linux/kernel/futex.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Fast Userspace Mutexes (which I call "Futexes!").
   4 *  (C) Rusty Russell, IBM 2002
   5 *
   6 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   7 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   8 *
   9 *  Removed page pinning, fix privately mapped COW pages and other cleanups
  10 *  (C) Copyright 2003, 2004 Jamie Lokier
  11 *
  12 *  Robust futex support started by Ingo Molnar
  13 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  14 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  15 *
  16 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  17 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  18 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  19 *
  20 *  PRIVATE futexes by Eric Dumazet
  21 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  22 *
  23 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  24 *  Copyright (C) IBM Corporation, 2009
  25 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  26 *
  27 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  28 *  enough at me, Linus for the original (flawed) idea, Matthew
  29 *  Kirkwood for proof-of-concept implementation.
  30 *
  31 *  "The futexes are also cursed."
  32 *  "But they come in a choice of three flavours!"
  33 */
  34#include <linux/compat.h>
  35#include <linux/jhash.h>
  36#include <linux/pagemap.h>
  37#include <linux/syscalls.h>
  38#include <linux/freezer.h>
  39#include <linux/memblock.h>
  40#include <linux/fault-inject.h>
  41#include <linux/time_namespace.h>
  42
  43#include <asm/futex.h>
  44
  45#include "locking/rtmutex_common.h"
  46
  47/*
  48 * READ this before attempting to hack on futexes!
  49 *
  50 * Basic futex operation and ordering guarantees
  51 * =============================================
  52 *
  53 * The waiter reads the futex value in user space and calls
  54 * futex_wait(). This function computes the hash bucket and acquires
  55 * the hash bucket lock. After that it reads the futex user space value
  56 * again and verifies that the data has not changed. If it has not changed
  57 * it enqueues itself into the hash bucket, releases the hash bucket lock
  58 * and schedules.
  59 *
  60 * The waker side modifies the user space value of the futex and calls
  61 * futex_wake(). This function computes the hash bucket and acquires the
  62 * hash bucket lock. Then it looks for waiters on that futex in the hash
  63 * bucket and wakes them.
  64 *
  65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  66 * the hb spinlock can be avoided and simply return. In order for this
  67 * optimization to work, ordering guarantees must exist so that the waiter
  68 * being added to the list is acknowledged when the list is concurrently being
  69 * checked by the waker, avoiding scenarios like the following:
  70 *
  71 * CPU 0                               CPU 1
  72 * val = *futex;
  73 * sys_futex(WAIT, futex, val);
  74 *   futex_wait(futex, val);
  75 *   uval = *futex;
  76 *                                     *futex = newval;
  77 *                                     sys_futex(WAKE, futex);
  78 *                                       futex_wake(futex);
  79 *                                       if (queue_empty())
  80 *                                         return;
  81 *   if (uval == val)
  82 *      lock(hash_bucket(futex));
  83 *      queue();
  84 *     unlock(hash_bucket(futex));
  85 *     schedule();
  86 *
  87 * This would cause the waiter on CPU 0 to wait forever because it
  88 * missed the transition of the user space value from val to newval
  89 * and the waker did not find the waiter in the hash bucket queue.
  90 *
  91 * The correct serialization ensures that a waiter either observes
  92 * the changed user space value before blocking or is woken by a
  93 * concurrent waker:
  94 *
  95 * CPU 0                                 CPU 1
  96 * val = *futex;
  97 * sys_futex(WAIT, futex, val);
  98 *   futex_wait(futex, val);
  99 *
 100 *   waiters++; (a)
 101 *   smp_mb(); (A) <-- paired with -.
 102 *                                  |
 103 *   lock(hash_bucket(futex));      |
 104 *                                  |
 105 *   uval = *futex;                 |
 106 *                                  |        *futex = newval;
 107 *                                  |        sys_futex(WAKE, futex);
 108 *                                  |          futex_wake(futex);
 109 *                                  |
 110 *                                  `--------> smp_mb(); (B)
 111 *   if (uval == val)
 112 *     queue();
 113 *     unlock(hash_bucket(futex));
 114 *     schedule();                         if (waiters)
 115 *                                           lock(hash_bucket(futex));
 116 *   else                                    wake_waiters(futex);
 117 *     waiters--; (b)                        unlock(hash_bucket(futex));
 118 *
 119 * Where (A) orders the waiters increment and the futex value read through
 120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 121 * to futex and the waiters read (see hb_waiters_pending()).
 122 *
 123 * This yields the following case (where X:=waiters, Y:=futex):
 124 *
 125 *      X = Y = 0
 126 *
 127 *      w[X]=1          w[Y]=1
 128 *      MB              MB
 129 *      r[Y]=y          r[X]=x
 130 *
 131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 132 * the guarantee that we cannot both miss the futex variable change and the
 133 * enqueue.
 134 *
 135 * Note that a new waiter is accounted for in (a) even when it is possible that
 136 * the wait call can return error, in which case we backtrack from it in (b).
 137 * Refer to the comment in queue_lock().
 138 *
 139 * Similarly, in order to account for waiters being requeued on another
 140 * address we always increment the waiters for the destination bucket before
 141 * acquiring the lock. It then decrements them again  after releasing it -
 142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 143 * will do the additional required waiter count housekeeping. This is done for
 144 * double_lock_hb() and double_unlock_hb(), respectively.
 145 */
 146
 147#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
 148#define futex_cmpxchg_enabled 1
 149#else
 150static int  __read_mostly futex_cmpxchg_enabled;
 151#endif
 152
 153/*
 154 * Futex flags used to encode options to functions and preserve them across
 155 * restarts.
 156 */
 157#ifdef CONFIG_MMU
 158# define FLAGS_SHARED           0x01
 159#else
 160/*
 161 * NOMMU does not have per process address space. Let the compiler optimize
 162 * code away.
 163 */
 164# define FLAGS_SHARED           0x00
 165#endif
 166#define FLAGS_CLOCKRT           0x02
 167#define FLAGS_HAS_TIMEOUT       0x04
 168
 169/*
 170 * Priority Inheritance state:
 171 */
 172struct futex_pi_state {
 173        /*
 174         * list of 'owned' pi_state instances - these have to be
 175         * cleaned up in do_exit() if the task exits prematurely:
 176         */
 177        struct list_head list;
 178
 179        /*
 180         * The PI object:
 181         */
 182        struct rt_mutex pi_mutex;
 183
 184        struct task_struct *owner;
 185        refcount_t refcount;
 186
 187        union futex_key key;
 188} __randomize_layout;
 189
 190/**
 191 * struct futex_q - The hashed futex queue entry, one per waiting task
 192 * @list:               priority-sorted list of tasks waiting on this futex
 193 * @task:               the task waiting on the futex
 194 * @lock_ptr:           the hash bucket lock
 195 * @key:                the key the futex is hashed on
 196 * @pi_state:           optional priority inheritance state
 197 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 198 * @requeue_pi_key:     the requeue_pi target futex key
 199 * @bitset:             bitset for the optional bitmasked wakeup
 200 *
 201 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 202 * we can wake only the relevant ones (hashed queues may be shared).
 203 *
 204 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 205 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 206 * The order of wakeup is always to make the first condition true, then
 207 * the second.
 208 *
 209 * PI futexes are typically woken before they are removed from the hash list via
 210 * the rt_mutex code. See unqueue_me_pi().
 211 */
 212struct futex_q {
 213        struct plist_node list;
 214
 215        struct task_struct *task;
 216        spinlock_t *lock_ptr;
 217        union futex_key key;
 218        struct futex_pi_state *pi_state;
 219        struct rt_mutex_waiter *rt_waiter;
 220        union futex_key *requeue_pi_key;
 221        u32 bitset;
 222} __randomize_layout;
 223
 224static const struct futex_q futex_q_init = {
 225        /* list gets initialized in queue_me()*/
 226        .key = FUTEX_KEY_INIT,
 227        .bitset = FUTEX_BITSET_MATCH_ANY
 228};
 229
 230/*
 231 * Hash buckets are shared by all the futex_keys that hash to the same
 232 * location.  Each key may have multiple futex_q structures, one for each task
 233 * waiting on a futex.
 234 */
 235struct futex_hash_bucket {
 236        atomic_t waiters;
 237        spinlock_t lock;
 238        struct plist_head chain;
 239} ____cacheline_aligned_in_smp;
 240
 241/*
 242 * The base of the bucket array and its size are always used together
 243 * (after initialization only in hash_futex()), so ensure that they
 244 * reside in the same cacheline.
 245 */
 246static struct {
 247        struct futex_hash_bucket *queues;
 248        unsigned long            hashsize;
 249} __futex_data __read_mostly __aligned(2*sizeof(long));
 250#define futex_queues   (__futex_data.queues)
 251#define futex_hashsize (__futex_data.hashsize)
 252
 253
 254/*
 255 * Fault injections for futexes.
 256 */
 257#ifdef CONFIG_FAIL_FUTEX
 258
 259static struct {
 260        struct fault_attr attr;
 261
 262        bool ignore_private;
 263} fail_futex = {
 264        .attr = FAULT_ATTR_INITIALIZER,
 265        .ignore_private = false,
 266};
 267
 268static int __init setup_fail_futex(char *str)
 269{
 270        return setup_fault_attr(&fail_futex.attr, str);
 271}
 272__setup("fail_futex=", setup_fail_futex);
 273
 274static bool should_fail_futex(bool fshared)
 275{
 276        if (fail_futex.ignore_private && !fshared)
 277                return false;
 278
 279        return should_fail(&fail_futex.attr, 1);
 280}
 281
 282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 283
 284static int __init fail_futex_debugfs(void)
 285{
 286        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 287        struct dentry *dir;
 288
 289        dir = fault_create_debugfs_attr("fail_futex", NULL,
 290                                        &fail_futex.attr);
 291        if (IS_ERR(dir))
 292                return PTR_ERR(dir);
 293
 294        debugfs_create_bool("ignore-private", mode, dir,
 295                            &fail_futex.ignore_private);
 296        return 0;
 297}
 298
 299late_initcall(fail_futex_debugfs);
 300
 301#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 302
 303#else
 304static inline bool should_fail_futex(bool fshared)
 305{
 306        return false;
 307}
 308#endif /* CONFIG_FAIL_FUTEX */
 309
 310#ifdef CONFIG_COMPAT
 311static void compat_exit_robust_list(struct task_struct *curr);
 312#endif
 313
 314/*
 315 * Reflects a new waiter being added to the waitqueue.
 316 */
 317static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 318{
 319#ifdef CONFIG_SMP
 320        atomic_inc(&hb->waiters);
 321        /*
 322         * Full barrier (A), see the ordering comment above.
 323         */
 324        smp_mb__after_atomic();
 325#endif
 326}
 327
 328/*
 329 * Reflects a waiter being removed from the waitqueue by wakeup
 330 * paths.
 331 */
 332static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 333{
 334#ifdef CONFIG_SMP
 335        atomic_dec(&hb->waiters);
 336#endif
 337}
 338
 339static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 340{
 341#ifdef CONFIG_SMP
 342        /*
 343         * Full barrier (B), see the ordering comment above.
 344         */
 345        smp_mb();
 346        return atomic_read(&hb->waiters);
 347#else
 348        return 1;
 349#endif
 350}
 351
 352/**
 353 * hash_futex - Return the hash bucket in the global hash
 354 * @key:        Pointer to the futex key for which the hash is calculated
 355 *
 356 * We hash on the keys returned from get_futex_key (see below) and return the
 357 * corresponding hash bucket in the global hash.
 358 */
 359static struct futex_hash_bucket *hash_futex(union futex_key *key)
 360{
 361        u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
 362                          key->both.offset);
 363
 364        return &futex_queues[hash & (futex_hashsize - 1)];
 365}
 366
 367
 368/**
 369 * match_futex - Check whether two futex keys are equal
 370 * @key1:       Pointer to key1
 371 * @key2:       Pointer to key2
 372 *
 373 * Return 1 if two futex_keys are equal, 0 otherwise.
 374 */
 375static inline int match_futex(union futex_key *key1, union futex_key *key2)
 376{
 377        return (key1 && key2
 378                && key1->both.word == key2->both.word
 379                && key1->both.ptr == key2->both.ptr
 380                && key1->both.offset == key2->both.offset);
 381}
 382
 383enum futex_access {
 384        FUTEX_READ,
 385        FUTEX_WRITE
 386};
 387
 388/**
 389 * futex_setup_timer - set up the sleeping hrtimer.
 390 * @time:       ptr to the given timeout value
 391 * @timeout:    the hrtimer_sleeper structure to be set up
 392 * @flags:      futex flags
 393 * @range_ns:   optional range in ns
 394 *
 395 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 396 *         value given
 397 */
 398static inline struct hrtimer_sleeper *
 399futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
 400                  int flags, u64 range_ns)
 401{
 402        if (!time)
 403                return NULL;
 404
 405        hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
 406                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
 407                                      HRTIMER_MODE_ABS);
 408        /*
 409         * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
 410         * effectively the same as calling hrtimer_set_expires().
 411         */
 412        hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
 413
 414        return timeout;
 415}
 416
 417/*
 418 * Generate a machine wide unique identifier for this inode.
 419 *
 420 * This relies on u64 not wrapping in the life-time of the machine; which with
 421 * 1ns resolution means almost 585 years.
 422 *
 423 * This further relies on the fact that a well formed program will not unmap
 424 * the file while it has a (shared) futex waiting on it. This mapping will have
 425 * a file reference which pins the mount and inode.
 426 *
 427 * If for some reason an inode gets evicted and read back in again, it will get
 428 * a new sequence number and will _NOT_ match, even though it is the exact same
 429 * file.
 430 *
 431 * It is important that match_futex() will never have a false-positive, esp.
 432 * for PI futexes that can mess up the state. The above argues that false-negatives
 433 * are only possible for malformed programs.
 434 */
 435static u64 get_inode_sequence_number(struct inode *inode)
 436{
 437        static atomic64_t i_seq;
 438        u64 old;
 439
 440        /* Does the inode already have a sequence number? */
 441        old = atomic64_read(&inode->i_sequence);
 442        if (likely(old))
 443                return old;
 444
 445        for (;;) {
 446                u64 new = atomic64_add_return(1, &i_seq);
 447                if (WARN_ON_ONCE(!new))
 448                        continue;
 449
 450                old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
 451                if (old)
 452                        return old;
 453                return new;
 454        }
 455}
 456
 457/**
 458 * get_futex_key() - Get parameters which are the keys for a futex
 459 * @uaddr:      virtual address of the futex
 460 * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
 461 * @key:        address where result is stored.
 462 * @rw:         mapping needs to be read/write (values: FUTEX_READ,
 463 *              FUTEX_WRITE)
 464 *
 465 * Return: a negative error code or 0
 466 *
 467 * The key words are stored in @key on success.
 468 *
 469 * For shared mappings (when @fshared), the key is:
 470 *
 471 *   ( inode->i_sequence, page->index, offset_within_page )
 472 *
 473 * [ also see get_inode_sequence_number() ]
 474 *
 475 * For private mappings (or when !@fshared), the key is:
 476 *
 477 *   ( current->mm, address, 0 )
 478 *
 479 * This allows (cross process, where applicable) identification of the futex
 480 * without keeping the page pinned for the duration of the FUTEX_WAIT.
 481 *
 482 * lock_page() might sleep, the caller should not hold a spinlock.
 483 */
 484static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
 485                         enum futex_access rw)
 486{
 487        unsigned long address = (unsigned long)uaddr;
 488        struct mm_struct *mm = current->mm;
 489        struct page *page, *tail;
 490        struct address_space *mapping;
 491        int err, ro = 0;
 492
 493        /*
 494         * The futex address must be "naturally" aligned.
