linux/kernel/pid_namespace.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Pid namespaces
   4 *
   5 * Authors:
   6 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
   7 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
   8 *     Many thanks to Oleg Nesterov for comments and help
   9 *
  10 */
  11
  12#include <linux/pid.h>
  13#include <linux/pid_namespace.h>
  14#include <linux/user_namespace.h>
  15#include <linux/syscalls.h>
  16#include <linux/cred.h>
  17#include <linux/err.h>
  18#include <linux/acct.h>
  19#include <linux/slab.h>
  20#include <linux/proc_ns.h>
  21#include <linux/reboot.h>
  22#include <linux/export.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/signal.h>
  25#include <linux/idr.h>
  26
  27static DEFINE_MUTEX(pid_caches_mutex);
  28static struct kmem_cache *pid_ns_cachep;
  29/* Write once array, filled from the beginning. */
  30static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
  31
  32/*
  33 * creates the kmem cache to allocate pids from.
  34 * @level: pid namespace level
  35 */
  36
  37static struct kmem_cache *create_pid_cachep(unsigned int level)
  38{
  39        /* Level 0 is init_pid_ns.pid_cachep */
  40        struct kmem_cache **pkc = &pid_cache[level - 1];
  41        struct kmem_cache *kc;
  42        char name[4 + 10 + 1];
  43        unsigned int len;
  44
  45        kc = READ_ONCE(*pkc);
  46        if (kc)
  47                return kc;
  48
  49        snprintf(name, sizeof(name), "pid_%u", level + 1);
  50        len = sizeof(struct pid) + level * sizeof(struct upid);
  51        mutex_lock(&pid_caches_mutex);
  52        /* Name collision forces to do allocation under mutex. */
  53        if (!*pkc)
  54                *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
  55        mutex_unlock(&pid_caches_mutex);
  56        /* current can fail, but someone else can succeed. */
  57        return READ_ONCE(*pkc);
  58}
  59
  60static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
  61{
  62        return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
  63}
  64
  65static void dec_pid_namespaces(struct ucounts *ucounts)
  66{
  67        dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
  68}
  69
  70static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
  71        struct pid_namespace *parent_pid_ns)
  72{
  73        struct pid_namespace *ns;
  74        unsigned int level = parent_pid_ns->level + 1;
  75        struct ucounts *ucounts;
  76        int err;
  77
  78        err = -EINVAL;
  79        if (!in_userns(parent_pid_ns->user_ns, user_ns))
  80                goto out;
  81
  82        err = -ENOSPC;
  83        if (level > MAX_PID_NS_LEVEL)
  84                goto out;
  85        ucounts = inc_pid_namespaces(user_ns);
  86        if (!ucounts)
  87                goto out;
  88
  89        err = -ENOMEM;
  90        ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
  91        if (ns == NULL)
  92                goto out_dec;
  93
  94        idr_init(&ns->idr);
  95
  96        ns->pid_cachep = create_pid_cachep(level);
  97        if (ns->pid_cachep == NULL)
  98                goto out_free_idr;
  99
 100        err = ns_alloc_inum(&ns->ns);
 101        if (err)
 102                goto out_free_idr;
 103        ns->ns.ops = &pidns_operations;
 104
 105        refcount_set(&ns->ns.count, 1);
 106        ns->level = level;
 107        ns->parent = get_pid_ns(parent_pid_ns);
 108        ns->user_ns = get_user_ns(user_ns);
 109        ns->ucounts = ucounts;
 110        ns->pid_allocated = PIDNS_ADDING;
 111
 112        return ns;
 113
 114out_free_idr:
 115        idr_destroy(&ns->idr);
 116        kmem_cache_free(pid_ns_cachep, ns);
 117out_dec:
 118        dec_pid_namespaces(ucounts);
 119out:
 120        return ERR_PTR(err);
 121}
 122
 123static void delayed_free_pidns(struct rcu_head *p)
 124{
 125        struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 126
 127        dec_pid_namespaces(ns->ucounts);
 128        put_user_ns(ns->user_ns);
 129
 130        kmem_cache_free(pid_ns_cachep, ns);
 131}
 132
 133static void destroy_pid_namespace(struct pid_namespace *ns)
 134{
 135        ns_free_inum(&ns->ns);
 136
 137        idr_destroy(&ns->idr);
 138        call_rcu(&ns->rcu, delayed_free_pidns);
 139}
 140
 141struct pid_namespace *copy_pid_ns(unsigned long flags,
 142        struct user_namespace *user_ns, struct pid_namespace *old_ns)
 143{
 144        if (!(flags & CLONE_NEWPID))
 145                return get_pid_ns(old_ns);
 146        if (task_active_pid_ns(current) != old_ns)
 147                return ERR_PTR(-EINVAL);
 148        return create_pid_namespace(user_ns, old_ns);
 149}
 150
 151void put_pid_ns(struct pid_namespace *ns)
 152{
 153        struct pid_namespace *parent;
 154
 155        while (ns != &init_pid_ns) {
 156                parent = ns->parent;
 157                if (!refcount_dec_and_test(&ns->ns.count))
 158                        break;
 159                destroy_pid_namespace(ns);
 160                ns = parent;
 161        }
 162}
 163EXPORT_SYMBOL_GPL(put_pid_ns);
 164
 165void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 166{
 167        int nr;
 168        int rc;
 169        struct task_struct *task, *me = current;
 170        int init_pids = thread_group_leader(me) ? 1 : 2;
 171        struct pid *pid;
 172
 173        /* Don't allow any more processes into the pid namespace */
 174        disable_pid_allocation(pid_ns);
 175
 176        /*
 177         * Ignore SIGCHLD causing any terminated children to autoreap.
