linux/kernel/locking/mutex.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/locking/mutex.c
   4 *
   5 * Mutexes: blocking mutual exclusion locks
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *
  11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  12 * David Howells for suggestions and improvements.
  13 *
  14 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  15 *    from the -rt tree, where it was originally implemented for rtmutexes
  16 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  17 *    and Sven Dietrich.
  18 *
  19 * Also see Documentation/locking/mutex-design.rst.
  20 */
  21#include <linux/mutex.h>
  22#include <linux/ww_mutex.h>
  23#include <linux/sched/signal.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/wake_q.h>
  26#include <linux/sched/debug.h>
  27#include <linux/export.h>
  28#include <linux/spinlock.h>
  29#include <linux/interrupt.h>
  30#include <linux/debug_locks.h>
  31#include <linux/osq_lock.h>
  32
  33#ifdef CONFIG_DEBUG_MUTEXES
  34# include "mutex-debug.h"
  35#else
  36# include "mutex.h"
  37#endif
  38
  39void
  40__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  41{
  42        atomic_long_set(&lock->owner, 0);
  43        spin_lock_init(&lock->wait_lock);
  44        INIT_LIST_HEAD(&lock->wait_list);
  45#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  46        osq_lock_init(&lock->osq);
  47#endif
  48
  49        debug_mutex_init(lock, name, key);
  50}
  51EXPORT_SYMBOL(__mutex_init);
  52
  53/*
  54 * @owner: contains: 'struct task_struct *' to the current lock owner,
  55 * NULL means not owned. Since task_struct pointers are aligned at
  56 * at least L1_CACHE_BYTES, we have low bits to store extra state.
  57 *
  58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
  59 * Bit1 indicates unlock needs to hand the lock to the top-waiter
  60 * Bit2 indicates handoff has been done and we're waiting for pickup.
  61 */
  62#define MUTEX_FLAG_WAITERS      0x01
  63#define MUTEX_FLAG_HANDOFF      0x02
  64#define MUTEX_FLAG_PICKUP       0x04
  65
  66#define MUTEX_FLAGS             0x07
  67
  68/*
  69 * Internal helper function; C doesn't allow us to hide it :/
  70 *
  71 * DO NOT USE (outside of mutex code).
  72 */
  73static inline struct task_struct *__mutex_owner(struct mutex *lock)
  74{
  75        return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
  76}
  77
  78static inline struct task_struct *__owner_task(unsigned long owner)
  79{
  80        return (struct task_struct *)(owner & ~MUTEX_FLAGS);
  81}
  82
  83bool mutex_is_locked(struct mutex *lock)
  84{
  85        return __mutex_owner(lock) != NULL;
  86}
  87EXPORT_SYMBOL(mutex_is_locked);
  88
  89static inline unsigned long __owner_flags(unsigned long owner)
  90{
  91        return owner & MUTEX_FLAGS;
  92}
  93
  94/*
  95 * Trylock variant that returns the owning task on failure.
  96 */
  97static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
  98{
  99        unsigned long owner, curr = (unsigned long)current;
 100
 101        owner = atomic_long_read(&lock->owner);
 102        for (;;) { /* must loop, can race against a flag */
 103                unsigned long old, flags = __owner_flags(owner);
 104                unsigned long task = owner & ~MUTEX_FLAGS;
 105
 106                if (task) {
 107                        if (likely(task != curr))
 108                                break;
 109
 110                        if (likely(!(flags & MUTEX_FLAG_PICKUP)))
 111                                break;
 112
 113                        flags &= ~MUTEX_FLAG_PICKUP;
 114                } else {
 115#ifdef CONFIG_DEBUG_MUTEXES
 116                        DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
 117#endif
 118                }
 119
 120                /*
 121                 * We set the HANDOFF bit, we must make sure it doesn't live
 122                 * past the point where we acquire it. This would be possible
 123                 * if we (accidentally) set the bit on an unlocked mutex.
 124                 */
 125                flags &= ~MUTEX_FLAG_HANDOFF;
 126
 127                old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
 128                if (old == owner)
 129                        return NULL;
 130
 131                owner = old;
 132        }
 133
 134        return __owner_task(owner);
 135}
 136
 137/*
 138 * Actual trylock that will work on any unlocked state.
 139 */
 140static inline bool __mutex_trylock(struct mutex *lock)
 141{
 142        return !__mutex_trylock_or_owner(lock);
 143}
 144
 145#ifndef CONFIG_DEBUG_LOCK_ALLOC
 146/*
 147 * Lockdep annotations are contained to the slow paths for simplicity.
 148 * There is nothing that would stop spreading the lockdep annotations outwards
 149 * except more code.
 150 */
 151
 152/*
 153 * Optimistic trylock that only works in the uncontended case. Make sure to
 154 * follow with a __mutex_trylock() before failing.
 155 */
 156static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
 157{
 158        unsigned long curr = (unsigned long)current;
 159        unsigned long zero = 0UL;
 160
 161        if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
 162                return true;
 163
 164        return false;
 165}
 166
 167static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
 168{
 169        unsigned long curr = (unsigned long)current;
 170
 171        if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
 172                return true;
 173
 174        return false;
 175}
 176#endif
 177
 178static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
 179{
 180        atomic_long_or(flag, &lock->owner);
 181}
 182
 183static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
 184{
 185        atomic_long_andnot(flag, &lock->owner);
 186}
 187
 188static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
 189{
 190        return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
 191}
 192
 193/*
 194 * Add @waiter to a given location in the lock wait_list and set the
 195 * FLAG_WAITERS flag if it's the first waiter.