 495         */
 496        key->both.offset = address % PAGE_SIZE;
 497        if (unlikely((address % sizeof(u32)) != 0))
 498                return -EINVAL;
 499        address -= key->both.offset;
 500
 501        if (unlikely(!access_ok(uaddr, sizeof(u32))))
 502                return -EFAULT;
 503
 504        if (unlikely(should_fail_futex(fshared)))
 505                return -EFAULT;
 506
 507        /*
 508         * PROCESS_PRIVATE futexes are fast.
 509         * As the mm cannot disappear under us and the 'key' only needs
 510         * virtual address, we dont even have to find the underlying vma.
 511         * Note : We do have to check 'uaddr' is a valid user address,
 512         *        but access_ok() should be faster than find_vma()
 513         */
 514        if (!fshared) {
 515                key->private.mm = mm;
 516                key->private.address = address;
 517                return 0;
 518        }
 519
 520again:
 521        /* Ignore any VERIFY_READ mapping (futex common case) */
 522        if (unlikely(should_fail_futex(true)))
 523                return -EFAULT;
 524
 525        err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
 526        /*
 527         * If write access is not required (eg. FUTEX_WAIT), try
 528         * and get read-only access.
 529         */
 530        if (err == -EFAULT && rw == FUTEX_READ) {
 531                err = get_user_pages_fast(address, 1, 0, &page);
 532                ro = 1;
 533        }
 534        if (err < 0)
 535                return err;
 536        else
 537                err = 0;
 538
 539        /*
 540         * The treatment of mapping from this point on is critical. The page
 541         * lock protects many things but in this context the page lock
 542         * stabilizes mapping, prevents inode freeing in the shared
 543         * file-backed region case and guards against movement to swap cache.
 544         *
 545         * Strictly speaking the page lock is not needed in all cases being
 546         * considered here and page lock forces unnecessarily serialization
 547         * From this point on, mapping will be re-verified if necessary and
 548         * page lock will be acquired only if it is unavoidable
 549         *
 550         * Mapping checks require the head page for any compound page so the
 551         * head page and mapping is looked up now. For anonymous pages, it
 552         * does not matter if the page splits in the future as the key is
 553         * based on the address. For filesystem-backed pages, the tail is
 554         * required as the index of the page determines the key. For
 555         * base pages, there is no tail page and tail == page.
 556         */
 557        tail = page;
 558        page = compound_head(page);
 559        mapping = READ_ONCE(page->mapping);
 560
 561        /*
 562         * If page->mapping is NULL, then it cannot be a PageAnon
 563         * page; but it might be the ZERO_PAGE or in the gate area or
 564         * in a special mapping (all cases which we are happy to fail);
 565         * or it may have been a good file page when get_user_pages_fast
 566         * found it, but truncated or holepunched or subjected to
 567         * invalidate_complete_page2 before we got the page lock (also
 568         * cases which we are happy to fail).  And we hold a reference,
 569         * so refcount care in invalidate_complete_page's remove_mapping
 570         * prevents drop_caches from setting mapping to NULL beneath us.
 571         *
 572         * The case we do have to guard against is when memory pressure made
 573         * shmem_writepage move it from filecache to swapcache beneath us:
 574         * an unlikely race, but we do need to retry for page->mapping.
 575         */
 576        if (unlikely(!mapping)) {
 577                int shmem_swizzled;
 578
 579                /*
 580                 * Page lock is required to identify which special case above
 581                 * applies. If this is really a shmem page then the page lock
 582                 * will prevent unexpected transitions.
 583                 */
 584                lock_page(page);
 585                shmem_swizzled = PageSwapCache(page) || page->mapping;
 586                unlock_page(page);
 587                put_page(page);
 588
 589                if (shmem_swizzled)
 590                        goto again;
 591
 592                return -EFAULT;
 593        }
 594
 595        /*
 596         * Private mappings are handled in a simple way.
 597         *
 598         * If the futex key is stored on an anonymous page, then the associated
 599         * object is the mm which is implicitly pinned by the calling process.
 600         *
 601         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 602         * it's a read-only handle, it's expected that futexes attach to
 603         * the object not the particular process.
 604         */
 605        if (PageAnon(page)) {
 606                /*
 607                 * A RO anonymous page will never change and thus doesn't make
 608                 * sense for futex operations.
 609                 */
 610                if (unlikely(should_fail_futex(true)) || ro) {
 611                        err = -EFAULT;
 612                        goto out;
 613                }
 614
 615                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 616                key->private.mm = mm;
 617                key->private.address = address;
 618
 619        } else {
 620                struct inode *inode;
 621
 622                /*
 623                 * The associated futex object in this case is the inode and
 624                 * the page->mapping must be traversed. Ordinarily this should
 625                 * be stabilised under page lock but it's not strictly
 626                 * necessary in this case as we just want to pin the inode, not
 627                 * update the radix tree or anything like that.
 628                 *
 629                 * The RCU read lock is taken as the inode is finally freed
 630                 * under RCU. If the mapping still matches expectations then the
 631                 * mapping->host can be safely accessed as being a valid inode.
 632                 */
 633                rcu_read_lock();
 634
 635                if (READ_ONCE(page->mapping) != mapping) {
 636                        rcu_read_unlock();
 637                        put_page(page);
 638
 639                        goto again;
 640                }
 641
 642                inode = READ_ONCE(mapping->host);
 643                if (!inode) {
 644                        rcu_read_unlock();
 645                        put_page(page);
 646
 647                        goto again;
 648                }
 649
 650                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 651                key->shared.i_seq = get_inode_sequence_number(inode);
 652                key->shared.pgoff = page_to_pgoff(tail);
 653                rcu_read_unlock();
 654        }
 655
 656out:
 657        put_page(page);
 658        return err;
 659}
 660
 661/**
 662 * fault_in_user_writeable() - Fault in user address and verify RW access
 663 * @uaddr:      pointer to faulting user space address
 664 *
 665 * Slow path to fixup the fault we just took in the atomic write
 666 * access to @uaddr.
 667 *
 668 * We have no generic implementation of a non-destructive write to the
 669 * user address. We know that we faulted in the atomic pagefault
 670 * disabled section so we can as well avoid the #PF overhead by
 671 * calling get_user_pages() right away.
 672 */
 673static int fault_in_user_writeable(u32 __user *uaddr)
 674{
 675        struct mm_struct *mm = current->mm;
 676        int ret;
 677
 678        mmap_read_lock(mm);
 679        ret = fixup_user_fault(mm, (unsigned long)uaddr,
 680                               FAULT_FLAG_WRITE, NULL);
 681        mmap_read_unlock(mm);
 682
 683        return ret < 0 ? ret : 0;
 684}
 685
 686/**
 687 * futex_top_waiter() - Return the highest priority waiter on a futex
 688 * @hb:         the hash bucket the futex_q's reside in
 689 * @key:        the futex key (to distinguish it from other futex futex_q's)
 690 *
 691 * Must be called with the hb lock held.
 692 */
 693static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 694                                        union futex_key *key)
 695{
 696        struct futex_q *this;
 697
 698        plist_for_each_entry(this, &hb->chain, list) {
 699                if (match_futex(&this->key, key))
 700                        return this;
 701        }
 702        return NULL;
 703}
 704
 705static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 706                                      u32 uval, u32 newval)
 707{
 708        int ret;
 709
 710        pagefault_disable();
 711        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 712        pagefault_enable();
 713
 714        return ret;
 715}
 716
 717static int get_futex_value_locked(u32 *dest, u32 __user *from)
 718{
 719        int ret;
 720
 721        pagefault_disable();
 722        ret = __get_user(*dest, from);
 723        pagefault_enable();
 724
 725        return ret ? -EFAULT : 0;
 726}
 727
 728
 729/*
 730 * PI code:
 731 */
 732static int refill_pi_state_cache(void)
 733{
 734        struct futex_pi_state *pi_state;
 735
 736        if (likely(current->pi_state_cache))
 737                return 0;
 738
 739        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 740
 741        if (!pi_state)
 742                return -ENOMEM;
 743
 744        INIT_LIST_HEAD(&pi_state->list);
 745        /* pi_mutex gets initialized later */
 746        pi_state->owner = NULL;
 747        refcount_set(&pi_state->refcount, 1);
 748        pi_state->key = FUTEX_KEY_INIT;
 749
 750        current->pi_state_cache = pi_state;
 751
 752        return 0;
 753}
 754
 755static struct futex_pi_state *alloc_pi_state(void)
 756{
 757        struct futex_pi_state *pi_state = current->pi_state_cache;
 758
 759        WARN_ON(!pi_state);
 760        current->pi_state_cache = NULL;
 761
 762        return pi_state;
 763}
 764
 765static void pi_state_update_owner(struct futex_pi_state *pi_state,
 766                                  struct task_struct *new_owner)
 767{
 768        struct task_struct *old_owner = pi_state->owner;
 769
 770        lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
 771
 772        if (old_owner) {
 773                raw_spin_lock(&old_owner->pi_lock);
 774                WARN_ON(list_empty(&pi_state->list));
 775                list_del_init(&pi_state->list);
 776                raw_spin_unlock(&old_owner->pi_lock);
 777        }
 778
 779        if (new_owner) {
 780                raw_spin_lock(&new_owner->pi_lock);
 781                WARN_ON(!list_empty(&pi_state->list));
 782                list_add(&pi_state->list, &new_owner->pi_state_list);
 783                pi_state->owner = new_owner;
 784                raw_spin_unlock(&new_owner->pi_lock);
 785        }
 786}
 787
 788static void get_pi_state(struct futex_pi_state *pi_state)
 789{
 790        WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
 791}
 792
 793/*
 794 * Drops a reference to the pi_state object and frees or caches it
 795 * when the last reference is gone.
 796 */
 797static void put_pi_state(struct futex_pi_state *pi_state)
 798{
 799        if (!pi_state)
 800                return;
 801
 802        if (!refcount_dec_and_test(&pi_state->refcount))
 803                return;
 804
 805        /*
 806         * If pi_state->owner is NULL, the owner is most probably dying
 807         * and has cleaned up the pi_state already
 808         */
 809        if (pi_state->owner) {
 810                unsigned long flags;
 811
 812                raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
 813                pi_state_update_owner(pi_state, NULL);
 814                rt_mutex_proxy_unlock(&pi_state->pi_mutex);
 815                raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
 816        }
 817
 818        if (current->pi_state_cache) {
 819                kfree(pi_state);
 820        } else {
 821                /*
 822                 * pi_state->list is already empty.
 823                 * clear pi_state->owner.
 824                 * refcount is at 0 - put it back to 1.
 825                 */
 826                pi_state->owner = NULL;
 827                refcount_set(&pi_state->refcount, 1);
 828                current->pi_state_cache = pi_state;
 829        }
 830}
 831
 832#ifdef CONFIG_FUTEX_PI
 833
 834/*
 835 * This task is holding PI mutexes at exit time => bad.
 836 * Kernel cleans up PI-state, but userspace is likely hosed.
 837 * (Robust-futex cleanup is separate and might save the day for userspace.)
 838 */
 839static void exit_pi_state_list(struct task_struct *curr)
 840{
 841        struct list_head *next, *head = &curr->pi_state_list;
 842        struct futex_pi_state *pi_state;
 843        struct futex_hash_bucket *hb;
 844        union futex_key key = FUTEX_KEY_INIT;
 845
 846        if (!futex_cmpxchg_enabled)
 847                return;
 848        /*
 849         * We are a ZOMBIE and nobody can enqueue itself on
 850         * pi_state_list anymore, but we have to be careful
 851         * versus waiters unqueueing themselves:
 852         */
 853        raw_spin_lock_irq(&curr->pi_lock);
 854        while (!list_empty(head)) {
 855                next = head->next;
 856                pi_state = list_entry(next, struct futex_pi_state, list);
 857                key = pi_state->key;
 858                hb = hash_futex(&key);
 859
 860                /*
 861                 * We can race against put_pi_state() removing itself from the
 862                 * list (a waiter going away). put_pi_state() will first
 863                 * decrement the reference count and then modify the list, so
 864                 * its possible to see the list entry but fail this reference
 865                 * acquire.
 866                 *
 867                 * In that case; drop the locks to let put_pi_state() make
 868                 * progress and retry the loop.
 869                 */
 870                if (!refcount_inc_not_zero(&pi_state->refcount)) {
 871                        raw_spin_unlock_irq(&curr->pi_lock);
 872                        cpu_relax();
 873                        raw_spin_lock_irq(&curr->pi_lock);
 874                        continue;
 875                }
 876                raw_spin_unlock_irq(&curr->pi_lock);
 877
 878                spin_lock(&hb->lock);
 879                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 880                raw_spin_lock(&curr->pi_lock);
 881                /*
 882                 * We dropped the pi-lock, so re-check whether this
 883                 * task still owns the PI-state:
 884                 */
 885                if (head->next != next) {
 886                        /* retain curr->pi_lock for the loop invariant */
 887                        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 888                        spin_unlock(&hb->lock);
 889                        put_pi_state(pi_state);
 890                        continue;
 891                }
 892
 893                WARN_ON(pi_state->owner != curr);
 894                WARN_ON(list_empty(&pi_state->list));
 895                list_del_init(&pi_state->list);
 896                pi_state->owner = NULL;
 897
 898                raw_spin_unlock(&curr->pi_lock);
 899                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 900                spin_unlock(&hb->lock);
 901
 902                rt_mutex_futex_unlock(&pi_state->pi_mutex);
 903                put_pi_state(pi_state);
 904
 905                raw_spin_lock_irq(&curr->pi_lock);
 906        }
 907        raw_spin_unlock_irq(&curr->pi_lock);
 908}
 909#else
 910static inline void exit_pi_state_list(struct task_struct *curr) { }
 911#endif
 912
 913/*
 914 * We need to check the following states:
 915 *
 916 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 917 *
 918 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 919 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 920 *
 921 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 922 *
 923 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 924 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 925 *
 926 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 927 *
 928 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 929 *
 930 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 931 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 932 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 933 *
 934 * [1]  Indicates that the kernel can acquire the futex atomically. We
 935 *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 936 *
 937 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 938 *      thread is found then it indicates that the owner TID has died.
 939 *
 940 * [3]  Invalid. The waiter is queued on a non PI futex
 941 *
 942 * [4]  Valid state after exit_robust_list(), which sets the user space
 943 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 944 *
 945 * [5]  The user space value got manipulated between exit_robust_list()
 946 *      and exit_pi_state_list()
 947 *
 948 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
 949 *      the pi_state but cannot access the user space value.
 950 *
 951 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 952 *
 953 * [8]  Owner and user space value match
 954 *
 955 * [9]  There is no transient state which sets the user space TID to 0
 956 *      except exit_robust_list(), but this is indicated by the
 957 *      FUTEX_OWNER_DIED bit. See [4]
 958 *
 959 * [10] There is no transient state which leaves owner and user space
 960 *      TID out of sync. Except one error case where the kernel is denied
 961 *      write access to the user address, see fixup_pi_state_owner().
 962 *
 963 *
 964 * Serialization and lifetime rules:
 965 *
 966 * hb->lock:
 967 *
 968 *      hb -> futex_q, relation
 969 *      futex_q -> pi_state, relation
 970 *
 971 *      (cannot be raw because hb can contain arbitrary amount
 972 *       of futex_q's)
 973 *
 974 * pi_mutex->wait_lock:
 975 *
 976 *      {uval, pi_state}
 977 *
 978 *      (and pi_mutex 'obviously')
 979 *
 980 * p->pi_lock:
 981 *
 982 *      p->pi_state_list -> pi_state->list, relation
 983 *      pi_mutex->owner -> pi_state->owner, relation
 984 *
 985 * pi_state->refcount:
 986 *
 987 *      pi_state lifetime
 988 *
 989 *
 990 * Lock order:
 991 *
 992 *   hb->lock
 993 *     pi_mutex->wait_lock
 994 *       p->pi_lock
 995 *
 996 */
 997
 998/*
 999 * Validate that the existing waiter has a pi_state and sanity check
1000 * the pi_state against the user space value. If correct, attach to
1001 * it.
