linux/kernel/cgroup/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/fs_context.h>
  43#include <linux/namei.h>
  44#include <linux/pagemap.h>
  45#include <linux/proc_fs.h>
  46#include <linux/rcupdate.h>
  47#include <linux/sched.h>
  48#include <linux/sched/deadline.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/seq_file.h>
  52#include <linux/security.h>
  53#include <linux/slab.h>
  54#include <linux/spinlock.h>
  55#include <linux/stat.h>
  56#include <linux/string.h>
  57#include <linux/time.h>
  58#include <linux/time64.h>
  59#include <linux/backing-dev.h>
  60#include <linux/sort.h>
  61#include <linux/oom.h>
  62#include <linux/sched/isolation.h>
  63#include <linux/uaccess.h>
  64#include <linux/atomic.h>
  65#include <linux/mutex.h>
  66#include <linux/cgroup.h>
  67#include <linux/wait.h>
  68
  69DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
  70DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  71
  72/* See "Frequency meter" comments, below. */
  73
  74struct fmeter {
  75        int cnt;                /* unprocessed events count */
  76        int val;                /* most recent output value */
  77        time64_t time;          /* clock (secs) when val computed */
  78        spinlock_t lock;        /* guards read or write of above */
  79};
  80
  81struct cpuset {
  82        struct cgroup_subsys_state css;
  83
  84        unsigned long flags;            /* "unsigned long" so bitops work */
  85
  86        /*
  87         * On default hierarchy:
  88         *
  89         * The user-configured masks can only be changed by writing to
  90         * cpuset.cpus and cpuset.mems, and won't be limited by the
  91         * parent masks.
  92         *
  93         * The effective masks is the real masks that apply to the tasks
  94         * in the cpuset. They may be changed if the configured masks are
  95         * changed or hotplug happens.
  96         *
  97         * effective_mask == configured_mask & parent's effective_mask,
  98         * and if it ends up empty, it will inherit the parent's mask.
  99         *
 100         *
 101         * On legacy hierarchy:
 102         *
 103         * The user-configured masks are always the same with effective masks.
 104         */
 105
 106        /* user-configured CPUs and Memory Nodes allow to tasks */
 107        cpumask_var_t cpus_allowed;
 108        nodemask_t mems_allowed;
 109
 110        /* effective CPUs and Memory Nodes allow to tasks */
 111        cpumask_var_t effective_cpus;
 112        nodemask_t effective_mems;
 113
 114        /*
 115         * CPUs allocated to child sub-partitions (default hierarchy only)
 116         * - CPUs granted by the parent = effective_cpus U subparts_cpus
 117         * - effective_cpus and subparts_cpus are mutually exclusive.
 118         *
 119         * effective_cpus contains only onlined CPUs, but subparts_cpus
 120         * may have offlined ones.
 121         */
 122        cpumask_var_t subparts_cpus;
 123
 124        /*
 125         * This is old Memory Nodes tasks took on.
 126         *
 127         * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 128         * - A new cpuset's old_mems_allowed is initialized when some
 129         *   task is moved into it.
 130         * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 131         *   cpuset.mems_allowed and have tasks' nodemask updated, and
 132         *   then old_mems_allowed is updated to mems_allowed.
 133         */
 134        nodemask_t old_mems_allowed;
 135
 136        struct fmeter fmeter;           /* memory_pressure filter */
 137
 138        /*
 139         * Tasks are being attached to this cpuset.  Used to prevent
 140         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 141         */
 142        int attach_in_progress;
 143
 144        /* partition number for rebuild_sched_domains() */
 145        int pn;
 146
 147        /* for custom sched domain */
 148        int relax_domain_level;
 149
 150        /* number of CPUs in subparts_cpus */
 151        int nr_subparts_cpus;
 152
 153        /* partition root state */
 154        int partition_root_state;
 155
 156        /*
 157         * Default hierarchy only:
 158         * use_parent_ecpus - set if using parent's effective_cpus
 159         * child_ecpus_count - # of children with use_parent_ecpus set
 160         */
 161        int use_parent_ecpus;
 162        int child_ecpus_count;
 163};
 164
 165/*
 166 * Partition root states:
 167 *
 168 *   0 - not a partition root
 169 *
 170 *   1 - partition root
 171 *
 172 *  -1 - invalid partition root
 173 *       None of the cpus in cpus_allowed can be put into the parent's
 174 *       subparts_cpus. In this case, the cpuset is not a real partition
 175 *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
 176 *       and the cpuset can be restored back to a partition root if the
 177 *       parent cpuset can give more CPUs back to this child cpuset.
 178 */
 179#define PRS_DISABLED            0
 180#define PRS_ENABLED             1
 181#define PRS_ERROR               -1
 182
 183/*
 184 * Temporary cpumasks for working with partitions that are passed among
 185 * functions to avoid memory allocation in inner functions.
 186 */
 187struct tmpmasks {
 188        cpumask_var_t addmask, delmask; /* For partition root */
 189        cpumask_var_t new_cpus;         /* For update_cpumasks_hier() */
 190};
 191
 192static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 193{
 194        return css ? container_of(css, struct cpuset, css) : NULL;
 195}
 196
 197/* Retrieve the cpuset for a task */
 198static inline struct cpuset *task_cs(struct task_struct *task)
 199{
 200        return css_cs(task_css(task, cpuset_cgrp_id));
 201}
 202
 203static inline struct cpuset *parent_cs(struct cpuset *cs)
 204{
 205        return css_cs(cs->css.parent);
 206}
 207
 208/* bits in struct cpuset flags field */
 209typedef enum {
 210        CS_ONLINE,
 211        CS_CPU_EXCLUSIVE,
 212        CS_MEM_EXCLUSIVE,
 213        CS_MEM_HARDWALL,
 214        CS_MEMORY_MIGRATE,
 215        CS_SCHED_LOAD_BALANCE,
 216        CS_SPREAD_PAGE,
 217        CS_SPREAD_SLAB,
 218} cpuset_flagbits_t;
 219
 220/* convenient tests for these bits */
 221static inline bool is_cpuset_online(struct cpuset *cs)
 222{
 223        return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
 224}
 225
 226static inline int is_cpu_exclusive(const struct cpuset *cs)
 227{
 228        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 229}
 230
 231static inline int is_mem_exclusive(const struct cpuset *cs)
 232{
 233        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 234}
 235
 236static inline int is_mem_hardwall(const struct cpuset *cs)
 237{
 238        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 239}
 240
 241static inline int is_sched_load_balance(const struct cpuset *cs)
 242{
 243        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 244}
 245
 246static inline int is_memory_migrate(const struct cpuset *cs)
 247{
 248        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 249}
 250
 251static inline int is_spread_page(const struct cpuset *cs)
 252{
 253        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 254}
 255
 256static inline int is_spread_slab(const struct cpuset *cs)
 257{
 258        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 259}
 260
 261static inline int is_partition_root(const struct cpuset *cs)
 262{
 263        return cs->partition_root_state > 0;
 264}
 265
 266static struct cpuset top_cpuset = {
 267        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 268                  (1 << CS_MEM_EXCLUSIVE)),
 269        .partition_root_state = PRS_ENABLED,
 270};
 271
 272/**
 273 * cpuset_for_each_child - traverse online children of a cpuset
 274 * @child_cs: loop cursor pointing to the current child
 275 * @pos_css: used for iteration
 276 * @parent_cs: target cpuset to walk children of
 277 *
 278 * Walk @child_cs through the online children of @parent_cs.  Must be used
 279 * with RCU read locked.
 280 */
 281#define cpuset_for_each_child(child_cs, pos_css, parent_cs)             \
 282        css_for_each_child((pos_css), &(parent_cs)->css)                \
 283                if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 284
 285/**
 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 287 * @des_cs: loop cursor pointing to the current descendant
 288 * @pos_css: used for iteration
 289 * @root_cs: target cpuset to walk ancestor of
 290 *
 291 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 292 * with RCU read locked.  The caller may modify @pos_css by calling
 293 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 294 * iteration and the first node to be visited.
 295 */
 296#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)        \
 297        css_for_each_descendant_pre((pos_css), &(root_cs)->css)         \
 298                if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 299
 300/*
 301 * There are two global locks guarding cpuset structures - cpuset_mutex and
 302 * callback_lock. We also require taking task_lock() when dereferencing a
 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 304 * comment.
 305 *
 306 * A task must hold both locks to modify cpusets.  If a task holds
 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 308 * is the only task able to also acquire callback_lock and be able to
 309 * modify cpusets.  It can perform various checks on the cpuset structure
 310 * first, knowing nothing will change.  It can also allocate memory while
 311 * just holding cpuset_mutex.  While it is performing these checks, various
 312 * callback routines can briefly acquire callback_lock to query cpusets.
 313 * Once it is ready to make the changes, it takes callback_lock, blocking
 314 * everyone else.
 315 *
 316 * Calls to the kernel memory allocator can not be made while holding
 317 * callback_lock, as that would risk double tripping on callback_lock
 318 * from one of the callbacks into the cpuset code from within
 319 * __alloc_pages().
 320 *
 321 * If a task is only holding callback_lock, then it has read-only
 322 * access to cpusets.
 323 *
 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 325 * by other task, we use alloc_lock in the task_struct fields to protect
 326 * them.
 327 *
 328 * The cpuset_common_file_read() handlers only hold callback_lock across
 329 * small pieces of code, such as when reading out possibly multi-word
 330 * cpumasks and nodemasks.
 331 *
 332 * Accessing a task's cpuset should be done in accordance with the
 333 * guidelines for accessing subsystem state in kernel/cgroup.c
 334 */
 335
 336DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
 337
 338void cpuset_read_lock(void)
 339{
 340        percpu_down_read(&cpuset_rwsem);
 341}
 342
 343void cpuset_read_unlock(void)
 344{
 345        percpu_up_read(&cpuset_rwsem);
 346}
 347
 348static DEFINE_SPINLOCK(callback_lock);
 349
 350static struct workqueue_struct *cpuset_migrate_mm_wq;
 351
 352/*
 353 * CPU / memory hotplug is handled asynchronously.
 354 */
 355static void cpuset_hotplug_workfn(struct work_struct *work);
 356static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 357
 358static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 359
 360/*
 361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
 362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
 363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
 364 * With v2 behavior, "cpus" and "mems" are always what the users have
 365 * requested and won't be changed by hotplug events. Only the effective
 366 * cpus or mems will be affected.
 367 */
 368static inline bool is_in_v2_mode(void)
 369{
 370        return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
 371              (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
 372}
 373
 374/*
 375 * Return in pmask the portion of a cpusets's cpus_allowed that
 376 * are online.  If none are online, walk up the cpuset hierarchy
 377 * until we find one that does have some online cpus.
 378 *
 379 * One way or another, we guarantee to return some non-empty subset
 380 * of cpu_online_mask.
 381 *
 382 * Call with callback_lock or cpuset_mutex held.
 383 */
 384static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 385{
 386        while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
 387                cs = parent_cs(cs);
 388                if (unlikely(!cs)) {
 389                        /*
 390                         * The top cpuset doesn't have any online cpu as a
 391                         * consequence of a race between cpuset_hotplug_work
 392                         * and cpu hotplug notifier.  But we know the top
 393                         * cpuset's effective_cpus is on its way to be
 394                         * identical to cpu_online_mask.
 395                         */
 396                        cpumask_copy(pmask, cpu_online_mask);
 397                        return;
 398                }
 399        }
 400        cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 401}
 402
 403/*
 404 * Return in *pmask the portion of a cpusets's mems_allowed that
 405 * are online, with memory.  If none are online with memory, walk
 406 * up the cpuset hierarchy until we find one that does have some
 407 * online mems.  The top cpuset always has some mems online.
 408 *
 409 * One way or another, we guarantee to return some non-empty subset
 410 * of node_states[N_MEMORY].
 411 *
 412 * Call with callback_lock or cpuset_mutex held.
 413 */
 414static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 415{
 416        while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 417                cs = parent_cs(cs);
 418        nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 419}
 420
 421/*
 422 * update task's spread flag if cpuset's page/slab spread flag is set
 423 *
 424 * Call with callback_lock or cpuset_mutex held.
 425 */
 426static void cpuset_update_task_spread_flag(struct cpuset *cs,
 427                                        struct task_struct *tsk)
 428{
 429        if (is_spread_page(cs))
 430                task_set_spread_page(tsk);
 431        else
 432                task_clear_spread_page(tsk);
 433
 434        if (is_spread_slab(cs))
 435                task_set_spread_slab(tsk);
 436        else
 437                task_clear_spread_slab(tsk);
 438}
 439
 440/*
 441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 442 *
 443 * One cpuset is a subset of another if all its allowed CPUs and
 444 * Memory Nodes are a subset of the other, and its exclusive flags
 445 * are only set if the other's are set.  Call holding cpuset_mutex.
 446 */
 447
 448static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 449{
 450        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 451                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 452                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 453                is_mem_exclusive(p) <= is_mem_exclusive(q);
 454}
 455
 456/**
 457 * alloc_cpumasks - allocate three cpumasks for cpuset
 458 * @cs:  the cpuset that have cpumasks to be allocated.
 459 * @tmp: the tmpmasks structure pointer
 460 * Return: 0 if successful, -ENOMEM otherwise.
 461 *
 462 * Only one of the two input arguments should be non-NULL.
 463 */
 464static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 465{
 466        cpumask_var_t *pmask1, *pmask2, *pmask3;
 467
 468        if (cs) {
 469                pmask1 = &cs->cpus_allowed;
 470                pmask2 = &cs->effective_cpus;
 471                pmask3 = &cs->subparts_cpus;
 472        } else {
 473                pmask1 = &tmp->new_cpus;
 474                pmask2 = &tmp->addmask;
 475                pmask3 = &tmp->delmask;
 476        }
 477
 478        if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
 479                return -ENOMEM;
 480
 481        if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
 482                goto free_one;
 483
 484        if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
 485                goto free_two;
 486
 487        return 0;
 488
 489free_two:
 490        free_cpumask_var(*pmask2);
 491free_one:
 492        free_cpumask_var(*pmask1);
 493        return -ENOMEM;
 494}
 495
 496/**
 497 * free_cpumasks - free cpumasks in a tmpmasks structure
 498 * @cs:  the cpuset that have cpumasks to be free.
