
1647
1648        if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649                verbose(env, "too many different kernel function calls\n");
1650                return -E2BIG;
1651        }
1652
1653        func = btf_type_by_id(btf_vmlinux, func_id);
1654        if (!func || !btf_type_is_func(func)) {
1655                verbose(env, "kernel btf_id %u is not a function\n",
1656                        func_id);
1657                return -EINVAL;
1658        }
1659        func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660        if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661                verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662                        func_id);
1663                return -EINVAL;
1664        }
1665
1666        func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667        addr = kallsyms_lookup_name(func_name);
1668        if (!addr) {
1669                verbose(env, "cannot find address for kernel function %s\n",
1670                        func_name);
1671                return -EINVAL;
1672        }
1673
1674        desc = &tab->descs[tab->nr_descs++];
1675        desc->func_id = func_id;
1676        desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677        err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678                                     func_proto, func_name,
1679                                     &desc->func_model);
1680        if (!err)
1681                sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682                     kfunc_desc_cmp_by_id, NULL);
1683        return err;
1684}
1685
1686static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687{
1688        const struct bpf_kfunc_desc *d0 = a;
1689        const struct bpf_kfunc_desc *d1 = b;
1690
1691        if (d0->imm > d1->imm)
1692                return 1;
1693        else if (d0->imm < d1->imm)
1694                return -1;
1695        return 0;
1696}
1697
1698static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699{
1700        struct bpf_kfunc_desc_tab *tab;
1701
1702        tab = prog->aux->kfunc_tab;
1703        if (!tab)
1704                return;
1705
1706        sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707             kfunc_desc_cmp_by_imm, NULL);
1708}
1709
1710bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711{
1712        return !!prog->aux->kfunc_tab;
1713}
1714
1715const struct btf_func_model *
1716bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717                         const struct bpf_insn *insn)
1718{
1719        const struct bpf_kfunc_desc desc = {
1720                .imm = insn->imm,
1721        };
1722        const struct bpf_kfunc_desc *res;
1723        struct bpf_kfunc_desc_tab *tab;
1724
1725        tab = prog->aux->kfunc_tab;
1726        res = bsearch(&desc, tab->descs, tab->nr_descs,
1727                      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728
1729        return res ? &res->func_model : NULL;
1730}
1731
1732static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1733{
1734        struct bpf_subprog_info *subprog = env->subprog_info;
1735        struct bpf_insn *insn = env->prog->insnsi;
1736        int i, ret, insn_cnt = env->prog->len;
1737
1738        /* Add entry function. */
1739        ret = add_subprog(env, 0);
1740        if (ret)
1741                return ret;
1742
1743        for (i = 0; i < insn_cnt; i++, insn++) {
1744                if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745                    !bpf_pseudo_kfunc_call(insn))
1746                        continue;
1747
1748                if (!env->bpf_capable) {
1749                        verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1750                        return -EPERM;
1751                }
1752
1753                if (bpf_pseudo_func(insn)) {
1754                        ret = add_subprog(env, i + insn->imm + 1);
1755                        if (ret >= 0)
1756                                /* remember subprog */
1757                                insn[1].imm = ret;
1758                } else if (bpf_pseudo_call(insn)) {
1759                        ret = add_subprog(env, i + insn->imm + 1);
1760                } else {
1761                        ret = add_kfunc_call(env, insn->imm);
1762                }
1763
1764                if (ret < 0)
1765                        return ret;
1766        }
1767
1768        /* Add a fake 'exit' subprog which could simplify subprog iteration
1769         * logic. 'subprog_cnt' should not be increased.
1770         */
1771        subprog[env->subprog_cnt].start = insn_cnt;
1772
1773        if (env->log.level & BPF_LOG_LEVEL2)
1774                for (i = 0; i < env->subprog_cnt; i++)
1775                        verbose(env, "func#%d @%d\n", i, subprog[i].start);
1776
1777        return 0;
1778}
1779
1780static int check_subprogs(struct bpf_verifier_env *env)
1781{
1782        int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783        struct bpf_subprog_info *subprog = env->subprog_info;
1784        struct bpf_insn *insn = env->prog->insnsi;
1785        int insn_cnt = env->prog->len;
1786
1787        /* now check that all jumps are within the same subprog */
1788        subprog_start = subprog[cur_subprog].start;
1789        subprog_end = subprog[cur_subprog + 1].start;
1790        for (i = 0; i < insn_cnt; i++) {
1791                u8 code = insn[i].code;
1792
1793                if (code == (BPF_JMP | BPF_CALL) &&
1794                    insn[i].imm == BPF_FUNC_tail_call &&
1795                    insn[i].src_reg != BPF_PSEUDO_CALL)
1796                        subprog[cur_subprog].has_tail_call = true;
1797                if (BPF_CLASS(code) == BPF_LD &&
1798                    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799                        subprog[cur_subprog].has_ld_abs = true;
1800                if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1801                        goto next;
1802                if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803                        goto next;
1804                off = i + insn[i].off + 1;
1805                if (off < subprog_start || off >= subprog_end) {
1806                        verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807                        return -EINVAL;
1808                }
1809next:
1810                if (i == subprog_end - 1) {
1811                        /* to avoid fall-through from one subprog into another
1812                         * the last insn of the subprog should be either exit
1813                         * or unconditional jump back
1814                         */
1815                        if (code != (BPF_JMP | BPF_EXIT) &&
1816                            code != (BPF_JMP | BPF_JA)) {
1817                                verbose(env, "last insn is not an exit or jmp\n");
1818                                return -EINVAL;
1819                        }
1820                        subprog_start = subprog_end;
1821                        cur_subprog++;
1822                        if (cur_subprog < env->subprog_cnt)
1823                                subprog_end = subprog[cur_subprog + 1].start;
1824                }
1825        }
1826        return 0;
1827}
1828
1829/* Parentage chain of this register (or stack slot) should take care of all
1830 * issues like callee-saved registers, stack slot allocation time, etc.
1831 */
1832static int mark_reg_read(struct bpf_verifier_env *env,
1833                         const struct bpf_reg_state *state,
1834                         struct bpf_reg_state *parent, u8 flag)
1835{
1836        bool writes = parent == state->parent; /* Observe write marks */
1837        int cnt = 0;
1838
1839        while (parent) {
1840                /* if read wasn't screened by an earlier write ... */
1841                if (writes && state->live & REG_LIVE_WRITTEN)
1842                        break;
1843                if (parent->live & REG_LIVE_DONE) {
1844                        verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845                                reg_type_str[parent->type],
1846                                parent->var_off.value, parent->off);
1847                        return -EFAULT;
1848                }
1849                /* The first condition is more likely to be true than the
1850                 * second, checked it first.
1851                 */
1852                if ((parent->live & REG_LIVE_READ) == flag ||
1853                    parent->live & REG_LIVE_READ64)
1854                        /* The parentage chain never changes and
1855                         * this parent was already marked as LIVE_READ.
1856                         * There is no need to keep walking the chain again and
1857                         * keep re-marking all parents as LIVE_READ.
1858                         * This case happens when the same register is read
1859                         * multiple times without writes into it in-between.
1860                         * Also, if parent has the stronger REG_LIVE_READ64 set,
1861                         * then no need to set the weak REG_LIVE_READ32.
1862                         */
1863                        break;
1864                /* ... then we depend on parent's value */
1865                parent->live |= flag;
1866                /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867                if (flag == REG_LIVE_READ64)
1868                        parent->live &= ~REG_LIVE_READ32;
1869                state = parent;
1870                parent = state->parent;
1871                writes = true;
1872                cnt++;
1873        }
1874
1875        if (env->longest_mark_read_walk < cnt)
1876                env->longest_mark_read_walk = cnt;
1877        return 0;
1878}
1879
1880/* This function is supposed to be used by the following 32-bit optimization
1881 * code only. It returns TRUE if the source or destination register operates
1882 * on 64-bit, otherwise return FALSE.
1883 */
1884static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885                     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886{
1887        u8 code, class, op;
1888
1889        code = insn->code;
1890        class = BPF_CLASS(code);
1891        op = BPF_OP(code);
1892        if (class == BPF_JMP) {
1893                /* BPF_EXIT for "main" will reach here. Return TRUE
1894                 * conservatively.
1895                 */
1896                if (op == BPF_EXIT)
1897                        return true;
1898                if (op == BPF_CALL) {
1899                        /* BPF to BPF call will reach here because of marking
1900                         * caller saved clobber with DST_OP_NO_MARK for which we
1901                         * don't care the register def because they are anyway
1902                         * marked as NOT_INIT already.
1903                         */
1904                        if (insn->src_reg == BPF_PSEUDO_CALL)
1905                                return false;
1906                        /* Helper call will reach here because of arg type
1907                         * check, conservatively return TRUE.
1908                         */
1909                        if (t == SRC_OP)
1910                                return true;
1911
1912                        return false;
1913                }
1914        }
1915
1916        if (class == BPF_ALU64 || class == BPF_JMP ||
1917            /* BPF_END always use BPF_ALU class. */
1918            (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919                return true;
1920
1921        if (class == BPF_ALU || class == BPF_JMP32)
1922                return false;
1923
1924        if (class == BPF_LDX) {
1925                if (t != SRC_OP)
1926                        return BPF_SIZE(code) == BPF_DW;
1927                /* LDX source must be ptr. */
1928                return true;
1929        }
1930
1931        if (class == BPF_STX) {
1932                /* BPF_STX (including atomic variants) has multiple source
1933                 * operands, one of which is a ptr. Check whether the caller is
1934                 * asking about it.
1935                 */
1936                if (t == SRC_OP && reg->type != SCALAR_VALUE)
1937                        return true;
1938                return BPF_SIZE(code) == BPF_DW;
1939        }
1940
1941        if (class == BPF_LD) {
1942                u8 mode = BPF_MODE(code);
1943
1944                /* LD_IMM64 */
1945                if (mode == BPF_IMM)
1946                        return true;
1947
1948                /* Both LD_IND and LD_ABS return 32-bit data. */
1949                if (t != SRC_OP)
1950                        return  false;
1951
1952                /* Implicit ctx ptr. */
1953                if (regno == BPF_REG_6)
1954                        return true;
1955
1956                /* Explicit source could be any width. */
1957                return true;
1958        }
1959
1960        if (class == BPF_ST)
1961                /* The only source register for BPF_ST is a ptr. */
1962                return true;
1963
1964        /* Conservatively return true at default. */
1965        return true;
1966}
1967
1968/* Return the regno defined by the insn, or -1. */
1969static int insn_def_regno(const struct bpf_insn *insn)
1970{
1971        switch (BPF_CLASS(insn->code)) {
1972        case BPF_JMP:
1973        case BPF_JMP32:
1974        case BPF_ST:
1975                return -1;
1976        case BPF_STX:
1977                if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978                    (insn->imm & BPF_FETCH)) {
1979                        if (insn->imm == BPF_CMPXCHG)
1980                                return BPF_REG_0;
1981                        else
1982                                return insn->src_reg;
1983                } else {
1984                        return -1;
1985                }
1986        default:
1987                return insn->dst_reg;
1988        }
1989}
1990
1991/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993{
1994        int dst_reg = insn_def_regno(insn);
1995
1996        if (dst_reg == -1)
1997                return false;
1998
1999        return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2000}
2001
2002static void mark_insn_zext(struct bpf_verifier_env *env,
2003                           struct bpf_reg_state *reg)
2004{
2005        s32 def_idx = reg->subreg_def;
2006
2007        if (def_idx == DEF_NOT_SUBREG)
2008                return;
2009
2010        env->insn_aux_data[def_idx - 1].zext_dst = true;
2011        /* The dst will be zero extended, so won't be sub-register anymore. */
2012        reg->subreg_def = DEF_NOT_SUBREG;
2013}
2014
2015static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2016                         enum reg_arg_type t)
2017{
2018        struct bpf_verifier_state *vstate = env->cur_state;
2019        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2020        struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2021        struct bpf_reg_state *reg, *regs = state->regs;
2022        bool rw64;
2023
2024        if (regno >= MAX_BPF_REG) {
2025                verbose(env, "R%d is invalid\n", regno);
2026                return -EINVAL;
2027        }
2028
2029        reg = &regs[regno];
2030        rw64 = is_reg64(env, insn, regno, reg, t);
2031        if (t == SRC_OP) {
2032                /* check whether register used as source operand can be read */
2033                if (reg->type == NOT_INIT) {
2034                        verbose(env, "R%d !read_ok\n", regno);
2035                        return -EACCES;
2036                }
2037                /* We don't need to worry about FP liveness because it's read-only */
2038                if (regno == BPF_REG_FP)
2039                        return 0;
2040
2041                if (rw64)
2042                        mark_insn_zext(env, reg);
2043
2044                return mark_reg_read(env, reg, reg->parent,
2045                                     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2046        } else {
2047                /* check whether register used as dest operand can be written to */
2048                if (regno == BPF_REG_FP) {
2049                        verbose(env, "frame pointer is read only\n");
2050                        return -EACCES;
2051                }
2052                reg->live |= REG_LIVE_WRITTEN;
2053                reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2054                if (t == DST_OP)
2055                        mark_reg_unknown(env, regs, regno);
2056        }
2057        return 0;
2058}
2059
2060/* for any branch, call, exit record the history of jmps in the given state */
2061static int push_jmp_history(struct bpf_verifier_env *env,
2062                            struct bpf_verifier_state *cur)
2063{
2064        u32 cnt = cur->jmp_history_cnt;
2065        struct bpf_idx_pair *p;
2066
2067        cnt++;
2068        p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069        if (!p)
2070                return -ENOMEM;
2071        p[cnt - 1].idx = env->insn_idx;
2072        p[cnt - 1].prev_idx = env->prev_insn_idx;
2073        cur->jmp_history = p;
2074        cur->jmp_history_cnt = cnt;
2075        return 0;
2076}
2077
2078/* Backtrack one insn at a time. If idx is not at the top of recorded
2079 * history then previous instruction came from straight line execution.
2080 */
2081static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082                             u32 *history)
2083{
2084        u32 cnt = *history;
2085
2086        if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087                i = st->jmp_history[cnt - 1].prev_idx;
2088                (*history)--;
2089        } else {
2090                i--;
2091        }
2092        return i;
2093}
2094
2095static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096{
2097        const struct btf_type *func;
2098
2099        if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100                return NULL;
2101
2102        func = btf_type_by_id(btf_vmlinux, insn->imm);
2103        return btf_name_by_offset(btf_vmlinux, func->name_off);
2104}
2105
2106/* For given verifier state backtrack_insn() is called from the last insn to
2107 * the first insn. Its purpose is to compute a bitmask of registers and
2108 * stack slots that needs precision in the parent verifier state.
2109 */
2110static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111                          u32 *reg_mask, u64 *stack_mask)
2112{
2113        const struct bpf_insn_cbs cbs = {
2114                .cb_call        = disasm_kfunc_name,
2115                .cb_print       = verbose,
2116                .private_data   = env,
2117        };
2118        struct bpf_insn *insn = env->prog->insnsi + idx;
2119        u8 class = BPF_CLASS(insn->code);
2120        u8 opcode = BPF_OP(insn->code);
2121        u8 mode = BPF_MODE(insn->code);
2122        u32 dreg = 1u << insn->dst_reg;
2123        u32 sreg = 1u << insn->src_reg;
2124        u32 spi;
2125
2126        if (insn->code == 0)
2127                return 0;
2128        if (env->log.level & BPF_LOG_LEVEL) {
2129                verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130                verbose(env, "%d: ", idx);
2131                print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132        }
2133
2134        if (class == BPF_ALU || class == BPF_ALU64) {
2135                if (!(*reg_mask & dreg))
2136                        return 0;
2137                if (opcode == BPF_MOV) {
2138                        if (BPF_SRC(insn->code) == BPF_X) {
2139                                /* dreg = sreg
2140                                 * dreg needs precision after this insn
2141                                 * sreg needs precision before this insn
2142                                 */
2143                                *reg_mask &= ~dreg;
2144                                *reg_mask |= sreg;
2145                        } else {
2146                                /* dreg = K
2147                                 * dreg needs precision after this insn.
2148                                 * Corresponding register is already marked
2149                                 * as precise=true in this verifier state.
2150                                 * No further markings in parent are necessary
2151                                 */
2152                                *reg_mask &= ~dreg;
2153                        }
2154                } else {
2155                        if (BPF_SRC(insn->code) == BPF_X) {
2156                                /* dreg += sreg
2157                                 * both dreg and sreg need precision
2158                                 * before this insn
2159                                 */
2160                                *reg_mask |= sreg;
2161                        } /* else dreg += K
2162                           * dreg still needs precision before this insn
2163                           */
2164                }
2165        } else if (class == BPF_LDX) {
2166                if (!(*reg_mask & dreg))
2167                        return 0;
2168                *reg_mask &= ~dreg;
2169
2170                /* scalars can only be spilled into stack w/o losing precision.
2171                 * Load from any other memory can be zero extended.
2172                 * The desire to keep that precision is already indicated
2173                 * by 'precise' mark in corresponding register of this state.
2174                 * No further tracking necessary.
2175                 */
2176                if (insn->src_reg != BPF_REG_FP)
2177                        return 0;
2178                if (BPF_SIZE(insn->code) != BPF_DW)
2179                        return 0;
2180
2181                /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182                 * that [fp - off] slot contains scalar that needs to be
2183                 * tracked with precision
2184                 */
2185                spi = (-insn->off - 1) / BPF_REG_SIZE;
2186                if (spi >= 64) {
2187                        verbose(env, "BUG spi %d\n", spi);
2188                        WARN_ONCE(1, "verifier backtracking bug");
2189                        return -EFAULT;
2190                }
2191                *stack_mask |= 1ull << spi;
2192        } else if (class == BPF_STX || class == BPF_ST) {
2193                if (*reg_mask & dreg)
2194                        /* stx & st shouldn't be using _scalar_ dst_reg
2195                         * to access memory. It means backtracking
2196                         * encountered a case of pointer subtraction.
2197                         */
2198                        return -ENOTSUPP;
2199                /* scalars can only be spilled into stack */
2200                if (insn->dst_reg != BPF_REG_FP)
2201                        return 0;
2202                if (BPF_SIZE(insn->code) != BPF_DW)
2203                        return 0;
2204                spi = (-insn->off - 1) / BPF_REG_SIZE;
2205                if (spi >= 64) {
2206                        verbose(env, "BUG spi %d\n", spi);
2207                        WARN_ONCE(1, "verifier backtracking bug");
2208                        return -EFAULT;
2209                }
2210                if (!(*stack_mask & (1ull << spi)))
2211                        return 0;
2212                *stack_mask &= ~(1ull << spi);
2213                if (class == BPF_STX)
2214                        *reg_mask |= sreg;
2215        } else if (class == BPF_JMP || class == BPF_JMP32) {
2216                if (opcode == BPF_CALL) {
2217                        if (insn->src_reg == BPF_PSEUDO_CALL)
2218                                return -ENOTSUPP;
2219                        /* regular helper call sets R0 */
2220                        *reg_mask &= ~1;
2221                        if (*reg_mask & 0x3f) {
2222                                /* if backtracing was looking for registers R1-R5
2223                                 * they should have been found already.
2224                                 */
2225                                verbose(env, "BUG regs %x\n", *reg_mask);
2226                                WARN_ONCE(1, "verifier backtracking bug");
2227                                return -EFAULT;
2228                        }
2229                } else if (opcode == BPF_EXIT) {
2230                        return -ENOTSUPP;
2231                }
2232        } else if (class == BPF_LD) {
2233                if (!(*reg_mask & dreg))
2234                        return 0;
2235                *reg_mask &= ~dreg;
2236                /* It's ld_imm64 or ld_abs or ld_ind.
2237                 * For ld_imm64 no further tracking of precision
2238                 * into parent is necessary
2239                 */
2240                if (mode == BPF_IND || mode == BPF_ABS)
2241                        /* to be analyzed */
2242                        return -ENOTSUPP;
2243        }
2244        return 0;
2245}
2246
2247/* the scalar precision tracking algorithm:
2248 * . at the start all registers have precise=false.
2249 * . scalar ranges are tracked as normal through alu and jmp insns.
2250 * . once precise value of the scalar register is used in:
2251 *   .  ptr + scalar alu
2252 *   . if (scalar cond K|scalar)
2253 *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2254 *   backtrack through the verifier states and mark all registers and
2255 *   stack slots with spilled constants that these scalar regisers
2256 *   should be precise.
2257 * . during state pruning two registers (or spilled stack slots)
2258 *   are equivalent if both are not precise.
2259 *
2260 * Note the verifier cannot simply walk register parentage chain,
2261 * since many different registers and stack slots could have been
2262 * used to compute single precise scalar.
2263 *
2264 * The approach of starting with precise=true for all registers and then
2265 * backtrack to mark a register as not precise when the verifier detects
2266 * that program doesn't care about specific value (e.g., when helper
2267 * takes register as ARG_ANYTHING parameter) is not safe.
2268 *
2269 * It's ok to walk single parentage chain of the verifier states.
2270 * It's possible that this backtracking will go all the way till 1st insn.
2271 * All other branches will be explored for needing precision later.
2272 *
2273 * The backtracking needs to deal with cases like:
2274 *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275 * r9 -= r8
2276 * r5 = r9
2277 * if r5 > 0x79f goto pc+7
2278 *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279 * r5 += 1
2280 * ...
2281 * call bpf_perf_event_output#25
2282 *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283 *
2284 * and this case:
2285 * r6 = 1
2286 * call foo // uses callee's r6 inside to compute r0
2287 * r0 += r6
2288 * if r0 == 0 goto
2289 *
2290 * to track above reg_mask/stack_mask needs to be independent for each frame.
2291 *
2292 * Also if parent's curframe > frame where backtracking started,
2293 * the verifier need to mark registers in both frames, otherwise callees
2294 * may incorrectly prune callers. This is similar to
2295 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296 *
2297 * For now backtracking falls back into conservative marking.
2298 */
2299static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300                                     struct bpf_verifier_state *st)
2301{
2302        struct bpf_func_state *func;
2303        struct bpf_reg_state *reg;
2304        int i, j;
2305
2306        /* big hammer: mark all scalars precise in this path.
2307         * pop_stack may still get !precise scalars.
2308         */
2309        for (; st; st = st->parent)
2310                for (i = 0; i <= st->curframe; i++) {
2311                        func = st->frame[i];
2312                        for (j = 0; j < BPF_REG_FP; j++) {
2313                                reg = &func->regs[j];
2314                                if (reg->type != SCALAR_VALUE)
2315                                        continue;
2316                                reg->precise = true;
2317                        }
2318                        for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319                                if (func->stack[j].slot_type[0] != STACK_SPILL)
2320                                        continue;
2321                                reg = &func->stack[j].spilled_ptr;
2322                                if (reg->type != SCALAR_VALUE)
2323                                        continue;
2324                                reg->precise = true;
2325                        }
2326                }
2327}
2328
2329static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330                                  int spi)
2331{
2332        struct bpf_verifier_state *st = env->cur_state;
2333        int first_idx = st->first_insn_idx;
2334        int last_idx = env->insn_idx;
2335        struct bpf_func_state *func;
2336        struct bpf_reg_state *reg;
2337        u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338        u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2339        bool skip_first = true;
2340        bool new_marks = false;
2341        int i, err;
2342
2343        if (!env->bpf_capable)
2344                return 0;
2345
2346        func = st->frame[st->curframe];
2347        if (regno >= 0) {
2348                reg = &func->regs[regno];
2349                if (reg->type != SCALAR_VALUE) {
2350                        WARN_ONCE(1, "backtracing misuse");
2351                        return -EFAULT;
2352                }
2353                if (!reg->precise)
2354                        new_marks = true;
2355                else
2356                        reg_mask = 0;
2357                reg->precise = true;
2358        }
2359
2360        while (spi >= 0) {
2361                if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362                        stack_mask = 0;
2363                        break;
2364                }
2365                reg = &func->stack[spi].spilled_ptr;
2366                if (reg->type != SCALAR_VALUE) {
2367                        stack_mask = 0;
2368                        break;
2369                }
2370                if (!reg->precise)
2371                        new_marks = true;
2372                else
2373                        stack_mask = 0;
2374                reg->precise = true;
2375                break;
2376        }
2377
2378        if (!new_marks)
2379                return 0;
2380        if (!reg_mask && !stack_mask)
2381                return 0;
2382        for (;;) {
2383                DECLARE_BITMAP(mask, 64);
2384                u32 history = st->jmp_history_cnt;
2385
2386                if (env->log.level & BPF_LOG_LEVEL)
2387                        verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388                for (i = last_idx;;) {
2389                        if (skip_first) {
2390                                err = 0;
2391                                skip_first = false;
2392                        } else {
2393                                err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2394                        }
2395                        if (err == -ENOTSUPP) {
2396                                mark_all_scalars_precise(env, st);
2397                                return 0;
2398                        } else if (err) {
2399                                return err;
2400                        }
2401                        if (!reg_mask && !stack_mask)
2402                                /* Found assignment(s) into tracked register in this state.
2403                                 * Since this state is already marked, just return.
2404                                 * Nothing to be tracked further in the parent state.
2405                                 */
2406                                return 0;
2407                        if (i == first_idx)
2408                                break;
2409                        i = get_prev_insn_idx(st, i, &history);
2410                        if (i >= env->prog->len) {
2411                                /* This can happen if backtracking reached insn 0
2412                                 * and there are still reg_mask or stack_mask
2413                                 * to backtrack.
2414                                 * It means the backtracking missed the spot where
2415                                 * particular register was initialized with a constant.
2416                                 */
2417                                verbose(env, "BUG backtracking idx %d\n", i);
2418                                WARN_ONCE(1, "verifier backtracking bug");
2419                                return -EFAULT;
2420                        }
2421                }
2422                st = st->parent;
2423                if (!st)
2424                        break;
2425
2426                new_marks = false;
2427                func = st->frame[st->curframe];
2428                bitmap_from_u64(mask, reg_mask);
2429                for_each_set_bit(i, mask, 32) {
2430                        reg = &func->regs[i];
2431                        if (reg->type != SCALAR_VALUE) {
2432                                reg_mask &= ~(1u << i);
2433                                continue;
2434                        }
2435                        if (!reg->precise)
2436                                new_marks = true;
2437                        reg->precise = true;
2438                }
2439
2440                bitmap_from_u64(mask, stack_mask);
2441                for_each_set_bit(i, mask, 64) {
2442                        if (i >= func->allocated_stack / BPF_REG_SIZE) {
2443                                /* the sequence of instructions:
2444                                 * 2: (bf) r3 = r10
2445                                 * 3: (7b) *(u64 *)(r3 -8) = r0
2446                                 * 4: (79) r4 = *(u64 *)(r10 -8)
2447                                 * doesn't contain jmps. It's backtracked
2448                                 * as a single block.
2449                                 * During backtracking insn 3 is not recognized as
2450                                 * stack access, so at the end of backtracking
2451                                 * stack slot fp-8 is still marked in stack_mask.
2452                                 * However the parent state may not have accessed
2453                                 * fp-8 and it's "unallocated" stack space.
2454                                 * In such case fallback to conservative.
2455                                 */
2456                                mark_all_scalars_precise(env, st);
2457                                return 0;
2458                        }
2459
2460                        if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461                                stack_mask &= ~(1ull << i);
2462                                continue;
2463                        }
2464                        reg = &func->stack[i].spilled_ptr;
2465                        if (reg->type != SCALAR_VALUE) {
2466                                stack_mask &= ~(1ull << i);
2467                                continue;
2468                        }
2469                        if (!reg->precise)
2470                                new_marks = true;
2471                        reg->precise = true;
2472                }
2473                if (env->log.level & BPF_LOG_LEVEL) {
2474                        print_verifier_state(env, func);
2475                        verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476                                new_marks ? "didn't have" : "already had",
2477                                reg_mask, stack_mask);
2478                }
2479
2480                if (!reg_mask && !stack_mask)
2481                        break;
2482                if (!new_marks)
2483                        break;
2484
2485                last_idx = st->last_insn_idx;
2486                first_idx = st->first_insn_idx;
2487        }
2488        return 0;
2489}
2490
2491static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492{
2493        return __mark_chain_precision(env, regno, -1);
2494}
2495
2496static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497{
2498        return __mark_chain_precision(env, -1, spi);
2499}
2500
2501static bool is_spillable_regtype(enum bpf_reg_type type)
2502{
2503        switch (type) {
2504        case PTR_TO_MAP_VALUE:
2505        case PTR_TO_MAP_VALUE_OR_NULL:
2506        case PTR_TO_STACK:
2507        case PTR_TO_CTX:
2508        case PTR_TO_PACKET:
2509        case PTR_TO_PACKET_META:
2510        case PTR_TO_PACKET_END:
2511        case PTR_TO_FLOW_KEYS:
2512        case CONST_PTR_TO_MAP:
2513        case PTR_TO_SOCKET:
2514        case PTR_TO_SOCKET_OR_NULL:
2515        case PTR_TO_SOCK_COMMON:
2516        case PTR_TO_SOCK_COMMON_OR_NULL:
2517        case PTR_TO_TCP_SOCK:
2518        case PTR_TO_TCP_SOCK_OR_NULL:
2519        case PTR_TO_XDP_SOCK:
2520        case PTR_TO_BTF_ID:
2521        case PTR_TO_BTF_ID_OR_NULL:
2522        case PTR_TO_RDONLY_BUF:
2523        case PTR_TO_RDONLY_BUF_OR_NULL:
2524        case PTR_TO_RDWR_BUF:
2525        case PTR_TO_RDWR_BUF_OR_NULL:
2526        case PTR_TO_PERCPU_BTF_ID:
2527        case PTR_TO_MEM:
2528        case PTR_TO_MEM_OR_NULL:
2529        case PTR_TO_FUNC:
2530        case PTR_TO_MAP_KEY:
2531                return true;
2532        default:
2533                return false;
2534        }
2535}
2536
2537/* Does this register contain a constant zero? */
2538static bool register_is_null(struct bpf_reg_state *reg)
2539{
2540        return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541}
2542
2543static bool register_is_const(struct bpf_reg_state *reg)
2544{
2545        return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546}
2547
2548static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549{
2550        return tnum_is_unknown(reg->var_off) &&
2551               reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552               reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553               reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554               reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555}
2556
2557static bool register_is_bounded(struct bpf_reg_state *reg)
2558{
2559        return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560}
2561
2562static bool __is_pointer_value(bool allow_ptr_leaks,
2563                               const struct bpf_reg_state *reg)
2564{
2565        if (allow_ptr_leaks)
2566                return false;
2567
2568        return reg->type != SCALAR_VALUE;
2569}
2570
2571static void save_register_state(struct bpf_func_state *state,
2572                                int spi, struct bpf_reg_state *reg)
2573{
2574        int i;
2575
2576        state->stack[spi].spilled_ptr = *reg;
2577        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578
2579        for (i = 0; i < BPF_REG_SIZE; i++)
2580                state->stack[spi].slot_type[i] = STACK_SPILL;
2581}
2582
2583/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2584 * stack boundary and alignment are checked in check_mem_access()
2585 */
2586static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587                                       /* stack frame we're writing to */
2588                                       struct bpf_func_state *state,
2589                                       int off, int size, int value_regno,
2590                                       int insn_idx)
2591{
2592        struct bpf_func_state *cur; /* state of the current function */
2593        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2594        u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2595        struct bpf_reg_state *reg = NULL;
2596
2597        err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2598        if (err)
2599                return err;
2600        /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601         * so it's aligned access and [off, off + size) are within stack limits
2602         */
2603        if (!env->allow_ptr_leaks &&
2604            state->stack[spi].slot_type[0] == STACK_SPILL &&
2605            size != BPF_REG_SIZE) {
2606                verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607                return -EACCES;
2608        }
2609
2610        cur = env->cur_state->frame[env->cur_state->curframe];
2611        if (value_regno >= 0)
2612                reg = &cur->regs[value_regno];
2613        if (!env->bypass_spec_v4) {
2614                bool sanitize = reg && is_spillable_regtype(reg->type);
2615
2616                for (i = 0; i < size; i++) {
2617                        if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2618                                sanitize = true;
2619                                break;
2620                        }
2621                }
2622
2623                if (sanitize)
2624                        env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2625        }
2626
2627        if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2628            !register_is_null(reg) && env->bpf_capable) {
2629                if (dst_reg != BPF_REG_FP) {
2630                        /* The backtracking logic can only recognize explicit
2631                         * stack slot address like [fp - 8]. Other spill of
2632                         * scalar via different register has to be conservative.
2633                         * Backtrack from here and mark all registers as precise
2634                         * that contributed into 'reg' being a constant.
2635                         */
2636                        err = mark_chain_precision(env, value_regno);
2637                        if (err)
2638                                return err;
2639                }
2640                save_register_state(state, spi, reg);
2641        } else if (reg && is_spillable_regtype(reg->type)) {
2642                /* register containing pointer is being spilled into stack */
2643                if (size != BPF_REG_SIZE) {
2644                        verbose_linfo(env, insn_idx, "; ");
2645                        verbose(env, "invalid size of register spill\n");
2646                        return -EACCES;
2647                }
2648                if (state != cur && reg->type == PTR_TO_STACK) {
2649                        verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2650                        return -EINVAL;
2651                }
2652                save_register_state(state, spi, reg);
2653        } else {
2654                u8 type = STACK_MISC;
2655
2656                /* regular write of data into stack destroys any spilled ptr */
2657                state->stack[spi].spilled_ptr.type = NOT_INIT;
2658                /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2659                if (state->stack[spi].slot_type[0] == STACK_SPILL)
2660                        for (i = 0; i < BPF_REG_SIZE; i++)
2661                                state->stack[spi].slot_type[i] = STACK_MISC;
2662
2663                /* only mark the slot as written if all 8 bytes were written
2664                 * otherwise read propagation may incorrectly stop too soon
2665                 * when stack slots are partially written.
2666                 * This heuristic means that read propagation will be
2667                 * conservative, since it will add reg_live_read marks
2668                 * to stack slots all the way to first state when programs
2669                 * writes+reads less than 8 bytes
2670                 */
2671                if (size == BPF_REG_SIZE)
2672                        state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2673
2674                /* when we zero initialize stack slots mark them as such */
2675                if (reg && register_is_null(reg)) {
2676                        /* backtracking doesn't work for STACK_ZERO yet. */
2677                        err = mark_chain_precision(env, value_regno);
2678                        if (err)
2679                                return err;
2680                        type = STACK_ZERO;
2681                }
2682
2683                /* Mark slots affected by this stack write. */
2684                for (i = 0; i < size; i++)
2685                        state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2686                                type;
2687        }
2688        return 0;
2689}
2690
2691/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2692 * known to contain a variable offset.
2693 * This function checks whether the write is permitted and conservatively
2694 * tracks the effects of the write, considering that each stack slot in the
2695 * dynamic range is potentially written to.
2696 *
2697 * 'off' includes 'regno->off'.
2698 * 'value_regno' can be -1, meaning that an unknown value is being written to
2699 * the stack.
2700 *
2701 * Spilled pointers in range are not marked as written because we don't know
2702 * what's going to be actually written. This means that read propagation for
2703 * future reads cannot be terminated by this write.
2704 *
2705 * For privileged programs, uninitialized stack slots are considered
2706 * initialized by this write (even though we don't know exactly what offsets
2707 * are going to be written to). The idea is that we don't want the verifier to
2708 * reject future reads that access slots written to through variable offsets.
2709 */
2710static int check_stack_write_var_off(struct bpf_verifier_env *env,
2711                                     /* func where register points to */
2712                                     struct bpf_func_state *state,
2713                                     int ptr_regno, int off, int size,
2714                                     int value_regno, int insn_idx)
2715{
2716        struct bpf_func_state *cur; /* state of the current function */
2717        int min_off, max_off;
2718        int i, err;
2719        struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2720        bool writing_zero = false;
2721        /* set if the fact that we're writing a zero is used to let any
2722         * stack slots remain STACK_ZERO
2723         */
2724        bool zero_used = false;
2725
2726        cur = env->cur_state->frame[env->cur_state->curframe];
2727        ptr_reg = &cur->regs[ptr_regno];
2728        min_off = ptr_reg->smin_value + off;
2729        max_off = ptr_reg->smax_value + off + size;
2730        if (value_regno >= 0)
2731                value_reg = &cur->regs[value_regno];
2732        if (value_reg && register_is_null(value_reg))
2733                writing_zero = true;
2734
2735        err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2736        if (err)
2737                return err;
2738
2739
2740        /* Variable offset writes destroy any spilled pointers in range. */
2741        for (i = min_off; i < max_off; i++) {
2742                u8 new_type, *stype;
2743                int slot, spi;
2744
2745                slot = -i - 1;
2746                spi = slot / BPF_REG_SIZE;
2747                stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2748
2749                if (!env->allow_ptr_leaks
2750                                && *stype != NOT_INIT
2751                                && *stype != SCALAR_VALUE) {
2752                        /* Reject the write if there's are spilled pointers in
2753                         * range. If we didn't reject here, the ptr status
2754                         * would be erased below (even though not all slots are
2755                         * actually overwritten), possibly opening the door to
2756                         * leaks.
2757                         */
2758                        verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2759                                insn_idx, i);
2760                        return -EINVAL;
2761                }
2762
2763                /* Erase all spilled pointers. */
2764                state->stack[spi].spilled_ptr.type = NOT_INIT;
2765
2766                /* Update the slot type. */
2767                new_type = STACK_MISC;
2768                if (writing_zero && *stype == STACK_ZERO) {
2769                        new_type = STACK_ZERO;
2770                        zero_used = true;
2771                }
2772                /* If the slot is STACK_INVALID, we check whether it's OK to
2773                 * pretend that it will be initialized by this write. The slot
2774                 * might not actually be written to, and so if we mark it as
2775                 * initialized future reads might leak uninitialized memory.
2776                 * For privileged programs, we will accept such reads to slots
2777                 * that may or may not be written because, if we're reject
2778                 * them, the error would be too confusing.
2779                 */
2780                if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2781                        verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2782                                        insn_idx, i);
2783                        return -EINVAL;
2784                }
2785                *stype = new_type;
2786        }
2787        if (zero_used) {
2788                /* backtracking doesn't work for STACK_ZERO yet. */
2789                err = mark_chain_precision(env, value_regno);
2790                if (err)
2791                        return err;
2792        }
2793        return 0;
2794}
2795
2796/* When register 'dst_regno' is assigned some values from stack[min_off,
2797 * max_off), we set the register's type according to the types of the
2798 * respective stack slots. If all the stack values are known to be zeros, then
2799 * so is the destination reg. Otherwise, the register is considered to be
2800 * SCALAR. This function does not deal with register filling; the caller must
2801 * ensure that all spilled registers in the stack range have been marked as
2802 * read.
2803 */
2804static void mark_reg_stack_read(struct bpf_verifier_env *env,
2805                                /* func where src register points to */
2806                                struct bpf_func_state *ptr_state,
2807                                int min_off, int max_off, int dst_regno)
2808{
2809        struct bpf_verifier_state *vstate = env->cur_state;
2810        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2811        int i, slot, spi;
2812        u8 *stype;
2813        int zeros = 0;
2814
2815        for (i = min_off; i < max_off; i++) {
2816                slot = -i - 1;
2817                spi = slot / BPF_REG_SIZE;
2818                stype = ptr_state->stack[spi].slot_type;
2819                if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2820                        break;
2821                zeros++;
2822        }
2823        if (zeros == max_off - min_off) {
2824                /* any access_size read into register is zero extended,
2825                 * so the whole register == const_zero
2826                 */
2827                __mark_reg_const_zero(&state->regs[dst_regno]);
2828                /* backtracking doesn't support STACK_ZERO yet,
2829                 * so mark it precise here, so that later
2830                 * backtracking can stop here.
2831                 * Backtracking may not need this if this register
2832                 * doesn't participate in pointer adjustment.
2833                 * Forward propagation of precise flag is not
2834                 * necessary either. This mark is only to stop
2835                 * backtracking. Any register that contributed
2836                 * to const 0 was marked precise before spill.
2837                 */
2838                state->regs[dst_regno].precise = true;
2839        } else {
2840                /* have read misc data from the stack */
2841                mark_reg_unknown(env, state->regs, dst_regno);
2842        }
2843        state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2844}
2845
2846/* Read the stack at 'off' and put the results into the register indicated by
2847 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2848 * spilled reg.
2849 *
2850 * 'dst_regno' can be -1, meaning that the read value is not going to a
2851 * register.
2852 *
2853 * The access is assumed to be within the current stack bounds.
2854 */
2855static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2856                                      /* func where src register points to */
2857                                      struct bpf_func_state *reg_state,
2858                                      int off, int size, int dst_regno)
2859{
2860        struct bpf_verifier_state *vstate = env->cur_state;
2861        struct bpf_func_state *state = vstate->frame[vstate->curframe];
2862        int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2863        struct bpf_reg_state *reg;
2864        u8 *stype;
2865
2866        stype = reg_state->stack[spi].slot_type;
2867        reg = &reg_state->stack[spi].spilled_ptr;
2868
2869        if (stype[0] == STACK_SPILL) {
2870                if (size != BPF_REG_SIZE) {
2871                        if (reg->type != SCALAR_VALUE) {
2872                                verbose_linfo(env, env->insn_idx, "; ");
2873                                verbose(env, "invalid size of register fill\n");
2874                                return -EACCES;
2875                        }
2876                        if (dst_regno >= 0) {
2877                                mark_reg_unknown(env, state->regs, dst_regno);
2878                                state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2879                        }
2880                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2881                        return 0;
2882                }
2883                for (i = 1; i < BPF_REG_SIZE; i++) {
2884                        if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2885                                verbose(env, "corrupted spill memory\n");
2886                                return -EACCES;
2887                        }
2888                }
2889
2890                if (dst_regno >= 0) {
2891                        /* restore register state from stack */
2892                        state->regs[dst_regno] = *reg;
2893                        /* mark reg as written since spilled pointer state likely
2894                         * has its liveness marks cleared by is_state_visited()
2895                         * which resets stack/reg liveness for state transitions
2896                         */
2897                        state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2898                } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2899                        /* If dst_regno==-1, the caller is asking us whether
2900                         * it is acceptable to use this value as a SCALAR_VALUE
2901                         * (e.g. for XADD).
2902                         * We must not allow unprivileged callers to do that
2903                         * with spilled pointers.
2904                         */
2905                        verbose(env, "leaking pointer from stack off %d\n",
2906                                off);
2907                        return -EACCES;
2908                }
2909                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2910        } else {
2911                u8 type;
2912
2913                for (i = 0; i < size; i++) {
2914                        type = stype[(slot - i) % BPF_REG_SIZE];
2915                        if (type == STACK_MISC)
2916                                continue;
2917                        if (type == STACK_ZERO)
2918                                continue;
2919                        verbose(env, "invalid read from stack off %d+%d size %d\n",
2920                                off, i, size);
2921                        return -EACCES;
2922                }
2923                mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2924                if (dst_regno >= 0)
2925                        mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2926        }
2927        return 0;
2928}
2929
2930enum stack_access_src {
2931        ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2932        ACCESS_HELPER = 2,  /* the access is performed by a helper */
2933};
2934
2935static int check_stack_range_initialized(struct bpf_verifier_env *env,
2936                                         int regno, int off, int access_size,
2937                                         bool zero_size_allowed,
2938                                         enum stack_access_src type,
2939                                         struct bpf_call_arg_meta *meta);
2940
2941static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2942{
2943        return cur_regs(env) + regno;
2944}
2945
2946/* Read the stack at 'ptr_regno + off' and put the result into the register
2947 * 'dst_regno'.
2948 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2949 * but not its variable offset.
2950 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2951 *
2952 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2953 * filling registers (i.e. reads of spilled register cannot be detected when
2954 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2955 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2956 * offset; for a fixed offset check_stack_read_fixed_off should be used
2957 * instead.
2958 */
2959static int check_stack_read_var_off(struct bpf_verifier_env *env,
2960                                    int ptr_regno, int off, int size, int dst_regno)
2961{
2962        /* The state of the source register. */
2963        struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2964        struct bpf_func_state *ptr_state = func(env, reg);
2965        int err;
2966        int min_off, max_off;
2967
2968        /* Note that we pass a NULL meta, so raw access will not be permitted.
2969         */
2970        err = check_stack_range_initialized(env, ptr_regno, off, size,
2971                                            false, ACCESS_DIRECT, NULL);
2972        if (err)
2973                return err;
2974
2975        min_off = reg->smin_value + off;
2976        max_off = reg->smax_value + off;
2977        mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2978        return 0;
2979}
2980
2981/* check_stack_read dispatches to check_stack_read_fixed_off or
2982 * check_stack_read_var_off.
2983 *
2984 * The caller must ensure that the offset falls within the allocated stack
2985 * bounds.
2986 *
2987 * 'dst_regno' is a register which will receive the value from the stack. It
2988 * can be -1, meaning that the read value is not going to a register.
2989 */
2990static int check_stack_read(struct bpf_verifier_env *env,
2991                            int ptr_regno, int off, int size,
2992                            int dst_regno)
2993{
2994        struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2995        struct bpf_func_state *state = func(env, reg);
2996        int err;
2997        /* Some accesses are only permitted with a static offset. */
2998        bool var_off = !tnum_is_const(reg->var_off);
2999
3000        /* The offset is required to be static when reads don't go to a
3001         * register, in order to not leak pointers (see
3002         * check_stack_read_fixed_off).
3003         */
3004        if (dst_regno < 0 && var_off) {
3005                char tn_buf[48];
3006
3007                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3008                verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3009                        tn_buf, off, size);
3010                return -EACCES;
3011        }
3012        /* Variable offset is prohibited for unprivileged mode for simplicity
3013         * since it requires corresponding support in Spectre masking for stack
3014         * ALU. See also retrieve_ptr_limit().
3015         */
3016        if (!env->bypass_spec_v1 && var_off) {
3017                char tn_buf[48];
3018
3019                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3020                verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3021                                ptr_regno, tn_buf);
3022                return -EACCES;
3023        }
3024
3025        if (!var_off) {
3026                off += reg->var_off.value;
3027                err = check_stack_read_fixed_off(env, state, off, size,
3028                                                 dst_regno);
3029        } else {
3030                /* Variable offset stack reads need more conservative handling
3031                 * than fixed offset ones. Note that dst_regno >= 0 on this
3032                 * branch.
3033                 */
3034                err = check_stack_read_var_off(env, ptr_regno, off, size,
3035                                               dst_regno);
3036        }
3037        return err;
3038}
3039
3040
3041/* check_stack_write dispatches to check_stack_write_fixed_off or
3042 * check_stack_write_var_off.
3043 *
3044 * 'ptr_regno' is the register used as a pointer into the stack.
3045 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3046 * 'value_regno' is the register whose value we're writing to the stack. It can
3047 * be -1, meaning that we're not writing from a register.
3048 *
3049 * The caller must ensure that the offset falls within the maximum stack size.
3050 */
3051static int check_stack_write(struct bpf_verifier_env *env,
3052                             int ptr_regno, int off, int size,
3053                             int value_regno, int insn_idx)
3054{
3055        struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3056        struct bpf_func_state *state = func(env, reg);
3057        int err;
3058
3059        if (tnum_is_const(reg->var_off)) {
3060                off += reg->var_off.value;
3061                err = check_stack_write_fixed_off(env, state, off, size,
3062                                                  value_regno, insn_idx);
3063        } else {
3064                /* Variable offset stack reads need more conservative handling
3065                 * than fixed offset ones.
3066                 */
3067                err = check_stack_write_var_off(env, state,
3068                                                ptr_regno, off, size,
3069                                                value_regno, insn_idx);
3070        }
3071        return err;
3072}
3073
3074static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3075                                 int off, int size, enum bpf_access_type type)
3076{
3077        struct bpf_reg_state *regs = cur_regs(env);
3078        struct bpf_map *map = regs[regno].map_ptr;
3079        u32 cap = bpf_map_flags_to_cap(map);
3080
3081        if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3082                verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3083                        map->value_size, off, size);
3084                return -EACCES;
3085        }
3086
3087        if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3088                verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3089                        map->value_size, off, size);
3090                return -EACCES;
3091        }
3092
3093        return 0;
3094}
3095
3096/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3097static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3098                              int off, int size, u32 mem_size,
3099                              bool zero_size_allowed)
3100{
3101        bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3102        struct bpf_reg_state *reg;
3103
3104        if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3105                return 0;
3106
3107        reg = &cur_regs(env)[regno];
3108        switch (reg->type) {
3109        case PTR_TO_MAP_KEY:
3110                verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3111                        mem_size, off, size);
3112                break;
3113        case PTR_TO_MAP_VALUE:
3114                verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3115                        mem_size, off, size);
3116                break;
3117        case PTR_TO_PACKET:
3118        case PTR_TO_PACKET_META:
3119        case PTR_TO_PACKET_END:
3120                verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3121                        off, size, regno, reg->id, off, mem_size);
3122                break;
3123        case PTR_TO_MEM:
3124        default:
3125                verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3126                        mem_size, off, size);
3127        }
3128
3129        return -EACCES;
3130}
3131
3132/* check read/write into a memory region with possible variable offset */
3133static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3134                                   int off, int size, u32 mem_size,
3135                                   bool zero_size_allowed)
3136{
3137        struct bpf_verifier_state *vstate = env->cur_state;
3138        struct bpf_func_state *state = vstate->frame[vstate->curframe];
3139        struct bpf_reg_state *reg = &state->regs[regno];
3140        int err;
3141
3142        /* We may have adjusted the register pointing to memory region, so we
3143         * need to try adding each of min_value and max_value to off
3144         * to make sure our theoretical access will be safe.