 196 */
 197static void
 198__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
 199                   struct list_head *list)
 200{
 201        debug_mutex_add_waiter(lock, waiter, current);
 202
 203        list_add_tail(&waiter->list, list);
 204        if (__mutex_waiter_is_first(lock, waiter))
 205                __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
 206}
 207
 208static void
 209__mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
 210{
 211        list_del(&waiter->list);
 212        if (likely(list_empty(&lock->wait_list)))
 213                __mutex_clear_flag(lock, MUTEX_FLAGS);
 214
 215        debug_mutex_remove_waiter(lock, waiter, current);
 216}
 217
 218/*
 219 * Give up ownership to a specific task, when @task = NULL, this is equivalent
 220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
 221 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
 223 */
 224static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
 225{
 226        unsigned long owner = atomic_long_read(&lock->owner);
 227
 228        for (;;) {
 229                unsigned long old, new;
 230
 231#ifdef CONFIG_DEBUG_MUTEXES
 232                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
 233                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
 234#endif
 235
 236                new = (owner & MUTEX_FLAG_WAITERS);
 237                new |= (unsigned long)task;
 238                if (task)
 239                        new |= MUTEX_FLAG_PICKUP;
 240
 241                old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
 242                if (old == owner)
 243                        break;
 244
 245                owner = old;
 246        }
 247}
 248
 249#ifndef CONFIG_DEBUG_LOCK_ALLOC
 250/*
 251 * We split the mutex lock/unlock logic into separate fastpath and
 252 * slowpath functions, to reduce the register pressure on the fastpath.
 253 * We also put the fastpath first in the kernel image, to make sure the
 254 * branch is predicted by the CPU as default-untaken.
 255 */
 256static void __sched __mutex_lock_slowpath(struct mutex *lock);
 257
 258/**
 259 * mutex_lock - acquire the mutex
 260 * @lock: the mutex to be acquired
 261 *
 262 * Lock the mutex exclusively for this task. If the mutex is not
 263 * available right now, it will sleep until it can get it.
 264 *
 265 * The mutex must later on be released by the same task that
 266 * acquired it. Recursive locking is not allowed. The task
 267 * may not exit without first unlocking the mutex. Also, kernel
 268 * memory where the mutex resides must not be freed with
 269 * the mutex still locked. The mutex must first be initialized
 270 * (or statically defined) before it can be locked. memset()-ing
 271 * the mutex to 0 is not allowed.
 272 *
 273 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 274 * checks that will enforce the restrictions and will also do
 275 * deadlock debugging)
 276 *
 277 * This function is similar to (but not equivalent to) down().
 278 */
 279void __sched mutex_lock(struct mutex *lock)
 280{
 281        might_sleep();
 282
 283        if (!__mutex_trylock_fast(lock))
 284                __mutex_lock_slowpath(lock);
 285}
 286EXPORT_SYMBOL(mutex_lock);
 287#endif
 288
 289/*
 290 * Wait-Die:
 291 *   The newer transactions are killed when:
 292 *     It (the new transaction) makes a request for a lock being held
 293 *     by an older transaction.
 294 *
 295 * Wound-Wait:
 296 *   The newer transactions are wounded when:
 297 *     An older transaction makes a request for a lock being held by
 298 *     the newer transaction.
 299 */
 300
 301/*
 302 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
 303 * it.
 304 */
 305static __always_inline void
 306ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
 307{
 308#ifdef CONFIG_DEBUG_MUTEXES
 309        /*
 310         * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 311         * but released with a normal mutex_unlock in this call.
 312         *
 313         * This should never happen, always use ww_mutex_unlock.
 314         */
 315        DEBUG_LOCKS_WARN_ON(ww->ctx);
 316
 317        /*
 318         * Not quite done after calling ww_acquire_done() ?
 319         */
 320        DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 321
 322        if (ww_ctx->contending_lock) {
 323                /*
 324                 * After -EDEADLK you tried to
 325                 * acquire a different ww_mutex? Bad!
 326                 */
 327                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 328
 329                /*
 330                 * You called ww_mutex_lock after receiving -EDEADLK,
 331                 * but 'forgot' to unlock everything else first?
 332                 */
 333                DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 334                ww_ctx->contending_lock = NULL;
 335        }
 336
 337        /*
 338         * Naughty, using a different class will lead to undefined behavior!
 339         */
 340        DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 341#endif
 342        ww_ctx->acquired++;
 343        ww->ctx = ww_ctx;
 344}
 345
 346/*
 347 * Determine if context @a is 'after' context @b. IOW, @a is a younger
 348 * transaction than @b and depending on algorithm either needs to wait for
 349 * @b or die.
 350 */
 351static inline bool __sched
 352__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
 353{
 354
 355        return (signed long)(a->stamp - b->stamp) > 0;
 356}
 357
 358/*
 359 * Wait-Die; wake a younger waiter context (when locks held) such that it can
 360 * die.
 361 *
 362 * Among waiters with context, only the first one can have other locks acquired
 363 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
 364 * __ww_mutex_check_kill() wake any but the earliest context.