 499 * @tmp: the tmpmasks structure pointer
 500 */
 501static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
 502{
 503        if (cs) {
 504                free_cpumask_var(cs->cpus_allowed);
 505                free_cpumask_var(cs->effective_cpus);
 506                free_cpumask_var(cs->subparts_cpus);
 507        }
 508        if (tmp) {
 509                free_cpumask_var(tmp->new_cpus);
 510                free_cpumask_var(tmp->addmask);
 511                free_cpumask_var(tmp->delmask);
 512        }
 513}
 514
 515/**
 516 * alloc_trial_cpuset - allocate a trial cpuset
 517 * @cs: the cpuset that the trial cpuset duplicates
 518 */
 519static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 520{
 521        struct cpuset *trial;
 522
 523        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 524        if (!trial)
 525                return NULL;
 526
 527        if (alloc_cpumasks(trial, NULL)) {
 528                kfree(trial);
 529                return NULL;
 530        }
 531
 532        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 533        cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 534        return trial;
 535}
 536
 537/**
 538 * free_cpuset - free the cpuset
 539 * @cs: the cpuset to be freed
 540 */
 541static inline void free_cpuset(struct cpuset *cs)
 542{
 543        free_cpumasks(cs, NULL);
 544        kfree(cs);
 545}
 546
 547/*
 548 * validate_change() - Used to validate that any proposed cpuset change
 549 *                     follows the structural rules for cpusets.
 550 *
 551 * If we replaced the flag and mask values of the current cpuset
 552 * (cur) with those values in the trial cpuset (trial), would
 553 * our various subset and exclusive rules still be valid?  Presumes
 554 * cpuset_mutex held.
 555 *
 556 * 'cur' is the address of an actual, in-use cpuset.  Operations
 557 * such as list traversal that depend on the actual address of the
 558 * cpuset in the list must use cur below, not trial.
 559 *
 560 * 'trial' is the address of bulk structure copy of cur, with
 561 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 562 * or flags changed to new, trial values.
 563 *
 564 * Return 0 if valid, -errno if not.
 565 */
 566
 567static int validate_change(struct cpuset *cur, struct cpuset *trial)
 568{
 569        struct cgroup_subsys_state *css;
 570        struct cpuset *c, *par;
 571        int ret;
 572
 573        rcu_read_lock();
 574
 575        /* Each of our child cpusets must be a subset of us */
 576        ret = -EBUSY;
 577        cpuset_for_each_child(c, css, cur)
 578                if (!is_cpuset_subset(c, trial))
 579                        goto out;
 580
 581        /* Remaining checks don't apply to root cpuset */
 582        ret = 0;
 583        if (cur == &top_cpuset)
 584                goto out;
 585
 586        par = parent_cs(cur);
 587
 588        /* On legacy hierarchy, we must be a subset of our parent cpuset. */
 589        ret = -EACCES;
 590        if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
 591                goto out;
 592
 593        /*
 594         * If either I or some sibling (!= me) is exclusive, we can't
 595         * overlap
 596         */
 597        ret = -EINVAL;
 598        cpuset_for_each_child(c, css, par) {
 599                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 600                    c != cur &&
 601                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 602                        goto out;
 603                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 604                    c != cur &&
 605                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 606                        goto out;
 607        }
 608
 609        /*
 610         * Cpusets with tasks - existing or newly being attached - can't
 611         * be changed to have empty cpus_allowed or mems_allowed.
 612         */
 613        ret = -ENOSPC;
 614        if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 615                if (!cpumask_empty(cur->cpus_allowed) &&
 616                    cpumask_empty(trial->cpus_allowed))
 617                        goto out;
 618                if (!nodes_empty(cur->mems_allowed) &&
 619                    nodes_empty(trial->mems_allowed))
 620                        goto out;
 621        }
 622
 623        /*
 624         * We can't shrink if we won't have enough room for SCHED_DEADLINE
 625         * tasks.
 626         */
 627        ret = -EBUSY;
 628        if (is_cpu_exclusive(cur) &&
 629            !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 630                                       trial->cpus_allowed))
 631                goto out;
 632
 633        ret = 0;
 634out:
 635        rcu_read_unlock();
 636        return ret;
 637}
 638
 639#ifdef CONFIG_SMP
 640/*
 641 * Helper routine for generate_sched_domains().
 642 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 643 */
 644static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 645{
 646        return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 647}
 648
 649static void
 650update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 651{
 652        if (dattr->relax_domain_level < c->relax_domain_level)
 653                dattr->relax_domain_level = c->relax_domain_level;
 654        return;
 655}
 656
 657static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 658                                    struct cpuset *root_cs)
 659{
 660        struct cpuset *cp;
 661        struct cgroup_subsys_state *pos_css;
 662
 663        rcu_read_lock();
 664        cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 665                /* skip the whole subtree if @cp doesn't have any CPU */
 666                if (cpumask_empty(cp->cpus_allowed)) {
 667                        pos_css = css_rightmost_descendant(pos_css);
 668                        continue;
 669                }
 670
 671                if (is_sched_load_balance(cp))
 672                        update_domain_attr(dattr, cp);
 673        }
 674        rcu_read_unlock();
 675}
 676
 677/* Must be called with cpuset_mutex held.  */
 678static inline int nr_cpusets(void)
 679{
 680        /* jump label reference count + the top-level cpuset */
 681        return static_key_count(&cpusets_enabled_key.key) + 1;
 682}
 683
 684/*
 685 * generate_sched_domains()
 686 *
 687 * This function builds a partial partition of the systems CPUs
 688 * A 'partial partition' is a set of non-overlapping subsets whose
 689 * union is a subset of that set.
 690 * The output of this function needs to be passed to kernel/sched/core.c
 691 * partition_sched_domains() routine, which will rebuild the scheduler's
 692 * load balancing domains (sched domains) as specified by that partial
 693 * partition.
 694 *
 695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
 696 * for a background explanation of this.
 697 *
 698 * Does not return errors, on the theory that the callers of this
 699 * routine would rather not worry about failures to rebuild sched
 700 * domains when operating in the severe memory shortage situations
 701 * that could cause allocation failures below.
 702 *
 703 * Must be called with cpuset_mutex held.
 704 *
 705 * The three key local variables below are:
 706 *    cp - cpuset pointer, used (together with pos_css) to perform a
 707 *         top-down scan of all cpusets. For our purposes, rebuilding
 708 *         the schedulers sched domains, we can ignore !is_sched_load_
 709 *         balance cpusets.
 710 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 711 *         that need to be load balanced, for convenient iterative
 712 *         access by the subsequent code that finds the best partition,
 713 *         i.e the set of domains (subsets) of CPUs such that the
 714 *         cpus_allowed of every cpuset marked is_sched_load_balance
 715 *         is a subset of one of these domains, while there are as
 716 *         many such domains as possible, each as small as possible.
 717 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 718 *         the kernel/sched/core.c routine partition_sched_domains() in a
 719 *         convenient format, that can be easily compared to the prior
 720 *         value to determine what partition elements (sched domains)
 721 *         were changed (added or removed.)
 722 *
 723 * Finding the best partition (set of domains):
 724 *      The triple nested loops below over i, j, k scan over the
 725 *      load balanced cpusets (using the array of cpuset pointers in
 726 *      csa[]) looking for pairs of cpusets that have overlapping
 727 *      cpus_allowed, but which don't have the same 'pn' partition
 728 *      number and gives them in the same partition number.  It keeps
 729 *      looping on the 'restart' label until it can no longer find
 730 *      any such pairs.
 731 *
 732 *      The union of the cpus_allowed masks from the set of
 733 *      all cpusets having the same 'pn' value then form the one
 734 *      element of the partition (one sched domain) to be passed to
 735 *      partition_sched_domains().
 736 */
 737static int generate_sched_domains(cpumask_var_t **domains,
 738                        struct sched_domain_attr **attributes)
 739{
 740        struct cpuset *cp;      /* top-down scan of cpusets */
 741        struct cpuset **csa;    /* array of all cpuset ptrs */
 742        int csn;                /* how many cpuset ptrs in csa so far */
 743        int i, j, k;            /* indices for partition finding loops */
 744        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 745        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 746        int ndoms = 0;          /* number of sched domains in result */
 747        int nslot;              /* next empty doms[] struct cpumask slot */
 748        struct cgroup_subsys_state *pos_css;
 749        bool root_load_balance = is_sched_load_balance(&top_cpuset);
 750
 751        doms = NULL;
 752        dattr = NULL;
 753        csa = NULL;
 754
 755        /* Special case for the 99% of systems with one, full, sched domain */
 756        if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
 757                ndoms = 1;
 758                doms = alloc_sched_domains(ndoms);
 759                if (!doms)
 760                        goto done;
 761
 762                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 763                if (dattr) {
 764                        *dattr = SD_ATTR_INIT;
 765                        update_domain_attr_tree(dattr, &top_cpuset);
 766                }
 767                cpumask_and(doms[0], top_cpuset.effective_cpus,
 768                            housekeeping_cpumask(HK_FLAG_DOMAIN));
 769
 770                goto done;
 771        }
 772
 773        csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
 774        if (!csa)
 775                goto done;
 776        csn = 0;
 777
 778        rcu_read_lock();
 779        if (root_load_balance)
 780                csa[csn++] = &top_cpuset;
 781        cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 782                if (cp == &top_cpuset)
 783                        continue;
 784                /*
 785                 * Continue traversing beyond @cp iff @cp has some CPUs and
 786                 * isn't load balancing.  The former is obvious.  The
 787                 * latter: All child cpusets contain a subset of the
 788                 * parent's cpus, so just skip them, and then we call
 789                 * update_domain_attr_tree() to calc relax_domain_level of
 790                 * the corresponding sched domain.
 791                 *
 792                 * If root is load-balancing, we can skip @cp if it
 793                 * is a subset of the root's effective_cpus.
 794                 */
 795                if (!cpumask_empty(cp->cpus_allowed) &&
 796                    !(is_sched_load_balance(cp) &&
 797                      cpumask_intersects(cp->cpus_allowed,
 798                                         housekeeping_cpumask(HK_FLAG_DOMAIN))))
 799                        continue;
 800
 801                if (root_load_balance &&
 802                    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
 803                        continue;
 804
 805                if (is_sched_load_balance(cp) &&
 806                    !cpumask_empty(cp->effective_cpus))
 807                        csa[csn++] = cp;
 808
 809                /* skip @cp's subtree if not a partition root */
 810                if (!is_partition_root(cp))
 811                        pos_css = css_rightmost_descendant(pos_css);
 812        }
 813        rcu_read_unlock();
 814
 815        for (i = 0; i < csn; i++)
 816                csa[i]->pn = i;
 817        ndoms = csn;
 818
 819restart:
 820        /* Find the best partition (set of sched domains) */
 821        for (i = 0; i < csn; i++) {
 822                struct cpuset *a = csa[i];
 823                int apn = a->pn;
 824
 825                for (j = 0; j < csn; j++) {
 826                        struct cpuset *b = csa[j];
 827                        int bpn = b->pn;
 828
 829                        if (apn != bpn && cpusets_overlap(a, b)) {
 830                                for (k = 0; k < csn; k++) {
 831                                        struct cpuset *c = csa[k];
 832
 833                                        if (c->pn == bpn)
 834                                                c->pn = apn;
 835                                }
 836                                ndoms--;        /* one less element */
 837                                goto restart;
 838                        }
 839                }
 840        }
 841
 842        /*
 843         * Now we know how many domains to create.
 844         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 845         */
 846        doms = alloc_sched_domains(ndoms);
 847        if (!doms)
 848                goto done;
 849
 850        /*
 851         * The rest of the code, including the scheduler, can deal with
 852         * dattr==NULL case. No need to abort if alloc fails.
 853         */
 854        dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
 855                              GFP_KERNEL);
 856
 857        for (nslot = 0, i = 0; i < csn; i++) {
 858                struct cpuset *a = csa[i];
 859                struct cpumask *dp;
 860                int apn = a->pn;
 861
 862                if (apn < 0) {
 863                        /* Skip completed partitions */
 864                        continue;
 865                }
 866
 867                dp = doms[nslot];
 868
 869                if (nslot == ndoms) {
 870                        static int warnings = 10;
 871                        if (warnings) {
 872                                pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 873                                        nslot, ndoms, csn, i, apn);
 874                                warnings--;
 875                        }
 876                        continue;
 877                }
 878
 879                cpumask_clear(dp);
 880                if (dattr)
 881                        *(dattr + nslot) = SD_ATTR_INIT;
 882                for (j = i; j < csn; j++) {
 883                        struct cpuset *b = csa[j];
 884
 885                        if (apn == b->pn) {
 886                                cpumask_or(dp, dp, b->effective_cpus);
 887                                cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
 888                                if (dattr)
 889                                        update_domain_attr_tree(dattr + nslot, b);
 890
 891                                /* Done with this partition */
 892                                b->pn = -1;
 893                        }
 894                }
 895                nslot++;
 896        }
 897        BUG_ON(nslot != ndoms);
 898
 899done:
 900        kfree(csa);
 901
 902        /*
 903         * Fallback to the default domain if kmalloc() failed.
 904         * See comments in partition_sched_domains().
 905         */
 906        if (doms == NULL)
 907                ndoms = 1;
 908
 909        *domains    = doms;
 910        *attributes = dattr;
 911        return ndoms;
 912}
 913
 914static void update_tasks_root_domain(struct cpuset *cs)
 915{
 916        struct css_task_iter it;
 917        struct task_struct *task;
 918
 919        css_task_iter_start(&cs->css, 0, &it);
 920
 921        while ((task = css_task_iter_next(&it)))
 922                dl_add_task_root_domain(task);
 923
 924        css_task_iter_end(&it);
 925}
 926
 927static void rebuild_root_domains(void)
 928{
 929        struct cpuset *cs = NULL;
 930        struct cgroup_subsys_state *pos_css;
 931
 932        percpu_rwsem_assert_held(&cpuset_rwsem);
 933        lockdep_assert_cpus_held();
 934        lockdep_assert_held(&sched_domains_mutex);
 935
 936        rcu_read_lock();
 937
 938        /*
 939         * Clear default root domain DL accounting, it will be computed again
 940         * if a task belongs to it.
 941         */
 942        dl_clear_root_domain(&def_root_domain);
 943
 944        cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
 945
 946                if (cpumask_empty(cs->effective_cpus)) {
 947                        pos_css = css_rightmost_descendant(pos_css);
 948                        continue;
 949                }
 950
 951                css_get(&cs->css);
 952
 953                rcu_read_unlock();
 954
 955                update_tasks_root_domain(cs);
 956
 957                rcu_read_lock();
 958                css_put(&cs->css);
 959        }
 960        rcu_read_unlock();
 961}
 962
 963static void
 964partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 965                                    struct sched_domain_attr *dattr_new)
 966{
 967        mutex_lock(&sched_domains_mutex);
 968        partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
 969        rebuild_root_domains();
 970        mutex_unlock(&sched_domains_mutex);
 971}
 972
 973/*
 974 * Rebuild scheduler domains.
