linux/kernel/printk/printk.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *      01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "printk_ringbuffer.h"
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64        CONSOLE_LOGLEVEL_DEFAULT,       /* console_loglevel */
  65        MESSAGE_LOGLEVEL_DEFAULT,       /* default_message_loglevel */
  66        CONSOLE_LOGLEVEL_MIN,           /* minimum_console_loglevel */
  67        CONSOLE_LOGLEVEL_DEFAULT,       /* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
  73
  74/*
  75 * Low level drivers may need that to know if they can schedule in
  76 * their unblank() callback or not. So let's export it.
  77 */
  78int oops_in_progress;
  79EXPORT_SYMBOL(oops_in_progress);
  80
  81/*
  82 * console_sem protects the console_drivers list, and also
  83 * provides serialisation for access to the entire console
  84 * driver system.
  85 */
  86static DEFINE_SEMAPHORE(console_sem);
  87struct console *console_drivers;
  88EXPORT_SYMBOL_GPL(console_drivers);
  89
  90/*
  91 * System may need to suppress printk message under certain
  92 * circumstances, like after kernel panic happens.
  93 */
  94int __read_mostly suppress_printk;
  95
  96#ifdef CONFIG_LOCKDEP
  97static struct lockdep_map console_lock_dep_map = {
  98        .name = "console_lock"
  99};
 100#endif
 101
 102enum devkmsg_log_bits {
 103        __DEVKMSG_LOG_BIT_ON = 0,
 104        __DEVKMSG_LOG_BIT_OFF,
 105        __DEVKMSG_LOG_BIT_LOCK,
 106};
 107
 108enum devkmsg_log_masks {
 109        DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 110        DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 111        DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 112};
 113
 114/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 115#define DEVKMSG_LOG_MASK_DEFAULT        0
 116
 117static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118
 119static int __control_devkmsg(char *str)
 120{
 121        size_t len;
 122
 123        if (!str)
 124                return -EINVAL;
 125
 126        len = str_has_prefix(str, "on");
 127        if (len) {
 128                devkmsg_log = DEVKMSG_LOG_MASK_ON;
 129                return len;
 130        }
 131
 132        len = str_has_prefix(str, "off");
 133        if (len) {
 134                devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 135                return len;
 136        }
 137
 138        len = str_has_prefix(str, "ratelimit");
 139        if (len) {
 140                devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141                return len;
 142        }
 143
 144        return -EINVAL;
 145}
 146
 147static int __init control_devkmsg(char *str)
 148{
 149        if (__control_devkmsg(str) < 0)
 150                return 1;
 151
 152        /*
 153         * Set sysctl string accordingly:
 154         */
 155        if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 156                strcpy(devkmsg_log_str, "on");
 157        else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 158                strcpy(devkmsg_log_str, "off");
 159        /* else "ratelimit" which is set by default. */
 160
 161        /*
 162         * Sysctl cannot change it anymore. The kernel command line setting of
 163         * this parameter is to force the setting to be permanent throughout the
 164         * runtime of the system. This is a precation measure against userspace
 165         * trying to be a smarta** and attempting to change it up on us.
 166         */
 167        devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 168
 169        return 0;
 170}
 171__setup("printk.devkmsg=", control_devkmsg);
 172
 173char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 174
 175int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 176                              void *buffer, size_t *lenp, loff_t *ppos)
 177{
 178        char old_str[DEVKMSG_STR_MAX_SIZE];
 179        unsigned int old;
 180        int err;
 181
 182        if (write) {
 183                if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 184                        return -EINVAL;
 185
 186                old = devkmsg_log;
 187                strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 188        }
 189
 190        err = proc_dostring(table, write, buffer, lenp, ppos);
 191        if (err)
 192                return err;
 193
 194        if (write) {
 195                err = __control_devkmsg(devkmsg_log_str);
 196
 197                /*
 198                 * Do not accept an unknown string OR a known string with
 199                 * trailing crap...
 200                 */
 201                if (err < 0 || (err + 1 != *lenp)) {
 202
 203                        /* ... and restore old setting. */
 204                        devkmsg_log = old;
 205                        strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 206
 207                        return -EINVAL;
 208                }
 209        }
 210
 211        return 0;
 212}
 213
 214/* Number of registered extended console drivers. */
 215static int nr_ext_console_drivers;
 216
 217/*
 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 219 * macros instead of functions so that _RET_IP_ contains useful information.
 220 */
 221#define down_console_sem() do { \
 222        down(&console_sem);\
 223        mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 224} while (0)
 225
 226static int __down_trylock_console_sem(unsigned long ip)
 227{
 228        int lock_failed;
 229        unsigned long flags;
 230
 231        /*
 232         * Here and in __up_console_sem() we need to be in safe mode,
 233         * because spindump/WARN/etc from under console ->lock will
 234         * deadlock in printk()->down_trylock_console_sem() otherwise.
 235         */
 236        printk_safe_enter_irqsave(flags);
 237        lock_failed = down_trylock(&console_sem);
 238        printk_safe_exit_irqrestore(flags);
 239
 240        if (lock_failed)
 241                return 1;
 242        mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 243        return 0;
 244}
 245#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 246
 247static void __up_console_sem(unsigned long ip)
 248{
 249        unsigned long flags;
 250
 251        mutex_release(&console_lock_dep_map, ip);
 252
 253        printk_safe_enter_irqsave(flags);
 254        up(&console_sem);
 255        printk_safe_exit_irqrestore(flags);
 256}
 257#define up_console_sem() __up_console_sem(_RET_IP_)
 258
 259/*
 260 * This is used for debugging the mess that is the VT code by
 261 * keeping track if we have the console semaphore held. It's
 262 * definitely not the perfect debug tool (we don't know if _WE_
 263 * hold it and are racing, but it helps tracking those weird code
 264 * paths in the console code where we end up in places I want
 265 * locked without the console semaphore held).