3145         */
3146        if (env->log.level & BPF_LOG_LEVEL)
3147                print_verifier_state(env, state);
3148
3149        /* The minimum value is only important with signed
3150         * comparisons where we can't assume the floor of a
3151         * value is 0.  If we are using signed variables for our
3152         * index'es we need to make sure that whatever we use
3153         * will have a set floor within our range.
3154         */
3155        if (reg->smin_value < 0 &&
3156            (reg->smin_value == S64_MIN ||
3157             (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3158              reg->smin_value + off < 0)) {
3159                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3160                        regno);
3161                return -EACCES;
3162        }
3163        err = __check_mem_access(env, regno, reg->smin_value + off, size,
3164                                 mem_size, zero_size_allowed);
3165        if (err) {
3166                verbose(env, "R%d min value is outside of the allowed memory range\n",
3167                        regno);
3168                return err;
3169        }
3170
3171        /* If we haven't set a max value then we need to bail since we can't be
3172         * sure we won't do bad things.
3173         * If reg->umax_value + off could overflow, treat that as unbounded too.
3174         */
3175        if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3176                verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3177                        regno);
3178                return -EACCES;
3179        }
3180        err = __check_mem_access(env, regno, reg->umax_value + off, size,
3181                                 mem_size, zero_size_allowed);
3182        if (err) {
3183                verbose(env, "R%d max value is outside of the allowed memory range\n",
3184                        regno);
3185                return err;
3186        }
3187
3188        return 0;
3189}
3190
3191/* check read/write into a map element with possible variable offset */
3192static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3193                            int off, int size, bool zero_size_allowed)
3194{
3195        struct bpf_verifier_state *vstate = env->cur_state;
3196        struct bpf_func_state *state = vstate->frame[vstate->curframe];
3197        struct bpf_reg_state *reg = &state->regs[regno];
3198        struct bpf_map *map = reg->map_ptr;
3199        int err;
3200
3201        err = check_mem_region_access(env, regno, off, size, map->value_size,
3202                                      zero_size_allowed);
3203        if (err)
3204                return err;
3205
3206        if (map_value_has_spin_lock(map)) {
3207                u32 lock = map->spin_lock_off;
3208
3209                /* if any part of struct bpf_spin_lock can be touched by
3210                 * load/store reject this program.
3211                 * To check that [x1, x2) overlaps with [y1, y2)
3212                 * it is sufficient to check x1 < y2 && y1 < x2.
3213                 */
3214                if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3215                     lock < reg->umax_value + off + size) {
3216                        verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3217                        return -EACCES;
3218                }
3219        }
3220        return err;
3221}
3222
3223#define MAX_PACKET_OFF 0xffff
3224
3225static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3226{
3227        return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3228}
3229
3230static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3231                                       const struct bpf_call_arg_meta *meta,
3232                                       enum bpf_access_type t)
3233{
3234        enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3235
3236        switch (prog_type) {
3237        /* Program types only with direct read access go here! */
3238        case BPF_PROG_TYPE_LWT_IN:
3239        case BPF_PROG_TYPE_LWT_OUT:
3240        case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3241        case BPF_PROG_TYPE_SK_REUSEPORT:
3242        case BPF_PROG_TYPE_FLOW_DISSECTOR:
3243        case BPF_PROG_TYPE_CGROUP_SKB:
3244                if (t == BPF_WRITE)
3245                        return false;
3246                fallthrough;
3247
3248        /* Program types with direct read + write access go here! */
3249        case BPF_PROG_TYPE_SCHED_CLS:
3250        case BPF_PROG_TYPE_SCHED_ACT:
3251        case BPF_PROG_TYPE_XDP:
3252        case BPF_PROG_TYPE_LWT_XMIT:
3253        case BPF_PROG_TYPE_SK_SKB:
3254        case BPF_PROG_TYPE_SK_MSG:
3255                if (meta)
3256                        return meta->pkt_access;
3257
3258                env->seen_direct_write = true;
3259                return true;
3260
3261        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3262                if (t == BPF_WRITE)
3263                        env->seen_direct_write = true;
3264
3265                return true;
3266
3267        default:
3268                return false;
3269        }
3270}
3271
3272static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3273                               int size, bool zero_size_allowed)
3274{
3275        struct bpf_reg_state *regs = cur_regs(env);
3276        struct bpf_reg_state *reg = &regs[regno];
3277        int err;
3278
3279        /* We may have added a variable offset to the packet pointer; but any
3280         * reg->range we have comes after that.  We are only checking the fixed
3281         * offset.
3282         */
3283
3284        /* We don't allow negative numbers, because we aren't tracking enough
3285         * detail to prove they're safe.
3286         */
3287        if (reg->smin_value < 0) {
3288                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3289                        regno);
3290                return -EACCES;
3291        }
3292
3293        err = reg->range < 0 ? -EINVAL :
3294              __check_mem_access(env, regno, off, size, reg->range,
3295                                 zero_size_allowed);
3296        if (err) {
3297                verbose(env, "R%d offset is outside of the packet\n", regno);
3298                return err;
3299        }
3300
3301        /* __check_mem_access has made sure "off + size - 1" is within u16.
3302         * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3303         * otherwise find_good_pkt_pointers would have refused to set range info
3304         * that __check_mem_access would have rejected this pkt access.
3305         * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3306         */
3307        env->prog->aux->max_pkt_offset =
3308                max_t(u32, env->prog->aux->max_pkt_offset,
3309                      off + reg->umax_value + size - 1);
3310
3311        return err;
3312}
3313
3314/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3315static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3316                            enum bpf_access_type t, enum bpf_reg_type *reg_type,
3317                            struct btf **btf, u32 *btf_id)
3318{
3319        struct bpf_insn_access_aux info = {
3320                .reg_type = *reg_type,
3321                .log = &env->log,
3322        };
3323
3324        if (env->ops->is_valid_access &&
3325            env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3326                /* A non zero info.ctx_field_size indicates that this field is a
3327                 * candidate for later verifier transformation to load the whole
3328                 * field and then apply a mask when accessed with a narrower
3329                 * access than actual ctx access size. A zero info.ctx_field_size
3330                 * will only allow for whole field access and rejects any other
3331                 * type of narrower access.
3332                 */
3333                *reg_type = info.reg_type;
3334
3335                if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3336                        *btf = info.btf;
3337                        *btf_id = info.btf_id;
3338                } else {
3339                        env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3340                }
3341                /* remember the offset of last byte accessed in ctx */
3342                if (env->prog->aux->max_ctx_offset < off + size)
3343                        env->prog->aux->max_ctx_offset = off + size;
3344                return 0;
3345        }
3346
3347        verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3348        return -EACCES;
3349}
3350
3351static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3352                                  int size)
3353{
3354        if (size < 0 || off < 0 ||
3355            (u64)off + size > sizeof(struct bpf_flow_keys)) {
3356                verbose(env, "invalid access to flow keys off=%d size=%d\n",
3357                        off, size);
3358                return -EACCES;
3359        }
3360        return 0;
3361}
3362
3363static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3364                             u32 regno, int off, int size,
3365                             enum bpf_access_type t)
3366{
3367        struct bpf_reg_state *regs = cur_regs(env);
3368        struct bpf_reg_state *reg = &regs[regno];
3369        struct bpf_insn_access_aux info = {};
3370        bool valid;
3371
3372        if (reg->smin_value < 0) {
3373                verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3374                        regno);
3375                return -EACCES;
3376        }
3377
3378        switch (reg->type) {
3379        case PTR_TO_SOCK_COMMON:
3380                valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3381                break;
3382        case PTR_TO_SOCKET:
3383                valid = bpf_sock_is_valid_access(off, size, t, &info);
3384                break;
3385        case PTR_TO_TCP_SOCK:
3386                valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3387                break;
3388        case PTR_TO_XDP_SOCK:
3389                valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3390                break;
3391        default:
3392                valid = false;
3393        }
3394
3395
3396        if (valid) {
3397                env->insn_aux_data[insn_idx].ctx_field_size =
3398                        info.ctx_field_size;
3399                return 0;
3400        }
3401
3402        verbose(env, "R%d invalid %s access off=%d size=%d\n",
3403                regno, reg_type_str[reg->type], off, size);
3404
3405        return -EACCES;
3406}
3407
3408static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3409{
3410        return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3411}
3412
3413static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3414{
3415        const struct bpf_reg_state *reg = reg_state(env, regno);
3416
3417        return reg->type == PTR_TO_CTX;
3418}
3419
3420static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3421{
3422        const struct bpf_reg_state *reg = reg_state(env, regno);
3423
3424        return type_is_sk_pointer(reg->type);
3425}
3426
3427static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3428{
3429        const struct bpf_reg_state *reg = reg_state(env, regno);
3430
3431        return type_is_pkt_pointer(reg->type);
3432}
3433
3434static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3435{
3436        const struct bpf_reg_state *reg = reg_state(env, regno);
3437
3438        /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3439        return reg->type == PTR_TO_FLOW_KEYS;
3440}
3441
3442static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3443                                   const struct bpf_reg_state *reg,
3444                                   int off, int size, bool strict)
3445{
3446        struct tnum reg_off;
3447        int ip_align;
3448
3449        /* Byte size accesses are always allowed. */
3450        if (!strict || size == 1)
3451                return 0;
3452
3453        /* For platforms that do not have a Kconfig enabling
3454         * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3455         * NET_IP_ALIGN is universally set to '2'.  And on platforms
3456         * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3457         * to this code only in strict mode where we want to emulate
3458         * the NET_IP_ALIGN==2 checking.  Therefore use an
3459         * unconditional IP align value of '2'.
3460         */
3461        ip_align = 2;
3462
3463        reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3464        if (!tnum_is_aligned(reg_off, size)) {
3465                char tn_buf[48];
3466
3467                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3468                verbose(env,
3469                        "misaligned packet access off %d+%s+%d+%d size %d\n",
3470                        ip_align, tn_buf, reg->off, off, size);
3471                return -EACCES;
3472        }
3473
3474        return 0;
3475}
3476
3477static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3478                                       const struct bpf_reg_state *reg,
3479                                       const char *pointer_desc,
3480                                       int off, int size, bool strict)
3481{
3482        struct tnum reg_off;
3483
3484        /* Byte size accesses are always allowed. */
3485        if (!strict || size == 1)
3486                return 0;
3487
3488        reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3489        if (!tnum_is_aligned(reg_off, size)) {
3490                char tn_buf[48];
3491
3492                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3493                verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3494                        pointer_desc, tn_buf, reg->off, off, size);
3495                return -EACCES;
3496        }
3497
3498        return 0;
3499}
3500
3501static int check_ptr_alignment(struct bpf_verifier_env *env,
3502                               const struct bpf_reg_state *reg, int off,
3503                               int size, bool strict_alignment_once)
3504{
3505        bool strict = env->strict_alignment || strict_alignment_once;
3506        const char *pointer_desc = "";
3507
3508        switch (reg->type) {
3509        case PTR_TO_PACKET:
3510        case PTR_TO_PACKET_META:
3511                /* Special case, because of NET_IP_ALIGN. Given metadata sits
3512                 * right in front, treat it the very same way.
3513                 */
3514                return check_pkt_ptr_alignment(env, reg, off, size, strict);
3515        case PTR_TO_FLOW_KEYS:
3516                pointer_desc = "flow keys ";
3517                break;
3518        case PTR_TO_MAP_KEY:
3519                pointer_desc = "key ";
3520                break;
3521        case PTR_TO_MAP_VALUE:
3522                pointer_desc = "value ";
3523                break;
3524        case PTR_TO_CTX:
3525                pointer_desc = "context ";
3526                break;
3527        case PTR_TO_STACK:
3528                pointer_desc = "stack ";
3529                /* The stack spill tracking logic in check_stack_write_fixed_off()
3530                 * and check_stack_read_fixed_off() relies on stack accesses being
3531                 * aligned.
3532                 */
3533                strict = true;
3534                break;
3535        case PTR_TO_SOCKET:
3536                pointer_desc = "sock ";
3537                break;
3538        case PTR_TO_SOCK_COMMON:
3539                pointer_desc = "sock_common ";
3540                break;
3541        case PTR_TO_TCP_SOCK:
3542                pointer_desc = "tcp_sock ";
3543                break;
3544        case PTR_TO_XDP_SOCK:
3545                pointer_desc = "xdp_sock ";
3546                break;
3547        default:
3548                break;
3549        }
3550        return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3551                                           strict);
3552}
3553
3554static int update_stack_depth(struct bpf_verifier_env *env,
3555                              const struct bpf_func_state *func,
3556                              int off)
3557{
3558        u16 stack = env->subprog_info[func->subprogno].stack_depth;
3559
3560        if (stack >= -off)
3561                return 0;
3562
3563        /* update known max for given subprogram */
3564        env->subprog_info[func->subprogno].stack_depth = -off;
3565        return 0;
3566}
3567
3568/* starting from main bpf function walk all instructions of the function
3569 * and recursively walk all callees that given function can call.
3570 * Ignore jump and exit insns.
3571 * Since recursion is prevented by check_cfg() this algorithm
3572 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3573 */
3574static int check_max_stack_depth(struct bpf_verifier_env *env)
3575{
3576        int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3577        struct bpf_subprog_info *subprog = env->subprog_info;
3578        struct bpf_insn *insn = env->prog->insnsi;
3579        bool tail_call_reachable = false;
3580        int ret_insn[MAX_CALL_FRAMES];
3581        int ret_prog[MAX_CALL_FRAMES];
3582        int j;
3583
3584process_func:
3585        /* protect against potential stack overflow that might happen when
3586         * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3587         * depth for such case down to 256 so that the worst case scenario
3588         * would result in 8k stack size (32 which is tailcall limit * 256 =
3589         * 8k).
3590         *
3591         * To get the idea what might happen, see an example:
3592         * func1 -> sub rsp, 128
3593         *  subfunc1 -> sub rsp, 256
3594         *  tailcall1 -> add rsp, 256
3595         *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3596         *   subfunc2 -> sub rsp, 64
3597         *   subfunc22 -> sub rsp, 128
3598         *   tailcall2 -> add rsp, 128
3599         *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3600         *
3601         * tailcall will unwind the current stack frame but it will not get rid
3602         * of caller's stack as shown on the example above.
3603         */
3604        if (idx && subprog[idx].has_tail_call && depth >= 256) {
3605                verbose(env,
3606                        "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3607                        depth);
3608                return -EACCES;
3609        }
3610        /* round up to 32-bytes, since this is granularity
3611         * of interpreter stack size
3612         */
3613        depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3614        if (depth > MAX_BPF_STACK) {
3615                verbose(env, "combined stack size of %d calls is %d. Too large\n",
3616                        frame + 1, depth);
3617                return -EACCES;
3618        }
3619continue_func:
3620        subprog_end = subprog[idx + 1].start;
3621        for (; i < subprog_end; i++) {
3622                if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3623                        continue;
3624                /* remember insn and function to return to */
3625                ret_insn[frame] = i + 1;
3626                ret_prog[frame] = idx;
3627
3628                /* find the callee */
3629                i = i + insn[i].imm + 1;
3630                idx = find_subprog(env, i);
3631                if (idx < 0) {
3632                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3633                                  i);
3634                        return -EFAULT;
3635                }
3636
3637                if (subprog[idx].has_tail_call)
3638                        tail_call_reachable = true;
3639
3640                frame++;
3641                if (frame >= MAX_CALL_FRAMES) {
3642                        verbose(env, "the call stack of %d frames is too deep !\n",
3643                                frame);
3644                        return -E2BIG;
3645                }
3646                goto process_func;
3647        }
3648        /* if tail call got detected across bpf2bpf calls then mark each of the
3649         * currently present subprog frames as tail call reachable subprogs;
3650         * this info will be utilized by JIT so that we will be preserving the
3651         * tail call counter throughout bpf2bpf calls combined with tailcalls
3652         */
3653        if (tail_call_reachable)
3654                for (j = 0; j < frame; j++)
3655                        subprog[ret_prog[j]].tail_call_reachable = true;
3656        if (subprog[0].tail_call_reachable)
3657                env->prog->aux->tail_call_reachable = true;
3658
3659        /* end of for() loop means the last insn of the 'subprog'
3660         * was reached. Doesn't matter whether it was JA or EXIT
3661         */
3662        if (frame == 0)
3663                return 0;
3664        depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3665        frame--;
3666        i = ret_insn[frame];
3667        idx = ret_prog[frame];
3668        goto continue_func;
3669}
3670
3671#ifndef CONFIG_BPF_JIT_ALWAYS_ON
3672static int get_callee_stack_depth(struct bpf_verifier_env *env,
3673                                  const struct bpf_insn *insn, int idx)
3674{
3675        int start = idx + insn->imm + 1, subprog;
3676
3677        subprog = find_subprog(env, start);
3678        if (subprog < 0) {
3679                WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3680                          start);
3681                return -EFAULT;
3682        }
3683        return env->subprog_info[subprog].stack_depth;
3684}
3685#endif
3686
3687int check_ctx_reg(struct bpf_verifier_env *env,
3688                  const struct bpf_reg_state *reg, int regno)
3689{
3690        /* Access to ctx or passing it to a helper is only allowed in
3691         * its original, unmodified form.
3692         */
3693
3694        if (reg->off) {
3695                verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3696                        regno, reg->off);
3697                return -EACCES;
3698        }
3699
3700        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3701                char tn_buf[48];
3702
3703                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3704                verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3705                return -EACCES;
3706        }
3707
3708        return 0;
3709}
3710
3711static int __check_buffer_access(struct bpf_verifier_env *env,
3712                                 const char *buf_info,
3713                                 const struct bpf_reg_state *reg,
3714                                 int regno, int off, int size)
3715{
3716        if (off < 0) {
3717                verbose(env,
3718                        "R%d invalid %s buffer access: off=%d, size=%d\n",
3719                        regno, buf_info, off, size);
3720                return -EACCES;
3721        }
3722        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723                char tn_buf[48];
3724
3725                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726                verbose(env,
3727                        "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3728                        regno, off, tn_buf);
3729                return -EACCES;
3730        }
3731
3732        return 0;
3733}
3734
3735static int check_tp_buffer_access(struct bpf_verifier_env *env,
3736                                  const struct bpf_reg_state *reg,
3737                                  int regno, int off, int size)
3738{
3739        int err;
3740
3741        err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3742        if (err)
3743                return err;
3744
3745        if (off + size > env->prog->aux->max_tp_access)
3746                env->prog->aux->max_tp_access = off + size;
3747
3748        return 0;
3749}
3750
3751static int check_buffer_access(struct bpf_verifier_env *env,
3752                               const struct bpf_reg_state *reg,
3753                               int regno, int off, int size,
3754                               bool zero_size_allowed,
3755                               const char *buf_info,
3756                               u32 *max_access)
3757{
3758        int err;
3759
3760        err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3761        if (err)
3762                return err;
3763
3764        if (off + size > *max_access)
3765                *max_access = off + size;
3766
3767        return 0;
3768}
3769
3770/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3771static void zext_32_to_64(struct bpf_reg_state *reg)
3772{
3773        reg->var_off = tnum_subreg(reg->var_off);
3774        __reg_assign_32_into_64(reg);
3775}
3776
3777/* truncate register to smaller size (in bytes)
3778 * must be called with size < BPF_REG_SIZE
3779 */
3780static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3781{
3782        u64 mask;
3783
3784        /* clear high bits in bit representation */
3785        reg->var_off = tnum_cast(reg->var_off, size);
3786
3787        /* fix arithmetic bounds */
3788        mask = ((u64)1 << (size * 8)) - 1;
3789        if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3790                reg->umin_value &= mask;
3791                reg->umax_value &= mask;
3792        } else {
3793                reg->umin_value = 0;
3794                reg->umax_value = mask;
3795        }
3796        reg->smin_value = reg->umin_value;
3797        reg->smax_value = reg->umax_value;
3798
3799        /* If size is smaller than 32bit register the 32bit register
3800         * values are also truncated so we push 64-bit bounds into
3801         * 32-bit bounds. Above were truncated < 32-bits already.
3802         */
3803        if (size >= 4)
3804                return;
3805        __reg_combine_64_into_32(reg);
3806}
3807
3808static bool bpf_map_is_rdonly(const struct bpf_map *map)
3809{
3810        return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3811}
3812
3813static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3814{
3815        void *ptr;
3816        u64 addr;
3817        int err;
3818
3819        err = map->ops->map_direct_value_addr(map, &addr, off);
3820        if (err)
3821                return err;
3822        ptr = (void *)(long)addr + off;
3823
3824        switch (size) {
3825        case sizeof(u8):
3826                *val = (u64)*(u8 *)ptr;
3827                break;
3828        case sizeof(u16):
3829                *val = (u64)*(u16 *)ptr;
3830                break;
3831        case sizeof(u32):
3832                *val = (u64)*(u32 *)ptr;
3833                break;
3834        case sizeof(u64):
3835                *val = *(u64 *)ptr;
3836                break;
3837        default:
3838                return -EINVAL;
3839        }
3840        return 0;
3841}
3842
3843static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3844                                   struct bpf_reg_state *regs,
3845                                   int regno, int off, int size,
3846                                   enum bpf_access_type atype,
3847                                   int value_regno)
3848{
3849        struct bpf_reg_state *reg = regs + regno;
3850        const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3851        const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3852        u32 btf_id;
3853        int ret;
3854
3855        if (off < 0) {
3856                verbose(env,
3857                        "R%d is ptr_%s invalid negative access: off=%d\n",
3858                        regno, tname, off);
3859                return -EACCES;
3860        }
3861        if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3862                char tn_buf[48];
3863
3864                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3865                verbose(env,
3866                        "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3867                        regno, tname, off, tn_buf);
3868                return -EACCES;
3869        }
3870
3871        if (env->ops->btf_struct_access) {
3872                ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3873                                                  off, size, atype, &btf_id);
3874        } else {
3875                if (atype != BPF_READ) {
3876                        verbose(env, "only read is supported\n");
3877                        return -EACCES;
3878                }
3879
3880                ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3881                                        atype, &btf_id);
3882        }
3883
3884        if (ret < 0)
3885                return ret;
3886
3887        if (atype == BPF_READ && value_regno >= 0)
3888                mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3889
3890        return 0;
3891}
3892
3893static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3894                                   struct bpf_reg_state *regs,
3895                                   int regno, int off, int size,
3896                                   enum bpf_access_type atype,
3897                                   int value_regno)
3898{
3899        struct bpf_reg_state *reg = regs + regno;
3900        struct bpf_map *map = reg->map_ptr;
3901        const struct btf_type *t;
3902        const char *tname;
3903        u32 btf_id;
3904        int ret;
3905
3906        if (!btf_vmlinux) {
3907                verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3908                return -ENOTSUPP;
3909        }
3910
3911        if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3912                verbose(env, "map_ptr access not supported for map type %d\n",
3913                        map->map_type);
3914                return -ENOTSUPP;
3915        }
3916
3917        t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3918        tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3919
3920        if (!env->allow_ptr_to_map_access) {
3921                verbose(env,
3922                        "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3923                        tname);
3924                return -EPERM;
3925        }
3926
3927        if (off < 0) {
3928                verbose(env, "R%d is %s invalid negative access: off=%d\n",
3929                        regno, tname, off);
3930                return -EACCES;
3931        }
3932
3933        if (atype != BPF_READ) {
3934                verbose(env, "only read from %s is supported\n", tname);
3935                return -EACCES;
3936        }
3937
3938        ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3939        if (ret < 0)
3940                return ret;
3941
3942        if (value_regno >= 0)
3943                mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3944
3945        return 0;
3946}
3947
3948/* Check that the stack access at the given offset is within bounds. The
3949 * maximum valid offset is -1.
3950 *
3951 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3952 * -state->allocated_stack for reads.
3953 */
3954static int check_stack_slot_within_bounds(int off,
3955                                          struct bpf_func_state *state,
3956                                          enum bpf_access_type t)
3957{
3958        int min_valid_off;
3959
3960        if (t == BPF_WRITE)
3961                min_valid_off = -MAX_BPF_STACK;
3962        else
3963                min_valid_off = -state->allocated_stack;
3964
3965        if (off < min_valid_off || off > -1)
3966                return -EACCES;
3967        return 0;
3968}
3969
3970/* Check that the stack access at 'regno + off' falls within the maximum stack
3971 * bounds.
3972 *
3973 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3974 */
3975static int check_stack_access_within_bounds(
3976                struct bpf_verifier_env *env,
3977                int regno, int off, int access_size,
3978                enum stack_access_src src, enum bpf_access_type type)
3979{
3980        struct bpf_reg_state *regs = cur_regs(env);
3981        struct bpf_reg_state *reg = regs + regno;
3982        struct bpf_func_state *state = func(env, reg);
3983        int min_off, max_off;
3984        int err;
3985        char *err_extra;
3986
3987        if (src == ACCESS_HELPER)
3988                /* We don't know if helpers are reading or writing (or both). */
3989                err_extra = " indirect access to";
3990        else if (type == BPF_READ)
3991                err_extra = " read from";
3992        else
3993                err_extra = " write to";
3994
3995        if (tnum_is_const(reg->var_off)) {
3996                min_off = reg->var_off.value + off;
3997                if (access_size > 0)
3998                        max_off = min_off + access_size - 1;
3999                else
4000                        max_off = min_off;
4001        } else {
4002                if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4003                    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4004                        verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4005                                err_extra, regno);
4006                        return -EACCES;
4007                }
4008                min_off = reg->smin_value + off;
4009                if (access_size > 0)
4010                        max_off = reg->smax_value + off + access_size - 1;
4011                else
4012                        max_off = min_off;
4013        }
4014
4015        err = check_stack_slot_within_bounds(min_off, state, type);
4016        if (!err)
4017                err = check_stack_slot_within_bounds(max_off, state, type);
4018
4019        if (err) {
4020                if (tnum_is_const(reg->var_off)) {
4021                        verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4022                                err_extra, regno, off, access_size);
4023                } else {
4024                        char tn_buf[48];
4025
4026                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4027                        verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4028                                err_extra, regno, tn_buf, access_size);
4029                }
4030        }
4031        return err;
4032}
4033
4034/* check whether memory at (regno + off) is accessible for t = (read | write)
4035 * if t==write, value_regno is a register which value is stored into memory
4036 * if t==read, value_regno is a register which will receive the value from memory
4037 * if t==write && value_regno==-1, some unknown value is stored into memory
4038 * if t==read && value_regno==-1, don't care what we read from memory
4039 */
4040static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4041                            int off, int bpf_size, enum bpf_access_type t,
4042                            int value_regno, bool strict_alignment_once)
4043{
4044        struct bpf_reg_state *regs = cur_regs(env);
4045        struct bpf_reg_state *reg = regs + regno;
4046        struct bpf_func_state *state;
4047        int size, err = 0;
4048
4049        size = bpf_size_to_bytes(bpf_size);
4050        if (size < 0)
4051                return size;
4052
4053        /* alignment checks will add in reg->off themselves */
4054        err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4055        if (err)
4056                return err;
4057
4058        /* for access checks, reg->off is just part of off */
4059        off += reg->off;
4060
4061        if (reg->type == PTR_TO_MAP_KEY) {
4062                if (t == BPF_WRITE) {
4063                        verbose(env, "write to change key R%d not allowed\n", regno);
4064                        return -EACCES;
4065                }
4066
4067                err = check_mem_region_access(env, regno, off, size,
4068                                              reg->map_ptr->key_size, false);
4069                if (err)
4070                        return err;
4071                if (value_regno >= 0)
4072                        mark_reg_unknown(env, regs, value_regno);
4073        } else if (reg->type == PTR_TO_MAP_VALUE) {
4074                if (t == BPF_WRITE && value_regno >= 0 &&
4075                    is_pointer_value(env, value_regno)) {
4076                        verbose(env, "R%d leaks addr into map\n", value_regno);
4077                        return -EACCES;
4078                }
4079                err = check_map_access_type(env, regno, off, size, t);
4080                if (err)
4081                        return err;
4082                err = check_map_access(env, regno, off, size, false);
4083                if (!err && t == BPF_READ && value_regno >= 0) {
4084                        struct bpf_map *map = reg->map_ptr;
4085
4086                        /* if map is read-only, track its contents as scalars */
4087                        if (tnum_is_const(reg->var_off) &&
4088                            bpf_map_is_rdonly(map) &&
4089                            map->ops->map_direct_value_addr) {
4090                                int map_off = off + reg->var_off.value;
4091                                u64 val = 0;
4092
4093                                err = bpf_map_direct_read(map, map_off, size,
4094                                                          &val);
4095                                if (err)
4096                                        return err;
4097
4098                                regs[value_regno].type = SCALAR_VALUE;
4099                                __mark_reg_known(&regs[value_regno], val);
4100                        } else {
4101                                mark_reg_unknown(env, regs, value_regno);
4102                        }
4103                }
4104        } else if (reg->type == PTR_TO_MEM) {
4105                if (t == BPF_WRITE && value_regno >= 0 &&
4106                    is_pointer_value(env, value_regno)) {
4107                        verbose(env, "R%d leaks addr into mem\n", value_regno);
4108                        return -EACCES;
4109                }
4110                err = check_mem_region_access(env, regno, off, size,
4111                                              reg->mem_size, false);
4112                if (!err && t == BPF_READ && value_regno >= 0)
4113                        mark_reg_unknown(env, regs, value_regno);
4114        } else if (reg->type == PTR_TO_CTX) {
4115                enum bpf_reg_type reg_type = SCALAR_VALUE;
4116                struct btf *btf = NULL;
4117                u32 btf_id = 0;
4118
4119                if (t == BPF_WRITE && value_regno >= 0 &&
4120                    is_pointer_value(env, value_regno)) {
4121                        verbose(env, "R%d leaks addr into ctx\n", value_regno);
4122                        return -EACCES;
4123                }
4124
4125                err = check_ctx_reg(env, reg, regno);
4126                if (err < 0)
4127                        return err;
4128
4129                err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4130                if (err)
4131                        verbose_linfo(env, insn_idx, "; ");
4132                if (!err && t == BPF_READ && value_regno >= 0) {
4133                        /* ctx access returns either a scalar, or a
4134                         * PTR_TO_PACKET[_META,_END]. In the latter
4135                         * case, we know the offset is zero.
4136                         */
4137                        if (reg_type == SCALAR_VALUE) {
4138                                mark_reg_unknown(env, regs, value_regno);
4139                        } else {
4140                                mark_reg_known_zero(env, regs,
4141                                                    value_regno);
4142                                if (reg_type_may_be_null(reg_type))
4143                                        regs[value_regno].id = ++env->id_gen;
4144                                /* A load of ctx field could have different
4145                                 * actual load size with the one encoded in the
4146                                 * insn. When the dst is PTR, it is for sure not
4147                                 * a sub-register.
4148                                 */
4149                                regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4150                                if (reg_type == PTR_TO_BTF_ID ||
4151                                    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4152                                        regs[value_regno].btf = btf;
4153                                        regs[value_regno].btf_id = btf_id;
4154                                }
4155                        }
4156                        regs[value_regno].type = reg_type;
4157                }
4158
4159        } else if (reg->type == PTR_TO_STACK) {
4160                /* Basic bounds checks. */
4161                err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4162                if (err)
4163                        return err;
4164
4165                state = func(env, reg);
4166                err = update_stack_depth(env, state, off);
4167                if (err)
4168                        return err;
4169
4170                if (t == BPF_READ)
4171                        err = check_stack_read(env, regno, off, size,
4172                                               value_regno);
4173                else
4174                        err = check_stack_write(env, regno, off, size,
4175                                                value_regno, insn_idx);
4176        } else if (reg_is_pkt_pointer(reg)) {
4177                if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4178                        verbose(env, "cannot write into packet\n");
4179                        return -EACCES;
4180                }
4181                if (t == BPF_WRITE && value_regno >= 0 &&
4182                    is_pointer_value(env, value_regno)) {
4183                        verbose(env, "R%d leaks addr into packet\n",
4184                                value_regno);
4185                        return -EACCES;
4186                }
4187                err = check_packet_access(env, regno, off, size, false);
4188                if (!err && t == BPF_READ && value_regno >= 0)
4189                        mark_reg_unknown(env, regs, value_regno);
4190        } else if (reg->type == PTR_TO_FLOW_KEYS) {
4191                if (t == BPF_WRITE && value_regno >= 0 &&
4192                    is_pointer_value(env, value_regno)) {
4193                        verbose(env, "R%d leaks addr into flow keys\n",
4194                                value_regno);
4195                        return -EACCES;
4196                }
4197
4198                err = check_flow_keys_access(env, off, size);
4199                if (!err && t == BPF_READ && value_regno >= 0)
4200                        mark_reg_unknown(env, regs, value_regno);
4201        } else if (type_is_sk_pointer(reg->type)) {
4202                if (t == BPF_WRITE) {
4203                        verbose(env, "R%d cannot write into %s\n",
4204                                regno, reg_type_str[reg->type]);
4205                        return -EACCES;
4206                }
4207                err = check_sock_access(env, insn_idx, regno, off, size, t);
4208                if (!err && value_regno >= 0)
4209                        mark_reg_unknown(env, regs, value_regno);
4210        } else if (reg->type == PTR_TO_TP_BUFFER) {
4211                err = check_tp_buffer_access(env, reg, regno, off, size);
4212                if (!err && t == BPF_READ && value_regno >= 0)
4213                        mark_reg_unknown(env, regs, value_regno);
4214        } else if (reg->type == PTR_TO_BTF_ID) {
4215                err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4216                                              value_regno);
4217        } else if (reg->type == CONST_PTR_TO_MAP) {
4218                err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4219                                              value_regno);
4220        } else if (reg->type == PTR_TO_RDONLY_BUF) {
4221                if (t == BPF_WRITE) {
4222                        verbose(env, "R%d cannot write into %s\n",
4223                                regno, reg_type_str[reg->type]);
4224                        return -EACCES;
4225                }
4226                err = check_buffer_access(env, reg, regno, off, size, false,
4227                                          "rdonly",
4228                                          &env->prog->aux->max_rdonly_access);
4229                if (!err && value_regno >= 0)
4230                        mark_reg_unknown(env, regs, value_regno);
4231        } else if (reg->type == PTR_TO_RDWR_BUF) {
4232                err = check_buffer_access(env, reg, regno, off, size, false,
4233                                          "rdwr",
4234                                          &env->prog->aux->max_rdwr_access);
4235                if (!err && t == BPF_READ && value_regno >= 0)
4236                        mark_reg_unknown(env, regs, value_regno);
4237        } else {
4238                verbose(env, "R%d invalid mem access '%s'\n", regno,
4239                        reg_type_str[reg->type]);
4240                return -EACCES;
4241        }
4242
4243        if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4244            regs[value_regno].type == SCALAR_VALUE) {
4245                /* b/h/w load zero-extends, mark upper bits as known 0 */
4246                coerce_reg_to_size(&regs[value_regno], size);
4247        }
4248        return err;
4249}
4250
4251static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4252{
4253        int load_reg;
4254        int err;
4255
4256        switch (insn->imm) {
4257        case BPF_ADD:
4258        case BPF_ADD | BPF_FETCH:
4259        case BPF_AND:
4260        case BPF_AND | BPF_FETCH:
4261        case BPF_OR:
4262        case BPF_OR | BPF_FETCH:
4263        case BPF_XOR:
4264        case BPF_XOR | BPF_FETCH:
4265        case BPF_XCHG:
4266        case BPF_CMPXCHG:
4267                break;
4268        default:
4269                verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4270                return -EINVAL;
4271        }
4272
4273        if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4274                verbose(env, "invalid atomic operand size\n");
4275                return -EINVAL;
4276        }
4277
4278        /* check src1 operand */
4279        err = check_reg_arg(env, insn->src_reg, SRC_OP);
4280        if (err)
4281                return err;
4282
4283        /* check src2 operand */
4284        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4285        if (err)
4286                return err;
4287
4288        if (insn->imm == BPF_CMPXCHG) {
4289                /* Check comparison of R0 with memory location */
4290                err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4291                if (err)
4292                        return err;
4293        }
4294
4295        if (is_pointer_value(env, insn->src_reg)) {
4296                verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4297                return -EACCES;
4298        }
4299
4300        if (is_ctx_reg(env, insn->dst_reg) ||
4301            is_pkt_reg(env, insn->dst_reg) ||
4302            is_flow_key_reg(env, insn->dst_reg) ||
4303            is_sk_reg(env, insn->dst_reg)) {
4304                verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4305                        insn->dst_reg,
4306                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
4307                return -EACCES;
4308        }
4309
4310        if (insn->imm & BPF_FETCH) {
4311                if (insn->imm == BPF_CMPXCHG)
4312                        load_reg = BPF_REG_0;
4313                else
4314                        load_reg = insn->src_reg;
4315
4316                /* check and record load of old value */
4317                err = check_reg_arg(env, load_reg, DST_OP);
4318                if (err)
4319                        return err;
4320        } else {
4321                /* This instruction accesses a memory location but doesn't
4322                 * actually load it into a register.
4323                 */
4324                load_reg = -1;
4325        }
4326
4327        /* check whether we can read the memory */
4328        err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4329                               BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4330        if (err)
4331                return err;
4332
4333        /* check whether we can write into the same memory */
4334        err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4335                               BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4336        if (err)
4337                return err;
4338
4339        return 0;
4340}
4341
4342/* When register 'regno' is used to read the stack (either directly or through
4343 * a helper function) make sure that it's within stack boundary and, depending
4344 * on the access type, that all elements of the stack are initialized.
4345 *
4346 * 'off' includes 'regno->off', but not its dynamic part (if any).
4347 *
4348 * All registers that have been spilled on the stack in the slots within the
4349 * read offsets are marked as read.
4350 */
4351static int check_stack_range_initialized(
4352                struct bpf_verifier_env *env, int regno, int off,
4353                int access_size, bool zero_size_allowed,
4354                enum stack_access_src type, struct bpf_call_arg_meta *meta)
4355{
4356        struct bpf_reg_state *reg = reg_state(env, regno);
4357        struct bpf_func_state *state = func(env, reg);
4358        int err, min_off, max_off, i, j, slot, spi;
4359        char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4360        enum bpf_access_type bounds_check_type;
4361        /* Some accesses can write anything into the stack, others are
4362         * read-only.
4363         */
4364        bool clobber = false;
4365
4366        if (access_size == 0 && !zero_size_allowed) {
4367                verbose(env, "invalid zero-sized read\n");
4368                return -EACCES;
4369        }
4370
4371        if (type == ACCESS_HELPER) {
4372                /* The bounds checks for writes are more permissive than for
4373                 * reads. However, if raw_mode is not set, we'll do extra
4374                 * checks below.
4375                 */
4376                bounds_check_type = BPF_WRITE;
4377                clobber = true;
4378        } else {
4379                bounds_check_type = BPF_READ;
4380        }
4381        err = check_stack_access_within_bounds(env, regno, off, access_size,
4382                                               type, bounds_check_type);
4383        if (err)
4384                return err;
4385
4386
4387        if (tnum_is_const(reg->var_off)) {
4388                min_off = max_off = reg->var_off.value + off;
4389        } else {
4390                /* Variable offset is prohibited for unprivileged mode for
4391                 * simplicity since it requires corresponding support in
4392                 * Spectre masking for stack ALU.
4393                 * See also retrieve_ptr_limit().
4394                 */
4395                if (!env->bypass_spec_v1) {
4396                        char tn_buf[48];
4397
4398                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4399                        verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4400                                regno, err_extra, tn_buf);
4401                        return -EACCES;
4402                }
4403                /* Only initialized buffer on stack is allowed to be accessed
4404                 * with variable offset. With uninitialized buffer it's hard to
4405                 * guarantee that whole memory is marked as initialized on
4406                 * helper return since specific bounds are unknown what may
4407                 * cause uninitialized stack leaking.
4408                 */
4409                if (meta && meta->raw_mode)
4410                        meta = NULL;
4411
4412                min_off = reg->smin_value + off;
4413                max_off = reg->smax_value + off;
4414        }
4415
4416        if (meta && meta->raw_mode) {
4417                meta->access_size = access_size;
4418                meta->regno = regno;
4419                return 0;
4420        }
4421
4422        for (i = min_off; i < max_off + access_size; i++) {
4423                u8 *stype;
4424
4425                slot = -i - 1;
4426                spi = slot / BPF_REG_SIZE;
4427                if (state->allocated_stack <= slot)
4428                        goto err;
4429                stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4430                if (*stype == STACK_MISC)
4431                        goto mark;
4432                if (*stype == STACK_ZERO) {
4433                        if (clobber) {
4434                                /* helper can write anything into the stack */
4435                                *stype = STACK_MISC;
4436                        }
4437                        goto mark;
4438                }
4439
4440                if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4441                    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4442                        goto mark;
4443
4444                if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4445                    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4446                     env->allow_ptr_leaks)) {
4447                        if (clobber) {
4448                                __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4449                                for (j = 0; j < BPF_REG_SIZE; j++)
4450                                        state->stack[spi].slot_type[j] = STACK_MISC;
4451                        }
4452                        goto mark;
4453                }
4454
4455err:
4456                if (tnum_is_const(reg->var_off)) {
4457                        verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4458                                err_extra, regno, min_off, i - min_off, access_size);
4459                } else {
4460                        char tn_buf[48];
4461
4462                        tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4463                        verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4464                                err_extra, regno, tn_buf, i - min_off, access_size);
4465                }
4466                return -EACCES;
4467mark:
4468                /* reading any byte out of 8-byte 'spill_slot' will cause
4469                 * the whole slot to be marked as 'read'
4470                 */
4471                mark_reg_read(env, &state->stack[spi].spilled_ptr,
4472                              state->stack[spi].spilled_ptr.parent,
4473                              REG_LIVE_READ64);
4474        }
4475        return update_stack_depth(env, state, min_off);
4476}
4477
4478static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4479                                   int access_size, bool zero_size_allowed,
4480                                   struct bpf_call_arg_meta *meta)
4481{
4482        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4483
4484        switch (reg->type) {
4485        case PTR_TO_PACKET:
4486        case PTR_TO_PACKET_META:
4487                return check_packet_access(env, regno, reg->off, access_size,
4488                                           zero_size_allowed);
4489        case PTR_TO_MAP_KEY:
4490                return check_mem_region_access(env, regno, reg->off, access_size,
4491                                               reg->map_ptr->key_size, false);
4492        case PTR_TO_MAP_VALUE:
4493                if (check_map_access_type(env, regno, reg->off, access_size,
4494                                          meta && meta->raw_mode ? BPF_WRITE :
4495                                          BPF_READ))
4496                        return -EACCES;
4497                return check_map_access(env, regno, reg->off, access_size,
4498                                        zero_size_allowed);
4499        case PTR_TO_MEM:
4500                return check_mem_region_access(env, regno, reg->off,
4501                                               access_size, reg->mem_size,
4502                                               zero_size_allowed);
4503        case PTR_TO_RDONLY_BUF:
4504                if (meta && meta->raw_mode)
4505                        return -EACCES;
4506                return check_buffer_access(env, reg, regno, reg->off,
4507                                           access_size, zero_size_allowed,
4508                                           "rdonly",
4509                                           &env->prog->aux->max_rdonly_access);
4510        case PTR_TO_RDWR_BUF:
4511                return check_buffer_access(env, reg, regno, reg->off,
4512                                           access_size, zero_size_allowed,
4513                                           "rdwr",
4514                                           &env->prog->aux->max_rdwr_access);
4515        case PTR_TO_STACK:
4516                return check_stack_range_initialized(
4517                                env,
4518                                regno, reg->off, access_size,
4519                                zero_size_allowed, ACCESS_HELPER, meta);
4520        default: /* scalar_value or invalid ptr */
4521                /* Allow zero-byte read from NULL, regardless of pointer type */
4522                if (zero_size_allowed && access_size == 0 &&
4523                    register_is_null(reg))
4524                        return 0;
4525
4526                verbose(env, "R%d type=%s expected=%s\n", regno,
4527                        reg_type_str[reg->type],
4528                        reg_type_str[PTR_TO_STACK]);
4529                return -EACCES;
4530        }
4531}
4532
4533int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4534                   u32 regno, u32 mem_size)
4535{
4536        if (register_is_null(reg))
4537                return 0;
4538
4539        if (reg_type_may_be_null(reg->type)) {
4540                /* Assuming that the register contains a value check if the memory
4541                 * access is safe. Temporarily save and restore the register's state as
4542                 * the conversion shouldn't be visible to a caller.
4543                 */
4544                const struct bpf_reg_state saved_reg = *reg;
4545                int rv;
4546
4547                mark_ptr_not_null_reg(reg);
4548                rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4549                *reg = saved_reg;
4550                return rv;
4551        }
4552
4553        return check_helper_mem_access(env, regno, mem_size, true, NULL);
4554}
4555
4556/* Implementation details:
4557 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4558 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4559 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4560 * value_or_null->value transition, since the verifier only cares about
4561 * the range of access to valid map value pointer and doesn't care about actual
4562 * address of the map element.
4563 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4564 * reg->id > 0 after value_or_null->value transition. By doing so
4565 * two bpf_map_lookups will be considered two different pointers that
4566 * point to different bpf_spin_locks.
4567 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4568 * dead-locks.
4569 * Since only one bpf_spin_lock is allowed the checks are simpler than
4570 * reg_is_refcounted() logic. The verifier needs to remember only
4571 * one spin_lock instead of array of acquired_refs.
4572 * cur_state->active_spin_lock remembers which map value element got locked
4573 * and clears it after bpf_spin_unlock.