 975 *
 976 * If the flag 'sched_load_balance' of any cpuset with non-empty
 977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 978 * which has that flag enabled, or if any cpuset with a non-empty
 979 * 'cpus' is removed, then call this routine to rebuild the
 980 * scheduler's dynamic sched domains.
 981 *
 982 * Call with cpuset_mutex held.  Takes get_online_cpus().
 983 */
 984static void rebuild_sched_domains_locked(void)
 985{
 986        struct cgroup_subsys_state *pos_css;
 987        struct sched_domain_attr *attr;
 988        cpumask_var_t *doms;
 989        struct cpuset *cs;
 990        int ndoms;
 991
 992        lockdep_assert_cpus_held();
 993        percpu_rwsem_assert_held(&cpuset_rwsem);
 994
 995        /*
 996         * If we have raced with CPU hotplug, return early to avoid
 997         * passing doms with offlined cpu to partition_sched_domains().
 998         * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
 999         *
1000         * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1001         * should be the same as the active CPUs, so checking only top_cpuset
1002         * is enough to detect racing CPU offlines.
1003         */
1004        if (!top_cpuset.nr_subparts_cpus &&
1005            !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1006                return;
1007
1008        /*
1009         * With subpartition CPUs, however, the effective CPUs of a partition
1010         * root should be only a subset of the active CPUs.  Since a CPU in any
1011         * partition root could be offlined, all must be checked.
1012         */
1013        if (top_cpuset.nr_subparts_cpus) {
1014                rcu_read_lock();
1015                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1016                        if (!is_partition_root(cs)) {
1017                                pos_css = css_rightmost_descendant(pos_css);
1018                                continue;
1019                        }
1020                        if (!cpumask_subset(cs->effective_cpus,
1021                                            cpu_active_mask)) {
1022                                rcu_read_unlock();
1023                                return;
1024                        }
1025                }
1026                rcu_read_unlock();
1027        }
1028
1029        /* Generate domain masks and attrs */
1030        ndoms = generate_sched_domains(&doms, &attr);
1031
1032        /* Have scheduler rebuild the domains */
1033        partition_and_rebuild_sched_domains(ndoms, doms, attr);
1034}
1035#else /* !CONFIG_SMP */
1036static void rebuild_sched_domains_locked(void)
1037{
1038}
1039#endif /* CONFIG_SMP */
1040
1041void rebuild_sched_domains(void)
1042{
1043        get_online_cpus();
1044        percpu_down_write(&cpuset_rwsem);
1045        rebuild_sched_domains_locked();
1046        percpu_up_write(&cpuset_rwsem);
1047        put_online_cpus();
1048}
1049
1050/**
1051 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1052 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1053 *
1054 * Iterate through each task of @cs updating its cpus_allowed to the
1055 * effective cpuset's.  As this function is called with cpuset_mutex held,
1056 * cpuset membership stays stable.
1057 */
1058static void update_tasks_cpumask(struct cpuset *cs)
1059{
1060        struct css_task_iter it;
1061        struct task_struct *task;
1062
1063        css_task_iter_start(&cs->css, 0, &it);
1064        while ((task = css_task_iter_next(&it)))
1065                set_cpus_allowed_ptr(task, cs->effective_cpus);
1066        css_task_iter_end(&it);
1067}
1068
1069/**
1070 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1071 * @new_cpus: the temp variable for the new effective_cpus mask
1072 * @cs: the cpuset the need to recompute the new effective_cpus mask
1073 * @parent: the parent cpuset
1074 *
1075 * If the parent has subpartition CPUs, include them in the list of
1076 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1077 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1078 * to mask those out.
1079 */
1080static void compute_effective_cpumask(struct cpumask *new_cpus,
1081                                      struct cpuset *cs, struct cpuset *parent)
1082{
1083        if (parent->nr_subparts_cpus) {
1084                cpumask_or(new_cpus, parent->effective_cpus,
1085                           parent->subparts_cpus);
1086                cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1087                cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1088        } else {
1089                cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1090        }
1091}
1092
1093/*
1094 * Commands for update_parent_subparts_cpumask
1095 */
1096enum subparts_cmd {
1097        partcmd_enable,         /* Enable partition root         */
1098        partcmd_disable,        /* Disable partition root        */
1099        partcmd_update,         /* Update parent's subparts_cpus */
1100};
1101
1102/**
1103 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1104 * @cpuset:  The cpuset that requests change in partition root state
1105 * @cmd:     Partition root state change command
1106 * @newmask: Optional new cpumask for partcmd_update
1107 * @tmp:     Temporary addmask and delmask
1108 * Return:   0, 1 or an error code
1109 *
1110 * For partcmd_enable, the cpuset is being transformed from a non-partition
1111 * root to a partition root. The cpus_allowed mask of the given cpuset will
1112 * be put into parent's subparts_cpus and taken away from parent's
1113 * effective_cpus. The function will return 0 if all the CPUs listed in
1114 * cpus_allowed can be granted or an error code will be returned.
1115 *
1116 * For partcmd_disable, the cpuset is being transofrmed from a partition
1117 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1118 * parent's subparts_cpus will be taken away from that cpumask and put back
1119 * into parent's effective_cpus. 0 should always be returned.
1120 *
1121 * For partcmd_update, if the optional newmask is specified, the cpu
1122 * list is to be changed from cpus_allowed to newmask. Otherwise,
1123 * cpus_allowed is assumed to remain the same. The cpuset should either
1124 * be a partition root or an invalid partition root. The partition root
1125 * state may change if newmask is NULL and none of the requested CPUs can
1126 * be granted by the parent. The function will return 1 if changes to
1127 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1128 * Error code should only be returned when newmask is non-NULL.
1129 *
1130 * The partcmd_enable and partcmd_disable commands are used by
1131 * update_prstate(). The partcmd_update command is used by
1132 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1133 * newmask set.
1134 *
1135 * The checking is more strict when enabling partition root than the
1136 * other two commands.
1137 *
1138 * Because of the implicit cpu exclusive nature of a partition root,
1139 * cpumask changes that violates the cpu exclusivity rule will not be
1140 * permitted when checked by validate_change(). The validate_change()
1141 * function will also prevent any changes to the cpu list if it is not
1142 * a superset of children's cpu lists.
1143 */
1144static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1145                                          struct cpumask *newmask,
1146                                          struct tmpmasks *tmp)
1147{
1148        struct cpuset *parent = parent_cs(cpuset);
1149        int adding;     /* Moving cpus from effective_cpus to subparts_cpus */
1150        int deleting;   /* Moving cpus from subparts_cpus to effective_cpus */
1151        bool part_error = false;        /* Partition error? */
1152
1153        percpu_rwsem_assert_held(&cpuset_rwsem);
1154
1155        /*
1156         * The parent must be a partition root.
1157         * The new cpumask, if present, or the current cpus_allowed must
1158         * not be empty.
1159         */
1160        if (!is_partition_root(parent) ||
1161           (newmask && cpumask_empty(newmask)) ||
1162           (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1163                return -EINVAL;
1164
1165        /*
1166         * Enabling/disabling partition root is not allowed if there are
1167         * online children.
1168         */
1169        if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1170                return -EBUSY;
1171
1172        /*
1173         * Enabling partition root is not allowed if not all the CPUs
1174         * can be granted from parent's effective_cpus or at least one
1175         * CPU will be left after that.
1176         */
1177        if ((cmd == partcmd_enable) &&
1178           (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1179             cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1180                return -EINVAL;
1181
1182        /*
1183         * A cpumask update cannot make parent's effective_cpus become empty.
1184         */
1185        adding = deleting = false;
1186        if (cmd == partcmd_enable) {
1187                cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1188                adding = true;
1189        } else if (cmd == partcmd_disable) {
1190                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1191                                       parent->subparts_cpus);
1192        } else if (newmask) {
1193                /*
1194                 * partcmd_update with newmask:
1195                 *
1196                 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1197                 * addmask = newmask & parent->effective_cpus
1198                 *                   & ~parent->subparts_cpus
1199                 */
1200                cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1201                deleting = cpumask_and(tmp->delmask, tmp->delmask,
1202                                       parent->subparts_cpus);
1203
1204                cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1205                adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1206                                        parent->subparts_cpus);
1207                /*
1208                 * Return error if the new effective_cpus could become empty.
1209                 */
1210                if (adding &&
1211                    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1212                        if (!deleting)
1213                                return -EINVAL;
1214                        /*
1215                         * As some of the CPUs in subparts_cpus might have
1216                         * been offlined, we need to compute the real delmask
1217                         * to confirm that.
1218                         */
1219                        if (!cpumask_and(tmp->addmask, tmp->delmask,
1220                                         cpu_active_mask))
1221                                return -EINVAL;
1222                        cpumask_copy(tmp->addmask, parent->effective_cpus);
1223                }
1224        } else {
1225                /*
1226                 * partcmd_update w/o newmask:
1227                 *
1228                 * addmask = cpus_allowed & parent->effectiveb_cpus
1229                 *
1230                 * Note that parent's subparts_cpus may have been
1231                 * pre-shrunk in case there is a change in the cpu list.
1232                 * So no deletion is needed.
1233                 */
1234                adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1235                                     parent->effective_cpus);
1236                part_error = cpumask_equal(tmp->addmask,
1237                                           parent->effective_cpus);
1238        }
1239
1240        if (cmd == partcmd_update) {
1241                int prev_prs = cpuset->partition_root_state;
1242
1243                /*
1244                 * Check for possible transition between PRS_ENABLED
1245                 * and PRS_ERROR.
1246                 */
1247                switch (cpuset->partition_root_state) {
1248                case PRS_ENABLED:
1249                        if (part_error)
1250                                cpuset->partition_root_state = PRS_ERROR;
1251                        break;
1252                case PRS_ERROR:
1253                        if (!part_error)
1254                                cpuset->partition_root_state = PRS_ENABLED;
1255                        break;
1256                }
1257                /*
1258                 * Set part_error if previously in invalid state.
1259                 */
1260                part_error = (prev_prs == PRS_ERROR);
1261        }
1262
1263        if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1264                return 0;       /* Nothing need to be done */
1265
1266        if (cpuset->partition_root_state == PRS_ERROR) {
1267                /*
1268                 * Remove all its cpus from parent's subparts_cpus.
1269                 */
1270                adding = false;
1271                deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1272                                       parent->subparts_cpus);
1273        }
1274
1275        if (!adding && !deleting)
1276                return 0;
1277
1278        /*
1279         * Change the parent's subparts_cpus.
1280         * Newly added CPUs will be removed from effective_cpus and
1281         * newly deleted ones will be added back to effective_cpus.
1282         */
1283        spin_lock_irq(&callback_lock);
1284        if (adding) {
1285                cpumask_or(parent->subparts_cpus,
1286                           parent->subparts_cpus, tmp->addmask);
1287                cpumask_andnot(parent->effective_cpus,
1288                               parent->effective_cpus, tmp->addmask);
1289        }
1290        if (deleting) {
1291                cpumask_andnot(parent->subparts_cpus,
1292                               parent->subparts_cpus, tmp->delmask);
1293                /*
1294                 * Some of the CPUs in subparts_cpus might have been offlined.
1295                 */
1296                cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1297                cpumask_or(parent->effective_cpus,
1298                           parent->effective_cpus, tmp->delmask);
1299        }
1300
1301        parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1302        spin_unlock_irq(&callback_lock);
1303
1304        return cmd == partcmd_update;
1305}
1306
1307/*
1308 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1309 * @cs:  the cpuset to consider
1310 * @tmp: temp variables for calculating effective_cpus & partition setup
1311 *
1312 * When configured cpumask is changed, the effective cpumasks of this cpuset
1313 * and all its descendants need to be updated.
1314 *
1315 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1316 *
1317 * Called with cpuset_mutex held
1318 */
1319static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1320{
1321        struct cpuset *cp;
1322        struct cgroup_subsys_state *pos_css;
1323        bool need_rebuild_sched_domains = false;
1324
1325        rcu_read_lock();
1326        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1327                struct cpuset *parent = parent_cs(cp);
1328
1329                compute_effective_cpumask(tmp->new_cpus, cp, parent);
1330
1331                /*
1332                 * If it becomes empty, inherit the effective mask of the
1333                 * parent, which is guaranteed to have some CPUs.
1334                 */
1335                if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1336                        cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1337                        if (!cp->use_parent_ecpus) {
1338                                cp->use_parent_ecpus = true;
1339                                parent->child_ecpus_count++;
1340                        }
1341                } else if (cp->use_parent_ecpus) {
1342                        cp->use_parent_ecpus = false;
1343                        WARN_ON_ONCE(!parent->child_ecpus_count);
1344                        parent->child_ecpus_count--;
1345                }
1346
1347                /*
1348                 * Skip the whole subtree if the cpumask remains the same
1349                 * and has no partition root state.
1350                 */
1351                if (!cp->partition_root_state &&
1352                    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1353                        pos_css = css_rightmost_descendant(pos_css);
1354                        continue;
1355                }
1356
1357                /*
1358                 * update_parent_subparts_cpumask() should have been called
1359                 * for cs already in update_cpumask(). We should also call
1360                 * update_tasks_cpumask() again for tasks in the parent
1361                 * cpuset if the parent's subparts_cpus changes.
1362                 */
1363                if ((cp != cs) && cp->partition_root_state) {
1364                        switch (parent->partition_root_state) {
1365                        case PRS_DISABLED:
1366                                /*
1367                                 * If parent is not a partition root or an
1368                                 * invalid partition root, clear the state
1369                                 * state and the CS_CPU_EXCLUSIVE flag.
1370                                 */
1371                                WARN_ON_ONCE(cp->partition_root_state
1372                                             != PRS_ERROR);
1373                                cp->partition_root_state = 0;
1374
1375                                /*
1376                                 * clear_bit() is an atomic operation and
1377                                 * readers aren't interested in the state
1378                                 * of CS_CPU_EXCLUSIVE anyway. So we can
1379                                 * just update the flag without holding
1380                                 * the callback_lock.
1381                                 */
1382                                clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1383                                break;
1384
1385                        case PRS_ENABLED:
1386                                if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1387                                        update_tasks_cpumask(parent);
1388                                break;
1389
1390                        case PRS_ERROR:
1391                                /*
1392                                 * When parent is invalid, it has to be too.