 266 */
 267static int console_locked, console_suspended;
 268
 269/*
 270 * If exclusive_console is non-NULL then only this console is to be printed to.
 271 */
 272static struct console *exclusive_console;
 273
 274/*
 275 *      Array of consoles built from command line options (console=)
 276 */
 277
 278#define MAX_CMDLINECONSOLES 8
 279
 280static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 281
 282static int preferred_console = -1;
 283static bool has_preferred_console;
 284int console_set_on_cmdline;
 285EXPORT_SYMBOL(console_set_on_cmdline);
 286
 287/* Flag: console code may call schedule() */
 288static int console_may_schedule;
 289
 290enum con_msg_format_flags {
 291        MSG_FORMAT_DEFAULT      = 0,
 292        MSG_FORMAT_SYSLOG       = (1 << 0),
 293};
 294
 295static int console_msg_format = MSG_FORMAT_DEFAULT;
 296
 297/*
 298 * The printk log buffer consists of a sequenced collection of records, each
 299 * containing variable length message text. Every record also contains its
 300 * own meta-data (@info).
 301 *
 302 * Every record meta-data carries the timestamp in microseconds, as well as
 303 * the standard userspace syslog level and syslog facility. The usual kernel
 304 * messages use LOG_KERN; userspace-injected messages always carry a matching
 305 * syslog facility, by default LOG_USER. The origin of every message can be
 306 * reliably determined that way.
 307 *
 308 * The human readable log message of a record is available in @text, the
 309 * length of the message text in @text_len. The stored message is not
 310 * terminated.
 311 *
 312 * Optionally, a record can carry a dictionary of properties (key/value
 313 * pairs), to provide userspace with a machine-readable message context.
 314 *
 315 * Examples for well-defined, commonly used property names are:
 316 *   DEVICE=b12:8               device identifier
 317 *                                b12:8         block dev_t
 318 *                                c127:3        char dev_t
 319 *                                n8            netdev ifindex
 320 *                                +sound:card0  subsystem:devname
 321 *   SUBSYSTEM=pci              driver-core subsystem name
 322 *
 323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 324 * and values are terminated by a '\0' character.
 325 *
 326 * Example of record values:
 327 *   record.text_buf                = "it's a line" (unterminated)
 328 *   record.info.seq                = 56
 329 *   record.info.ts_nsec            = 36863
 330 *   record.info.text_len           = 11
 331 *   record.info.facility           = 0 (LOG_KERN)
 332 *   record.info.flags              = 0
 333 *   record.info.level              = 3 (LOG_ERR)
 334 *   record.info.caller_id          = 299 (task 299)
 335 *   record.info.dev_info.subsystem = "pci" (terminated)
 336 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 337 *
 338 * The 'struct printk_info' buffer must never be directly exported to
 339 * userspace, it is a kernel-private implementation detail that might
 340 * need to be changed in the future, when the requirements change.
 341 *
 342 * /dev/kmsg exports the structured data in the following line format:
 343 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 344 *
 345 * Users of the export format should ignore possible additional values
 346 * separated by ',', and find the message after the ';' character.
 347 *
 348 * The optional key/value pairs are attached as continuation lines starting
 349 * with a space character and terminated by a newline. All possible
 350 * non-prinatable characters are escaped in the "\xff" notation.
 351 */
 352
 353enum log_flags {
 354        LOG_NEWLINE     = 2,    /* text ended with a newline */
 355        LOG_CONT        = 8,    /* text is a fragment of a continuation line */
 356};
 357
 358/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 359static DEFINE_RAW_SPINLOCK(syslog_lock);
 360
 361#ifdef CONFIG_PRINTK
 362DECLARE_WAIT_QUEUE_HEAD(log_wait);
 363/* All 3 protected by @syslog_lock. */
 364/* the next printk record to read by syslog(READ) or /proc/kmsg */
 365static u64 syslog_seq;
 366static size_t syslog_partial;
 367static bool syslog_time;
 368
 369/* All 3 protected by @console_sem. */
 370/* the next printk record to write to the console */
 371static u64 console_seq;
 372static u64 exclusive_console_stop_seq;
 373static unsigned long console_dropped;
 374
 375struct latched_seq {
 376        seqcount_latch_t        latch;
 377        u64                     val[2];
 378};
 379
 380/*
 381 * The next printk record to read after the last 'clear' command. There are
 382 * two copies (updated with seqcount_latch) so that reads can locklessly
 383 * access a valid value. Writers are synchronized by @syslog_lock.