4574 */
4575static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4576                             bool is_lock)
4577{
4578        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4579        struct bpf_verifier_state *cur = env->cur_state;
4580        bool is_const = tnum_is_const(reg->var_off);
4581        struct bpf_map *map = reg->map_ptr;
4582        u64 val = reg->var_off.value;
4583
4584        if (!is_const) {
4585                verbose(env,
4586                        "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4587                        regno);
4588                return -EINVAL;
4589        }
4590        if (!map->btf) {
4591                verbose(env,
4592                        "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4593                        map->name);
4594                return -EINVAL;
4595        }
4596        if (!map_value_has_spin_lock(map)) {
4597                if (map->spin_lock_off == -E2BIG)
4598                        verbose(env,
4599                                "map '%s' has more than one 'struct bpf_spin_lock'\n",
4600                                map->name);
4601                else if (map->spin_lock_off == -ENOENT)
4602                        verbose(env,
4603                                "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4604                                map->name);
4605                else
4606                        verbose(env,
4607                                "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4608                                map->name);
4609                return -EINVAL;
4610        }
4611        if (map->spin_lock_off != val + reg->off) {
4612                verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4613                        val + reg->off);
4614                return -EINVAL;
4615        }
4616        if (is_lock) {
4617                if (cur->active_spin_lock) {
4618                        verbose(env,
4619                                "Locking two bpf_spin_locks are not allowed\n");
4620                        return -EINVAL;
4621                }
4622                cur->active_spin_lock = reg->id;
4623        } else {
4624                if (!cur->active_spin_lock) {
4625                        verbose(env, "bpf_spin_unlock without taking a lock\n");
4626                        return -EINVAL;
4627                }
4628                if (cur->active_spin_lock != reg->id) {
4629                        verbose(env, "bpf_spin_unlock of different lock\n");
4630                        return -EINVAL;
4631                }
4632                cur->active_spin_lock = 0;
4633        }
4634        return 0;
4635}
4636
4637static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4638{
4639        return type == ARG_PTR_TO_MEM ||
4640               type == ARG_PTR_TO_MEM_OR_NULL ||
4641               type == ARG_PTR_TO_UNINIT_MEM;
4642}
4643
4644static bool arg_type_is_mem_size(enum bpf_arg_type type)
4645{
4646        return type == ARG_CONST_SIZE ||
4647               type == ARG_CONST_SIZE_OR_ZERO;
4648}
4649
4650static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4651{
4652        return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4653}
4654
4655static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4656{
4657        return type == ARG_PTR_TO_INT ||
4658               type == ARG_PTR_TO_LONG;
4659}
4660
4661static int int_ptr_type_to_size(enum bpf_arg_type type)
4662{
4663        if (type == ARG_PTR_TO_INT)
4664                return sizeof(u32);
4665        else if (type == ARG_PTR_TO_LONG)
4666                return sizeof(u64);
4667
4668        return -EINVAL;
4669}
4670
4671static int resolve_map_arg_type(struct bpf_verifier_env *env,
4672                                 const struct bpf_call_arg_meta *meta,
4673                                 enum bpf_arg_type *arg_type)
4674{
4675        if (!meta->map_ptr) {
4676                /* kernel subsystem misconfigured verifier */
4677                verbose(env, "invalid map_ptr to access map->type\n");
4678                return -EACCES;
4679        }
4680
4681        switch (meta->map_ptr->map_type) {
4682        case BPF_MAP_TYPE_SOCKMAP:
4683        case BPF_MAP_TYPE_SOCKHASH:
4684                if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4685                        *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4686                } else {
4687                        verbose(env, "invalid arg_type for sockmap/sockhash\n");
4688                        return -EINVAL;
4689                }
4690                break;
4691
4692        default:
4693                break;
4694        }
4695        return 0;
4696}
4697
4698struct bpf_reg_types {
4699        const enum bpf_reg_type types[10];
4700        u32 *btf_id;
4701};
4702
4703static const struct bpf_reg_types map_key_value_types = {
4704        .types = {
4705                PTR_TO_STACK,
4706                PTR_TO_PACKET,
4707                PTR_TO_PACKET_META,
4708                PTR_TO_MAP_KEY,
4709                PTR_TO_MAP_VALUE,
4710        },
4711};
4712
4713static const struct bpf_reg_types sock_types = {
4714        .types = {
4715                PTR_TO_SOCK_COMMON,
4716                PTR_TO_SOCKET,
4717                PTR_TO_TCP_SOCK,
4718                PTR_TO_XDP_SOCK,
4719        },
4720};
4721
4722#ifdef CONFIG_NET
4723static const struct bpf_reg_types btf_id_sock_common_types = {
4724        .types = {
4725                PTR_TO_SOCK_COMMON,
4726                PTR_TO_SOCKET,
4727                PTR_TO_TCP_SOCK,
4728                PTR_TO_XDP_SOCK,
4729                PTR_TO_BTF_ID,
4730        },
4731        .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4732};
4733#endif
4734
4735static const struct bpf_reg_types mem_types = {
4736        .types = {
4737                PTR_TO_STACK,
4738                PTR_TO_PACKET,
4739                PTR_TO_PACKET_META,
4740                PTR_TO_MAP_KEY,
4741                PTR_TO_MAP_VALUE,
4742                PTR_TO_MEM,
4743                PTR_TO_RDONLY_BUF,
4744                PTR_TO_RDWR_BUF,
4745        },
4746};
4747
4748static const struct bpf_reg_types int_ptr_types = {
4749        .types = {
4750                PTR_TO_STACK,
4751                PTR_TO_PACKET,
4752                PTR_TO_PACKET_META,
4753                PTR_TO_MAP_KEY,
4754                PTR_TO_MAP_VALUE,
4755        },
4756};
4757
4758static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4759static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4760static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4761static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4762static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4763static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4764static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4765static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4766static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4767static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4768static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4769
4770static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4771        [ARG_PTR_TO_MAP_KEY]            = &map_key_value_types,
4772        [ARG_PTR_TO_MAP_VALUE]          = &map_key_value_types,
4773        [ARG_PTR_TO_UNINIT_MAP_VALUE]   = &map_key_value_types,
4774        [ARG_PTR_TO_MAP_VALUE_OR_NULL]  = &map_key_value_types,
4775        [ARG_CONST_SIZE]                = &scalar_types,
4776        [ARG_CONST_SIZE_OR_ZERO]        = &scalar_types,
4777        [ARG_CONST_ALLOC_SIZE_OR_ZERO]  = &scalar_types,
4778        [ARG_CONST_MAP_PTR]             = &const_map_ptr_types,
4779        [ARG_PTR_TO_CTX]                = &context_types,
4780        [ARG_PTR_TO_CTX_OR_NULL]        = &context_types,
4781        [ARG_PTR_TO_SOCK_COMMON]        = &sock_types,
4782#ifdef CONFIG_NET
4783        [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4784#endif
4785        [ARG_PTR_TO_SOCKET]             = &fullsock_types,
4786        [ARG_PTR_TO_SOCKET_OR_NULL]     = &fullsock_types,
4787        [ARG_PTR_TO_BTF_ID]             = &btf_ptr_types,
4788        [ARG_PTR_TO_SPIN_LOCK]          = &spin_lock_types,
4789        [ARG_PTR_TO_MEM]                = &mem_types,
4790        [ARG_PTR_TO_MEM_OR_NULL]        = &mem_types,
4791        [ARG_PTR_TO_UNINIT_MEM]         = &mem_types,
4792        [ARG_PTR_TO_ALLOC_MEM]          = &alloc_mem_types,
4793        [ARG_PTR_TO_ALLOC_MEM_OR_NULL]  = &alloc_mem_types,
4794        [ARG_PTR_TO_INT]                = &int_ptr_types,
4795        [ARG_PTR_TO_LONG]               = &int_ptr_types,
4796        [ARG_PTR_TO_PERCPU_BTF_ID]      = &percpu_btf_ptr_types,
4797        [ARG_PTR_TO_FUNC]               = &func_ptr_types,
4798        [ARG_PTR_TO_STACK_OR_NULL]      = &stack_ptr_types,
4799        [ARG_PTR_TO_CONST_STR]          = &const_str_ptr_types,
4800};
4801
4802static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4803                          enum bpf_arg_type arg_type,
4804                          const u32 *arg_btf_id)
4805{
4806        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4807        enum bpf_reg_type expected, type = reg->type;
4808        const struct bpf_reg_types *compatible;
4809        int i, j;
4810
4811        compatible = compatible_reg_types[arg_type];
4812        if (!compatible) {
4813                verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4814                return -EFAULT;
4815        }
4816
4817        for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4818                expected = compatible->types[i];
4819                if (expected == NOT_INIT)
4820                        break;
4821
4822                if (type == expected)
4823                        goto found;
4824        }
4825
4826        verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4827        for (j = 0; j + 1 < i; j++)
4828                verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4829        verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4830        return -EACCES;
4831
4832found:
4833        if (type == PTR_TO_BTF_ID) {
4834                if (!arg_btf_id) {
4835                        if (!compatible->btf_id) {
4836                                verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4837                                return -EFAULT;
4838                        }
4839                        arg_btf_id = compatible->btf_id;
4840                }
4841
4842                if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4843                                          btf_vmlinux, *arg_btf_id)) {
4844                        verbose(env, "R%d is of type %s but %s is expected\n",
4845                                regno, kernel_type_name(reg->btf, reg->btf_id),
4846                                kernel_type_name(btf_vmlinux, *arg_btf_id));
4847                        return -EACCES;
4848                }
4849
4850                if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4851                        verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4852                                regno);
4853                        return -EACCES;
4854                }
4855        }
4856
4857        return 0;
4858}
4859
4860static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4861                          struct bpf_call_arg_meta *meta,
4862                          const struct bpf_func_proto *fn)
4863{
4864        u32 regno = BPF_REG_1 + arg;
4865        struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4866        enum bpf_arg_type arg_type = fn->arg_type[arg];
4867        enum bpf_reg_type type = reg->type;
4868        int err = 0;
4869
4870        if (arg_type == ARG_DONTCARE)
4871                return 0;
4872
4873        err = check_reg_arg(env, regno, SRC_OP);
4874        if (err)
4875                return err;
4876
4877        if (arg_type == ARG_ANYTHING) {
4878                if (is_pointer_value(env, regno)) {
4879                        verbose(env, "R%d leaks addr into helper function\n",
4880                                regno);
4881                        return -EACCES;
4882                }
4883                return 0;
4884        }
4885
4886        if (type_is_pkt_pointer(type) &&
4887            !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4888                verbose(env, "helper access to the packet is not allowed\n");
4889                return -EACCES;
4890        }
4891
4892        if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4893            arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4894            arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4895                err = resolve_map_arg_type(env, meta, &arg_type);
4896                if (err)
4897                        return err;
4898        }
4899
4900        if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4901                /* A NULL register has a SCALAR_VALUE type, so skip
4902                 * type checking.
4903                 */
4904                goto skip_type_check;
4905
4906        err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4907        if (err)
4908                return err;
4909
4910        if (type == PTR_TO_CTX) {
4911                err = check_ctx_reg(env, reg, regno);
4912                if (err < 0)
4913                        return err;
4914        }
4915
4916skip_type_check:
4917        if (reg->ref_obj_id) {
4918                if (meta->ref_obj_id) {
4919                        verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4920                                regno, reg->ref_obj_id,
4921                                meta->ref_obj_id);
4922                        return -EFAULT;
4923                }
4924                meta->ref_obj_id = reg->ref_obj_id;
4925        }
4926
4927        if (arg_type == ARG_CONST_MAP_PTR) {
4928                /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4929                meta->map_ptr = reg->map_ptr;
4930        } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4931                /* bpf_map_xxx(..., map_ptr, ..., key) call:
4932                 * check that [key, key + map->key_size) are within
4933                 * stack limits and initialized
4934                 */
4935                if (!meta->map_ptr) {
4936                        /* in function declaration map_ptr must come before
4937                         * map_key, so that it's verified and known before
4938                         * we have to check map_key here. Otherwise it means
4939                         * that kernel subsystem misconfigured verifier
4940                         */
4941                        verbose(env, "invalid map_ptr to access map->key\n");
4942                        return -EACCES;
4943                }
4944                err = check_helper_mem_access(env, regno,
4945                                              meta->map_ptr->key_size, false,
4946                                              NULL);
4947        } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4948                   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4949                    !register_is_null(reg)) ||
4950                   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4951                /* bpf_map_xxx(..., map_ptr, ..., value) call:
4952                 * check [value, value + map->value_size) validity
4953                 */
4954                if (!meta->map_ptr) {
4955                        /* kernel subsystem misconfigured verifier */
4956                        verbose(env, "invalid map_ptr to access map->value\n");
4957                        return -EACCES;
4958                }
4959                meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4960                err = check_helper_mem_access(env, regno,
4961                                              meta->map_ptr->value_size, false,
4962                                              meta);
4963        } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4964                if (!reg->btf_id) {
4965                        verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4966                        return -EACCES;
4967                }
4968                meta->ret_btf = reg->btf;
4969                meta->ret_btf_id = reg->btf_id;
4970        } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4971                if (meta->func_id == BPF_FUNC_spin_lock) {
4972                        if (process_spin_lock(env, regno, true))
4973                                return -EACCES;
4974                } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4975                        if (process_spin_lock(env, regno, false))
4976                                return -EACCES;
4977                } else {
4978                        verbose(env, "verifier internal error\n");
4979                        return -EFAULT;
4980                }
4981        } else if (arg_type == ARG_PTR_TO_FUNC) {
4982                meta->subprogno = reg->subprogno;
4983        } else if (arg_type_is_mem_ptr(arg_type)) {
4984                /* The access to this pointer is only checked when we hit the
4985                 * next is_mem_size argument below.
4986                 */
4987                meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4988        } else if (arg_type_is_mem_size(arg_type)) {
4989                bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4990
4991                /* This is used to refine r0 return value bounds for helpers
4992                 * that enforce this value as an upper bound on return values.
4993                 * See do_refine_retval_range() for helpers that can refine
4994                 * the return value. C type of helper is u32 so we pull register
4995                 * bound from umax_value however, if negative verifier errors
4996                 * out. Only upper bounds can be learned because retval is an
4997                 * int type and negative retvals are allowed.
4998                 */
4999                meta->msize_max_value = reg->umax_value;
5000
5001                /* The register is SCALAR_VALUE; the access check
5002                 * happens using its boundaries.
5003                 */
5004                if (!tnum_is_const(reg->var_off))
5005                        /* For unprivileged variable accesses, disable raw
5006                         * mode so that the program is required to
5007                         * initialize all the memory that the helper could
5008                         * just partially fill up.
5009                         */
5010                        meta = NULL;
5011
5012                if (reg->smin_value < 0) {
5013                        verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5014                                regno);
5015                        return -EACCES;
5016                }
5017
5018                if (reg->umin_value == 0) {
5019                        err = check_helper_mem_access(env, regno - 1, 0,
5020                                                      zero_size_allowed,
5021                                                      meta);
5022                        if (err)
5023                                return err;
5024                }
5025
5026                if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5027                        verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5028                                regno);
5029                        return -EACCES;
5030                }
5031                err = check_helper_mem_access(env, regno - 1,
5032                                              reg->umax_value,
5033                                              zero_size_allowed, meta);
5034                if (!err)
5035                        err = mark_chain_precision(env, regno);
5036        } else if (arg_type_is_alloc_size(arg_type)) {
5037                if (!tnum_is_const(reg->var_off)) {
5038                        verbose(env, "R%d is not a known constant'\n",
5039                                regno);
5040                        return -EACCES;
5041                }
5042                meta->mem_size = reg->var_off.value;
5043        } else if (arg_type_is_int_ptr(arg_type)) {
5044                int size = int_ptr_type_to_size(arg_type);
5045
5046                err = check_helper_mem_access(env, regno, size, false, meta);
5047                if (err)
5048                        return err;
5049                err = check_ptr_alignment(env, reg, 0, size, true);
5050        } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5051                struct bpf_map *map = reg->map_ptr;
5052                int map_off;
5053                u64 map_addr;
5054                char *str_ptr;
5055
5056                if (!bpf_map_is_rdonly(map)) {
5057                        verbose(env, "R%d does not point to a readonly map'\n", regno);
5058                        return -EACCES;
5059                }
5060
5061                if (!tnum_is_const(reg->var_off)) {
5062                        verbose(env, "R%d is not a constant address'\n", regno);
5063                        return -EACCES;
5064                }
5065
5066                if (!map->ops->map_direct_value_addr) {
5067                        verbose(env, "no direct value access support for this map type\n");
5068                        return -EACCES;
5069                }
5070
5071                err = check_map_access(env, regno, reg->off,
5072                                       map->value_size - reg->off, false);
5073                if (err)
5074                        return err;
5075
5076                map_off = reg->off + reg->var_off.value;
5077                err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5078                if (err) {
5079                        verbose(env, "direct value access on string failed\n");
5080                        return err;
5081                }
5082
5083                str_ptr = (char *)(long)(map_addr);
5084                if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5085                        verbose(env, "string is not zero-terminated\n");
5086                        return -EINVAL;
5087                }
5088        }
5089
5090        return err;
5091}
5092
5093static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5094{
5095        enum bpf_attach_type eatype = env->prog->expected_attach_type;
5096        enum bpf_prog_type type = resolve_prog_type(env->prog);
5097
5098        if (func_id != BPF_FUNC_map_update_elem)
5099                return false;
5100
5101        /* It's not possible to get access to a locked struct sock in these
5102         * contexts, so updating is safe.
5103         */
5104        switch (type) {
5105        case BPF_PROG_TYPE_TRACING:
5106                if (eatype == BPF_TRACE_ITER)
5107                        return true;
5108                break;
5109        case BPF_PROG_TYPE_SOCKET_FILTER:
5110        case BPF_PROG_TYPE_SCHED_CLS:
5111        case BPF_PROG_TYPE_SCHED_ACT:
5112        case BPF_PROG_TYPE_XDP:
5113        case BPF_PROG_TYPE_SK_REUSEPORT:
5114        case BPF_PROG_TYPE_FLOW_DISSECTOR:
5115        case BPF_PROG_TYPE_SK_LOOKUP:
5116                return true;
5117        default:
5118                break;
5119        }
5120
5121        verbose(env, "cannot update sockmap in this context\n");
5122        return false;
5123}
5124
5125static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5126{
5127        return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5128}
5129
5130static int check_map_func_compatibility(struct bpf_verifier_env *env,
5131                                        struct bpf_map *map, int func_id)
5132{
5133        if (!map)
5134                return 0;
5135
5136        /* We need a two way check, first is from map perspective ... */
5137        switch (map->map_type) {
5138        case BPF_MAP_TYPE_PROG_ARRAY:
5139                if (func_id != BPF_FUNC_tail_call)
5140                        goto error;
5141                break;
5142        case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5143                if (func_id != BPF_FUNC_perf_event_read &&
5144                    func_id != BPF_FUNC_perf_event_output &&
5145                    func_id != BPF_FUNC_skb_output &&
5146                    func_id != BPF_FUNC_perf_event_read_value &&
5147                    func_id != BPF_FUNC_xdp_output)
5148                        goto error;
5149                break;
5150        case BPF_MAP_TYPE_RINGBUF:
5151                if (func_id != BPF_FUNC_ringbuf_output &&
5152                    func_id != BPF_FUNC_ringbuf_reserve &&
5153                    func_id != BPF_FUNC_ringbuf_query)
5154                        goto error;
5155                break;
5156        case BPF_MAP_TYPE_STACK_TRACE:
5157                if (func_id != BPF_FUNC_get_stackid)
5158                        goto error;
5159                break;
5160        case BPF_MAP_TYPE_CGROUP_ARRAY:
5161                if (func_id != BPF_FUNC_skb_under_cgroup &&
5162                    func_id != BPF_FUNC_current_task_under_cgroup)
5163                        goto error;
5164                break;
5165        case BPF_MAP_TYPE_CGROUP_STORAGE:
5166        case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5167                if (func_id != BPF_FUNC_get_local_storage)
5168                        goto error;
5169                break;
5170        case BPF_MAP_TYPE_DEVMAP:
5171        case BPF_MAP_TYPE_DEVMAP_HASH:
5172                if (func_id != BPF_FUNC_redirect_map &&
5173                    func_id != BPF_FUNC_map_lookup_elem)
5174                        goto error;
5175                break;
5176        /* Restrict bpf side of cpumap and xskmap, open when use-cases
5177         * appear.
5178         */
5179        case BPF_MAP_TYPE_CPUMAP:
5180                if (func_id != BPF_FUNC_redirect_map)
5181                        goto error;
5182                break;
5183        case BPF_MAP_TYPE_XSKMAP:
5184                if (func_id != BPF_FUNC_redirect_map &&
5185                    func_id != BPF_FUNC_map_lookup_elem)
5186                        goto error;
5187                break;
5188        case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5189        case BPF_MAP_TYPE_HASH_OF_MAPS:
5190                if (func_id != BPF_FUNC_map_lookup_elem)
5191                        goto error;
5192                break;
5193        case BPF_MAP_TYPE_SOCKMAP:
5194                if (func_id != BPF_FUNC_sk_redirect_map &&
5195                    func_id != BPF_FUNC_sock_map_update &&
5196                    func_id != BPF_FUNC_map_delete_elem &&
5197                    func_id != BPF_FUNC_msg_redirect_map &&
5198                    func_id != BPF_FUNC_sk_select_reuseport &&
5199                    func_id != BPF_FUNC_map_lookup_elem &&
5200                    !may_update_sockmap(env, func_id))
5201                        goto error;
5202                break;
5203        case BPF_MAP_TYPE_SOCKHASH:
5204                if (func_id != BPF_FUNC_sk_redirect_hash &&
5205                    func_id != BPF_FUNC_sock_hash_update &&
5206                    func_id != BPF_FUNC_map_delete_elem &&
5207                    func_id != BPF_FUNC_msg_redirect_hash &&
5208                    func_id != BPF_FUNC_sk_select_reuseport &&
5209                    func_id != BPF_FUNC_map_lookup_elem &&
5210                    !may_update_sockmap(env, func_id))
5211                        goto error;
5212                break;
5213        case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5214                if (func_id != BPF_FUNC_sk_select_reuseport)
5215                        goto error;
5216                break;
5217        case BPF_MAP_TYPE_QUEUE:
5218        case BPF_MAP_TYPE_STACK:
5219                if (func_id != BPF_FUNC_map_peek_elem &&
5220                    func_id != BPF_FUNC_map_pop_elem &&
5221                    func_id != BPF_FUNC_map_push_elem)
5222                        goto error;
5223                break;
5224        case BPF_MAP_TYPE_SK_STORAGE:
5225                if (func_id != BPF_FUNC_sk_storage_get &&
5226                    func_id != BPF_FUNC_sk_storage_delete)
5227                        goto error;
5228                break;
5229        case BPF_MAP_TYPE_INODE_STORAGE:
5230                if (func_id != BPF_FUNC_inode_storage_get &&
5231                    func_id != BPF_FUNC_inode_storage_delete)
5232                        goto error;
5233                break;
5234        case BPF_MAP_TYPE_TASK_STORAGE:
5235                if (func_id != BPF_FUNC_task_storage_get &&
5236                    func_id != BPF_FUNC_task_storage_delete)
5237                        goto error;
5238                break;
5239        default:
5240                break;
5241        }
5242
5243        /* ... and second from the function itself. */
5244        switch (func_id) {
5245        case BPF_FUNC_tail_call:
5246                if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5247                        goto error;
5248                if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5249                        verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5250                        return -EINVAL;
5251                }
5252                break;
5253        case BPF_FUNC_perf_event_read:
5254        case BPF_FUNC_perf_event_output:
5255        case BPF_FUNC_perf_event_read_value:
5256        case BPF_FUNC_skb_output:
5257        case BPF_FUNC_xdp_output:
5258                if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5259                        goto error;
5260                break;
5261        case BPF_FUNC_ringbuf_output:
5262        case BPF_FUNC_ringbuf_reserve:
5263        case BPF_FUNC_ringbuf_query:
5264                if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5265                        goto error;
5266                break;
5267        case BPF_FUNC_get_stackid:
5268                if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5269                        goto error;
5270                break;
5271        case BPF_FUNC_current_task_under_cgroup:
5272        case BPF_FUNC_skb_under_cgroup:
5273                if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5274                        goto error;
5275                break;
5276        case BPF_FUNC_redirect_map:
5277                if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5278                    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5279                    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5280                    map->map_type != BPF_MAP_TYPE_XSKMAP)
5281                        goto error;
5282                break;
5283        case BPF_FUNC_sk_redirect_map:
5284        case BPF_FUNC_msg_redirect_map:
5285        case BPF_FUNC_sock_map_update:
5286                if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5287                        goto error;
5288                break;
5289        case BPF_FUNC_sk_redirect_hash:
5290        case BPF_FUNC_msg_redirect_hash:
5291        case BPF_FUNC_sock_hash_update:
5292                if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5293                        goto error;
5294                break;
5295        case BPF_FUNC_get_local_storage:
5296                if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5297                    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5298                        goto error;
5299                break;
5300        case BPF_FUNC_sk_select_reuseport:
5301                if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5302                    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5303                    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5304                        goto error;
5305                break;
5306        case BPF_FUNC_map_peek_elem:
5307        case BPF_FUNC_map_pop_elem:
5308        case BPF_FUNC_map_push_elem:
5309                if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5310                    map->map_type != BPF_MAP_TYPE_STACK)
5311                        goto error;
5312                break;
5313        case BPF_FUNC_sk_storage_get:
5314        case BPF_FUNC_sk_storage_delete:
5315                if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5316                        goto error;
5317                break;
5318        case BPF_FUNC_inode_storage_get:
5319        case BPF_FUNC_inode_storage_delete:
5320                if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5321                        goto error;
5322                break;
5323        case BPF_FUNC_task_storage_get:
5324        case BPF_FUNC_task_storage_delete:
5325                if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5326                        goto error;
5327                break;
5328        default:
5329                break;
5330        }
5331
5332        return 0;
5333error:
5334        verbose(env, "cannot pass map_type %d into func %s#%d\n",
5335                map->map_type, func_id_name(func_id), func_id);
5336        return -EINVAL;
5337}
5338
5339static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5340{
5341        int count = 0;
5342
5343        if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5344                count++;
5345        if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5346                count++;
5347        if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5348                count++;
5349        if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5350                count++;
5351        if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5352                count++;
5353
5354        /* We only support one arg being in raw mode at the moment,
5355         * which is sufficient for the helper functions we have
5356         * right now.
5357         */
5358        return count <= 1;
5359}
5360
5361static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5362                                    enum bpf_arg_type arg_next)
5363{
5364        return (arg_type_is_mem_ptr(arg_curr) &&
5365                !arg_type_is_mem_size(arg_next)) ||
5366               (!arg_type_is_mem_ptr(arg_curr) &&
5367                arg_type_is_mem_size(arg_next));
5368}
5369
5370static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5371{
5372        /* bpf_xxx(..., buf, len) call will access 'len'
5373         * bytes from memory 'buf'. Both arg types need
5374         * to be paired, so make sure there's no buggy
5375         * helper function specification.
5376         */
5377        if (arg_type_is_mem_size(fn->arg1_type) ||
5378            arg_type_is_mem_ptr(fn->arg5_type)  ||
5379            check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5380            check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5381            check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5382            check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5383                return false;
5384
5385        return true;
5386}
5387
5388static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5389{
5390        int count = 0;
5391
5392        if (arg_type_may_be_refcounted(fn->arg1_type))
5393                count++;
5394        if (arg_type_may_be_refcounted(fn->arg2_type))
5395                count++;
5396        if (arg_type_may_be_refcounted(fn->arg3_type))
5397                count++;
5398        if (arg_type_may_be_refcounted(fn->arg4_type))
5399                count++;
5400        if (arg_type_may_be_refcounted(fn->arg5_type))
5401                count++;
5402
5403        /* A reference acquiring function cannot acquire
5404         * another refcounted ptr.
5405         */
5406        if (may_be_acquire_function(func_id) && count)
5407                return false;
5408
5409        /* We only support one arg being unreferenced at the moment,
5410         * which is sufficient for the helper functions we have right now.
5411         */
5412        return count <= 1;
5413}
5414
5415static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5416{
5417        int i;
5418
5419        for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5420                if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5421                        return false;
5422
5423                if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5424                        return false;
5425        }
5426
5427        return true;
5428}
5429
5430static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5431{
5432        return check_raw_mode_ok(fn) &&
5433               check_arg_pair_ok(fn) &&
5434               check_btf_id_ok(fn) &&
5435               check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5436}
5437
5438/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5439 * are now invalid, so turn them into unknown SCALAR_VALUE.
5440 */
5441static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5442                                     struct bpf_func_state *state)
5443{
5444        struct bpf_reg_state *regs = state->regs, *reg;
5445        int i;
5446
5447        for (i = 0; i < MAX_BPF_REG; i++)
5448                if (reg_is_pkt_pointer_any(&regs[i]))
5449                        mark_reg_unknown(env, regs, i);
5450
5451        bpf_for_each_spilled_reg(i, state, reg) {
5452                if (!reg)
5453                        continue;
5454                if (reg_is_pkt_pointer_any(reg))
5455                        __mark_reg_unknown(env, reg);
5456        }
5457}
5458
5459static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5460{
5461        struct bpf_verifier_state *vstate = env->cur_state;
5462        int i;
5463
5464        for (i = 0; i <= vstate->curframe; i++)
5465                __clear_all_pkt_pointers(env, vstate->frame[i]);
5466}
5467
5468enum {
5469        AT_PKT_END = -1,
5470        BEYOND_PKT_END = -2,
5471};
5472
5473static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5474{
5475        struct bpf_func_state *state = vstate->frame[vstate->curframe];
5476        struct bpf_reg_state *reg = &state->regs[regn];
5477
5478        if (reg->type != PTR_TO_PACKET)
5479                /* PTR_TO_PACKET_META is not supported yet */
5480                return;
5481
5482        /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5483         * How far beyond pkt_end it goes is unknown.
5484         * if (!range_open) it's the case of pkt >= pkt_end
5485         * if (range_open) it's the case of pkt > pkt_end
5486         * hence this pointer is at least 1 byte bigger than pkt_end
5487         */
5488        if (range_open)
5489                reg->range = BEYOND_PKT_END;
5490        else
5491                reg->range = AT_PKT_END;
5492}
5493
5494static void release_reg_references(struct bpf_verifier_env *env,
5495                                   struct bpf_func_state *state,
5496                                   int ref_obj_id)
5497{
5498        struct bpf_reg_state *regs = state->regs, *reg;
5499        int i;
5500
5501        for (i = 0; i < MAX_BPF_REG; i++)
5502                if (regs[i].ref_obj_id == ref_obj_id)
5503                        mark_reg_unknown(env, regs, i);
5504
5505        bpf_for_each_spilled_reg(i, state, reg) {
5506                if (!reg)
5507                        continue;
5508                if (reg->ref_obj_id == ref_obj_id)
5509                        __mark_reg_unknown(env, reg);
5510        }
5511}
5512
5513/* The pointer with the specified id has released its reference to kernel
5514 * resources. Identify all copies of the same pointer and clear the reference.
5515 */
5516static int release_reference(struct bpf_verifier_env *env,
5517                             int ref_obj_id)
5518{
5519        struct bpf_verifier_state *vstate = env->cur_state;
5520        int err;
5521        int i;
5522
5523        err = release_reference_state(cur_func(env), ref_obj_id);
5524        if (err)
5525                return err;
5526
5527        for (i = 0; i <= vstate->curframe; i++)
5528                release_reg_references(env, vstate->frame[i], ref_obj_id);
5529
5530        return 0;
5531}
5532
5533static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5534                                    struct bpf_reg_state *regs)
5535{
5536        int i;
5537
5538        /* after the call registers r0 - r5 were scratched */
5539        for (i = 0; i < CALLER_SAVED_REGS; i++) {
5540                mark_reg_not_init(env, regs, caller_saved[i]);
5541                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5542        }
5543}
5544
5545typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5546                                   struct bpf_func_state *caller,
5547                                   struct bpf_func_state *callee,
5548                                   int insn_idx);
5549
5550static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5551                             int *insn_idx, int subprog,
5552                             set_callee_state_fn set_callee_state_cb)
5553{
5554        struct bpf_verifier_state *state = env->cur_state;
5555        struct bpf_func_info_aux *func_info_aux;
5556        struct bpf_func_state *caller, *callee;
5557        int err;
5558        bool is_global = false;
5559
5560        if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5561                verbose(env, "the call stack of %d frames is too deep\n",
5562                        state->curframe + 2);
5563                return -E2BIG;
5564        }
5565
5566        caller = state->frame[state->curframe];
5567        if (state->frame[state->curframe + 1]) {
5568                verbose(env, "verifier bug. Frame %d already allocated\n",
5569                        state->curframe + 1);
5570                return -EFAULT;
5571        }
5572
5573        func_info_aux = env->prog->aux->func_info_aux;
5574        if (func_info_aux)
5575                is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5576        err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5577        if (err == -EFAULT)
5578                return err;
5579        if (is_global) {
5580                if (err) {
5581                        verbose(env, "Caller passes invalid args into func#%d\n",
5582                                subprog);
5583                        return err;
5584                } else {
5585                        if (env->log.level & BPF_LOG_LEVEL)
5586                                verbose(env,
5587                                        "Func#%d is global and valid. Skipping.\n",
5588                                        subprog);
5589                        clear_caller_saved_regs(env, caller->regs);
5590
5591                        /* All global functions return a 64-bit SCALAR_VALUE */
5592                        mark_reg_unknown(env, caller->regs, BPF_REG_0);
5593                        caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5594
5595                        /* continue with next insn after call */
5596                        return 0;
5597                }
5598        }
5599
5600        callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5601        if (!callee)
5602                return -ENOMEM;
5603        state->frame[state->curframe + 1] = callee;
5604
5605        /* callee cannot access r0, r6 - r9 for reading and has to write
5606         * into its own stack before reading from it.
5607         * callee can read/write into caller's stack
5608         */
5609        init_func_state(env, callee,
5610                        /* remember the callsite, it will be used by bpf_exit */
5611                        *insn_idx /* callsite */,
5612                        state->curframe + 1 /* frameno within this callchain */,
5613                        subprog /* subprog number within this prog */);
5614
5615        /* Transfer references to the callee */
5616        err = copy_reference_state(callee, caller);
5617        if (err)
5618                return err;
5619
5620        err = set_callee_state_cb(env, caller, callee, *insn_idx);
5621        if (err)
5622                return err;
5623
5624        clear_caller_saved_regs(env, caller->regs);
5625
5626        /* only increment it after check_reg_arg() finished */
5627        state->curframe++;
5628
5629        /* and go analyze first insn of the callee */
5630        *insn_idx = env->subprog_info[subprog].start - 1;
5631
5632        if (env->log.level & BPF_LOG_LEVEL) {
5633                verbose(env, "caller:\n");
5634                print_verifier_state(env, caller);
5635                verbose(env, "callee:\n");
5636                print_verifier_state(env, callee);
5637        }
5638        return 0;
5639}
5640
5641int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5642                                   struct bpf_func_state *caller,
5643                                   struct bpf_func_state *callee)
5644{
5645        /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5646         *      void *callback_ctx, u64 flags);
5647         * callback_fn(struct bpf_map *map, void *key, void *value,
5648         *      void *callback_ctx);
5649         */
5650        callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5651
5652        callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5653        __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5654        callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5655
5656        callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5657        __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5658        callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5659
5660        /* pointer to stack or null */
5661        callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5662
5663        /* unused */
5664        __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5665        return 0;
5666}
5667
5668static int set_callee_state(struct bpf_verifier_env *env,
5669                            struct bpf_func_state *caller,
5670                            struct bpf_func_state *callee, int insn_idx)
5671{
5672        int i;
5673
5674        /* copy r1 - r5 args that callee can access.  The copy includes parent
5675         * pointers, which connects us up to the liveness chain
5676         */
5677        for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5678                callee->regs[i] = caller->regs[i];
5679        return 0;
5680}
5681
5682static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5683                           int *insn_idx)
5684{
5685        int subprog, target_insn;
5686
5687        target_insn = *insn_idx + insn->imm + 1;
5688        subprog = find_subprog(env, target_insn);
5689        if (subprog < 0) {
5690                verbose(env, "verifier bug. No program starts at insn %d\n",
5691                        target_insn);
5692                return -EFAULT;
5693        }
5694
5695        return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5696}
5697
5698static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5699                                       struct bpf_func_state *caller,
5700                                       struct bpf_func_state *callee,
5701                                       int insn_idx)
5702{
5703        struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5704        struct bpf_map *map;
5705        int err;
5706
5707        if (bpf_map_ptr_poisoned(insn_aux)) {
5708                verbose(env, "tail_call abusing map_ptr\n");
5709                return -EINVAL;
5710        }
5711
5712        map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5713        if (!map->ops->map_set_for_each_callback_args ||
5714            !map->ops->map_for_each_callback) {
5715                verbose(env, "callback function not allowed for map\n");
5716                return -ENOTSUPP;
5717        }
5718
5719        err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5720        if (err)
5721                return err;
5722
5723        callee->in_callback_fn = true;
5724        return 0;
5725}
5726
5727static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5728{
5729        struct bpf_verifier_state *state = env->cur_state;
5730        struct bpf_func_state *caller, *callee;
5731        struct bpf_reg_state *r0;
5732        int err;
5733
5734        callee = state->frame[state->curframe];
5735        r0 = &callee->regs[BPF_REG_0];
5736        if (r0->type == PTR_TO_STACK) {
5737                /* technically it's ok to return caller's stack pointer
5738                 * (or caller's caller's pointer) back to the caller,
5739                 * since these pointers are valid. Only current stack
5740                 * pointer will be invalid as soon as function exits,
5741                 * but let's be conservative
5742                 */
5743                verbose(env, "cannot return stack pointer to the caller\n");
5744                return -EINVAL;
5745        }
5746
5747        state->curframe--;
5748        caller = state->frame[state->curframe];
5749        if (callee->in_callback_fn) {
5750                /* enforce R0 return value range [0, 1]. */
5751                struct tnum range = tnum_range(0, 1);
5752
5753                if (r0->type != SCALAR_VALUE) {
5754                        verbose(env, "R0 not a scalar value\n");
5755                        return -EACCES;
5756                }
5757                if (!tnum_in(range, r0->var_off)) {
5758                        verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5759                        return -EINVAL;
5760                }
5761        } else {
5762                /* return to the caller whatever r0 had in the callee */
5763                caller->regs[BPF_REG_0] = *r0;
5764        }
5765
5766        /* Transfer references to the caller */
5767        err = copy_reference_state(caller, callee);
5768        if (err)
5769                return err;
5770
5771        *insn_idx = callee->callsite + 1;
5772        if (env->log.level & BPF_LOG_LEVEL) {
5773                verbose(env, "returning from callee:\n");
5774                print_verifier_state(env, callee);
5775                verbose(env, "to caller at %d:\n", *insn_idx);
5776                print_verifier_state(env, caller);
5777        }
5778        /* clear everything in the callee */
5779        free_func_state(callee);
5780        state->frame[state->curframe + 1] = NULL;
5781        return 0;
5782}
5783
5784static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5785                                   int func_id,
5786                                   struct bpf_call_arg_meta *meta)
5787{
5788        struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5789
5790        if (ret_type != RET_INTEGER ||
5791            (func_id != BPF_FUNC_get_stack &&
5792             func_id != BPF_FUNC_get_task_stack &&
5793             func_id != BPF_FUNC_probe_read_str &&
5794             func_id != BPF_FUNC_probe_read_kernel_str &&
5795             func_id != BPF_FUNC_probe_read_user_str))
5796                return;
5797
5798        ret_reg->smax_value = meta->msize_max_value;
5799        ret_reg->s32_max_value = meta->msize_max_value;
5800        ret_reg->smin_value = -MAX_ERRNO;
5801        ret_reg->s32_min_value = -MAX_ERRNO;
5802        __reg_deduce_bounds(ret_reg);
5803        __reg_bound_offset(ret_reg);
5804        __update_reg_bounds(ret_reg);
5805}
5806
5807static int
5808record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5809                int func_id, int insn_idx)
5810{
5811        struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5812        struct bpf_map *map = meta->map_ptr;
5813
5814        if (func_id != BPF_FUNC_tail_call &&
5815            func_id != BPF_FUNC_map_lookup_elem &&
5816            func_id != BPF_FUNC_map_update_elem &&
5817            func_id != BPF_FUNC_map_delete_elem &&
5818            func_id != BPF_FUNC_map_push_elem &&
5819            func_id != BPF_FUNC_map_pop_elem &&
5820            func_id != BPF_FUNC_map_peek_elem &&
5821            func_id != BPF_FUNC_for_each_map_elem &&
5822            func_id != BPF_FUNC_redirect_map)
5823                return 0;
5824
5825        if (map == NULL) {
5826                verbose(env, "kernel subsystem misconfigured verifier\n");
5827                return -EINVAL;
5828        }
5829
5830        /* In case of read-only, some additional restrictions
5831         * need to be applied in order to prevent altering the
5832         * state of the map from program side.
5833         */
5834        if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5835            (func_id == BPF_FUNC_map_delete_elem ||
5836             func_id == BPF_FUNC_map_update_elem ||
5837             func_id == BPF_FUNC_map_push_elem ||
5838             func_id == BPF_FUNC_map_pop_elem)) {
5839                verbose(env, "write into map forbidden\n");
5840                return -EACCES;
5841        }
5842
5843        if (!BPF_MAP_PTR(aux->map_ptr_state))
5844                bpf_map_ptr_store(aux, meta->map_ptr,
5845                                  !meta->map_ptr->bypass_spec_v1);
5846        else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5847                bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5848                                  !meta->map_ptr->bypass_spec_v1);
5849        return 0;
5850}
5851
5852static int
5853record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5854                int func_id, int insn_idx)
5855{
5856        struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5857        struct bpf_reg_state *regs = cur_regs(env), *reg;
5858        struct bpf_map *map = meta->map_ptr;
5859        struct tnum range;
5860        u64 val;
5861        int err;
5862
5863        if (func_id != BPF_FUNC_tail_call)
5864                return 0;
5865        if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5866                verbose(env, "kernel subsystem misconfigured verifier\n");
5867                return -EINVAL;
5868        }
5869
5870        range = tnum_range(0, map->max_entries - 1);
5871        reg = &regs[BPF_REG_3];
5872
5873        if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5874                bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5875                return 0;
5876        }
5877
5878        err = mark_chain_precision(env, BPF_REG_3);
5879        if (err)
5880                return err;
5881
5882        val = reg->var_off.value;
5883        if (bpf_map_key_unseen(aux))
5884                bpf_map_key_store(aux, val);
5885        else if (!bpf_map_key_poisoned(aux) &&
5886                  bpf_map_key_immediate(aux) != val)
5887                bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5888        return 0;
5889}
5890
5891static int check_reference_leak(struct bpf_verifier_env *env)
5892{
5893        struct bpf_func_state *state = cur_func(env);
5894        int i;
5895
5896        for (i = 0; i < state->acquired_refs; i++) {
5897                verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5898                        state->refs[i].id, state->refs[i].insn_idx);
5899        }
5900        return state->acquired_refs ? -EINVAL : 0;
5901}
5902
5903static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5904                                   struct bpf_reg_state *regs)
5905{
5906        struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5907        struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5908        struct bpf_map *fmt_map = fmt_reg->map_ptr;
5909        int err, fmt_map_off, num_args;
5910        u64 fmt_addr;
5911        char *fmt;
5912
5913        /* data must be an array of u64 */
5914        if (data_len_reg->var_off.value % 8)
5915                return -EINVAL;
5916        num_args = data_len_reg->var_off.value / 8;
5917
5918        /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5919         * and map_direct_value_addr is set.
5920         */
5921        fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5922        err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5923                                                  fmt_map_off);
5924        if (err) {
5925                verbose(env, "verifier bug\n");
5926                return -EFAULT;
5927        }
5928        fmt = (char *)(long)fmt_addr + fmt_map_off;
5929
5930        /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5931         * can focus on validating the format specifiers.
5932         */
5933        err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5934        if (err < 0)
5935                verbose(env, "Invalid format string\n");
5936
5937        return err;
5938}
5939
5940static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5941                             int *insn_idx_p)
5942{
5943        const struct bpf_func_proto *fn = NULL;
5944        struct bpf_reg_state *regs;
5945        struct bpf_call_arg_meta meta;
5946        int insn_idx = *insn_idx_p;
5947        bool changes_data;
5948        int i, err, func_id;
5949
5950        /* find function prototype */
5951        func_id = insn->imm;
5952        if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5953                verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5954                        func_id);
5955                return -EINVAL;
5956        }
5957
5958        if (env->ops->get_func_proto)
5959                fn = env->ops->get_func_proto(func_id, env->prog);
5960        if (!fn) {
5961                verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5962                        func_id);
5963                return -EINVAL;
5964        }
5965
5966        /* eBPF programs must be GPL compatible to use GPL-ed functions */
5967        if (!env->prog->gpl_compatible && fn->gpl_only) {
5968                verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5969                return -EINVAL;
5970        }
5971
5972        if (fn->allowed && !fn->allowed(env->prog)) {
5973                verbose(env, "helper call is not allowed in probe\n");
5974                return -EINVAL;
5975        }
5976
5977        /* With LD_ABS/IND some JITs save/restore skb from r1. */
5978        changes_data = bpf_helper_changes_pkt_data(fn->func);
5979        if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5980                verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5981                        func_id_name(func_id), func_id);
5982                return -EINVAL;
5983        }
5984
5985        memset(&meta, 0, sizeof(meta));
5986        meta.pkt_access = fn->pkt_access;
5987
5988        err = check_func_proto(fn, func_id);
5989        if (err) {
5990                verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5991                        func_id_name(func_id), func_id);
5992                return err;
5993        }
5994
5995        meta.func_id = func_id;
5996        /* check args */
5997        for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5998                err = check_func_arg(env, i, &meta, fn);
5999                if (err)
6000                        return err;
6001        }
6002
6003        err = record_func_map(env, &meta, func_id, insn_idx);
6004        if (err)
6005                return err;
6006
6007        err = record_func_key(env, &meta, func_id, insn_idx);
6008        if (err)
6009                return err;
6010
6011        /* Mark slots with STACK_MISC in case of raw mode, stack offset
6012         * is inferred from register state.
6013         */
6014        for (i = 0; i < meta.access_size; i++) {
6015                err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6016                                       BPF_WRITE, -1, false);
6017                if (err)
6018                        return err;
6019        }
6020
6021        if (func_id == BPF_FUNC_tail_call) {
6022                err = check_reference_leak(env);
6023                if (err) {
6024                        verbose(env, "tail_call would lead to reference leak\n");
6025                        return err;
6026                }
6027        } else if (is_release_function(func_id)) {
6028                err = release_reference(env, meta.ref_obj_id);
6029                if (err) {
6030                        verbose(env, "func %s#%d reference has not been acquired before\n",
6031                                func_id_name(func_id), func_id);
6032                        return err;
6033                }
6034        }
6035
6036        regs = cur_regs(env);
6037
6038        /* check that flags argument in get_local_storage(map, flags) is 0,
6039         * this is required because get_local_storage() can't return an error.
6040         */
6041        if (func_id == BPF_FUNC_get_local_storage &&
6042            !register_is_null(&regs[BPF_REG_2])) {
6043                verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6044                return -EINVAL;
6045        }
6046
6047        if (func_id == BPF_FUNC_for_each_map_elem) {
6048                err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6049                                        set_map_elem_callback_state);
6050                if (err < 0)
6051                        return -EINVAL;
6052        }
6053
6054        if (func_id == BPF_FUNC_snprintf) {
6055                err = check_bpf_snprintf_call(env, regs);
6056                if (err < 0)
6057                        return err;
6058        }
6059
6060        /* reset caller saved regs */
6061        for (i = 0; i < CALLER_SAVED_REGS; i++) {
6062                mark_reg_not_init(env, regs, caller_saved[i]);
6063                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6064        }
6065
6066        /* helper call returns 64-bit value. */
6067        regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6068
6069        /* update return register (already marked as written above) */
6070        if (fn->ret_type == RET_INTEGER) {
6071                /* sets type to SCALAR_VALUE */
6072                mark_reg_unknown(env, regs, BPF_REG_0);
6073        } else if (fn->ret_type == RET_VOID) {
6074                regs[BPF_REG_0].type = NOT_INIT;
6075        } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6076                   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6077                /* There is no offset yet applied, variable or fixed */
6078                mark_reg_known_zero(env, regs, BPF_REG_0);
6079                /* remember map_ptr, so that check_map_access()
6080                 * can check 'value_size' boundary of memory access
6081                 * to map element returned from bpf_map_lookup_elem()
6082                 */
6083                if (meta.map_ptr == NULL) {
6084                        verbose(env,
6085                                "kernel subsystem misconfigured verifier\n");
6086                        return -EINVAL;
6087                }
6088                regs[BPF_REG_0].map_ptr = meta.map_ptr;
6089                if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6090                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6091                        if (map_value_has_spin_lock(meta.map_ptr))
6092                                regs[BPF_REG_0].id = ++env->id_gen;
6093                } else {
6094                        regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6095                }
6096        } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6097                mark_reg_known_zero(env, regs, BPF_REG_0);
6098                regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6099        } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6100                mark_reg_known_zero(env, regs, BPF_REG_0);
6101                regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6102        } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6103                mark_reg_known_zero(env, regs, BPF_REG_0);
6104                regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6105        } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6106                mark_reg_known_zero(env, regs, BPF_REG_0);
6107                regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6108                regs[BPF_REG_0].mem_size = meta.mem_size;
6109        } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6110                   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6111                const struct btf_type *t;
6112
6113                mark_reg_known_zero(env, regs, BPF_REG_0);
6114                t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6115                if (!btf_type_is_struct(t)) {
6116                        u32 tsize;
6117                        const struct btf_type *ret;
6118                        const char *tname;
6119
6120                        /* resolve the type size of ksym. */
6121                        ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6122                        if (IS_ERR(ret)) {
6123                                tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6124                                verbose(env, "unable to resolve the size of type '%s': %ld\n",
6125                                        tname, PTR_ERR(ret));
6126                                return -EINVAL;
6127                        }
6128                        regs[BPF_REG_0].type =
6129                                fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6130                                PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6131                        regs[BPF_REG_0].mem_size = tsize;
6132                } else {
6133                        regs[BPF_REG_0].type =
6134                                fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6135                                PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6136                        regs[BPF_REG_0].btf = meta.ret_btf;
6137                        regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6138                }
6139        } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6140                   fn->ret_type == RET_PTR_TO_BTF_ID) {
6141                int ret_btf_id;
6142
6143                mark_reg_known_zero(env, regs, BPF_REG_0);
6144                regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6145                                                     PTR_TO_BTF_ID :
6146                                                     PTR_TO_BTF_ID_OR_NULL;
6147                ret_btf_id = *fn->ret_btf_id;
6148                if (ret_btf_id == 0) {
6149                        verbose(env, "invalid return type %d of func %s#%d\n",
6150                                fn->ret_type, func_id_name(func_id), func_id);
6151                        return -EINVAL;
6152                }
6153                /* current BPF helper definitions are only coming from
6154                 * built-in code with type IDs from  vmlinux BTF
6155                 */
6156                regs[BPF_REG_0].btf = btf_vmlinux;
6157                regs[BPF_REG_0].btf_id = ret_btf_id;
6158        } else {
6159                verbose(env, "unknown return type %d of func %s#%d\n",
6160                        fn->ret_type, func_id_name(func_id), func_id);
6161                return -EINVAL;
6162        }
6163
6164        if (reg_type_may_be_null(regs[BPF_REG_0].type))
6165                regs[BPF_REG_0].id = ++env->id_gen;
6166
6167        if (is_ptr_cast_function(func_id)) {
6168                /* For release_reference() */
6169                regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6170        } else if (is_acquire_function(func_id, meta.map_ptr)) {
6171                int id = acquire_reference_state(env, insn_idx);
6172
6173                if (id < 0)
6174                        return id;
6175                /* For mark_ptr_or_null_reg() */
6176                regs[BPF_REG_0].id = id;
6177                /* For release_reference() */
6178                regs[BPF_REG_0].ref_obj_id = id;
6179        }
6180
6181        do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6182
6183        err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6184        if (err)
6185                return err;
6186
6187        if ((func_id == BPF_FUNC_get_stack ||
6188             func_id == BPF_FUNC_get_task_stack) &&
6189            !env->prog->has_callchain_buf) {
6190                const char *err_str;
6191
6192#ifdef CONFIG_PERF_EVENTS
6193                err = get_callchain_buffers(sysctl_perf_event_max_stack);
6194                err_str = "cannot get callchain buffer for func %s#%d\n";
6195#else
6196                err = -ENOTSUPP;
6197                err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6198#endif
6199                if (err) {
6200                        verbose(env, err_str, func_id_name(func_id), func_id);
6201                        return err;
6202                }
6203
6204                env->prog->has_callchain_buf = true;
6205        }
6206
6207        if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6208                env->prog->call_get_stack = true;
6209
6210        if (changes_data)
6211                clear_all_pkt_pointers(env);
6212        return 0;
6213}
6214
6215/* mark_btf_func_reg_size() is used when the reg size is determined by
6216 * the BTF func_proto's return value size and argument.