 365 */
 366static bool __sched
 367__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
 368               struct ww_acquire_ctx *ww_ctx)
 369{
 370        if (!ww_ctx->is_wait_die)
 371                return false;
 372
 373        if (waiter->ww_ctx->acquired > 0 &&
 374                        __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
 375                debug_mutex_wake_waiter(lock, waiter);
 376                wake_up_process(waiter->task);
 377        }
 378
 379        return true;
 380}
 381
 382/*
 383 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
 384 *
 385 * Wound the lock holder if there are waiters with older transactions than
 386 * the lock holders. Even if multiple waiters may wound the lock holder,
 387 * it's sufficient that only one does.
 388 */
 389static bool __ww_mutex_wound(struct mutex *lock,
 390                             struct ww_acquire_ctx *ww_ctx,
 391                             struct ww_acquire_ctx *hold_ctx)
 392{
 393        struct task_struct *owner = __mutex_owner(lock);
 394
 395        lockdep_assert_held(&lock->wait_lock);
 396
 397        /*
 398         * Possible through __ww_mutex_add_waiter() when we race with
 399         * ww_mutex_set_context_fastpath(). In that case we'll get here again
 400         * through __ww_mutex_check_waiters().
 401         */
 402        if (!hold_ctx)
 403                return false;
 404
 405        /*
 406         * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
 407         * it cannot go away because we'll have FLAG_WAITERS set and hold
 408         * wait_lock.
 409         */
 410        if (!owner)
 411                return false;
 412
 413        if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
 414                hold_ctx->wounded = 1;
 415
 416                /*
 417                 * wake_up_process() paired with set_current_state()
 418                 * inserts sufficient barriers to make sure @owner either sees
 419                 * it's wounded in __ww_mutex_check_kill() or has a
 420                 * wakeup pending to re-read the wounded state.
 421                 */
 422                if (owner != current)
 423                        wake_up_process(owner);
 424
 425                return true;
 426        }
 427
 428        return false;
 429}
 430
 431/*
 432 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
 433 * behind us on the wait-list, check if they need to die, or wound us.
 434 *
 435 * See __ww_mutex_add_waiter() for the list-order construction; basically the
 436 * list is ordered by stamp, smallest (oldest) first.
 437 *
 438 * This relies on never mixing wait-die/wound-wait on the same wait-list;
 439 * which is currently ensured by that being a ww_class property.
 440 *
 441 * The current task must not be on the wait list.
 442 */
 443static void __sched
 444__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 445{
 446        struct mutex_waiter *cur;
 447
 448        lockdep_assert_held(&lock->wait_lock);
 449
 450        list_for_each_entry(cur, &lock->wait_list, list) {
 451                if (!cur->ww_ctx)
 452                        continue;
 453
 454                if (__ww_mutex_die(lock, cur, ww_ctx) ||
 455                    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
 456                        break;
 457        }
 458}
 459
 460/*
 461 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
 462 * and wake up any waiters so they can recheck.
 463 */
 464static __always_inline void
 465ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 466{
 467        ww_mutex_lock_acquired(lock, ctx);
 468
 469        /*
 470         * The lock->ctx update should be visible on all cores before
 471         * the WAITERS check is done, otherwise contended waiters might be
 472         * missed. The contended waiters will either see ww_ctx == NULL
 473         * and keep spinning, or it will acquire wait_lock, add itself
 474         * to waiter list and sleep.
 475         */
 476        smp_mb(); /* See comments above and below. */
 477
 478        /*
 479         * [W] ww->ctx = ctx        [W] MUTEX_FLAG_WAITERS
 480         *     MB                       MB
 481         * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
 482         *
 483         * The memory barrier above pairs with the memory barrier in
 484         * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
 485         * and/or !empty list.
 486         */
 487        if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
 488                return;
 489
 490        /*
 491         * Uh oh, we raced in fastpath, check if any of the waiters need to
 492         * die or wound us.
 493         */
 494        spin_lock(&lock->base.wait_lock);
 495        __ww_mutex_check_waiters(&lock->base, ctx);
 496        spin_unlock(&lock->base.wait_lock);
 497}
 498
 499#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 500
 501static inline
 502bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 503                            struct mutex_waiter *waiter)
 504{
 505        struct ww_mutex *ww;
 506
 507        ww = container_of(lock, struct ww_mutex, base);
 508
 509        /*
 510         * If ww->ctx is set the contents are undefined, only
 511         * by acquiring wait_lock there is a guarantee that
 512         * they are not invalid when reading.
 513         *
 514         * As such, when deadlock detection needs to be
 515         * performed the optimistic spinning cannot be done.
 516         *
 517         * Check this in every inner iteration because we may
 518         * be racing against another thread's ww_mutex_lock.
 519         */
 520        if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
 521                return false;
 522
 523        /*
 524         * If we aren't on the wait list yet, cancel the spin
 525         * if there are waiters. We want  to avoid stealing the
 526         * lock from a waiter with an earlier stamp, since the
 527         * other thread may already own a lock that we also
 528         * need.
 529         */
 530        if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
 531                return false;
 532
 533        /*
 534         * Similarly, stop spinning if we are no longer the
 535         * first waiter.
 536         */
 537        if (waiter && !__mutex_waiter_is_first(lock, waiter))
 538                return false;
 539
 540        return true;
 541}
 542
 543/*
 544 * Look out! "owner" is an entirely speculative pointer access and not
 545 * reliable.
 546 *
 547 * "noinline" so that this function shows up on perf profiles.