 384 */
 385static struct latched_seq clear_seq = {
 386        .latch          = SEQCNT_LATCH_ZERO(clear_seq.latch),
 387        .val[0]         = 0,
 388        .val[1]         = 0,
 389};
 390
 391#ifdef CONFIG_PRINTK_CALLER
 392#define PREFIX_MAX              48
 393#else
 394#define PREFIX_MAX              32
 395#endif
 396
 397/* the maximum size of a formatted record (i.e. with prefix added per line) */
 398#define CONSOLE_LOG_MAX         1024
 399
 400/* the maximum size allowed to be reserved for a record */
 401#define LOG_LINE_MAX            (CONSOLE_LOG_MAX - PREFIX_MAX)
 402
 403#define LOG_LEVEL(v)            ((v) & 0x07)
 404#define LOG_FACILITY(v)         ((v) >> 3 & 0xff)
 405
 406/* record buffer */
 407#define LOG_ALIGN __alignof__(unsigned long)
 408#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 409#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 410static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 411static char *log_buf = __log_buf;
 412static u32 log_buf_len = __LOG_BUF_LEN;
 413
 414/*
 415 * Define the average message size. This only affects the number of
 416 * descriptors that will be available. Underestimating is better than
 417 * overestimating (too many available descriptors is better than not enough).
 418 */
 419#define PRB_AVGBITS 5   /* 32 character average length */
 420
 421#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 422#error CONFIG_LOG_BUF_SHIFT value too small.
 423#endif
 424_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 425                 PRB_AVGBITS, &__log_buf[0]);
 426
 427static struct printk_ringbuffer printk_rb_dynamic;
 428
 429static struct printk_ringbuffer *prb = &printk_rb_static;
 430
 431/*
 432 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 433 * per_cpu_areas are initialised. This variable is set to true when
 434 * it's safe to access per-CPU data.
 435 */
 436static bool __printk_percpu_data_ready __read_mostly;
 437
 438bool printk_percpu_data_ready(void)
 439{
 440        return __printk_percpu_data_ready;
 441}
 442
 443/* Must be called under syslog_lock. */
 444static void latched_seq_write(struct latched_seq *ls, u64 val)
 445{
 446        raw_write_seqcount_latch(&ls->latch);
 447        ls->val[0] = val;
 448        raw_write_seqcount_latch(&ls->latch);
 449        ls->val[1] = val;
 450}
 451
 452/* Can be called from any context. */
 453static u64 latched_seq_read_nolock(struct latched_seq *ls)
 454{
 455        unsigned int seq;
 456        unsigned int idx;
 457        u64 val;
 458
 459        do {
 460                seq = raw_read_seqcount_latch(&ls->latch);
 461                idx = seq & 0x1;
 462                val = ls->val[idx];
 463        } while (read_seqcount_latch_retry(&ls->latch, seq));
 464
 465        return val;
 466}
 467
 468/* Return log buffer address */
 469char *log_buf_addr_get(void)
 470{
 471        return log_buf;
 472}
 473
 474/* Return log buffer size */
 475u32 log_buf_len_get(void)
 476{
 477        return log_buf_len;
 478}
 479
 480/*
 481 * Define how much of the log buffer we could take at maximum. The value
 482 * must be greater than two. Note that only half of the buffer is available
 483 * when the index points to the middle.
 484 */
 485#define MAX_LOG_TAKE_PART 4
 486static const char trunc_msg[] = "<truncated>";
 487
 488static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 489{
 490        /*
 491         * The message should not take the whole buffer. Otherwise, it might
 492         * get removed too soon.
 493         */
 494        u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 495
 496        if (*text_len > max_text_len)
 497                *text_len = max_text_len;
 498
 499        /* enable the warning message (if there is room) */
 500        *trunc_msg_len = strlen(trunc_msg);
 501        if (*text_len >= *trunc_msg_len)
 502                *text_len -= *trunc_msg_len;
 503        else
 504                *trunc_msg_len = 0;
 505}
 506
 507int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 508
 509static int syslog_action_restricted(int type)
 510{
 511        if (dmesg_restrict)
 512                return 1;
 513        /*
 514         * Unless restricted, we allow "read all" and "get buffer size"
 515         * for everybody.
 516         */
 517        return type != SYSLOG_ACTION_READ_ALL &&
 518               type != SYSLOG_ACTION_SIZE_BUFFER;
 519}
 520
 521static int check_syslog_permissions(int type, int source)
 522{
 523        /*
 524         * If this is from /proc/kmsg and we've already opened it, then we've
 525         * already done the capabilities checks at open time.
 526         */
 527        if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 528                goto ok;
 529
 530        if (syslog_action_restricted(type)) {
 531                if (capable(CAP_SYSLOG))
 532                        goto ok;
 533                /*
 534                 * For historical reasons, accept CAP_SYS_ADMIN too, with
 535                 * a warning.