1393                                 */
1394                                cp->partition_root_state = PRS_ERROR;
1395                                if (cp->nr_subparts_cpus) {
1396                                        cp->nr_subparts_cpus = 0;
1397                                        cpumask_clear(cp->subparts_cpus);
1398                                }
1399                                break;
1400                        }
1401                }
1402
1403                if (!css_tryget_online(&cp->css))
1404                        continue;
1405                rcu_read_unlock();
1406
1407                spin_lock_irq(&callback_lock);
1408
1409                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1410                if (cp->nr_subparts_cpus &&
1411                   (cp->partition_root_state != PRS_ENABLED)) {
1412                        cp->nr_subparts_cpus = 0;
1413                        cpumask_clear(cp->subparts_cpus);
1414                } else if (cp->nr_subparts_cpus) {
1415                        /*
1416                         * Make sure that effective_cpus & subparts_cpus
1417                         * are mutually exclusive.
1418                         *
1419                         * In the unlikely event that effective_cpus
1420                         * becomes empty. we clear cp->nr_subparts_cpus and
1421                         * let its child partition roots to compete for
1422                         * CPUs again.
1423                         */
1424                        cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1425                                       cp->subparts_cpus);
1426                        if (cpumask_empty(cp->effective_cpus)) {
1427                                cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1428                                cpumask_clear(cp->subparts_cpus);
1429                                cp->nr_subparts_cpus = 0;
1430                        } else if (!cpumask_subset(cp->subparts_cpus,
1431                                                   tmp->new_cpus)) {
1432                                cpumask_andnot(cp->subparts_cpus,
1433                                        cp->subparts_cpus, tmp->new_cpus);
1434                                cp->nr_subparts_cpus
1435                                        = cpumask_weight(cp->subparts_cpus);
1436                        }
1437                }
1438                spin_unlock_irq(&callback_lock);
1439
1440                WARN_ON(!is_in_v2_mode() &&
1441                        !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1442
1443                update_tasks_cpumask(cp);
1444
1445                /*
1446                 * On legacy hierarchy, if the effective cpumask of any non-
1447                 * empty cpuset is changed, we need to rebuild sched domains.
1448                 * On default hierarchy, the cpuset needs to be a partition
1449                 * root as well.
1450                 */
1451                if (!cpumask_empty(cp->cpus_allowed) &&
1452                    is_sched_load_balance(cp) &&
1453                   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1454                    is_partition_root(cp)))
1455                        need_rebuild_sched_domains = true;
1456
1457                rcu_read_lock();
1458                css_put(&cp->css);
1459        }
1460        rcu_read_unlock();
1461
1462        if (need_rebuild_sched_domains)
1463                rebuild_sched_domains_locked();
1464}
1465
1466/**
1467 * update_sibling_cpumasks - Update siblings cpumasks
1468 * @parent:  Parent cpuset
1469 * @cs:      Current cpuset
1470 * @tmp:     Temp variables
1471 */
1472static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1473                                    struct tmpmasks *tmp)
1474{
1475        struct cpuset *sibling;
1476        struct cgroup_subsys_state *pos_css;
1477
1478        /*
1479         * Check all its siblings and call update_cpumasks_hier()
1480         * if their use_parent_ecpus flag is set in order for them
1481         * to use the right effective_cpus value.
1482         */
1483        rcu_read_lock();
1484        cpuset_for_each_child(sibling, pos_css, parent) {
1485                if (sibling == cs)
1486                        continue;
1487                if (!sibling->use_parent_ecpus)
1488                        continue;
1489
1490                update_cpumasks_hier(sibling, tmp);
1491        }
1492        rcu_read_unlock();
1493}
1494
1495/**
1496 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1497 * @cs: the cpuset to consider
1498 * @trialcs: trial cpuset
1499 * @buf: buffer of cpu numbers written to this cpuset
1500 */
1501static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1502                          const char *buf)
1503{
1504        int retval;
1505        struct tmpmasks tmp;
1506
1507        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1508        if (cs == &top_cpuset)
1509                return -EACCES;
1510
1511        /*
1512         * An empty cpus_allowed is ok only if the cpuset has no tasks.
1513         * Since cpulist_parse() fails on an empty mask, we special case
1514         * that parsing.  The validate_change() call ensures that cpusets
1515         * with tasks have cpus.
1516         */
1517        if (!*buf) {
1518                cpumask_clear(trialcs->cpus_allowed);
1519        } else {
1520                retval = cpulist_parse(buf, trialcs->cpus_allowed);
1521                if (retval < 0)
1522                        return retval;
1523
1524                if (!cpumask_subset(trialcs->cpus_allowed,
1525                                    top_cpuset.cpus_allowed))
1526                        return -EINVAL;
1527        }
1528
1529        /* Nothing to do if the cpus didn't change */
1530        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1531                return 0;
1532
1533        retval = validate_change(cs, trialcs);
1534        if (retval < 0)
1535                return retval;
1536
1537#ifdef CONFIG_CPUMASK_OFFSTACK
1538        /*
1539         * Use the cpumasks in trialcs for tmpmasks when they are pointers
1540         * to allocated cpumasks.
1541         */
1542        tmp.addmask  = trialcs->subparts_cpus;
1543        tmp.delmask  = trialcs->effective_cpus;
1544        tmp.new_cpus = trialcs->cpus_allowed;
1545#endif
1546
1547        if (cs->partition_root_state) {
1548                /* Cpumask of a partition root cannot be empty */
1549                if (cpumask_empty(trialcs->cpus_allowed))
1550                        return -EINVAL;
1551                if (update_parent_subparts_cpumask(cs, partcmd_update,
1552                                        trialcs->cpus_allowed, &tmp) < 0)
1553                        return -EINVAL;
1554        }
1555
1556        spin_lock_irq(&callback_lock);
1557        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1558
1559        /*
1560         * Make sure that subparts_cpus is a subset of cpus_allowed.
1561         */
1562        if (cs->nr_subparts_cpus) {
1563                cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1564                               cs->cpus_allowed);
1565                cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1566        }
1567        spin_unlock_irq(&callback_lock);
1568
1569        update_cpumasks_hier(cs, &tmp);
1570
1571        if (cs->partition_root_state) {
1572                struct cpuset *parent = parent_cs(cs);
1573
1574                /*
1575                 * For partition root, update the cpumasks of sibling
1576                 * cpusets if they use parent's effective_cpus.
1577                 */
1578                if (parent->child_ecpus_count)
1579                        update_sibling_cpumasks(parent, cs, &tmp);
1580        }
1581        return 0;
1582}
1583
1584/*
1585 * Migrate memory region from one set of nodes to another.  This is
1586 * performed asynchronously as it can be called from process migration path
1587 * holding locks involved in process management.  All mm migrations are
1588 * performed in the queued order and can be waited for by flushing
1589 * cpuset_migrate_mm_wq.
1590 */
1591
1592struct cpuset_migrate_mm_work {
1593        struct work_struct      work;
1594        struct mm_struct        *mm;
1595        nodemask_t              from;
1596        nodemask_t              to;
1597};
1598
1599static void cpuset_migrate_mm_workfn(struct work_struct *work)
1600{
1601        struct cpuset_migrate_mm_work *mwork =
1602                container_of(work, struct cpuset_migrate_mm_work, work);
1603
1604        /* on a wq worker, no need to worry about %current's mems_allowed */
1605        do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1606        mmput(mwork->mm);
1607        kfree(mwork);
1608}
1609
1610static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1611                                                        const nodemask_t *to)
1612{
1613        struct cpuset_migrate_mm_work *mwork;
1614
1615        mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1616        if (mwork) {
1617                mwork->mm = mm;
1618                mwork->from = *from;
1619                mwork->to = *to;
1620                INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1621                queue_work(cpuset_migrate_mm_wq, &mwork->work);
1622        } else {
1623                mmput(mm);
1624        }
1625}
1626
1627static void cpuset_post_attach(void)
1628{
1629        flush_workqueue(cpuset_migrate_mm_wq);
1630}
1631
1632/*
1633 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1634 * @tsk: the task to change
1635 * @newmems: new nodes that the task will be set
1636 *
1637 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1638 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1639 * parallel, it might temporarily see an empty intersection, which results in
1640 * a seqlock check and retry before OOM or allocation failure.
1641 */
1642static void cpuset_change_task_nodemask(struct task_struct *tsk,
1643                                        nodemask_t *newmems)
1644{
1645        task_lock(tsk);
1646
1647        local_irq_disable();
1648        write_seqcount_begin(&tsk->mems_allowed_seq);
1649
1650        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1651        mpol_rebind_task(tsk, newmems);
1652        tsk->mems_allowed = *newmems;
1653
1654        write_seqcount_end(&tsk->mems_allowed_seq);
1655        local_irq_enable();
1656
1657        task_unlock(tsk);
1658}
1659
1660static void *cpuset_being_rebound;
1661
1662/**
1663 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1664 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1665 *
1666 * Iterate through each task of @cs updating its mems_allowed to the
1667 * effective cpuset's.  As this function is called with cpuset_mutex held,
1668 * cpuset membership stays stable.
1669 */
1670static void update_tasks_nodemask(struct cpuset *cs)
1671{
1672        static nodemask_t newmems;      /* protected by cpuset_mutex */
1673        struct css_task_iter it;
1674        struct task_struct *task;
1675
1676        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1677
1678        guarantee_online_mems(cs, &newmems);
1679
1680        /*
1681         * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1682         * take while holding tasklist_lock.  Forks can happen - the
1683         * mpol_dup() cpuset_being_rebound check will catch such forks,
1684         * and rebind their vma mempolicies too.  Because we still hold
1685         * the global cpuset_mutex, we know that no other rebind effort
1686         * will be contending for the global variable cpuset_being_rebound.
1687         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1688         * is idempotent.  Also migrate pages in each mm to new nodes.
1689         */
1690        css_task_iter_start(&cs->css, 0, &it);
1691        while ((task = css_task_iter_next(&it))) {
1692                struct mm_struct *mm;
1693                bool migrate;
1694
1695                cpuset_change_task_nodemask(task, &newmems);
1696
1697                mm = get_task_mm(task);
1698                if (!mm)
1699                        continue;
1700
1701                migrate = is_memory_migrate(cs);
1702
1703                mpol_rebind_mm(mm, &cs->mems_allowed);
1704                if (migrate)
1705                        cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1706                else
1707                        mmput(mm);
1708        }
1709        css_task_iter_end(&it);
1710
1711        /*
1712         * All the tasks' nodemasks have been updated, update
1713         * cs->old_mems_allowed.
1714         */
1715        cs->old_mems_allowed = newmems;
1716
1717        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1718        cpuset_being_rebound = NULL;
1719}
1720
1721/*
1722 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1723 * @cs: the cpuset to consider
1724 * @new_mems: a temp variable for calculating new effective_mems
1725 *
1726 * When configured nodemask is changed, the effective nodemasks of this cpuset
1727 * and all its descendants need to be updated.
1728 *
1729 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1730 *
1731 * Called with cpuset_mutex held
1732 */
1733static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1734{
1735        struct cpuset *cp;
1736        struct cgroup_subsys_state *pos_css;
1737
1738        rcu_read_lock();
1739        cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1740                struct cpuset *parent = parent_cs(cp);
1741
1742                nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1743
1744                /*
1745                 * If it becomes empty, inherit the effective mask of the
1746                 * parent, which is guaranteed to have some MEMs.
1747                 */
1748                if (is_in_v2_mode() && nodes_empty(*new_mems))
1749                        *new_mems = parent->effective_mems;
1750
1751                /* Skip the whole subtree if the nodemask remains the same. */
1752                if (nodes_equal(*new_mems, cp->effective_mems)) {
1753                        pos_css = css_rightmost_descendant(pos_css);
1754                        continue;
1755                }
1756
1757                if (!css_tryget_online(&cp->css))
1758                        continue;
1759                rcu_read_unlock();
1760
1761                spin_lock_irq(&callback_lock);
1762                cp->effective_mems = *new_mems;
1763                spin_unlock_irq(&callback_lock);
1764
1765                WARN_ON(!is_in_v2_mode() &&
1766                        !nodes_equal(cp->mems_allowed, cp->effective_mems));
1767
1768                update_tasks_nodemask(cp);
1769
1770                rcu_read_lock();
1771                css_put(&cp->css);
1772        }
1773        rcu_read_unlock();
1774}
1775
1776/*
1777 * Handle user request to change the 'mems' memory placement
1778 * of a cpuset.  Needs to validate the request, update the
1779 * cpusets mems_allowed, and for each task in the cpuset,
1780 * update mems_allowed and rebind task's mempolicy and any vma
1781 * mempolicies and if the cpuset is marked 'memory_migrate',
1782 * migrate the tasks pages to the new memory.
1783 *
1784 * Call with cpuset_mutex held. May take callback_lock during call.
1785 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1786 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1787 * their mempolicies to the cpusets new mems_allowed.
1788 */
1789static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1790                           const char *buf)
1791{
1792        int retval;
1793
1794        /*
1795         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1796         * it's read-only
1797         */
1798        if (cs == &top_cpuset) {
1799                retval = -EACCES;
1800                goto done;
1801        }
1802
1803        /*
1804         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1805         * Since nodelist_parse() fails on an empty mask, we special case
1806         * that parsing.  The validate_change() call ensures that cpusets
1807         * with tasks have memory.
1808         */
1809        if (!*buf) {
1810                nodes_clear(trialcs->mems_allowed);
1811        } else {
1812                retval = nodelist_parse(buf, trialcs->mems_allowed);
1813                if (retval < 0)
1814                        goto done;
1815
1816                if (!nodes_subset(trialcs->mems_allowed,
1817                                  top_cpuset.mems_allowed)) {
1818                        retval = -EINVAL;
1819                        goto done;
1820                }
1821        }
1822
1823        if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1824                retval = 0;             /* Too easy - nothing to do */
1825                goto done;
1826        }
1827        retval = validate_change(cs, trialcs);
1828        if (retval < 0)
1829                goto done;
1830
1831        spin_lock_irq(&callback_lock);
1832        cs->mems_allowed = trialcs->mems_allowed;
1833        spin_unlock_irq(&callback_lock);
1834
1835        /* use trialcs->mems_allowed as a temp variable */
1836        update_nodemasks_hier(cs, &trialcs->mems_allowed);
1837done:
1838        return retval;
1839}
1840
1841bool current_cpuset_is_being_rebound(void)
1842{
1843        bool ret;
1844
1845        rcu_read_lock();
1846        ret = task_cs(current) == cpuset_being_rebound;
1847        rcu_read_unlock();
1848
1849        return ret;
1850}
1851
1852static int update_relax_domain_level(struct cpuset *cs, s64 val)
1853{
1854#ifdef CONFIG_SMP
1855        if (val < -1 || val >= sched_domain_level_max)
1856                return -EINVAL;
1857#endif
1858
1859        if (val != cs->relax_domain_level) {
1860                cs->relax_domain_level = val;
1861                if (!cpumask_empty(cs->cpus_allowed) &&
1862                    is_sched_load_balance(cs))
1863                        rebuild_sched_domains_locked();
1864        }
1865
1866        return 0;
1867}
1868
1869/**
1870 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1871 * @cs: the cpuset in which each task's spread flags needs to be changed
1872 *
1873 * Iterate through each task of @cs updating its spread flags.  As this
1874 * function is called with cpuset_mutex held, cpuset membership stays
1875 * stable.