 548 */
 549static noinline
 550bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
 551                         struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
 552{
 553        bool ret = true;
 554
 555        rcu_read_lock();
 556        while (__mutex_owner(lock) == owner) {
 557                /*
 558                 * Ensure we emit the owner->on_cpu, dereference _after_
 559                 * checking lock->owner still matches owner. If that fails,
 560                 * owner might point to freed memory. If it still matches,
 561                 * the rcu_read_lock() ensures the memory stays valid.
 562                 */
 563                barrier();
 564
 565                /*
 566                 * Use vcpu_is_preempted to detect lock holder preemption issue.
 567                 */
 568                if (!owner->on_cpu || need_resched() ||
 569                                vcpu_is_preempted(task_cpu(owner))) {
 570                        ret = false;
 571                        break;
 572                }
 573
 574                if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
 575                        ret = false;
 576                        break;
 577                }
 578
 579                cpu_relax();
 580        }
 581        rcu_read_unlock();
 582
 583        return ret;
 584}
 585
 586/*
 587 * Initial check for entering the mutex spinning loop
 588 */
 589static inline int mutex_can_spin_on_owner(struct mutex *lock)
 590{
 591        struct task_struct *owner;
 592        int retval = 1;
 593
 594        if (need_resched())
 595                return 0;
 596
 597        rcu_read_lock();
 598        owner = __mutex_owner(lock);
 599
 600        /*
 601         * As lock holder preemption issue, we both skip spinning if task is not
 602         * on cpu or its cpu is preempted
 603         */
 604        if (owner)
 605                retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 606        rcu_read_unlock();
 607
 608        /*
 609         * If lock->owner is not set, the mutex has been released. Return true
 610         * such that we'll trylock in the spin path, which is a faster option
 611         * than the blocking slow path.
 612         */
 613        return retval;
 614}
 615
 616/*
 617 * Optimistic spinning.
 618 *
 619 * We try to spin for acquisition when we find that the lock owner
 620 * is currently running on a (different) CPU and while we don't
 621 * need to reschedule. The rationale is that if the lock owner is
 622 * running, it is likely to release the lock soon.
 623 *
 624 * The mutex spinners are queued up using MCS lock so that only one
 625 * spinner can compete for the mutex. However, if mutex spinning isn't
 626 * going to happen, there is no point in going through the lock/unlock
 627 * overhead.
 628 *
 629 * Returns true when the lock was taken, otherwise false, indicating
 630 * that we need to jump to the slowpath and sleep.
 631 *
 632 * The waiter flag is set to true if the spinner is a waiter in the wait
 633 * queue. The waiter-spinner will spin on the lock directly and concurrently
 634 * with the spinner at the head of the OSQ, if present, until the owner is
 635 * changed to itself.
 636 */
 637static __always_inline bool
 638mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 639                      struct mutex_waiter *waiter)
 640{
 641        if (!waiter) {
 642                /*
 643                 * The purpose of the mutex_can_spin_on_owner() function is
 644                 * to eliminate the overhead of osq_lock() and osq_unlock()
 645                 * in case spinning isn't possible. As a waiter-spinner
 646                 * is not going to take OSQ lock anyway, there is no need
 647                 * to call mutex_can_spin_on_owner().
 648                 */
 649                if (!mutex_can_spin_on_owner(lock))
 650                        goto fail;
 651
 652                /*
 653                 * In order to avoid a stampede of mutex spinners trying to
 654                 * acquire the mutex all at once, the spinners need to take a
 655                 * MCS (queued) lock first before spinning on the owner field.
 656                 */
 657                if (!osq_lock(&lock->osq))
 658                        goto fail;
 659        }
 660
 661        for (;;) {
 662                struct task_struct *owner;
 663
 664                /* Try to acquire the mutex... */
 665                owner = __mutex_trylock_or_owner(lock);
 666                if (!owner)
 667                        break;
 668
 669                /*
 670                 * There's an owner, wait for it to either
 671                 * release the lock or go to sleep.
 672                 */
 673                if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
 674                        goto fail_unlock;
 675
 676                /*
 677                 * The cpu_relax() call is a compiler barrier which forces
 678                 * everything in this loop to be re-loaded. We don't need
 679                 * memory barriers as we'll eventually observe the right
 680                 * values at the cost of a few extra spins.
 681                 */
 682                cpu_relax();
 683        }
 684
 685        if (!waiter)
 686                osq_unlock(&lock->osq);
 687
 688        return true;
 689
 690
 691fail_unlock:
 692        if (!waiter)
 693                osq_unlock(&lock->osq);
 694
 695fail:
 696        /*
 697         * If we fell out of the spin path because of need_resched(),
 698         * reschedule now, before we try-lock the mutex. This avoids getting
 699         * scheduled out right after we obtained the mutex.
 700         */
 701        if (need_resched()) {
 702                /*
 703                 * We _should_ have TASK_RUNNING here, but just in case
 704                 * we do not, make it so, otherwise we might get stuck.
 705                 */
 706                __set_current_state(TASK_RUNNING);
 707                schedule_preempt_disabled();
 708        }
 709
 710        return false;
 711}
 712#else
 713static __always_inline bool
 714mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 715                      struct mutex_waiter *waiter)
 716{
 717        return false;
 718}
 719#endif
 720
 721static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
 722
 723/**
 724 * mutex_unlock - release the mutex
 725 * @lock: the mutex to be released
 726 *
 727 * Unlock a mutex that has been locked by this task previously.
 728 *
 729 * This function must not be used in interrupt context. Unlocking
 730 * of a not locked mutex is not allowed.
 731 *
 732 * This function is similar to (but not equivalent to) up().