 178         * This speeds up the namespace shutdown, plus see the comment
 179         * below.
 180         */
 181        spin_lock_irq(&me->sighand->siglock);
 182        me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 183        spin_unlock_irq(&me->sighand->siglock);
 184
 185        /*
 186         * The last thread in the cgroup-init thread group is terminating.
 187         * Find remaining pid_ts in the namespace, signal and wait for them
 188         * to exit.
 189         *
 190         * Note:  This signals each threads in the namespace - even those that
 191         *        belong to the same thread group, To avoid this, we would have
 192         *        to walk the entire tasklist looking a processes in this
 193         *        namespace, but that could be unnecessarily expensive if the
 194         *        pid namespace has just a few processes. Or we need to
 195         *        maintain a tasklist for each pid namespace.
 196         *
 197         */
 198        rcu_read_lock();
 199        read_lock(&tasklist_lock);
 200        nr = 2;
 201        idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
 202                task = pid_task(pid, PIDTYPE_PID);
 203                if (task && !__fatal_signal_pending(task))
 204                        group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
 205        }
 206        read_unlock(&tasklist_lock);
 207        rcu_read_unlock();
 208
 209        /*
 210         * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 211         * kernel_wait4() will also block until our children traced from the
 212         * parent namespace are detached and become EXIT_DEAD.
 213         */
 214        do {
 215                clear_thread_flag(TIF_SIGPENDING);
 216                rc = kernel_wait4(-1, NULL, __WALL, NULL);
 217        } while (rc != -ECHILD);
 218
 219        /*
 220         * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
 221         * process whose parents processes are outside of the pid
 222         * namespace.  Such processes are created with setns()+fork().
 223         *
 224         * If those EXIT_ZOMBIE processes are not reaped by their
 225         * parents before their parents exit, they will be reparented
 226         * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
 227         * stay valid until they all go away.
 228         *
 229         * The code relies on the pid_ns->child_reaper ignoring
 230         * SIGCHILD to cause those EXIT_ZOMBIE processes to be
 231         * autoreaped if reparented.
 232         *
 233         * Semantically it is also desirable to wait for EXIT_ZOMBIE
 234         * processes before allowing the child_reaper to be reaped, as
 235         * that gives the invariant that when the init process of a
 236         * pid namespace is reaped all of the processes in the pid
 237         * namespace are gone.
 238         *
 239         * Once all of the other tasks are gone from the pid_namespace
 240         * free_pid() will awaken this task.
 241         */
 242        for (;;) {
 243                set_current_state(TASK_INTERRUPTIBLE);
 244                if (pid_ns->pid_allocated == init_pids)
 245                        break;
 246                schedule();
 247        }
 248        __set_current_state(TASK_RUNNING);
 249
 250        if (pid_ns->reboot)
 251                current->signal->group_exit_code = pid_ns->reboot;
 252
 253        acct_exit_ns(pid_ns);
 254        return;
 255}
 256
 257#ifdef CONFIG_CHECKPOINT_RESTORE
 258static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 259                void *buffer, size_t *lenp, loff_t *ppos)
 260{
 261        struct pid_namespace *pid_ns = task_active_pid_ns(current);
 262        struct ctl_table tmp = *table;
 263        int ret, next;
 264
 265        if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
 266                return -EPERM;
 267
 268        /*
 269         * Writing directly to ns' last_pid field is OK, since this field
 270         * is volatile in a living namespace anyway and a code writing to
 271         * it should synchronize its usage with external means.