1002 */
1003static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004                              struct futex_pi_state *pi_state,
1005                              struct futex_pi_state **ps)
1006{
1007        pid_t pid = uval & FUTEX_TID_MASK;
1008        u32 uval2;
1009        int ret;
1010
1011        /*
1012         * Userspace might have messed up non-PI and PI futexes [3]
1013         */
1014        if (unlikely(!pi_state))
1015                return -EINVAL;
1016
1017        /*
1018         * We get here with hb->lock held, and having found a
1019         * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020         * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021         * which in turn means that futex_lock_pi() still has a reference on
1022         * our pi_state.
1023         *
1024         * The waiter holding a reference on @pi_state also protects against
1025         * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026         * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027         * free pi_state before we can take a reference ourselves.
1028         */
1029        WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031        /*
1032         * Now that we have a pi_state, we can acquire wait_lock
1033         * and do the state validation.
1034         */
1035        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037        /*
1038         * Since {uval, pi_state} is serialized by wait_lock, and our current
1039         * uval was read without holding it, it can have changed. Verify it
1040         * still is what we expect it to be, otherwise retry the entire
1041         * operation.
1042         */
1043        if (get_futex_value_locked(&uval2, uaddr))
1044                goto out_efault;
1045
1046        if (uval != uval2)
1047                goto out_eagain;
1048
1049        /*
1050         * Handle the owner died case:
1051         */
1052        if (uval & FUTEX_OWNER_DIED) {
1053                /*
1054                 * exit_pi_state_list sets owner to NULL and wakes the
1055                 * topmost waiter. The task which acquires the
1056                 * pi_state->rt_mutex will fixup owner.
1057                 */
1058                if (!pi_state->owner) {
1059                        /*
1060                         * No pi state owner, but the user space TID
1061                         * is not 0. Inconsistent state. [5]
1062                         */
1063                        if (pid)
1064                                goto out_einval;
1065                        /*
1066                         * Take a ref on the state and return success. [4]
1067                         */
1068                        goto out_attach;
1069                }
1070
1071                /*
1072                 * If TID is 0, then either the dying owner has not
1073                 * yet executed exit_pi_state_list() or some waiter
1074                 * acquired the rtmutex in the pi state, but did not
1075                 * yet fixup the TID in user space.
1076                 *
1077                 * Take a ref on the state and return success. [6]
1078                 */
1079                if (!pid)
1080                        goto out_attach;
1081        } else {
1082                /*
1083                 * If the owner died bit is not set, then the pi_state
1084                 * must have an owner. [7]
1085                 */
1086                if (!pi_state->owner)
1087                        goto out_einval;
1088        }
1089
1090        /*
1091         * Bail out if user space manipulated the futex value. If pi
1092         * state exists then the owner TID must be the same as the
1093         * user space TID. [9/10]
1094         */
1095        if (pid != task_pid_vnr(pi_state->owner))
1096                goto out_einval;
1097
1098out_attach:
1099        get_pi_state(pi_state);
1100        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101        *ps = pi_state;
1102        return 0;
1103
1104out_einval:
1105        ret = -EINVAL;
1106        goto out_error;
1107
1108out_eagain:
1109        ret = -EAGAIN;
1110        goto out_error;
1111
1112out_efault:
1113        ret = -EFAULT;
1114        goto out_error;
1115
1116out_error:
1117        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118        return ret;
1119}
1120
1121/**
1122 * wait_for_owner_exiting - Block until the owner has exited
1123 * @ret: owner's current futex lock status
1124 * @exiting:    Pointer to the exiting task
1125 *
1126 * Caller must hold a refcount on @exiting.
1127 */
1128static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129{
1130        if (ret != -EBUSY) {
1131                WARN_ON_ONCE(exiting);
1132                return;
1133        }
1134
1135        if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136                return;
1137
1138        mutex_lock(&exiting->futex_exit_mutex);
1139        /*
1140         * No point in doing state checking here. If the waiter got here
1141         * while the task was in exec()->exec_futex_release() then it can
1142         * have any FUTEX_STATE_* value when the waiter has acquired the
1143         * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144         * already. Highly unlikely and not a problem. Just one more round
1145         * through the futex maze.
1146         */
1147        mutex_unlock(&exiting->futex_exit_mutex);
1148
1149        put_task_struct(exiting);
1150}
1151
1152static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153                            struct task_struct *tsk)
1154{
1155        u32 uval2;
1156
1157        /*
1158         * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159         * caller that the alleged owner is busy.
1160         */
1161        if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162                return -EBUSY;
1163
1164        /*
1165         * Reread the user space value to handle the following situation:
1166         *
1167         * CPU0                         CPU1
1168         *
1169         * sys_exit()                   sys_futex()
1170         *  do_exit()                    futex_lock_pi()
1171         *                                futex_lock_pi_atomic()
1172         *   exit_signals(tsk)              No waiters:
1173         *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1174         *  mm_release(tsk)                 Set waiter bit
1175         *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1176         *      Set owner died              attach_to_pi_owner() {
1177         *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1178         *   }                               if (!tsk->flags & PF_EXITING) {
1179         *  ...                                attach();
1180         *  tsk->futex_state =               } else {
1181         *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1182         *                                        FUTEX_STATE_DEAD)
1183         *                                       return -EAGAIN;
1184         *                                     return -ESRCH; <--- FAIL
1185         *                                   }
1186         *
1187         * Returning ESRCH unconditionally is wrong here because the
1188         * user space value has been changed by the exiting task.
1189         *
1190         * The same logic applies to the case where the exiting task is
1191         * already gone.
1192         */
1193        if (get_futex_value_locked(&uval2, uaddr))
1194                return -EFAULT;
1195
1196        /* If the user space value has changed, try again. */
1197        if (uval2 != uval)
1198                return -EAGAIN;
1199
1200        /*
1201         * The exiting task did not have a robust list, the robust list was
1202         * corrupted or the user space value in *uaddr is simply bogus.
1203         * Give up and tell user space.
1204         */
1205        return -ESRCH;
1206}
1207
1208/*
1209 * Lookup the task for the TID provided from user space and attach to
1210 * it after doing proper sanity checks.
1211 */
1212static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                              struct futex_pi_state **ps,
1214                              struct task_struct **exiting)
1215{
1216        pid_t pid = uval & FUTEX_TID_MASK;
1217        struct futex_pi_state *pi_state;
1218        struct task_struct *p;
1219
1220        /*
1221         * We are the first waiter - try to look up the real owner and attach
1222         * the new pi_state to it, but bail out when TID = 0 [1]
1223         *
1224         * The !pid check is paranoid. None of the call sites should end up
1225         * with pid == 0, but better safe than sorry. Let the caller retry
1226         */
1227        if (!pid)
1228                return -EAGAIN;
1229        p = find_get_task_by_vpid(pid);
1230        if (!p)
1231                return handle_exit_race(uaddr, uval, NULL);
1232
1233        if (unlikely(p->flags & PF_KTHREAD)) {
1234                put_task_struct(p);
1235                return -EPERM;
1236        }
1237
1238        /*
1239         * We need to look at the task state to figure out, whether the
1240         * task is exiting. To protect against the change of the task state
1241         * in futex_exit_release(), we do this protected by p->pi_lock:
1242         */
1243        raw_spin_lock_irq(&p->pi_lock);
1244        if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245                /*
1246                 * The task is on the way out. When the futex state is
1247                 * FUTEX_STATE_DEAD, we know that the task has finished
1248                 * the cleanup:
1249                 */
1250                int ret = handle_exit_race(uaddr, uval, p);
1251
1252                raw_spin_unlock_irq(&p->pi_lock);
1253                /*
1254                 * If the owner task is between FUTEX_STATE_EXITING and
1255                 * FUTEX_STATE_DEAD then store the task pointer and keep
1256                 * the reference on the task struct. The calling code will
1257                 * drop all locks, wait for the task to reach
1258                 * FUTEX_STATE_DEAD and then drop the refcount. This is
1259                 * required to prevent a live lock when the current task
1260                 * preempted the exiting task between the two states.
1261                 */
1262                if (ret == -EBUSY)
1263                        *exiting = p;
1264                else
1265                        put_task_struct(p);
1266                return ret;
1267        }
1268
1269        /*
1270         * No existing pi state. First waiter. [2]
1271         *
1272         * This creates pi_state, we have hb->lock held, this means nothing can
1273         * observe this state, wait_lock is irrelevant.
1274         */
1275        pi_state = alloc_pi_state();
1276
1277        /*
1278         * Initialize the pi_mutex in locked state and make @p
1279         * the owner of it:
1280         */
1281        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283        /* Store the key for possible exit cleanups: */
1284        pi_state->key = *key;
1285
1286        WARN_ON(!list_empty(&pi_state->list));
1287        list_add(&pi_state->list, &p->pi_state_list);
1288        /*
1289         * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290         * because there is no concurrency as the object is not published yet.
1291         */
1292        pi_state->owner = p;
1293        raw_spin_unlock_irq(&p->pi_lock);
1294
1295        put_task_struct(p);
1296
1297        *ps = pi_state;
1298
1299        return 0;
1300}
1301
1302static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303                           struct futex_hash_bucket *hb,
1304                           union futex_key *key, struct futex_pi_state **ps,
1305                           struct task_struct **exiting)
1306{
1307        struct futex_q *top_waiter = futex_top_waiter(hb, key);
1308
1309        /*
1310         * If there is a waiter on that futex, validate it and
1311         * attach to the pi_state when the validation succeeds.
1312         */
1313        if (top_waiter)
1314                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1315
1316        /*
1317         * We are the first waiter - try to look up the owner based on
1318         * @uval and attach to it.
1319         */
1320        return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1321}
1322
1323static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324{
1325        int err;
1326        u32 curval;
1327
1328        if (unlikely(should_fail_futex(true)))
1329                return -EFAULT;
1330
1331        err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332        if (unlikely(err))
1333                return err;
1334
1335        /* If user space value changed, let the caller retry */
1336        return curval != uval ? -EAGAIN : 0;
1337}
1338
1339/**
1340 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341 * @uaddr:              the pi futex user address
1342 * @hb:                 the pi futex hash bucket
1343 * @key:                the futex key associated with uaddr and hb
1344 * @ps:                 the pi_state pointer where we store the result of the
1345 *                      lookup
1346 * @task:               the task to perform the atomic lock work for.  This will
1347 *                      be "current" except in the case of requeue pi.
1348 * @exiting:            Pointer to store the task pointer of the owner task
1349 *                      which is in the middle of exiting
1350 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1351 *
1352 * Return:
1353 *  -  0 - ready to wait;
1354 *  -  1 - acquired the lock;
1355 *  - <0 - error
1356 *
1357 * The hb->lock and futex_key refs shall be held by the caller.
1358 *
1359 * @exiting is only set when the return value is -EBUSY. If so, this holds
1360 * a refcount on the exiting task on return and the caller needs to drop it
1361 * after waiting for the exit to complete.
1362 */
1363static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364                                union futex_key *key,
1365                                struct futex_pi_state **ps,
1366                                struct task_struct *task,
1367                                struct task_struct **exiting,
1368                                int set_waiters)
1369{
1370        u32 uval, newval, vpid = task_pid_vnr(task);
1371        struct futex_q *top_waiter;
1372        int ret;
1373
1374        /*
1375         * Read the user space value first so we can validate a few
1376         * things before proceeding further.
1377         */
1378        if (get_futex_value_locked(&uval, uaddr))
1379                return -EFAULT;
1380
1381        if (unlikely(should_fail_futex(true)))
1382                return -EFAULT;
1383
1384        /*
1385         * Detect deadlocks.
1386         */
1387        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1388                return -EDEADLK;
1389
1390        if ((unlikely(should_fail_futex(true))))
1391                return -EDEADLK;
1392
1393        /*
1394         * Lookup existing state first. If it exists, try to attach to
1395         * its pi_state.
1396         */
1397        top_waiter = futex_top_waiter(hb, key);
1398        if (top_waiter)
1399                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1400
1401        /*
1402         * No waiter and user TID is 0. We are here because the
1403         * waiters or the owner died bit is set or called from
1404         * requeue_cmp_pi or for whatever reason something took the
1405         * syscall.
1406         */
1407        if (!(uval & FUTEX_TID_MASK)) {
1408                /*
1409                 * We take over the futex. No other waiters and the user space
1410                 * TID is 0. We preserve the owner died bit.
1411                 */
1412                newval = uval & FUTEX_OWNER_DIED;
1413                newval |= vpid;
1414
1415                /* The futex requeue_pi code can enforce the waiters bit */
1416                if (set_waiters)
1417                        newval |= FUTEX_WAITERS;
1418
1419                ret = lock_pi_update_atomic(uaddr, uval, newval);
1420                /* If the take over worked, return 1 */
1421                return ret < 0 ? ret : 1;
1422        }
1423
1424        /*
1425         * First waiter. Set the waiters bit before attaching ourself to
1426         * the owner. If owner tries to unlock, it will be forced into
1427         * the kernel and blocked on hb->lock.
1428         */
1429        newval = uval | FUTEX_WAITERS;
1430        ret = lock_pi_update_atomic(uaddr, uval, newval);
1431        if (ret)
1432                return ret;
1433        /*
1434         * If the update of the user space value succeeded, we try to
1435         * attach to the owner. If that fails, no harm done, we only
1436         * set the FUTEX_WAITERS bit in the user space variable.
1437         */
1438        return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1439}
1440
1441/**
1442 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443 * @q:  The futex_q to unqueue
1444 *
1445 * The q->lock_ptr must not be NULL and must be held by the caller.
1446 */
1447static void __unqueue_futex(struct futex_q *q)
1448{
1449        struct futex_hash_bucket *hb;
1450
1451        if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1452                return;
1453        lockdep_assert_held(q->lock_ptr);
1454
1455        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456        plist_del(&q->list, &hb->chain);
1457        hb_waiters_dec(hb);
1458}
1459
1460/*
1461 * The hash bucket lock must be held when this is called.
1462 * Afterwards, the futex_q must not be accessed. Callers
1463 * must ensure to later call wake_up_q() for the actual
1464 * wakeups to occur.
1465 */
1466static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1467{
1468        struct task_struct *p = q->task;
1469
1470        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471                return;
1472
1473        get_task_struct(p);
1474        __unqueue_futex(q);
1475        /*
1476         * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477         * is written, without taking any locks. This is possible in the event
1478         * of a spurious wakeup, for example. A memory barrier is required here
1479         * to prevent the following store to lock_ptr from getting ahead of the
1480         * plist_del in __unqueue_futex().
1481         */
1482        smp_store_release(&q->lock_ptr, NULL);
1483
1484        /*
1485         * Queue the task for later wakeup for after we've released
1486         * the hb->lock.
1487         */
1488        wake_q_add_safe(wake_q, p);
1489}
1490
1491/*
1492 * Caller must hold a reference on @pi_state.
1493 */
1494static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1495{
1496        u32 curval, newval;
1497        struct rt_mutex_waiter *top_waiter;
1498        struct task_struct *new_owner;
1499        bool postunlock = false;
1500        DEFINE_WAKE_Q(wake_q);
1501        int ret = 0;
1502
1503        top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1504        if (WARN_ON_ONCE(!top_waiter)) {
1505                /*
1506                 * As per the comment in futex_unlock_pi() this should not happen.