 536                 */
 537                if (capable(CAP_SYS_ADMIN)) {
 538                        pr_warn_once("%s (%d): Attempt to access syslog with "
 539                                     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 540                                     "(deprecated).\n",
 541                                 current->comm, task_pid_nr(current));
 542                        goto ok;
 543                }
 544                return -EPERM;
 545        }
 546ok:
 547        return security_syslog(type);
 548}
 549
 550static void append_char(char **pp, char *e, char c)
 551{
 552        if (*pp < e)
 553                *(*pp)++ = c;
 554}
 555
 556static ssize_t info_print_ext_header(char *buf, size_t size,
 557                                     struct printk_info *info)
 558{
 559        u64 ts_usec = info->ts_nsec;
 560        char caller[20];
 561#ifdef CONFIG_PRINTK_CALLER
 562        u32 id = info->caller_id;
 563
 564        snprintf(caller, sizeof(caller), ",caller=%c%u",
 565                 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 566#else
 567        caller[0] = '\0';
 568#endif
 569
 570        do_div(ts_usec, 1000);
 571
 572        return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 573                         (info->facility << 3) | info->level, info->seq,
 574                         ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 575}
 576
 577static ssize_t msg_add_ext_text(char *buf, size_t size,
 578                                const char *text, size_t text_len,
 579                                unsigned char endc)
 580{
 581        char *p = buf, *e = buf + size;
 582        size_t i;
 583
 584        /* escape non-printable characters */
 585        for (i = 0; i < text_len; i++) {
 586                unsigned char c = text[i];
 587
 588                if (c < ' ' || c >= 127 || c == '\\')
 589                        p += scnprintf(p, e - p, "\\x%02x", c);
 590                else
 591                        append_char(&p, e, c);
 592        }
 593        append_char(&p, e, endc);
 594
 595        return p - buf;
 596}
 597
 598static ssize_t msg_add_dict_text(char *buf, size_t size,
 599                                 const char *key, const char *val)
 600{
 601        size_t val_len = strlen(val);
 602        ssize_t len;
 603
 604        if (!val_len)
 605                return 0;
 606
 607        len = msg_add_ext_text(buf, size, "", 0, ' ');  /* dict prefix */
 608        len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 609        len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 610
 611        return len;
 612}
 613
 614static ssize_t msg_print_ext_body(char *buf, size_t size,
 615                                  char *text, size_t text_len,
 616                                  struct dev_printk_info *dev_info)
 617{
 618        ssize_t len;
 619
 620        len = msg_add_ext_text(buf, size, text, text_len, '\n');
 621
 622        if (!dev_info)
 623                goto out;
 624
 625        len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 626                                 dev_info->subsystem);
 627        len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 628                                 dev_info->device);
 629out:
 630        return len;
 631}
 632
 633/* /dev/kmsg - userspace message inject/listen interface */
 634struct devkmsg_user {
 635        atomic64_t seq;
 636        struct ratelimit_state rs;
 637        struct mutex lock;
 638        char buf[CONSOLE_EXT_LOG_MAX];
 639
 640        struct printk_info info;
 641        char text_buf[CONSOLE_EXT_LOG_MAX];
 642        struct printk_record record;
 643};
 644
 645static __printf(3, 4) __cold
 646int devkmsg_emit(int facility, int level, const char *fmt, ...)
 647{
 648        va_list args;
 649        int r;
 650
 651        va_start(args, fmt);
 652        r = vprintk_emit(facility, level, NULL, fmt, args);
 653        va_end(args);
 654
 655        return r;
 656}
 657
 658static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 659{
 660        char *buf, *line;
 661        int level = default_message_loglevel;
 662        int facility = 1;       /* LOG_USER */
 663        struct file *file = iocb->ki_filp;
 664        struct devkmsg_user *user = file->private_data;
 665        size_t len = iov_iter_count(from);
 666        ssize_t ret = len;
 667
 668        if (!user || len > LOG_LINE_MAX)
 669                return -EINVAL;
 670
 671        /* Ignore when user logging is disabled. */
 672        if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 673                return len;
 674
 675        /* Ratelimit when not explicitly enabled. */
 676        if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 677                if (!___ratelimit(&user->rs, current->comm))
 678                        return ret;
 679        }
 680
 681        buf = kmalloc(len+1, GFP_KERNEL);
 682        if (buf == NULL)
 683                return -ENOMEM;
 684
 685        buf[len] = '\0';
 686        if (!copy_from_iter_full(buf, len, from)) {
 687                kfree(buf);
 688                return -EFAULT;
 689        }
 690
 691        /*
 692         * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 693         * the decimal value represents 32bit, the lower 3 bit are the log
 694         * level, the rest are the log facility.
 695         *
 696         * If no prefix or no userspace facility is specified, we
 697         * enforce LOG_USER, to be able to reliably distinguish
 698         * kernel-generated messages from userspace-injected ones.
 699         */
 700        line = buf;
 701        if (line[0] == '<') {
 702                char *endp = NULL;
 703                unsigned int u;
 704
 705                u = simple_strtoul(line + 1, &endp, 10);
 706                if (endp && endp[0] == '>') {
 707                        level = LOG_LEVEL(u);
 708                        if (LOG_FACILITY(u) != 0)
 709                                facility = LOG_FACILITY(u);
 710                        endp++;
 711                        line = endp;
 712                }
 713        }
 714
 715        devkmsg_emit(facility, level, "%s", line);
 716        kfree(buf);
 717        return ret;
 718}
 719
 720static ssize_t devkmsg_read(struct file *file, char __user *buf,
 721                            size_t count, loff_t *ppos)
 722{
 723        struct devkmsg_user *user = file->private_data;
 724        struct printk_record *r = &user->record;
 725        size_t len;
 726        ssize_t ret;
 727
 728        if (!user)
 729                return -EBADF;
 730
 731        ret = mutex_lock_interruptible(&user->lock);
 732        if (ret)
 733                return ret;
 734
 735        printk_safe_enter_irq();
 736        if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
 737                if (file->f_flags & O_NONBLOCK) {
 738                        ret = -EAGAIN;
 739                        printk_safe_exit_irq();
 740                        goto out;
 741                }
 742
 743                printk_safe_exit_irq();
 744                ret = wait_event_interruptible(log_wait,
 745                                prb_read_valid(prb, atomic64_read(&user->seq), r));
 746                if (ret)
 747                        goto out;
 748                printk_safe_enter_irq();
 749        }
 750
 751        if (r->info->seq != atomic64_read(&user->seq)) {
 752                /* our last seen message is gone, return error and reset */
 753                atomic64_set(&user->seq, r->info->seq);
 754                ret = -EPIPE;
 755                printk_safe_exit_irq();
 756                goto out;
 757        }
 758
 759        len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
 760        len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 761                                  &r->text_buf[0], r->info->text_len,
 762                                  &r->info->dev_info);
 763
 764        atomic64_set(&user->seq, r->info->seq + 1);
 765        printk_safe_exit_irq();
 766
 767        if (len > count) {
 768                ret = -EINVAL;
 769                goto out;
 770        }
 771
 772        if (copy_to_user(buf, user->buf, len)) {
 773                ret = -EFAULT;
 774                goto out;
 775        }
 776        ret = len;
 777out:
 778        mutex_unlock(&user->lock);
 779        return ret;
 780}
 781
 782/*
 783 * Be careful when modifying this function!!!