 733 */
 734void __sched mutex_unlock(struct mutex *lock)
 735{
 736#ifndef CONFIG_DEBUG_LOCK_ALLOC
 737        if (__mutex_unlock_fast(lock))
 738                return;
 739#endif
 740        __mutex_unlock_slowpath(lock, _RET_IP_);
 741}
 742EXPORT_SYMBOL(mutex_unlock);
 743
 744/**
 745 * ww_mutex_unlock - release the w/w mutex
 746 * @lock: the mutex to be released
 747 *
 748 * Unlock a mutex that has been locked by this task previously with any of the
 749 * ww_mutex_lock* functions (with or without an acquire context). It is
 750 * forbidden to release the locks after releasing the acquire context.
 751 *
 752 * This function must not be used in interrupt context. Unlocking
 753 * of a unlocked mutex is not allowed.
 754 */
 755void __sched ww_mutex_unlock(struct ww_mutex *lock)
 756{
 757        /*
 758         * The unlocking fastpath is the 0->1 transition from 'locked'
 759         * into 'unlocked' state:
 760         */
 761        if (lock->ctx) {
 762#ifdef CONFIG_DEBUG_MUTEXES
 763                DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 764#endif
 765                if (lock->ctx->acquired > 0)
 766                        lock->ctx->acquired--;
 767                lock->ctx = NULL;
 768        }
 769
 770        mutex_unlock(&lock->base);
 771}
 772EXPORT_SYMBOL(ww_mutex_unlock);
 773
 774
 775static __always_inline int __sched
 776__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
 777{
 778        if (ww_ctx->acquired > 0) {
 779#ifdef CONFIG_DEBUG_MUTEXES
 780                struct ww_mutex *ww;
 781
 782                ww = container_of(lock, struct ww_mutex, base);
 783                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
 784                ww_ctx->contending_lock = ww;
 785#endif
 786                return -EDEADLK;
 787        }
 788
 789        return 0;
 790}
 791
 792
 793/*
 794 * Check the wound condition for the current lock acquire.
 795 *
 796 * Wound-Wait: If we're wounded, kill ourself.
 797 *
 798 * Wait-Die: If we're trying to acquire a lock already held by an older
 799 *           context, kill ourselves.
 800 *
 801 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
 802 * look at waiters before us in the wait-list.
 803 */
 804static inline int __sched
 805__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
 806                      struct ww_acquire_ctx *ctx)
 807{
 808        struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 809        struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
 810        struct mutex_waiter *cur;
 811
 812        if (ctx->acquired == 0)
 813                return 0;
 814
 815        if (!ctx->is_wait_die) {
 816                if (ctx->wounded)
 817                        return __ww_mutex_kill(lock, ctx);
 818
 819                return 0;
 820        }
 821
 822        if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
 823                return __ww_mutex_kill(lock, ctx);
 824
 825        /*
 826         * If there is a waiter in front of us that has a context, then its
 827         * stamp is earlier than ours and we must kill ourself.
 828         */
 829        cur = waiter;
 830        list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
 831                if (!cur->ww_ctx)
 832                        continue;
 833
 834                return __ww_mutex_kill(lock, ctx);
 835        }
 836
 837        return 0;
 838}
 839
 840/*
 841 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
 842 * first. Such that older contexts are preferred to acquire the lock over
 843 * younger contexts.
 844 *
 845 * Waiters without context are interspersed in FIFO order.
 846 *
 847 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
 848 * older contexts already waiting) to avoid unnecessary waiting and for
 849 * Wound-Wait ensure we wound the owning context when it is younger.
 850 */
 851static inline int __sched
 852__ww_mutex_add_waiter(struct mutex_waiter *waiter,
 853                      struct mutex *lock,
 854                      struct ww_acquire_ctx *ww_ctx)
 855{
 856        struct mutex_waiter *cur;
 857        struct list_head *pos;
 858        bool is_wait_die;
 859
 860        if (!ww_ctx) {
 861                __mutex_add_waiter(lock, waiter, &lock->wait_list);
 862                return 0;
 863        }
 864
 865        is_wait_die = ww_ctx->is_wait_die;
 866
 867        /*
 868         * Add the waiter before the first waiter with a higher stamp.
 869         * Waiters without a context are skipped to avoid starving
 870         * them. Wait-Die waiters may die here. Wound-Wait waiters
 871         * never die here, but they are sorted in stamp order and
 872         * may wound the lock holder.
 873         */
 874        pos = &lock->wait_list;
 875        list_for_each_entry_reverse(cur, &lock->wait_list, list) {
 876                if (!cur->ww_ctx)
 877                        continue;
 878
 879                if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
 880                        /*
 881                         * Wait-Die: if we find an older context waiting, there
 882                         * is no point in queueing behind it, as we'd have to
 883                         * die the moment it would acquire the lock.
 884                         */
 885                        if (is_wait_die) {
 886                                int ret = __ww_mutex_kill(lock, ww_ctx);
 887
 888                                if (ret)
 889                                        return ret;
 890                        }
 891
 892                        break;
 893                }
 894
 895                pos = &cur->list;
 896
 897                /* Wait-Die: ensure younger waiters die. */
 898                __ww_mutex_die(lock, cur, ww_ctx);
 899        }
 900
 901        __mutex_add_waiter(lock, waiter, pos);
 902
 903        /*
 904         * Wound-Wait: if we're blocking on a mutex owned by a younger context,
 905         * wound that such that we might proceed.