 272         */
 273
 274        next = idr_get_cursor(&pid_ns->idr) - 1;
 275
 276        tmp.data = &next;
 277        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 278        if (!ret && write)
 279                idr_set_cursor(&pid_ns->idr, next + 1);
 280
 281        return ret;
 282}
 283
 284extern int pid_max;
 285static struct ctl_table pid_ns_ctl_table[] = {
 286        {
 287                .procname = "ns_last_pid",
 288                .maxlen = sizeof(int),
 289                .mode = 0666, /* permissions are checked in the handler */
 290                .proc_handler = pid_ns_ctl_handler,
 291                .extra1 = SYSCTL_ZERO,
 292                .extra2 = &pid_max,
 293        },
 294        { }
 295};
 296static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
 297#endif  /* CONFIG_CHECKPOINT_RESTORE */
 298
 299int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 300{
 301        if (pid_ns == &init_pid_ns)
 302                return 0;
 303
 304        switch (cmd) {
 305        case LINUX_REBOOT_CMD_RESTART2:
 306        case LINUX_REBOOT_CMD_RESTART:
 307                pid_ns->reboot = SIGHUP;
 308                break;
 309
 310        case LINUX_REBOOT_CMD_POWER_OFF:
 311        case LINUX_REBOOT_CMD_HALT:
 312                pid_ns->reboot = SIGINT;
 313                break;
 314        default:
 315                return -EINVAL;
 316        }
 317
 318        read_lock(&tasklist_lock);
 319        send_sig(SIGKILL, pid_ns->child_reaper, 1);
 320        read_unlock(&tasklist_lock);
 321
 322        do_exit(0);
 323
 324        /* Not reached */
 325        return 0;
 326}
 327
 328static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 329{
 330        return container_of(ns, struct pid_namespace, ns);
 331}
 332
 333static struct ns_common *pidns_get(struct task_struct *task)
 334{
 335        struct pid_namespace *ns;
 336
 337        rcu_read_lock();
 338        ns = task_active_pid_ns(task);
 339        if (ns)
 340                get_pid_ns(ns);
 341        rcu_read_unlock();
 342
 343        return ns ? &ns->ns : NULL;
 344}
 345
 346static struct ns_common *pidns_for_children_get(struct task_struct *task)
 347{
 348        struct pid_namespace *ns = NULL;
 349
 350        task_lock(task);
 351        if (task->nsproxy) {
 352                ns = task->nsproxy->pid_ns_for_children;
 353                get_pid_ns(ns);
 354        }
 355        task_unlock(task);
 356
 357        if (ns) {
 358                read_lock(&tasklist_lock);
 359                if (!ns->child_reaper) {
 360                        put_pid_ns(ns);
 361                        ns = NULL;
 362                }
 363                read_unlock(&tasklist_lock);
 364        }
 365
 366        return ns ? &ns->ns : NULL;
 367}
 368
 369static void pidns_put(struct ns_common *ns)
 370{
 371        put_pid_ns(to_pid_ns(ns));
 372}
 373
 374static int pidns_install(struct nsset *nsset, struct ns_common *ns)
 375{
 376        struct nsproxy *nsproxy = nsset->nsproxy;
 377        struct pid_namespace *active = task_active_pid_ns(current);
 378        struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 379
 380        if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 381            !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
 382                return -EPERM;
 383
 384        /*
 385         * Only allow entering the current active pid namespace
 386         * or a child of the current active pid namespace.
 387         *
 388         * This is required for fork to return a usable pid value and
 389         * this maintains the property that processes and their
 390         * children can not escape their current pid namespace.
 391         */
 392        if (new->level < active->level)
 393                return -EINVAL;
 394
 395        ancestor = new;
 396        while (ancestor->level > active->level)
 397                ancestor = ancestor->parent;
 398        if (ancestor != active)
 399                return -EINVAL;
 400
 401        put_pid_ns(nsproxy->pid_ns_for_children);
 402        nsproxy->pid_ns_for_children = get_pid_ns(new);
 403        return 0;
 404}
 405
 406static struct ns_common *pidns_get_parent(struct ns_common *ns)
 407{
 408        struct pid_namespace *active = task_active_pid_ns(current);
 409        struct pid_namespace *pid_ns, *p;
 410
 411        /* See if the parent is in the current namespace */
 412        pid_ns = p = to_pid_ns(ns)->parent;
 413        for (;;) {
 414                if (!p)
 415                        return ERR_PTR(-EPERM);
 416                if (p == active)
 417                        break;
 418                p = p->parent;
 419        }
 420
 421        return &get_pid_ns(pid_ns)->ns;
 422}
 423
 424static struct user_namespace *pidns_owner(struct ns_common *ns)
 425{
 426        return to_pid_ns(ns)->user_ns;
 427}
 428
 429const struct proc_ns_operations pidns_operations = {
 430        .name           = "pid",
 431        .type           = CLONE_NEWPID,
 432        .get            = pidns_get,
 433        .put            = pidns_put,
 434        .install        = pidns_install,
 435        .owner          = pidns_owner,
 436        .get_parent     = pidns_get_parent,
 437};
 438
 439const struct proc_ns_operations pidns_for_children_operations = {
 440        .name           = "pid_for_children",
 441        .real_ns_name   = "pid",
 442        .type           = CLONE_NEWPID,
 443        .get            = pidns_for_children_get,
 444        .put            = pidns_put,
 445        .install        = pidns_install,
 446        .owner          = pidns_owner,
 447        .get_parent     = pidns_get_parent,
 448};
 449
 450static __init int pid_namespaces_init(void)
 451{
 452        pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
 453
 454#ifdef CONFIG_CHECKPOINT_RESTORE
 455        register_sysctl_paths(kern_path, pid_ns_ctl_table);
 456#endif
 457        return 0;
 458}
 459
 460__initcall(pid_namespaces_init);
 461