 784 *
 785 * Only few operations are supported because the device works only with the
 786 * entire variable length messages (records). Non-standard values are
 787 * returned in the other cases and has been this way for quite some time.
 788 * User space applications might depend on this behavior.
 789 */
 790static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 791{
 792        struct devkmsg_user *user = file->private_data;
 793        loff_t ret = 0;
 794
 795        if (!user)
 796                return -EBADF;
 797        if (offset)
 798                return -ESPIPE;
 799
 800        printk_safe_enter_irq();
 801        switch (whence) {
 802        case SEEK_SET:
 803                /* the first record */
 804                atomic64_set(&user->seq, prb_first_valid_seq(prb));
 805                break;
 806        case SEEK_DATA:
 807                /*
 808                 * The first record after the last SYSLOG_ACTION_CLEAR,
 809                 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 810                 * changes no global state, and does not clear anything.
 811                 */
 812                atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 813                break;
 814        case SEEK_END:
 815                /* after the last record */
 816                atomic64_set(&user->seq, prb_next_seq(prb));
 817                break;
 818        default:
 819                ret = -EINVAL;
 820        }
 821        printk_safe_exit_irq();
 822        return ret;
 823}
 824
 825static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 826{
 827        struct devkmsg_user *user = file->private_data;
 828        struct printk_info info;
 829        __poll_t ret = 0;
 830
 831        if (!user)
 832                return EPOLLERR|EPOLLNVAL;
 833
 834        poll_wait(file, &log_wait, wait);
 835
 836        printk_safe_enter_irq();
 837        if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 838                /* return error when data has vanished underneath us */
 839                if (info.seq != atomic64_read(&user->seq))
 840                        ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 841                else
 842                        ret = EPOLLIN|EPOLLRDNORM;
 843        }
 844        printk_safe_exit_irq();
 845
 846        return ret;
 847}
 848
 849static int devkmsg_open(struct inode *inode, struct file *file)
 850{
 851        struct devkmsg_user *user;
 852        int err;
 853
 854        if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 855                return -EPERM;
 856
 857        /* write-only does not need any file context */
 858        if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 859                err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 860                                               SYSLOG_FROM_READER);
 861                if (err)
 862                        return err;
 863        }
 864
 865        user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 866        if (!user)
 867                return -ENOMEM;
 868
 869        ratelimit_default_init(&user->rs);
 870        ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 871
 872        mutex_init(&user->lock);
 873
 874        prb_rec_init_rd(&user->record, &user->info,
 875                        &user->text_buf[0], sizeof(user->text_buf));
 876
 877        printk_safe_enter_irq();
 878        atomic64_set(&user->seq, prb_first_valid_seq(prb));
 879        printk_safe_exit_irq();
 880
 881        file->private_data = user;
 882        return 0;
 883}
 884
 885static int devkmsg_release(struct inode *inode, struct file *file)
 886{
 887        struct devkmsg_user *user = file->private_data;
 888
 889        if (!user)
 890                return 0;
 891
 892        ratelimit_state_exit(&user->rs);
 893
 894        mutex_destroy(&user->lock);
 895        kfree(user);
 896        return 0;
 897}
 898
 899const struct file_operations kmsg_fops = {
 900        .open = devkmsg_open,
 901        .read = devkmsg_read,
 902        .write_iter = devkmsg_write,
 903        .llseek = devkmsg_llseek,
 904        .poll = devkmsg_poll,
 905        .release = devkmsg_release,
 906};
 907
 908#ifdef CONFIG_CRASH_CORE
 909/*
 910 * This appends the listed symbols to /proc/vmcore
 911 *
 912 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 913 * obtain access to symbols that are otherwise very difficult to locate.  These
 914 * symbols are specifically used so that utilities can access and extract the
 915 * dmesg log from a vmcore file after a crash.
 916 */
 917void log_buf_vmcoreinfo_setup(void)
 918{
 919        struct dev_printk_info *dev_info = NULL;
 920
 921        VMCOREINFO_SYMBOL(prb);
 922        VMCOREINFO_SYMBOL(printk_rb_static);
 923        VMCOREINFO_SYMBOL(clear_seq);
 924
 925        /*
 926         * Export struct size and field offsets. User space tools can
 927         * parse it and detect any changes to structure down the line.