6217 */
6218static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6219                                   size_t reg_size)
6220{
6221        struct bpf_reg_state *reg = &cur_regs(env)[regno];
6222
6223        if (regno == BPF_REG_0) {
6224                /* Function return value */
6225                reg->live |= REG_LIVE_WRITTEN;
6226                reg->subreg_def = reg_size == sizeof(u64) ?
6227                        DEF_NOT_SUBREG : env->insn_idx + 1;
6228        } else {
6229                /* Function argument */
6230                if (reg_size == sizeof(u64)) {
6231                        mark_insn_zext(env, reg);
6232                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6233                } else {
6234                        mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6235                }
6236        }
6237}
6238
6239static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6240{
6241        const struct btf_type *t, *func, *func_proto, *ptr_type;
6242        struct bpf_reg_state *regs = cur_regs(env);
6243        const char *func_name, *ptr_type_name;
6244        u32 i, nargs, func_id, ptr_type_id;
6245        const struct btf_param *args;
6246        int err;
6247
6248        func_id = insn->imm;
6249        func = btf_type_by_id(btf_vmlinux, func_id);
6250        func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6251        func_proto = btf_type_by_id(btf_vmlinux, func->type);
6252
6253        if (!env->ops->check_kfunc_call ||
6254            !env->ops->check_kfunc_call(func_id)) {
6255                verbose(env, "calling kernel function %s is not allowed\n",
6256                        func_name);
6257                return -EACCES;
6258        }
6259
6260        /* Check the arguments */
6261        err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6262        if (err)
6263                return err;
6264
6265        for (i = 0; i < CALLER_SAVED_REGS; i++)
6266                mark_reg_not_init(env, regs, caller_saved[i]);
6267
6268        /* Check return type */
6269        t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6270        if (btf_type_is_scalar(t)) {
6271                mark_reg_unknown(env, regs, BPF_REG_0);
6272                mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6273        } else if (btf_type_is_ptr(t)) {
6274                ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6275                                                   &ptr_type_id);
6276                if (!btf_type_is_struct(ptr_type)) {
6277                        ptr_type_name = btf_name_by_offset(btf_vmlinux,
6278                                                           ptr_type->name_off);
6279                        verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6280                                func_name, btf_type_str(ptr_type),
6281                                ptr_type_name);
6282                        return -EINVAL;
6283                }
6284                mark_reg_known_zero(env, regs, BPF_REG_0);
6285                regs[BPF_REG_0].btf = btf_vmlinux;
6286                regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6287                regs[BPF_REG_0].btf_id = ptr_type_id;
6288                mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6289        } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6290
6291        nargs = btf_type_vlen(func_proto);
6292        args = (const struct btf_param *)(func_proto + 1);
6293        for (i = 0; i < nargs; i++) {
6294                u32 regno = i + 1;
6295
6296                t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6297                if (btf_type_is_ptr(t))
6298                        mark_btf_func_reg_size(env, regno, sizeof(void *));
6299                else
6300                        /* scalar. ensured by btf_check_kfunc_arg_match() */
6301                        mark_btf_func_reg_size(env, regno, t->size);
6302        }
6303
6304        return 0;
6305}
6306
6307static bool signed_add_overflows(s64 a, s64 b)
6308{
6309        /* Do the add in u64, where overflow is well-defined */
6310        s64 res = (s64)((u64)a + (u64)b);
6311
6312        if (b < 0)
6313                return res > a;
6314        return res < a;
6315}
6316
6317static bool signed_add32_overflows(s32 a, s32 b)
6318{
6319        /* Do the add in u32, where overflow is well-defined */
6320        s32 res = (s32)((u32)a + (u32)b);
6321
6322        if (b < 0)
6323                return res > a;
6324        return res < a;
6325}
6326
6327static bool signed_sub_overflows(s64 a, s64 b)
6328{
6329        /* Do the sub in u64, where overflow is well-defined */
6330        s64 res = (s64)((u64)a - (u64)b);
6331
6332        if (b < 0)
6333                return res < a;
6334        return res > a;
6335}
6336
6337static bool signed_sub32_overflows(s32 a, s32 b)
6338{
6339        /* Do the sub in u32, where overflow is well-defined */
6340        s32 res = (s32)((u32)a - (u32)b);
6341
6342        if (b < 0)
6343                return res < a;
6344        return res > a;
6345}
6346
6347static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6348                                  const struct bpf_reg_state *reg,
6349                                  enum bpf_reg_type type)
6350{
6351        bool known = tnum_is_const(reg->var_off);
6352        s64 val = reg->var_off.value;
6353        s64 smin = reg->smin_value;
6354
6355        if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6356                verbose(env, "math between %s pointer and %lld is not allowed\n",
6357                        reg_type_str[type], val);
6358                return false;
6359        }
6360
6361        if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6362                verbose(env, "%s pointer offset %d is not allowed\n",
6363                        reg_type_str[type], reg->off);
6364                return false;
6365        }
6366
6367        if (smin == S64_MIN) {
6368                verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6369                        reg_type_str[type]);
6370                return false;
6371        }
6372
6373        if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6374                verbose(env, "value %lld makes %s pointer be out of bounds\n",
6375                        smin, reg_type_str[type]);
6376                return false;
6377        }
6378
6379        return true;
6380}
6381
6382static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6383{
6384        return &env->insn_aux_data[env->insn_idx];
6385}
6386
6387enum {
6388        REASON_BOUNDS   = -1,
6389        REASON_TYPE     = -2,
6390        REASON_PATHS    = -3,
6391        REASON_LIMIT    = -4,
6392        REASON_STACK    = -5,
6393};
6394
6395static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6396                              u32 *alu_limit, bool mask_to_left)
6397{
6398        u32 max = 0, ptr_limit = 0;
6399
6400        switch (ptr_reg->type) {
6401        case PTR_TO_STACK:
6402                /* Offset 0 is out-of-bounds, but acceptable start for the
6403                 * left direction, see BPF_REG_FP. Also, unknown scalar
6404                 * offset where we would need to deal with min/max bounds is
6405                 * currently prohibited for unprivileged.
6406                 */
6407                max = MAX_BPF_STACK + mask_to_left;
6408                ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6409                break;
6410        case PTR_TO_MAP_VALUE:
6411                max = ptr_reg->map_ptr->value_size;
6412                ptr_limit = (mask_to_left ?
6413                             ptr_reg->smin_value :
6414                             ptr_reg->umax_value) + ptr_reg->off;
6415                break;
6416        default:
6417                return REASON_TYPE;
6418        }
6419
6420        if (ptr_limit >= max)
6421                return REASON_LIMIT;
6422        *alu_limit = ptr_limit;
6423        return 0;
6424}
6425
6426static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6427                                    const struct bpf_insn *insn)
6428{
6429        return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6430}
6431
6432static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6433                                       u32 alu_state, u32 alu_limit)
6434{
6435        /* If we arrived here from different branches with different
6436         * state or limits to sanitize, then this won't work.
6437         */
6438        if (aux->alu_state &&
6439            (aux->alu_state != alu_state ||
6440             aux->alu_limit != alu_limit))
6441                return REASON_PATHS;
6442
6443        /* Corresponding fixup done in do_misc_fixups(). */
6444        aux->alu_state = alu_state;
6445        aux->alu_limit = alu_limit;
6446        return 0;
6447}
6448
6449static int sanitize_val_alu(struct bpf_verifier_env *env,
6450                            struct bpf_insn *insn)
6451{
6452        struct bpf_insn_aux_data *aux = cur_aux(env);
6453
6454        if (can_skip_alu_sanitation(env, insn))
6455                return 0;
6456
6457        return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6458}
6459
6460static bool sanitize_needed(u8 opcode)
6461{
6462        return opcode == BPF_ADD || opcode == BPF_SUB;
6463}
6464
6465struct bpf_sanitize_info {
6466        struct bpf_insn_aux_data aux;
6467        bool mask_to_left;
6468};
6469
6470static struct bpf_verifier_state *
6471sanitize_speculative_path(struct bpf_verifier_env *env,
6472                          const struct bpf_insn *insn,
6473                          u32 next_idx, u32 curr_idx)
6474{
6475        struct bpf_verifier_state *branch;
6476        struct bpf_reg_state *regs;
6477
6478        branch = push_stack(env, next_idx, curr_idx, true);
6479        if (branch && insn) {
6480                regs = branch->frame[branch->curframe]->regs;
6481                if (BPF_SRC(insn->code) == BPF_K) {
6482                        mark_reg_unknown(env, regs, insn->dst_reg);
6483                } else if (BPF_SRC(insn->code) == BPF_X) {
6484                        mark_reg_unknown(env, regs, insn->dst_reg);
6485                        mark_reg_unknown(env, regs, insn->src_reg);
6486                }
6487        }
6488        return branch;
6489}
6490
6491static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6492                            struct bpf_insn *insn,
6493                            const struct bpf_reg_state *ptr_reg,
6494                            const struct bpf_reg_state *off_reg,
6495                            struct bpf_reg_state *dst_reg,
6496                            struct bpf_sanitize_info *info,
6497                            const bool commit_window)
6498{
6499        struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6500        struct bpf_verifier_state *vstate = env->cur_state;
6501        bool off_is_imm = tnum_is_const(off_reg->var_off);
6502        bool off_is_neg = off_reg->smin_value < 0;
6503        bool ptr_is_dst_reg = ptr_reg == dst_reg;
6504        u8 opcode = BPF_OP(insn->code);
6505        u32 alu_state, alu_limit;
6506        struct bpf_reg_state tmp;
6507        bool ret;
6508        int err;
6509
6510        if (can_skip_alu_sanitation(env, insn))
6511                return 0;
6512
6513        /* We already marked aux for masking from non-speculative
6514         * paths, thus we got here in the first place. We only care
6515         * to explore bad access from here.
6516         */
6517        if (vstate->speculative)
6518                goto do_sim;
6519
6520        if (!commit_window) {
6521                if (!tnum_is_const(off_reg->var_off) &&
6522                    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6523                        return REASON_BOUNDS;
6524
6525                info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6526                                     (opcode == BPF_SUB && !off_is_neg);
6527        }
6528
6529        err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6530        if (err < 0)
6531                return err;
6532
6533        if (commit_window) {
6534                /* In commit phase we narrow the masking window based on
6535                 * the observed pointer move after the simulated operation.
6536                 */
6537                alu_state = info->aux.alu_state;
6538                alu_limit = abs(info->aux.alu_limit - alu_limit);
6539        } else {
6540                alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6541                alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6542                alu_state |= ptr_is_dst_reg ?
6543                             BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6544
6545                /* Limit pruning on unknown scalars to enable deep search for
6546                 * potential masking differences from other program paths.
6547                 */
6548                if (!off_is_imm)
6549                        env->explore_alu_limits = true;
6550        }
6551
6552        err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6553        if (err < 0)
6554                return err;
6555do_sim:
6556        /* If we're in commit phase, we're done here given we already
6557         * pushed the truncated dst_reg into the speculative verification
6558         * stack.
6559         *
6560         * Also, when register is a known constant, we rewrite register-based
6561         * operation to immediate-based, and thus do not need masking (and as
6562         * a consequence, do not need to simulate the zero-truncation either).
6563         */
6564        if (commit_window || off_is_imm)
6565                return 0;
6566
6567        /* Simulate and find potential out-of-bounds access under
6568         * speculative execution from truncation as a result of
6569         * masking when off was not within expected range. If off
6570         * sits in dst, then we temporarily need to move ptr there
6571         * to simulate dst (== 0) +/-= ptr. Needed, for example,
6572         * for cases where we use K-based arithmetic in one direction
6573         * and truncated reg-based in the other in order to explore
6574         * bad access.
6575         */
6576        if (!ptr_is_dst_reg) {
6577                tmp = *dst_reg;
6578                *dst_reg = *ptr_reg;
6579        }
6580        ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6581                                        env->insn_idx);
6582        if (!ptr_is_dst_reg && ret)
6583                *dst_reg = tmp;
6584        return !ret ? REASON_STACK : 0;
6585}
6586
6587static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6588{
6589        struct bpf_verifier_state *vstate = env->cur_state;
6590
6591        /* If we simulate paths under speculation, we don't update the
6592         * insn as 'seen' such that when we verify unreachable paths in
6593         * the non-speculative domain, sanitize_dead_code() can still
6594         * rewrite/sanitize them.
6595         */
6596        if (!vstate->speculative)
6597                env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6598}
6599
6600static int sanitize_err(struct bpf_verifier_env *env,
6601                        const struct bpf_insn *insn, int reason,
6602                        const struct bpf_reg_state *off_reg,
6603                        const struct bpf_reg_state *dst_reg)
6604{
6605        static const char *err = "pointer arithmetic with it prohibited for !root";
6606        const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6607        u32 dst = insn->dst_reg, src = insn->src_reg;
6608
6609        switch (reason) {
6610        case REASON_BOUNDS:
6611                verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6612                        off_reg == dst_reg ? dst : src, err);
6613                break;
6614        case REASON_TYPE:
6615                verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6616                        off_reg == dst_reg ? src : dst, err);
6617                break;
6618        case REASON_PATHS:
6619                verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6620                        dst, op, err);
6621                break;
6622        case REASON_LIMIT:
6623                verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6624                        dst, op, err);
6625                break;
6626        case REASON_STACK:
6627                verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6628                        dst, err);
6629                break;
6630        default:
6631                verbose(env, "verifier internal error: unknown reason (%d)\n",
6632                        reason);
6633                break;
6634        }
6635
6636        return -EACCES;
6637}
6638
6639/* check that stack access falls within stack limits and that 'reg' doesn't
6640 * have a variable offset.
6641 *
6642 * Variable offset is prohibited for unprivileged mode for simplicity since it
6643 * requires corresponding support in Spectre masking for stack ALU.  See also
6644 * retrieve_ptr_limit().
6645 *
6646 *
6647 * 'off' includes 'reg->off'.
6648 */
6649static int check_stack_access_for_ptr_arithmetic(
6650                                struct bpf_verifier_env *env,
6651                                int regno,
6652                                const struct bpf_reg_state *reg,
6653                                int off)
6654{
6655        if (!tnum_is_const(reg->var_off)) {
6656                char tn_buf[48];
6657
6658                tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6659                verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6660                        regno, tn_buf, off);
6661                return -EACCES;
6662        }
6663
6664        if (off >= 0 || off < -MAX_BPF_STACK) {
6665                verbose(env, "R%d stack pointer arithmetic goes out of range, "
6666                        "prohibited for !root; off=%d\n", regno, off);
6667                return -EACCES;
6668        }
6669
6670        return 0;
6671}
6672
6673static int sanitize_check_bounds(struct bpf_verifier_env *env,
6674                                 const struct bpf_insn *insn,
6675                                 const struct bpf_reg_state *dst_reg)
6676{
6677        u32 dst = insn->dst_reg;
6678
6679        /* For unprivileged we require that resulting offset must be in bounds
6680         * in order to be able to sanitize access later on.
6681         */
6682        if (env->bypass_spec_v1)
6683                return 0;
6684
6685        switch (dst_reg->type) {
6686        case PTR_TO_STACK:
6687                if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6688                                        dst_reg->off + dst_reg->var_off.value))
6689                        return -EACCES;
6690                break;
6691        case PTR_TO_MAP_VALUE:
6692                if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6693                        verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6694                                "prohibited for !root\n", dst);
6695                        return -EACCES;
6696                }
6697                break;
6698        default:
6699                break;
6700        }
6701
6702        return 0;
6703}
6704
6705/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6706 * Caller should also handle BPF_MOV case separately.
6707 * If we return -EACCES, caller may want to try again treating pointer as a
6708 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6709 */
6710static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6711                                   struct bpf_insn *insn,
6712                                   const struct bpf_reg_state *ptr_reg,
6713                                   const struct bpf_reg_state *off_reg)
6714{
6715        struct bpf_verifier_state *vstate = env->cur_state;
6716        struct bpf_func_state *state = vstate->frame[vstate->curframe];
6717        struct bpf_reg_state *regs = state->regs, *dst_reg;
6718        bool known = tnum_is_const(off_reg->var_off);
6719        s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6720            smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6721        u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6722            umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6723        struct bpf_sanitize_info info = {};
6724        u8 opcode = BPF_OP(insn->code);
6725        u32 dst = insn->dst_reg;
6726        int ret;
6727
6728        dst_reg = &regs[dst];
6729
6730        if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6731            smin_val > smax_val || umin_val > umax_val) {
6732                /* Taint dst register if offset had invalid bounds derived from
6733                 * e.g. dead branches.
6734                 */
6735                __mark_reg_unknown(env, dst_reg);
6736                return 0;
6737        }
6738
6739        if (BPF_CLASS(insn->code) != BPF_ALU64) {
6740                /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6741                if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6742                        __mark_reg_unknown(env, dst_reg);
6743                        return 0;
6744                }
6745
6746                verbose(env,
6747                        "R%d 32-bit pointer arithmetic prohibited\n",
6748                        dst);
6749                return -EACCES;
6750        }
6751
6752        switch (ptr_reg->type) {
6753        case PTR_TO_MAP_VALUE_OR_NULL:
6754                verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6755                        dst, reg_type_str[ptr_reg->type]);
6756                return -EACCES;
6757        case CONST_PTR_TO_MAP:
6758                /* smin_val represents the known value */
6759                if (known && smin_val == 0 && opcode == BPF_ADD)
6760                        break;
6761                fallthrough;
6762        case PTR_TO_PACKET_END:
6763        case PTR_TO_SOCKET:
6764        case PTR_TO_SOCKET_OR_NULL:
6765        case PTR_TO_SOCK_COMMON:
6766        case PTR_TO_SOCK_COMMON_OR_NULL:
6767        case PTR_TO_TCP_SOCK:
6768        case PTR_TO_TCP_SOCK_OR_NULL:
6769        case PTR_TO_XDP_SOCK:
6770                verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6771                        dst, reg_type_str[ptr_reg->type]);
6772                return -EACCES;
6773        default:
6774                break;
6775        }
6776
6777        /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6778         * The id may be overwritten later if we create a new variable offset.
6779         */
6780        dst_reg->type = ptr_reg->type;
6781        dst_reg->id = ptr_reg->id;
6782
6783        if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6784            !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6785                return -EINVAL;
6786
6787        /* pointer types do not carry 32-bit bounds at the moment. */
6788        __mark_reg32_unbounded(dst_reg);
6789
6790        if (sanitize_needed(opcode)) {
6791                ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6792                                       &info, false);
6793                if (ret < 0)
6794                        return sanitize_err(env, insn, ret, off_reg, dst_reg);
6795        }
6796
6797        switch (opcode) {
6798        case BPF_ADD:
6799                /* We can take a fixed offset as long as it doesn't overflow
6800                 * the s32 'off' field
6801                 */
6802                if (known && (ptr_reg->off + smin_val ==
6803                              (s64)(s32)(ptr_reg->off + smin_val))) {
6804                        /* pointer += K.  Accumulate it into fixed offset */
6805                        dst_reg->smin_value = smin_ptr;
6806                        dst_reg->smax_value = smax_ptr;
6807                        dst_reg->umin_value = umin_ptr;
6808                        dst_reg->umax_value = umax_ptr;
6809                        dst_reg->var_off = ptr_reg->var_off;
6810                        dst_reg->off = ptr_reg->off + smin_val;
6811                        dst_reg->raw = ptr_reg->raw;
6812                        break;
6813                }
6814                /* A new variable offset is created.  Note that off_reg->off
6815                 * == 0, since it's a scalar.
6816                 * dst_reg gets the pointer type and since some positive
6817                 * integer value was added to the pointer, give it a new 'id'
6818                 * if it's a PTR_TO_PACKET.
6819                 * this creates a new 'base' pointer, off_reg (variable) gets
6820                 * added into the variable offset, and we copy the fixed offset
6821                 * from ptr_reg.
6822                 */
6823                if (signed_add_overflows(smin_ptr, smin_val) ||
6824                    signed_add_overflows(smax_ptr, smax_val)) {
6825                        dst_reg->smin_value = S64_MIN;
6826                        dst_reg->smax_value = S64_MAX;
6827                } else {
6828                        dst_reg->smin_value = smin_ptr + smin_val;
6829                        dst_reg->smax_value = smax_ptr + smax_val;
6830                }
6831                if (umin_ptr + umin_val < umin_ptr ||
6832                    umax_ptr + umax_val < umax_ptr) {
6833                        dst_reg->umin_value = 0;
6834                        dst_reg->umax_value = U64_MAX;
6835                } else {
6836                        dst_reg->umin_value = umin_ptr + umin_val;
6837                        dst_reg->umax_value = umax_ptr + umax_val;
6838                }
6839                dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6840                dst_reg->off = ptr_reg->off;
6841                dst_reg->raw = ptr_reg->raw;
6842                if (reg_is_pkt_pointer(ptr_reg)) {
6843                        dst_reg->id = ++env->id_gen;
6844                        /* something was added to pkt_ptr, set range to zero */
6845                        memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6846                }
6847                break;
6848        case BPF_SUB:
6849                if (dst_reg == off_reg) {
6850                        /* scalar -= pointer.  Creates an unknown scalar */
6851                        verbose(env, "R%d tried to subtract pointer from scalar\n",
6852                                dst);
6853                        return -EACCES;
6854                }
6855                /* We don't allow subtraction from FP, because (according to
6856                 * test_verifier.c test "invalid fp arithmetic", JITs might not
6857                 * be able to deal with it.
6858                 */
6859                if (ptr_reg->type == PTR_TO_STACK) {
6860                        verbose(env, "R%d subtraction from stack pointer prohibited\n",
6861                                dst);
6862                        return -EACCES;
6863                }
6864                if (known && (ptr_reg->off - smin_val ==
6865                              (s64)(s32)(ptr_reg->off - smin_val))) {
6866                        /* pointer -= K.  Subtract it from fixed offset */
6867                        dst_reg->smin_value = smin_ptr;
6868                        dst_reg->smax_value = smax_ptr;
6869                        dst_reg->umin_value = umin_ptr;
6870                        dst_reg->umax_value = umax_ptr;
6871                        dst_reg->var_off = ptr_reg->var_off;
6872                        dst_reg->id = ptr_reg->id;
6873                        dst_reg->off = ptr_reg->off - smin_val;
6874                        dst_reg->raw = ptr_reg->raw;
6875                        break;
6876                }
6877                /* A new variable offset is created.  If the subtrahend is known
6878                 * nonnegative, then any reg->range we had before is still good.
6879                 */
6880                if (signed_sub_overflows(smin_ptr, smax_val) ||
6881                    signed_sub_overflows(smax_ptr, smin_val)) {
6882                        /* Overflow possible, we know nothing */
6883                        dst_reg->smin_value = S64_MIN;
6884                        dst_reg->smax_value = S64_MAX;
6885                } else {
6886                        dst_reg->smin_value = smin_ptr - smax_val;
6887                        dst_reg->smax_value = smax_ptr - smin_val;
6888                }
6889                if (umin_ptr < umax_val) {
6890                        /* Overflow possible, we know nothing */
6891                        dst_reg->umin_value = 0;
6892                        dst_reg->umax_value = U64_MAX;
6893                } else {
6894                        /* Cannot overflow (as long as bounds are consistent) */
6895                        dst_reg->umin_value = umin_ptr - umax_val;
6896                        dst_reg->umax_value = umax_ptr - umin_val;
6897                }
6898                dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6899                dst_reg->off = ptr_reg->off;
6900                dst_reg->raw = ptr_reg->raw;
6901                if (reg_is_pkt_pointer(ptr_reg)) {
6902                        dst_reg->id = ++env->id_gen;
6903                        /* something was added to pkt_ptr, set range to zero */
6904                        if (smin_val < 0)
6905                                memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6906                }
6907                break;
6908        case BPF_AND:
6909        case BPF_OR:
6910        case BPF_XOR:
6911                /* bitwise ops on pointers are troublesome, prohibit. */
6912                verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6913                        dst, bpf_alu_string[opcode >> 4]);
6914                return -EACCES;
6915        default:
6916                /* other operators (e.g. MUL,LSH) produce non-pointer results */
6917                verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6918                        dst, bpf_alu_string[opcode >> 4]);
6919                return -EACCES;
6920        }
6921
6922        if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6923                return -EINVAL;
6924
6925        __update_reg_bounds(dst_reg);
6926        __reg_deduce_bounds(dst_reg);
6927        __reg_bound_offset(dst_reg);
6928
6929        if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6930                return -EACCES;
6931        if (sanitize_needed(opcode)) {
6932                ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6933                                       &info, true);
6934                if (ret < 0)
6935                        return sanitize_err(env, insn, ret, off_reg, dst_reg);
6936        }
6937
6938        return 0;
6939}
6940
6941static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6942                                 struct bpf_reg_state *src_reg)
6943{
6944        s32 smin_val = src_reg->s32_min_value;
6945        s32 smax_val = src_reg->s32_max_value;
6946        u32 umin_val = src_reg->u32_min_value;
6947        u32 umax_val = src_reg->u32_max_value;
6948
6949        if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6950            signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6951                dst_reg->s32_min_value = S32_MIN;
6952                dst_reg->s32_max_value = S32_MAX;
6953        } else {
6954                dst_reg->s32_min_value += smin_val;
6955                dst_reg->s32_max_value += smax_val;
6956        }
6957        if (dst_reg->u32_min_value + umin_val < umin_val ||
6958            dst_reg->u32_max_value + umax_val < umax_val) {
6959                dst_reg->u32_min_value = 0;
6960                dst_reg->u32_max_value = U32_MAX;
6961        } else {
6962                dst_reg->u32_min_value += umin_val;
6963                dst_reg->u32_max_value += umax_val;
6964        }
6965}
6966
6967static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6968                               struct bpf_reg_state *src_reg)
6969{
6970        s64 smin_val = src_reg->smin_value;
6971        s64 smax_val = src_reg->smax_value;
6972        u64 umin_val = src_reg->umin_value;
6973        u64 umax_val = src_reg->umax_value;
6974
6975        if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6976            signed_add_overflows(dst_reg->smax_value, smax_val)) {
6977                dst_reg->smin_value = S64_MIN;
6978                dst_reg->smax_value = S64_MAX;
6979        } else {
6980                dst_reg->smin_value += smin_val;
6981                dst_reg->smax_value += smax_val;
6982        }
6983        if (dst_reg->umin_value + umin_val < umin_val ||
6984            dst_reg->umax_value + umax_val < umax_val) {
6985                dst_reg->umin_value = 0;
6986                dst_reg->umax_value = U64_MAX;
6987        } else {
6988                dst_reg->umin_value += umin_val;
6989                dst_reg->umax_value += umax_val;
6990        }
6991}
6992
6993static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6994                                 struct bpf_reg_state *src_reg)
6995{
6996        s32 smin_val = src_reg->s32_min_value;
6997        s32 smax_val = src_reg->s32_max_value;
6998        u32 umin_val = src_reg->u32_min_value;
6999        u32 umax_val = src_reg->u32_max_value;
7000
7001        if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7002            signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7003                /* Overflow possible, we know nothing */
7004                dst_reg->s32_min_value = S32_MIN;
7005                dst_reg->s32_max_value = S32_MAX;
7006        } else {
7007                dst_reg->s32_min_value -= smax_val;
7008                dst_reg->s32_max_value -= smin_val;
7009        }
7010        if (dst_reg->u32_min_value < umax_val) {
7011                /* Overflow possible, we know nothing */
7012                dst_reg->u32_min_value = 0;
7013                dst_reg->u32_max_value = U32_MAX;
7014        } else {
7015                /* Cannot overflow (as long as bounds are consistent) */
7016                dst_reg->u32_min_value -= umax_val;
7017                dst_reg->u32_max_value -= umin_val;
7018        }
7019}
7020
7021static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7022                               struct bpf_reg_state *src_reg)
7023{
7024        s64 smin_val = src_reg->smin_value;
7025        s64 smax_val = src_reg->smax_value;
7026        u64 umin_val = src_reg->umin_value;
7027        u64 umax_val = src_reg->umax_value;
7028
7029        if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7030            signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7031                /* Overflow possible, we know nothing */
7032                dst_reg->smin_value = S64_MIN;
7033                dst_reg->smax_value = S64_MAX;
7034        } else {
7035                dst_reg->smin_value -= smax_val;
7036                dst_reg->smax_value -= smin_val;
7037        }
7038        if (dst_reg->umin_value < umax_val) {
7039                /* Overflow possible, we know nothing */
7040                dst_reg->umin_value = 0;
7041                dst_reg->umax_value = U64_MAX;
7042        } else {
7043                /* Cannot overflow (as long as bounds are consistent) */
7044                dst_reg->umin_value -= umax_val;
7045                dst_reg->umax_value -= umin_val;
7046        }
7047}
7048
7049static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7050                                 struct bpf_reg_state *src_reg)
7051{
7052        s32 smin_val = src_reg->s32_min_value;
7053        u32 umin_val = src_reg->u32_min_value;
7054        u32 umax_val = src_reg->u32_max_value;
7055
7056        if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7057                /* Ain't nobody got time to multiply that sign */
7058                __mark_reg32_unbounded(dst_reg);
7059                return;
7060        }
7061        /* Both values are positive, so we can work with unsigned and
7062         * copy the result to signed (unless it exceeds S32_MAX).
7063         */
7064        if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7065                /* Potential overflow, we know nothing */
7066                __mark_reg32_unbounded(dst_reg);
7067                return;
7068        }
7069        dst_reg->u32_min_value *= umin_val;
7070        dst_reg->u32_max_value *= umax_val;
7071        if (dst_reg->u32_max_value > S32_MAX) {
7072                /* Overflow possible, we know nothing */
7073                dst_reg->s32_min_value = S32_MIN;
7074                dst_reg->s32_max_value = S32_MAX;
7075        } else {
7076                dst_reg->s32_min_value = dst_reg->u32_min_value;
7077                dst_reg->s32_max_value = dst_reg->u32_max_value;
7078        }
7079}
7080
7081static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7082                               struct bpf_reg_state *src_reg)
7083{
7084        s64 smin_val = src_reg->smin_value;
7085        u64 umin_val = src_reg->umin_value;
7086        u64 umax_val = src_reg->umax_value;
7087
7088        if (smin_val < 0 || dst_reg->smin_value < 0) {
7089                /* Ain't nobody got time to multiply that sign */
7090                __mark_reg64_unbounded(dst_reg);
7091                return;
7092        }
7093        /* Both values are positive, so we can work with unsigned and
7094         * copy the result to signed (unless it exceeds S64_MAX).
7095         */
7096        if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7097                /* Potential overflow, we know nothing */
7098                __mark_reg64_unbounded(dst_reg);
7099                return;
7100        }
7101        dst_reg->umin_value *= umin_val;
7102        dst_reg->umax_value *= umax_val;
7103        if (dst_reg->umax_value > S64_MAX) {
7104                /* Overflow possible, we know nothing */
7105                dst_reg->smin_value = S64_MIN;
7106                dst_reg->smax_value = S64_MAX;
7107        } else {
7108                dst_reg->smin_value = dst_reg->umin_value;
7109                dst_reg->smax_value = dst_reg->umax_value;
7110        }
7111}
7112
7113static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7114                                 struct bpf_reg_state *src_reg)
7115{
7116        bool src_known = tnum_subreg_is_const(src_reg->var_off);
7117        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7118        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7119        s32 smin_val = src_reg->s32_min_value;
7120        u32 umax_val = src_reg->u32_max_value;
7121
7122        if (src_known && dst_known) {
7123                __mark_reg32_known(dst_reg, var32_off.value);
7124                return;
7125        }
7126
7127        /* We get our minimum from the var_off, since that's inherently
7128         * bitwise.  Our maximum is the minimum of the operands' maxima.
7129         */
7130        dst_reg->u32_min_value = var32_off.value;
7131        dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7132        if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7133                /* Lose signed bounds when ANDing negative numbers,
7134                 * ain't nobody got time for that.
7135                 */
7136                dst_reg->s32_min_value = S32_MIN;
7137                dst_reg->s32_max_value = S32_MAX;
7138        } else {
7139                /* ANDing two positives gives a positive, so safe to
7140                 * cast result into s64.
7141                 */
7142                dst_reg->s32_min_value = dst_reg->u32_min_value;
7143                dst_reg->s32_max_value = dst_reg->u32_max_value;
7144        }
7145}
7146
7147static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7148                               struct bpf_reg_state *src_reg)
7149{
7150        bool src_known = tnum_is_const(src_reg->var_off);
7151        bool dst_known = tnum_is_const(dst_reg->var_off);
7152        s64 smin_val = src_reg->smin_value;
7153        u64 umax_val = src_reg->umax_value;
7154
7155        if (src_known && dst_known) {
7156                __mark_reg_known(dst_reg, dst_reg->var_off.value);
7157                return;
7158        }
7159
7160        /* We get our minimum from the var_off, since that's inherently
7161         * bitwise.  Our maximum is the minimum of the operands' maxima.
7162         */
7163        dst_reg->umin_value = dst_reg->var_off.value;
7164        dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7165        if (dst_reg->smin_value < 0 || smin_val < 0) {
7166                /* Lose signed bounds when ANDing negative numbers,
7167                 * ain't nobody got time for that.
7168                 */
7169                dst_reg->smin_value = S64_MIN;
7170                dst_reg->smax_value = S64_MAX;
7171        } else {
7172                /* ANDing two positives gives a positive, so safe to
7173                 * cast result into s64.
7174                 */
7175                dst_reg->smin_value = dst_reg->umin_value;
7176                dst_reg->smax_value = dst_reg->umax_value;
7177        }
7178        /* We may learn something more from the var_off */
7179        __update_reg_bounds(dst_reg);
7180}
7181
7182static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7183                                struct bpf_reg_state *src_reg)
7184{
7185        bool src_known = tnum_subreg_is_const(src_reg->var_off);
7186        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7187        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7188        s32 smin_val = src_reg->s32_min_value;
7189        u32 umin_val = src_reg->u32_min_value;
7190
7191        if (src_known && dst_known) {
7192                __mark_reg32_known(dst_reg, var32_off.value);
7193                return;
7194        }
7195
7196        /* We get our maximum from the var_off, and our minimum is the
7197         * maximum of the operands' minima
7198         */
7199        dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7200        dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7201        if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7202                /* Lose signed bounds when ORing negative numbers,
7203                 * ain't nobody got time for that.
7204                 */
7205                dst_reg->s32_min_value = S32_MIN;
7206                dst_reg->s32_max_value = S32_MAX;
7207        } else {
7208                /* ORing two positives gives a positive, so safe to
7209                 * cast result into s64.
7210                 */
7211                dst_reg->s32_min_value = dst_reg->u32_min_value;
7212                dst_reg->s32_max_value = dst_reg->u32_max_value;
7213        }
7214}
7215
7216static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7217                              struct bpf_reg_state *src_reg)
7218{
7219        bool src_known = tnum_is_const(src_reg->var_off);
7220        bool dst_known = tnum_is_const(dst_reg->var_off);
7221        s64 smin_val = src_reg->smin_value;
7222        u64 umin_val = src_reg->umin_value;
7223
7224        if (src_known && dst_known) {
7225                __mark_reg_known(dst_reg, dst_reg->var_off.value);
7226                return;
7227        }
7228
7229        /* We get our maximum from the var_off, and our minimum is the
7230         * maximum of the operands' minima
7231         */
7232        dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7233        dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7234        if (dst_reg->smin_value < 0 || smin_val < 0) {
7235                /* Lose signed bounds when ORing negative numbers,
7236                 * ain't nobody got time for that.
7237                 */
7238                dst_reg->smin_value = S64_MIN;
7239                dst_reg->smax_value = S64_MAX;
7240        } else {
7241                /* ORing two positives gives a positive, so safe to
7242                 * cast result into s64.
7243                 */
7244                dst_reg->smin_value = dst_reg->umin_value;
7245                dst_reg->smax_value = dst_reg->umax_value;
7246        }
7247        /* We may learn something more from the var_off */
7248        __update_reg_bounds(dst_reg);
7249}
7250
7251static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7252                                 struct bpf_reg_state *src_reg)
7253{
7254        bool src_known = tnum_subreg_is_const(src_reg->var_off);
7255        bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7256        struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7257        s32 smin_val = src_reg->s32_min_value;
7258
7259        if (src_known && dst_known) {
7260                __mark_reg32_known(dst_reg, var32_off.value);
7261                return;
7262        }
7263
7264        /* We get both minimum and maximum from the var32_off. */
7265        dst_reg->u32_min_value = var32_off.value;
7266        dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7267
7268        if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7269                /* XORing two positive sign numbers gives a positive,
7270                 * so safe to cast u32 result into s32.
7271                 */
7272                dst_reg->s32_min_value = dst_reg->u32_min_value;
7273                dst_reg->s32_max_value = dst_reg->u32_max_value;
7274        } else {
7275                dst_reg->s32_min_value = S32_MIN;
7276                dst_reg->s32_max_value = S32_MAX;
7277        }
7278}
7279
7280static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7281                               struct bpf_reg_state *src_reg)
7282{
7283        bool src_known = tnum_is_const(src_reg->var_off);
7284        bool dst_known = tnum_is_const(dst_reg->var_off);
7285        s64 smin_val = src_reg->smin_value;
7286
7287        if (src_known && dst_known) {
7288                /* dst_reg->var_off.value has been updated earlier */
7289                __mark_reg_known(dst_reg, dst_reg->var_off.value);
7290                return;
7291        }
7292
7293        /* We get both minimum and maximum from the var_off. */
7294        dst_reg->umin_value = dst_reg->var_off.value;
7295        dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7296
7297        if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7298                /* XORing two positive sign numbers gives a positive,
7299                 * so safe to cast u64 result into s64.
7300                 */
7301                dst_reg->smin_value = dst_reg->umin_value;
7302                dst_reg->smax_value = dst_reg->umax_value;
7303        } else {
7304                dst_reg->smin_value = S64_MIN;
7305                dst_reg->smax_value = S64_MAX;
7306        }
7307
7308        __update_reg_bounds(dst_reg);
7309}
7310
7311static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7312                                   u64 umin_val, u64 umax_val)
7313{
7314        /* We lose all sign bit information (except what we can pick
7315         * up from var_off)
7316         */
7317        dst_reg->s32_min_value = S32_MIN;
7318        dst_reg->s32_max_value = S32_MAX;
7319        /* If we might shift our top bit out, then we know nothing */
7320        if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7321                dst_reg->u32_min_value = 0;
7322                dst_reg->u32_max_value = U32_MAX;
7323        } else {
7324                dst_reg->u32_min_value <<= umin_val;
7325                dst_reg->u32_max_value <<= umax_val;
7326        }
7327}
7328
7329static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7330                                 struct bpf_reg_state *src_reg)
7331{
7332        u32 umax_val = src_reg->u32_max_value;
7333        u32 umin_val = src_reg->u32_min_value;
7334        /* u32 alu operation will zext upper bits */
7335        struct tnum subreg = tnum_subreg(dst_reg->var_off);
7336
7337        __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7338        dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7339        /* Not required but being careful mark reg64 bounds as unknown so
7340         * that we are forced to pick them up from tnum and zext later and
7341         * if some path skips this step we are still safe.
7342         */
7343        __mark_reg64_unbounded(dst_reg);
7344        __update_reg32_bounds(dst_reg);
7345}
7346
7347static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7348                                   u64 umin_val, u64 umax_val)
7349{
7350        /* Special case <<32 because it is a common compiler pattern to sign
7351         * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7352         * positive we know this shift will also be positive so we can track
7353         * bounds correctly. Otherwise we lose all sign bit information except
7354         * what we can pick up from var_off. Perhaps we can generalize this
7355         * later to shifts of any length.
7356         */
7357        if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7358                dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7359        else
7360                dst_reg->smax_value = S64_MAX;
7361
7362        if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7363                dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7364        else
7365                dst_reg->smin_value = S64_MIN;
7366
7367        /* If we might shift our top bit out, then we know nothing */
7368        if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7369                dst_reg->umin_value = 0;
7370                dst_reg->umax_value = U64_MAX;
7371        } else {
7372                dst_reg->umin_value <<= umin_val;
7373                dst_reg->umax_value <<= umax_val;
7374        }
7375}
7376
7377static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7378                               struct bpf_reg_state *src_reg)
7379{
7380        u64 umax_val = src_reg->umax_value;
7381        u64 umin_val = src_reg->umin_value;
7382
7383        /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7384        __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7385        __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7386
7387        dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7388        /* We may learn something more from the var_off */
7389        __update_reg_bounds(dst_reg);
7390}
7391
7392static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7393                                 struct bpf_reg_state *src_reg)
7394{
7395        struct tnum subreg = tnum_subreg(dst_reg->var_off);
7396        u32 umax_val = src_reg->u32_max_value;
7397        u32 umin_val = src_reg->u32_min_value;
7398
7399        /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7400         * be negative, then either:
7401         * 1) src_reg might be zero, so the sign bit of the result is
7402         *    unknown, so we lose our signed bounds
7403         * 2) it's known negative, thus the unsigned bounds capture the
7404         *    signed bounds
7405         * 3) the signed bounds cross zero, so they tell us nothing
7406         *    about the result
7407         * If the value in dst_reg is known nonnegative, then again the
7408         * unsigned bounds capture the signed bounds.
7409         * Thus, in all cases it suffices to blow away our signed bounds
7410         * and rely on inferring new ones from the unsigned bounds and
7411         * var_off of the result.
7412         */
7413        dst_reg->s32_min_value = S32_MIN;
7414        dst_reg->s32_max_value = S32_MAX;
7415
7416        dst_reg->var_off = tnum_rshift(subreg, umin_val);
7417        dst_reg->u32_min_value >>= umax_val;
7418        dst_reg->u32_max_value >>= umin_val;
7419
7420        __mark_reg64_unbounded(dst_reg);
7421        __update_reg32_bounds(dst_reg);
7422}
7423
7424static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7425                               struct bpf_reg_state *src_reg)
7426{
7427        u64 umax_val = src_reg->umax_value;
7428        u64 umin_val = src_reg->umin_value;
7429
7430        /* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7431         * be negative, then either:
7432         * 1) src_reg might be zero, so the sign bit of the result is
7433         *    unknown, so we lose our signed bounds
7434         * 2) it's known negative, thus the unsigned bounds capture the
7435         *    signed bounds
7436         * 3) the signed bounds cross zero, so they tell us nothing
7437         *    about the result
7438         * If the value in dst_reg is known nonnegative, then again the
7439         * unsigned bounds capture the signed bounds.
7440         * Thus, in all cases it suffices to blow away our signed bounds
7441         * and rely on inferring new ones from the unsigned bounds and
7442         * var_off of the result.
7443         */
7444        dst_reg->smin_value = S64_MIN;
7445        dst_reg->smax_value = S64_MAX;
7446        dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7447        dst_reg->umin_value >>= umax_val;
7448        dst_reg->umax_value >>= umin_val;
7449
7450        /* Its not easy to operate on alu32 bounds here because it depends
7451         * on bits being shifted in. Take easy way out and mark unbounded
7452         * so we can recalculate later from tnum.
7453         */
7454        __mark_reg32_unbounded(dst_reg);
7455        __update_reg_bounds(dst_reg);
7456}
7457
7458static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7459                                  struct bpf_reg_state *src_reg)
7460{
7461        u64 umin_val = src_reg->u32_min_value;
7462
7463        /* Upon reaching here, src_known is true and
7464         * umax_val is equal to umin_val.
7465         */
7466        dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7467        dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7468
7469        dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7470
7471        /* blow away the dst_reg umin_value/umax_value and rely on
7472         * dst_reg var_off to refine the result.
7473         */
7474        dst_reg->u32_min_value = 0;
7475        dst_reg->u32_max_value = U32_MAX;
7476
7477        __mark_reg64_unbounded(dst_reg);
7478        __update_reg32_bounds(dst_reg);
7479}
7480
7481static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7482                                struct bpf_reg_state *src_reg)
7483{
7484        u64 umin_val = src_reg->umin_value;
7485
7486        /* Upon reaching here, src_known is true and umax_val is equal
7487         * to umin_val.
7488         */
7489        dst_reg->smin_value >>= umin_val;
7490        dst_reg->smax_value >>= umin_val;
7491
7492        dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7493
7494        /* blow away the dst_reg umin_value/umax_value and rely on
7495         * dst_reg var_off to refine the result.
7496         */
7497        dst_reg->umin_value = 0;
7498        dst_reg->umax_value = U64_MAX;
7499
7500        /* Its not easy to operate on alu32 bounds here because it depends
7501         * on bits being shifted in from upper 32-bits. Take easy way out
7502         * and mark unbounded so we can recalculate later from tnum.
7503         */
7504        __mark_reg32_unbounded(dst_reg);
7505        __update_reg_bounds(dst_reg);
7506}
7507
7508/* WARNING: This function does calculations on 64-bit values, but the actual
7509 * execution may occur on 32-bit values. Therefore, things like bitshifts
7510 * need extra checks in the 32-bit case.
7511 */
7512static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7513                                      struct bpf_insn *insn,
7514                                      struct bpf_reg_state *dst_reg,
7515                                      struct bpf_reg_state src_reg)
7516{
7517        struct bpf_reg_state *regs = cur_regs(env);
7518        u8 opcode = BPF_OP(insn->code);
7519        bool src_known;
7520        s64 smin_val, smax_val;
7521        u64 umin_val, umax_val;
7522        s32 s32_min_val, s32_max_val;
7523        u32 u32_min_val, u32_max_val;
7524        u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7525        bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7526        int ret;
7527
7528        smin_val = src_reg.smin_value;
7529        smax_val = src_reg.smax_value;
7530        umin_val = src_reg.umin_value;
7531        umax_val = src_reg.umax_value;
7532
7533        s32_min_val = src_reg.s32_min_value;
7534        s32_max_val = src_reg.s32_max_value;
7535        u32_min_val = src_reg.u32_min_value;
7536        u32_max_val = src_reg.u32_max_value;
7537
7538        if (alu32) {
7539                src_known = tnum_subreg_is_const(src_reg.var_off);
7540                if ((src_known &&
7541                     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7542                    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7543                        /* Taint dst register if offset had invalid bounds
7544                         * derived from e.g. dead branches.
7545                         */
7546                        __mark_reg_unknown(env, dst_reg);
7547                        return 0;
7548                }
7549        } else {
7550                src_known = tnum_is_const(src_reg.var_off);
7551                if ((src_known &&
7552                     (smin_val != smax_val || umin_val != umax_val)) ||
7553                    smin_val > smax_val || umin_val > umax_val) {
7554                        /* Taint dst register if offset had invalid bounds
7555                         * derived from e.g. dead branches.
7556                         */
7557                        __mark_reg_unknown(env, dst_reg);
7558                        return 0;
7559                }
7560        }
7561
7562        if (!src_known &&
7563            opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7564                __mark_reg_unknown(env, dst_reg);
7565                return 0;
7566        }
7567
7568        if (sanitize_needed(opcode)) {
7569                ret = sanitize_val_alu(env, insn);
7570                if (ret < 0)
7571                        return sanitize_err(env, insn, ret, NULL, NULL);
7572        }
7573
7574        /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7575         * There are two classes of instructions: The first class we track both
7576         * alu32 and alu64 sign/unsigned bounds independently this provides the
7577         * greatest amount of precision when alu operations are mixed with jmp32
7578         * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7579         * and BPF_OR. This is possible because these ops have fairly easy to
7580         * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7581         * See alu32 verifier tests for examples. The second class of
7582         * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7583         * with regards to tracking sign/unsigned bounds because the bits may
7584         * cross subreg boundaries in the alu64 case. When this happens we mark
7585         * the reg unbounded in the subreg bound space and use the resulting
7586         * tnum to calculate an approximation of the sign/unsigned bounds.
7587         */
7588        switch (opcode) {
7589        case BPF_ADD:
7590                scalar32_min_max_add(dst_reg, &src_reg);
7591                scalar_min_max_add(dst_reg, &src_reg);
7592                dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7593                break;
7594        case BPF_SUB:
7595                scalar32_min_max_sub(dst_reg, &src_reg);
7596                scalar_min_max_sub(dst_reg, &src_reg);
7597                dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7598                break;
7599        case BPF_MUL:
7600                dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7601                scalar32_min_max_mul(dst_reg, &src_reg);
7602                scalar_min_max_mul(dst_reg, &src_reg);
7603                break;
7604        case BPF_AND:
7605                dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7606                scalar32_min_max_and(dst_reg, &src_reg);
7607                scalar_min_max_and(dst_reg, &src_reg);
7608                break;
7609        case BPF_OR:
7610                dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7611                scalar32_min_max_or(dst_reg, &src_reg);
7612                scalar_min_max_or(dst_reg, &src_reg);
7613                break;
7614        case BPF_XOR:
7615                dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7616                scalar32_min_max_xor(dst_reg, &src_reg);
7617                scalar_min_max_xor(dst_reg, &src_reg);
7618                break;
7619        case BPF_LSH:
7620                if (umax_val >= insn_bitness) {
7621                        /* Shifts greater than 31 or 63 are undefined.