1507                 *
1508                 * When this happens, give up our locks and try again, giving
1509                 * the futex_lock_pi() instance time to complete, either by
1510                 * waiting on the rtmutex or removing itself from the futex
1511                 * queue.
1512                 */
1513                ret = -EAGAIN;
1514                goto out_unlock;
1515        }
1516
1517        new_owner = top_waiter->task;
1518
1519        /*
1520         * We pass it to the next owner. The WAITERS bit is always kept
1521         * enabled while there is PI state around. We cleanup the owner
1522         * died bit, because we are the owner.
1523         */
1524        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1525
1526        if (unlikely(should_fail_futex(true))) {
1527                ret = -EFAULT;
1528                goto out_unlock;
1529        }
1530
1531        ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532        if (!ret && (curval != uval)) {
1533                /*
1534                 * If a unconditional UNLOCK_PI operation (user space did not
1535                 * try the TID->0 transition) raced with a waiter setting the
1536                 * FUTEX_WAITERS flag between get_user() and locking the hash
1537                 * bucket lock, retry the operation.
1538                 */
1539                if ((FUTEX_TID_MASK & curval) == uval)
1540                        ret = -EAGAIN;
1541                else
1542                        ret = -EINVAL;
1543        }
1544
1545        if (!ret) {
1546                /*
1547                 * This is a point of no return; once we modified the uval
1548                 * there is no going back and subsequent operations must
1549                 * not fail.
1550                 */
1551                pi_state_update_owner(pi_state, new_owner);
1552                postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1553        }
1554
1555out_unlock:
1556        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1557
1558        if (postunlock)
1559                rt_mutex_postunlock(&wake_q);
1560
1561        return ret;
1562}
1563
1564/*
1565 * Express the locking dependencies for lockdep:
1566 */
1567static inline void
1568double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569{
1570        if (hb1 <= hb2) {
1571                spin_lock(&hb1->lock);
1572                if (hb1 < hb2)
1573                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1574        } else { /* hb1 > hb2 */
1575                spin_lock(&hb2->lock);
1576                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1577        }
1578}
1579
1580static inline void
1581double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1582{
1583        spin_unlock(&hb1->lock);
1584        if (hb1 != hb2)
1585                spin_unlock(&hb2->lock);
1586}
1587
1588/*
1589 * Wake up waiters matching bitset queued on this futex (uaddr).
1590 */
1591static int
1592futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1593{
1594        struct futex_hash_bucket *hb;
1595        struct futex_q *this, *next;
1596        union futex_key key = FUTEX_KEY_INIT;
1597        int ret;
1598        DEFINE_WAKE_Q(wake_q);
1599
1600        if (!bitset)
1601                return -EINVAL;
1602
1603        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1604        if (unlikely(ret != 0))
1605                return ret;
1606
1607        hb = hash_futex(&key);
1608
1609        /* Make sure we really have tasks to wakeup */
1610        if (!hb_waiters_pending(hb))
1611                return ret;
1612
1613        spin_lock(&hb->lock);
1614
1615        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1616                if (match_futex (&this->key, &key)) {
1617                        if (this->pi_state || this->rt_waiter) {
1618                                ret = -EINVAL;
1619                                break;
1620                        }
1621
1622                        /* Check if one of the bits is set in both bitsets */
1623                        if (!(this->bitset & bitset))
1624                                continue;
1625
1626                        mark_wake_futex(&wake_q, this);
1627                        if (++ret >= nr_wake)
1628                                break;
1629                }
1630        }
1631
1632        spin_unlock(&hb->lock);
1633        wake_up_q(&wake_q);
1634        return ret;
1635}
1636
1637static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1638{
1639        unsigned int op =         (encoded_op & 0x70000000) >> 28;
1640        unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1641        int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1642        int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1643        int oldval, ret;
1644
1645        if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1646                if (oparg < 0 || oparg > 31) {
1647                        char comm[sizeof(current->comm)];
1648                        /*
1649                         * kill this print and return -EINVAL when userspace
1650                         * is sane again
1651                         */
1652                        pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1653                                        get_task_comm(comm, current), oparg);
1654                        oparg &= 31;
1655                }
1656                oparg = 1 << oparg;
1657        }
1658
1659        pagefault_disable();
1660        ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1661        pagefault_enable();
1662        if (ret)
1663                return ret;
1664
1665        switch (cmp) {
1666        case FUTEX_OP_CMP_EQ:
1667                return oldval == cmparg;
1668        case FUTEX_OP_CMP_NE:
1669                return oldval != cmparg;
1670        case FUTEX_OP_CMP_LT:
1671                return oldval < cmparg;
1672        case FUTEX_OP_CMP_GE:
1673                return oldval >= cmparg;
1674        case FUTEX_OP_CMP_LE:
1675                return oldval <= cmparg;
1676        case FUTEX_OP_CMP_GT:
1677                return oldval > cmparg;
1678        default:
1679                return -ENOSYS;
1680        }
1681}
1682
1683/*
1684 * Wake up all waiters hashed on the physical page that is mapped
1685 * to this virtual address:
1686 */
1687static int
1688futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1689              int nr_wake, int nr_wake2, int op)
1690{
1691        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1692        struct futex_hash_bucket *hb1, *hb2;
1693        struct futex_q *this, *next;
1694        int ret, op_ret;
1695        DEFINE_WAKE_Q(wake_q);
1696
1697retry:
1698        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1699        if (unlikely(ret != 0))
1700                return ret;
1701        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1702        if (unlikely(ret != 0))
1703                return ret;
1704
1705        hb1 = hash_futex(&key1);
1706        hb2 = hash_futex(&key2);
1707
1708retry_private:
1709        double_lock_hb(hb1, hb2);
1710        op_ret = futex_atomic_op_inuser(op, uaddr2);
1711        if (unlikely(op_ret < 0)) {
1712                double_unlock_hb(hb1, hb2);
1713
1714                if (!IS_ENABLED(CONFIG_MMU) ||
1715                    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1716                        /*
1717                         * we don't get EFAULT from MMU faults if we don't have
1718                         * an MMU, but we might get them from range checking
1719                         */
1720                        ret = op_ret;
1721                        return ret;
1722                }
1723
1724                if (op_ret == -EFAULT) {
1725                        ret = fault_in_user_writeable(uaddr2);
1726                        if (ret)
1727                                return ret;
1728                }
1729
1730                cond_resched();
1731                if (!(flags & FLAGS_SHARED))
1732                        goto retry_private;
1733                goto retry;
1734        }
1735
1736        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1737                if (match_futex (&this->key, &key1)) {
1738                        if (this->pi_state || this->rt_waiter) {
1739                                ret = -EINVAL;
1740                                goto out_unlock;
1741                        }
1742                        mark_wake_futex(&wake_q, this);
1743                        if (++ret >= nr_wake)
1744                                break;
1745                }
1746        }
1747
1748        if (op_ret > 0) {
1749                op_ret = 0;
1750                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1751                        if (match_futex (&this->key, &key2)) {
1752                                if (this->pi_state || this->rt_waiter) {
1753                                        ret = -EINVAL;
1754                                        goto out_unlock;
1755                                }
1756                                mark_wake_futex(&wake_q, this);
1757                                if (++op_ret >= nr_wake2)
1758                                        break;
1759                        }
1760                }
1761                ret += op_ret;
1762        }
1763
1764out_unlock:
1765        double_unlock_hb(hb1, hb2);
1766        wake_up_q(&wake_q);
1767        return ret;
1768}
1769
1770/**
1771 * requeue_futex() - Requeue a futex_q from one hb to another
1772 * @q:          the futex_q to requeue
1773 * @hb1:        the source hash_bucket
1774 * @hb2:        the target hash_bucket
1775 * @key2:       the new key for the requeued futex_q
1776 */
1777static inline
1778void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1779                   struct futex_hash_bucket *hb2, union futex_key *key2)
1780{
1781
1782        /*
1783         * If key1 and key2 hash to the same bucket, no need to
1784         * requeue.
1785         */
1786        if (likely(&hb1->chain != &hb2->chain)) {
1787                plist_del(&q->list, &hb1->chain);
1788                hb_waiters_dec(hb1);
1789                hb_waiters_inc(hb2);
1790                plist_add(&q->list, &hb2->chain);
1791                q->lock_ptr = &hb2->lock;
1792        }
1793        q->key = *key2;
1794}
1795
1796/**
1797 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1798 * @q:          the futex_q
1799 * @key:        the key of the requeue target futex
1800 * @hb:         the hash_bucket of the requeue target futex
1801 *
1802 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1803 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1804 * to the requeue target futex so the waiter can detect the wakeup on the right
1805 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1806 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1807 * to protect access to the pi_state to fixup the owner later.  Must be called
1808 * with both q->lock_ptr and hb->lock held.
1809 */
1810static inline
1811void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1812                           struct futex_hash_bucket *hb)
1813{
1814        q->key = *key;
1815
1816        __unqueue_futex(q);
1817
1818        WARN_ON(!q->rt_waiter);
1819        q->rt_waiter = NULL;
1820
1821        q->lock_ptr = &hb->lock;
1822
1823        wake_up_state(q->task, TASK_NORMAL);
1824}
1825
1826/**
1827 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1828 * @pifutex:            the user address of the to futex
1829 * @hb1:                the from futex hash bucket, must be locked by the caller
1830 * @hb2:                the to futex hash bucket, must be locked by the caller
1831 * @key1:               the from futex key
1832 * @key2:               the to futex key
1833 * @ps:                 address to store the pi_state pointer
1834 * @exiting:            Pointer to store the task pointer of the owner task
1835 *                      which is in the middle of exiting
1836 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1837 *
1838 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1839 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1840 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1841 * hb1 and hb2 must be held by the caller.
1842 *
1843 * @exiting is only set when the return value is -EBUSY. If so, this holds
1844 * a refcount on the exiting task on return and the caller needs to drop it
1845 * after waiting for the exit to complete.
1846 *
1847 * Return:
1848 *  -  0 - failed to acquire the lock atomically;
1849 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1850 *  - <0 - error
1851 */
1852static int
1853futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1854                           struct futex_hash_bucket *hb2, union futex_key *key1,
1855                           union futex_key *key2, struct futex_pi_state **ps,
1856                           struct task_struct **exiting, int set_waiters)
1857{
1858        struct futex_q *top_waiter = NULL;
1859        u32 curval;
1860        int ret, vpid;
1861
1862        if (get_futex_value_locked(&curval, pifutex))
1863                return -EFAULT;
1864
1865        if (unlikely(should_fail_futex(true)))
1866                return -EFAULT;
1867
1868        /*
1869         * Find the top_waiter and determine if there are additional waiters.
1870         * If the caller intends to requeue more than 1 waiter to pifutex,
1871         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1872         * as we have means to handle the possible fault.  If not, don't set
1873         * the bit unnecessarily as it will force the subsequent unlock to enter
1874         * the kernel.
1875         */
1876        top_waiter = futex_top_waiter(hb1, key1);
1877
1878        /* There are no waiters, nothing for us to do. */
1879        if (!top_waiter)
1880                return 0;
1881
1882        /* Ensure we requeue to the expected futex. */
1883        if (!match_futex(top_waiter->requeue_pi_key, key2))
1884                return -EINVAL;
1885
1886        /*
1887         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1888         * the contended case or if set_waiters is 1.  The pi_state is returned
1889         * in ps in contended cases.
1890         */
1891        vpid = task_pid_vnr(top_waiter->task);
1892        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1893                                   exiting, set_waiters);
1894        if (ret == 1) {
1895                requeue_pi_wake_futex(top_waiter, key2, hb2);
1896                return vpid;
1897        }
1898        return ret;
1899}
1900
1901/**
1902 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1903 * @uaddr1:     source futex user address
1904 * @flags:      futex flags (FLAGS_SHARED, etc.)
1905 * @uaddr2:     target futex user address
1906 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1907 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1908 * @cmpval:     @uaddr1 expected value (or %NULL)
1909 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1910 *              pi futex (pi to pi requeue is not supported)
1911 *
1912 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1913 * uaddr2 atomically on behalf of the top waiter.
1914 *
1915 * Return:
1916 *  - >=0 - on success, the number of tasks requeued or woken;
1917 *  -  <0 - on error
1918 */
1919static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1920                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1921                         u32 *cmpval, int requeue_pi)
1922{
1923        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1924        int task_count = 0, ret;
1925        struct futex_pi_state *pi_state = NULL;
1926        struct futex_hash_bucket *hb1, *hb2;
1927        struct futex_q *this, *next;
1928        DEFINE_WAKE_Q(wake_q);
1929
1930        if (nr_wake < 0 || nr_requeue < 0)
1931                return -EINVAL;
1932
1933        /*
1934         * When PI not supported: return -ENOSYS if requeue_pi is true,
1935         * consequently the compiler knows requeue_pi is always false past
1936         * this point which will optimize away all the conditional code
1937         * further down.
1938         */
1939        if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1940                return -ENOSYS;
1941
1942        if (requeue_pi) {
1943                /*
1944                 * Requeue PI only works on two distinct uaddrs. This
1945                 * check is only valid for private futexes. See below.
1946                 */
1947                if (uaddr1 == uaddr2)
1948                        return -EINVAL;
1949
1950                /*
1951                 * requeue_pi requires a pi_state, try to allocate it now
1952                 * without any locks in case it fails.
1953                 */
1954                if (refill_pi_state_cache())
1955                        return -ENOMEM;
1956                /*
1957                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1958                 * + nr_requeue, since it acquires the rt_mutex prior to
1959                 * returning to userspace, so as to not leave the rt_mutex with
1960                 * waiters and no owner.  However, second and third wake-ups
1961                 * cannot be predicted as they involve race conditions with the
1962                 * first wake and a fault while looking up the pi_state.  Both
1963                 * pthread_cond_signal() and pthread_cond_broadcast() should
1964                 * use nr_wake=1.
1965                 */
1966                if (nr_wake != 1)
1967                        return -EINVAL;
1968        }
1969
1970retry:
1971        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1972        if (unlikely(ret != 0))
1973                return ret;
1974        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1975                            requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1976        if (unlikely(ret != 0))
1977                return ret;
1978
1979        /*
1980         * The check above which compares uaddrs is not sufficient for
1981         * shared futexes. We need to compare the keys:
1982         */
1983        if (requeue_pi && match_futex(&key1, &key2))
1984                return -EINVAL;
1985
1986        hb1 = hash_futex(&key1);
1987        hb2 = hash_futex(&key2);
1988
1989retry_private:
1990        hb_waiters_inc(hb2);
1991        double_lock_hb(hb1, hb2);
1992
1993        if (likely(cmpval != NULL)) {
1994                u32 curval;
1995
1996                ret = get_futex_value_locked(&curval, uaddr1);
1997
1998                if (unlikely(ret)) {
1999                        double_unlock_hb(hb1, hb2);
2000                        hb_waiters_dec(hb2);
2001
2002                        ret = get_user(curval, uaddr1);
2003                        if (ret)
2004                                return ret;
2005
2006                        if (!(flags & FLAGS_SHARED))
2007                                goto retry_private;
2008
2009                        goto retry;
2010                }
2011                if (curval != *cmpval) {
2012                        ret = -EAGAIN;
2013                        goto out_unlock;
2014                }
2015        }
2016
2017        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2018                struct task_struct *exiting = NULL;
2019
2020                /*
2021                 * Attempt to acquire uaddr2 and wake the top waiter. If we
2022                 * intend to requeue waiters, force setting the FUTEX_WAITERS
2023                 * bit.  We force this here where we are able to easily handle
2024                 * faults rather in the requeue loop below.