 906         */
 907        if (!is_wait_die) {
 908                struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 909
 910                /*
 911                 * See ww_mutex_set_context_fastpath(). Orders setting
 912                 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
 913                 * such that either we or the fastpath will wound @ww->ctx.
 914                 */
 915                smp_mb();
 916                __ww_mutex_wound(lock, ww_ctx, ww->ctx);
 917        }
 918
 919        return 0;
 920}
 921
 922/*
 923 * Lock a mutex (possibly interruptible), slowpath:
 924 */
 925static __always_inline int __sched
 926__mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
 927                    struct lockdep_map *nest_lock, unsigned long ip,
 928                    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 929{
 930        struct mutex_waiter waiter;
 931        bool first = false;
 932        struct ww_mutex *ww;
 933        int ret;
 934
 935        if (!use_ww_ctx)
 936                ww_ctx = NULL;
 937
 938        might_sleep();
 939
 940#ifdef CONFIG_DEBUG_MUTEXES
 941        DEBUG_LOCKS_WARN_ON(lock->magic != lock);
 942#endif
 943
 944        ww = container_of(lock, struct ww_mutex, base);
 945        if (ww_ctx) {
 946                if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 947                        return -EALREADY;
 948
 949                /*
 950                 * Reset the wounded flag after a kill. No other process can
 951                 * race and wound us here since they can't have a valid owner
 952                 * pointer if we don't have any locks held.
 953                 */
 954                if (ww_ctx->acquired == 0)
 955                        ww_ctx->wounded = 0;
 956        }
 957
 958        preempt_disable();
 959        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 960
 961        if (__mutex_trylock(lock) ||
 962            mutex_optimistic_spin(lock, ww_ctx, NULL)) {
 963                /* got the lock, yay! */
 964                lock_acquired(&lock->dep_map, ip);
 965                if (ww_ctx)
 966                        ww_mutex_set_context_fastpath(ww, ww_ctx);
 967                preempt_enable();
 968                return 0;
 969        }
 970
 971        spin_lock(&lock->wait_lock);
 972        /*
 973         * After waiting to acquire the wait_lock, try again.
 974         */
 975        if (__mutex_trylock(lock)) {
 976                if (ww_ctx)
 977                        __ww_mutex_check_waiters(lock, ww_ctx);
 978
 979                goto skip_wait;
 980        }
 981
 982        debug_mutex_lock_common(lock, &waiter);
 983
 984        lock_contended(&lock->dep_map, ip);
 985
 986        if (!use_ww_ctx) {
 987                /* add waiting tasks to the end of the waitqueue (FIFO): */
 988                __mutex_add_waiter(lock, &waiter, &lock->wait_list);
 989
 990
 991#ifdef CONFIG_DEBUG_MUTEXES
 992                waiter.ww_ctx = MUTEX_POISON_WW_CTX;
 993#endif
 994        } else {
 995                /*
 996                 * Add in stamp order, waking up waiters that must kill
 997                 * themselves.
 998                 */
 999                ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
1000                if (ret)
1001                        goto err_early_kill;
1002
1003                waiter.ww_ctx = ww_ctx;
1004        }
1005
1006        waiter.task = current;
1007
1008        set_current_state(state);
1009        for (;;) {
1010                /*
1011                 * Once we hold wait_lock, we're serialized against
1012                 * mutex_unlock() handing the lock off to us, do a trylock
1013                 * before testing the error conditions to make sure we pick up
1014                 * the handoff.
1015                 */
1016                if (__mutex_trylock(lock))
1017                        goto acquired;
1018
1019                /*
1020                 * Check for signals and kill conditions while holding
1021                 * wait_lock. This ensures the lock cancellation is ordered
1022                 * against mutex_unlock() and wake-ups do not go missing.
1023                 */
1024                if (signal_pending_state(state, current)) {
1025                        ret = -EINTR;
1026                        goto err;
1027                }
1028
1029                if (ww_ctx) {
1030                        ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1031                        if (ret)
1032                                goto err;
1033                }
1034
1035                spin_unlock(&lock->wait_lock);
1036                schedule_preempt_disabled();
1037
1038                /*
1039                 * ww_mutex needs to always recheck its position since its waiter
1040                 * list is not FIFO ordered.
1041                 */
1042                if (ww_ctx || !first) {
1043                        first = __mutex_waiter_is_first(lock, &waiter);
1044                        if (first)
1045                                __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1046                }
1047
1048                set_current_state(state);
1049                /*
1050                 * Here we order against unlock; we must either see it change
1051                 * state back to RUNNING and fall through the next schedule(),
1052                 * or we must see its unlock and acquire.
1053                 */
1054                if (__mutex_trylock(lock) ||
1055                    (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
1056                        break;
1057
1058                spin_lock(&lock->wait_lock);
1059        }
1060        spin_lock(&lock->wait_lock);
1061acquired:
1062        __set_current_state(TASK_RUNNING);
1063
1064        if (ww_ctx) {
1065                /*
1066                 * Wound-Wait; we stole the lock (!first_waiter), check the
1067                 * waiters as anyone might want to wound us.