 928         */
 929
 930        VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
 931        VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
 932        VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
 933        VMCOREINFO_OFFSET(printk_ringbuffer, fail);
 934
 935        VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
 936        VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
 937        VMCOREINFO_OFFSET(prb_desc_ring, descs);
 938        VMCOREINFO_OFFSET(prb_desc_ring, infos);
 939        VMCOREINFO_OFFSET(prb_desc_ring, head_id);
 940        VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
 941
 942        VMCOREINFO_STRUCT_SIZE(prb_desc);
 943        VMCOREINFO_OFFSET(prb_desc, state_var);
 944        VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
 945
 946        VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
 947        VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
 948        VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
 949
 950        VMCOREINFO_STRUCT_SIZE(printk_info);
 951        VMCOREINFO_OFFSET(printk_info, seq);
 952        VMCOREINFO_OFFSET(printk_info, ts_nsec);
 953        VMCOREINFO_OFFSET(printk_info, text_len);
 954        VMCOREINFO_OFFSET(printk_info, caller_id);
 955        VMCOREINFO_OFFSET(printk_info, dev_info);
 956
 957        VMCOREINFO_STRUCT_SIZE(dev_printk_info);
 958        VMCOREINFO_OFFSET(dev_printk_info, subsystem);
 959        VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
 960        VMCOREINFO_OFFSET(dev_printk_info, device);
 961        VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
 962
 963        VMCOREINFO_STRUCT_SIZE(prb_data_ring);
 964        VMCOREINFO_OFFSET(prb_data_ring, size_bits);
 965        VMCOREINFO_OFFSET(prb_data_ring, data);
 966        VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
 967        VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
 968
 969        VMCOREINFO_SIZE(atomic_long_t);
 970        VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
 971
 972        VMCOREINFO_STRUCT_SIZE(latched_seq);
 973        VMCOREINFO_OFFSET(latched_seq, val);
 974}
 975#endif
 976
 977/* requested log_buf_len from kernel cmdline */
 978static unsigned long __initdata new_log_buf_len;
 979
 980/* we practice scaling the ring buffer by powers of 2 */
 981static void __init log_buf_len_update(u64 size)
 982{
 983        if (size > (u64)LOG_BUF_LEN_MAX) {
 984                size = (u64)LOG_BUF_LEN_MAX;
 985                pr_err("log_buf over 2G is not supported.\n");
 986        }
 987
 988        if (size)
 989                size = roundup_pow_of_two(size);
 990        if (size > log_buf_len)
 991                new_log_buf_len = (unsigned long)size;
 992}
 993
 994/* save requested log_buf_len since it's too early to process it */
 995static int __init log_buf_len_setup(char *str)
 996{
 997        u64 size;
 998
 999        if (!str)
1000                return -EINVAL;
1001
1002        size = memparse(str, &str);
1003
1004        log_buf_len_update(size);
1005
1006        return 0;
1007}
1008early_param("log_buf_len", log_buf_len_setup);
1009
1010#ifdef CONFIG_SMP
1011#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1012
1013static void __init log_buf_add_cpu(void)
1014{
1015        unsigned int cpu_extra;
1016
1017        /*
1018         * archs should set up cpu_possible_bits properly with
1019         * set_cpu_possible() after setup_arch() but just in
1020         * case lets ensure this is valid.
1021         */
1022        if (num_possible_cpus() == 1)
1023                return;
1024
1025        cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1026
1027        /* by default this will only continue through for large > 64 CPUs */
1028        if (cpu_extra <= __LOG_BUF_LEN / 2)
1029                return;
1030
1031        pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1032                __LOG_CPU_MAX_BUF_LEN);
1033        pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1034                cpu_extra);
1035        pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1036
1037        log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1038}
1039#else /* !CONFIG_SMP */
1040static inline void log_buf_add_cpu(void) {}
1041#endif /* CONFIG_SMP */
1042
1043static void __init set_percpu_data_ready(void)
1044{
1045        printk_safe_init();
1046        /* Make sure we set this flag only after printk_safe() init is done */
1047        barrier();
1048        __printk_percpu_data_ready = true;
1049}
1050
1051static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1052                                     struct printk_record *r)
1053{
1054        struct prb_reserved_entry e;
1055        struct printk_record dest_r;
1056
1057        prb_rec_init_wr(&dest_r, r->info->text_len);
1058
1059        if (!prb_reserve(&e, rb, &dest_r))
1060                return 0;
1061
1062        memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1063        dest_r.info->text_len = r->info->text_len;
1064        dest_r.info->facility = r->info->facility;
1065        dest_r.info->level = r->info->level;
1066        dest_r.info->flags = r->info->flags;
1067        dest_r.info->ts_nsec = r->info->ts_nsec;
1068        dest_r.info->caller_id = r->info->caller_id;
1069        memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1070
1071        prb_final_commit(&e);
1072
1073        return prb_record_text_space(&e);
1074}
1075
1076static char setup_text_buf[LOG_LINE_MAX] __initdata;
1077
1078void __init setup_log_buf(int early)
1079{
1080        struct printk_info *new_infos;
1081        unsigned int new_descs_count;
1082        struct prb_desc *new_descs;
1083        struct printk_info info;
1084        struct printk_record r;
1085        size_t new_descs_size;
1086        size_t new_infos_size;
1087        unsigned long flags;
1088        char *new_log_buf;
1089        unsigned int free;
1090        u64 seq;
1091
1092        /*
1093         * Some archs call setup_log_buf() multiple times - first is very
1094         * early, e.g. from setup_arch(), and second - when percpu_areas
1095         * are initialised.