7622                         * This includes shifts by a negative number.
7623                         */
7624                        mark_reg_unknown(env, regs, insn->dst_reg);
7625                        break;
7626                }
7627                if (alu32)
7628                        scalar32_min_max_lsh(dst_reg, &src_reg);
7629                else
7630                        scalar_min_max_lsh(dst_reg, &src_reg);
7631                break;
7632        case BPF_RSH:
7633                if (umax_val >= insn_bitness) {
7634                        /* Shifts greater than 31 or 63 are undefined.
7635                         * This includes shifts by a negative number.
7636                         */
7637                        mark_reg_unknown(env, regs, insn->dst_reg);
7638                        break;
7639                }
7640                if (alu32)
7641                        scalar32_min_max_rsh(dst_reg, &src_reg);
7642                else
7643                        scalar_min_max_rsh(dst_reg, &src_reg);
7644                break;
7645        case BPF_ARSH:
7646                if (umax_val >= insn_bitness) {
7647                        /* Shifts greater than 31 or 63 are undefined.
7648                         * This includes shifts by a negative number.
7649                         */
7650                        mark_reg_unknown(env, regs, insn->dst_reg);
7651                        break;
7652                }
7653                if (alu32)
7654                        scalar32_min_max_arsh(dst_reg, &src_reg);
7655                else
7656                        scalar_min_max_arsh(dst_reg, &src_reg);
7657                break;
7658        default:
7659                mark_reg_unknown(env, regs, insn->dst_reg);
7660                break;
7661        }
7662
7663        /* ALU32 ops are zero extended into 64bit register */
7664        if (alu32)
7665                zext_32_to_64(dst_reg);
7666
7667        __update_reg_bounds(dst_reg);
7668        __reg_deduce_bounds(dst_reg);
7669        __reg_bound_offset(dst_reg);
7670        return 0;
7671}
7672
7673/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7674 * and var_off.
7675 */
7676static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7677                                   struct bpf_insn *insn)
7678{
7679        struct bpf_verifier_state *vstate = env->cur_state;
7680        struct bpf_func_state *state = vstate->frame[vstate->curframe];
7681        struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7682        struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7683        u8 opcode = BPF_OP(insn->code);
7684        int err;
7685
7686        dst_reg = &regs[insn->dst_reg];
7687        src_reg = NULL;
7688        if (dst_reg->type != SCALAR_VALUE)
7689                ptr_reg = dst_reg;
7690        else
7691                /* Make sure ID is cleared otherwise dst_reg min/max could be
7692                 * incorrectly propagated into other registers by find_equal_scalars()
7693                 */
7694                dst_reg->id = 0;
7695        if (BPF_SRC(insn->code) == BPF_X) {
7696                src_reg = &regs[insn->src_reg];
7697                if (src_reg->type != SCALAR_VALUE) {
7698                        if (dst_reg->type != SCALAR_VALUE) {
7699                                /* Combining two pointers by any ALU op yields
7700                                 * an arbitrary scalar. Disallow all math except
7701                                 * pointer subtraction
7702                                 */
7703                                if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7704                                        mark_reg_unknown(env, regs, insn->dst_reg);
7705                                        return 0;
7706                                }
7707                                verbose(env, "R%d pointer %s pointer prohibited\n",
7708                                        insn->dst_reg,
7709                                        bpf_alu_string[opcode >> 4]);
7710                                return -EACCES;
7711                        } else {
7712                                /* scalar += pointer
7713                                 * This is legal, but we have to reverse our
7714                                 * src/dest handling in computing the range
7715                                 */
7716                                err = mark_chain_precision(env, insn->dst_reg);
7717                                if (err)
7718                                        return err;
7719                                return adjust_ptr_min_max_vals(env, insn,
7720                                                               src_reg, dst_reg);
7721                        }
7722                } else if (ptr_reg) {
7723                        /* pointer += scalar */
7724                        err = mark_chain_precision(env, insn->src_reg);
7725                        if (err)
7726                                return err;
7727                        return adjust_ptr_min_max_vals(env, insn,
7728                                                       dst_reg, src_reg);
7729                }
7730        } else {
7731                /* Pretend the src is a reg with a known value, since we only
7732                 * need to be able to read from this state.
7733                 */
7734                off_reg.type = SCALAR_VALUE;
7735                __mark_reg_known(&off_reg, insn->imm);
7736                src_reg = &off_reg;
7737                if (ptr_reg) /* pointer += K */
7738                        return adjust_ptr_min_max_vals(env, insn,
7739                                                       ptr_reg, src_reg);
7740        }
7741
7742        /* Got here implies adding two SCALAR_VALUEs */
7743        if (WARN_ON_ONCE(ptr_reg)) {
7744                print_verifier_state(env, state);
7745                verbose(env, "verifier internal error: unexpected ptr_reg\n");
7746                return -EINVAL;
7747        }
7748        if (WARN_ON(!src_reg)) {
7749                print_verifier_state(env, state);
7750                verbose(env, "verifier internal error: no src_reg\n");
7751                return -EINVAL;
7752        }
7753        return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7754}
7755
7756/* check validity of 32-bit and 64-bit arithmetic operations */
7757static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7758{
7759        struct bpf_reg_state *regs = cur_regs(env);
7760        u8 opcode = BPF_OP(insn->code);
7761        int err;
7762
7763        if (opcode == BPF_END || opcode == BPF_NEG) {
7764                if (opcode == BPF_NEG) {
7765                        if (BPF_SRC(insn->code) != 0 ||
7766                            insn->src_reg != BPF_REG_0 ||
7767                            insn->off != 0 || insn->imm != 0) {
7768                                verbose(env, "BPF_NEG uses reserved fields\n");
7769                                return -EINVAL;
7770                        }
7771                } else {
7772                        if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7773                            (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7774                            BPF_CLASS(insn->code) == BPF_ALU64) {
7775                                verbose(env, "BPF_END uses reserved fields\n");
7776                                return -EINVAL;
7777                        }
7778                }
7779
7780                /* check src operand */
7781                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7782                if (err)
7783                        return err;
7784
7785                if (is_pointer_value(env, insn->dst_reg)) {
7786                        verbose(env, "R%d pointer arithmetic prohibited\n",
7787                                insn->dst_reg);
7788                        return -EACCES;
7789                }
7790
7791                /* check dest operand */
7792                err = check_reg_arg(env, insn->dst_reg, DST_OP);
7793                if (err)
7794                        return err;
7795
7796        } else if (opcode == BPF_MOV) {
7797
7798                if (BPF_SRC(insn->code) == BPF_X) {
7799                        if (insn->imm != 0 || insn->off != 0) {
7800                                verbose(env, "BPF_MOV uses reserved fields\n");
7801                                return -EINVAL;
7802                        }
7803
7804                        /* check src operand */
7805                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
7806                        if (err)
7807                                return err;
7808                } else {
7809                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7810                                verbose(env, "BPF_MOV uses reserved fields\n");
7811                                return -EINVAL;
7812                        }
7813                }
7814
7815                /* check dest operand, mark as required later */
7816                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7817                if (err)
7818                        return err;
7819
7820                if (BPF_SRC(insn->code) == BPF_X) {
7821                        struct bpf_reg_state *src_reg = regs + insn->src_reg;
7822                        struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7823
7824                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
7825                                /* case: R1 = R2
7826                                 * copy register state to dest reg
7827                                 */
7828                                if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7829                                        /* Assign src and dst registers the same ID
7830                                         * that will be used by find_equal_scalars()
7831                                         * to propagate min/max range.
7832                                         */
7833                                        src_reg->id = ++env->id_gen;
7834                                *dst_reg = *src_reg;
7835                                dst_reg->live |= REG_LIVE_WRITTEN;
7836                                dst_reg->subreg_def = DEF_NOT_SUBREG;
7837                        } else {
7838                                /* R1 = (u32) R2 */
7839                                if (is_pointer_value(env, insn->src_reg)) {
7840                                        verbose(env,
7841                                                "R%d partial copy of pointer\n",
7842                                                insn->src_reg);
7843                                        return -EACCES;
7844                                } else if (src_reg->type == SCALAR_VALUE) {
7845                                        *dst_reg = *src_reg;
7846                                        /* Make sure ID is cleared otherwise
7847                                         * dst_reg min/max could be incorrectly
7848                                         * propagated into src_reg by find_equal_scalars()
7849                                         */
7850                                        dst_reg->id = 0;
7851                                        dst_reg->live |= REG_LIVE_WRITTEN;
7852                                        dst_reg->subreg_def = env->insn_idx + 1;
7853                                } else {
7854                                        mark_reg_unknown(env, regs,
7855                                                         insn->dst_reg);
7856                                }
7857                                zext_32_to_64(dst_reg);
7858                        }
7859                } else {
7860                        /* case: R = imm
7861                         * remember the value we stored into this reg
7862                         */
7863                        /* clear any state __mark_reg_known doesn't set */
7864                        mark_reg_unknown(env, regs, insn->dst_reg);
7865                        regs[insn->dst_reg].type = SCALAR_VALUE;
7866                        if (BPF_CLASS(insn->code) == BPF_ALU64) {
7867                                __mark_reg_known(regs + insn->dst_reg,
7868                                                 insn->imm);
7869                        } else {
7870                                __mark_reg_known(regs + insn->dst_reg,
7871                                                 (u32)insn->imm);
7872                        }
7873                }
7874
7875        } else if (opcode > BPF_END) {
7876                verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7877                return -EINVAL;
7878
7879        } else {        /* all other ALU ops: and, sub, xor, add, ... */
7880
7881                if (BPF_SRC(insn->code) == BPF_X) {
7882                        if (insn->imm != 0 || insn->off != 0) {
7883                                verbose(env, "BPF_ALU uses reserved fields\n");
7884                                return -EINVAL;
7885                        }
7886                        /* check src1 operand */
7887                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
7888                        if (err)
7889                                return err;
7890                } else {
7891                        if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7892                                verbose(env, "BPF_ALU uses reserved fields\n");
7893                                return -EINVAL;
7894                        }
7895                }
7896
7897                /* check src2 operand */
7898                err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7899                if (err)
7900                        return err;
7901
7902                if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7903                    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7904                        verbose(env, "div by zero\n");
7905                        return -EINVAL;
7906                }
7907
7908                if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7909                     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7910                        int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7911
7912                        if (insn->imm < 0 || insn->imm >= size) {
7913                                verbose(env, "invalid shift %d\n", insn->imm);
7914                                return -EINVAL;
7915                        }
7916                }
7917
7918                /* check dest operand */
7919                err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7920                if (err)
7921                        return err;
7922
7923                return adjust_reg_min_max_vals(env, insn);
7924        }
7925
7926        return 0;
7927}
7928
7929static void __find_good_pkt_pointers(struct bpf_func_state *state,
7930                                     struct bpf_reg_state *dst_reg,
7931                                     enum bpf_reg_type type, int new_range)
7932{
7933        struct bpf_reg_state *reg;
7934        int i;
7935
7936        for (i = 0; i < MAX_BPF_REG; i++) {
7937                reg = &state->regs[i];
7938                if (reg->type == type && reg->id == dst_reg->id)
7939                        /* keep the maximum range already checked */
7940                        reg->range = max(reg->range, new_range);
7941        }
7942
7943        bpf_for_each_spilled_reg(i, state, reg) {
7944                if (!reg)
7945                        continue;
7946                if (reg->type == type && reg->id == dst_reg->id)
7947                        reg->range = max(reg->range, new_range);
7948        }
7949}
7950
7951static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7952                                   struct bpf_reg_state *dst_reg,
7953                                   enum bpf_reg_type type,
7954                                   bool range_right_open)
7955{
7956        int new_range, i;
7957
7958        if (dst_reg->off < 0 ||
7959            (dst_reg->off == 0 && range_right_open))
7960                /* This doesn't give us any range */
7961                return;
7962
7963        if (dst_reg->umax_value > MAX_PACKET_OFF ||
7964            dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7965                /* Risk of overflow.  For instance, ptr + (1<<63) may be less
7966                 * than pkt_end, but that's because it's also less than pkt.
7967                 */
7968                return;
7969
7970        new_range = dst_reg->off;
7971        if (range_right_open)
7972                new_range--;
7973
7974        /* Examples for register markings:
7975         *
7976         * pkt_data in dst register:
7977         *
7978         *   r2 = r3;
7979         *   r2 += 8;
7980         *   if (r2 > pkt_end) goto <handle exception>
7981         *   <access okay>
7982         *
7983         *   r2 = r3;
7984         *   r2 += 8;
7985         *   if (r2 < pkt_end) goto <access okay>
7986         *   <handle exception>
7987         *
7988         *   Where:
7989         *     r2 == dst_reg, pkt_end == src_reg
7990         *     r2=pkt(id=n,off=8,r=0)
7991         *     r3=pkt(id=n,off=0,r=0)
7992         *
7993         * pkt_data in src register:
7994         *
7995         *   r2 = r3;
7996         *   r2 += 8;
7997         *   if (pkt_end >= r2) goto <access okay>
7998         *   <handle exception>
7999         *
8000         *   r2 = r3;
8001         *   r2 += 8;
8002         *   if (pkt_end <= r2) goto <handle exception>
8003         *   <access okay>
8004         *
8005         *   Where:
8006         *     pkt_end == dst_reg, r2 == src_reg
8007         *     r2=pkt(id=n,off=8,r=0)
8008         *     r3=pkt(id=n,off=0,r=0)
8009         *
8010         * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8011         * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8012         * and [r3, r3 + 8-1) respectively is safe to access depending on
8013         * the check.
8014         */
8015
8016        /* If our ids match, then we must have the same max_value.  And we
8017         * don't care about the other reg's fixed offset, since if it's too big
8018         * the range won't allow anything.
8019         * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8020         */
8021        for (i = 0; i <= vstate->curframe; i++)
8022                __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8023                                         new_range);
8024}
8025
8026static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8027{
8028        struct tnum subreg = tnum_subreg(reg->var_off);
8029        s32 sval = (s32)val;
8030
8031        switch (opcode) {
8032        case BPF_JEQ:
8033                if (tnum_is_const(subreg))
8034                        return !!tnum_equals_const(subreg, val);
8035                break;
8036        case BPF_JNE:
8037                if (tnum_is_const(subreg))
8038                        return !tnum_equals_const(subreg, val);
8039                break;
8040        case BPF_JSET:
8041                if ((~subreg.mask & subreg.value) & val)
8042                        return 1;
8043                if (!((subreg.mask | subreg.value) & val))
8044                        return 0;
8045                break;
8046        case BPF_JGT:
8047                if (reg->u32_min_value > val)
8048                        return 1;
8049                else if (reg->u32_max_value <= val)
8050                        return 0;
8051                break;
8052        case BPF_JSGT:
8053                if (reg->s32_min_value > sval)
8054                        return 1;
8055                else if (reg->s32_max_value <= sval)
8056                        return 0;
8057                break;
8058        case BPF_JLT:
8059                if (reg->u32_max_value < val)
8060                        return 1;
8061                else if (reg->u32_min_value >= val)
8062                        return 0;
8063                break;
8064        case BPF_JSLT:
8065                if (reg->s32_max_value < sval)
8066                        return 1;
8067                else if (reg->s32_min_value >= sval)
8068                        return 0;
8069                break;
8070        case BPF_JGE:
8071                if (reg->u32_min_value >= val)
8072                        return 1;
8073                else if (reg->u32_max_value < val)
8074                        return 0;
8075                break;
8076        case BPF_JSGE:
8077                if (reg->s32_min_value >= sval)
8078                        return 1;
8079                else if (reg->s32_max_value < sval)
8080                        return 0;
8081                break;
8082        case BPF_JLE:
8083                if (reg->u32_max_value <= val)
8084                        return 1;
8085                else if (reg->u32_min_value > val)
8086                        return 0;
8087                break;
8088        case BPF_JSLE:
8089                if (reg->s32_max_value <= sval)
8090                        return 1;
8091                else if (reg->s32_min_value > sval)
8092                        return 0;
8093                break;
8094        }
8095
8096        return -1;
8097}
8098
8099
8100static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8101{
8102        s64 sval = (s64)val;
8103
8104        switch (opcode) {
8105        case BPF_JEQ:
8106                if (tnum_is_const(reg->var_off))
8107                        return !!tnum_equals_const(reg->var_off, val);
8108                break;
8109        case BPF_JNE:
8110                if (tnum_is_const(reg->var_off))
8111                        return !tnum_equals_const(reg->var_off, val);
8112                break;
8113        case BPF_JSET:
8114                if ((~reg->var_off.mask & reg->var_off.value) & val)
8115                        return 1;
8116                if (!((reg->var_off.mask | reg->var_off.value) & val))
8117                        return 0;
8118                break;
8119        case BPF_JGT:
8120                if (reg->umin_value > val)
8121                        return 1;
8122                else if (reg->umax_value <= val)
8123                        return 0;
8124                break;
8125        case BPF_JSGT:
8126                if (reg->smin_value > sval)
8127                        return 1;
8128                else if (reg->smax_value <= sval)
8129                        return 0;
8130                break;
8131        case BPF_JLT:
8132                if (reg->umax_value < val)
8133                        return 1;
8134                else if (reg->umin_value >= val)
8135                        return 0;
8136                break;
8137        case BPF_JSLT:
8138                if (reg->smax_value < sval)
8139                        return 1;
8140                else if (reg->smin_value >= sval)
8141                        return 0;
8142                break;
8143        case BPF_JGE:
8144                if (reg->umin_value >= val)
8145                        return 1;
8146                else if (reg->umax_value < val)
8147                        return 0;
8148                break;
8149        case BPF_JSGE:
8150                if (reg->smin_value >= sval)
8151                        return 1;
8152                else if (reg->smax_value < sval)
8153                        return 0;
8154                break;
8155        case BPF_JLE:
8156                if (reg->umax_value <= val)
8157                        return 1;
8158                else if (reg->umin_value > val)
8159                        return 0;
8160                break;
8161        case BPF_JSLE:
8162                if (reg->smax_value <= sval)
8163                        return 1;
8164                else if (reg->smin_value > sval)
8165                        return 0;
8166                break;
8167        }
8168
8169        return -1;
8170}
8171
8172/* compute branch direction of the expression "if (reg opcode val) goto target;"
8173 * and return:
8174 *  1 - branch will be taken and "goto target" will be executed
8175 *  0 - branch will not be taken and fall-through to next insn
8176 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8177 *      range [0,10]
8178 */
8179static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8180                           bool is_jmp32)
8181{
8182        if (__is_pointer_value(false, reg)) {
8183                if (!reg_type_not_null(reg->type))
8184                        return -1;
8185
8186                /* If pointer is valid tests against zero will fail so we can
8187                 * use this to direct branch taken.
8188                 */
8189                if (val != 0)
8190                        return -1;
8191
8192                switch (opcode) {
8193                case BPF_JEQ:
8194                        return 0;
8195                case BPF_JNE:
8196                        return 1;
8197                default:
8198                        return -1;
8199                }
8200        }
8201
8202        if (is_jmp32)
8203                return is_branch32_taken(reg, val, opcode);
8204        return is_branch64_taken(reg, val, opcode);
8205}
8206
8207static int flip_opcode(u32 opcode)
8208{
8209        /* How can we transform "a <op> b" into "b <op> a"? */
8210        static const u8 opcode_flip[16] = {
8211                /* these stay the same */
8212                [BPF_JEQ  >> 4] = BPF_JEQ,
8213                [BPF_JNE  >> 4] = BPF_JNE,
8214                [BPF_JSET >> 4] = BPF_JSET,
8215                /* these swap "lesser" and "greater" (L and G in the opcodes) */
8216                [BPF_JGE  >> 4] = BPF_JLE,
8217                [BPF_JGT  >> 4] = BPF_JLT,
8218                [BPF_JLE  >> 4] = BPF_JGE,
8219                [BPF_JLT  >> 4] = BPF_JGT,
8220                [BPF_JSGE >> 4] = BPF_JSLE,
8221                [BPF_JSGT >> 4] = BPF_JSLT,
8222                [BPF_JSLE >> 4] = BPF_JSGE,
8223                [BPF_JSLT >> 4] = BPF_JSGT
8224        };
8225        return opcode_flip[opcode >> 4];
8226}
8227
8228static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8229                                   struct bpf_reg_state *src_reg,
8230                                   u8 opcode)
8231{
8232        struct bpf_reg_state *pkt;
8233
8234        if (src_reg->type == PTR_TO_PACKET_END) {
8235                pkt = dst_reg;
8236        } else if (dst_reg->type == PTR_TO_PACKET_END) {
8237                pkt = src_reg;
8238                opcode = flip_opcode(opcode);
8239        } else {
8240                return -1;
8241        }
8242
8243        if (pkt->range >= 0)
8244                return -1;
8245
8246        switch (opcode) {
8247        case BPF_JLE:
8248                /* pkt <= pkt_end */
8249                fallthrough;
8250        case BPF_JGT:
8251                /* pkt > pkt_end */
8252                if (pkt->range == BEYOND_PKT_END)
8253                        /* pkt has at last one extra byte beyond pkt_end */
8254                        return opcode == BPF_JGT;
8255                break;
8256        case BPF_JLT:
8257                /* pkt < pkt_end */
8258                fallthrough;
8259        case BPF_JGE:
8260                /* pkt >= pkt_end */
8261                if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8262                        return opcode == BPF_JGE;
8263                break;
8264        }
8265        return -1;
8266}
8267
8268/* Adjusts the register min/max values in the case that the dst_reg is the
8269 * variable register that we are working on, and src_reg is a constant or we're
8270 * simply doing a BPF_K check.
8271 * In JEQ/JNE cases we also adjust the var_off values.
8272 */
8273static void reg_set_min_max(struct bpf_reg_state *true_reg,
8274                            struct bpf_reg_state *false_reg,
8275                            u64 val, u32 val32,
8276                            u8 opcode, bool is_jmp32)
8277{
8278        struct tnum false_32off = tnum_subreg(false_reg->var_off);
8279        struct tnum false_64off = false_reg->var_off;
8280        struct tnum true_32off = tnum_subreg(true_reg->var_off);
8281        struct tnum true_64off = true_reg->var_off;
8282        s64 sval = (s64)val;
8283        s32 sval32 = (s32)val32;
8284
8285        /* If the dst_reg is a pointer, we can't learn anything about its
8286         * variable offset from the compare (unless src_reg were a pointer into
8287         * the same object, but we don't bother with that.
8288         * Since false_reg and true_reg have the same type by construction, we
8289         * only need to check one of them for pointerness.
8290         */
8291        if (__is_pointer_value(false, false_reg))
8292                return;
8293
8294        switch (opcode) {
8295        case BPF_JEQ:
8296        case BPF_JNE:
8297        {
8298                struct bpf_reg_state *reg =
8299                        opcode == BPF_JEQ ? true_reg : false_reg;
8300
8301                /* JEQ/JNE comparison doesn't change the register equivalence.
8302                 * r1 = r2;
8303                 * if (r1 == 42) goto label;
8304                 * ...
8305                 * label: // here both r1 and r2 are known to be 42.
8306                 *
8307                 * Hence when marking register as known preserve it's ID.
8308                 */
8309                if (is_jmp32)
8310                        __mark_reg32_known(reg, val32);
8311                else
8312                        ___mark_reg_known(reg, val);
8313                break;
8314        }
8315        case BPF_JSET:
8316                if (is_jmp32) {
8317                        false_32off = tnum_and(false_32off, tnum_const(~val32));
8318                        if (is_power_of_2(val32))
8319                                true_32off = tnum_or(true_32off,
8320                                                     tnum_const(val32));
8321                } else {
8322                        false_64off = tnum_and(false_64off, tnum_const(~val));
8323                        if (is_power_of_2(val))
8324                                true_64off = tnum_or(true_64off,
8325                                                     tnum_const(val));
8326                }
8327                break;
8328        case BPF_JGE:
8329        case BPF_JGT:
8330        {
8331                if (is_jmp32) {
8332                        u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8333                        u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8334
8335                        false_reg->u32_max_value = min(false_reg->u32_max_value,
8336                                                       false_umax);
8337                        true_reg->u32_min_value = max(true_reg->u32_min_value,
8338                                                      true_umin);
8339                } else {
8340                        u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8341                        u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8342
8343                        false_reg->umax_value = min(false_reg->umax_value, false_umax);
8344                        true_reg->umin_value = max(true_reg->umin_value, true_umin);
8345                }
8346                break;
8347        }
8348        case BPF_JSGE:
8349        case BPF_JSGT:
8350        {
8351                if (is_jmp32) {
8352                        s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8353                        s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8354
8355                        false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8356                        true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8357                } else {
8358                        s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8359                        s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8360
8361                        false_reg->smax_value = min(false_reg->smax_value, false_smax);
8362                        true_reg->smin_value = max(true_reg->smin_value, true_smin);
8363                }
8364                break;
8365        }
8366        case BPF_JLE:
8367        case BPF_JLT:
8368        {
8369                if (is_jmp32) {
8370                        u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8371                        u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8372
8373                        false_reg->u32_min_value = max(false_reg->u32_min_value,
8374                                                       false_umin);
8375                        true_reg->u32_max_value = min(true_reg->u32_max_value,
8376                                                      true_umax);
8377                } else {
8378                        u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8379                        u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8380
8381                        false_reg->umin_value = max(false_reg->umin_value, false_umin);
8382                        true_reg->umax_value = min(true_reg->umax_value, true_umax);
8383                }
8384                break;
8385        }
8386        case BPF_JSLE:
8387        case BPF_JSLT:
8388        {
8389                if (is_jmp32) {
8390                        s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8391                        s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8392
8393                        false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8394                        true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8395                } else {
8396                        s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8397                        s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8398
8399                        false_reg->smin_value = max(false_reg->smin_value, false_smin);
8400                        true_reg->smax_value = min(true_reg->smax_value, true_smax);
8401                }
8402                break;
8403        }
8404        default:
8405                return;
8406        }
8407
8408        if (is_jmp32) {
8409                false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8410                                             tnum_subreg(false_32off));
8411                true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8412                                            tnum_subreg(true_32off));
8413                __reg_combine_32_into_64(false_reg);
8414                __reg_combine_32_into_64(true_reg);
8415        } else {
8416                false_reg->var_off = false_64off;
8417                true_reg->var_off = true_64off;
8418                __reg_combine_64_into_32(false_reg);
8419                __reg_combine_64_into_32(true_reg);
8420        }
8421}
8422
8423/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8424 * the variable reg.
8425 */
8426static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8427                                struct bpf_reg_state *false_reg,
8428                                u64 val, u32 val32,
8429                                u8 opcode, bool is_jmp32)
8430{
8431        opcode = flip_opcode(opcode);
8432        /* This uses zero as "not present in table"; luckily the zero opcode,
8433         * BPF_JA, can't get here.
8434         */
8435        if (opcode)
8436                reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8437}
8438
8439/* Regs are known to be equal, so intersect their min/max/var_off */
8440static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8441                                  struct bpf_reg_state *dst_reg)
8442{
8443        src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8444                                                        dst_reg->umin_value);
8445        src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8446                                                        dst_reg->umax_value);
8447        src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8448                                                        dst_reg->smin_value);
8449        src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8450                                                        dst_reg->smax_value);
8451        src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8452                                                             dst_reg->var_off);
8453        /* We might have learned new bounds from the var_off. */
8454        __update_reg_bounds(src_reg);
8455        __update_reg_bounds(dst_reg);
8456        /* We might have learned something about the sign bit. */
8457        __reg_deduce_bounds(src_reg);
8458        __reg_deduce_bounds(dst_reg);
8459        /* We might have learned some bits from the bounds. */
8460        __reg_bound_offset(src_reg);
8461        __reg_bound_offset(dst_reg);
8462        /* Intersecting with the old var_off might have improved our bounds
8463         * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8464         * then new var_off is (0; 0x7f...fc) which improves our umax.
8465         */
8466        __update_reg_bounds(src_reg);
8467        __update_reg_bounds(dst_reg);
8468}
8469
8470static void reg_combine_min_max(struct bpf_reg_state *true_src,
8471                                struct bpf_reg_state *true_dst,
8472                                struct bpf_reg_state *false_src,
8473                                struct bpf_reg_state *false_dst,
8474                                u8 opcode)
8475{
8476        switch (opcode) {
8477        case BPF_JEQ:
8478                __reg_combine_min_max(true_src, true_dst);
8479                break;
8480        case BPF_JNE:
8481                __reg_combine_min_max(false_src, false_dst);
8482                break;
8483        }
8484}
8485
8486static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8487                                 struct bpf_reg_state *reg, u32 id,
8488                                 bool is_null)
8489{
8490        if (reg_type_may_be_null(reg->type) && reg->id == id &&
8491            !WARN_ON_ONCE(!reg->id)) {
8492                /* Old offset (both fixed and variable parts) should
8493                 * have been known-zero, because we don't allow pointer
8494                 * arithmetic on pointers that might be NULL.
8495                 */
8496                if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8497                                 !tnum_equals_const(reg->var_off, 0) ||
8498                                 reg->off)) {
8499                        __mark_reg_known_zero(reg);
8500                        reg->off = 0;
8501                }
8502                if (is_null) {
8503                        reg->type = SCALAR_VALUE;
8504                        /* We don't need id and ref_obj_id from this point
8505                         * onwards anymore, thus we should better reset it,
8506                         * so that state pruning has chances to take effect.
8507                         */
8508                        reg->id = 0;
8509                        reg->ref_obj_id = 0;
8510
8511                        return;
8512                }
8513
8514                mark_ptr_not_null_reg(reg);
8515
8516                if (!reg_may_point_to_spin_lock(reg)) {
8517                        /* For not-NULL ptr, reg->ref_obj_id will be reset
8518                         * in release_reg_references().
8519                         *
8520                         * reg->id is still used by spin_lock ptr. Other
8521                         * than spin_lock ptr type, reg->id can be reset.
8522                         */
8523                        reg->id = 0;
8524                }
8525        }
8526}
8527
8528static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8529                                    bool is_null)
8530{
8531        struct bpf_reg_state *reg;
8532        int i;
8533
8534        for (i = 0; i < MAX_BPF_REG; i++)
8535                mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8536
8537        bpf_for_each_spilled_reg(i, state, reg) {
8538                if (!reg)
8539                        continue;
8540                mark_ptr_or_null_reg(state, reg, id, is_null);
8541        }
8542}
8543
8544/* The logic is similar to find_good_pkt_pointers(), both could eventually
8545 * be folded together at some point.
8546 */
8547static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8548                                  bool is_null)
8549{
8550        struct bpf_func_state *state = vstate->frame[vstate->curframe];
8551        struct bpf_reg_state *regs = state->regs;
8552        u32 ref_obj_id = regs[regno].ref_obj_id;
8553        u32 id = regs[regno].id;
8554        int i;
8555
8556        if (ref_obj_id && ref_obj_id == id && is_null)
8557                /* regs[regno] is in the " == NULL" branch.
8558                 * No one could have freed the reference state before
8559                 * doing the NULL check.
8560                 */
8561                WARN_ON_ONCE(release_reference_state(state, id));
8562
8563        for (i = 0; i <= vstate->curframe; i++)
8564                __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8565}
8566
8567static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8568                                   struct bpf_reg_state *dst_reg,
8569                                   struct bpf_reg_state *src_reg,
8570                                   struct bpf_verifier_state *this_branch,
8571                                   struct bpf_verifier_state *other_branch)
8572{
8573        if (BPF_SRC(insn->code) != BPF_X)
8574                return false;
8575
8576        /* Pointers are always 64-bit. */
8577        if (BPF_CLASS(insn->code) == BPF_JMP32)
8578                return false;
8579
8580        switch (BPF_OP(insn->code)) {
8581        case BPF_JGT:
8582                if ((dst_reg->type == PTR_TO_PACKET &&
8583                     src_reg->type == PTR_TO_PACKET_END) ||
8584                    (dst_reg->type == PTR_TO_PACKET_META &&
8585                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8586                        /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8587                        find_good_pkt_pointers(this_branch, dst_reg,
8588                                               dst_reg->type, false);
8589                        mark_pkt_end(other_branch, insn->dst_reg, true);
8590                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8591                            src_reg->type == PTR_TO_PACKET) ||
8592                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8593                            src_reg->type == PTR_TO_PACKET_META)) {
8594                        /* pkt_end > pkt_data', pkt_data > pkt_meta' */
8595                        find_good_pkt_pointers(other_branch, src_reg,
8596                                               src_reg->type, true);
8597                        mark_pkt_end(this_branch, insn->src_reg, false);
8598                } else {
8599                        return false;
8600                }
8601                break;
8602        case BPF_JLT:
8603                if ((dst_reg->type == PTR_TO_PACKET &&
8604                     src_reg->type == PTR_TO_PACKET_END) ||
8605                    (dst_reg->type == PTR_TO_PACKET_META &&
8606                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8607                        /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8608                        find_good_pkt_pointers(other_branch, dst_reg,
8609                                               dst_reg->type, true);
8610                        mark_pkt_end(this_branch, insn->dst_reg, false);
8611                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8612                            src_reg->type == PTR_TO_PACKET) ||
8613                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8614                            src_reg->type == PTR_TO_PACKET_META)) {
8615                        /* pkt_end < pkt_data', pkt_data > pkt_meta' */
8616                        find_good_pkt_pointers(this_branch, src_reg,
8617                                               src_reg->type, false);
8618                        mark_pkt_end(other_branch, insn->src_reg, true);
8619                } else {
8620                        return false;
8621                }
8622                break;
8623        case BPF_JGE:
8624                if ((dst_reg->type == PTR_TO_PACKET &&
8625                     src_reg->type == PTR_TO_PACKET_END) ||
8626                    (dst_reg->type == PTR_TO_PACKET_META &&
8627                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8628                        /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8629                        find_good_pkt_pointers(this_branch, dst_reg,
8630                                               dst_reg->type, true);
8631                        mark_pkt_end(other_branch, insn->dst_reg, false);
8632                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8633                            src_reg->type == PTR_TO_PACKET) ||
8634                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8635                            src_reg->type == PTR_TO_PACKET_META)) {
8636                        /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8637                        find_good_pkt_pointers(other_branch, src_reg,
8638                                               src_reg->type, false);
8639                        mark_pkt_end(this_branch, insn->src_reg, true);
8640                } else {
8641                        return false;
8642                }
8643                break;
8644        case BPF_JLE:
8645                if ((dst_reg->type == PTR_TO_PACKET &&
8646                     src_reg->type == PTR_TO_PACKET_END) ||
8647                    (dst_reg->type == PTR_TO_PACKET_META &&
8648                     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8649                        /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8650                        find_good_pkt_pointers(other_branch, dst_reg,
8651                                               dst_reg->type, false);
8652                        mark_pkt_end(this_branch, insn->dst_reg, true);
8653                } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8654                            src_reg->type == PTR_TO_PACKET) ||
8655                           (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8656                            src_reg->type == PTR_TO_PACKET_META)) {
8657                        /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8658                        find_good_pkt_pointers(this_branch, src_reg,
8659                                               src_reg->type, true);
8660                        mark_pkt_end(other_branch, insn->src_reg, false);
8661                } else {
8662                        return false;
8663                }
8664                break;
8665        default:
8666                return false;
8667        }
8668
8669        return true;
8670}
8671
8672static void find_equal_scalars(struct bpf_verifier_state *vstate,
8673                               struct bpf_reg_state *known_reg)
8674{
8675        struct bpf_func_state *state;
8676        struct bpf_reg_state *reg;
8677        int i, j;
8678
8679        for (i = 0; i <= vstate->curframe; i++) {
8680                state = vstate->frame[i];
8681                for (j = 0; j < MAX_BPF_REG; j++) {
8682                        reg = &state->regs[j];
8683                        if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8684                                *reg = *known_reg;
8685                }
8686
8687                bpf_for_each_spilled_reg(j, state, reg) {
8688                        if (!reg)
8689                                continue;
8690                        if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8691                                *reg = *known_reg;
8692                }
8693        }
8694}
8695
8696static int check_cond_jmp_op(struct bpf_verifier_env *env,
8697                             struct bpf_insn *insn, int *insn_idx)
8698{
8699        struct bpf_verifier_state *this_branch = env->cur_state;
8700        struct bpf_verifier_state *other_branch;
8701        struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8702        struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8703        u8 opcode = BPF_OP(insn->code);
8704        bool is_jmp32;
8705        int pred = -1;
8706        int err;
8707
8708        /* Only conditional jumps are expected to reach here. */
8709        if (opcode == BPF_JA || opcode > BPF_JSLE) {
8710                verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8711                return -EINVAL;
8712        }
8713
8714        if (BPF_SRC(insn->code) == BPF_X) {
8715                if (insn->imm != 0) {
8716                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8717                        return -EINVAL;
8718                }
8719
8720                /* check src1 operand */
8721                err = check_reg_arg(env, insn->src_reg, SRC_OP);
8722                if (err)
8723                        return err;
8724
8725                if (is_pointer_value(env, insn->src_reg)) {
8726                        verbose(env, "R%d pointer comparison prohibited\n",
8727                                insn->src_reg);
8728                        return -EACCES;
8729                }
8730                src_reg = &regs[insn->src_reg];
8731        } else {
8732                if (insn->src_reg != BPF_REG_0) {
8733                        verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8734                        return -EINVAL;
8735                }
8736        }
8737
8738        /* check src2 operand */
8739        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8740        if (err)
8741                return err;
8742
8743        dst_reg = &regs[insn->dst_reg];
8744        is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8745
8746        if (BPF_SRC(insn->code) == BPF_K) {
8747                pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8748        } else if (src_reg->type == SCALAR_VALUE &&
8749                   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8750                pred = is_branch_taken(dst_reg,
8751                                       tnum_subreg(src_reg->var_off).value,
8752                                       opcode,
8753                                       is_jmp32);
8754        } else if (src_reg->type == SCALAR_VALUE &&
8755                   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8756                pred = is_branch_taken(dst_reg,
8757                                       src_reg->var_off.value,
8758                                       opcode,
8759                                       is_jmp32);
8760        } else if (reg_is_pkt_pointer_any(dst_reg) &&
8761                   reg_is_pkt_pointer_any(src_reg) &&
8762                   !is_jmp32) {
8763                pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8764        }
8765
8766        if (pred >= 0) {
8767                /* If we get here with a dst_reg pointer type it is because
8768                 * above is_branch_taken() special cased the 0 comparison.
8769                 */
8770                if (!__is_pointer_value(false, dst_reg))
8771                        err = mark_chain_precision(env, insn->dst_reg);
8772                if (BPF_SRC(insn->code) == BPF_X && !err &&
8773                    !__is_pointer_value(false, src_reg))
8774                        err = mark_chain_precision(env, insn->src_reg);
8775                if (err)
8776                        return err;
8777        }
8778
8779        if (pred == 1) {
8780                /* Only follow the goto, ignore fall-through. If needed, push
8781                 * the fall-through branch for simulation under speculative
8782                 * execution.
8783                 */
8784                if (!env->bypass_spec_v1 &&
8785                    !sanitize_speculative_path(env, insn, *insn_idx + 1,
8786                                               *insn_idx))
8787                        return -EFAULT;
8788                *insn_idx += insn->off;
8789                return 0;
8790        } else if (pred == 0) {
8791                /* Only follow the fall-through branch, since that's where the
8792                 * program will go. If needed, push the goto branch for
8793                 * simulation under speculative execution.
8794                 */
8795                if (!env->bypass_spec_v1 &&
8796                    !sanitize_speculative_path(env, insn,
8797                                               *insn_idx + insn->off + 1,
8798                                               *insn_idx))
8799                        return -EFAULT;
8800                return 0;
8801        }
8802
8803        other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8804                                  false);
8805        if (!other_branch)
8806                return -EFAULT;
8807        other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8808
8809        /* detect if we are comparing against a constant value so we can adjust
8810         * our min/max values for our dst register.
8811         * this is only legit if both are scalars (or pointers to the same
8812         * object, I suppose, but we don't support that right now), because
8813         * otherwise the different base pointers mean the offsets aren't
8814         * comparable.
8815         */
8816        if (BPF_SRC(insn->code) == BPF_X) {
8817                struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8818
8819                if (dst_reg->type == SCALAR_VALUE &&
8820                    src_reg->type == SCALAR_VALUE) {
8821                        if (tnum_is_const(src_reg->var_off) ||
8822                            (is_jmp32 &&
8823                             tnum_is_const(tnum_subreg(src_reg->var_off))))
8824                                reg_set_min_max(&other_branch_regs[insn->dst_reg],
8825                                                dst_reg,
8826                                                src_reg->var_off.value,
8827                                                tnum_subreg(src_reg->var_off).value,
8828                                                opcode, is_jmp32);
8829                        else if (tnum_is_const(dst_reg->var_off) ||
8830                                 (is_jmp32 &&
8831                                  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8832                                reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8833                                                    src_reg,
8834                                                    dst_reg->var_off.value,
8835                                                    tnum_subreg(dst_reg->var_off).value,
8836                                                    opcode, is_jmp32);
8837                        else if (!is_jmp32 &&
8838                                 (opcode == BPF_JEQ || opcode == BPF_JNE))
8839                                /* Comparing for equality, we can combine knowledge */
8840                                reg_combine_min_max(&other_branch_regs[insn->src_reg],
8841                                                    &other_branch_regs[insn->dst_reg],
8842                                                    src_reg, dst_reg, opcode);
8843                        if (src_reg->id &&
8844                            !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8845                                find_equal_scalars(this_branch, src_reg);
8846                                find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8847                        }
8848
8849                }
8850        } else if (dst_reg->type == SCALAR_VALUE) {
8851                reg_set_min_max(&other_branch_regs[insn->dst_reg],
8852                                        dst_reg, insn->imm, (u32)insn->imm,
8853                                        opcode, is_jmp32);
8854        }
8855
8856        if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8857            !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8858                find_equal_scalars(this_branch, dst_reg);
8859                find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8860        }
8861
8862        /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8863         * NOTE: these optimizations below are related with pointer comparison
8864         *       which will never be JMP32.
8865         */
8866        if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8867            insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8868            reg_type_may_be_null(dst_reg->type)) {
8869                /* Mark all identical registers in each branch as either
8870                 * safe or unknown depending R == 0 or R != 0 conditional.
8871                 */
8872                mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8873                                      opcode == BPF_JNE);
8874                mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8875                                      opcode == BPF_JEQ);
8876        } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8877                                           this_branch, other_branch) &&
8878                   is_pointer_value(env, insn->dst_reg)) {
8879                verbose(env, "R%d pointer comparison prohibited\n",
8880                        insn->dst_reg);
8881                return -EACCES;
8882        }
8883        if (env->log.level & BPF_LOG_LEVEL)
8884                print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8885        return 0;
8886}
8887
8888/* verify BPF_LD_IMM64 instruction */
8889static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8890{
8891        struct bpf_insn_aux_data *aux = cur_aux(env);
8892        struct bpf_reg_state *regs = cur_regs(env);
8893        struct bpf_reg_state *dst_reg;
8894        struct bpf_map *map;
8895        int err;
8896
8897        if (BPF_SIZE(insn->code) != BPF_DW) {
8898                verbose(env, "invalid BPF_LD_IMM insn\n");
8899                return -EINVAL;
8900        }
8901        if (insn->off != 0) {
8902                verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8903                return -EINVAL;
8904        }
8905
8906        err = check_reg_arg(env, insn->dst_reg, DST_OP);
8907        if (err)
8908                return err;
8909
8910        dst_reg = &regs[insn->dst_reg];
8911        if (insn->src_reg == 0) {
8912                u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8913
8914                dst_reg->type = SCALAR_VALUE;
8915                __mark_reg_known(&regs[insn->dst_reg], imm);
8916                return 0;
8917        }
8918
8919        if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8920                mark_reg_known_zero(env, regs, insn->dst_reg);
8921
8922                dst_reg->type = aux->btf_var.reg_type;
8923                switch (dst_reg->type) {
8924                case PTR_TO_MEM:
8925                        dst_reg->mem_size = aux->btf_var.mem_size;
8926                        break;
8927                case PTR_TO_BTF_ID:
8928                case PTR_TO_PERCPU_BTF_ID:
8929                        dst_reg->btf = aux->btf_var.btf;
8930                        dst_reg->btf_id = aux->btf_var.btf_id;
8931                        break;
8932                default:
8933                        verbose(env, "bpf verifier is misconfigured\n");
8934                        return -EFAULT;
8935                }
8936                return 0;
8937        }
8938
8939        if (insn->src_reg == BPF_PSEUDO_FUNC) {
8940                struct bpf_prog_aux *aux = env->prog->aux;
8941                u32 subprogno = insn[1].imm;
8942
8943                if (!aux->func_info) {
8944                        verbose(env, "missing btf func_info\n");
8945                        return -EINVAL;
8946                }
8947                if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8948                        verbose(env, "callback function not static\n");
8949                        return -EINVAL;
8950                }
8951
8952                dst_reg->type = PTR_TO_FUNC;
8953                dst_reg->subprogno = subprogno;
8954                return 0;
8955        }
8956
8957        map = env->used_maps[aux->map_index];
8958        mark_reg_known_zero(env, regs, insn->dst_reg);
8959        dst_reg->map_ptr = map;
8960
8961        if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8962            insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
8963                dst_reg->type = PTR_TO_MAP_VALUE;
8964                dst_reg->off = aux->map_off;
8965                if (map_value_has_spin_lock(map))
8966                        dst_reg->id = ++env->id_gen;
8967        } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8968                   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
8969                dst_reg->type = CONST_PTR_TO_MAP;
8970        } else {
8971                verbose(env, "bpf verifier is misconfigured\n");
8972                return -EINVAL;
8973        }
8974
8975        return 0;
8976}
8977
8978static bool may_access_skb(enum bpf_prog_type type)
8979{
8980        switch (type) {
8981        case BPF_PROG_TYPE_SOCKET_FILTER:
8982        case BPF_PROG_TYPE_SCHED_CLS:
8983        case BPF_PROG_TYPE_SCHED_ACT:
8984                return true;
8985        default:
8986                return false;
8987        }
8988}
8989
8990/* verify safety of LD_ABS|LD_IND instructions:
8991 * - they can only appear in the programs where ctx == skb
8992 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8993 *   preserve R6-R9, and store return value into R0
8994 *
8995 * Implicit input:
8996 *   ctx == skb == R6 == CTX
8997 *
8998 * Explicit input:
8999 *   SRC == any register
9000 *   IMM == 32-bit immediate
9001 *
9002 * Output:
9003 *   R0 - 8/16/32-bit skb data converted to cpu endianness
9004 */
9005static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9006{
9007        struct bpf_reg_state *regs = cur_regs(env);
9008        static const int ctx_reg = BPF_REG_6;
9009        u8 mode = BPF_MODE(insn->code);
9010        int i, err;
9011
9012        if (!may_access_skb(resolve_prog_type(env->prog))) {
9013                verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9014                return -EINVAL;
9015        }
9016
9017        if (!env->ops->gen_ld_abs) {
9018                verbose(env, "bpf verifier is misconfigured\n");
9019                return -EINVAL;
9020        }
9021
9022        if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9023            BPF_SIZE(insn->code) == BPF_DW ||
9024            (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9025                verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9026                return -EINVAL;
9027        }
9028
9029        /* check whether implicit source operand (register R6) is readable */
9030        err = check_reg_arg(env, ctx_reg, SRC_OP);
9031        if (err)
9032                return err;
9033
9034        /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9035         * gen_ld_abs() may terminate the program at runtime, leading to
9036         * reference leak.
9037         */
9038        err = check_reference_leak(env);
9039        if (err) {
9040                verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9041                return err;
9042        }
9043
9044        if (env->cur_state->active_spin_lock) {
9045                verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9046                return -EINVAL;
9047        }
9048
9049        if (regs[ctx_reg].type != PTR_TO_CTX) {
9050                verbose(env,
9051                        "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9052                return -EINVAL;
9053        }
9054
9055        if (mode == BPF_IND) {
9056                /* check explicit source operand */
9057                err = check_reg_arg(env, insn->src_reg, SRC_OP);
9058                if (err)
9059                        return err;
9060        }
9061
9062        err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9063        if (err < 0)
9064                return err;
9065
9066        /* reset caller saved regs to unreadable */
9067        for (i = 0; i < CALLER_SAVED_REGS; i++) {
9068                mark_reg_not_init(env, regs, caller_saved[i]);
9069                check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9070        }
9071
9072        /* mark destination R0 register as readable, since it contains
9073         * the value fetched from the packet.
9074         * Already marked as written above.