1876 */
1877static void update_tasks_flags(struct cpuset *cs)
1878{
1879        struct css_task_iter it;
1880        struct task_struct *task;
1881
1882        css_task_iter_start(&cs->css, 0, &it);
1883        while ((task = css_task_iter_next(&it)))
1884                cpuset_update_task_spread_flag(cs, task);
1885        css_task_iter_end(&it);
1886}
1887
1888/*
1889 * update_flag - read a 0 or a 1 in a file and update associated flag
1890 * bit:         the bit to update (see cpuset_flagbits_t)
1891 * cs:          the cpuset to update
1892 * turning_on:  whether the flag is being set or cleared
1893 *
1894 * Call with cpuset_mutex held.
1895 */
1896
1897static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1898                       int turning_on)
1899{
1900        struct cpuset *trialcs;
1901        int balance_flag_changed;
1902        int spread_flag_changed;
1903        int err;
1904
1905        trialcs = alloc_trial_cpuset(cs);
1906        if (!trialcs)
1907                return -ENOMEM;
1908
1909        if (turning_on)
1910                set_bit(bit, &trialcs->flags);
1911        else
1912                clear_bit(bit, &trialcs->flags);
1913
1914        err = validate_change(cs, trialcs);
1915        if (err < 0)
1916                goto out;
1917
1918        balance_flag_changed = (is_sched_load_balance(cs) !=
1919                                is_sched_load_balance(trialcs));
1920
1921        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1922                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1923
1924        spin_lock_irq(&callback_lock);
1925        cs->flags = trialcs->flags;
1926        spin_unlock_irq(&callback_lock);
1927
1928        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1929                rebuild_sched_domains_locked();
1930
1931        if (spread_flag_changed)
1932                update_tasks_flags(cs);
1933out:
1934        free_cpuset(trialcs);
1935        return err;
1936}
1937
1938/*
1939 * update_prstate - update partititon_root_state
1940 * cs:  the cpuset to update
1941 * val: 0 - disabled, 1 - enabled
1942 *
1943 * Call with cpuset_mutex held.
1944 */
1945static int update_prstate(struct cpuset *cs, int val)
1946{
1947        int err;
1948        struct cpuset *parent = parent_cs(cs);
1949        struct tmpmasks tmp;
1950
1951        if ((val != 0) && (val != 1))
1952                return -EINVAL;
1953        if (val == cs->partition_root_state)
1954                return 0;
1955
1956        /*
1957         * Cannot force a partial or invalid partition root to a full
1958         * partition root.
1959         */
1960        if (val && cs->partition_root_state)
1961                return -EINVAL;
1962
1963        if (alloc_cpumasks(NULL, &tmp))
1964                return -ENOMEM;
1965
1966        err = -EINVAL;
1967        if (!cs->partition_root_state) {
1968                /*
1969                 * Turning on partition root requires setting the
1970                 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1971                 * cannot be NULL.
1972                 */
1973                if (cpumask_empty(cs->cpus_allowed))
1974                        goto out;
1975
1976                err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1977                if (err)
1978                        goto out;
1979
1980                err = update_parent_subparts_cpumask(cs, partcmd_enable,
1981                                                     NULL, &tmp);
1982                if (err) {
1983                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1984                        goto out;
1985                }
1986                cs->partition_root_state = PRS_ENABLED;
1987        } else {
1988                /*
1989                 * Turning off partition root will clear the
1990                 * CS_CPU_EXCLUSIVE bit.
1991                 */
1992                if (cs->partition_root_state == PRS_ERROR) {
1993                        cs->partition_root_state = 0;
1994                        update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1995                        err = 0;
1996                        goto out;
1997                }
1998
1999                err = update_parent_subparts_cpumask(cs, partcmd_disable,
2000                                                     NULL, &tmp);
2001                if (err)
2002                        goto out;
2003
2004                cs->partition_root_state = 0;
2005
2006                /* Turning off CS_CPU_EXCLUSIVE will not return error */
2007                update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2008        }
2009
2010        /*
2011         * Update cpumask of parent's tasks except when it is the top
2012         * cpuset as some system daemons cannot be mapped to other CPUs.
2013         */
2014        if (parent != &top_cpuset)
2015                update_tasks_cpumask(parent);
2016
2017        if (parent->child_ecpus_count)
2018                update_sibling_cpumasks(parent, cs, &tmp);
2019
2020        rebuild_sched_domains_locked();
2021out:
2022        free_cpumasks(NULL, &tmp);
2023        return err;
2024}
2025
2026/*
2027 * Frequency meter - How fast is some event occurring?
2028 *
2029 * These routines manage a digitally filtered, constant time based,
2030 * event frequency meter.  There are four routines:
2031 *   fmeter_init() - initialize a frequency meter.
2032 *   fmeter_markevent() - called each time the event happens.
2033 *   fmeter_getrate() - returns the recent rate of such events.
2034 *   fmeter_update() - internal routine used to update fmeter.
2035 *
2036 * A common data structure is passed to each of these routines,
2037 * which is used to keep track of the state required to manage the
2038 * frequency meter and its digital filter.
2039 *
2040 * The filter works on the number of events marked per unit time.
2041 * The filter is single-pole low-pass recursive (IIR).  The time unit
2042 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2043 * simulate 3 decimal digits of precision (multiplied by 1000).
2044 *
2045 * With an FM_COEF of 933, and a time base of 1 second, the filter
2046 * has a half-life of 10 seconds, meaning that if the events quit
2047 * happening, then the rate returned from the fmeter_getrate()
2048 * will be cut in half each 10 seconds, until it converges to zero.
2049 *
2050 * It is not worth doing a real infinitely recursive filter.  If more
2051 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2052 * just compute FM_MAXTICKS ticks worth, by which point the level
2053 * will be stable.
2054 *
2055 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2056 * arithmetic overflow in the fmeter_update() routine.
2057 *
2058 * Given the simple 32 bit integer arithmetic used, this meter works
2059 * best for reporting rates between one per millisecond (msec) and
2060 * one per 32 (approx) seconds.  At constant rates faster than one
2061 * per msec it maxes out at values just under 1,000,000.  At constant
2062 * rates between one per msec, and one per second it will stabilize
2063 * to a value N*1000, where N is the rate of events per second.
2064 * At constant rates between one per second and one per 32 seconds,
2065 * it will be choppy, moving up on the seconds that have an event,
2066 * and then decaying until the next event.  At rates slower than
2067 * about one in 32 seconds, it decays all the way back to zero between
2068 * each event.
2069 */
2070
2071#define FM_COEF 933             /* coefficient for half-life of 10 secs */
2072#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2073#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
2074#define FM_SCALE 1000           /* faux fixed point scale */
2075
2076/* Initialize a frequency meter */
2077static void fmeter_init(struct fmeter *fmp)
2078{
2079        fmp->cnt = 0;
2080        fmp->val = 0;
2081        fmp->time = 0;
2082        spin_lock_init(&fmp->lock);
2083}
2084
2085/* Internal meter update - process cnt events and update value */
2086static void fmeter_update(struct fmeter *fmp)
2087{
2088        time64_t now;
2089        u32 ticks;
2090
2091        now = ktime_get_seconds();
2092        ticks = now - fmp->time;
2093
2094        if (ticks == 0)
2095                return;
2096
2097        ticks = min(FM_MAXTICKS, ticks);
2098        while (ticks-- > 0)
2099                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2100        fmp->time = now;
2101
2102        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2103        fmp->cnt = 0;
2104}
2105
2106/* Process any previous ticks, then bump cnt by one (times scale). */
2107static void fmeter_markevent(struct fmeter *fmp)
2108{
2109        spin_lock(&fmp->lock);
2110        fmeter_update(fmp);
2111        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2112        spin_unlock(&fmp->lock);
2113}
2114
2115/* Process any previous ticks, then return current value. */
2116static int fmeter_getrate(struct fmeter *fmp)
2117{
2118        int val;
2119
2120        spin_lock(&fmp->lock);
2121        fmeter_update(fmp);
2122        val = fmp->val;
2123        spin_unlock(&fmp->lock);
2124        return val;
2125}
2126
2127static struct cpuset *cpuset_attach_old_cs;
2128
2129/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2130static int cpuset_can_attach(struct cgroup_taskset *tset)
2131{
2132        struct cgroup_subsys_state *css;
2133        struct cpuset *cs;
2134        struct task_struct *task;
2135        int ret;
2136
2137        /* used later by cpuset_attach() */
2138        cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2139        cs = css_cs(css);
2140
2141        percpu_down_write(&cpuset_rwsem);
2142
2143        /* allow moving tasks into an empty cpuset if on default hierarchy */
2144        ret = -ENOSPC;
2145        if (!is_in_v2_mode() &&
2146            (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2147                goto out_unlock;
2148
2149        cgroup_taskset_for_each(task, css, tset) {
2150                ret = task_can_attach(task, cs->cpus_allowed);
2151                if (ret)
2152                        goto out_unlock;
2153                ret = security_task_setscheduler(task);
2154                if (ret)
2155                        goto out_unlock;
2156        }
2157
2158        /*
2159         * Mark attach is in progress.  This makes validate_change() fail
2160         * changes which zero cpus/mems_allowed.
2161         */
2162        cs->attach_in_progress++;
2163        ret = 0;
2164out_unlock:
2165        percpu_up_write(&cpuset_rwsem);
2166        return ret;
2167}
2168
2169static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2170{
2171        struct cgroup_subsys_state *css;
2172
2173        cgroup_taskset_first(tset, &css);
2174
2175        percpu_down_write(&cpuset_rwsem);
2176        css_cs(css)->attach_in_progress--;
2177        percpu_up_write(&cpuset_rwsem);
2178}
2179
2180/*
2181 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2182 * but we can't allocate it dynamically there.  Define it global and
2183 * allocate from cpuset_init().
2184 */
2185static cpumask_var_t cpus_attach;
2186
2187static void cpuset_attach(struct cgroup_taskset *tset)
2188{
2189        /* static buf protected by cpuset_mutex */
2190        static nodemask_t cpuset_attach_nodemask_to;
2191        struct task_struct *task;
2192        struct task_struct *leader;
2193        struct cgroup_subsys_state *css;
2194        struct cpuset *cs;
2195        struct cpuset *oldcs = cpuset_attach_old_cs;
2196
2197        cgroup_taskset_first(tset, &css);
2198        cs = css_cs(css);
2199
2200        percpu_down_write(&cpuset_rwsem);
2201
2202        /* prepare for attach */
2203        if (cs == &top_cpuset)
2204                cpumask_copy(cpus_attach, cpu_possible_mask);
2205        else
2206                guarantee_online_cpus(cs, cpus_attach);
2207
2208        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2209
2210        cgroup_taskset_for_each(task, css, tset) {
2211                /*
2212                 * can_attach beforehand should guarantee that this doesn't
2213                 * fail.  TODO: have a better way to handle failure here
2214                 */
2215                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2216
2217                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2218                cpuset_update_task_spread_flag(cs, task);
2219        }
2220
2221        /*
2222         * Change mm for all threadgroup leaders. This is expensive and may
2223         * sleep and should be moved outside migration path proper.
2224         */
2225        cpuset_attach_nodemask_to = cs->effective_mems;
2226        cgroup_taskset_for_each_leader(leader, css, tset) {
2227                struct mm_struct *mm = get_task_mm(leader);
2228
2229                if (mm) {
2230                        mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2231
2232                        /*
2233                         * old_mems_allowed is the same with mems_allowed
2234                         * here, except if this task is being moved
2235                         * automatically due to hotplug.  In that case
2236                         * @mems_allowed has been updated and is empty, so
2237                         * @old_mems_allowed is the right nodesets that we
2238                         * migrate mm from.
2239                         */
2240                        if (is_memory_migrate(cs))
2241                                cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2242                                                  &cpuset_attach_nodemask_to);
2243                        else
2244                                mmput(mm);
2245                }
2246        }
2247
2248        cs->old_mems_allowed = cpuset_attach_nodemask_to;
2249
2250        cs->attach_in_progress--;
2251        if (!cs->attach_in_progress)
2252                wake_up(&cpuset_attach_wq);
2253
2254        percpu_up_write(&cpuset_rwsem);
2255}
2256
2257/* The various types of files and directories in a cpuset file system */
2258
2259typedef enum {
2260        FILE_MEMORY_MIGRATE,
2261        FILE_CPULIST,
2262        FILE_MEMLIST,
2263        FILE_EFFECTIVE_CPULIST,
2264        FILE_EFFECTIVE_MEMLIST,
2265        FILE_SUBPARTS_CPULIST,
2266        FILE_CPU_EXCLUSIVE,
2267        FILE_MEM_EXCLUSIVE,
2268        FILE_MEM_HARDWALL,
2269        FILE_SCHED_LOAD_BALANCE,
2270        FILE_PARTITION_ROOT,
2271        FILE_SCHED_RELAX_DOMAIN_LEVEL,
2272        FILE_MEMORY_PRESSURE_ENABLED,
2273        FILE_MEMORY_PRESSURE,
2274        FILE_SPREAD_PAGE,
2275        FILE_SPREAD_SLAB,
2276} cpuset_filetype_t;
2277
2278static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2279                            u64 val)
2280{
2281        struct cpuset *cs = css_cs(css);
2282        cpuset_filetype_t type = cft->private;
2283        int retval = 0;
2284
2285        get_online_cpus();
2286        percpu_down_write(&cpuset_rwsem);
2287        if (!is_cpuset_online(cs)) {
2288                retval = -ENODEV;
2289                goto out_unlock;
2290        }
2291
2292        switch (type) {
2293        case FILE_CPU_EXCLUSIVE:
2294                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2295                break;
2296        case FILE_MEM_EXCLUSIVE:
2297                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2298                break;
2299        case FILE_MEM_HARDWALL:
2300                retval = update_flag(CS_MEM_HARDWALL, cs, val);
2301                break;
2302        case FILE_SCHED_LOAD_BALANCE:
2303                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2304                break;
2305        case FILE_MEMORY_MIGRATE:
2306                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2307                break;
2308        case FILE_MEMORY_PRESSURE_ENABLED:
2309                cpuset_memory_pressure_enabled = !!val;
2310                break;
2311        case FILE_SPREAD_PAGE:
2312                retval = update_flag(CS_SPREAD_PAGE, cs, val);
2313                break;
2314        case FILE_SPREAD_SLAB:
2315                retval = update_flag(CS_SPREAD_SLAB, cs, val);
2316                break;
2317        default:
2318                retval = -EINVAL;
2319                break;
2320        }
2321out_unlock:
2322        percpu_up_write(&cpuset_rwsem);
2323        put_online_cpus();
2324        return retval;
2325}
2326
2327static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2328                            s64 val)
2329{
2330        struct cpuset *cs = css_cs(css);
2331        cpuset_filetype_t type = cft->private;
2332        int retval = -ENODEV;
2333
2334        get_online_cpus();
2335        percpu_down_write(&cpuset_rwsem);
2336        if (!is_cpuset_online(cs))
2337                goto out_unlock;
2338
2339        switch (type) {
2340        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2341                retval = update_relax_domain_level(cs, val);
2342                break;
2343        default:
2344                retval = -EINVAL;
2345                break;
2346        }
2347out_unlock:
2348        percpu_up_write(&cpuset_rwsem);
2349        put_online_cpus();
2350        return retval;
2351}
2352
2353/*
2354 * Common handling for a write to a "cpus" or "mems" file.