2025                 */
2026                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2027                                                 &key2, &pi_state,
2028                                                 &exiting, nr_requeue);
2029
2030                /*
2031                 * At this point the top_waiter has either taken uaddr2 or is
2032                 * waiting on it.  If the former, then the pi_state will not
2033                 * exist yet, look it up one more time to ensure we have a
2034                 * reference to it. If the lock was taken, ret contains the
2035                 * vpid of the top waiter task.
2036                 * If the lock was not taken, we have pi_state and an initial
2037                 * refcount on it. In case of an error we have nothing.
2038                 */
2039                if (ret > 0) {
2040                        WARN_ON(pi_state);
2041                        task_count++;
2042                        /*
2043                         * If we acquired the lock, then the user space value
2044                         * of uaddr2 should be vpid. It cannot be changed by
2045                         * the top waiter as it is blocked on hb2 lock if it
2046                         * tries to do so. If something fiddled with it behind
2047                         * our back the pi state lookup might unearth it. So
2048                         * we rather use the known value than rereading and
2049                         * handing potential crap to lookup_pi_state.
2050                         *
2051                         * If that call succeeds then we have pi_state and an
2052                         * initial refcount on it.
2053                         */
2054                        ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2055                                              &pi_state, &exiting);
2056                }
2057
2058                switch (ret) {
2059                case 0:
2060                        /* We hold a reference on the pi state. */
2061                        break;
2062
2063                        /* If the above failed, then pi_state is NULL */
2064                case -EFAULT:
2065                        double_unlock_hb(hb1, hb2);
2066                        hb_waiters_dec(hb2);
2067                        ret = fault_in_user_writeable(uaddr2);
2068                        if (!ret)
2069                                goto retry;
2070                        return ret;
2071                case -EBUSY:
2072                case -EAGAIN:
2073                        /*
2074                         * Two reasons for this:
2075                         * - EBUSY: Owner is exiting and we just wait for the
2076                         *   exit to complete.
2077                         * - EAGAIN: The user space value changed.
2078                         */
2079                        double_unlock_hb(hb1, hb2);
2080                        hb_waiters_dec(hb2);
2081                        /*
2082                         * Handle the case where the owner is in the middle of
2083                         * exiting. Wait for the exit to complete otherwise
2084                         * this task might loop forever, aka. live lock.
2085                         */
2086                        wait_for_owner_exiting(ret, exiting);
2087                        cond_resched();
2088                        goto retry;
2089                default:
2090                        goto out_unlock;
2091                }
2092        }
2093
2094        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2095                if (task_count - nr_wake >= nr_requeue)
2096                        break;
2097
2098                if (!match_futex(&this->key, &key1))
2099                        continue;
2100
2101                /*
2102                 * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2103                 * be paired with each other and no other futex ops.
2104                 *
2105                 * We should never be requeueing a futex_q with a pi_state,
2106                 * which is awaiting a futex_unlock_pi().
2107                 */
2108                if ((requeue_pi && !this->rt_waiter) ||
2109                    (!requeue_pi && this->rt_waiter) ||
2110                    this->pi_state) {
2111                        ret = -EINVAL;
2112                        break;
2113                }
2114
2115                /*
2116                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2117                 * lock, we already woke the top_waiter.  If not, it will be
2118                 * woken by futex_unlock_pi().
2119                 */
2120                if (++task_count <= nr_wake && !requeue_pi) {
2121                        mark_wake_futex(&wake_q, this);
2122                        continue;
2123                }
2124
2125                /* Ensure we requeue to the expected futex for requeue_pi. */
2126                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2127                        ret = -EINVAL;
2128                        break;
2129                }
2130
2131                /*
2132                 * Requeue nr_requeue waiters and possibly one more in the case
2133                 * of requeue_pi if we couldn't acquire the lock atomically.
2134                 */
2135                if (requeue_pi) {
2136                        /*
2137                         * Prepare the waiter to take the rt_mutex. Take a
2138                         * refcount on the pi_state and store the pointer in
2139                         * the futex_q object of the waiter.
2140                         */
2141                        get_pi_state(pi_state);
2142                        this->pi_state = pi_state;
2143                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2144                                                        this->rt_waiter,
2145                                                        this->task);
2146                        if (ret == 1) {
2147                                /*
2148                                 * We got the lock. We do neither drop the
2149                                 * refcount on pi_state nor clear
2150                                 * this->pi_state because the waiter needs the
2151                                 * pi_state for cleaning up the user space
2152                                 * value. It will drop the refcount after
2153                                 * doing so.
2154                                 */
2155                                requeue_pi_wake_futex(this, &key2, hb2);
2156                                continue;
2157                        } else if (ret) {
2158                                /*
2159                                 * rt_mutex_start_proxy_lock() detected a
2160                                 * potential deadlock when we tried to queue
2161                                 * that waiter. Drop the pi_state reference
2162                                 * which we took above and remove the pointer
2163                                 * to the state from the waiters futex_q
2164                                 * object.
2165                                 */
2166                                this->pi_state = NULL;
2167                                put_pi_state(pi_state);
2168                                /*
2169                                 * We stop queueing more waiters and let user
2170                                 * space deal with the mess.
2171                                 */
2172                                break;
2173                        }
2174                }
2175                requeue_futex(this, hb1, hb2, &key2);
2176        }
2177
2178        /*
2179         * We took an extra initial reference to the pi_state either
2180         * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2181         * need to drop it here again.
2182         */
2183        put_pi_state(pi_state);
2184
2185out_unlock:
2186        double_unlock_hb(hb1, hb2);
2187        wake_up_q(&wake_q);
2188        hb_waiters_dec(hb2);
2189        return ret ? ret : task_count;
2190}
2191
2192/* The key must be already stored in q->key. */
2193static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2194        __acquires(&hb->lock)
2195{
2196        struct futex_hash_bucket *hb;
2197
2198        hb = hash_futex(&q->key);
2199
2200        /*
2201         * Increment the counter before taking the lock so that
2202         * a potential waker won't miss a to-be-slept task that is
2203         * waiting for the spinlock. This is safe as all queue_lock()
2204         * users end up calling queue_me(). Similarly, for housekeeping,
2205         * decrement the counter at queue_unlock() when some error has
2206         * occurred and we don't end up adding the task to the list.
2207         */
2208        hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2209
2210        q->lock_ptr = &hb->lock;
2211
2212        spin_lock(&hb->lock);
2213        return hb;
2214}
2215
2216static inline void
2217queue_unlock(struct futex_hash_bucket *hb)
2218        __releases(&hb->lock)
2219{
2220        spin_unlock(&hb->lock);
2221        hb_waiters_dec(hb);
2222}
2223
2224static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2225{
2226        int prio;
2227
2228        /*
2229         * The priority used to register this element is
2230         * - either the real thread-priority for the real-time threads
2231         * (i.e. threads with a priority lower than MAX_RT_PRIO)
2232         * - or MAX_RT_PRIO for non-RT threads.
2233         * Thus, all RT-threads are woken first in priority order, and
2234         * the others are woken last, in FIFO order.
2235         */
2236        prio = min(current->normal_prio, MAX_RT_PRIO);
2237
2238        plist_node_init(&q->list, prio);
2239        plist_add(&q->list, &hb->chain);
2240        q->task = current;
2241}
2242
2243/**
2244 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2245 * @q:  The futex_q to enqueue
2246 * @hb: The destination hash bucket
2247 *
2248 * The hb->lock must be held by the caller, and is released here. A call to
2249 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2250 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2251 * or nothing if the unqueue is done as part of the wake process and the unqueue
2252 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2253 * an example).
2254 */
2255static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2256        __releases(&hb->lock)
2257{
2258        __queue_me(q, hb);
2259        spin_unlock(&hb->lock);
2260}
2261
2262/**
2263 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2264 * @q:  The futex_q to unqueue
2265 *
2266 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2267 * be paired with exactly one earlier call to queue_me().
2268 *
2269 * Return:
2270 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2271 *  - 0 - if the futex_q was already removed by the waking thread
2272 */
2273static int unqueue_me(struct futex_q *q)
2274{
2275        spinlock_t *lock_ptr;
2276        int ret = 0;
2277
2278        /* In the common case we don't take the spinlock, which is nice. */
2279retry:
2280        /*
2281         * q->lock_ptr can change between this read and the following spin_lock.
2282         * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2283         * optimizing lock_ptr out of the logic below.
2284         */
2285        lock_ptr = READ_ONCE(q->lock_ptr);
2286        if (lock_ptr != NULL) {
2287                spin_lock(lock_ptr);
2288                /*
2289                 * q->lock_ptr can change between reading it and
2290                 * spin_lock(), causing us to take the wrong lock.  This
2291                 * corrects the race condition.
2292                 *
2293                 * Reasoning goes like this: if we have the wrong lock,
2294                 * q->lock_ptr must have changed (maybe several times)
2295                 * between reading it and the spin_lock().  It can
2296                 * change again after the spin_lock() but only if it was
2297                 * already changed before the spin_lock().  It cannot,
2298                 * however, change back to the original value.  Therefore
2299                 * we can detect whether we acquired the correct lock.
2300                 */
2301                if (unlikely(lock_ptr != q->lock_ptr)) {
2302                        spin_unlock(lock_ptr);
2303                        goto retry;
2304                }
2305                __unqueue_futex(q);
2306
2307                BUG_ON(q->pi_state);
2308
2309                spin_unlock(lock_ptr);
2310                ret = 1;
2311        }
2312
2313        return ret;
2314}
2315
2316/*
2317 * PI futexes can not be requeued and must remove themselves from the
2318 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
2319 */
2320static void unqueue_me_pi(struct futex_q *q)
2321{
2322        __unqueue_futex(q);
2323
2324        BUG_ON(!q->pi_state);
2325        put_pi_state(q->pi_state);
2326        q->pi_state = NULL;
2327}
2328
2329static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2330                                  struct task_struct *argowner)
2331{
2332        struct futex_pi_state *pi_state = q->pi_state;
2333        struct task_struct *oldowner, *newowner;
2334        u32 uval, curval, newval, newtid;
2335        int err = 0;
2336
2337        oldowner = pi_state->owner;
2338
2339        /*
2340         * We are here because either:
2341         *
2342         *  - we stole the lock and pi_state->owner needs updating to reflect
2343         *    that (@argowner == current),
2344         *
2345         * or:
2346         *
2347         *  - someone stole our lock and we need to fix things to point to the
2348         *    new owner (@argowner == NULL).
2349         *
2350         * Either way, we have to replace the TID in the user space variable.
2351         * This must be atomic as we have to preserve the owner died bit here.
2352         *
2353         * Note: We write the user space value _before_ changing the pi_state
2354         * because we can fault here. Imagine swapped out pages or a fork
2355         * that marked all the anonymous memory readonly for cow.
2356         *
2357         * Modifying pi_state _before_ the user space value would leave the
2358         * pi_state in an inconsistent state when we fault here, because we
2359         * need to drop the locks to handle the fault. This might be observed
2360         * in the PID check in lookup_pi_state.
2361         */
2362retry:
2363        if (!argowner) {
2364                if (oldowner != current) {
2365                        /*
2366                         * We raced against a concurrent self; things are
2367                         * already fixed up. Nothing to do.
2368                         */
2369                        return 0;
2370                }
2371
2372                if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2373                        /* We got the lock. pi_state is correct. Tell caller. */
2374                        return 1;
2375                }
2376
2377                /*
2378                 * The trylock just failed, so either there is an owner or
2379                 * there is a higher priority waiter than this one.
2380                 */
2381                newowner = rt_mutex_owner(&pi_state->pi_mutex);
2382                /*
2383                 * If the higher priority waiter has not yet taken over the
2384                 * rtmutex then newowner is NULL. We can't return here with
2385                 * that state because it's inconsistent vs. the user space
2386                 * state. So drop the locks and try again. It's a valid
2387                 * situation and not any different from the other retry
2388                 * conditions.
2389                 */
2390                if (unlikely(!newowner)) {
2391                        err = -EAGAIN;
2392                        goto handle_err;
2393                }
2394        } else {
2395                WARN_ON_ONCE(argowner != current);
2396                if (oldowner == current) {
2397                        /*
2398                         * We raced against a concurrent self; things are
2399                         * already fixed up. Nothing to do.
2400                         */
2401                        return 1;
2402                }
2403                newowner = argowner;
2404        }
2405
2406        newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2407        /* Owner died? */
2408        if (!pi_state->owner)
2409                newtid |= FUTEX_OWNER_DIED;
2410
2411        err = get_futex_value_locked(&uval, uaddr);
2412        if (err)
2413                goto handle_err;
2414
2415        for (;;) {
2416                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2417
2418                err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2419                if (err)
2420                        goto handle_err;
2421
2422                if (curval == uval)
2423                        break;
2424                uval = curval;
2425        }
2426
2427        /*
2428         * We fixed up user space. Now we need to fix the pi_state
2429         * itself.
2430         */
2431        pi_state_update_owner(pi_state, newowner);
2432
2433        return argowner == current;
2434
2435        /*
2436         * In order to reschedule or handle a page fault, we need to drop the
2437         * locks here. In the case of a fault, this gives the other task
2438         * (either the highest priority waiter itself or the task which stole
2439         * the rtmutex) the chance to try the fixup of the pi_state. So once we
2440         * are back from handling the fault we need to check the pi_state after
2441         * reacquiring the locks and before trying to do another fixup. When
2442         * the fixup has been done already we simply return.
2443         *
2444         * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2445         * drop hb->lock since the caller owns the hb -> futex_q relation.
2446         * Dropping the pi_mutex->wait_lock requires the state revalidate.
2447         */
2448handle_err:
2449        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2450        spin_unlock(q->lock_ptr);
2451
2452        switch (err) {
2453        case -EFAULT:
2454                err = fault_in_user_writeable(uaddr);
2455                break;
2456
2457        case -EAGAIN:
2458                cond_resched();
2459                err = 0;
2460                break;
2461
2462        default:
2463                WARN_ON_ONCE(1);
2464                break;
2465        }
2466
2467        spin_lock(q->lock_ptr);
2468        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2469
2470        /*
2471         * Check if someone else fixed it for us:
2472         */
2473        if (pi_state->owner != oldowner)
2474                return argowner == current;
2475
2476        /* Retry if err was -EAGAIN or the fault in succeeded */
2477        if (!err)
2478                goto retry;
2479
2480        /*
2481         * fault_in_user_writeable() failed so user state is immutable. At
2482         * best we can make the kernel state consistent but user state will
2483         * be most likely hosed and any subsequent unlock operation will be
2484         * rejected due to PI futex rule [10].
2485         *
2486         * Ensure that the rtmutex owner is also the pi_state owner despite
2487         * the user space value claiming something different. There is no
2488         * point in unlocking the rtmutex if current is the owner as it
2489         * would need to wait until the next waiter has taken the rtmutex
2490         * to guarantee consistent state. Keep it simple. Userspace asked
2491         * for this wreckaged state.
2492         *
2493         * The rtmutex has an owner - either current or some other
2494         * task. See the EAGAIN loop above.
2495         */
2496        pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2497
2498        return err;
2499}
2500
2501static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2502                                struct task_struct *argowner)
2503{
2504        struct futex_pi_state *pi_state = q->pi_state;
2505        int ret;
2506
2507        lockdep_assert_held(q->lock_ptr);
2508
2509        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2510        ret = __fixup_pi_state_owner(uaddr, q, argowner);
2511        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2512        return ret;
2513}
2514
2515static long futex_wait_restart(struct restart_block *restart);
2516
2517/**
2518 * fixup_owner() - Post lock pi_state and corner case management
2519 * @uaddr:      user address of the futex
2520 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2521 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2522 *
2523 * After attempting to lock an rt_mutex, this function is called to cleanup
2524 * the pi_state owner as well as handle race conditions that may allow us to
2525 * acquire the lock. Must be called with the hb lock held.