9075         */
9076        mark_reg_unknown(env, regs, BPF_REG_0);
9077        /* ld_abs load up to 32-bit skb data. */
9078        regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9079        return 0;
9080}
9081
9082static int check_return_code(struct bpf_verifier_env *env)
9083{
9084        struct tnum enforce_attach_type_range = tnum_unknown;
9085        const struct bpf_prog *prog = env->prog;
9086        struct bpf_reg_state *reg;
9087        struct tnum range = tnum_range(0, 1);
9088        enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9089        int err;
9090        const bool is_subprog = env->cur_state->frame[0]->subprogno;
9091
9092        /* LSM and struct_ops func-ptr's return type could be "void" */
9093        if (!is_subprog &&
9094            (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9095             prog_type == BPF_PROG_TYPE_LSM) &&
9096            !prog->aux->attach_func_proto->type)
9097                return 0;
9098
9099        /* eBPF calling convention is such that R0 is used
9100         * to return the value from eBPF program.
9101         * Make sure that it's readable at this time
9102         * of bpf_exit, which means that program wrote
9103         * something into it earlier
9104         */
9105        err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9106        if (err)
9107                return err;
9108
9109        if (is_pointer_value(env, BPF_REG_0)) {
9110                verbose(env, "R0 leaks addr as return value\n");
9111                return -EACCES;
9112        }
9113
9114        reg = cur_regs(env) + BPF_REG_0;
9115        if (is_subprog) {
9116                if (reg->type != SCALAR_VALUE) {
9117                        verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9118                                reg_type_str[reg->type]);
9119                        return -EINVAL;
9120                }
9121                return 0;
9122        }
9123
9124        switch (prog_type) {
9125        case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9126                if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9127                    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9128                    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9129                    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9130                    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9131                    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9132                        range = tnum_range(1, 1);
9133                if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9134                    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9135                        range = tnum_range(0, 3);
9136                break;
9137        case BPF_PROG_TYPE_CGROUP_SKB:
9138                if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9139                        range = tnum_range(0, 3);
9140                        enforce_attach_type_range = tnum_range(2, 3);
9141                }
9142                break;
9143        case BPF_PROG_TYPE_CGROUP_SOCK:
9144        case BPF_PROG_TYPE_SOCK_OPS:
9145        case BPF_PROG_TYPE_CGROUP_DEVICE:
9146        case BPF_PROG_TYPE_CGROUP_SYSCTL:
9147        case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9148                break;
9149        case BPF_PROG_TYPE_RAW_TRACEPOINT:
9150                if (!env->prog->aux->attach_btf_id)
9151                        return 0;
9152                range = tnum_const(0);
9153                break;
9154        case BPF_PROG_TYPE_TRACING:
9155                switch (env->prog->expected_attach_type) {
9156                case BPF_TRACE_FENTRY:
9157                case BPF_TRACE_FEXIT:
9158                        range = tnum_const(0);
9159                        break;
9160                case BPF_TRACE_RAW_TP:
9161                case BPF_MODIFY_RETURN:
9162                        return 0;
9163                case BPF_TRACE_ITER:
9164                        break;
9165                default:
9166                        return -ENOTSUPP;
9167                }
9168                break;
9169        case BPF_PROG_TYPE_SK_LOOKUP:
9170                range = tnum_range(SK_DROP, SK_PASS);
9171                break;
9172        case BPF_PROG_TYPE_EXT:
9173                /* freplace program can return anything as its return value
9174                 * depends on the to-be-replaced kernel func or bpf program.
9175                 */
9176        default:
9177                return 0;
9178        }
9179
9180        if (reg->type != SCALAR_VALUE) {
9181                verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9182                        reg_type_str[reg->type]);
9183                return -EINVAL;
9184        }
9185
9186        if (!tnum_in(range, reg->var_off)) {
9187                verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9188                return -EINVAL;
9189        }
9190
9191        if (!tnum_is_unknown(enforce_attach_type_range) &&
9192            tnum_in(enforce_attach_type_range, reg->var_off))
9193                env->prog->enforce_expected_attach_type = 1;
9194        return 0;
9195}
9196
9197/* non-recursive DFS pseudo code
9198 * 1  procedure DFS-iterative(G,v):
9199 * 2      label v as discovered
9200 * 3      let S be a stack
9201 * 4      S.push(v)
9202 * 5      while S is not empty
9203 * 6            t <- S.pop()
9204 * 7            if t is what we're looking for:
9205 * 8                return t
9206 * 9            for all edges e in G.adjacentEdges(t) do
9207 * 10               if edge e is already labelled
9208 * 11                   continue with the next edge
9209 * 12               w <- G.adjacentVertex(t,e)
9210 * 13               if vertex w is not discovered and not explored
9211 * 14                   label e as tree-edge
9212 * 15                   label w as discovered
9213 * 16                   S.push(w)
9214 * 17                   continue at 5
9215 * 18               else if vertex w is discovered
9216 * 19                   label e as back-edge
9217 * 20               else
9218 * 21                   // vertex w is explored
9219 * 22                   label e as forward- or cross-edge
9220 * 23           label t as explored
9221 * 24           S.pop()
9222 *
9223 * convention:
9224 * 0x10 - discovered
9225 * 0x11 - discovered and fall-through edge labelled
9226 * 0x12 - discovered and fall-through and branch edges labelled
9227 * 0x20 - explored
9228 */
9229
9230enum {
9231        DISCOVERED = 0x10,
9232        EXPLORED = 0x20,
9233        FALLTHROUGH = 1,
9234        BRANCH = 2,
9235};
9236
9237static u32 state_htab_size(struct bpf_verifier_env *env)
9238{
9239        return env->prog->len;
9240}
9241
9242static struct bpf_verifier_state_list **explored_state(
9243                                        struct bpf_verifier_env *env,
9244                                        int idx)
9245{
9246        struct bpf_verifier_state *cur = env->cur_state;
9247        struct bpf_func_state *state = cur->frame[cur->curframe];
9248
9249        return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9250}
9251
9252static void init_explored_state(struct bpf_verifier_env *env, int idx)
9253{
9254        env->insn_aux_data[idx].prune_point = true;
9255}
9256
9257enum {
9258        DONE_EXPLORING = 0,
9259        KEEP_EXPLORING = 1,
9260};
9261
9262/* t, w, e - match pseudo-code above:
9263 * t - index of current instruction
9264 * w - next instruction
9265 * e - edge
9266 */
9267static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9268                     bool loop_ok)
9269{
9270        int *insn_stack = env->cfg.insn_stack;
9271        int *insn_state = env->cfg.insn_state;
9272
9273        if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9274                return DONE_EXPLORING;
9275
9276        if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9277                return DONE_EXPLORING;
9278
9279        if (w < 0 || w >= env->prog->len) {
9280                verbose_linfo(env, t, "%d: ", t);
9281                verbose(env, "jump out of range from insn %d to %d\n", t, w);
9282                return -EINVAL;
9283        }
9284
9285        if (e == BRANCH)
9286                /* mark branch target for state pruning */
9287                init_explored_state(env, w);
9288
9289        if (insn_state[w] == 0) {
9290                /* tree-edge */
9291                insn_state[t] = DISCOVERED | e;
9292                insn_state[w] = DISCOVERED;
9293                if (env->cfg.cur_stack >= env->prog->len)
9294                        return -E2BIG;
9295                insn_stack[env->cfg.cur_stack++] = w;
9296                return KEEP_EXPLORING;
9297        } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9298                if (loop_ok && env->bpf_capable)
9299                        return DONE_EXPLORING;
9300                verbose_linfo(env, t, "%d: ", t);
9301                verbose_linfo(env, w, "%d: ", w);
9302                verbose(env, "back-edge from insn %d to %d\n", t, w);
9303                return -EINVAL;
9304        } else if (insn_state[w] == EXPLORED) {
9305                /* forward- or cross-edge */
9306                insn_state[t] = DISCOVERED | e;
9307        } else {
9308                verbose(env, "insn state internal bug\n");
9309                return -EFAULT;
9310        }
9311        return DONE_EXPLORING;
9312}
9313
9314static int visit_func_call_insn(int t, int insn_cnt,
9315                                struct bpf_insn *insns,
9316                                struct bpf_verifier_env *env,
9317                                bool visit_callee)
9318{
9319        int ret;
9320
9321        ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9322        if (ret)
9323                return ret;
9324
9325        if (t + 1 < insn_cnt)
9326                init_explored_state(env, t + 1);
9327        if (visit_callee) {
9328                init_explored_state(env, t);
9329                ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9330                                env, false);
9331        }
9332        return ret;
9333}
9334
9335/* Visits the instruction at index t and returns one of the following:
9336 *  < 0 - an error occurred
9337 *  DONE_EXPLORING - the instruction was fully explored
9338 *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9339 */
9340static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9341{
9342        struct bpf_insn *insns = env->prog->insnsi;
9343        int ret;
9344
9345        if (bpf_pseudo_func(insns + t))
9346                return visit_func_call_insn(t, insn_cnt, insns, env, true);
9347
9348        /* All non-branch instructions have a single fall-through edge. */
9349        if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9350            BPF_CLASS(insns[t].code) != BPF_JMP32)
9351                return push_insn(t, t + 1, FALLTHROUGH, env, false);
9352
9353        switch (BPF_OP(insns[t].code)) {
9354        case BPF_EXIT:
9355                return DONE_EXPLORING;
9356
9357        case BPF_CALL:
9358                return visit_func_call_insn(t, insn_cnt, insns, env,
9359                                            insns[t].src_reg == BPF_PSEUDO_CALL);
9360
9361        case BPF_JA:
9362                if (BPF_SRC(insns[t].code) != BPF_K)
9363                        return -EINVAL;
9364
9365                /* unconditional jump with single edge */
9366                ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9367                                true);
9368                if (ret)
9369                        return ret;
9370
9371                /* unconditional jmp is not a good pruning point,
9372                 * but it's marked, since backtracking needs
9373                 * to record jmp history in is_state_visited().
9374                 */
9375                init_explored_state(env, t + insns[t].off + 1);
9376                /* tell verifier to check for equivalent states
9377                 * after every call and jump
9378                 */
9379                if (t + 1 < insn_cnt)
9380                        init_explored_state(env, t + 1);
9381
9382                return ret;
9383
9384        default:
9385                /* conditional jump with two edges */
9386                init_explored_state(env, t);
9387                ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9388                if (ret)
9389                        return ret;
9390
9391                return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9392        }
9393}
9394
9395/* non-recursive depth-first-search to detect loops in BPF program
9396 * loop == back-edge in directed graph
9397 */
9398static int check_cfg(struct bpf_verifier_env *env)
9399{
9400        int insn_cnt = env->prog->len;
9401        int *insn_stack, *insn_state;
9402        int ret = 0;
9403        int i;
9404
9405        insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9406        if (!insn_state)
9407                return -ENOMEM;
9408
9409        insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9410        if (!insn_stack) {
9411                kvfree(insn_state);
9412                return -ENOMEM;
9413        }
9414
9415        insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9416        insn_stack[0] = 0; /* 0 is the first instruction */
9417        env->cfg.cur_stack = 1;
9418
9419        while (env->cfg.cur_stack > 0) {
9420                int t = insn_stack[env->cfg.cur_stack - 1];
9421
9422                ret = visit_insn(t, insn_cnt, env);
9423                switch (ret) {
9424                case DONE_EXPLORING:
9425                        insn_state[t] = EXPLORED;
9426                        env->cfg.cur_stack--;
9427                        break;
9428                case KEEP_EXPLORING:
9429                        break;
9430                default:
9431                        if (ret > 0) {
9432                                verbose(env, "visit_insn internal bug\n");
9433                                ret = -EFAULT;
9434                        }
9435                        goto err_free;
9436                }
9437        }
9438
9439        if (env->cfg.cur_stack < 0) {
9440                verbose(env, "pop stack internal bug\n");
9441                ret = -EFAULT;
9442                goto err_free;
9443        }
9444
9445        for (i = 0; i < insn_cnt; i++) {
9446                if (insn_state[i] != EXPLORED) {
9447                        verbose(env, "unreachable insn %d\n", i);
9448                        ret = -EINVAL;
9449                        goto err_free;
9450                }
9451        }
9452        ret = 0; /* cfg looks good */
9453
9454err_free:
9455        kvfree(insn_state);
9456        kvfree(insn_stack);
9457        env->cfg.insn_state = env->cfg.insn_stack = NULL;
9458        return ret;
9459}
9460
9461static int check_abnormal_return(struct bpf_verifier_env *env)
9462{
9463        int i;
9464
9465        for (i = 1; i < env->subprog_cnt; i++) {
9466                if (env->subprog_info[i].has_ld_abs) {
9467                        verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9468                        return -EINVAL;
9469                }
9470                if (env->subprog_info[i].has_tail_call) {
9471                        verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9472                        return -EINVAL;
9473                }
9474        }
9475        return 0;
9476}
9477
9478/* The minimum supported BTF func info size */
9479#define MIN_BPF_FUNCINFO_SIZE   8
9480#define MAX_FUNCINFO_REC_SIZE   252
9481
9482static int check_btf_func(struct bpf_verifier_env *env,
9483                          const union bpf_attr *attr,
9484                          bpfptr_t uattr)
9485{
9486        const struct btf_type *type, *func_proto, *ret_type;
9487        u32 i, nfuncs, urec_size, min_size;
9488        u32 krec_size = sizeof(struct bpf_func_info);
9489        struct bpf_func_info *krecord;
9490        struct bpf_func_info_aux *info_aux = NULL;
9491        struct bpf_prog *prog;
9492        const struct btf *btf;
9493        bpfptr_t urecord;
9494        u32 prev_offset = 0;
9495        bool scalar_return;
9496        int ret = -ENOMEM;
9497
9498        nfuncs = attr->func_info_cnt;
9499        if (!nfuncs) {
9500                if (check_abnormal_return(env))
9501                        return -EINVAL;
9502                return 0;
9503        }
9504
9505        if (nfuncs != env->subprog_cnt) {
9506                verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9507                return -EINVAL;
9508        }
9509
9510        urec_size = attr->func_info_rec_size;
9511        if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9512            urec_size > MAX_FUNCINFO_REC_SIZE ||
9513            urec_size % sizeof(u32)) {
9514                verbose(env, "invalid func info rec size %u\n", urec_size);
9515                return -EINVAL;
9516        }
9517
9518        prog = env->prog;
9519        btf = prog->aux->btf;
9520
9521        urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9522        min_size = min_t(u32, krec_size, urec_size);
9523
9524        krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9525        if (!krecord)
9526                return -ENOMEM;
9527        info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9528        if (!info_aux)
9529                goto err_free;
9530
9531        for (i = 0; i < nfuncs; i++) {
9532                ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9533                if (ret) {
9534                        if (ret == -E2BIG) {
9535                                verbose(env, "nonzero tailing record in func info");
9536                                /* set the size kernel expects so loader can zero
9537                                 * out the rest of the record.
9538                                 */
9539                                if (copy_to_bpfptr_offset(uattr,
9540                                                          offsetof(union bpf_attr, func_info_rec_size),
9541                                                          &min_size, sizeof(min_size)))
9542                                        ret = -EFAULT;
9543                        }
9544                        goto err_free;
9545                }
9546
9547                if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9548                        ret = -EFAULT;
9549                        goto err_free;
9550                }
9551
9552                /* check insn_off */
9553                ret = -EINVAL;
9554                if (i == 0) {
9555                        if (krecord[i].insn_off) {
9556                                verbose(env,
9557                                        "nonzero insn_off %u for the first func info record",
9558                                        krecord[i].insn_off);
9559                                goto err_free;
9560                        }
9561                } else if (krecord[i].insn_off <= prev_offset) {
9562                        verbose(env,
9563                                "same or smaller insn offset (%u) than previous func info record (%u)",
9564                                krecord[i].insn_off, prev_offset);
9565                        goto err_free;
9566                }
9567
9568                if (env->subprog_info[i].start != krecord[i].insn_off) {
9569                        verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9570                        goto err_free;
9571                }
9572
9573                /* check type_id */
9574                type = btf_type_by_id(btf, krecord[i].type_id);
9575                if (!type || !btf_type_is_func(type)) {
9576                        verbose(env, "invalid type id %d in func info",
9577                                krecord[i].type_id);
9578                        goto err_free;
9579                }
9580                info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9581
9582                func_proto = btf_type_by_id(btf, type->type);
9583                if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9584                        /* btf_func_check() already verified it during BTF load */
9585                        goto err_free;
9586                ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9587                scalar_return =
9588                        btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9589                if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9590                        verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9591                        goto err_free;
9592                }
9593                if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9594                        verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9595                        goto err_free;
9596                }
9597
9598                prev_offset = krecord[i].insn_off;
9599                bpfptr_add(&urecord, urec_size);
9600        }
9601
9602        prog->aux->func_info = krecord;
9603        prog->aux->func_info_cnt = nfuncs;
9604        prog->aux->func_info_aux = info_aux;
9605        return 0;
9606
9607err_free:
9608        kvfree(krecord);
9609        kfree(info_aux);
9610        return ret;
9611}
9612
9613static void adjust_btf_func(struct bpf_verifier_env *env)
9614{
9615        struct bpf_prog_aux *aux = env->prog->aux;
9616        int i;
9617
9618        if (!aux->func_info)
9619                return;
9620
9621        for (i = 0; i < env->subprog_cnt; i++)
9622                aux->func_info[i].insn_off = env->subprog_info[i].start;
9623}
9624
9625#define MIN_BPF_LINEINFO_SIZE   (offsetof(struct bpf_line_info, line_col) + \
9626                sizeof(((struct bpf_line_info *)(0))->line_col))
9627#define MAX_LINEINFO_REC_SIZE   MAX_FUNCINFO_REC_SIZE
9628
9629static int check_btf_line(struct bpf_verifier_env *env,
9630                          const union bpf_attr *attr,
9631                          bpfptr_t uattr)
9632{
9633        u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9634        struct bpf_subprog_info *sub;
9635        struct bpf_line_info *linfo;
9636        struct bpf_prog *prog;
9637        const struct btf *btf;
9638        bpfptr_t ulinfo;
9639        int err;
9640
9641        nr_linfo = attr->line_info_cnt;
9642        if (!nr_linfo)
9643                return 0;
9644
9645        rec_size = attr->line_info_rec_size;
9646        if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9647            rec_size > MAX_LINEINFO_REC_SIZE ||
9648            rec_size & (sizeof(u32) - 1))
9649                return -EINVAL;
9650
9651        /* Need to zero it in case the userspace may
9652         * pass in a smaller bpf_line_info object.
9653         */
9654        linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9655                         GFP_KERNEL | __GFP_NOWARN);
9656        if (!linfo)
9657                return -ENOMEM;
9658
9659        prog = env->prog;
9660        btf = prog->aux->btf;
9661
9662        s = 0;
9663        sub = env->subprog_info;
9664        ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9665        expected_size = sizeof(struct bpf_line_info);
9666        ncopy = min_t(u32, expected_size, rec_size);
9667        for (i = 0; i < nr_linfo; i++) {
9668                err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9669                if (err) {
9670                        if (err == -E2BIG) {
9671                                verbose(env, "nonzero tailing record in line_info");
9672                                if (copy_to_bpfptr_offset(uattr,
9673                                                          offsetof(union bpf_attr, line_info_rec_size),
9674                                                          &expected_size, sizeof(expected_size)))
9675                                        err = -EFAULT;
9676                        }
9677                        goto err_free;
9678                }
9679
9680                if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9681                        err = -EFAULT;
9682                        goto err_free;
9683                }
9684
9685                /*
9686                 * Check insn_off to ensure
9687                 * 1) strictly increasing AND
9688                 * 2) bounded by prog->len
9689                 *
9690                 * The linfo[0].insn_off == 0 check logically falls into
9691                 * the later "missing bpf_line_info for func..." case
9692                 * because the first linfo[0].insn_off must be the
9693                 * first sub also and the first sub must have
9694                 * subprog_info[0].start == 0.
9695                 */
9696                if ((i && linfo[i].insn_off <= prev_offset) ||
9697                    linfo[i].insn_off >= prog->len) {
9698                        verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9699                                i, linfo[i].insn_off, prev_offset,
9700                                prog->len);
9701                        err = -EINVAL;
9702                        goto err_free;
9703                }
9704
9705                if (!prog->insnsi[linfo[i].insn_off].code) {
9706                        verbose(env,
9707                                "Invalid insn code at line_info[%u].insn_off\n",
9708                                i);
9709                        err = -EINVAL;
9710                        goto err_free;
9711                }
9712
9713                if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9714                    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9715                        verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9716                        err = -EINVAL;
9717                        goto err_free;
9718                }
9719
9720                if (s != env->subprog_cnt) {
9721                        if (linfo[i].insn_off == sub[s].start) {
9722                                sub[s].linfo_idx = i;
9723                                s++;
9724                        } else if (sub[s].start < linfo[i].insn_off) {
9725                                verbose(env, "missing bpf_line_info for func#%u\n", s);
9726                                err = -EINVAL;
9727                                goto err_free;
9728                        }
9729                }
9730
9731                prev_offset = linfo[i].insn_off;
9732                bpfptr_add(&ulinfo, rec_size);
9733        }
9734
9735        if (s != env->subprog_cnt) {
9736                verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9737                        env->subprog_cnt - s, s);
9738                err = -EINVAL;
9739                goto err_free;
9740        }
9741
9742        prog->aux->linfo = linfo;
9743        prog->aux->nr_linfo = nr_linfo;
9744
9745        return 0;
9746
9747err_free:
9748        kvfree(linfo);
9749        return err;
9750}
9751
9752static int check_btf_info(struct bpf_verifier_env *env,
9753                          const union bpf_attr *attr,
9754                          bpfptr_t uattr)
9755{
9756        struct btf *btf;
9757        int err;
9758
9759        if (!attr->func_info_cnt && !attr->line_info_cnt) {
9760                if (check_abnormal_return(env))
9761                        return -EINVAL;
9762                return 0;
9763        }
9764
9765        btf = btf_get_by_fd(attr->prog_btf_fd);
9766        if (IS_ERR(btf))
9767                return PTR_ERR(btf);
9768        if (btf_is_kernel(btf)) {
9769                btf_put(btf);
9770                return -EACCES;
9771        }
9772        env->prog->aux->btf = btf;
9773
9774        err = check_btf_func(env, attr, uattr);
9775        if (err)
9776                return err;
9777
9778        err = check_btf_line(env, attr, uattr);
9779        if (err)
9780                return err;
9781
9782        return 0;
9783}
9784
9785/* check %cur's range satisfies %old's */
9786static bool range_within(struct bpf_reg_state *old,
9787                         struct bpf_reg_state *cur)
9788{
9789        return old->umin_value <= cur->umin_value &&
9790               old->umax_value >= cur->umax_value &&
9791               old->smin_value <= cur->smin_value &&
9792               old->smax_value >= cur->smax_value &&
9793               old->u32_min_value <= cur->u32_min_value &&
9794               old->u32_max_value >= cur->u32_max_value &&
9795               old->s32_min_value <= cur->s32_min_value &&
9796               old->s32_max_value >= cur->s32_max_value;
9797}
9798
9799/* If in the old state two registers had the same id, then they need to have
9800 * the same id in the new state as well.  But that id could be different from
9801 * the old state, so we need to track the mapping from old to new ids.
9802 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9803 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9804 * regs with a different old id could still have new id 9, we don't care about
9805 * that.
9806 * So we look through our idmap to see if this old id has been seen before.  If
9807 * so, we require the new id to match; otherwise, we add the id pair to the map.
9808 */
9809static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9810{
9811        unsigned int i;
9812
9813        for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9814                if (!idmap[i].old) {
9815                        /* Reached an empty slot; haven't seen this id before */
9816                        idmap[i].old = old_id;
9817                        idmap[i].cur = cur_id;
9818                        return true;
9819                }
9820                if (idmap[i].old == old_id)
9821                        return idmap[i].cur == cur_id;
9822        }
9823        /* We ran out of idmap slots, which should be impossible */
9824        WARN_ON_ONCE(1);
9825        return false;
9826}
9827
9828static void clean_func_state(struct bpf_verifier_env *env,
9829                             struct bpf_func_state *st)
9830{
9831        enum bpf_reg_liveness live;
9832        int i, j;
9833
9834        for (i = 0; i < BPF_REG_FP; i++) {
9835                live = st->regs[i].live;
9836                /* liveness must not touch this register anymore */
9837                st->regs[i].live |= REG_LIVE_DONE;
9838                if (!(live & REG_LIVE_READ))
9839                        /* since the register is unused, clear its state
9840                         * to make further comparison simpler
9841                         */
9842                        __mark_reg_not_init(env, &st->regs[i]);
9843        }
9844
9845        for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9846                live = st->stack[i].spilled_ptr.live;
9847                /* liveness must not touch this stack slot anymore */
9848                st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9849                if (!(live & REG_LIVE_READ)) {
9850                        __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9851                        for (j = 0; j < BPF_REG_SIZE; j++)
9852                                st->stack[i].slot_type[j] = STACK_INVALID;
9853                }
9854        }
9855}
9856
9857static void clean_verifier_state(struct bpf_verifier_env *env,
9858                                 struct bpf_verifier_state *st)
9859{
9860        int i;
9861
9862        if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9863                /* all regs in this state in all frames were already marked */
9864                return;
9865
9866        for (i = 0; i <= st->curframe; i++)
9867                clean_func_state(env, st->frame[i]);
9868}
9869
9870/* the parentage chains form a tree.
9871 * the verifier states are added to state lists at given insn and
9872 * pushed into state stack for future exploration.
9873 * when the verifier reaches bpf_exit insn some of the verifer states
9874 * stored in the state lists have their final liveness state already,
9875 * but a lot of states will get revised from liveness point of view when
9876 * the verifier explores other branches.
9877 * Example:
9878 * 1: r0 = 1
9879 * 2: if r1 == 100 goto pc+1
9880 * 3: r0 = 2
9881 * 4: exit
9882 * when the verifier reaches exit insn the register r0 in the state list of
9883 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9884 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9885 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9886 *
9887 * Since the verifier pushes the branch states as it sees them while exploring
9888 * the program the condition of walking the branch instruction for the second
9889 * time means that all states below this branch were already explored and
9890 * their final liveness marks are already propagated.
9891 * Hence when the verifier completes the search of state list in is_state_visited()
9892 * we can call this clean_live_states() function to mark all liveness states
9893 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9894 * will not be used.
9895 * This function also clears the registers and stack for states that !READ
9896 * to simplify state merging.
9897 *
9898 * Important note here that walking the same branch instruction in the callee
9899 * doesn't meant that the states are DONE. The verifier has to compare
9900 * the callsites
9901 */
9902static void clean_live_states(struct bpf_verifier_env *env, int insn,
9903                              struct bpf_verifier_state *cur)
9904{
9905        struct bpf_verifier_state_list *sl;
9906        int i;
9907
9908        sl = *explored_state(env, insn);
9909        while (sl) {
9910                if (sl->state.branches)
9911                        goto next;
9912                if (sl->state.insn_idx != insn ||
9913                    sl->state.curframe != cur->curframe)
9914                        goto next;
9915                for (i = 0; i <= cur->curframe; i++)
9916                        if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9917                                goto next;
9918                clean_verifier_state(env, &sl->state);
9919next:
9920                sl = sl->next;
9921        }
9922}
9923
9924/* Returns true if (rold safe implies rcur safe) */
9925static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9926                    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9927{
9928        bool equal;
9929
9930        if (!(rold->live & REG_LIVE_READ))
9931                /* explored state didn't use this */
9932                return true;
9933
9934        equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9935
9936        if (rold->type == PTR_TO_STACK)
9937                /* two stack pointers are equal only if they're pointing to
9938                 * the same stack frame, since fp-8 in foo != fp-8 in bar
9939                 */
9940                return equal && rold->frameno == rcur->frameno;
9941
9942        if (equal)
9943                return true;
9944
9945        if (rold->type == NOT_INIT)
9946                /* explored state can't have used this */
9947                return true;
9948        if (rcur->type == NOT_INIT)
9949                return false;
9950        switch (rold->type) {
9951        case SCALAR_VALUE:
9952                if (env->explore_alu_limits)
9953                        return false;
9954                if (rcur->type == SCALAR_VALUE) {
9955                        if (!rold->precise && !rcur->precise)
9956                                return true;
9957                        /* new val must satisfy old val knowledge */
9958                        return range_within(rold, rcur) &&
9959                               tnum_in(rold->var_off, rcur->var_off);
9960                } else {
9961                        /* We're trying to use a pointer in place of a scalar.
9962                         * Even if the scalar was unbounded, this could lead to
9963                         * pointer leaks because scalars are allowed to leak
9964                         * while pointers are not. We could make this safe in
9965                         * special cases if root is calling us, but it's
9966                         * probably not worth the hassle.
9967                         */
9968                        return false;
9969                }
9970        case PTR_TO_MAP_KEY:
9971        case PTR_TO_MAP_VALUE:
9972                /* If the new min/max/var_off satisfy the old ones and
9973                 * everything else matches, we are OK.
9974                 * 'id' is not compared, since it's only used for maps with
9975                 * bpf_spin_lock inside map element and in such cases if
9976                 * the rest of the prog is valid for one map element then
9977                 * it's valid for all map elements regardless of the key
9978                 * used in bpf_map_lookup()
9979                 */
9980                return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9981                       range_within(rold, rcur) &&
9982                       tnum_in(rold->var_off, rcur->var_off);
9983        case PTR_TO_MAP_VALUE_OR_NULL:
9984                /* a PTR_TO_MAP_VALUE could be safe to use as a
9985                 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9986                 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9987                 * checked, doing so could have affected others with the same
9988                 * id, and we can't check for that because we lost the id when
9989                 * we converted to a PTR_TO_MAP_VALUE.
9990                 */
9991                if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9992                        return false;
9993                if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9994                        return false;
9995                /* Check our ids match any regs they're supposed to */
9996                return check_ids(rold->id, rcur->id, idmap);
9997        case PTR_TO_PACKET_META:
9998        case PTR_TO_PACKET:
9999                if (rcur->type != rold->type)
10000                        return false;
10001                /* We must have at least as much range as the old ptr
10002                 * did, so that any accesses which were safe before are
10003                 * still safe.  This is true even if old range < old off,
10004                 * since someone could have accessed through (ptr - k), or
10005                 * even done ptr -= k in a register, to get a safe access.
10006                 */
10007                if (rold->range > rcur->range)
10008                        return false;
10009                /* If the offsets don't match, we can't trust our alignment;
10010                 * nor can we be sure that we won't fall out of range.
10011                 */
10012                if (rold->off != rcur->off)
10013                        return false;
10014                /* id relations must be preserved */
10015                if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10016                        return false;
10017                /* new val must satisfy old val knowledge */
10018                return range_within(rold, rcur) &&
10019                       tnum_in(rold->var_off, rcur->var_off);
10020        case PTR_TO_CTX:
10021        case CONST_PTR_TO_MAP:
10022        case PTR_TO_PACKET_END:
10023        case PTR_TO_FLOW_KEYS:
10024        case PTR_TO_SOCKET:
10025        case PTR_TO_SOCKET_OR_NULL:
10026        case PTR_TO_SOCK_COMMON:
10027        case PTR_TO_SOCK_COMMON_OR_NULL:
10028        case PTR_TO_TCP_SOCK:
10029        case PTR_TO_TCP_SOCK_OR_NULL:
10030        case PTR_TO_XDP_SOCK:
10031                /* Only valid matches are exact, which memcmp() above
10032                 * would have accepted
10033                 */
10034        default:
10035                /* Don't know what's going on, just say it's not safe */
10036                return false;
10037        }
10038
10039        /* Shouldn't get here; if we do, say it's not safe */
10040        WARN_ON_ONCE(1);
10041        return false;
10042}
10043
10044static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10045                      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10046{
10047        int i, spi;
10048
10049        /* walk slots of the explored stack and ignore any additional
10050         * slots in the current stack, since explored(safe) state
10051         * didn't use them
10052         */
10053        for (i = 0; i < old->allocated_stack; i++) {
10054                spi = i / BPF_REG_SIZE;
10055
10056                if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10057                        i += BPF_REG_SIZE - 1;
10058                        /* explored state didn't use this */
10059                        continue;
10060                }
10061
10062                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10063                        continue;
10064
10065                /* explored stack has more populated slots than current stack
10066                 * and these slots were used
10067                 */
10068                if (i >= cur->allocated_stack)
10069                        return false;
10070
10071                /* if old state was safe with misc data in the stack
10072                 * it will be safe with zero-initialized stack.
10073                 * The opposite is not true
10074                 */
10075                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10076                    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10077                        continue;
10078                if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10079                    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10080                        /* Ex: old explored (safe) state has STACK_SPILL in
10081                         * this stack slot, but current has STACK_MISC ->
10082                         * this verifier states are not equivalent,
10083                         * return false to continue verification of this path
10084                         */
10085                        return false;
10086                if (i % BPF_REG_SIZE)
10087                        continue;
10088                if (old->stack[spi].slot_type[0] != STACK_SPILL)
10089                        continue;
10090                if (!regsafe(env, &old->stack[spi].spilled_ptr,
10091                             &cur->stack[spi].spilled_ptr, idmap))
10092                        /* when explored and current stack slot are both storing
10093                         * spilled registers, check that stored pointers types
10094                         * are the same as well.
10095                         * Ex: explored safe path could have stored
10096                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10097                         * but current path has stored:
10098                         * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10099                         * such verifier states are not equivalent.
10100                         * return false to continue verification of this path
10101                         */
10102                        return false;
10103        }
10104        return true;
10105}
10106
10107static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10108{
10109        if (old->acquired_refs != cur->acquired_refs)
10110                return false;
10111        return !memcmp(old->refs, cur->refs,
10112                       sizeof(*old->refs) * old->acquired_refs);
10113}
10114
10115/* compare two verifier states
10116 *
10117 * all states stored in state_list are known to be valid, since
10118 * verifier reached 'bpf_exit' instruction through them
10119 *
10120 * this function is called when verifier exploring different branches of
10121 * execution popped from the state stack. If it sees an old state that has
10122 * more strict register state and more strict stack state then this execution
10123 * branch doesn't need to be explored further, since verifier already
10124 * concluded that more strict state leads to valid finish.
10125 *
10126 * Therefore two states are equivalent if register state is more conservative
10127 * and explored stack state is more conservative than the current one.
10128 * Example:
10129 *       explored                   current
10130 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10131 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10132 *
10133 * In other words if current stack state (one being explored) has more
10134 * valid slots than old one that already passed validation, it means
10135 * the verifier can stop exploring and conclude that current state is valid too
10136 *
10137 * Similarly with registers. If explored state has register type as invalid
10138 * whereas register type in current state is meaningful, it means that
10139 * the current state will reach 'bpf_exit' instruction safely
10140 */
10141static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10142                              struct bpf_func_state *cur)
10143{
10144        int i;
10145
10146        memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10147        for (i = 0; i < MAX_BPF_REG; i++)
10148                if (!regsafe(env, &old->regs[i], &cur->regs[i],
10149                             env->idmap_scratch))
10150                        return false;
10151
10152        if (!stacksafe(env, old, cur, env->idmap_scratch))
10153                return false;
10154
10155        if (!refsafe(old, cur))
10156                return false;
10157
10158        return true;
10159}
10160
10161static bool states_equal(struct bpf_verifier_env *env,
10162                         struct bpf_verifier_state *old,
10163                         struct bpf_verifier_state *cur)
10164{
10165        int i;
10166
10167        if (old->curframe != cur->curframe)
10168                return false;
10169
10170        /* Verification state from speculative execution simulation
10171         * must never prune a non-speculative execution one.
10172         */
10173        if (old->speculative && !cur->speculative)
10174                return false;
10175
10176        if (old->active_spin_lock != cur->active_spin_lock)
10177                return false;
10178
10179        /* for states to be equal callsites have to be the same
10180         * and all frame states need to be equivalent
10181         */
10182        for (i = 0; i <= old->curframe; i++) {
10183                if (old->frame[i]->callsite != cur->frame[i]->callsite)
10184                        return false;
10185                if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10186                        return false;
10187        }
10188        return true;
10189}
10190
10191/* Return 0 if no propagation happened. Return negative error code if error
10192 * happened. Otherwise, return the propagated bit.
10193 */
10194static int propagate_liveness_reg(struct bpf_verifier_env *env,
10195                                  struct bpf_reg_state *reg,
10196                                  struct bpf_reg_state *parent_reg)
10197{
10198        u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10199        u8 flag = reg->live & REG_LIVE_READ;
10200        int err;
10201
10202        /* When comes here, read flags of PARENT_REG or REG could be any of
10203         * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10204         * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10205         */
10206        if (parent_flag == REG_LIVE_READ64 ||
10207            /* Or if there is no read flag from REG. */
10208            !flag ||
10209            /* Or if the read flag from REG is the same as PARENT_REG. */
10210            parent_flag == flag)
10211                return 0;
10212
10213        err = mark_reg_read(env, reg, parent_reg, flag);
10214        if (err)
10215                return err;
10216
10217        return flag;
10218}
10219
10220/* A write screens off any subsequent reads; but write marks come from the
10221 * straight-line code between a state and its parent.  When we arrive at an
10222 * equivalent state (jump target or such) we didn't arrive by the straight-line
10223 * code, so read marks in the state must propagate to the parent regardless
10224 * of the state's write marks. That's what 'parent == state->parent' comparison
10225 * in mark_reg_read() is for.
10226 */
10227static int propagate_liveness(struct bpf_verifier_env *env,
10228                              const struct bpf_verifier_state *vstate,
10229                              struct bpf_verifier_state *vparent)
10230{
10231        struct bpf_reg_state *state_reg, *parent_reg;
10232        struct bpf_func_state *state, *parent;
10233        int i, frame, err = 0;
10234
10235        if (vparent->curframe != vstate->curframe) {
10236                WARN(1, "propagate_live: parent frame %d current frame %d\n",
10237                     vparent->curframe, vstate->curframe);
10238                return -EFAULT;
10239        }
10240        /* Propagate read liveness of registers... */
10241        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10242        for (frame = 0; frame <= vstate->curframe; frame++) {
10243                parent = vparent->frame[frame];
10244                state = vstate->frame[frame];
10245                parent_reg = parent->regs;
10246                state_reg = state->regs;
10247                /* We don't need to worry about FP liveness, it's read-only */
10248                for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10249                        err = propagate_liveness_reg(env, &state_reg[i],
10250                                                     &parent_reg[i]);
10251                        if (err < 0)
10252                                return err;
10253                        if (err == REG_LIVE_READ64)
10254                                mark_insn_zext(env, &parent_reg[i]);
10255                }
10256
10257                /* Propagate stack slots. */
10258                for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10259                            i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10260                        parent_reg = &parent->stack[i].spilled_ptr;
10261                        state_reg = &state->stack[i].spilled_ptr;
10262                        err = propagate_liveness_reg(env, state_reg,
10263                                                     parent_reg);
10264                        if (err < 0)
10265                                return err;
10266                }
10267        }
10268        return 0;
10269}
10270
10271/* find precise scalars in the previous equivalent state and
10272 * propagate them into the current state
10273 */
10274static int propagate_precision(struct bpf_verifier_env *env,
10275                               const struct bpf_verifier_state *old)
10276{
10277        struct bpf_reg_state *state_reg;
10278        struct bpf_func_state *state;
10279        int i, err = 0;
10280
10281        state = old->frame[old->curframe];
10282        state_reg = state->regs;
10283        for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10284                if (state_reg->type != SCALAR_VALUE ||
10285                    !state_reg->precise)
10286                        continue;
10287                if (env->log.level & BPF_LOG_LEVEL2)
10288                        verbose(env, "propagating r%d\n", i);
10289                err = mark_chain_precision(env, i);
10290                if (err < 0)
10291                        return err;
10292        }
10293
10294        for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10295                if (state->stack[i].slot_type[0] != STACK_SPILL)
10296                        continue;
10297                state_reg = &state->stack[i].spilled_ptr;
10298                if (state_reg->type != SCALAR_VALUE ||
10299                    !state_reg->precise)
10300                        continue;
10301                if (env->log.level & BPF_LOG_LEVEL2)
10302                        verbose(env, "propagating fp%d\n",
10303                                (-i - 1) * BPF_REG_SIZE);
10304                err = mark_chain_precision_stack(env, i);
10305                if (err < 0)
10306                        return err;
10307        }
10308        return 0;
10309}
10310
10311static bool states_maybe_looping(struct bpf_verifier_state *old,
10312                                 struct bpf_verifier_state *cur)
10313{
10314        struct bpf_func_state *fold, *fcur;
10315        int i, fr = cur->curframe;
10316
10317        if (old->curframe != fr)
10318                return false;
10319
10320        fold = old->frame[fr];
10321        fcur = cur->frame[fr];
10322        for (i = 0; i < MAX_BPF_REG; i++)
10323                if (memcmp(&fold->regs[i], &fcur->regs[i],
10324                           offsetof(struct bpf_reg_state, parent)))
10325                        return false;
10326        return true;
10327}
10328
10329
10330static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10331{
10332        struct bpf_verifier_state_list *new_sl;
10333        struct bpf_verifier_state_list *sl, **pprev;
10334        struct bpf_verifier_state *cur = env->cur_state, *new;
10335        int i, j, err, states_cnt = 0;
10336        bool add_new_state = env->test_state_freq ? true : false;
10337
10338        cur->last_insn_idx = env->prev_insn_idx;
10339        if (!env->insn_aux_data[insn_idx].prune_point)
10340                /* this 'insn_idx' instruction wasn't marked, so we will not
10341                 * be doing state search here
10342                 */
10343                return 0;
10344
10345        /* bpf progs typically have pruning point every 4 instructions
10346         * http://vger.kernel.org/bpfconf2019.html#session-1
10347         * Do not add new state for future pruning if the verifier hasn't seen
10348         * at least 2 jumps and at least 8 instructions.
10349         * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10350         * In tests that amounts to up to 50% reduction into total verifier
10351         * memory consumption and 20% verifier time speedup.
10352         */
10353        if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10354            env->insn_processed - env->prev_insn_processed >= 8)
10355                add_new_state = true;
10356
10357        pprev = explored_state(env, insn_idx);
10358        sl = *pprev;
10359
10360        clean_live_states(env, insn_idx, cur);
10361
10362        while (sl) {
10363                states_cnt++;
10364                if (sl->state.insn_idx != insn_idx)
10365                        goto next;
10366                if (sl->state.branches) {
10367                        if (states_maybe_looping(&sl->state, cur) &&
10368                            states_equal(env, &sl->state, cur)) {
10369                                verbose_linfo(env, insn_idx, "; ");
10370                                verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10371                                return -EINVAL;
10372                        }
10373                        /* if the verifier is processing a loop, avoid adding new state
10374                         * too often, since different loop iterations have distinct
10375                         * states and may not help future pruning.
10376                         * This threshold shouldn't be too low to make sure that
10377                         * a loop with large bound will be rejected quickly.
10378                         * The most abusive loop will be:
10379                         * r1 += 1
10380                         * if r1 < 1000000 goto pc-2
10381                         * 1M insn_procssed limit / 100 == 10k peak states.
10382                         * This threshold shouldn't be too high either, since states
10383                         * at the end of the loop are likely to be useful in pruning.
10384                         */
10385                        if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10386                            env->insn_processed - env->prev_insn_processed < 100)
10387                                add_new_state = false;
10388                        goto miss;
10389                }
10390                if (states_equal(env, &sl->state, cur)) {
10391                        sl->hit_cnt++;
10392                        /* reached equivalent register/stack state,
10393                         * prune the search.
10394                         * Registers read by the continuation are read by us.
10395                         * If we have any write marks in env->cur_state, they
10396                         * will prevent corresponding reads in the continuation
10397                         * from reaching our parent (an explored_state).  Our
10398                         * own state will get the read marks recorded, but
10399                         * they'll be immediately forgotten as we're pruning
10400                         * this state and will pop a new one.
10401                         */
10402                        err = propagate_liveness(env, &sl->state, cur);
10403
10404                        /* if previous state reached the exit with precision and
10405                         * current state is equivalent to it (except precsion marks)
10406                         * the precision needs to be propagated back in
10407                         * the current state.
10408                         */
10409                        err = err ? : push_jmp_history(env, cur);
10410                        err = err ? : propagate_precision(env, &sl->state);
10411                        if (err)
10412                                return err;
10413                        return 1;
10414                }
10415miss:
10416                /* when new state is not going to be added do not increase miss count.
10417                 * Otherwise several loop iterations will remove the state
10418                 * recorded earlier. The goal of these heuristics is to have
10419                 * states from some iterations of the loop (some in the beginning
10420                 * and some at the end) to help pruning.
10421                 */
10422                if (add_new_state)
10423                        sl->miss_cnt++;
10424                /* heuristic to determine whether this state is beneficial
10425                 * to keep checking from state equivalence point of view.
10426                 * Higher numbers increase max_states_per_insn and verification time,
10427                 * but do not meaningfully decrease insn_processed.
10428                 */
10429                if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10430                        /* the state is unlikely to be useful. Remove it to
10431                         * speed up verification
10432                         */
10433                        *pprev = sl->next;
10434                        if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10435                                u32 br = sl->state.branches;
10436
10437                                WARN_ONCE(br,
10438                                          "BUG live_done but branches_to_explore %d\n",
10439                                          br);
10440                                free_verifier_state(&sl->state, false);
10441                                kfree(sl);
10442                                env->peak_states--;
10443                        } else {
10444                                /* cannot free this state, since parentage chain may
10445                                 * walk it later. Add it for free_list instead to
10446                                 * be freed at the end of verification
10447                                 */
10448                                sl->next = env->free_list;
10449                                env->free_list = sl;
10450                        }
10451                        sl = *pprev;
10452                        continue;
10453                }
10454next:
10455                pprev = &sl->next;
10456                sl = *pprev;
10457        }
10458
10459        if (env->max_states_per_insn < states_cnt)
10460                env->max_states_per_insn = states_cnt;
10461
10462        if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10463                return push_jmp_history(env, cur);
10464
10465        if (!add_new_state)
10466                return push_jmp_history(env, cur);
10467
10468        /* There were no equivalent states, remember the current one.
10469         * Technically the current state is not proven to be safe yet,
10470         * but it will either reach outer most bpf_exit (which means it's safe)
10471         * or it will be rejected. When there are no loops the verifier won't be
10472         * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10473         * again on the way to bpf_exit.
10474         * When looping the sl->state.branches will be > 0 and this state
10475         * will not be considered for equivalence until branches == 0.
10476         */
10477        new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10478        if (!new_sl)
10479                return -ENOMEM;
10480        env->total_states++;
10481        env->peak_states++;
10482        env->prev_jmps_processed = env->jmps_processed;
10483        env->prev_insn_processed = env->insn_processed;
10484
10485        /* add new state to the head of linked list */
10486        new = &new_sl->state;
10487        err = copy_verifier_state(new, cur);
10488        if (err) {
10489                free_verifier_state(new, false);
10490                kfree(new_sl);
10491                return err;
10492        }
10493        new->insn_idx = insn_idx;
10494        WARN_ONCE(new->branches != 1,
10495                  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10496
10497        cur->parent = new;
10498        cur->first_insn_idx = insn_idx;
10499        clear_jmp_history(cur);
10500        new_sl->next = *explored_state(env, insn_idx);
10501        *explored_state(env, insn_idx) = new_sl;
10502        /* connect new state to parentage chain. Current frame needs all
10503         * registers connected. Only r6 - r9 of the callers are alive (pushed
10504         * to the stack implicitly by JITs) so in callers' frames connect just
10505         * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10506         * the state of the call instruction (with WRITTEN set), and r0 comes
10507         * from callee with its full parentage chain, anyway.
10508         */
10509        /* clear write marks in current state: the writes we did are not writes
10510         * our child did, so they don't screen off its reads from us.
10511         * (There are no read marks in current state, because reads always mark
10512         * their parent and current state never has children yet.  Only
10513         * explored_states can get read marks.)
10514         */
10515        for (j = 0; j <= cur->curframe; j++) {
10516                for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10517                        cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10518                for (i = 0; i < BPF_REG_FP; i++)
10519                        cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10520        }
10521
10522        /* all stack frames are accessible from callee, clear them all */
10523        for (j = 0; j <= cur->curframe; j++) {
10524                struct bpf_func_state *frame = cur->frame[j];
10525                struct bpf_func_state *newframe = new->frame[j];
10526
10527                for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10528                        frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10529                        frame->stack[i].spilled_ptr.parent =
10530                                                &newframe->stack[i].spilled_ptr;
10531                }
10532        }
10533        return 0;
10534}
10535
10536/* Return true if it's OK to have the same insn return a different type. */
10537static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10538{
10539        switch (type) {
10540        case PTR_TO_CTX:
10541        case PTR_TO_SOCKET:
10542        case PTR_TO_SOCKET_OR_NULL:
10543        case PTR_TO_SOCK_COMMON:
10544        case PTR_TO_SOCK_COMMON_OR_NULL:
10545        case PTR_TO_TCP_SOCK:
10546        case PTR_TO_TCP_SOCK_OR_NULL:
10547        case PTR_TO_XDP_SOCK:
10548        case PTR_TO_BTF_ID:
10549        case PTR_TO_BTF_ID_OR_NULL:
10550                return false;
10551        default:
10552                return true;
10553        }
10554}
10555
10556/* If an instruction was previously used with particular pointer types, then we
10557 * need to be careful to avoid cases such as the below, where it may be ok
10558 * for one branch accessing the pointer, but not ok for the other branch:
10559 *
10560 * R1 = sock_ptr
10561 * goto X;
10562 * ...