1068                 */
1069                if (!ww_ctx->is_wait_die &&
1070                    !__mutex_waiter_is_first(lock, &waiter))
1071                        __ww_mutex_check_waiters(lock, ww_ctx);
1072        }
1073
1074        __mutex_remove_waiter(lock, &waiter);
1075
1076        debug_mutex_free_waiter(&waiter);
1077
1078skip_wait:
1079        /* got the lock - cleanup and rejoice! */
1080        lock_acquired(&lock->dep_map, ip);
1081
1082        if (ww_ctx)
1083                ww_mutex_lock_acquired(ww, ww_ctx);
1084
1085        spin_unlock(&lock->wait_lock);
1086        preempt_enable();
1087        return 0;
1088
1089err:
1090        __set_current_state(TASK_RUNNING);
1091        __mutex_remove_waiter(lock, &waiter);
1092err_early_kill:
1093        spin_unlock(&lock->wait_lock);
1094        debug_mutex_free_waiter(&waiter);
1095        mutex_release(&lock->dep_map, ip);
1096        preempt_enable();
1097        return ret;
1098}
1099
1100static int __sched
1101__mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
1102             struct lockdep_map *nest_lock, unsigned long ip)
1103{
1104        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1105}
1106
1107static int __sched
1108__ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
1109                struct lockdep_map *nest_lock, unsigned long ip,
1110                struct ww_acquire_ctx *ww_ctx)
1111{
1112        return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1113}
1114
1115#ifdef CONFIG_DEBUG_LOCK_ALLOC
1116void __sched
1117mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1118{
1119        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1120}
1121
1122EXPORT_SYMBOL_GPL(mutex_lock_nested);
1123
1124void __sched
1125_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1126{
1127        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1128}
1129EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1130
1131int __sched
1132mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1133{
1134        return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1135}
1136EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1137
1138int __sched
1139mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1140{
1141        return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1142}
1143EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1144
1145void __sched
1146mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1147{
1148        int token;
1149
1150        might_sleep();
1151
1152        token = io_schedule_prepare();
1153        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1154                            subclass, NULL, _RET_IP_, NULL, 0);
1155        io_schedule_finish(token);
1156}
1157EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1158
1159static inline int
1160ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1161{
1162#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1163        unsigned tmp;
1164
1165        if (ctx->deadlock_inject_countdown-- == 0) {
1166                tmp = ctx->deadlock_inject_interval;
1167                if (tmp > UINT_MAX/4)
1168                        tmp = UINT_MAX;
1169                else
1170                        tmp = tmp*2 + tmp + tmp/2;
1171
1172                ctx->deadlock_inject_interval = tmp;
1173                ctx->deadlock_inject_countdown = tmp;
1174                ctx->contending_lock = lock;
1175
1176                ww_mutex_unlock(lock);
1177
1178                return -EDEADLK;
1179        }
1180#endif
1181
1182        return 0;
1183}
1184
1185int __sched
1186ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1187{
1188        int ret;
1189
1190        might_sleep();
1191        ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1192                               0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1193                               ctx);
1194        if (!ret && ctx && ctx->acquired > 1)
1195                return ww_mutex_deadlock_injection(lock, ctx);
1196
1197        return ret;
1198}
1199EXPORT_SYMBOL_GPL(ww_mutex_lock);
1200
1201int __sched
1202ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1203{
1204        int ret;
1205
1206        might_sleep();
1207        ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1208                              0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1209                              ctx);
1210
1211        if (!ret && ctx && ctx->acquired > 1)
1212                return ww_mutex_deadlock_injection(lock, ctx);
1213
1214        return ret;
1215}
1216EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1217
1218#endif
1219
1220/*
1221 * Release the lock, slowpath:
1222 */
1223static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1224{
1225        struct task_struct *next = NULL;
1226        DEFINE_WAKE_Q(wake_q);
1227        unsigned long owner;
1228
1229        mutex_release(&lock->dep_map, ip);
1230
1231        /*
1232         * Release the lock before (potentially) taking the spinlock such that
1233         * other contenders can get on with things ASAP.
1234         *
1235         * Except when HANDOFF, in that case we must not clear the owner field,
1236         * but instead set it to the top waiter.
1237         */
1238        owner = atomic_long_read(&lock->owner);
1239        for (;;) {
1240                unsigned long old;
1241
1242#ifdef CONFIG_DEBUG_MUTEXES
1243                DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1244                DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1245#endif
1246
1247                if (owner & MUTEX_FLAG_HANDOFF)
1248                        break;
1249
1250                old = atomic_long_cmpxchg_release(&lock->owner, owner,
1251                                                  __owner_flags(owner));
1252                if (old == owner) {
1253                        if (owner & MUTEX_FLAG_WAITERS)
1254                                break;
1255
1256                        return;
1257                }
1258
1259                owner = old;
1260        }
1261
1262        spin_lock(&lock->wait_lock);
1263        debug_mutex_unlock(lock);
1264        if (!list_empty(&lock->wait_list)) {
1265                /* get the first entry from the wait-list: */
1266                struct mutex_waiter *waiter =
1267                        list_first_entry(&lock->wait_list,
1268                                         struct mutex_waiter, list);
1269
1270                next = waiter->task;
1271
1272                debug_mutex_wake_waiter(lock, waiter);
1273                wake_q_add(&wake_q, next);
1274        }
1275
1276        if (owner & MUTEX_FLAG_HANDOFF)
1277                __mutex_handoff(lock, next);
1278
1279        spin_unlock(&lock->wait_lock);
1280
1281        wake_up_q(&wake_q);
1282}
1283
1284#ifndef CONFIG_DEBUG_LOCK_ALLOC
1285/*
1286 * Here come the less common (and hence less performance-critical) APIs:
1287 * mutex_lock_interruptible() and mutex_trylock().