2355 */
2356static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2357                                    char *buf, size_t nbytes, loff_t off)
2358{
2359        struct cpuset *cs = css_cs(of_css(of));
2360        struct cpuset *trialcs;
2361        int retval = -ENODEV;
2362
2363        buf = strstrip(buf);
2364
2365        /*
2366         * CPU or memory hotunplug may leave @cs w/o any execution
2367         * resources, in which case the hotplug code asynchronously updates
2368         * configuration and transfers all tasks to the nearest ancestor
2369         * which can execute.
2370         *
2371         * As writes to "cpus" or "mems" may restore @cs's execution
2372         * resources, wait for the previously scheduled operations before
2373         * proceeding, so that we don't end up keep removing tasks added
2374         * after execution capability is restored.
2375         *
2376         * cpuset_hotplug_work calls back into cgroup core via
2377         * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2378         * operation like this one can lead to a deadlock through kernfs
2379         * active_ref protection.  Let's break the protection.  Losing the
2380         * protection is okay as we check whether @cs is online after
2381         * grabbing cpuset_mutex anyway.  This only happens on the legacy
2382         * hierarchies.
2383         */
2384        css_get(&cs->css);
2385        kernfs_break_active_protection(of->kn);
2386        flush_work(&cpuset_hotplug_work);
2387
2388        get_online_cpus();
2389        percpu_down_write(&cpuset_rwsem);
2390        if (!is_cpuset_online(cs))
2391                goto out_unlock;
2392
2393        trialcs = alloc_trial_cpuset(cs);
2394        if (!trialcs) {
2395                retval = -ENOMEM;
2396                goto out_unlock;
2397        }
2398
2399        switch (of_cft(of)->private) {
2400        case FILE_CPULIST:
2401                retval = update_cpumask(cs, trialcs, buf);
2402                break;
2403        case FILE_MEMLIST:
2404                retval = update_nodemask(cs, trialcs, buf);
2405                break;
2406        default:
2407                retval = -EINVAL;
2408                break;
2409        }
2410
2411        free_cpuset(trialcs);
2412out_unlock:
2413        percpu_up_write(&cpuset_rwsem);
2414        put_online_cpus();
2415        kernfs_unbreak_active_protection(of->kn);
2416        css_put(&cs->css);
2417        flush_workqueue(cpuset_migrate_mm_wq);
2418        return retval ?: nbytes;
2419}
2420
2421/*
2422 * These ascii lists should be read in a single call, by using a user
2423 * buffer large enough to hold the entire map.  If read in smaller
2424 * chunks, there is no guarantee of atomicity.  Since the display format
2425 * used, list of ranges of sequential numbers, is variable length,
2426 * and since these maps can change value dynamically, one could read
2427 * gibberish by doing partial reads while a list was changing.
2428 */
2429static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2430{
2431        struct cpuset *cs = css_cs(seq_css(sf));
2432        cpuset_filetype_t type = seq_cft(sf)->private;
2433        int ret = 0;
2434
2435        spin_lock_irq(&callback_lock);
2436
2437        switch (type) {
2438        case FILE_CPULIST:
2439                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2440                break;
2441        case FILE_MEMLIST:
2442                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2443                break;
2444        case FILE_EFFECTIVE_CPULIST:
2445                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2446                break;
2447        case FILE_EFFECTIVE_MEMLIST:
2448                seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2449                break;
2450        case FILE_SUBPARTS_CPULIST:
2451                seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2452                break;
2453        default:
2454                ret = -EINVAL;
2455        }
2456
2457        spin_unlock_irq(&callback_lock);
2458        return ret;
2459}
2460
2461static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2462{
2463        struct cpuset *cs = css_cs(css);
2464        cpuset_filetype_t type = cft->private;
2465        switch (type) {
2466        case FILE_CPU_EXCLUSIVE:
2467                return is_cpu_exclusive(cs);
2468        case FILE_MEM_EXCLUSIVE:
2469                return is_mem_exclusive(cs);
2470        case FILE_MEM_HARDWALL:
2471                return is_mem_hardwall(cs);
2472        case FILE_SCHED_LOAD_BALANCE:
2473                return is_sched_load_balance(cs);
2474        case FILE_MEMORY_MIGRATE:
2475                return is_memory_migrate(cs);
2476        case FILE_MEMORY_PRESSURE_ENABLED:
2477                return cpuset_memory_pressure_enabled;
2478        case FILE_MEMORY_PRESSURE:
2479                return fmeter_getrate(&cs->fmeter);
2480        case FILE_SPREAD_PAGE:
2481                return is_spread_page(cs);
2482        case FILE_SPREAD_SLAB:
2483                return is_spread_slab(cs);
2484        default:
2485                BUG();
2486        }
2487
2488        /* Unreachable but makes gcc happy */
2489        return 0;
2490}
2491
2492static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2493{
2494        struct cpuset *cs = css_cs(css);
2495        cpuset_filetype_t type = cft->private;
2496        switch (type) {
2497        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2498                return cs->relax_domain_level;
2499        default:
2500                BUG();
2501        }
2502
2503        /* Unreachable but makes gcc happy */
2504        return 0;
2505}
2506
2507static int sched_partition_show(struct seq_file *seq, void *v)
2508{
2509        struct cpuset *cs = css_cs(seq_css(seq));
2510
2511        switch (cs->partition_root_state) {
2512        case PRS_ENABLED:
2513                seq_puts(seq, "root\n");
2514                break;
2515        case PRS_DISABLED:
2516                seq_puts(seq, "member\n");
2517                break;
2518        case PRS_ERROR:
2519                seq_puts(seq, "root invalid\n");
2520                break;
2521        }
2522        return 0;
2523}
2524
2525static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2526                                     size_t nbytes, loff_t off)
2527{
2528        struct cpuset *cs = css_cs(of_css(of));
2529        int val;
2530        int retval = -ENODEV;
2531
2532        buf = strstrip(buf);
2533
2534        /*
2535         * Convert "root" to ENABLED, and convert "member" to DISABLED.
2536         */
2537        if (!strcmp(buf, "root"))
2538                val = PRS_ENABLED;
2539        else if (!strcmp(buf, "member"))
2540                val = PRS_DISABLED;
2541        else
2542                return -EINVAL;
2543
2544        css_get(&cs->css);
2545        get_online_cpus();
2546        percpu_down_write(&cpuset_rwsem);
2547        if (!is_cpuset_online(cs))
2548                goto out_unlock;
2549
2550        retval = update_prstate(cs, val);
2551out_unlock:
2552        percpu_up_write(&cpuset_rwsem);
2553        put_online_cpus();
2554        css_put(&cs->css);
2555        return retval ?: nbytes;
2556}
2557
2558/*
2559 * for the common functions, 'private' gives the type of file
2560 */
2561
2562static struct cftype legacy_files[] = {
2563        {
2564                .name = "cpus",
2565                .seq_show = cpuset_common_seq_show,
2566                .write = cpuset_write_resmask,
2567                .max_write_len = (100U + 6 * NR_CPUS),
2568                .private = FILE_CPULIST,
2569        },
2570
2571        {
2572                .name = "mems",
2573                .seq_show = cpuset_common_seq_show,
2574                .write = cpuset_write_resmask,
2575                .max_write_len = (100U + 6 * MAX_NUMNODES),
2576                .private = FILE_MEMLIST,
2577        },
2578
2579        {
2580                .name = "effective_cpus",
2581                .seq_show = cpuset_common_seq_show,
2582                .private = FILE_EFFECTIVE_CPULIST,
2583        },
2584
2585        {
2586                .name = "effective_mems",
2587                .seq_show = cpuset_common_seq_show,
2588                .private = FILE_EFFECTIVE_MEMLIST,
2589        },
2590
2591        {
2592                .name = "cpu_exclusive",
2593                .read_u64 = cpuset_read_u64,
2594                .write_u64 = cpuset_write_u64,
2595                .private = FILE_CPU_EXCLUSIVE,
2596        },
2597
2598        {
2599                .name = "mem_exclusive",
2600                .read_u64 = cpuset_read_u64,
2601                .write_u64 = cpuset_write_u64,
2602                .private = FILE_MEM_EXCLUSIVE,
2603        },
2604
2605        {
2606                .name = "mem_hardwall",
2607                .read_u64 = cpuset_read_u64,
2608                .write_u64 = cpuset_write_u64,
2609                .private = FILE_MEM_HARDWALL,
2610        },
2611
2612        {
2613                .name = "sched_load_balance",
2614                .read_u64 = cpuset_read_u64,
2615                .write_u64 = cpuset_write_u64,
2616                .private = FILE_SCHED_LOAD_BALANCE,
2617        },
2618
2619        {
2620                .name = "sched_relax_domain_level",
2621                .read_s64 = cpuset_read_s64,
2622                .write_s64 = cpuset_write_s64,
2623                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2624        },
2625
2626        {
2627                .name = "memory_migrate",
2628                .read_u64 = cpuset_read_u64,
2629                .write_u64 = cpuset_write_u64,
2630                .private = FILE_MEMORY_MIGRATE,
2631        },
2632
2633        {
2634                .name = "memory_pressure",
2635                .read_u64 = cpuset_read_u64,
2636                .private = FILE_MEMORY_PRESSURE,
2637        },
2638
2639        {
2640                .name = "memory_spread_page",
2641                .read_u64 = cpuset_read_u64,
2642                .write_u64 = cpuset_write_u64,
2643                .private = FILE_SPREAD_PAGE,
2644        },
2645
2646        {
2647                .name = "memory_spread_slab",
2648                .read_u64 = cpuset_read_u64,
2649                .write_u64 = cpuset_write_u64,
2650                .private = FILE_SPREAD_SLAB,
2651        },
2652
2653        {
2654                .name = "memory_pressure_enabled",
2655                .flags = CFTYPE_ONLY_ON_ROOT,
2656                .read_u64 = cpuset_read_u64,
2657                .write_u64 = cpuset_write_u64,
2658                .private = FILE_MEMORY_PRESSURE_ENABLED,
2659        },
2660
2661        { }     /* terminate */
2662};
2663
2664/*
2665 * This is currently a minimal set for the default hierarchy. It can be
2666 * expanded later on by migrating more features and control files from v1.
2667 */
2668static struct cftype dfl_files[] = {
2669        {
2670                .name = "cpus",
2671                .seq_show = cpuset_common_seq_show,
2672                .write = cpuset_write_resmask,
2673                .max_write_len = (100U + 6 * NR_CPUS),
2674                .private = FILE_CPULIST,
2675                .flags = CFTYPE_NOT_ON_ROOT,
2676        },
2677
2678        {
2679                .name = "mems",
2680                .seq_show = cpuset_common_seq_show,
2681                .write = cpuset_write_resmask,
2682                .max_write_len = (100U + 6 * MAX_NUMNODES),
2683                .private = FILE_MEMLIST,
2684                .flags = CFTYPE_NOT_ON_ROOT,
2685        },
2686
2687        {
2688                .name = "cpus.effective",
2689                .seq_show = cpuset_common_seq_show,
2690                .private = FILE_EFFECTIVE_CPULIST,
2691        },
2692
2693        {
2694                .name = "mems.effective",
2695                .seq_show = cpuset_common_seq_show,
2696                .private = FILE_EFFECTIVE_MEMLIST,
2697        },
2698
2699        {
2700                .name = "cpus.partition",
2701                .seq_show = sched_partition_show,
2702                .write = sched_partition_write,
2703                .private = FILE_PARTITION_ROOT,
2704                .flags = CFTYPE_NOT_ON_ROOT,
2705        },
2706
2707        {
2708                .name = "cpus.subpartitions",
2709                .seq_show = cpuset_common_seq_show,
2710                .private = FILE_SUBPARTS_CPULIST,
2711                .flags = CFTYPE_DEBUG,
2712        },
2713
2714        { }     /* terminate */
2715};
2716
2717
2718/*
2719 *      cpuset_css_alloc - allocate a cpuset css
2720 *      cgrp:   control group that the new cpuset will be part of
2721 */
2722
2723static struct cgroup_subsys_state *
2724cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2725{
2726        struct cpuset *cs;
2727
2728        if (!parent_css)
2729                return &top_cpuset.css;
2730
2731        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2732        if (!cs)
2733                return ERR_PTR(-ENOMEM);
2734
2735        if (alloc_cpumasks(cs, NULL)) {
2736                kfree(cs);
2737                return ERR_PTR(-ENOMEM);
2738        }
2739
2740        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2741        nodes_clear(cs->mems_allowed);
2742        nodes_clear(cs->effective_mems);
2743        fmeter_init(&cs->fmeter);
2744        cs->relax_domain_level = -1;
2745
2746        return &cs->css;
2747}
2748
2749static int cpuset_css_online(struct cgroup_subsys_state *css)
2750{
2751        struct cpuset *cs = css_cs(css);
2752        struct cpuset *parent = parent_cs(cs);
2753        struct cpuset *tmp_cs;
2754        struct cgroup_subsys_state *pos_css;
2755
2756        if (!parent)
2757                return 0;
2758
2759        get_online_cpus();
2760        percpu_down_write(&cpuset_rwsem);
2761
2762        set_bit(CS_ONLINE, &cs->flags);
2763        if (is_spread_page(parent))
2764                set_bit(CS_SPREAD_PAGE, &cs->flags);
2765        if (is_spread_slab(parent))
2766                set_bit(CS_SPREAD_SLAB, &cs->flags);
2767
2768        cpuset_inc();
2769
2770        spin_lock_irq(&callback_lock);
2771        if (is_in_v2_mode()) {
2772                cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2773                cs->effective_mems = parent->effective_mems;
2774                cs->use_parent_ecpus = true;
2775                parent->child_ecpus_count++;
2776        }
2777        spin_unlock_irq(&callback_lock);
2778
2779        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2780                goto out_unlock;
2781
2782        /*
2783         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2784         * set.  This flag handling is implemented in cgroup core for
2785         * histrical reasons - the flag may be specified during mount.