10563 * R1 = some_other_valid_ptr;
10564 * goto X;
10565 * ...
10566 * R2 = *(u32 *)(R1 + 0);
10567 */
10568static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10569{
10570        return src != prev && (!reg_type_mismatch_ok(src) ||
10571                               !reg_type_mismatch_ok(prev));
10572}
10573
10574static int do_check(struct bpf_verifier_env *env)
10575{
10576        bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10577        struct bpf_verifier_state *state = env->cur_state;
10578        struct bpf_insn *insns = env->prog->insnsi;
10579        struct bpf_reg_state *regs;
10580        int insn_cnt = env->prog->len;
10581        bool do_print_state = false;
10582        int prev_insn_idx = -1;
10583
10584        for (;;) {
10585                struct bpf_insn *insn;
10586                u8 class;
10587                int err;
10588
10589                env->prev_insn_idx = prev_insn_idx;
10590                if (env->insn_idx >= insn_cnt) {
10591                        verbose(env, "invalid insn idx %d insn_cnt %d\n",
10592                                env->insn_idx, insn_cnt);
10593                        return -EFAULT;
10594                }
10595
10596                insn = &insns[env->insn_idx];
10597                class = BPF_CLASS(insn->code);
10598
10599                if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10600                        verbose(env,
10601                                "BPF program is too large. Processed %d insn\n",
10602                                env->insn_processed);
10603                        return -E2BIG;
10604                }
10605
10606                err = is_state_visited(env, env->insn_idx);
10607                if (err < 0)
10608                        return err;
10609                if (err == 1) {
10610                        /* found equivalent state, can prune the search */
10611                        if (env->log.level & BPF_LOG_LEVEL) {
10612                                if (do_print_state)
10613                                        verbose(env, "\nfrom %d to %d%s: safe\n",
10614                                                env->prev_insn_idx, env->insn_idx,
10615                                                env->cur_state->speculative ?
10616                                                " (speculative execution)" : "");
10617                                else
10618                                        verbose(env, "%d: safe\n", env->insn_idx);
10619                        }
10620                        goto process_bpf_exit;
10621                }
10622
10623                if (signal_pending(current))
10624                        return -EAGAIN;
10625
10626                if (need_resched())
10627                        cond_resched();
10628
10629                if (env->log.level & BPF_LOG_LEVEL2 ||
10630                    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10631                        if (env->log.level & BPF_LOG_LEVEL2)
10632                                verbose(env, "%d:", env->insn_idx);
10633                        else
10634                                verbose(env, "\nfrom %d to %d%s:",
10635                                        env->prev_insn_idx, env->insn_idx,
10636                                        env->cur_state->speculative ?
10637                                        " (speculative execution)" : "");
10638                        print_verifier_state(env, state->frame[state->curframe]);
10639                        do_print_state = false;
10640                }
10641
10642                if (env->log.level & BPF_LOG_LEVEL) {
10643                        const struct bpf_insn_cbs cbs = {
10644                                .cb_call        = disasm_kfunc_name,
10645                                .cb_print       = verbose,
10646                                .private_data   = env,
10647                        };
10648
10649                        verbose_linfo(env, env->insn_idx, "; ");
10650                        verbose(env, "%d: ", env->insn_idx);
10651                        print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10652                }
10653
10654                if (bpf_prog_is_dev_bound(env->prog->aux)) {
10655                        err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10656                                                           env->prev_insn_idx);
10657                        if (err)
10658                                return err;
10659                }
10660
10661                regs = cur_regs(env);
10662                sanitize_mark_insn_seen(env);
10663                prev_insn_idx = env->insn_idx;
10664
10665                if (class == BPF_ALU || class == BPF_ALU64) {
10666                        err = check_alu_op(env, insn);
10667                        if (err)
10668                                return err;
10669
10670                } else if (class == BPF_LDX) {
10671                        enum bpf_reg_type *prev_src_type, src_reg_type;
10672
10673                        /* check for reserved fields is already done */
10674
10675                        /* check src operand */
10676                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
10677                        if (err)
10678                                return err;
10679
10680                        err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10681                        if (err)
10682                                return err;
10683
10684                        src_reg_type = regs[insn->src_reg].type;
10685
10686                        /* check that memory (src_reg + off) is readable,
10687                         * the state of dst_reg will be updated by this func
10688                         */
10689                        err = check_mem_access(env, env->insn_idx, insn->src_reg,
10690                                               insn->off, BPF_SIZE(insn->code),
10691                                               BPF_READ, insn->dst_reg, false);
10692                        if (err)
10693                                return err;
10694
10695                        prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10696
10697                        if (*prev_src_type == NOT_INIT) {
10698                                /* saw a valid insn
10699                                 * dst_reg = *(u32 *)(src_reg + off)
10700                                 * save type to validate intersecting paths
10701                                 */
10702                                *prev_src_type = src_reg_type;
10703
10704                        } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10705                                /* ABuser program is trying to use the same insn
10706                                 * dst_reg = *(u32*) (src_reg + off)
10707                                 * with different pointer types:
10708                                 * src_reg == ctx in one branch and
10709                                 * src_reg == stack|map in some other branch.
10710                                 * Reject it.
10711                                 */
10712                                verbose(env, "same insn cannot be used with different pointers\n");
10713                                return -EINVAL;
10714                        }
10715
10716                } else if (class == BPF_STX) {
10717                        enum bpf_reg_type *prev_dst_type, dst_reg_type;
10718
10719                        if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10720                                err = check_atomic(env, env->insn_idx, insn);
10721                                if (err)
10722                                        return err;
10723                                env->insn_idx++;
10724                                continue;
10725                        }
10726
10727                        if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10728                                verbose(env, "BPF_STX uses reserved fields\n");
10729                                return -EINVAL;
10730                        }
10731
10732                        /* check src1 operand */
10733                        err = check_reg_arg(env, insn->src_reg, SRC_OP);
10734                        if (err)
10735                                return err;
10736                        /* check src2 operand */
10737                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10738                        if (err)
10739                                return err;
10740
10741                        dst_reg_type = regs[insn->dst_reg].type;
10742
10743                        /* check that memory (dst_reg + off) is writeable */
10744                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10745                                               insn->off, BPF_SIZE(insn->code),
10746                                               BPF_WRITE, insn->src_reg, false);
10747                        if (err)
10748                                return err;
10749
10750                        prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10751
10752                        if (*prev_dst_type == NOT_INIT) {
10753                                *prev_dst_type = dst_reg_type;
10754                        } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10755                                verbose(env, "same insn cannot be used with different pointers\n");
10756                                return -EINVAL;
10757                        }
10758
10759                } else if (class == BPF_ST) {
10760                        if (BPF_MODE(insn->code) != BPF_MEM ||
10761                            insn->src_reg != BPF_REG_0) {
10762                                verbose(env, "BPF_ST uses reserved fields\n");
10763                                return -EINVAL;
10764                        }
10765                        /* check src operand */
10766                        err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10767                        if (err)
10768                                return err;
10769
10770                        if (is_ctx_reg(env, insn->dst_reg)) {
10771                                verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10772                                        insn->dst_reg,
10773                                        reg_type_str[reg_state(env, insn->dst_reg)->type]);
10774                                return -EACCES;
10775                        }
10776
10777                        /* check that memory (dst_reg + off) is writeable */
10778                        err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10779                                               insn->off, BPF_SIZE(insn->code),
10780                                               BPF_WRITE, -1, false);
10781                        if (err)
10782                                return err;
10783
10784                } else if (class == BPF_JMP || class == BPF_JMP32) {
10785                        u8 opcode = BPF_OP(insn->code);
10786
10787                        env->jmps_processed++;
10788                        if (opcode == BPF_CALL) {
10789                                if (BPF_SRC(insn->code) != BPF_K ||
10790                                    insn->off != 0 ||
10791                                    (insn->src_reg != BPF_REG_0 &&
10792                                     insn->src_reg != BPF_PSEUDO_CALL &&
10793                                     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10794                                    insn->dst_reg != BPF_REG_0 ||
10795                                    class == BPF_JMP32) {
10796                                        verbose(env, "BPF_CALL uses reserved fields\n");
10797                                        return -EINVAL;
10798                                }
10799
10800                                if (env->cur_state->active_spin_lock &&
10801                                    (insn->src_reg == BPF_PSEUDO_CALL ||
10802                                     insn->imm != BPF_FUNC_spin_unlock)) {
10803                                        verbose(env, "function calls are not allowed while holding a lock\n");
10804                                        return -EINVAL;
10805                                }
10806                                if (insn->src_reg == BPF_PSEUDO_CALL)
10807                                        err = check_func_call(env, insn, &env->insn_idx);
10808                                else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10809                                        err = check_kfunc_call(env, insn);
10810                                else
10811                                        err = check_helper_call(env, insn, &env->insn_idx);
10812                                if (err)
10813                                        return err;
10814                        } else if (opcode == BPF_JA) {
10815                                if (BPF_SRC(insn->code) != BPF_K ||
10816                                    insn->imm != 0 ||
10817                                    insn->src_reg != BPF_REG_0 ||
10818                                    insn->dst_reg != BPF_REG_0 ||
10819                                    class == BPF_JMP32) {
10820                                        verbose(env, "BPF_JA uses reserved fields\n");
10821                                        return -EINVAL;
10822                                }
10823
10824                                env->insn_idx += insn->off + 1;
10825                                continue;
10826
10827                        } else if (opcode == BPF_EXIT) {
10828                                if (BPF_SRC(insn->code) != BPF_K ||
10829                                    insn->imm != 0 ||
10830                                    insn->src_reg != BPF_REG_0 ||
10831                                    insn->dst_reg != BPF_REG_0 ||
10832                                    class == BPF_JMP32) {
10833                                        verbose(env, "BPF_EXIT uses reserved fields\n");
10834                                        return -EINVAL;
10835                                }
10836
10837                                if (env->cur_state->active_spin_lock) {
10838                                        verbose(env, "bpf_spin_unlock is missing\n");
10839                                        return -EINVAL;
10840                                }
10841
10842                                if (state->curframe) {
10843                                        /* exit from nested function */
10844                                        err = prepare_func_exit(env, &env->insn_idx);
10845                                        if (err)
10846                                                return err;
10847                                        do_print_state = true;
10848                                        continue;
10849                                }
10850
10851                                err = check_reference_leak(env);
10852                                if (err)
10853                                        return err;
10854
10855                                err = check_return_code(env);
10856                                if (err)
10857                                        return err;
10858process_bpf_exit:
10859                                update_branch_counts(env, env->cur_state);
10860                                err = pop_stack(env, &prev_insn_idx,
10861                                                &env->insn_idx, pop_log);
10862                                if (err < 0) {
10863                                        if (err != -ENOENT)
10864                                                return err;
10865                                        break;
10866                                } else {
10867                                        do_print_state = true;
10868                                        continue;
10869                                }
10870                        } else {
10871                                err = check_cond_jmp_op(env, insn, &env->insn_idx);
10872                                if (err)
10873                                        return err;
10874                        }
10875                } else if (class == BPF_LD) {
10876                        u8 mode = BPF_MODE(insn->code);
10877
10878                        if (mode == BPF_ABS || mode == BPF_IND) {
10879                                err = check_ld_abs(env, insn);
10880                                if (err)
10881                                        return err;
10882
10883                        } else if (mode == BPF_IMM) {
10884                                err = check_ld_imm(env, insn);
10885                                if (err)
10886                                        return err;
10887
10888                                env->insn_idx++;
10889                                sanitize_mark_insn_seen(env);
10890                        } else {
10891                                verbose(env, "invalid BPF_LD mode\n");
10892                                return -EINVAL;
10893                        }
10894                } else {
10895                        verbose(env, "unknown insn class %d\n", class);
10896                        return -EINVAL;
10897                }
10898
10899                env->insn_idx++;
10900        }
10901
10902        return 0;
10903}
10904
10905static int find_btf_percpu_datasec(struct btf *btf)
10906{
10907        const struct btf_type *t;
10908        const char *tname;
10909        int i, n;
10910
10911        /*
10912         * Both vmlinux and module each have their own ".data..percpu"
10913         * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10914         * types to look at only module's own BTF types.
10915         */
10916        n = btf_nr_types(btf);
10917        if (btf_is_module(btf))
10918                i = btf_nr_types(btf_vmlinux);
10919        else
10920                i = 1;
10921
10922        for(; i < n; i++) {
10923                t = btf_type_by_id(btf, i);
10924                if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10925                        continue;
10926
10927                tname = btf_name_by_offset(btf, t->name_off);
10928                if (!strcmp(tname, ".data..percpu"))
10929                        return i;
10930        }
10931
10932        return -ENOENT;
10933}
10934
10935/* replace pseudo btf_id with kernel symbol address */
10936static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10937                               struct bpf_insn *insn,
10938                               struct bpf_insn_aux_data *aux)
10939{
10940        const struct btf_var_secinfo *vsi;
10941        const struct btf_type *datasec;
10942        struct btf_mod_pair *btf_mod;
10943        const struct btf_type *t;
10944        const char *sym_name;
10945        bool percpu = false;
10946        u32 type, id = insn->imm;
10947        struct btf *btf;
10948        s32 datasec_id;
10949        u64 addr;
10950        int i, btf_fd, err;
10951
10952        btf_fd = insn[1].imm;
10953        if (btf_fd) {
10954                btf = btf_get_by_fd(btf_fd);
10955                if (IS_ERR(btf)) {
10956                        verbose(env, "invalid module BTF object FD specified.\n");
10957                        return -EINVAL;
10958                }
10959        } else {
10960                if (!btf_vmlinux) {
10961                        verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10962                        return -EINVAL;
10963                }
10964                btf = btf_vmlinux;
10965                btf_get(btf);
10966        }
10967
10968        t = btf_type_by_id(btf, id);
10969        if (!t) {
10970                verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10971                err = -ENOENT;
10972                goto err_put;
10973        }
10974
10975        if (!btf_type_is_var(t)) {
10976                verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10977                err = -EINVAL;
10978                goto err_put;
10979        }
10980
10981        sym_name = btf_name_by_offset(btf, t->name_off);
10982        addr = kallsyms_lookup_name(sym_name);
10983        if (!addr) {
10984                verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10985                        sym_name);
10986                err = -ENOENT;
10987                goto err_put;
10988        }
10989
10990        datasec_id = find_btf_percpu_datasec(btf);
10991        if (datasec_id > 0) {
10992                datasec = btf_type_by_id(btf, datasec_id);
10993                for_each_vsi(i, datasec, vsi) {
10994                        if (vsi->type == id) {
10995                                percpu = true;
10996                                break;
10997                        }
10998                }
10999        }
11000
11001        insn[0].imm = (u32)addr;
11002        insn[1].imm = addr >> 32;
11003
11004        type = t->type;
11005        t = btf_type_skip_modifiers(btf, type, NULL);
11006        if (percpu) {
11007                aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11008                aux->btf_var.btf = btf;
11009                aux->btf_var.btf_id = type;
11010        } else if (!btf_type_is_struct(t)) {
11011                const struct btf_type *ret;
11012                const char *tname;
11013                u32 tsize;
11014
11015                /* resolve the type size of ksym. */
11016                ret = btf_resolve_size(btf, t, &tsize);
11017                if (IS_ERR(ret)) {
11018                        tname = btf_name_by_offset(btf, t->name_off);
11019                        verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11020                                tname, PTR_ERR(ret));
11021                        err = -EINVAL;
11022                        goto err_put;
11023                }
11024                aux->btf_var.reg_type = PTR_TO_MEM;
11025                aux->btf_var.mem_size = tsize;
11026        } else {
11027                aux->btf_var.reg_type = PTR_TO_BTF_ID;
11028                aux->btf_var.btf = btf;
11029                aux->btf_var.btf_id = type;
11030        }
11031
11032        /* check whether we recorded this BTF (and maybe module) already */
11033        for (i = 0; i < env->used_btf_cnt; i++) {
11034                if (env->used_btfs[i].btf == btf) {
11035                        btf_put(btf);
11036                        return 0;
11037                }
11038        }
11039
11040        if (env->used_btf_cnt >= MAX_USED_BTFS) {
11041                err = -E2BIG;
11042                goto err_put;
11043        }
11044
11045        btf_mod = &env->used_btfs[env->used_btf_cnt];
11046        btf_mod->btf = btf;
11047        btf_mod->module = NULL;
11048
11049        /* if we reference variables from kernel module, bump its refcount */
11050        if (btf_is_module(btf)) {
11051                btf_mod->module = btf_try_get_module(btf);
11052                if (!btf_mod->module) {
11053                        err = -ENXIO;
11054                        goto err_put;
11055                }
11056        }
11057
11058        env->used_btf_cnt++;
11059
11060        return 0;
11061err_put:
11062        btf_put(btf);
11063        return err;
11064}
11065
11066static int check_map_prealloc(struct bpf_map *map)
11067{
11068        return (map->map_type != BPF_MAP_TYPE_HASH &&
11069                map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11070                map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11071                !(map->map_flags & BPF_F_NO_PREALLOC);
11072}
11073
11074static bool is_tracing_prog_type(enum bpf_prog_type type)
11075{
11076        switch (type) {
11077        case BPF_PROG_TYPE_KPROBE:
11078        case BPF_PROG_TYPE_TRACEPOINT:
11079        case BPF_PROG_TYPE_PERF_EVENT:
11080        case BPF_PROG_TYPE_RAW_TRACEPOINT:
11081                return true;
11082        default:
11083                return false;
11084        }
11085}
11086
11087static bool is_preallocated_map(struct bpf_map *map)
11088{
11089        if (!check_map_prealloc(map))
11090                return false;
11091        if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11092                return false;
11093        return true;
11094}
11095
11096static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11097                                        struct bpf_map *map,
11098                                        struct bpf_prog *prog)
11099
11100{
11101        enum bpf_prog_type prog_type = resolve_prog_type(prog);
11102        /*
11103         * Validate that trace type programs use preallocated hash maps.
11104         *
11105         * For programs attached to PERF events this is mandatory as the
11106         * perf NMI can hit any arbitrary code sequence.
11107         *
11108         * All other trace types using preallocated hash maps are unsafe as
11109         * well because tracepoint or kprobes can be inside locked regions
11110         * of the memory allocator or at a place where a recursion into the
11111         * memory allocator would see inconsistent state.
11112         *
11113         * On RT enabled kernels run-time allocation of all trace type
11114         * programs is strictly prohibited due to lock type constraints. On
11115         * !RT kernels it is allowed for backwards compatibility reasons for
11116         * now, but warnings are emitted so developers are made aware of
11117         * the unsafety and can fix their programs before this is enforced.
11118         */
11119        if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11120                if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11121                        verbose(env, "perf_event programs can only use preallocated hash map\n");
11122                        return -EINVAL;
11123                }
11124                if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11125                        verbose(env, "trace type programs can only use preallocated hash map\n");
11126                        return -EINVAL;
11127                }
11128                WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11129                verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11130        }
11131
11132        if (map_value_has_spin_lock(map)) {
11133                if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11134                        verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11135                        return -EINVAL;
11136                }
11137
11138                if (is_tracing_prog_type(prog_type)) {
11139                        verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11140                        return -EINVAL;
11141                }
11142
11143                if (prog->aux->sleepable) {
11144                        verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11145                        return -EINVAL;
11146                }
11147        }
11148
11149        if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11150            !bpf_offload_prog_map_match(prog, map)) {
11151                verbose(env, "offload device mismatch between prog and map\n");
11152                return -EINVAL;
11153        }
11154
11155        if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11156                verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11157                return -EINVAL;
11158        }
11159
11160        if (prog->aux->sleepable)
11161                switch (map->map_type) {
11162                case BPF_MAP_TYPE_HASH:
11163                case BPF_MAP_TYPE_LRU_HASH:
11164                case BPF_MAP_TYPE_ARRAY:
11165                case BPF_MAP_TYPE_PERCPU_HASH:
11166                case BPF_MAP_TYPE_PERCPU_ARRAY:
11167                case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11168                case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11169                case BPF_MAP_TYPE_HASH_OF_MAPS:
11170                        if (!is_preallocated_map(map)) {
11171                                verbose(env,
11172                                        "Sleepable programs can only use preallocated maps\n");
11173                                return -EINVAL;
11174                        }
11175                        break;
11176                case BPF_MAP_TYPE_RINGBUF:
11177                        break;
11178                default:
11179                        verbose(env,
11180                                "Sleepable programs can only use array, hash, and ringbuf maps\n");
11181                        return -EINVAL;
11182                }
11183
11184        return 0;
11185}
11186
11187static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11188{
11189        return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11190                map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11191}
11192
11193/* find and rewrite pseudo imm in ld_imm64 instructions:
11194 *
11195 * 1. if it accesses map FD, replace it with actual map pointer.
11196 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11197 *
11198 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11199 */
11200static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11201{
11202        struct bpf_insn *insn = env->prog->insnsi;
11203        int insn_cnt = env->prog->len;
11204        int i, j, err;
11205
11206        err = bpf_prog_calc_tag(env->prog);
11207        if (err)
11208                return err;
11209
11210        for (i = 0; i < insn_cnt; i++, insn++) {
11211                if (BPF_CLASS(insn->code) == BPF_LDX &&
11212                    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11213                        verbose(env, "BPF_LDX uses reserved fields\n");
11214                        return -EINVAL;
11215                }
11216
11217                if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11218                        struct bpf_insn_aux_data *aux;
11219                        struct bpf_map *map;
11220                        struct fd f;
11221                        u64 addr;
11222                        u32 fd;
11223
11224                        if (i == insn_cnt - 1 || insn[1].code != 0 ||
11225                            insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11226                            insn[1].off != 0) {
11227                                verbose(env, "invalid bpf_ld_imm64 insn\n");
11228                                return -EINVAL;
11229                        }
11230
11231                        if (insn[0].src_reg == 0)
11232                                /* valid generic load 64-bit imm */
11233                                goto next_insn;
11234
11235                        if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11236                                aux = &env->insn_aux_data[i];
11237                                err = check_pseudo_btf_id(env, insn, aux);
11238                                if (err)
11239                                        return err;
11240                                goto next_insn;
11241                        }
11242
11243                        if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11244                                aux = &env->insn_aux_data[i];
11245                                aux->ptr_type = PTR_TO_FUNC;
11246                                goto next_insn;
11247                        }
11248
11249                        /* In final convert_pseudo_ld_imm64() step, this is
11250                         * converted into regular 64-bit imm load insn.
11251                         */
11252                        switch (insn[0].src_reg) {
11253                        case BPF_PSEUDO_MAP_VALUE:
11254                        case BPF_PSEUDO_MAP_IDX_VALUE:
11255                                break;
11256                        case BPF_PSEUDO_MAP_FD:
11257                        case BPF_PSEUDO_MAP_IDX:
11258                                if (insn[1].imm == 0)
11259                                        break;
11260                                fallthrough;
11261                        default:
11262                                verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11263                                return -EINVAL;
11264                        }
11265
11266                        switch (insn[0].src_reg) {
11267                        case BPF_PSEUDO_MAP_IDX_VALUE:
11268                        case BPF_PSEUDO_MAP_IDX:
11269                                if (bpfptr_is_null(env->fd_array)) {
11270                                        verbose(env, "fd_idx without fd_array is invalid\n");
11271                                        return -EPROTO;
11272                                }
11273                                if (copy_from_bpfptr_offset(&fd, env->fd_array,
11274                                                            insn[0].imm * sizeof(fd),
11275                                                            sizeof(fd)))
11276                                        return -EFAULT;
11277                                break;
11278                        default:
11279                                fd = insn[0].imm;
11280                                break;
11281                        }
11282
11283                        f = fdget(fd);
11284                        map = __bpf_map_get(f);
11285                        if (IS_ERR(map)) {
11286                                verbose(env, "fd %d is not pointing to valid bpf_map\n",
11287                                        insn[0].imm);
11288                                return PTR_ERR(map);
11289                        }
11290
11291                        err = check_map_prog_compatibility(env, map, env->prog);
11292                        if (err) {
11293                                fdput(f);
11294                                return err;
11295                        }
11296
11297                        aux = &env->insn_aux_data[i];
11298                        if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11299                            insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11300                                addr = (unsigned long)map;
11301                        } else {
11302                                u32 off = insn[1].imm;
11303
11304                                if (off >= BPF_MAX_VAR_OFF) {
11305                                        verbose(env, "direct value offset of %u is not allowed\n", off);
11306                                        fdput(f);
11307                                        return -EINVAL;
11308                                }
11309
11310                                if (!map->ops->map_direct_value_addr) {
11311                                        verbose(env, "no direct value access support for this map type\n");
11312                                        fdput(f);
11313                                        return -EINVAL;
11314                                }
11315
11316                                err = map->ops->map_direct_value_addr(map, &addr, off);
11317                                if (err) {
11318                                        verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11319                                                map->value_size, off);
11320                                        fdput(f);
11321                                        return err;
11322                                }
11323
11324                                aux->map_off = off;
11325                                addr += off;
11326                        }
11327
11328                        insn[0].imm = (u32)addr;
11329                        insn[1].imm = addr >> 32;
11330
11331                        /* check whether we recorded this map already */
11332                        for (j = 0; j < env->used_map_cnt; j++) {
11333                                if (env->used_maps[j] == map) {
11334                                        aux->map_index = j;
11335                                        fdput(f);
11336                                        goto next_insn;
11337                                }
11338                        }
11339
11340                        if (env->used_map_cnt >= MAX_USED_MAPS) {
11341                                fdput(f);
11342                                return -E2BIG;
11343                        }
11344
11345                        /* hold the map. If the program is rejected by verifier,
11346                         * the map will be released by release_maps() or it
11347                         * will be used by the valid program until it's unloaded
11348                         * and all maps are released in free_used_maps()
11349                         */
11350                        bpf_map_inc(map);
11351
11352                        aux->map_index = env->used_map_cnt;
11353                        env->used_maps[env->used_map_cnt++] = map;
11354
11355                        if (bpf_map_is_cgroup_storage(map) &&
11356                            bpf_cgroup_storage_assign(env->prog->aux, map)) {
11357                                verbose(env, "only one cgroup storage of each type is allowed\n");
11358                                fdput(f);
11359                                return -EBUSY;
11360                        }
11361
11362                        fdput(f);
11363next_insn:
11364                        insn++;
11365                        i++;
11366                        continue;
11367                }
11368
11369                /* Basic sanity check before we invest more work here. */
11370                if (!bpf_opcode_in_insntable(insn->code)) {
11371                        verbose(env, "unknown opcode %02x\n", insn->code);
11372                        return -EINVAL;
11373                }
11374        }
11375
11376        /* now all pseudo BPF_LD_IMM64 instructions load valid
11377         * 'struct bpf_map *' into a register instead of user map_fd.
11378         * These pointers will be used later by verifier to validate map access.
11379         */
11380        return 0;
11381}
11382
11383/* drop refcnt of maps used by the rejected program */
11384static void release_maps(struct bpf_verifier_env *env)
11385{
11386        __bpf_free_used_maps(env->prog->aux, env->used_maps,
11387                             env->used_map_cnt);
11388}
11389
11390/* drop refcnt of maps used by the rejected program */
11391static void release_btfs(struct bpf_verifier_env *env)
11392{
11393        __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11394                             env->used_btf_cnt);
11395}
11396
11397/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11398static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11399{
11400        struct bpf_insn *insn = env->prog->insnsi;
11401        int insn_cnt = env->prog->len;
11402        int i;
11403
11404        for (i = 0; i < insn_cnt; i++, insn++) {
11405                if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11406                        continue;
11407                if (insn->src_reg == BPF_PSEUDO_FUNC)
11408                        continue;
11409                insn->src_reg = 0;
11410        }
11411}
11412
11413/* single env->prog->insni[off] instruction was replaced with the range
11414 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11415 * [0, off) and [off, end) to new locations, so the patched range stays zero
11416 */
11417static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11418                                struct bpf_prog *new_prog, u32 off, u32 cnt)
11419{
11420        struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11421        struct bpf_insn *insn = new_prog->insnsi;
11422        u32 old_seen = old_data[off].seen;
11423        u32 prog_len;
11424        int i;
11425
11426        /* aux info at OFF always needs adjustment, no matter fast path
11427         * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11428         * original insn at old prog.
11429         */
11430        old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11431
11432        if (cnt == 1)
11433                return 0;
11434        prog_len = new_prog->len;
11435        new_data = vzalloc(array_size(prog_len,
11436                                      sizeof(struct bpf_insn_aux_data)));
11437        if (!new_data)
11438                return -ENOMEM;
11439        memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11440        memcpy(new_data + off + cnt - 1, old_data + off,
11441               sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11442        for (i = off; i < off + cnt - 1; i++) {
11443                /* Expand insni[off]'s seen count to the patched range. */
11444                new_data[i].seen = old_seen;
11445                new_data[i].zext_dst = insn_has_def32(env, insn + i);
11446        }
11447        env->insn_aux_data = new_data;
11448        vfree(old_data);
11449        return 0;
11450}
11451
11452static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11453{
11454        int i;
11455
11456        if (len == 1)
11457                return;
11458        /* NOTE: fake 'exit' subprog should be updated as well. */
11459        for (i = 0; i <= env->subprog_cnt; i++) {
11460                if (env->subprog_info[i].start <= off)
11461                        continue;
11462                env->subprog_info[i].start += len - 1;
11463        }
11464}
11465
11466static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11467{
11468        struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11469        int i, sz = prog->aux->size_poke_tab;
11470        struct bpf_jit_poke_descriptor *desc;
11471
11472        for (i = 0; i < sz; i++) {
11473                desc = &tab[i];
11474                if (desc->insn_idx <= off)
11475                        continue;
11476                desc->insn_idx += len - 1;
11477        }
11478}
11479
11480static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11481                                            const struct bpf_insn *patch, u32 len)
11482{
11483        struct bpf_prog *new_prog;
11484
11485        new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11486        if (IS_ERR(new_prog)) {
11487                if (PTR_ERR(new_prog) == -ERANGE)
11488                        verbose(env,
11489                                "insn %d cannot be patched due to 16-bit range\n",
11490                                env->insn_aux_data[off].orig_idx);
11491                return NULL;
11492        }
11493        if (adjust_insn_aux_data(env, new_prog, off, len))
11494                return NULL;
11495        adjust_subprog_starts(env, off, len);
11496        adjust_poke_descs(new_prog, off, len);
11497        return new_prog;
11498}
11499
11500static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11501                                              u32 off, u32 cnt)
11502{
11503        int i, j;
11504
11505        /* find first prog starting at or after off (first to remove) */
11506        for (i = 0; i < env->subprog_cnt; i++)
11507                if (env->subprog_info[i].start >= off)
11508                        break;
11509        /* find first prog starting at or after off + cnt (first to stay) */
11510        for (j = i; j < env->subprog_cnt; j++)
11511                if (env->subprog_info[j].start >= off + cnt)
11512                        break;
11513        /* if j doesn't start exactly at off + cnt, we are just removing
11514         * the front of previous prog
11515         */
11516        if (env->subprog_info[j].start != off + cnt)
11517                j--;
11518
11519        if (j > i) {
11520                struct bpf_prog_aux *aux = env->prog->aux;
11521                int move;
11522
11523                /* move fake 'exit' subprog as well */
11524                move = env->subprog_cnt + 1 - j;
11525
11526                memmove(env->subprog_info + i,
11527                        env->subprog_info + j,
11528                        sizeof(*env->subprog_info) * move);
11529                env->subprog_cnt -= j - i;
11530
11531                /* remove func_info */
11532                if (aux->func_info) {
11533                        move = aux->func_info_cnt - j;
11534
11535                        memmove(aux->func_info + i,
11536                                aux->func_info + j,
11537                                sizeof(*aux->func_info) * move);
11538                        aux->func_info_cnt -= j - i;
11539                        /* func_info->insn_off is set after all code rewrites,
11540                         * in adjust_btf_func() - no need to adjust
11541                         */
11542                }
11543        } else {
11544                /* convert i from "first prog to remove" to "first to adjust" */
11545                if (env->subprog_info[i].start == off)
11546                        i++;
11547        }
11548
11549        /* update fake 'exit' subprog as well */
11550        for (; i <= env->subprog_cnt; i++)
11551                env->subprog_info[i].start -= cnt;
11552
11553        return 0;
11554}
11555
11556static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11557                                      u32 cnt)
11558{
11559        struct bpf_prog *prog = env->prog;
11560        u32 i, l_off, l_cnt, nr_linfo;
11561        struct bpf_line_info *linfo;
11562
11563        nr_linfo = prog->aux->nr_linfo;
11564        if (!nr_linfo)
11565                return 0;
11566
11567        linfo = prog->aux->linfo;
11568
11569        /* find first line info to remove, count lines to be removed */
11570        for (i = 0; i < nr_linfo; i++)
11571                if (linfo[i].insn_off >= off)
11572                        break;
11573
11574        l_off = i;
11575        l_cnt = 0;
11576        for (; i < nr_linfo; i++)
11577                if (linfo[i].insn_off < off + cnt)
11578                        l_cnt++;
11579                else
11580                        break;
11581
11582        /* First live insn doesn't match first live linfo, it needs to "inherit"
11583         * last removed linfo.  prog is already modified, so prog->len == off
11584         * means no live instructions after (tail of the program was removed).
11585         */
11586        if (prog->len != off && l_cnt &&
11587            (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11588                l_cnt--;
11589                linfo[--i].insn_off = off + cnt;
11590        }
11591
11592        /* remove the line info which refer to the removed instructions */
11593        if (l_cnt) {
11594                memmove(linfo + l_off, linfo + i,
11595                        sizeof(*linfo) * (nr_linfo - i));
11596
11597                prog->aux->nr_linfo -= l_cnt;
11598                nr_linfo = prog->aux->nr_linfo;
11599        }
11600
11601        /* pull all linfo[i].insn_off >= off + cnt in by cnt */
11602        for (i = l_off; i < nr_linfo; i++)
11603                linfo[i].insn_off -= cnt;
11604
11605        /* fix up all subprogs (incl. 'exit') which start >= off */
11606        for (i = 0; i <= env->subprog_cnt; i++)
11607                if (env->subprog_info[i].linfo_idx > l_off) {
11608                        /* program may have started in the removed region but
11609                         * may not be fully removed
11610                         */
11611                        if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11612                                env->subprog_info[i].linfo_idx -= l_cnt;
11613                        else
11614                                env->subprog_info[i].linfo_idx = l_off;
11615                }
11616
11617        return 0;
11618}
11619
11620static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11621{
11622        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11623        unsigned int orig_prog_len = env->prog->len;
11624        int err;
11625
11626        if (bpf_prog_is_dev_bound(env->prog->aux))
11627                bpf_prog_offload_remove_insns(env, off, cnt);
11628
11629        err = bpf_remove_insns(env->prog, off, cnt);
11630        if (err)
11631                return err;
11632
11633        err = adjust_subprog_starts_after_remove(env, off, cnt);
11634        if (err)
11635                return err;
11636
11637        err = bpf_adj_linfo_after_remove(env, off, cnt);
11638        if (err)
11639                return err;
11640
11641        memmove(aux_data + off, aux_data + off + cnt,
11642                sizeof(*aux_data) * (orig_prog_len - off - cnt));
11643
11644        return 0;
11645}
11646
11647/* The verifier does more data flow analysis than llvm and will not
11648 * explore branches that are dead at run time. Malicious programs can
11649 * have dead code too. Therefore replace all dead at-run-time code
11650 * with 'ja -1'.
11651 *
11652 * Just nops are not optimal, e.g. if they would sit at the end of the
11653 * program and through another bug we would manage to jump there, then
11654 * we'd execute beyond program memory otherwise. Returning exception
11655 * code also wouldn't work since we can have subprogs where the dead
11656 * code could be located.
11657 */
11658static void sanitize_dead_code(struct bpf_verifier_env *env)
11659{
11660        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11661        struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11662        struct bpf_insn *insn = env->prog->insnsi;
11663        const int insn_cnt = env->prog->len;
11664        int i;
11665
11666        for (i = 0; i < insn_cnt; i++) {
11667                if (aux_data[i].seen)
11668                        continue;
11669                memcpy(insn + i, &trap, sizeof(trap));
11670                aux_data[i].zext_dst = false;
11671        }
11672}
11673
11674static bool insn_is_cond_jump(u8 code)
11675{
11676        u8 op;
11677
11678        if (BPF_CLASS(code) == BPF_JMP32)
11679                return true;
11680
11681        if (BPF_CLASS(code) != BPF_JMP)
11682                return false;
11683
11684        op = BPF_OP(code);
11685        return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11686}
11687
11688static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11689{
11690        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11691        struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11692        struct bpf_insn *insn = env->prog->insnsi;
11693        const int insn_cnt = env->prog->len;
11694        int i;
11695
11696        for (i = 0; i < insn_cnt; i++, insn++) {
11697                if (!insn_is_cond_jump(insn->code))
11698                        continue;
11699
11700                if (!aux_data[i + 1].seen)
11701                        ja.off = insn->off;
11702                else if (!aux_data[i + 1 + insn->off].seen)
11703                        ja.off = 0;
11704                else
11705                        continue;
11706
11707                if (bpf_prog_is_dev_bound(env->prog->aux))
11708                        bpf_prog_offload_replace_insn(env, i, &ja);
11709
11710                memcpy(insn, &ja, sizeof(ja));
11711        }
11712}
11713
11714static int opt_remove_dead_code(struct bpf_verifier_env *env)
11715{
11716        struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11717        int insn_cnt = env->prog->len;
11718        int i, err;
11719
11720        for (i = 0; i < insn_cnt; i++) {
11721                int j;
11722
11723                j = 0;
11724                while (i + j < insn_cnt && !aux_data[i + j].seen)
11725                        j++;
11726                if (!j)
11727                        continue;
11728
11729                err = verifier_remove_insns(env, i, j);
11730                if (err)
11731                        return err;
11732                insn_cnt = env->prog->len;
11733        }
11734
11735        return 0;
11736}
11737
11738static int opt_remove_nops(struct bpf_verifier_env *env)
11739{
11740        const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11741        struct bpf_insn *insn = env->prog->insnsi;
11742        int insn_cnt = env->prog->len;
11743        int i, err;
11744
11745        for (i = 0; i < insn_cnt; i++) {
11746                if (memcmp(&insn[i], &ja, sizeof(ja)))
11747                        continue;
11748
11749                err = verifier_remove_insns(env, i, 1);
11750                if (err)
11751                        return err;
11752                insn_cnt--;
11753                i--;
11754        }
11755
11756        return 0;
11757}
11758
11759static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11760                                         const union bpf_attr *attr)
11761{
11762        struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11763        struct bpf_insn_aux_data *aux = env->insn_aux_data;
11764        int i, patch_len, delta = 0, len = env->prog->len;
11765        struct bpf_insn *insns = env->prog->insnsi;
11766        struct bpf_prog *new_prog;
11767        bool rnd_hi32;
11768
11769        rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11770        zext_patch[1] = BPF_ZEXT_REG(0);
11771        rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11772        rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11773        rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11774        for (i = 0; i < len; i++) {
11775                int adj_idx = i + delta;
11776                struct bpf_insn insn;
11777                int load_reg;
11778
11779                insn = insns[adj_idx];
11780                load_reg = insn_def_regno(&insn);
11781                if (!aux[adj_idx].zext_dst) {
11782                        u8 code, class;
11783                        u32 imm_rnd;
11784
11785                        if (!rnd_hi32)
11786                                continue;
11787
11788                        code = insn.code;
11789                        class = BPF_CLASS(code);
11790                        if (load_reg == -1)
11791                                continue;
11792
11793                        /* NOTE: arg "reg" (the fourth one) is only used for
11794                         *       BPF_STX + SRC_OP, so it is safe to pass NULL
11795                         *       here.
11796                         */
11797                        if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11798                                if (class == BPF_LD &&
11799                                    BPF_MODE(code) == BPF_IMM)
11800                                        i++;
11801                                continue;
11802                        }
11803
11804                        /* ctx load could be transformed into wider load. */
11805                        if (class == BPF_LDX &&
11806                            aux[adj_idx].ptr_type == PTR_TO_CTX)
11807                                continue;
11808
11809                        imm_rnd = get_random_int();
11810                        rnd_hi32_patch[0] = insn;
11811                        rnd_hi32_patch[1].imm = imm_rnd;
11812                        rnd_hi32_patch[3].dst_reg = load_reg;
11813                        patch = rnd_hi32_patch;
11814                        patch_len = 4;
11815                        goto apply_patch_buffer;
11816                }
11817
11818                /* Add in an zero-extend instruction if a) the JIT has requested
11819                 * it or b) it's a CMPXCHG.
11820                 *
11821                 * The latter is because: BPF_CMPXCHG always loads a value into
11822                 * R0, therefore always zero-extends. However some archs'
11823                 * equivalent instruction only does this load when the
11824                 * comparison is successful. This detail of CMPXCHG is
11825                 * orthogonal to the general zero-extension behaviour of the
11826                 * CPU, so it's treated independently of bpf_jit_needs_zext.
11827                 */
11828                if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11829                        continue;
11830
11831                if (WARN_ON(load_reg == -1)) {
11832                        verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11833                        return -EFAULT;
11834                }
11835
11836                zext_patch[0] = insn;
11837                zext_patch[1].dst_reg = load_reg;
11838                zext_patch[1].src_reg = load_reg;
11839                patch = zext_patch;
11840                patch_len = 2;
11841apply_patch_buffer:
11842                new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11843                if (!new_prog)
11844                        return -ENOMEM;
11845                env->prog = new_prog;
11846                insns = new_prog->insnsi;
11847                aux = env->insn_aux_data;
11848                delta += patch_len - 1;
11849        }
11850
11851        return 0;
11852}
11853
11854/* convert load instructions that access fields of a context type into a
11855 * sequence of instructions that access fields of the underlying structure:
11856 *     struct __sk_buff    -> struct sk_buff
11857 *     struct bpf_sock_ops -> struct sock
11858 */
11859static int convert_ctx_accesses(struct bpf_verifier_env *env)
11860{
11861        const struct bpf_verifier_ops *ops = env->ops;
11862        int i, cnt, size, ctx_field_size, delta = 0;
11863        const int insn_cnt = env->prog->len;
11864        struct bpf_insn insn_buf[16], *insn;
11865        u32 target_size, size_default, off;
11866        struct bpf_prog *new_prog;
11867        enum bpf_access_type type;
11868        bool is_narrower_load;
11869
11870        if (ops->gen_prologue || env->seen_direct_write) {
11871                if (!ops->gen_prologue) {
11872                        verbose(env, "bpf verifier is misconfigured\n");
11873                        return -EINVAL;
11874                }
11875                cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11876                                        env->prog);
11877                if (cnt >= ARRAY_SIZE(insn_buf)) {
11878                        verbose(env, "bpf verifier is misconfigured\n");
11879                        return -EINVAL;
11880                } else if (cnt) {
11881                        new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11882                        if (!new_prog)
11883                                return -ENOMEM;
11884
11885                        env->prog = new_prog;
11886                        delta += cnt - 1;
11887                }
11888        }
11889
11890        if (bpf_prog_is_dev_bound(env->prog->aux))
11891                return 0;
11892
11893        insn = env->prog->insnsi + delta;
11894
11895        for (i = 0; i < insn_cnt; i++, insn++) {
11896                bpf_convert_ctx_access_t convert_ctx_access;
11897                bool ctx_access;
11898
11899                if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11900                    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11901                    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11902                    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11903                        type = BPF_READ;
11904                        ctx_access = true;
11905                } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11906                           insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11907                           insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11908                           insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11909                           insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11910                           insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11911                           insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11912                           insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11913                        type = BPF_WRITE;
11914                        ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11915                } else {
11916                        continue;
11917                }
11918
11919                if (type == BPF_WRITE &&
11920                    env->insn_aux_data[i + delta].sanitize_stack_spill) {
11921                        struct bpf_insn patch[] = {
11922                                *insn,
11923                                BPF_ST_NOSPEC(),
11924                        };
11925
11926                        cnt = ARRAY_SIZE(patch);
11927                        new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11928                        if (!new_prog)
11929                                return -ENOMEM;
11930
11931                        delta    += cnt - 1;
11932                        env->prog = new_prog;
11933                        insn      = new_prog->insnsi + i + delta;
11934                        continue;
11935                }
11936
11937                if (!ctx_access)
11938                        continue;
11939
11940                switch (env->insn_aux_data[i + delta].ptr_type) {
11941                case PTR_TO_CTX:
11942                        if (!ops->convert_ctx_access)
11943                                continue;
11944                        convert_ctx_access = ops->convert_ctx_access;
11945                        break;
11946                case PTR_TO_SOCKET:
11947                case PTR_TO_SOCK_COMMON:
11948                        convert_ctx_access = bpf_sock_convert_ctx_access;
11949                        break;
11950                case PTR_TO_TCP_SOCK:
11951                        convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11952                        break;
11953                case PTR_TO_XDP_SOCK:
11954                        convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11955                        break;
11956                case PTR_TO_BTF_ID:
11957                        if (type == BPF_READ) {
11958                                insn->code = BPF_LDX | BPF_PROBE_MEM |
11959                                        BPF_SIZE((insn)->code);
11960                                env->prog->aux->num_exentries++;
11961                        } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11962                                verbose(env, "Writes through BTF pointers are not allowed\n");
11963                                return -EINVAL;
11964                        }
11965                        continue;
11966                default:
11967                        continue;
11968                }
11969
11970                ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11971                size = BPF_LDST_BYTES(insn);
11972
11973                /* If the read access is a narrower load of the field,
11974                 * convert to a 4/8-byte load, to minimum program type specific
11975                 * convert_ctx_access changes. If conversion is successful,
11976                 * we will apply proper mask to the result.
11977                 */
11978                is_narrower_load = size < ctx_field_size;
11979                size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11980                off = insn->off;
11981                if (is_narrower_load) {
11982                        u8 size_code;
11983
11984                        if (type == BPF_WRITE) {
11985                                verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11986                                return -EINVAL;
11987                        }
11988
11989                        size_code = BPF_H;
11990                        if (ctx_field_size == 4)
11991                                size_code = BPF_W;
11992                        else if (ctx_field_size == 8)
11993                                size_code = BPF_DW;
11994
11995                        insn->off = off & ~(size_default - 1);
11996                        insn->code = BPF_LDX | BPF_MEM | size_code;
11997                }
11998
11999                target_size = 0;
12000                cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12001                                         &target_size);
12002                if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12003                    (ctx_field_size && !target_size)) {
12004                        verbose(env, "bpf verifier is misconfigured\n");
12005                        return -EINVAL;
12006                }
12007
12008                if (is_narrower_load && size < target_size) {
12009                        u8 shift = bpf_ctx_narrow_access_offset(
12010                                off, size, size_default) * 8;
12011                        if (ctx_field_size <= 4) {
12012                                if (shift)
12013                                        insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12014                                                                        insn->dst_reg,
12015                                                                        shift);
12016                                insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12017                                                                (1 << size * 8) - 1);
12018                        } else {
12019                                if (shift)
12020                                        insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12021                                                                        insn->dst_reg,
12022                                                                        shift);
12023                                insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12024                                                                (1ULL << size * 8) - 1);
12025                        }
12026                }
12027
12028                new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12029                if (!new_prog)
12030                        return -ENOMEM;
12031
12032                delta += cnt - 1;
12033
12034                /* keep walking new program and skip insns we just inserted */
12035                env->prog = new_prog;
12036                insn      = new_prog->insnsi + i + delta;
12037        }
12038
12039        return 0;
12040}
12041
12042static int jit_subprogs(struct bpf_verifier_env *env)
12043{
12044        struct bpf_prog *prog = env->prog, **func, *tmp;
12045        int i, j, subprog_start, subprog_end = 0, len, subprog;
12046        struct bpf_map *map_ptr;
12047        struct bpf_insn *insn;
12048        void *old_bpf_func;
12049        int err, num_exentries;
12050
12051        if (env->subprog_cnt <= 1)
12052                return 0;
12053
12054        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12055                if (bpf_pseudo_func(insn)) {
12056                        env->insn_aux_data[i].call_imm = insn->imm;
12057                        /* subprog is encoded in insn[1].imm */
12058                        continue;
12059                }
12060
12061                if (!bpf_pseudo_call(insn))
12062                        continue;
12063                /* Upon error here we cannot fall back to interpreter but
12064                 * need a hard reject of the program. Thus -EFAULT is
12065                 * propagated in any case.
12066                 */
12067                subprog = find_subprog(env, i + insn->imm + 1);
12068                if (subprog < 0) {
12069                        WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12070                                  i + insn->imm + 1);
12071                        return -EFAULT;
12072                }
12073                /* temporarily remember subprog id inside insn instead of
12074                 * aux_data, since next loop will split up all insns into funcs
12075                 */
12076                insn->off = subprog;
12077                /* remember original imm in case JIT fails and fallback
12078                 * to interpreter will be needed
12079                 */
12080                env->insn_aux_data[i].call_imm = insn->imm;
12081                /* point imm to __bpf_call_base+1 from JITs point of view */
12082                insn->imm = 1;
12083        }
12084
12085        err = bpf_prog_alloc_jited_linfo(prog);
12086        if (err)
12087                goto out_undo_insn;
12088
12089        err = -ENOMEM;
12090        func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12091        if (!func)
12092                goto out_undo_insn;
12093
12094        for (i = 0; i < env->subprog_cnt; i++) {
12095                subprog_start = subprog_end;
12096                subprog_end = env->subprog_info[i + 1].start;
12097
12098                len = subprog_end - subprog_start;
12099                /* BPF_PROG_RUN doesn't call subprogs directly,
12100                 * hence main prog stats include the runtime of subprogs.