2526 *
2527 * Return:
2528 *  -  1 - success, lock taken;
2529 *  -  0 - success, lock not taken;
2530 *  - <0 - on error (-EFAULT)
2531 */
2532static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2533{
2534        if (locked) {
2535                /*
2536                 * Got the lock. We might not be the anticipated owner if we
2537                 * did a lock-steal - fix up the PI-state in that case:
2538                 *
2539                 * Speculative pi_state->owner read (we don't hold wait_lock);
2540                 * since we own the lock pi_state->owner == current is the
2541                 * stable state, anything else needs more attention.
2542                 */
2543                if (q->pi_state->owner != current)
2544                        return fixup_pi_state_owner(uaddr, q, current);
2545                return 1;
2546        }
2547
2548        /*
2549         * If we didn't get the lock; check if anybody stole it from us. In
2550         * that case, we need to fix up the uval to point to them instead of
2551         * us, otherwise bad things happen. [10]
2552         *
2553         * Another speculative read; pi_state->owner == current is unstable
2554         * but needs our attention.
2555         */
2556        if (q->pi_state->owner == current)
2557                return fixup_pi_state_owner(uaddr, q, NULL);
2558
2559        /*
2560         * Paranoia check. If we did not take the lock, then we should not be
2561         * the owner of the rt_mutex. Warn and establish consistent state.
2562         */
2563        if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2564                return fixup_pi_state_owner(uaddr, q, current);
2565
2566        return 0;
2567}
2568
2569/**
2570 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2571 * @hb:         the futex hash bucket, must be locked by the caller
2572 * @q:          the futex_q to queue up on
2573 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2574 */
2575static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2576                                struct hrtimer_sleeper *timeout)
2577{
2578        /*
2579         * The task state is guaranteed to be set before another task can
2580         * wake it. set_current_state() is implemented using smp_store_mb() and
2581         * queue_me() calls spin_unlock() upon completion, both serializing
2582         * access to the hash list and forcing another memory barrier.
2583         */
2584        set_current_state(TASK_INTERRUPTIBLE);
2585        queue_me(q, hb);
2586
2587        /* Arm the timer */
2588        if (timeout)
2589                hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2590
2591        /*
2592         * If we have been removed from the hash list, then another task
2593         * has tried to wake us, and we can skip the call to schedule().
2594         */
2595        if (likely(!plist_node_empty(&q->list))) {
2596                /*
2597                 * If the timer has already expired, current will already be
2598                 * flagged for rescheduling. Only call schedule if there
2599                 * is no timeout, or if it has yet to expire.
2600                 */
2601                if (!timeout || timeout->task)
2602                        freezable_schedule();
2603        }
2604        __set_current_state(TASK_RUNNING);
2605}
2606
2607/**
2608 * futex_wait_setup() - Prepare to wait on a futex
2609 * @uaddr:      the futex userspace address
2610 * @val:        the expected value
2611 * @flags:      futex flags (FLAGS_SHARED, etc.)
2612 * @q:          the associated futex_q
2613 * @hb:         storage for hash_bucket pointer to be returned to caller
2614 *
2615 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2616 * compare it with the expected value.  Handle atomic faults internally.
2617 * Return with the hb lock held and a q.key reference on success, and unlocked
2618 * with no q.key reference on failure.
2619 *
2620 * Return:
2621 *  -  0 - uaddr contains val and hb has been locked;
2622 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2623 */
2624static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2625                           struct futex_q *q, struct futex_hash_bucket **hb)
2626{
2627        u32 uval;
2628        int ret;
2629
2630        /*
2631         * Access the page AFTER the hash-bucket is locked.
2632         * Order is important:
2633         *
2634         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2635         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2636         *
2637         * The basic logical guarantee of a futex is that it blocks ONLY
2638         * if cond(var) is known to be true at the time of blocking, for
2639         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2640         * would open a race condition where we could block indefinitely with
2641         * cond(var) false, which would violate the guarantee.
2642         *
2643         * On the other hand, we insert q and release the hash-bucket only
2644         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2645         * absorb a wakeup if *uaddr does not match the desired values
2646         * while the syscall executes.
2647         */
2648retry:
2649        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2650        if (unlikely(ret != 0))
2651                return ret;
2652
2653retry_private:
2654        *hb = queue_lock(q);
2655
2656        ret = get_futex_value_locked(&uval, uaddr);
2657
2658        if (ret) {
2659                queue_unlock(*hb);
2660
2661                ret = get_user(uval, uaddr);
2662                if (ret)
2663                        return ret;
2664
2665                if (!(flags & FLAGS_SHARED))
2666                        goto retry_private;
2667
2668                goto retry;
2669        }
2670
2671        if (uval != val) {
2672                queue_unlock(*hb);
2673                ret = -EWOULDBLOCK;
2674        }
2675
2676        return ret;
2677}
2678
2679static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2680                      ktime_t *abs_time, u32 bitset)
2681{
2682        struct hrtimer_sleeper timeout, *to;
2683        struct restart_block *restart;
2684        struct futex_hash_bucket *hb;
2685        struct futex_q q = futex_q_init;
2686        int ret;
2687
2688        if (!bitset)
2689                return -EINVAL;
2690        q.bitset = bitset;
2691
2692        to = futex_setup_timer(abs_time, &timeout, flags,
2693                               current->timer_slack_ns);
2694retry:
2695        /*
2696         * Prepare to wait on uaddr. On success, holds hb lock and increments
2697         * q.key refs.
2698         */
2699        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2700        if (ret)
2701                goto out;
2702
2703        /* queue_me and wait for wakeup, timeout, or a signal. */
2704        futex_wait_queue_me(hb, &q, to);
2705
2706        /* If we were woken (and unqueued), we succeeded, whatever. */
2707        ret = 0;
2708        /* unqueue_me() drops q.key ref */
2709        if (!unqueue_me(&q))
2710                goto out;
2711        ret = -ETIMEDOUT;
2712        if (to && !to->task)
2713                goto out;
2714
2715        /*
2716         * We expect signal_pending(current), but we might be the
2717         * victim of a spurious wakeup as well.
2718         */
2719        if (!signal_pending(current))
2720                goto retry;
2721
2722        ret = -ERESTARTSYS;
2723        if (!abs_time)
2724                goto out;
2725
2726        restart = &current->restart_block;
2727        restart->futex.uaddr = uaddr;
2728        restart->futex.val = val;
2729        restart->futex.time = *abs_time;
2730        restart->futex.bitset = bitset;
2731        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2732
2733        ret = set_restart_fn(restart, futex_wait_restart);
2734
2735out:
2736        if (to) {
2737                hrtimer_cancel(&to->timer);
2738                destroy_hrtimer_on_stack(&to->timer);
2739        }
2740        return ret;
2741}
2742
2743
2744static long futex_wait_restart(struct restart_block *restart)
2745{
2746        u32 __user *uaddr = restart->futex.uaddr;
2747        ktime_t t, *tp = NULL;
2748
2749        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2750                t = restart->futex.time;
2751                tp = &t;
2752        }
2753        restart->fn = do_no_restart_syscall;
2754
2755        return (long)futex_wait(uaddr, restart->futex.flags,
2756                                restart->futex.val, tp, restart->futex.bitset);
2757}
2758
2759
2760/*
2761 * Userspace tried a 0 -> TID atomic transition of the futex value
2762 * and failed. The kernel side here does the whole locking operation:
2763 * if there are waiters then it will block as a consequence of relying
2764 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2765 * a 0 value of the futex too.).
2766 *
2767 * Also serves as futex trylock_pi()'ing, and due semantics.
2768 */
2769static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2770                         ktime_t *time, int trylock)
2771{
2772        struct hrtimer_sleeper timeout, *to;
2773        struct task_struct *exiting = NULL;
2774        struct rt_mutex_waiter rt_waiter;
2775        struct futex_hash_bucket *hb;
2776        struct futex_q q = futex_q_init;
2777        int res, ret;
2778
2779        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2780                return -ENOSYS;
2781
2782        if (refill_pi_state_cache())
2783                return -ENOMEM;
2784
2785        to = futex_setup_timer(time, &timeout, flags, 0);
2786
2787retry:
2788        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2789        if (unlikely(ret != 0))
2790                goto out;
2791
2792retry_private:
2793        hb = queue_lock(&q);
2794
2795        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2796                                   &exiting, 0);
2797        if (unlikely(ret)) {
2798                /*
2799                 * Atomic work succeeded and we got the lock,
2800                 * or failed. Either way, we do _not_ block.
2801                 */
2802                switch (ret) {
2803                case 1:
2804                        /* We got the lock. */
2805                        ret = 0;
2806                        goto out_unlock_put_key;
2807                case -EFAULT:
2808                        goto uaddr_faulted;
2809                case -EBUSY:
2810                case -EAGAIN:
2811                        /*
2812                         * Two reasons for this:
2813                         * - EBUSY: Task is exiting and we just wait for the
2814                         *   exit to complete.
2815                         * - EAGAIN: The user space value changed.
2816                         */
2817                        queue_unlock(hb);
2818                        /*
2819                         * Handle the case where the owner is in the middle of
2820                         * exiting. Wait for the exit to complete otherwise
2821                         * this task might loop forever, aka. live lock.
2822                         */
2823                        wait_for_owner_exiting(ret, exiting);
2824                        cond_resched();
2825                        goto retry;
2826                default:
2827                        goto out_unlock_put_key;
2828                }
2829        }
2830
2831        WARN_ON(!q.pi_state);
2832
2833        /*
2834         * Only actually queue now that the atomic ops are done:
2835         */
2836        __queue_me(&q, hb);
2837
2838        if (trylock) {
2839                ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2840                /* Fixup the trylock return value: */
2841                ret = ret ? 0 : -EWOULDBLOCK;
2842                goto no_block;
2843        }
2844
2845        rt_mutex_init_waiter(&rt_waiter);
2846
2847        /*
2848         * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2849         * hold it while doing rt_mutex_start_proxy(), because then it will
2850         * include hb->lock in the blocking chain, even through we'll not in
2851         * fact hold it while blocking. This will lead it to report -EDEADLK
2852         * and BUG when futex_unlock_pi() interleaves with this.
2853         *
2854         * Therefore acquire wait_lock while holding hb->lock, but drop the
2855         * latter before calling __rt_mutex_start_proxy_lock(). This
2856         * interleaves with futex_unlock_pi() -- which does a similar lock
2857         * handoff -- such that the latter can observe the futex_q::pi_state
2858         * before __rt_mutex_start_proxy_lock() is done.
2859         */
2860        raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2861        spin_unlock(q.lock_ptr);
2862        /*
2863         * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2864         * such that futex_unlock_pi() is guaranteed to observe the waiter when
2865         * it sees the futex_q::pi_state.
2866         */
2867        ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2868        raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2869
2870        if (ret) {
2871                if (ret == 1)
2872                        ret = 0;
2873                goto cleanup;
2874        }
2875
2876        if (unlikely(to))
2877                hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2878
2879        ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2880
2881cleanup:
2882        spin_lock(q.lock_ptr);
2883        /*
2884         * If we failed to acquire the lock (deadlock/signal/timeout), we must
2885         * first acquire the hb->lock before removing the lock from the
2886         * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2887         * lists consistent.
2888         *
2889         * In particular; it is important that futex_unlock_pi() can not
2890         * observe this inconsistency.
2891         */
2892        if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2893                ret = 0;
2894
2895no_block:
2896        /*
2897         * Fixup the pi_state owner and possibly acquire the lock if we
2898         * haven't already.
2899         */
2900        res = fixup_owner(uaddr, &q, !ret);
2901        /*
2902         * If fixup_owner() returned an error, propagate that.  If it acquired
2903         * the lock, clear our -ETIMEDOUT or -EINTR.
2904         */
2905        if (res)
2906                ret = (res < 0) ? res : 0;
2907
2908        unqueue_me_pi(&q);
2909        spin_unlock(q.lock_ptr);
2910        goto out;
2911
2912out_unlock_put_key:
2913        queue_unlock(hb);
2914
2915out:
2916        if (to) {
2917                hrtimer_cancel(&to->timer);
2918                destroy_hrtimer_on_stack(&to->timer);
2919        }
2920        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2921
2922uaddr_faulted:
2923        queue_unlock(hb);
2924
2925        ret = fault_in_user_writeable(uaddr);
2926        if (ret)
2927                goto out;
2928
2929        if (!(flags & FLAGS_SHARED))
2930                goto retry_private;
2931
2932        goto retry;
2933}
2934
2935/*
2936 * Userspace attempted a TID -> 0 atomic transition, and failed.
2937 * This is the in-kernel slowpath: we look up the PI state (if any),
2938 * and do the rt-mutex unlock.
2939 */
2940static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2941{
2942        u32 curval, uval, vpid = task_pid_vnr(current);
2943        union futex_key key = FUTEX_KEY_INIT;
2944        struct futex_hash_bucket *hb;
2945        struct futex_q *top_waiter;
2946        int ret;
2947
2948        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2949                return -ENOSYS;
2950
2951retry:
2952        if (get_user(uval, uaddr))
2953                return -EFAULT;
2954        /*
2955         * We release only a lock we actually own:
2956         */
2957        if ((uval & FUTEX_TID_MASK) != vpid)
2958                return -EPERM;
2959
2960        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2961        if (ret)
2962                return ret;
2963
2964        hb = hash_futex(&key);
2965        spin_lock(&hb->lock);
2966
2967        /*
2968         * Check waiters first. We do not trust user space values at
2969         * all and we at least want to know if user space fiddled
2970         * with the futex value instead of blindly unlocking.
2971         */
2972        top_waiter = futex_top_waiter(hb, &key);
2973        if (top_waiter) {
2974                struct futex_pi_state *pi_state = top_waiter->pi_state;
2975
2976                ret = -EINVAL;
2977                if (!pi_state)
2978                        goto out_unlock;
2979
2980                /*
2981                 * If current does not own the pi_state then the futex is
2982                 * inconsistent and user space fiddled with the futex value.
2983                 */
2984                if (pi_state->owner != current)
2985                        goto out_unlock;
2986
2987                get_pi_state(pi_state);
2988                /*
2989                 * By taking wait_lock while still holding hb->lock, we ensure
2990                 * there is no point where we hold neither; and therefore
2991                 * wake_futex_pi() must observe a state consistent with what we
2992                 * observed.
2993                 *
2994                 * In particular; this forces __rt_mutex_start_proxy() to
2995                 * complete such that we're guaranteed to observe the
2996                 * rt_waiter. Also see the WARN in wake_futex_pi().
2997                 */
2998                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2999                spin_unlock(&hb->lock);
3000
3001                /* drops pi_state->pi_mutex.wait_lock */
3002                ret = wake_futex_pi(uaddr, uval, pi_state);
3003
3004                put_pi_state(pi_state);
3005
3006                /*
3007                 * Success, we're done! No tricky corner cases.
3008                 */
3009                if (!ret)
3010                        return ret;
3011                /*
3012                 * The atomic access to the futex value generated a
3013                 * pagefault, so retry the user-access and the wakeup:
3014                 */
3015                if (ret == -EFAULT)
3016                        goto pi_faulted;
3017                /*
3018                 * A unconditional UNLOCK_PI op raced against a waiter
3019                 * setting the FUTEX_WAITERS bit. Try again.
3020                 */
3021                if (ret == -EAGAIN)
3022                        goto pi_retry;
3023                /*
3024                 * wake_futex_pi has detected invalid state. Tell user
3025                 * space.
3026                 */
3027                return ret;
3028        }
3029
3030        /*
3031         * We have no kernel internal state, i.e. no waiters in the
3032         * kernel. Waiters which are about to queue themselves are stuck
3033         * on hb->lock. So we can safely ignore them. We do neither
3034         * preserve the WAITERS bit not the OWNER_DIED one. We are the
3035         * owner.