2786         *
2787         * Currently, if any sibling cpusets have exclusive cpus or mem, we
2788         * refuse to clone the configuration - thereby refusing the task to
2789         * be entered, and as a result refusing the sys_unshare() or
2790         * clone() which initiated it.  If this becomes a problem for some
2791         * users who wish to allow that scenario, then this could be
2792         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2793         * (and likewise for mems) to the new cgroup.
2794         */
2795        rcu_read_lock();
2796        cpuset_for_each_child(tmp_cs, pos_css, parent) {
2797                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2798                        rcu_read_unlock();
2799                        goto out_unlock;
2800                }
2801        }
2802        rcu_read_unlock();
2803
2804        spin_lock_irq(&callback_lock);
2805        cs->mems_allowed = parent->mems_allowed;
2806        cs->effective_mems = parent->mems_allowed;
2807        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2808        cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2809        spin_unlock_irq(&callback_lock);
2810out_unlock:
2811        percpu_up_write(&cpuset_rwsem);
2812        put_online_cpus();
2813        return 0;
2814}
2815
2816/*
2817 * If the cpuset being removed has its flag 'sched_load_balance'
2818 * enabled, then simulate turning sched_load_balance off, which
2819 * will call rebuild_sched_domains_locked(). That is not needed
2820 * in the default hierarchy where only changes in partition
2821 * will cause repartitioning.
2822 *
2823 * If the cpuset has the 'sched.partition' flag enabled, simulate
2824 * turning 'sched.partition" off.
2825 */
2826
2827static void cpuset_css_offline(struct cgroup_subsys_state *css)
2828{
2829        struct cpuset *cs = css_cs(css);
2830
2831        get_online_cpus();
2832        percpu_down_write(&cpuset_rwsem);
2833
2834        if (is_partition_root(cs))
2835                update_prstate(cs, 0);
2836
2837        if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2838            is_sched_load_balance(cs))
2839                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2840
2841        if (cs->use_parent_ecpus) {
2842                struct cpuset *parent = parent_cs(cs);
2843
2844                cs->use_parent_ecpus = false;
2845                parent->child_ecpus_count--;
2846        }
2847
2848        cpuset_dec();
2849        clear_bit(CS_ONLINE, &cs->flags);
2850
2851        percpu_up_write(&cpuset_rwsem);
2852        put_online_cpus();
2853}
2854
2855static void cpuset_css_free(struct cgroup_subsys_state *css)
2856{
2857        struct cpuset *cs = css_cs(css);
2858
2859        free_cpuset(cs);
2860}
2861
2862static void cpuset_bind(struct cgroup_subsys_state *root_css)
2863{
2864        percpu_down_write(&cpuset_rwsem);
2865        spin_lock_irq(&callback_lock);
2866
2867        if (is_in_v2_mode()) {
2868                cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2869                top_cpuset.mems_allowed = node_possible_map;
2870        } else {
2871                cpumask_copy(top_cpuset.cpus_allowed,
2872                             top_cpuset.effective_cpus);
2873                top_cpuset.mems_allowed = top_cpuset.effective_mems;
2874        }
2875
2876        spin_unlock_irq(&callback_lock);
2877        percpu_up_write(&cpuset_rwsem);
2878}
2879
2880/*
2881 * Make sure the new task conform to the current state of its parent,
2882 * which could have been changed by cpuset just after it inherits the
2883 * state from the parent and before it sits on the cgroup's task list.
2884 */
2885static void cpuset_fork(struct task_struct *task)
2886{
2887        if (task_css_is_root(task, cpuset_cgrp_id))
2888                return;
2889
2890        set_cpus_allowed_ptr(task, current->cpus_ptr);
2891        task->mems_allowed = current->mems_allowed;
2892}
2893
2894struct cgroup_subsys cpuset_cgrp_subsys = {
2895        .css_alloc      = cpuset_css_alloc,
2896        .css_online     = cpuset_css_online,
2897        .css_offline    = cpuset_css_offline,
2898        .css_free       = cpuset_css_free,
2899        .can_attach     = cpuset_can_attach,
2900        .cancel_attach  = cpuset_cancel_attach,
2901        .attach         = cpuset_attach,
2902        .post_attach    = cpuset_post_attach,
2903        .bind           = cpuset_bind,
2904        .fork           = cpuset_fork,
2905        .legacy_cftypes = legacy_files,
2906        .dfl_cftypes    = dfl_files,
2907        .early_init     = true,
2908        .threaded       = true,
2909};
2910
2911/**
2912 * cpuset_init - initialize cpusets at system boot
2913 *
2914 * Description: Initialize top_cpuset
2915 **/
2916
2917int __init cpuset_init(void)
2918{
2919        BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2920
2921        BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2922        BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2923        BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2924
2925        cpumask_setall(top_cpuset.cpus_allowed);
2926        nodes_setall(top_cpuset.mems_allowed);
2927        cpumask_setall(top_cpuset.effective_cpus);
2928        nodes_setall(top_cpuset.effective_mems);
2929
2930        fmeter_init(&top_cpuset.fmeter);
2931        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2932        top_cpuset.relax_domain_level = -1;
2933
2934        BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2935
2936        return 0;
2937}
2938
2939/*
2940 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2941 * or memory nodes, we need to walk over the cpuset hierarchy,
2942 * removing that CPU or node from all cpusets.  If this removes the
2943 * last CPU or node from a cpuset, then move the tasks in the empty
2944 * cpuset to its next-highest non-empty parent.
2945 */
2946static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2947{
2948        struct cpuset *parent;
2949
2950        /*
2951         * Find its next-highest non-empty parent, (top cpuset
2952         * has online cpus, so can't be empty).
2953         */
2954        parent = parent_cs(cs);
2955        while (cpumask_empty(parent->cpus_allowed) ||
2956                        nodes_empty(parent->mems_allowed))
2957                parent = parent_cs(parent);
2958
2959        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2960                pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2961                pr_cont_cgroup_name(cs->css.cgroup);
2962                pr_cont("\n");
2963        }
2964}
2965
2966static void
2967hotplug_update_tasks_legacy(struct cpuset *cs,
2968                            struct cpumask *new_cpus, nodemask_t *new_mems,
2969                            bool cpus_updated, bool mems_updated)
2970{
2971        bool is_empty;
2972
2973        spin_lock_irq(&callback_lock);
2974        cpumask_copy(cs->cpus_allowed, new_cpus);
2975        cpumask_copy(cs->effective_cpus, new_cpus);
2976        cs->mems_allowed = *new_mems;
2977        cs->effective_mems = *new_mems;
2978        spin_unlock_irq(&callback_lock);
2979
2980        /*
2981         * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2982         * as the tasks will be migratecd to an ancestor.
2983         */
2984        if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2985                update_tasks_cpumask(cs);
2986        if (mems_updated && !nodes_empty(cs->mems_allowed))
2987                update_tasks_nodemask(cs);
2988
2989        is_empty = cpumask_empty(cs->cpus_allowed) ||
2990                   nodes_empty(cs->mems_allowed);
2991
2992        percpu_up_write(&cpuset_rwsem);
2993
2994        /*
2995         * Move tasks to the nearest ancestor with execution resources,
2996         * This is full cgroup operation which will also call back into
2997         * cpuset. Should be done outside any lock.
2998         */
2999        if (is_empty)
3000                remove_tasks_in_empty_cpuset(cs);
3001
3002        percpu_down_write(&cpuset_rwsem);
3003}
3004
3005static void
3006hotplug_update_tasks(struct cpuset *cs,
3007                     struct cpumask *new_cpus, nodemask_t *new_mems,
3008                     bool cpus_updated, bool mems_updated)
3009{
3010        if (cpumask_empty(new_cpus))
3011                cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3012        if (nodes_empty(*new_mems))
3013                *new_mems = parent_cs(cs)->effective_mems;
3014
3015        spin_lock_irq(&callback_lock);
3016        cpumask_copy(cs->effective_cpus, new_cpus);
3017        cs->effective_mems = *new_mems;
3018        spin_unlock_irq(&callback_lock);
3019
3020        if (cpus_updated)
3021                update_tasks_cpumask(cs);
3022        if (mems_updated)
3023                update_tasks_nodemask(cs);
3024}
3025
3026static bool force_rebuild;
3027
3028void cpuset_force_rebuild(void)
3029{
3030        force_rebuild = true;
3031}
3032
3033/**
3034 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3035 * @cs: cpuset in interest
3036 * @tmp: the tmpmasks structure pointer
3037 *
3038 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3039 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3040 * all its tasks are moved to the nearest ancestor with both resources.
3041 */
3042static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3043{
3044        static cpumask_t new_cpus;
3045        static nodemask_t new_mems;
3046        bool cpus_updated;
3047        bool mems_updated;
3048        struct cpuset *parent;
3049retry:
3050        wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3051
3052        percpu_down_write(&cpuset_rwsem);
3053
3054        /*
3055         * We have raced with task attaching. We wait until attaching
3056         * is finished, so we won't attach a task to an empty cpuset.
3057         */
3058        if (cs->attach_in_progress) {
3059                percpu_up_write(&cpuset_rwsem);
3060                goto retry;
3061        }
3062
3063        parent =  parent_cs(cs);
3064        compute_effective_cpumask(&new_cpus, cs, parent);
3065        nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3066
3067        if (cs->nr_subparts_cpus)
3068                /*
3069                 * Make sure that CPUs allocated to child partitions
3070                 * do not show up in effective_cpus.
3071                 */
3072                cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3073
3074        if (!tmp || !cs->partition_root_state)
3075                goto update_tasks;
3076
3077        /*
3078         * In the unlikely event that a partition root has empty
3079         * effective_cpus or its parent becomes erroneous, we have to
3080         * transition it to the erroneous state.
3081         */
3082        if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3083           (parent->partition_root_state == PRS_ERROR))) {
3084                if (cs->nr_subparts_cpus) {
3085                        cs->nr_subparts_cpus = 0;
3086                        cpumask_clear(cs->subparts_cpus);
3087                        compute_effective_cpumask(&new_cpus, cs, parent);
3088                }
3089
3090                /*
3091                 * If the effective_cpus is empty because the child
3092                 * partitions take away all the CPUs, we can keep
3093                 * the current partition and let the child partitions
3094                 * fight for available CPUs.
3095                 */
3096                if ((parent->partition_root_state == PRS_ERROR) ||
3097                     cpumask_empty(&new_cpus)) {
3098                        update_parent_subparts_cpumask(cs, partcmd_disable,
3099                                                       NULL, tmp);
3100                        cs->partition_root_state = PRS_ERROR;
3101                }
3102                cpuset_force_rebuild();
3103        }
3104
3105        /*
3106         * On the other hand, an erroneous partition root may be transitioned
3107         * back to a regular one or a partition root with no CPU allocated
3108         * from the parent may change to erroneous.
3109         */
3110        if (is_partition_root(parent) &&
3111           ((cs->partition_root_state == PRS_ERROR) ||
3112            !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3113             update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3114                cpuset_force_rebuild();
3115
3116update_tasks:
3117        cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3118        mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3119
3120        if (is_in_v2_mode())
3121                hotplug_update_tasks(cs, &new_cpus, &new_mems,
3122                                     cpus_updated, mems_updated);
3123        else
3124                hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3125                                            cpus_updated, mems_updated);
3126
3127        percpu_up_write(&cpuset_rwsem);
3128}
3129
3130/**
3131 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3132 *
3133 * This function is called after either CPU or memory configuration has
3134 * changed and updates cpuset accordingly.  The top_cpuset is always
3135 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3136 * order to make cpusets transparent (of no affect) on systems that are
3137 * actively using CPU hotplug but making no active use of cpusets.
3138 *
3139 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3140 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3141 * all descendants.
3142 *
3143 * Note that CPU offlining during suspend is ignored.  We don't modify
3144 * cpusets across suspend/resume cycles at all.
3145 */
3146static void cpuset_hotplug_workfn(struct work_struct *work)
3147{
3148        static cpumask_t new_cpus;
3149        static nodemask_t new_mems;
3150        bool cpus_updated, mems_updated;
3151        bool on_dfl = is_in_v2_mode();
3152        struct tmpmasks tmp, *ptmp = NULL;
3153
3154        if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3155                ptmp = &tmp;
3156
3157        percpu_down_write(&cpuset_rwsem);
3158
3159        /* fetch the available cpus/mems and find out which changed how */
3160        cpumask_copy(&new_cpus, cpu_active_mask);
3161        new_mems = node_states[N_MEMORY];
3162
3163        /*
3164         * If subparts_cpus is populated, it is likely that the check below
3165         * will produce a false positive on cpus_updated when the cpu list
3166         * isn't changed. It is extra work, but it is better to be safe.
3167         */
3168        cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3169        mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3170
3171        /* synchronize cpus_allowed to cpu_active_mask */
3172        if (cpus_updated) {
3173                spin_lock_irq(&callback_lock);
3174                if (!on_dfl)
3175                        cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3176                /*
3177                 * Make sure that CPUs allocated to child partitions
3178                 * do not show up in effective_cpus. If no CPU is left,
3179                 * we clear the subparts_cpus & let the child partitions
3180                 * fight for the CPUs again.