1096         */
1097        if (!early)
1098                set_percpu_data_ready();
1099
1100        if (log_buf != __log_buf)
1101                return;
1102
1103        if (!early && !new_log_buf_len)
1104                log_buf_add_cpu();
1105
1106        if (!new_log_buf_len)
1107                return;
1108
1109        new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1110        if (new_descs_count == 0) {
1111                pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1112                return;
1113        }
1114
1115        new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1116        if (unlikely(!new_log_buf)) {
1117                pr_err("log_buf_len: %lu text bytes not available\n",
1118                       new_log_buf_len);
1119                return;
1120        }
1121
1122        new_descs_size = new_descs_count * sizeof(struct prb_desc);
1123        new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1124        if (unlikely(!new_descs)) {
1125                pr_err("log_buf_len: %zu desc bytes not available\n",
1126                       new_descs_size);
1127                goto err_free_log_buf;
1128        }
1129
1130        new_infos_size = new_descs_count * sizeof(struct printk_info);
1131        new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1132        if (unlikely(!new_infos)) {
1133                pr_err("log_buf_len: %zu info bytes not available\n",
1134                       new_infos_size);
1135                goto err_free_descs;
1136        }
1137
1138        prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1139
1140        prb_init(&printk_rb_dynamic,
1141                 new_log_buf, ilog2(new_log_buf_len),
1142                 new_descs, ilog2(new_descs_count),
1143                 new_infos);
1144
1145        printk_safe_enter_irqsave(flags);
1146
1147        log_buf_len = new_log_buf_len;
1148        log_buf = new_log_buf;
1149        new_log_buf_len = 0;
1150
1151        free = __LOG_BUF_LEN;
1152        prb_for_each_record(0, &printk_rb_static, seq, &r)
1153                free -= add_to_rb(&printk_rb_dynamic, &r);
1154
1155        /*
1156         * This is early enough that everything is still running on the
1157         * boot CPU and interrupts are disabled. So no new messages will
1158         * appear during the transition to the dynamic buffer.
1159         */
1160        prb = &printk_rb_dynamic;
1161
1162        printk_safe_exit_irqrestore(flags);
1163
1164        if (seq != prb_next_seq(&printk_rb_static)) {
1165                pr_err("dropped %llu messages\n",
1166                       prb_next_seq(&printk_rb_static) - seq);
1167        }
1168
1169        pr_info("log_buf_len: %u bytes\n", log_buf_len);
1170        pr_info("early log buf free: %u(%u%%)\n",
1171                free, (free * 100) / __LOG_BUF_LEN);
1172        return;
1173
1174err_free_descs:
1175        memblock_free(__pa(new_descs), new_descs_size);
1176err_free_log_buf:
1177        memblock_free(__pa(new_log_buf), new_log_buf_len);
1178}
1179
1180static bool __read_mostly ignore_loglevel;
1181
1182static int __init ignore_loglevel_setup(char *str)
1183{
1184        ignore_loglevel = true;
1185        pr_info("debug: ignoring loglevel setting.\n");
1186
1187        return 0;
1188}
1189
1190early_param("ignore_loglevel", ignore_loglevel_setup);
1191module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1192MODULE_PARM_DESC(ignore_loglevel,
1193                 "ignore loglevel setting (prints all kernel messages to the console)");
1194
1195static bool suppress_message_printing(int level)
1196{
1197        return (level >= console_loglevel && !ignore_loglevel);
1198}
1199
1200#ifdef CONFIG_BOOT_PRINTK_DELAY
1201
1202static int boot_delay; /* msecs delay after each printk during bootup */
1203static unsigned long long loops_per_msec;       /* based on boot_delay */
1204
1205static int __init boot_delay_setup(char *str)
1206{
1207        unsigned long lpj;
1208
1209        lpj = preset_lpj ? preset_lpj : 1000000;        /* some guess */
1210        loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1211
1212        get_option(&str, &boot_delay);
1213        if (boot_delay > 10 * 1000)
1214                boot_delay = 0;
1215
1216        pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1217                "HZ: %d, loops_per_msec: %llu\n",
1218                boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1219        return 0;
1220}
1221early_param("boot_delay", boot_delay_setup);
1222
1223static void boot_delay_msec(int level)
1224{
1225        unsigned long long k;
1226        unsigned long timeout;
1227
1228        if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1229                || suppress_message_printing(level)) {
1230                return;
1231        }
1232
1233        k = (unsigned long long)loops_per_msec * boot_delay;
1234
1235        timeout = jiffies + msecs_to_jiffies(boot_delay);
1236        while (k) {
1237                k--;
1238                cpu_relax();
1239                /*
1240                 * use (volatile) jiffies to prevent
1241                 * compiler reduction; loop termination via jiffies
1242                 * is secondary and may or may not happen.
1243                 */
1244                if (time_after(jiffies, timeout))
1245                        break;
1246                touch_nmi_watchdog();
1247        }
1248}
1249#else
1250static inline void boot_delay_msec(int level)
1251{
1252}
1253#endif
1254
1255static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1256module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1257
1258static size_t print_syslog(unsigned int level, char *buf)
1259{
1260        return sprintf(buf, "<%u>", level);
1261}
1262
1263static size_t print_time(u64 ts, char *buf)
1264{
1265        unsigned long rem_nsec = do_div(ts, 1000000000);
1266
1267        return sprintf(buf, "[%5lu.%06lu]",
1268                       (unsigned long)ts, rem_nsec / 1000);
1269}
1270
1271#ifdef CONFIG_PRINTK_CALLER
1272static size_t print_caller(u32 id, char *buf)
1273{
1274        char caller[12];
1275
1276        snprintf(caller, sizeof(caller), "%c%u",
1277                 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1278        return sprintf(buf, "[%6s]", caller);
1279}
1280#else
1281#define print_caller(id, buf) 0
1282#endif
1283
1284static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1285                                bool time, char *buf)
1286{
1287        size_t len = 0;
1288
1289        if (syslog)
1290                len = print_syslog((info->facility << 3) | info->level, buf);
1291
1292        if (time)
1293                len += print_time(info->ts_nsec, buf + len);
1294
1295        len += print_caller(info->caller_id, buf + len);
1296
1297        if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1298                buf[len++] = ' ';
1299                buf[len] = '\0';
1300        }
1301
1302        return len;
1303}
1304
1305/*
1306 * Prepare the record for printing. The text is shifted within the given
1307 * buffer to avoid a need for another one. The following operations are
1308 * done:
1309 *
1310 *   - Add prefix for each line.