3036         */
3037        if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3038                spin_unlock(&hb->lock);
3039                switch (ret) {
3040                case -EFAULT:
3041                        goto pi_faulted;
3042
3043                case -EAGAIN:
3044                        goto pi_retry;
3045
3046                default:
3047                        WARN_ON_ONCE(1);
3048                        return ret;
3049                }
3050        }
3051
3052        /*
3053         * If uval has changed, let user space handle it.
3054         */
3055        ret = (curval == uval) ? 0 : -EAGAIN;
3056
3057out_unlock:
3058        spin_unlock(&hb->lock);
3059        return ret;
3060
3061pi_retry:
3062        cond_resched();
3063        goto retry;
3064
3065pi_faulted:
3066
3067        ret = fault_in_user_writeable(uaddr);
3068        if (!ret)
3069                goto retry;
3070
3071        return ret;
3072}
3073
3074/**
3075 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3076 * @hb:         the hash_bucket futex_q was original enqueued on
3077 * @q:          the futex_q woken while waiting to be requeued
3078 * @key2:       the futex_key of the requeue target futex
3079 * @timeout:    the timeout associated with the wait (NULL if none)
3080 *
3081 * Detect if the task was woken on the initial futex as opposed to the requeue
3082 * target futex.  If so, determine if it was a timeout or a signal that caused
3083 * the wakeup and return the appropriate error code to the caller.  Must be
3084 * called with the hb lock held.
3085 *
3086 * Return:
3087 *  -  0 = no early wakeup detected;
3088 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3089 */
3090static inline
3091int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3092                                   struct futex_q *q, union futex_key *key2,
3093                                   struct hrtimer_sleeper *timeout)
3094{
3095        int ret = 0;
3096
3097        /*
3098         * With the hb lock held, we avoid races while we process the wakeup.
3099         * We only need to hold hb (and not hb2) to ensure atomicity as the
3100         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3101         * It can't be requeued from uaddr2 to something else since we don't
3102         * support a PI aware source futex for requeue.
3103         */
3104        if (!match_futex(&q->key, key2)) {
3105                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3106                /*
3107                 * We were woken prior to requeue by a timeout or a signal.
3108                 * Unqueue the futex_q and determine which it was.
3109                 */
3110                plist_del(&q->list, &hb->chain);
3111                hb_waiters_dec(hb);
3112
3113                /* Handle spurious wakeups gracefully */
3114                ret = -EWOULDBLOCK;
3115                if (timeout && !timeout->task)
3116                        ret = -ETIMEDOUT;
3117                else if (signal_pending(current))
3118                        ret = -ERESTARTNOINTR;
3119        }
3120        return ret;
3121}
3122
3123/**
3124 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3125 * @uaddr:      the futex we initially wait on (non-pi)
3126 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3127 *              the same type, no requeueing from private to shared, etc.
3128 * @val:        the expected value of uaddr
3129 * @abs_time:   absolute timeout
3130 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3131 * @uaddr2:     the pi futex we will take prior to returning to user-space
3132 *
3133 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3134 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3135 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3136 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3137 * without one, the pi logic would not know which task to boost/deboost, if
3138 * there was a need to.
3139 *
3140 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3141 * via the following--
3142 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3143 * 2) wakeup on uaddr2 after a requeue
3144 * 3) signal
3145 * 4) timeout
3146 *
3147 * If 3, cleanup and return -ERESTARTNOINTR.
3148 *
3149 * If 2, we may then block on trying to take the rt_mutex and return via:
3150 * 5) successful lock
3151 * 6) signal
3152 * 7) timeout
3153 * 8) other lock acquisition failure
3154 *
3155 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3156 *
3157 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3158 *
3159 * Return:
3160 *  -  0 - On success;
3161 *  - <0 - On error
3162 */
3163static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3164                                 u32 val, ktime_t *abs_time, u32 bitset,
3165                                 u32 __user *uaddr2)
3166{
3167        struct hrtimer_sleeper timeout, *to;
3168        struct rt_mutex_waiter rt_waiter;
3169        struct futex_hash_bucket *hb;
3170        union futex_key key2 = FUTEX_KEY_INIT;
3171        struct futex_q q = futex_q_init;
3172        int res, ret;
3173
3174        if (!IS_ENABLED(CONFIG_FUTEX_PI))
3175                return -ENOSYS;
3176
3177        if (uaddr == uaddr2)
3178                return -EINVAL;
3179
3180        if (!bitset)
3181                return -EINVAL;
3182
3183        to = futex_setup_timer(abs_time, &timeout, flags,
3184                               current->timer_slack_ns);
3185
3186        /*
3187         * The waiter is allocated on our stack, manipulated by the requeue
3188         * code while we sleep on uaddr.
3189         */
3190        rt_mutex_init_waiter(&rt_waiter);
3191
3192        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3193        if (unlikely(ret != 0))
3194                goto out;
3195
3196        q.bitset = bitset;
3197        q.rt_waiter = &rt_waiter;
3198        q.requeue_pi_key = &key2;
3199
3200        /*
3201         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3202         * count.
3203         */
3204        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3205        if (ret)
3206                goto out;
3207
3208        /*
3209         * The check above which compares uaddrs is not sufficient for
3210         * shared futexes. We need to compare the keys:
3211         */
3212        if (match_futex(&q.key, &key2)) {
3213                queue_unlock(hb);
3214                ret = -EINVAL;
3215                goto out;
3216        }
3217
3218        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3219        futex_wait_queue_me(hb, &q, to);
3220
3221        spin_lock(&hb->lock);
3222        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3223        spin_unlock(&hb->lock);
3224        if (ret)
3225                goto out;
3226
3227        /*
3228         * In order for us to be here, we know our q.key == key2, and since
3229         * we took the hb->lock above, we also know that futex_requeue() has
3230         * completed and we no longer have to concern ourselves with a wakeup
3231         * race with the atomic proxy lock acquisition by the requeue code. The
3232         * futex_requeue dropped our key1 reference and incremented our key2
3233         * reference count.
3234         */
3235
3236        /*
3237         * Check if the requeue code acquired the second futex for us and do
3238         * any pertinent fixup.
3239         */
3240        if (!q.rt_waiter) {
3241                if (q.pi_state && (q.pi_state->owner != current)) {
3242                        spin_lock(q.lock_ptr);
3243                        ret = fixup_owner(uaddr2, &q, true);
3244                        /*
3245                         * Drop the reference to the pi state which
3246                         * the requeue_pi() code acquired for us.
3247                         */
3248                        put_pi_state(q.pi_state);
3249                        spin_unlock(q.lock_ptr);
3250                        /*
3251                         * Adjust the return value. It's either -EFAULT or
3252                         * success (1) but the caller expects 0 for success.
3253                         */
3254                        ret = ret < 0 ? ret : 0;
3255                }
3256        } else {
3257                struct rt_mutex *pi_mutex;
3258
3259                /*
3260                 * We have been woken up by futex_unlock_pi(), a timeout, or a
3261                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3262                 * the pi_state.
3263                 */
3264                WARN_ON(!q.pi_state);
3265                pi_mutex = &q.pi_state->pi_mutex;
3266                ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3267
3268                spin_lock(q.lock_ptr);
3269                if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3270                        ret = 0;
3271
3272                debug_rt_mutex_free_waiter(&rt_waiter);
3273                /*
3274                 * Fixup the pi_state owner and possibly acquire the lock if we
3275                 * haven't already.
3276                 */
3277                res = fixup_owner(uaddr2, &q, !ret);
3278                /*
3279                 * If fixup_owner() returned an error, propagate that.  If it
3280                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3281                 */
3282                if (res)
3283                        ret = (res < 0) ? res : 0;
3284
3285                unqueue_me_pi(&q);
3286                spin_unlock(q.lock_ptr);
3287        }
3288
3289        if (ret == -EINTR) {
3290                /*
3291                 * We've already been requeued, but cannot restart by calling
3292                 * futex_lock_pi() directly. We could restart this syscall, but
3293                 * it would detect that the user space "val" changed and return
3294                 * -EWOULDBLOCK.  Save the overhead of the restart and return
3295                 * -EWOULDBLOCK directly.
3296                 */
3297                ret = -EWOULDBLOCK;
3298        }
3299
3300out:
3301        if (to) {
3302                hrtimer_cancel(&to->timer);
3303                destroy_hrtimer_on_stack(&to->timer);
3304        }
3305        return ret;
3306}
3307
3308/*
3309 * Support for robust futexes: the kernel cleans up held futexes at
3310 * thread exit time.
3311 *
3312 * Implementation: user-space maintains a per-thread list of locks it
3313 * is holding. Upon do_exit(), the kernel carefully walks this list,
3314 * and marks all locks that are owned by this thread with the
3315 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3316 * always manipulated with the lock held, so the list is private and
3317 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3318 * field, to allow the kernel to clean up if the thread dies after
3319 * acquiring the lock, but just before it could have added itself to
3320 * the list. There can only be one such pending lock.
3321 */
3322
3323/**
3324 * sys_set_robust_list() - Set the robust-futex list head of a task
3325 * @head:       pointer to the list-head
3326 * @len:        length of the list-head, as userspace expects
3327 */
3328SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3329                size_t, len)
3330{
3331        if (!futex_cmpxchg_enabled)
3332                return -ENOSYS;
3333        /*
3334         * The kernel knows only one size for now:
3335         */
3336        if (unlikely(len != sizeof(*head)))
3337                return -EINVAL;
3338
3339        current->robust_list = head;
3340
3341        return 0;
3342}
3343
3344/**
3345 * sys_get_robust_list() - Get the robust-futex list head of a task
3346 * @pid:        pid of the process [zero for current task]
3347 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3348 * @len_ptr:    pointer to a length field, the kernel fills in the header size
3349 */
3350SYSCALL_DEFINE3(get_robust_list, int, pid,
3351                struct robust_list_head __user * __user *, head_ptr,
3352                size_t __user *, len_ptr)
3353{
3354        struct robust_list_head __user *head;
3355        unsigned long ret;
3356        struct task_struct *p;
3357
3358        if (!futex_cmpxchg_enabled)
3359                return -ENOSYS;
3360
3361        rcu_read_lock();
3362
3363        ret = -ESRCH;
3364        if (!pid)
3365                p = current;
3366        else {
3367                p = find_task_by_vpid(pid);
3368                if (!p)
3369                        goto err_unlock;
3370        }
3371
3372        ret = -EPERM;
3373        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3374                goto err_unlock;
3375
3376        head = p->robust_list;
3377        rcu_read_unlock();
3378
3379        if (put_user(sizeof(*head), len_ptr))
3380                return -EFAULT;
3381        return put_user(head, head_ptr);
3382
3383err_unlock:
3384        rcu_read_unlock();
3385
3386        return ret;
3387}
3388
3389/* Constants for the pending_op argument of handle_futex_death */
3390#define HANDLE_DEATH_PENDING    true
3391#define HANDLE_DEATH_LIST       false
3392
3393/*
3394 * Process a futex-list entry, check whether it's owned by the
3395 * dying task, and do notification if so:
3396 */
3397static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3398                              bool pi, bool pending_op)
3399{
3400        u32 uval, nval, mval;
3401        int err;
3402
3403        /* Futex address must be 32bit aligned */
3404        if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3405                return -1;
3406
3407retry:
3408        if (get_user(uval, uaddr))
3409                return -1;
3410
3411        /*
3412         * Special case for regular (non PI) futexes. The unlock path in
3413         * user space has two race scenarios:
3414         *
3415         * 1. The unlock path releases the user space futex value and
3416         *    before it can execute the futex() syscall to wake up
3417         *    waiters it is killed.
3418         *
3419         * 2. A woken up waiter is killed before it can acquire the
3420         *    futex in user space.
3421         *
3422         * In both cases the TID validation below prevents a wakeup of
3423         * potential waiters which can cause these waiters to block
3424         * forever.
3425         *
3426         * In both cases the following conditions are met:
3427         *
3428         *      1) task->robust_list->list_op_pending != NULL
3429         *         @pending_op == true
3430         *      2) User space futex value == 0
3431         *      3) Regular futex: @pi == false
3432         *
3433         * If these conditions are met, it is safe to attempt waking up a
3434         * potential waiter without touching the user space futex value and
3435         * trying to set the OWNER_DIED bit. The user space futex value is
3436         * uncontended and the rest of the user space mutex state is
3437         * consistent, so a woken waiter will just take over the
3438         * uncontended futex. Setting the OWNER_DIED bit would create
3439         * inconsistent state and malfunction of the user space owner died
3440         * handling.
3441         */
3442        if (pending_op && !pi && !uval) {
3443                futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3444                return 0;
3445        }
3446
3447        if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3448                return 0;
3449
3450        /*
3451         * Ok, this dying thread is truly holding a futex
3452         * of interest. Set the OWNER_DIED bit atomically
3453         * via cmpxchg, and if the value had FUTEX_WAITERS
3454         * set, wake up a waiter (if any). (We have to do a
3455         * futex_wake() even if OWNER_DIED is already set -
3456         * to handle the rare but possible case of recursive
3457         * thread-death.) The rest of the cleanup is done in
3458         * userspace.
3459         */
3460        mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3461
3462        /*
3463         * We are not holding a lock here, but we want to have
3464         * the pagefault_disable/enable() protection because
3465         * we want to handle the fault gracefully. If the
3466         * access fails we try to fault in the futex with R/W
3467         * verification via get_user_pages. get_user() above
3468         * does not guarantee R/W access. If that fails we
3469         * give up and leave the futex locked.
3470         */
3471        if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3472                switch (err) {
3473                case -EFAULT:
3474                        if (fault_in_user_writeable(uaddr))
3475                                return -1;
3476                        goto retry;
3477
3478                case -EAGAIN:
3479                        cond_resched();
3480                        goto retry;
3481
3482                default:
3483                        WARN_ON_ONCE(1);
3484                        return err;
3485                }
3486        }
3487
3488        if (nval != uval)
3489                goto retry;
3490
3491        /*
3492         * Wake robust non-PI futexes here. The wakeup of
3493         * PI futexes happens in exit_pi_state():
3494         */
3495        if (!pi && (uval & FUTEX_WAITERS))
3496                futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3497
3498        return 0;
3499}
3500
3501/*
3502 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3503 */
3504static inline int fetch_robust_entry(struct robust_list __user **entry,
3505                                     struct robust_list __user * __user *head,
3506                                     unsigned int *pi)
3507{
3508        unsigned long uentry;
3509
3510        if (get_user(uentry, (unsigned long __user *)head))
3511                return -EFAULT;
3512
3513        *entry = (void __user *)(uentry & ~1UL);
3514        *pi = uentry & 1;
3515
3516        return 0;
3517}
3518
3519/*
3520 * Walk curr->robust_list (very carefully, it's a userspace list!)
3521 * and mark any locks found there dead, and notify any waiters.
3522 *
3523 * We silently return on any sign of list-walking problem.