1288 */
1289static noinline int __sched
1290__mutex_lock_killable_slowpath(struct mutex *lock);
1291
1292static noinline int __sched
1293__mutex_lock_interruptible_slowpath(struct mutex *lock);
1294
1295/**
1296 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1297 * @lock: The mutex to be acquired.
1298 *
1299 * Lock the mutex like mutex_lock().  If a signal is delivered while the
1300 * process is sleeping, this function will return without acquiring the
1301 * mutex.
1302 *
1303 * Context: Process context.
1304 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1305 * signal arrived.
1306 */
1307int __sched mutex_lock_interruptible(struct mutex *lock)
1308{
1309        might_sleep();
1310
1311        if (__mutex_trylock_fast(lock))
1312                return 0;
1313
1314        return __mutex_lock_interruptible_slowpath(lock);
1315}
1316
1317EXPORT_SYMBOL(mutex_lock_interruptible);
1318
1319/**
1320 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1321 * @lock: The mutex to be acquired.
1322 *
1323 * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1324 * the current process is delivered while the process is sleeping, this
1325 * function will return without acquiring the mutex.
1326 *
1327 * Context: Process context.
1328 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1329 * fatal signal arrived.
1330 */
1331int __sched mutex_lock_killable(struct mutex *lock)
1332{
1333        might_sleep();
1334
1335        if (__mutex_trylock_fast(lock))
1336                return 0;
1337
1338        return __mutex_lock_killable_slowpath(lock);
1339}
1340EXPORT_SYMBOL(mutex_lock_killable);
1341
1342/**
1343 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1344 * @lock: The mutex to be acquired.
1345 *
1346 * Lock the mutex like mutex_lock().  While the task is waiting for this
1347 * mutex, it will be accounted as being in the IO wait state by the
1348 * scheduler.
1349 *
1350 * Context: Process context.
1351 */
1352void __sched mutex_lock_io(struct mutex *lock)
1353{
1354        int token;
1355
1356        token = io_schedule_prepare();
1357        mutex_lock(lock);
1358        io_schedule_finish(token);
1359}
1360EXPORT_SYMBOL_GPL(mutex_lock_io);
1361
1362static noinline void __sched
1363__mutex_lock_slowpath(struct mutex *lock)
1364{
1365        __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1366}
1367
1368static noinline int __sched
1369__mutex_lock_killable_slowpath(struct mutex *lock)
1370{
1371        return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1372}
1373
1374static noinline int __sched
1375__mutex_lock_interruptible_slowpath(struct mutex *lock)
1376{
1377        return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1378}
1379
1380static noinline int __sched
1381__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1382{
1383        return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1384                               _RET_IP_, ctx);
1385}
1386
1387static noinline int __sched
1388__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1389                                            struct ww_acquire_ctx *ctx)
1390{
1391        return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1392                               _RET_IP_, ctx);
1393}
1394
1395#endif
1396
1397/**
1398 * mutex_trylock - try to acquire the mutex, without waiting
1399 * @lock: the mutex to be acquired
1400 *
1401 * Try to acquire the mutex atomically. Returns 1 if the mutex
1402 * has been acquired successfully, and 0 on contention.
1403 *
1404 * NOTE: this function follows the spin_trylock() convention, so
1405 * it is negated from the down_trylock() return values! Be careful
1406 * about this when converting semaphore users to mutexes.
1407 *
1408 * This function must not be used in interrupt context. The
1409 * mutex must be released by the same task that acquired it.
1410 */
1411int __sched mutex_trylock(struct mutex *lock)
1412{
1413        bool locked;
1414
1415#ifdef CONFIG_DEBUG_MUTEXES
1416        DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1417#endif
1418
1419        locked = __mutex_trylock(lock);
1420        if (locked)
1421                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1422
1423        return locked;
1424}
1425EXPORT_SYMBOL(mutex_trylock);
1426
1427#ifndef CONFIG_DEBUG_LOCK_ALLOC
1428int __sched
1429ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1430{
1431        might_sleep();
1432
1433        if (__mutex_trylock_fast(&lock->base)) {
1434                if (ctx)
1435                        ww_mutex_set_context_fastpath(lock, ctx);
1436                return 0;
1437        }
1438
1439        return __ww_mutex_lock_slowpath(lock, ctx);
1440}
1441EXPORT_SYMBOL(ww_mutex_lock);
1442
1443int __sched
1444ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1445{
1446        might_sleep();
1447
1448        if (__mutex_trylock_fast(&lock->base)) {
1449                if (ctx)
1450                        ww_mutex_set_context_fastpath(lock, ctx);
1451                return 0;
1452        }
1453
1454        return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1455}
1456EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1457
1458#endif
1459
1460/**
1461 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1462 * @cnt: the atomic which we are to dec
1463 * @lock: the mutex to return holding if we dec to 0
1464 *
1465 * return true and hold lock if we dec to 0, return false otherwise
1466 */
1467int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1468{
1469        /* dec if we can't possibly hit 0 */
1470        if (atomic_add_unless(cnt, -1, 1))
1471                return 0;
1472        /* we might hit 0, so take the lock */
1473        mutex_lock(lock);
1474        if (!atomic_dec_and_test(cnt)) {
1475                /* when we actually did the dec, we didn't hit 0 */
1476                mutex_unlock(lock);
1477                return 0;
1478        }
1479        /* we hit 0, and we hold the lock */
1480        return 1;
1481}
1482EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1483