12101                 * subprogs don't have IDs and not reachable via prog_get_next_id
12102                 * func[i]->stats will never be accessed and stays NULL
12103                 */
12104                func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12105                if (!func[i])
12106                        goto out_free;
12107                memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12108                       len * sizeof(struct bpf_insn));
12109                func[i]->type = prog->type;
12110                func[i]->len = len;
12111                if (bpf_prog_calc_tag(func[i]))
12112                        goto out_free;
12113                func[i]->is_func = 1;
12114                func[i]->aux->func_idx = i;
12115                /* Below members will be freed only at prog->aux */
12116                func[i]->aux->btf = prog->aux->btf;
12117                func[i]->aux->func_info = prog->aux->func_info;
12118                func[i]->aux->poke_tab = prog->aux->poke_tab;
12119                func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12120
12121                for (j = 0; j < prog->aux->size_poke_tab; j++) {
12122                        struct bpf_jit_poke_descriptor *poke;
12123
12124                        poke = &prog->aux->poke_tab[j];
12125                        if (poke->insn_idx < subprog_end &&
12126                            poke->insn_idx >= subprog_start)
12127                                poke->aux = func[i]->aux;
12128                }
12129
12130                /* Use bpf_prog_F_tag to indicate functions in stack traces.
12131                 * Long term would need debug info to populate names
12132                 */
12133                func[i]->aux->name[0] = 'F';
12134                func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12135                func[i]->jit_requested = 1;
12136                func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12137                func[i]->aux->linfo = prog->aux->linfo;
12138                func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12139                func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12140                func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12141                num_exentries = 0;
12142                insn = func[i]->insnsi;
12143                for (j = 0; j < func[i]->len; j++, insn++) {
12144                        if (BPF_CLASS(insn->code) == BPF_LDX &&
12145                            BPF_MODE(insn->code) == BPF_PROBE_MEM)
12146                                num_exentries++;
12147                }
12148                func[i]->aux->num_exentries = num_exentries;
12149                func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12150                func[i] = bpf_int_jit_compile(func[i]);
12151                if (!func[i]->jited) {
12152                        err = -ENOTSUPP;
12153                        goto out_free;
12154                }
12155                cond_resched();
12156        }
12157
12158        /* at this point all bpf functions were successfully JITed
12159         * now populate all bpf_calls with correct addresses and
12160         * run last pass of JIT
12161         */
12162        for (i = 0; i < env->subprog_cnt; i++) {
12163                insn = func[i]->insnsi;
12164                for (j = 0; j < func[i]->len; j++, insn++) {
12165                        if (bpf_pseudo_func(insn)) {
12166                                subprog = insn[1].imm;
12167                                insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12168                                insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12169                                continue;
12170                        }
12171                        if (!bpf_pseudo_call(insn))
12172                                continue;
12173                        subprog = insn->off;
12174                        insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12175                                    __bpf_call_base;
12176                }
12177
12178                /* we use the aux data to keep a list of the start addresses
12179                 * of the JITed images for each function in the program
12180                 *
12181                 * for some architectures, such as powerpc64, the imm field
12182                 * might not be large enough to hold the offset of the start
12183                 * address of the callee's JITed image from __bpf_call_base
12184                 *
12185                 * in such cases, we can lookup the start address of a callee
12186                 * by using its subprog id, available from the off field of
12187                 * the call instruction, as an index for this list
12188                 */
12189                func[i]->aux->func = func;
12190                func[i]->aux->func_cnt = env->subprog_cnt;
12191        }
12192        for (i = 0; i < env->subprog_cnt; i++) {
12193                old_bpf_func = func[i]->bpf_func;
12194                tmp = bpf_int_jit_compile(func[i]);
12195                if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12196                        verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12197                        err = -ENOTSUPP;
12198                        goto out_free;
12199                }
12200                cond_resched();
12201        }
12202
12203        /* finally lock prog and jit images for all functions and
12204         * populate kallsysm
12205         */
12206        for (i = 0; i < env->subprog_cnt; i++) {
12207                bpf_prog_lock_ro(func[i]);
12208                bpf_prog_kallsyms_add(func[i]);
12209        }
12210
12211        /* Last step: make now unused interpreter insns from main
12212         * prog consistent for later dump requests, so they can
12213         * later look the same as if they were interpreted only.
12214         */
12215        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12216                if (bpf_pseudo_func(insn)) {
12217                        insn[0].imm = env->insn_aux_data[i].call_imm;
12218                        insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12219                        continue;
12220                }
12221                if (!bpf_pseudo_call(insn))
12222                        continue;
12223                insn->off = env->insn_aux_data[i].call_imm;
12224                subprog = find_subprog(env, i + insn->off + 1);
12225                insn->imm = subprog;
12226        }
12227
12228        prog->jited = 1;
12229        prog->bpf_func = func[0]->bpf_func;
12230        prog->aux->func = func;
12231        prog->aux->func_cnt = env->subprog_cnt;
12232        bpf_prog_jit_attempt_done(prog);
12233        return 0;
12234out_free:
12235        /* We failed JIT'ing, so at this point we need to unregister poke
12236         * descriptors from subprogs, so that kernel is not attempting to
12237         * patch it anymore as we're freeing the subprog JIT memory.
12238         */
12239        for (i = 0; i < prog->aux->size_poke_tab; i++) {
12240                map_ptr = prog->aux->poke_tab[i].tail_call.map;
12241                map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12242        }
12243        /* At this point we're guaranteed that poke descriptors are not
12244         * live anymore. We can just unlink its descriptor table as it's
12245         * released with the main prog.
12246         */
12247        for (i = 0; i < env->subprog_cnt; i++) {
12248                if (!func[i])
12249                        continue;
12250                func[i]->aux->poke_tab = NULL;
12251                bpf_jit_free(func[i]);
12252        }
12253        kfree(func);
12254out_undo_insn:
12255        /* cleanup main prog to be interpreted */
12256        prog->jit_requested = 0;
12257        for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12258                if (!bpf_pseudo_call(insn))
12259                        continue;
12260                insn->off = 0;
12261                insn->imm = env->insn_aux_data[i].call_imm;
12262        }
12263        bpf_prog_jit_attempt_done(prog);
12264        return err;
12265}
12266
12267static int fixup_call_args(struct bpf_verifier_env *env)
12268{
12269#ifndef CONFIG_BPF_JIT_ALWAYS_ON
12270        struct bpf_prog *prog = env->prog;
12271        struct bpf_insn *insn = prog->insnsi;
12272        bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12273        int i, depth;
12274#endif
12275        int err = 0;
12276
12277        if (env->prog->jit_requested &&
12278            !bpf_prog_is_dev_bound(env->prog->aux)) {
12279                err = jit_subprogs(env);
12280                if (err == 0)
12281                        return 0;
12282                if (err == -EFAULT)
12283                        return err;
12284        }
12285#ifndef CONFIG_BPF_JIT_ALWAYS_ON
12286        if (has_kfunc_call) {
12287                verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12288                return -EINVAL;
12289        }
12290        if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12291                /* When JIT fails the progs with bpf2bpf calls and tail_calls
12292                 * have to be rejected, since interpreter doesn't support them yet.
12293                 */
12294                verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12295                return -EINVAL;
12296        }
12297        for (i = 0; i < prog->len; i++, insn++) {
12298                if (bpf_pseudo_func(insn)) {
12299                        /* When JIT fails the progs with callback calls
12300                         * have to be rejected, since interpreter doesn't support them yet.
12301                         */
12302                        verbose(env, "callbacks are not allowed in non-JITed programs\n");
12303                        return -EINVAL;
12304                }
12305
12306                if (!bpf_pseudo_call(insn))
12307                        continue;
12308                depth = get_callee_stack_depth(env, insn, i);
12309                if (depth < 0)
12310                        return depth;
12311                bpf_patch_call_args(insn, depth);
12312        }
12313        err = 0;
12314#endif
12315        return err;
12316}
12317
12318static int fixup_kfunc_call(struct bpf_verifier_env *env,
12319                            struct bpf_insn *insn)
12320{
12321        const struct bpf_kfunc_desc *desc;
12322
12323        /* insn->imm has the btf func_id. Replace it with
12324         * an address (relative to __bpf_base_call).
12325         */
12326        desc = find_kfunc_desc(env->prog, insn->imm);
12327        if (!desc) {
12328                verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12329                        insn->imm);
12330                return -EFAULT;
12331        }
12332
12333        insn->imm = desc->imm;
12334
12335        return 0;
12336}
12337
12338/* Do various post-verification rewrites in a single program pass.
12339 * These rewrites simplify JIT and interpreter implementations.
12340 */
12341static int do_misc_fixups(struct bpf_verifier_env *env)
12342{
12343        struct bpf_prog *prog = env->prog;
12344        bool expect_blinding = bpf_jit_blinding_enabled(prog);
12345        struct bpf_insn *insn = prog->insnsi;
12346        const struct bpf_func_proto *fn;
12347        const int insn_cnt = prog->len;
12348        const struct bpf_map_ops *ops;
12349        struct bpf_insn_aux_data *aux;
12350        struct bpf_insn insn_buf[16];
12351        struct bpf_prog *new_prog;
12352        struct bpf_map *map_ptr;
12353        int i, ret, cnt, delta = 0;
12354
12355        for (i = 0; i < insn_cnt; i++, insn++) {
12356                /* Make divide-by-zero exceptions impossible. */
12357                if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12358                    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12359                    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12360                    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12361                        bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12362                        bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12363                        struct bpf_insn *patchlet;
12364                        struct bpf_insn chk_and_div[] = {
12365                                /* [R,W]x div 0 -> 0 */
12366                                BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12367                                             BPF_JNE | BPF_K, insn->src_reg,
12368                                             0, 2, 0),
12369                                BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12370                                BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12371                                *insn,
12372                        };
12373                        struct bpf_insn chk_and_mod[] = {
12374                                /* [R,W]x mod 0 -> [R,W]x */
12375                                BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12376                                             BPF_JEQ | BPF_K, insn->src_reg,
12377                                             0, 1 + (is64 ? 0 : 1), 0),
12378                                *insn,
12379                                BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12380                                BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12381                        };
12382
12383                        patchlet = isdiv ? chk_and_div : chk_and_mod;
12384                        cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12385                                      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12386
12387                        new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12388                        if (!new_prog)
12389                                return -ENOMEM;
12390
12391                        delta    += cnt - 1;
12392                        env->prog = prog = new_prog;
12393                        insn      = new_prog->insnsi + i + delta;
12394                        continue;
12395                }
12396
12397                /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12398                if (BPF_CLASS(insn->code) == BPF_LD &&
12399                    (BPF_MODE(insn->code) == BPF_ABS ||
12400                     BPF_MODE(insn->code) == BPF_IND)) {
12401                        cnt = env->ops->gen_ld_abs(insn, insn_buf);
12402                        if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12403                                verbose(env, "bpf verifier is misconfigured\n");
12404                                return -EINVAL;
12405                        }
12406
12407                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12408                        if (!new_prog)
12409                                return -ENOMEM;
12410
12411                        delta    += cnt - 1;
12412                        env->prog = prog = new_prog;
12413                        insn      = new_prog->insnsi + i + delta;
12414                        continue;
12415                }
12416
12417                /* Rewrite pointer arithmetic to mitigate speculation attacks. */
12418                if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12419                    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12420                        const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12421                        const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12422                        struct bpf_insn *patch = &insn_buf[0];
12423                        bool issrc, isneg, isimm;
12424                        u32 off_reg;
12425
12426                        aux = &env->insn_aux_data[i + delta];
12427                        if (!aux->alu_state ||
12428                            aux->alu_state == BPF_ALU_NON_POINTER)
12429                                continue;
12430
12431                        isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12432                        issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12433                                BPF_ALU_SANITIZE_SRC;
12434                        isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12435
12436                        off_reg = issrc ? insn->src_reg : insn->dst_reg;
12437                        if (isimm) {
12438                                *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12439                        } else {
12440                                if (isneg)
12441                                        *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12442                                *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12443                                *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12444                                *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12445                                *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12446                                *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12447                                *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12448                        }
12449                        if (!issrc)
12450                                *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12451                        insn->src_reg = BPF_REG_AX;
12452                        if (isneg)
12453                                insn->code = insn->code == code_add ?
12454                                             code_sub : code_add;
12455                        *patch++ = *insn;
12456                        if (issrc && isneg && !isimm)
12457                                *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12458                        cnt = patch - insn_buf;
12459
12460                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12461                        if (!new_prog)
12462                                return -ENOMEM;
12463
12464                        delta    += cnt - 1;
12465                        env->prog = prog = new_prog;
12466                        insn      = new_prog->insnsi + i + delta;
12467                        continue;
12468                }
12469
12470                if (insn->code != (BPF_JMP | BPF_CALL))
12471                        continue;
12472                if (insn->src_reg == BPF_PSEUDO_CALL)
12473                        continue;
12474                if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12475                        ret = fixup_kfunc_call(env, insn);
12476                        if (ret)
12477                                return ret;
12478                        continue;
12479                }
12480
12481                if (insn->imm == BPF_FUNC_get_route_realm)
12482                        prog->dst_needed = 1;
12483                if (insn->imm == BPF_FUNC_get_prandom_u32)
12484                        bpf_user_rnd_init_once();
12485                if (insn->imm == BPF_FUNC_override_return)
12486                        prog->kprobe_override = 1;
12487                if (insn->imm == BPF_FUNC_tail_call) {
12488                        /* If we tail call into other programs, we
12489                         * cannot make any assumptions since they can
12490                         * be replaced dynamically during runtime in
12491                         * the program array.
12492                         */
12493                        prog->cb_access = 1;
12494                        if (!allow_tail_call_in_subprogs(env))
12495                                prog->aux->stack_depth = MAX_BPF_STACK;
12496                        prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12497
12498                        /* mark bpf_tail_call as different opcode to avoid
12499                         * conditional branch in the interpreter for every normal
12500                         * call and to prevent accidental JITing by JIT compiler
12501                         * that doesn't support bpf_tail_call yet
12502                         */
12503                        insn->imm = 0;
12504                        insn->code = BPF_JMP | BPF_TAIL_CALL;
12505
12506                        aux = &env->insn_aux_data[i + delta];
12507                        if (env->bpf_capable && !expect_blinding &&
12508                            prog->jit_requested &&
12509                            !bpf_map_key_poisoned(aux) &&
12510                            !bpf_map_ptr_poisoned(aux) &&
12511                            !bpf_map_ptr_unpriv(aux)) {
12512                                struct bpf_jit_poke_descriptor desc = {
12513                                        .reason = BPF_POKE_REASON_TAIL_CALL,
12514                                        .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12515                                        .tail_call.key = bpf_map_key_immediate(aux),
12516                                        .insn_idx = i + delta,
12517                                };
12518
12519                                ret = bpf_jit_add_poke_descriptor(prog, &desc);
12520                                if (ret < 0) {
12521                                        verbose(env, "adding tail call poke descriptor failed\n");
12522                                        return ret;
12523                                }
12524
12525                                insn->imm = ret + 1;
12526                                continue;
12527                        }
12528
12529                        if (!bpf_map_ptr_unpriv(aux))
12530                                continue;
12531
12532                        /* instead of changing every JIT dealing with tail_call
12533                         * emit two extra insns:
12534                         * if (index >= max_entries) goto out;
12535                         * index &= array->index_mask;
12536                         * to avoid out-of-bounds cpu speculation
12537                         */
12538                        if (bpf_map_ptr_poisoned(aux)) {
12539                                verbose(env, "tail_call abusing map_ptr\n");
12540                                return -EINVAL;
12541                        }
12542
12543                        map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12544                        insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12545                                                  map_ptr->max_entries, 2);
12546                        insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12547                                                    container_of(map_ptr,
12548                                                                 struct bpf_array,
12549                                                                 map)->index_mask);
12550                        insn_buf[2] = *insn;
12551                        cnt = 3;
12552                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12553                        if (!new_prog)
12554                                return -ENOMEM;
12555
12556                        delta    += cnt - 1;
12557                        env->prog = prog = new_prog;
12558                        insn      = new_prog->insnsi + i + delta;
12559                        continue;
12560                }
12561
12562                /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12563                 * and other inlining handlers are currently limited to 64 bit
12564                 * only.
12565                 */
12566                if (prog->jit_requested && BITS_PER_LONG == 64 &&
12567                    (insn->imm == BPF_FUNC_map_lookup_elem ||
12568                     insn->imm == BPF_FUNC_map_update_elem ||
12569                     insn->imm == BPF_FUNC_map_delete_elem ||
12570                     insn->imm == BPF_FUNC_map_push_elem   ||
12571                     insn->imm == BPF_FUNC_map_pop_elem    ||
12572                     insn->imm == BPF_FUNC_map_peek_elem   ||
12573                     insn->imm == BPF_FUNC_redirect_map)) {
12574                        aux = &env->insn_aux_data[i + delta];
12575                        if (bpf_map_ptr_poisoned(aux))
12576                                goto patch_call_imm;
12577
12578                        map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12579                        ops = map_ptr->ops;
12580                        if (insn->imm == BPF_FUNC_map_lookup_elem &&
12581                            ops->map_gen_lookup) {
12582                                cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12583                                if (cnt == -EOPNOTSUPP)
12584                                        goto patch_map_ops_generic;
12585                                if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12586                                        verbose(env, "bpf verifier is misconfigured\n");
12587                                        return -EINVAL;
12588                                }
12589
12590                                new_prog = bpf_patch_insn_data(env, i + delta,
12591                                                               insn_buf, cnt);
12592                                if (!new_prog)
12593                                        return -ENOMEM;
12594
12595                                delta    += cnt - 1;
12596                                env->prog = prog = new_prog;
12597                                insn      = new_prog->insnsi + i + delta;
12598                                continue;
12599                        }
12600
12601                        BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12602                                     (void *(*)(struct bpf_map *map, void *key))NULL));
12603                        BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12604                                     (int (*)(struct bpf_map *map, void *key))NULL));
12605                        BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12606                                     (int (*)(struct bpf_map *map, void *key, void *value,
12607                                              u64 flags))NULL));
12608                        BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12609                                     (int (*)(struct bpf_map *map, void *value,
12610                                              u64 flags))NULL));
12611                        BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12612                                     (int (*)(struct bpf_map *map, void *value))NULL));
12613                        BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12614                                     (int (*)(struct bpf_map *map, void *value))NULL));
12615                        BUILD_BUG_ON(!__same_type(ops->map_redirect,
12616                                     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12617
12618patch_map_ops_generic:
12619                        switch (insn->imm) {
12620                        case BPF_FUNC_map_lookup_elem:
12621                                insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12622                                            __bpf_call_base;
12623                                continue;
12624                        case BPF_FUNC_map_update_elem:
12625                                insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12626                                            __bpf_call_base;
12627                                continue;
12628                        case BPF_FUNC_map_delete_elem:
12629                                insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12630                                            __bpf_call_base;
12631                                continue;
12632                        case BPF_FUNC_map_push_elem:
12633                                insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12634                                            __bpf_call_base;
12635                                continue;
12636                        case BPF_FUNC_map_pop_elem:
12637                                insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12638                                            __bpf_call_base;
12639                                continue;
12640                        case BPF_FUNC_map_peek_elem:
12641                                insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12642                                            __bpf_call_base;
12643                                continue;
12644                        case BPF_FUNC_redirect_map:
12645                                insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12646                                            __bpf_call_base;
12647                                continue;
12648                        }
12649
12650                        goto patch_call_imm;
12651                }
12652
12653                /* Implement bpf_jiffies64 inline. */
12654                if (prog->jit_requested && BITS_PER_LONG == 64 &&
12655                    insn->imm == BPF_FUNC_jiffies64) {
12656                        struct bpf_insn ld_jiffies_addr[2] = {
12657                                BPF_LD_IMM64(BPF_REG_0,
12658                                             (unsigned long)&jiffies),
12659                        };
12660
12661                        insn_buf[0] = ld_jiffies_addr[0];
12662                        insn_buf[1] = ld_jiffies_addr[1];
12663                        insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12664                                                  BPF_REG_0, 0);
12665                        cnt = 3;
12666
12667                        new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12668                                                       cnt);
12669                        if (!new_prog)
12670                                return -ENOMEM;
12671
12672                        delta    += cnt - 1;
12673                        env->prog = prog = new_prog;
12674                        insn      = new_prog->insnsi + i + delta;
12675                        continue;
12676                }
12677
12678patch_call_imm:
12679                fn = env->ops->get_func_proto(insn->imm, env->prog);
12680                /* all functions that have prototype and verifier allowed
12681                 * programs to call them, must be real in-kernel functions
12682                 */
12683                if (!fn->func) {
12684                        verbose(env,
12685                                "kernel subsystem misconfigured func %s#%d\n",
12686                                func_id_name(insn->imm), insn->imm);
12687                        return -EFAULT;
12688                }
12689                insn->imm = fn->func - __bpf_call_base;
12690        }
12691
12692        /* Since poke tab is now finalized, publish aux to tracker. */
12693        for (i = 0; i < prog->aux->size_poke_tab; i++) {
12694                map_ptr = prog->aux->poke_tab[i].tail_call.map;
12695                if (!map_ptr->ops->map_poke_track ||
12696                    !map_ptr->ops->map_poke_untrack ||
12697                    !map_ptr->ops->map_poke_run) {
12698                        verbose(env, "bpf verifier is misconfigured\n");
12699                        return -EINVAL;
12700                }
12701
12702                ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12703                if (ret < 0) {
12704                        verbose(env, "tracking tail call prog failed\n");
12705                        return ret;
12706                }
12707        }
12708
12709        sort_kfunc_descs_by_imm(env->prog);
12710
12711        return 0;
12712}
12713
12714static void free_states(struct bpf_verifier_env *env)
12715{
12716        struct bpf_verifier_state_list *sl, *sln;
12717        int i;
12718
12719        sl = env->free_list;
12720        while (sl) {
12721                sln = sl->next;
12722                free_verifier_state(&sl->state, false);
12723                kfree(sl);
12724                sl = sln;
12725        }
12726        env->free_list = NULL;
12727
12728        if (!env->explored_states)
12729                return;
12730
12731        for (i = 0; i < state_htab_size(env); i++) {
12732                sl = env->explored_states[i];
12733
12734                while (sl) {
12735                        sln = sl->next;
12736                        free_verifier_state(&sl->state, false);
12737                        kfree(sl);
12738                        sl = sln;
12739                }
12740                env->explored_states[i] = NULL;
12741        }
12742}
12743
12744static int do_check_common(struct bpf_verifier_env *env, int subprog)
12745{
12746        bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12747        struct bpf_verifier_state *state;
12748        struct bpf_reg_state *regs;
12749        int ret, i;
12750
12751        env->prev_linfo = NULL;
12752        env->pass_cnt++;
12753
12754        state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12755        if (!state)
12756                return -ENOMEM;
12757        state->curframe = 0;
12758        state->speculative = false;
12759        state->branches = 1;
12760        state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12761        if (!state->frame[0]) {
12762                kfree(state);
12763                return -ENOMEM;
12764        }
12765        env->cur_state = state;
12766        init_func_state(env, state->frame[0],
12767                        BPF_MAIN_FUNC /* callsite */,
12768                        0 /* frameno */,
12769                        subprog);
12770
12771        regs = state->frame[state->curframe]->regs;
12772        if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12773                ret = btf_prepare_func_args(env, subprog, regs);
12774                if (ret)
12775                        goto out;
12776                for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12777                        if (regs[i].type == PTR_TO_CTX)
12778                                mark_reg_known_zero(env, regs, i);
12779                        else if (regs[i].type == SCALAR_VALUE)
12780                                mark_reg_unknown(env, regs, i);
12781                        else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12782                                const u32 mem_size = regs[i].mem_size;
12783
12784                                mark_reg_known_zero(env, regs, i);
12785                                regs[i].mem_size = mem_size;
12786                                regs[i].id = ++env->id_gen;
12787                        }
12788                }
12789        } else {
12790                /* 1st arg to a function */
12791                regs[BPF_REG_1].type = PTR_TO_CTX;
12792                mark_reg_known_zero(env, regs, BPF_REG_1);
12793                ret = btf_check_subprog_arg_match(env, subprog, regs);
12794                if (ret == -EFAULT)
12795                        /* unlikely verifier bug. abort.
12796                         * ret == 0 and ret < 0 are sadly acceptable for
12797                         * main() function due to backward compatibility.
12798                         * Like socket filter program may be written as:
12799                         * int bpf_prog(struct pt_regs *ctx)
12800                         * and never dereference that ctx in the program.
12801                         * 'struct pt_regs' is a type mismatch for socket
12802                         * filter that should be using 'struct __sk_buff'.
12803                         */
12804                        goto out;
12805        }
12806
12807        ret = do_check(env);
12808out:
12809        /* check for NULL is necessary, since cur_state can be freed inside
12810         * do_check() under memory pressure.
12811         */
12812        if (env->cur_state) {
12813                free_verifier_state(env->cur_state, true);
12814                env->cur_state = NULL;
12815        }
12816        while (!pop_stack(env, NULL, NULL, false));
12817        if (!ret && pop_log)
12818                bpf_vlog_reset(&env->log, 0);
12819        free_states(env);
12820        return ret;
12821}
12822
12823/* Verify all global functions in a BPF program one by one based on their BTF.
12824 * All global functions must pass verification. Otherwise the whole program is rejected.
12825 * Consider:
12826 * int bar(int);
12827 * int foo(int f)
12828 * {
12829 *    return bar(f);
12830 * }
12831 * int bar(int b)
12832 * {
12833 *    ...
12834 * }
12835 * foo() will be verified first for R1=any_scalar_value. During verification it
12836 * will be assumed that bar() already verified successfully and call to bar()
12837 * from foo() will be checked for type match only. Later bar() will be verified
12838 * independently to check that it's safe for R1=any_scalar_value.
12839 */
12840static int do_check_subprogs(struct bpf_verifier_env *env)
12841{
12842        struct bpf_prog_aux *aux = env->prog->aux;
12843        int i, ret;
12844
12845        if (!aux->func_info)
12846                return 0;
12847
12848        for (i = 1; i < env->subprog_cnt; i++) {
12849                if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12850                        continue;
12851                env->insn_idx = env->subprog_info[i].start;
12852                WARN_ON_ONCE(env->insn_idx == 0);
12853                ret = do_check_common(env, i);
12854                if (ret) {
12855                        return ret;
12856                } else if (env->log.level & BPF_LOG_LEVEL) {
12857                        verbose(env,
12858                                "Func#%d is safe for any args that match its prototype\n",
12859                                i);
12860                }
12861        }
12862        return 0;
12863}
12864
12865static int do_check_main(struct bpf_verifier_env *env)
12866{
12867        int ret;
12868
12869        env->insn_idx = 0;
12870        ret = do_check_common(env, 0);
12871        if (!ret)
12872                env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12873        return ret;
12874}
12875
12876
12877static void print_verification_stats(struct bpf_verifier_env *env)
12878{
12879        int i;
12880
12881        if (env->log.level & BPF_LOG_STATS) {
12882                verbose(env, "verification time %lld usec\n",
12883                        div_u64(env->verification_time, 1000));
12884                verbose(env, "stack depth ");
12885                for (i = 0; i < env->subprog_cnt; i++) {
12886                        u32 depth = env->subprog_info[i].stack_depth;
12887
12888                        verbose(env, "%d", depth);
12889                        if (i + 1 < env->subprog_cnt)
12890                                verbose(env, "+");
12891                }
12892                verbose(env, "\n");
12893        }
12894        verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12895                "total_states %d peak_states %d mark_read %d\n",
12896                env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12897                env->max_states_per_insn, env->total_states,
12898                env->peak_states, env->longest_mark_read_walk);
12899}
12900
12901static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12902{
12903        const struct btf_type *t, *func_proto;
12904        const struct bpf_struct_ops *st_ops;
12905        const struct btf_member *member;
12906        struct bpf_prog *prog = env->prog;
12907        u32 btf_id, member_idx;
12908        const char *mname;
12909
12910        if (!prog->gpl_compatible) {
12911                verbose(env, "struct ops programs must have a GPL compatible license\n");
12912                return -EINVAL;
12913        }
12914
12915        btf_id = prog->aux->attach_btf_id;
12916        st_ops = bpf_struct_ops_find(btf_id);
12917        if (!st_ops) {
12918                verbose(env, "attach_btf_id %u is not a supported struct\n",
12919                        btf_id);
12920                return -ENOTSUPP;
12921        }
12922
12923        t = st_ops->type;
12924        member_idx = prog->expected_attach_type;
12925        if (member_idx >= btf_type_vlen(t)) {
12926                verbose(env, "attach to invalid member idx %u of struct %s\n",
12927                        member_idx, st_ops->name);
12928                return -EINVAL;
12929        }
12930
12931        member = &btf_type_member(t)[member_idx];
12932        mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12933        func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12934                                               NULL);
12935        if (!func_proto) {
12936                verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12937                        mname, member_idx, st_ops->name);
12938                return -EINVAL;
12939        }
12940
12941        if (st_ops->check_member) {
12942                int err = st_ops->check_member(t, member);
12943
12944                if (err) {
12945                        verbose(env, "attach to unsupported member %s of struct %s\n",
12946                                mname, st_ops->name);
12947                        return err;
12948                }
12949        }
12950
12951        prog->aux->attach_func_proto = func_proto;
12952        prog->aux->attach_func_name = mname;
12953        env->ops = st_ops->verifier_ops;
12954
12955        return 0;
12956}
12957#define SECURITY_PREFIX "security_"
12958
12959static int check_attach_modify_return(unsigned long addr, const char *func_name)
12960{
12961        if (within_error_injection_list(addr) ||
12962            !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12963                return 0;
12964
12965        return -EINVAL;
12966}
12967
12968/* list of non-sleepable functions that are otherwise on
12969 * ALLOW_ERROR_INJECTION list
12970 */
12971BTF_SET_START(btf_non_sleepable_error_inject)
12972/* Three functions below can be called from sleepable and non-sleepable context.
12973 * Assume non-sleepable from bpf safety point of view.
12974 */
12975BTF_ID(func, __add_to_page_cache_locked)
12976BTF_ID(func, should_fail_alloc_page)
12977BTF_ID(func, should_failslab)
12978BTF_SET_END(btf_non_sleepable_error_inject)
12979
12980static int check_non_sleepable_error_inject(u32 btf_id)
12981{
12982        return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12983}
12984
12985int bpf_check_attach_target(struct bpf_verifier_log *log,
12986                            const struct bpf_prog *prog,
12987                            const struct bpf_prog *tgt_prog,
12988                            u32 btf_id,
12989                            struct bpf_attach_target_info *tgt_info)
12990{
12991        bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12992        const char prefix[] = "btf_trace_";
12993        int ret = 0, subprog = -1, i;
12994        const struct btf_type *t;
12995        bool conservative = true;
12996        const char *tname;
12997        struct btf *btf;
12998        long addr = 0;
12999
13000        if (!btf_id) {
13001                bpf_log(log, "Tracing programs must provide btf_id\n");
13002                return -EINVAL;
13003        }
13004        btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13005        if (!btf) {
13006                bpf_log(log,
13007                        "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13008                return -EINVAL;
13009        }
13010        t = btf_type_by_id(btf, btf_id);
13011        if (!t) {
13012                bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13013                return -EINVAL;
13014        }
13015        tname = btf_name_by_offset(btf, t->name_off);
13016        if (!tname) {
13017                bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13018                return -EINVAL;
13019        }
13020        if (tgt_prog) {
13021                struct bpf_prog_aux *aux = tgt_prog->aux;
13022
13023                for (i = 0; i < aux->func_info_cnt; i++)
13024                        if (aux->func_info[i].type_id == btf_id) {
13025                                subprog = i;
13026                                break;
13027                        }
13028                if (subprog == -1) {
13029                        bpf_log(log, "Subprog %s doesn't exist\n", tname);
13030                        return -EINVAL;
13031                }
13032                conservative = aux->func_info_aux[subprog].unreliable;
13033                if (prog_extension) {
13034                        if (conservative) {
13035                                bpf_log(log,
13036                                        "Cannot replace static functions\n");
13037                                return -EINVAL;
13038                        }
13039                        if (!prog->jit_requested) {
13040                                bpf_log(log,
13041                                        "Extension programs should be JITed\n");
13042                                return -EINVAL;
13043                        }
13044                }
13045                if (!tgt_prog->jited) {
13046                        bpf_log(log, "Can attach to only JITed progs\n");
13047                        return -EINVAL;
13048                }
13049                if (tgt_prog->type == prog->type) {
13050                        /* Cannot fentry/fexit another fentry/fexit program.
13051                         * Cannot attach program extension to another extension.
13052                         * It's ok to attach fentry/fexit to extension program.
13053                         */
13054                        bpf_log(log, "Cannot recursively attach\n");
13055                        return -EINVAL;
13056                }
13057                if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13058                    prog_extension &&
13059                    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13060                     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13061                        /* Program extensions can extend all program types
13062                         * except fentry/fexit. The reason is the following.
13063                         * The fentry/fexit programs are used for performance
13064                         * analysis, stats and can be attached to any program
13065                         * type except themselves. When extension program is
13066                         * replacing XDP function it is necessary to allow
13067                         * performance analysis of all functions. Both original
13068                         * XDP program and its program extension. Hence
13069                         * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13070                         * allowed. If extending of fentry/fexit was allowed it
13071                         * would be possible to create long call chain
13072                         * fentry->extension->fentry->extension beyond
13073                         * reasonable stack size. Hence extending fentry is not
13074                         * allowed.
13075                         */
13076                        bpf_log(log, "Cannot extend fentry/fexit\n");
13077                        return -EINVAL;
13078                }
13079        } else {
13080                if (prog_extension) {
13081                        bpf_log(log, "Cannot replace kernel functions\n");
13082                        return -EINVAL;
13083                }
13084        }
13085
13086        switch (prog->expected_attach_type) {
13087        case BPF_TRACE_RAW_TP:
13088                if (tgt_prog) {
13089                        bpf_log(log,
13090                                "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13091                        return -EINVAL;
13092                }
13093                if (!btf_type_is_typedef(t)) {
13094                        bpf_log(log, "attach_btf_id %u is not a typedef\n",
13095                                btf_id);
13096                        return -EINVAL;
13097                }
13098                if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13099                        bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13100                                btf_id, tname);
13101                        return -EINVAL;
13102                }
13103                tname += sizeof(prefix) - 1;
13104                t = btf_type_by_id(btf, t->type);
13105                if (!btf_type_is_ptr(t))
13106                        /* should never happen in valid vmlinux build */
13107                        return -EINVAL;
13108                t = btf_type_by_id(btf, t->type);
13109                if (!btf_type_is_func_proto(t))
13110                        /* should never happen in valid vmlinux build */
13111                        return -EINVAL;
13112
13113                break;
13114        case BPF_TRACE_ITER:
13115                if (!btf_type_is_func(t)) {
13116                        bpf_log(log, "attach_btf_id %u is not a function\n",
13117                                btf_id);
13118                        return -EINVAL;
13119                }
13120                t = btf_type_by_id(btf, t->type);
13121                if (!btf_type_is_func_proto(t))
13122                        return -EINVAL;
13123                ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13124                if (ret)
13125                        return ret;
13126                break;
13127        default:
13128                if (!prog_extension)
13129                        return -EINVAL;
13130                fallthrough;
13131        case BPF_MODIFY_RETURN:
13132        case BPF_LSM_MAC:
13133        case BPF_TRACE_FENTRY:
13134        case BPF_TRACE_FEXIT:
13135                if (!btf_type_is_func(t)) {
13136                        bpf_log(log, "attach_btf_id %u is not a function\n",
13137                                btf_id);
13138                        return -EINVAL;
13139                }
13140                if (prog_extension &&
13141                    btf_check_type_match(log, prog, btf, t))
13142                        return -EINVAL;
13143                t = btf_type_by_id(btf, t->type);
13144                if (!btf_type_is_func_proto(t))
13145                        return -EINVAL;
13146
13147                if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13148                    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13149                     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13150                        return -EINVAL;
13151
13152                if (tgt_prog && conservative)
13153                        t = NULL;
13154
13155                ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13156                if (ret < 0)
13157                        return ret;
13158
13159                if (tgt_prog) {
13160                        if (subprog == 0)
13161                                addr = (long) tgt_prog->bpf_func;
13162                        else
13163                                addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13164                } else {
13165                        addr = kallsyms_lookup_name(tname);
13166                        if (!addr) {
13167                                bpf_log(log,
13168                                        "The address of function %s cannot be found\n",
13169                                        tname);
13170                                return -ENOENT;
13171                        }
13172                }
13173
13174                if (prog->aux->sleepable) {
13175                        ret = -EINVAL;
13176                        switch (prog->type) {
13177                        case BPF_PROG_TYPE_TRACING:
13178                                /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13179                                 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13180                                 */
13181                                if (!check_non_sleepable_error_inject(btf_id) &&
13182                                    within_error_injection_list(addr))
13183                                        ret = 0;
13184                                break;
13185                        case BPF_PROG_TYPE_LSM:
13186                                /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13187                                 * Only some of them are sleepable.
13188                                 */
13189                                if (bpf_lsm_is_sleepable_hook(btf_id))
13190                                        ret = 0;
13191                                break;
13192                        default:
13193                                break;
13194                        }
13195                        if (ret) {
13196                                bpf_log(log, "%s is not sleepable\n", tname);
13197                                return ret;
13198                        }
13199                } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13200                        if (tgt_prog) {
13201                                bpf_log(log, "can't modify return codes of BPF programs\n");
13202                                return -EINVAL;
13203                        }
13204                        ret = check_attach_modify_return(addr, tname);
13205                        if (ret) {
13206                                bpf_log(log, "%s() is not modifiable\n", tname);
13207                                return ret;
13208                        }
13209                }
13210
13211                break;
13212        }
13213        tgt_info->tgt_addr = addr;
13214        tgt_info->tgt_name = tname;
13215        tgt_info->tgt_type = t;
13216        return 0;
13217}
13218
13219BTF_SET_START(btf_id_deny)
13220BTF_ID_UNUSED
13221#ifdef CONFIG_SMP
13222BTF_ID(func, migrate_disable)
13223BTF_ID(func, migrate_enable)
13224#endif
13225#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13226BTF_ID(func, rcu_read_unlock_strict)
13227#endif
13228BTF_SET_END(btf_id_deny)
13229
13230static int check_attach_btf_id(struct bpf_verifier_env *env)
13231{
13232        struct bpf_prog *prog = env->prog;
13233        struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13234        struct bpf_attach_target_info tgt_info = {};
13235        u32 btf_id = prog->aux->attach_btf_id;
13236        struct bpf_trampoline *tr;
13237        int ret;
13238        u64 key;
13239
13240        if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13241                if (prog->aux->sleepable)
13242                        /* attach_btf_id checked to be zero already */
13243                        return 0;
13244                verbose(env, "Syscall programs can only be sleepable\n");
13245                return -EINVAL;
13246        }
13247
13248        if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13249            prog->type != BPF_PROG_TYPE_LSM) {
13250                verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13251                return -EINVAL;
13252        }
13253
13254        if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13255                return check_struct_ops_btf_id(env);
13256
13257        if (prog->type != BPF_PROG_TYPE_TRACING &&
13258            prog->type != BPF_PROG_TYPE_LSM &&
13259            prog->type != BPF_PROG_TYPE_EXT)
13260                return 0;
13261
13262        ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13263        if (ret)
13264                return ret;
13265
13266        if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13267                /* to make freplace equivalent to their targets, they need to
13268                 * inherit env->ops and expected_attach_type for the rest of the
13269                 * verification
13270                 */
13271                env->ops = bpf_verifier_ops[tgt_prog->type];
13272                prog->expected_attach_type = tgt_prog->expected_attach_type;
13273        }
13274
13275        /* store info about the attachment target that will be used later */
13276        prog->aux->attach_func_proto = tgt_info.tgt_type;
13277        prog->aux->attach_func_name = tgt_info.tgt_name;
13278
13279        if (tgt_prog) {
13280                prog->aux->saved_dst_prog_type = tgt_prog->type;
13281                prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13282        }
13283
13284        if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13285                prog->aux->attach_btf_trace = true;
13286                return 0;
13287        } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13288                if (!bpf_iter_prog_supported(prog))
13289                        return -EINVAL;
13290                return 0;
13291        }
13292
13293        if (prog->type == BPF_PROG_TYPE_LSM) {
13294                ret = bpf_lsm_verify_prog(&env->log, prog);
13295                if (ret < 0)
13296                        return ret;
13297        } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13298                   btf_id_set_contains(&btf_id_deny, btf_id)) {
13299                return -EINVAL;
13300        }
13301
13302        key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13303        tr = bpf_trampoline_get(key, &tgt_info);
13304        if (!tr)
13305                return -ENOMEM;
13306
13307        prog->aux->dst_trampoline = tr;
13308        return 0;
13309}
13310
13311struct btf *bpf_get_btf_vmlinux(void)
13312{
13313        if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13314                mutex_lock(&bpf_verifier_lock);
13315                if (!btf_vmlinux)
13316                        btf_vmlinux = btf_parse_vmlinux();
13317                mutex_unlock(&bpf_verifier_lock);
13318        }
13319        return btf_vmlinux;
13320}
13321
13322int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13323{
13324        u64 start_time = ktime_get_ns();
13325        struct bpf_verifier_env *env;
13326        struct bpf_verifier_log *log;
13327        int i, len, ret = -EINVAL;
13328        bool is_priv;
13329
13330        /* no program is valid */
13331        if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13332                return -EINVAL;
13333
13334        /* 'struct bpf_verifier_env' can be global, but since it's not small,
13335         * allocate/free it every time bpf_check() is called
13336         */
13337        env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13338        if (!env)
13339                return -ENOMEM;
13340        log = &env->log;
13341
13342        len = (*prog)->len;
13343        env->insn_aux_data =
13344                vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13345        ret = -ENOMEM;
13346        if (!env->insn_aux_data)
13347                goto err_free_env;
13348        for (i = 0; i < len; i++)
13349                env->insn_aux_data[i].orig_idx = i;
13350        env->prog = *prog;
13351        env->ops = bpf_verifier_ops[env->prog->type];
13352        env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13353        is_priv = bpf_capable();
13354
13355        bpf_get_btf_vmlinux();
13356
13357        /* grab the mutex to protect few globals used by verifier */
13358        if (!is_priv)
13359                mutex_lock(&bpf_verifier_lock);
13360
13361        if (attr->log_level || attr->log_buf || attr->log_size) {
13362                /* user requested verbose verifier output
13363                 * and supplied buffer to store the verification trace
13364                 */
13365                log->level = attr->log_level;
13366                log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13367                log->len_total = attr->log_size;
13368
13369                ret = -EINVAL;
13370                /* log attributes have to be sane */
13371                if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13372                    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13373                        goto err_unlock;
13374        }
13375
13376        if (IS_ERR(btf_vmlinux)) {
13377                /* Either gcc or pahole or kernel are broken. */
13378                verbose(env, "in-kernel BTF is malformed\n");
13379                ret = PTR_ERR(btf_vmlinux);
13380                goto skip_full_check;
13381        }
13382
13383        env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13384        if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13385                env->strict_alignment = true;
13386        if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13387                env->strict_alignment = false;
13388
13389        env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13390        env->allow_uninit_stack = bpf_allow_uninit_stack();
13391        env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13392        env->bypass_spec_v1 = bpf_bypass_spec_v1();
13393        env->bypass_spec_v4 = bpf_bypass_spec_v4();
13394        env->bpf_capable = bpf_capable();
13395
13396        if (is_priv)
13397                env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13398
13399        env->explored_states = kvcalloc(state_htab_size(env),
13400                                       sizeof(struct bpf_verifier_state_list *),
13401                                       GFP_USER);
13402        ret = -ENOMEM;
13403        if (!env->explored_states)
13404                goto skip_full_check;
13405
13406        ret = add_subprog_and_kfunc(env);
13407        if (ret < 0)
13408                goto skip_full_check;
13409
13410        ret = check_subprogs(env);
13411        if (ret < 0)
13412                goto skip_full_check;
13413
13414        ret = check_btf_info(env, attr, uattr);
13415        if (ret < 0)
13416                goto skip_full_check;
13417
13418        ret = check_attach_btf_id(env);
13419        if (ret)
13420                goto skip_full_check;
13421
13422        ret = resolve_pseudo_ldimm64(env);
13423        if (ret < 0)
13424                goto skip_full_check;
13425
13426        if (bpf_prog_is_dev_bound(env->prog->aux)) {
13427                ret = bpf_prog_offload_verifier_prep(env->prog);
13428                if (ret)
13429                        goto skip_full_check;
13430        }
13431
13432        ret = check_cfg(env);
13433        if (ret < 0)
13434                goto skip_full_check;
13435
13436        ret = do_check_subprogs(env);
13437        ret = ret ?: do_check_main(env);
13438
13439        if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13440                ret = bpf_prog_offload_finalize(env);
13441
13442skip_full_check:
13443        kvfree(env->explored_states);
13444
13445        if (ret == 0)
13446                ret = check_max_stack_depth(env);
13447
13448        /* instruction rewrites happen after this point */
13449        if (is_priv) {
13450                if (ret == 0)
13451                        opt_hard_wire_dead_code_branches(env);
13452                if (ret == 0)
13453                        ret = opt_remove_dead_code(env);
13454                if (ret == 0)
13455                        ret = opt_remove_nops(env);
13456        } else {
13457                if (ret == 0)
13458                        sanitize_dead_code(env);
13459        }
13460
13461        if (ret == 0)
13462                /* program is valid, convert *(u32*)(ctx + off) accesses */
13463                ret = convert_ctx_accesses(env);
13464
13465        if (ret == 0)
13466                ret = do_misc_fixups(env);
13467
13468        /* do 32-bit optimization after insn patching has done so those patched
13469         * insns could be handled correctly.
13470         */
13471        if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13472                ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13473                env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13474                                                                     : false;
13475        }
13476
13477        if (ret == 0)
13478                ret = fixup_call_args(env);
13479
13480        env->verification_time = ktime_get_ns() - start_time;
13481        print_verification_stats(env);
13482
13483        if (log->level && bpf_verifier_log_full(log))
13484                ret = -ENOSPC;
13485        if (log->level && !log->ubuf) {
13486                ret = -EFAULT;
13487                goto err_release_maps;
13488        }
13489
13490        if (ret)
13491                goto err_release_maps;
13492
13493        if (env->used_map_cnt) {
13494                /* if program passed verifier, update used_maps in bpf_prog_info */
13495                env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13496                                                          sizeof(env->used_maps[0]),
13497                                                          GFP_KERNEL);
13498
13499                if (!env->prog->aux->used_maps) {
13500                        ret = -ENOMEM;
13501                        goto err_release_maps;
13502                }
13503
13504                memcpy(env->prog->aux->used_maps, env->used_maps,
13505                       sizeof(env->used_maps[0]) * env->used_map_cnt);
13506                env->prog->aux->used_map_cnt = env->used_map_cnt;
13507        }
13508        if (env->used_btf_cnt) {
13509                /* if program passed verifier, update used_btfs in bpf_prog_aux */
13510                env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13511                                                          sizeof(env->used_btfs[0]),
13512                                                          GFP_KERNEL);
13513                if (!env->prog->aux->used_btfs) {
13514                        ret = -ENOMEM;
13515                        goto err_release_maps;
13516                }
13517
13518                memcpy(env->prog->aux->used_btfs, env->used_btfs,
13519                       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13520                env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13521        }
13522        if (env->used_map_cnt || env->used_btf_cnt) {
13523                /* program is valid. Convert pseudo bpf_ld_imm64 into generic
13524                 * bpf_ld_imm64 instructions
13525                 */
13526                convert_pseudo_ld_imm64(env);
13527        }
13528
13529        adjust_btf_func(env);
13530
13531err_release_maps:
13532        if (!env->prog->aux->used_maps)
13533                /* if we didn't copy map pointers into bpf_prog_info, release
13534                 * them now. Otherwise free_used_maps() will release them.
13535                 */
13536                release_maps(env);
13537        if (!env->prog->aux->used_btfs)
13538                release_btfs(env);
13539
13540        /* extension progs temporarily inherit the attach_type of their targets
13541           for verification purposes, so set it back to zero before returning
13542         */
13543        if (env->prog->type == BPF_PROG_TYPE_EXT)
13544                env->prog->expected_attach_type = 0;
13545
13546        *prog = env->prog;
13547err_unlock:
13548        if (!is_priv)
13549                mutex_unlock(&bpf_verifier_lock);
13550        vfree(env->insn_aux_data);
13551err_free_env:
13552        kfree(env);
13553        return ret;
13554}
13555