3524 */
3525static void exit_robust_list(struct task_struct *curr)
3526{
3527        struct robust_list_head __user *head = curr->robust_list;
3528        struct robust_list __user *entry, *next_entry, *pending;
3529        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3530        unsigned int next_pi;
3531        unsigned long futex_offset;
3532        int rc;
3533
3534        if (!futex_cmpxchg_enabled)
3535                return;
3536
3537        /*
3538         * Fetch the list head (which was registered earlier, via
3539         * sys_set_robust_list()):
3540         */
3541        if (fetch_robust_entry(&entry, &head->list.next, &pi))
3542                return;
3543        /*
3544         * Fetch the relative futex offset:
3545         */
3546        if (get_user(futex_offset, &head->futex_offset))
3547                return;
3548        /*
3549         * Fetch any possibly pending lock-add first, and handle it
3550         * if it exists:
3551         */
3552        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3553                return;
3554
3555        next_entry = NULL;      /* avoid warning with gcc */
3556        while (entry != &head->list) {
3557                /*
3558                 * Fetch the next entry in the list before calling
3559                 * handle_futex_death:
3560                 */
3561                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3562                /*
3563                 * A pending lock might already be on the list, so
3564                 * don't process it twice:
3565                 */
3566                if (entry != pending) {
3567                        if (handle_futex_death((void __user *)entry + futex_offset,
3568                                                curr, pi, HANDLE_DEATH_LIST))
3569                                return;
3570                }
3571                if (rc)
3572                        return;
3573                entry = next_entry;
3574                pi = next_pi;
3575                /*
3576                 * Avoid excessively long or circular lists:
3577                 */
3578                if (!--limit)
3579                        break;
3580
3581                cond_resched();
3582        }
3583
3584        if (pending) {
3585                handle_futex_death((void __user *)pending + futex_offset,
3586                                   curr, pip, HANDLE_DEATH_PENDING);
3587        }
3588}
3589
3590static void futex_cleanup(struct task_struct *tsk)
3591{
3592        if (unlikely(tsk->robust_list)) {
3593                exit_robust_list(tsk);
3594                tsk->robust_list = NULL;
3595        }
3596
3597#ifdef CONFIG_COMPAT
3598        if (unlikely(tsk->compat_robust_list)) {
3599                compat_exit_robust_list(tsk);
3600                tsk->compat_robust_list = NULL;
3601        }
3602#endif
3603
3604        if (unlikely(!list_empty(&tsk->pi_state_list)))
3605                exit_pi_state_list(tsk);
3606}
3607
3608/**
3609 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3610 * @tsk:        task to set the state on
3611 *
3612 * Set the futex exit state of the task lockless. The futex waiter code
3613 * observes that state when a task is exiting and loops until the task has
3614 * actually finished the futex cleanup. The worst case for this is that the
3615 * waiter runs through the wait loop until the state becomes visible.
3616 *
3617 * This is called from the recursive fault handling path in do_exit().
3618 *
3619 * This is best effort. Either the futex exit code has run already or
3620 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3621 * take it over. If not, the problem is pushed back to user space. If the
3622 * futex exit code did not run yet, then an already queued waiter might
3623 * block forever, but there is nothing which can be done about that.
3624 */
3625void futex_exit_recursive(struct task_struct *tsk)
3626{
3627        /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3628        if (tsk->futex_state == FUTEX_STATE_EXITING)
3629                mutex_unlock(&tsk->futex_exit_mutex);
3630        tsk->futex_state = FUTEX_STATE_DEAD;
3631}
3632
3633static void futex_cleanup_begin(struct task_struct *tsk)
3634{
3635        /*
3636         * Prevent various race issues against a concurrent incoming waiter
3637         * including live locks by forcing the waiter to block on
3638         * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3639         * attach_to_pi_owner().
3640         */
3641        mutex_lock(&tsk->futex_exit_mutex);
3642
3643        /*
3644         * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3645         *
3646         * This ensures that all subsequent checks of tsk->futex_state in
3647         * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3648         * tsk->pi_lock held.
3649         *
3650         * It guarantees also that a pi_state which was queued right before
3651         * the state change under tsk->pi_lock by a concurrent waiter must
3652         * be observed in exit_pi_state_list().
3653         */
3654        raw_spin_lock_irq(&tsk->pi_lock);
3655        tsk->futex_state = FUTEX_STATE_EXITING;
3656        raw_spin_unlock_irq(&tsk->pi_lock);
3657}
3658
3659static void futex_cleanup_end(struct task_struct *tsk, int state)
3660{
3661        /*
3662         * Lockless store. The only side effect is that an observer might
3663         * take another loop until it becomes visible.
3664         */
3665        tsk->futex_state = state;
3666        /*
3667         * Drop the exit protection. This unblocks waiters which observed
3668         * FUTEX_STATE_EXITING to reevaluate the state.
3669         */
3670        mutex_unlock(&tsk->futex_exit_mutex);
3671}
3672
3673void futex_exec_release(struct task_struct *tsk)
3674{
3675        /*
3676         * The state handling is done for consistency, but in the case of
3677         * exec() there is no way to prevent further damage as the PID stays
3678         * the same. But for the unlikely and arguably buggy case that a
3679         * futex is held on exec(), this provides at least as much state
3680         * consistency protection which is possible.
3681         */
3682        futex_cleanup_begin(tsk);
3683        futex_cleanup(tsk);
3684        /*
3685         * Reset the state to FUTEX_STATE_OK. The task is alive and about
3686         * exec a new binary.
3687         */
3688        futex_cleanup_end(tsk, FUTEX_STATE_OK);
3689}
3690
3691void futex_exit_release(struct task_struct *tsk)
3692{
3693        futex_cleanup_begin(tsk);
3694        futex_cleanup(tsk);
3695        futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3696}
3697
3698long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3699                u32 __user *uaddr2, u32 val2, u32 val3)
3700{
3701        int cmd = op & FUTEX_CMD_MASK;
3702        unsigned int flags = 0;
3703
3704        if (!(op & FUTEX_PRIVATE_FLAG))
3705                flags |= FLAGS_SHARED;
3706
3707        if (op & FUTEX_CLOCK_REALTIME) {
3708                flags |= FLAGS_CLOCKRT;
3709                if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
3710                    cmd != FUTEX_LOCK_PI2)
3711                        return -ENOSYS;
3712        }
3713
3714        switch (cmd) {
3715        case FUTEX_LOCK_PI:
3716        case FUTEX_LOCK_PI2:
3717        case FUTEX_UNLOCK_PI:
3718        case FUTEX_TRYLOCK_PI:
3719        case FUTEX_WAIT_REQUEUE_PI:
3720        case FUTEX_CMP_REQUEUE_PI:
3721                if (!futex_cmpxchg_enabled)
3722                        return -ENOSYS;
3723        }
3724
3725        switch (cmd) {
3726        case FUTEX_WAIT:
3727                val3 = FUTEX_BITSET_MATCH_ANY;
3728                fallthrough;
3729        case FUTEX_WAIT_BITSET:
3730                return futex_wait(uaddr, flags, val, timeout, val3);
3731        case FUTEX_WAKE:
3732                val3 = FUTEX_BITSET_MATCH_ANY;
3733                fallthrough;
3734        case FUTEX_WAKE_BITSET:
3735                return futex_wake(uaddr, flags, val, val3);
3736        case FUTEX_REQUEUE:
3737                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3738        case FUTEX_CMP_REQUEUE:
3739                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3740        case FUTEX_WAKE_OP:
3741                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3742        case FUTEX_LOCK_PI:
3743                flags |= FLAGS_CLOCKRT;
3744                fallthrough;
3745        case FUTEX_LOCK_PI2:
3746                return futex_lock_pi(uaddr, flags, timeout, 0);
3747        case FUTEX_UNLOCK_PI:
3748                return futex_unlock_pi(uaddr, flags);
3749        case FUTEX_TRYLOCK_PI:
3750                return futex_lock_pi(uaddr, flags, NULL, 1);
3751        case FUTEX_WAIT_REQUEUE_PI:
3752                val3 = FUTEX_BITSET_MATCH_ANY;
3753                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3754                                             uaddr2);
3755        case FUTEX_CMP_REQUEUE_PI:
3756                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3757        }
3758        return -ENOSYS;
3759}
3760
3761static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3762{
3763        switch (cmd) {
3764        case FUTEX_WAIT:
3765        case FUTEX_LOCK_PI:
3766        case FUTEX_LOCK_PI2:
3767        case FUTEX_WAIT_BITSET:
3768        case FUTEX_WAIT_REQUEUE_PI:
3769                return true;
3770        }
3771        return false;
3772}
3773
3774static __always_inline int
3775futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3776{
3777        if (!timespec64_valid(ts))
3778                return -EINVAL;
3779
3780        *t = timespec64_to_ktime(*ts);
3781        if (cmd == FUTEX_WAIT)
3782                *t = ktime_add_safe(ktime_get(), *t);
3783        else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3784                *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3785        return 0;
3786}
3787
3788SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3789                const struct __kernel_timespec __user *, utime,
3790                u32 __user *, uaddr2, u32, val3)
3791{
3792        int ret, cmd = op & FUTEX_CMD_MASK;
3793        ktime_t t, *tp = NULL;
3794        struct timespec64 ts;
3795
3796        if (utime && futex_cmd_has_timeout(cmd)) {
3797                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3798                        return -EFAULT;
3799                if (get_timespec64(&ts, utime))
3800                        return -EFAULT;
3801                ret = futex_init_timeout(cmd, op, &ts, &t);
3802                if (ret)
3803                        return ret;
3804                tp = &t;
3805        }
3806
3807        return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3808}
3809
3810#ifdef CONFIG_COMPAT
3811/*
3812 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3813 */
3814static inline int
3815compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3816                   compat_uptr_t __user *head, unsigned int *pi)
3817{
3818        if (get_user(*uentry, head))
3819                return -EFAULT;
3820
3821        *entry = compat_ptr((*uentry) & ~1);
3822        *pi = (unsigned int)(*uentry) & 1;
3823
3824        return 0;
3825}
3826
3827static void __user *futex_uaddr(struct robust_list __user *entry,
3828                                compat_long_t futex_offset)
3829{
3830        compat_uptr_t base = ptr_to_compat(entry);
3831        void __user *uaddr = compat_ptr(base + futex_offset);
3832
3833        return uaddr;
3834}
3835
3836/*
3837 * Walk curr->robust_list (very carefully, it's a userspace list!)
3838 * and mark any locks found there dead, and notify any waiters.
3839 *
3840 * We silently return on any sign of list-walking problem.
3841 */
3842static void compat_exit_robust_list(struct task_struct *curr)
3843{
3844        struct compat_robust_list_head __user *head = curr->compat_robust_list;
3845        struct robust_list __user *entry, *next_entry, *pending;
3846        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3847        unsigned int next_pi;
3848        compat_uptr_t uentry, next_uentry, upending;
3849        compat_long_t futex_offset;
3850        int rc;
3851
3852        if (!futex_cmpxchg_enabled)
3853                return;
3854
3855        /*
3856         * Fetch the list head (which was registered earlier, via
3857         * sys_set_robust_list()):
3858         */
3859        if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3860                return;
3861        /*
3862         * Fetch the relative futex offset:
3863         */
3864        if (get_user(futex_offset, &head->futex_offset))
3865                return;
3866        /*
3867         * Fetch any possibly pending lock-add first, and handle it
3868         * if it exists:
3869         */
3870        if (compat_fetch_robust_entry(&upending, &pending,
3871                               &head->list_op_pending, &pip))
3872                return;
3873
3874        next_entry = NULL;      /* avoid warning with gcc */
3875        while (entry != (struct robust_list __user *) &head->list) {
3876                /*
3877                 * Fetch the next entry in the list before calling
3878                 * handle_futex_death:
3879                 */
3880                rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3881                        (compat_uptr_t __user *)&entry->next, &next_pi);
3882                /*
3883                 * A pending lock might already be on the list, so
3884                 * dont process it twice:
3885                 */
3886                if (entry != pending) {
3887                        void __user *uaddr = futex_uaddr(entry, futex_offset);
3888
3889                        if (handle_futex_death(uaddr, curr, pi,
3890                                               HANDLE_DEATH_LIST))
3891                                return;
3892                }
3893                if (rc)
3894                        return;
3895                uentry = next_uentry;
3896                entry = next_entry;
3897                pi = next_pi;
3898                /*
3899                 * Avoid excessively long or circular lists:
3900                 */
3901                if (!--limit)
3902                        break;
3903
3904                cond_resched();
3905        }
3906        if (pending) {
3907                void __user *uaddr = futex_uaddr(pending, futex_offset);
3908
3909                handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3910        }
3911}
3912
3913COMPAT_SYSCALL_DEFINE2(set_robust_list,
3914                struct compat_robust_list_head __user *, head,
3915                compat_size_t, len)
3916{
3917        if (!futex_cmpxchg_enabled)
3918                return -ENOSYS;
3919
3920        if (unlikely(len != sizeof(*head)))
3921                return -EINVAL;
3922
3923        current->compat_robust_list = head;
3924
3925        return 0;
3926}
3927
3928COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3929                        compat_uptr_t __user *, head_ptr,
3930                        compat_size_t __user *, len_ptr)
3931{
3932        struct compat_robust_list_head __user *head;
3933        unsigned long ret;
3934        struct task_struct *p;
3935
3936        if (!futex_cmpxchg_enabled)
3937                return -ENOSYS;
3938
3939        rcu_read_lock();
3940
3941        ret = -ESRCH;
3942        if (!pid)
3943                p = current;
3944        else {
3945                p = find_task_by_vpid(pid);
3946                if (!p)
3947                        goto err_unlock;
3948        }
3949
3950        ret = -EPERM;
3951        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3952                goto err_unlock;
3953
3954        head = p->compat_robust_list;
3955        rcu_read_unlock();
3956
3957        if (put_user(sizeof(*head), len_ptr))
3958                return -EFAULT;
3959        return put_user(ptr_to_compat(head), head_ptr);
3960
3961err_unlock:
3962        rcu_read_unlock();
3963
3964        return ret;
3965}
3966#endif /* CONFIG_COMPAT */
3967
3968#ifdef CONFIG_COMPAT_32BIT_TIME
3969SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3970                const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3971                u32, val3)
3972{
3973        int ret, cmd = op & FUTEX_CMD_MASK;
3974        ktime_t t, *tp = NULL;
3975        struct timespec64 ts;
3976
3977        if (utime && futex_cmd_has_timeout(cmd)) {
3978                if (get_old_timespec32(&ts, utime))
3979                        return -EFAULT;
3980                ret = futex_init_timeout(cmd, op, &ts, &t);
3981                if (ret)
3982                        return ret;
3983                tp = &t;
3984        }
3985
3986        return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3987}
3988#endif /* CONFIG_COMPAT_32BIT_TIME */
3989
3990static void __init futex_detect_cmpxchg(void)
3991{
3992#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3993        u32 curval;
3994
3995        /*
3996         * This will fail and we want it. Some arch implementations do
3997         * runtime detection of the futex_atomic_cmpxchg_inatomic()
3998         * functionality. We want to know that before we call in any
3999         * of the complex code paths. Also we want to prevent
4000         * registration of robust lists in that case. NULL is
4001         * guaranteed to fault and we get -EFAULT on functional
4002         * implementation, the non-functional ones will return
4003         * -ENOSYS.
4004         */
4005        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4006                futex_cmpxchg_enabled = 1;
4007#endif
4008}
4009
4010static int __init futex_init(void)
4011{
4012        unsigned int futex_shift;
4013        unsigned long i;
4014
4015#if CONFIG_BASE_SMALL
4016        futex_hashsize = 16;
4017#else
4018        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4019#endif
4020
4021        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4022                                               futex_hashsize, 0,
4023                                               futex_hashsize < 256 ? HASH_SMALL : 0,
4024                                               &futex_shift, NULL,
4025                                               futex_hashsize, futex_hashsize);
4026        futex_hashsize = 1UL << futex_shift;
4027
4028        futex_detect_cmpxchg();
4029
4030        for (i = 0; i < futex_hashsize; i++) {
4031                atomic_set(&futex_queues[i].waiters, 0);
4032                plist_head_init(&futex_queues[i].chain);
4033                spin_lock_init(&futex_queues[i].lock);
4034        }
4035
4036        return 0;
4037}
4038core_initcall(futex_init);
4039