3181                 */
3182                if (top_cpuset.nr_subparts_cpus) {
3183                        if (cpumask_subset(&new_cpus,
3184                                           top_cpuset.subparts_cpus)) {
3185                                top_cpuset.nr_subparts_cpus = 0;
3186                                cpumask_clear(top_cpuset.subparts_cpus);
3187                        } else {
3188                                cpumask_andnot(&new_cpus, &new_cpus,
3189                                               top_cpuset.subparts_cpus);
3190                        }
3191                }
3192                cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3193                spin_unlock_irq(&callback_lock);
3194                /* we don't mess with cpumasks of tasks in top_cpuset */
3195        }
3196
3197        /* synchronize mems_allowed to N_MEMORY */
3198        if (mems_updated) {
3199                spin_lock_irq(&callback_lock);
3200                if (!on_dfl)
3201                        top_cpuset.mems_allowed = new_mems;
3202                top_cpuset.effective_mems = new_mems;
3203                spin_unlock_irq(&callback_lock);
3204                update_tasks_nodemask(&top_cpuset);
3205        }
3206
3207        percpu_up_write(&cpuset_rwsem);
3208
3209        /* if cpus or mems changed, we need to propagate to descendants */
3210        if (cpus_updated || mems_updated) {
3211                struct cpuset *cs;
3212                struct cgroup_subsys_state *pos_css;
3213
3214                rcu_read_lock();
3215                cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3216                        if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3217                                continue;
3218                        rcu_read_unlock();
3219
3220                        cpuset_hotplug_update_tasks(cs, ptmp);
3221
3222                        rcu_read_lock();
3223                        css_put(&cs->css);
3224                }
3225                rcu_read_unlock();
3226        }
3227
3228        /* rebuild sched domains if cpus_allowed has changed */
3229        if (cpus_updated || force_rebuild) {
3230                force_rebuild = false;
3231                rebuild_sched_domains();
3232        }
3233
3234        free_cpumasks(NULL, ptmp);
3235}
3236
3237void cpuset_update_active_cpus(void)
3238{
3239        /*
3240         * We're inside cpu hotplug critical region which usually nests
3241         * inside cgroup synchronization.  Bounce actual hotplug processing
3242         * to a work item to avoid reverse locking order.
3243         */
3244        schedule_work(&cpuset_hotplug_work);
3245}
3246
3247void cpuset_wait_for_hotplug(void)
3248{
3249        flush_work(&cpuset_hotplug_work);
3250}
3251
3252/*
3253 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3254 * Call this routine anytime after node_states[N_MEMORY] changes.
3255 * See cpuset_update_active_cpus() for CPU hotplug handling.
3256 */
3257static int cpuset_track_online_nodes(struct notifier_block *self,
3258                                unsigned long action, void *arg)
3259{
3260        schedule_work(&cpuset_hotplug_work);
3261        return NOTIFY_OK;
3262}
3263
3264static struct notifier_block cpuset_track_online_nodes_nb = {
3265        .notifier_call = cpuset_track_online_nodes,
3266        .priority = 10,         /* ??! */
3267};
3268
3269/**
3270 * cpuset_init_smp - initialize cpus_allowed
3271 *
3272 * Description: Finish top cpuset after cpu, node maps are initialized
3273 */
3274void __init cpuset_init_smp(void)
3275{
3276        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3277        top_cpuset.mems_allowed = node_states[N_MEMORY];
3278        top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3279
3280        cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3281        top_cpuset.effective_mems = node_states[N_MEMORY];
3282
3283        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3284
3285        cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3286        BUG_ON(!cpuset_migrate_mm_wq);
3287}
3288
3289/**
3290 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3291 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3292 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3293 *
3294 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3295 * attached to the specified @tsk.  Guaranteed to return some non-empty
3296 * subset of cpu_online_mask, even if this means going outside the
3297 * tasks cpuset.
3298 **/
3299
3300void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3301{
3302        unsigned long flags;
3303
3304        spin_lock_irqsave(&callback_lock, flags);
3305        rcu_read_lock();
3306        guarantee_online_cpus(task_cs(tsk), pmask);
3307        rcu_read_unlock();
3308        spin_unlock_irqrestore(&callback_lock, flags);
3309}
3310
3311/**
3312 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3313 * @tsk: pointer to task_struct with which the scheduler is struggling
3314 *
3315 * Description: In the case that the scheduler cannot find an allowed cpu in
3316 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3317 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3318 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3319 * This is the absolute last resort for the scheduler and it is only used if
3320 * _every_ other avenue has been traveled.
3321 **/
3322
3323void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3324{
3325        rcu_read_lock();
3326        do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3327                task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3328        rcu_read_unlock();
3329
3330        /*
3331         * We own tsk->cpus_allowed, nobody can change it under us.
3332         *
3333         * But we used cs && cs->cpus_allowed lockless and thus can
3334         * race with cgroup_attach_task() or update_cpumask() and get
3335         * the wrong tsk->cpus_allowed. However, both cases imply the
3336         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3337         * which takes task_rq_lock().
3338         *
3339         * If we are called after it dropped the lock we must see all
3340         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3341         * set any mask even if it is not right from task_cs() pov,
3342         * the pending set_cpus_allowed_ptr() will fix things.
3343         *
3344         * select_fallback_rq() will fix things ups and set cpu_possible_mask
3345         * if required.
3346         */
3347}
3348
3349void __init cpuset_init_current_mems_allowed(void)
3350{
3351        nodes_setall(current->mems_allowed);
3352}
3353
3354/**
3355 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3356 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3357 *
3358 * Description: Returns the nodemask_t mems_allowed of the cpuset
3359 * attached to the specified @tsk.  Guaranteed to return some non-empty
3360 * subset of node_states[N_MEMORY], even if this means going outside the
3361 * tasks cpuset.
3362 **/
3363
3364nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3365{
3366        nodemask_t mask;
3367        unsigned long flags;
3368
3369        spin_lock_irqsave(&callback_lock, flags);
3370        rcu_read_lock();
3371        guarantee_online_mems(task_cs(tsk), &mask);
3372        rcu_read_unlock();
3373        spin_unlock_irqrestore(&callback_lock, flags);
3374
3375        return mask;
3376}
3377
3378/**
3379 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3380 * @nodemask: the nodemask to be checked
3381 *
3382 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3383 */
3384int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3385{
3386        return nodes_intersects(*nodemask, current->mems_allowed);
3387}
3388
3389/*
3390 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3391 * mem_hardwall ancestor to the specified cpuset.  Call holding
3392 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3393 * (an unusual configuration), then returns the root cpuset.
3394 */
3395static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3396{
3397        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3398                cs = parent_cs(cs);
3399        return cs;
3400}
3401
3402/**
3403 * cpuset_node_allowed - Can we allocate on a memory node?
3404 * @node: is this an allowed node?
3405 * @gfp_mask: memory allocation flags
3406 *
3407 * If we're in interrupt, yes, we can always allocate.  If @node is set in
3408 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3409 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3410 * yes.  If current has access to memory reserves as an oom victim, yes.
3411 * Otherwise, no.
3412 *
3413 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3414 * and do not allow allocations outside the current tasks cpuset
3415 * unless the task has been OOM killed.
3416 * GFP_KERNEL allocations are not so marked, so can escape to the
3417 * nearest enclosing hardwalled ancestor cpuset.
3418 *
3419 * Scanning up parent cpusets requires callback_lock.  The
3420 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3421 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3422 * current tasks mems_allowed came up empty on the first pass over
3423 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3424 * cpuset are short of memory, might require taking the callback_lock.
3425 *
3426 * The first call here from mm/page_alloc:get_page_from_freelist()
3427 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3428 * so no allocation on a node outside the cpuset is allowed (unless
3429 * in interrupt, of course).
3430 *
3431 * The second pass through get_page_from_freelist() doesn't even call
3432 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3433 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3434 * in alloc_flags.  That logic and the checks below have the combined
3435 * affect that:
3436 *      in_interrupt - any node ok (current task context irrelevant)
3437 *      GFP_ATOMIC   - any node ok
3438 *      tsk_is_oom_victim   - any node ok
3439 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3440 *      GFP_USER     - only nodes in current tasks mems allowed ok.
3441 */
3442bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3443{
3444        struct cpuset *cs;              /* current cpuset ancestors */
3445        int allowed;                    /* is allocation in zone z allowed? */
3446        unsigned long flags;
3447
3448        if (in_interrupt())
3449                return true;
3450        if (node_isset(node, current->mems_allowed))
3451                return true;
3452        /*
3453         * Allow tasks that have access to memory reserves because they have
3454         * been OOM killed to get memory anywhere.
3455         */
3456        if (unlikely(tsk_is_oom_victim(current)))
3457                return true;
3458        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
3459                return false;
3460
3461        if (current->flags & PF_EXITING) /* Let dying task have memory */
3462                return true;
3463
3464        /* Not hardwall and node outside mems_allowed: scan up cpusets */
3465        spin_lock_irqsave(&callback_lock, flags);
3466
3467        rcu_read_lock();
3468        cs = nearest_hardwall_ancestor(task_cs(current));
3469        allowed = node_isset(node, cs->mems_allowed);
3470        rcu_read_unlock();
3471
3472        spin_unlock_irqrestore(&callback_lock, flags);
3473        return allowed;
3474}
3475
3476/**
3477 * cpuset_mem_spread_node() - On which node to begin search for a file page
3478 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3479 *
3480 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3481 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3482 * and if the memory allocation used cpuset_mem_spread_node()
3483 * to determine on which node to start looking, as it will for
3484 * certain page cache or slab cache pages such as used for file
3485 * system buffers and inode caches, then instead of starting on the
3486 * local node to look for a free page, rather spread the starting
3487 * node around the tasks mems_allowed nodes.
3488 *
3489 * We don't have to worry about the returned node being offline
3490 * because "it can't happen", and even if it did, it would be ok.
3491 *
3492 * The routines calling guarantee_online_mems() are careful to
3493 * only set nodes in task->mems_allowed that are online.  So it
3494 * should not be possible for the following code to return an
3495 * offline node.  But if it did, that would be ok, as this routine
3496 * is not returning the node where the allocation must be, only
3497 * the node where the search should start.  The zonelist passed to
3498 * __alloc_pages() will include all nodes.  If the slab allocator
3499 * is passed an offline node, it will fall back to the local node.
3500 * See kmem_cache_alloc_node().
3501 */
3502
3503static int cpuset_spread_node(int *rotor)
3504{
3505        return *rotor = next_node_in(*rotor, current->mems_allowed);
3506}
3507
3508int cpuset_mem_spread_node(void)
3509{
3510        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3511                current->cpuset_mem_spread_rotor =
3512                        node_random(&current->mems_allowed);
3513
3514        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3515}
3516
3517int cpuset_slab_spread_node(void)
3518{
3519        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3520                current->cpuset_slab_spread_rotor =
3521                        node_random(&current->mems_allowed);
3522
3523        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3524}
3525
3526EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3527
3528/**
3529 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3530 * @tsk1: pointer to task_struct of some task.
3531 * @tsk2: pointer to task_struct of some other task.
3532 *
3533 * Description: Return true if @tsk1's mems_allowed intersects the
3534 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3535 * one of the task's memory usage might impact the memory available
3536 * to the other.
3537 **/
3538
3539int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3540                                   const struct task_struct *tsk2)
3541{
3542        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3543}
3544
3545/**
3546 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3547 *
3548 * Description: Prints current's name, cpuset name, and cached copy of its
3549 * mems_allowed to the kernel log.
3550 */
3551void cpuset_print_current_mems_allowed(void)
3552{
3553        struct cgroup *cgrp;
3554
3555        rcu_read_lock();
3556
3557        cgrp = task_cs(current)->css.cgroup;
3558        pr_cont(",cpuset=");
3559        pr_cont_cgroup_name(cgrp);
3560        pr_cont(",mems_allowed=%*pbl",
3561                nodemask_pr_args(&current->mems_allowed));
3562
3563        rcu_read_unlock();
3564}
3565
3566/*
3567 * Collection of memory_pressure is suppressed unless
3568 * this flag is enabled by writing "1" to the special
3569 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3570 */
3571
3572int cpuset_memory_pressure_enabled __read_mostly;
3573
3574/**
3575 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3576 *
3577 * Keep a running average of the rate of synchronous (direct)
3578 * page reclaim efforts initiated by tasks in each cpuset.
3579 *
3580 * This represents the rate at which some task in the cpuset
3581 * ran low on memory on all nodes it was allowed to use, and
3582 * had to enter the kernels page reclaim code in an effort to
3583 * create more free memory by tossing clean pages or swapping
3584 * or writing dirty pages.
3585 *
3586 * Display to user space in the per-cpuset read-only file
3587 * "memory_pressure".  Value displayed is an integer
3588 * representing the recent rate of entry into the synchronous
3589 * (direct) page reclaim by any task attached to the cpuset.
3590 **/
3591
3592void __cpuset_memory_pressure_bump(void)
3593{
3594        rcu_read_lock();
3595        fmeter_markevent(&task_cs(current)->fmeter);
3596        rcu_read_unlock();
3597}
3598
3599#ifdef CONFIG_PROC_PID_CPUSET
3600/*
3601 * proc_cpuset_show()
3602 *  - Print tasks cpuset path into seq_file.
3603 *  - Used for /proc/<pid>/cpuset.
3604 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3605 *    doesn't really matter if tsk->cpuset changes after we read it,
3606 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3607 *    anyway.
3608 */
3609int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3610                     struct pid *pid, struct task_struct *tsk)
3611{
3612        char *buf;
3613        struct cgroup_subsys_state *css;
3614        int retval;
3615
3616        retval = -ENOMEM;
3617        buf = kmalloc(PATH_MAX, GFP_KERNEL);
3618        if (!buf)
3619                goto out;
3620
3621        css = task_get_css(tsk, cpuset_cgrp_id);
3622        retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3623                                current->nsproxy->cgroup_ns);
3624        css_put(css);
3625        if (retval >= PATH_MAX)
3626                retval = -ENAMETOOLONG;
3627        if (retval < 0)
3628                goto out_free;
3629        seq_puts(m, buf);
3630        seq_putc(m, '\n');
3631        retval = 0;
3632out_free:
3633        kfree(buf);
3634out:
3635        return retval;
3636}
3637#endif /* CONFIG_PROC_PID_CPUSET */
3638
3639/* Display task mems_allowed in /proc/<pid>/status file. */
3640void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3641{
3642        seq_printf(m, "Mems_allowed:\t%*pb\n",
3643                   nodemask_pr_args(&task->mems_allowed));
3644        seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3645                   nodemask_pr_args(&task->mems_allowed));
3646}
3647