1311 *   - Drop truncated lines that no longer fit into the buffer.
1312 *   - Add the trailing newline that has been removed in vprintk_store().
1313 *   - Add a string terminator.
1314 *
1315 * Since the produced string is always terminated, the maximum possible
1316 * return value is @r->text_buf_size - 1;
1317 *
1318 * Return: The length of the updated/prepared text, including the added
1319 * prefixes and the newline. The terminator is not counted. The dropped
1320 * line(s) are not counted.
1321 */
1322static size_t record_print_text(struct printk_record *r, bool syslog,
1323                                bool time)
1324{
1325        size_t text_len = r->info->text_len;
1326        size_t buf_size = r->text_buf_size;
1327        char *text = r->text_buf;
1328        char prefix[PREFIX_MAX];
1329        bool truncated = false;
1330        size_t prefix_len;
1331        size_t line_len;
1332        size_t len = 0;
1333        char *next;
1334
1335        /*
1336         * If the message was truncated because the buffer was not large
1337         * enough, treat the available text as if it were the full text.
1338         */
1339        if (text_len > buf_size)
1340                text_len = buf_size;
1341
1342        prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1343
1344        /*
1345         * @text_len: bytes of unprocessed text
1346         * @line_len: bytes of current line _without_ newline
1347         * @text:     pointer to beginning of current line
1348         * @len:      number of bytes prepared in r->text_buf
1349         */
1350        for (;;) {
1351                next = memchr(text, '\n', text_len);
1352                if (next) {
1353                        line_len = next - text;
1354                } else {
1355                        /* Drop truncated line(s). */
1356                        if (truncated)
1357                                break;
1358                        line_len = text_len;
1359                }
1360
1361                /*
1362                 * Truncate the text if there is not enough space to add the
1363                 * prefix and a trailing newline and a terminator.
1364                 */
1365                if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1366                        /* Drop even the current line if no space. */
1367                        if (len + prefix_len + line_len + 1 + 1 > buf_size)
1368                                break;
1369
1370                        text_len = buf_size - len - prefix_len - 1 - 1;
1371                        truncated = true;
1372                }
1373
1374                memmove(text + prefix_len, text, text_len);
1375                memcpy(text, prefix, prefix_len);
1376
1377                /*
1378                 * Increment the prepared length to include the text and
1379                 * prefix that were just moved+copied. Also increment for the
1380                 * newline at the end of this line. If this is the last line,
1381                 * there is no newline, but it will be added immediately below.
1382                 */
1383                len += prefix_len + line_len + 1;
1384                if (text_len == line_len) {
1385                        /*
1386                         * This is the last line. Add the trailing newline
1387                         * removed in vprintk_store().
1388                         */
1389                        text[prefix_len + line_len] = '\n';
1390                        break;
1391                }
1392
1393                /*
1394                 * Advance beyond the added prefix and the related line with
1395                 * its newline.
1396                 */
1397                text += prefix_len + line_len + 1;
1398
1399                /*
1400                 * The remaining text has only decreased by the line with its
1401                 * newline.
1402                 *
1403                 * Note that @text_len can become zero. It happens when @text
1404                 * ended with a newline (either due to truncation or the
1405                 * original string ending with "\n\n"). The loop is correctly
1406                 * repeated and (if not truncated) an empty line with a prefix
1407                 * will be prepared.
1408                 */
1409                text_len -= line_len + 1;
1410        }
1411
1412        /*
1413         * If a buffer was provided, it will be terminated. Space for the
1414         * string terminator is guaranteed to be available. The terminator is
1415         * not counted in the return value.
1416         */
1417        if (buf_size > 0)
1418                r->text_buf[len] = 0;
1419
1420        return len;
1421}
1422
1423static size_t get_record_print_text_size(struct printk_info *info,
1424                                         unsigned int line_count,
1425                                         bool syslog, bool time)
1426{
1427        char prefix[PREFIX_MAX];
1428        size_t prefix_len;
1429
1430        prefix_len = info_print_prefix(info, syslog, time, prefix);
1431
1432        /*
1433         * Each line will be preceded with a prefix. The intermediate
1434         * newlines are already within the text, but a final trailing
1435         * newline will be added.
1436         */
1437        return ((prefix_len * line_count) + info->text_len + 1);
1438}
1439
1440/*
1441 * Beginning with @start_seq, find the first record where it and all following
1442 * records up to (but not including) @max_seq fit into @size.
1443 *
1444 * @max_seq is simply an upper bound and does not need to exist. If the caller
1445 * does not require an upper bound, -1 can be used for @max_seq.
1446 */
1447static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1448                                  bool syslog, bool time)
1449{
1450        struct printk_info info;
1451        unsigned int line_count;
1452        size_t len = 0;
1453        u64 seq;
1454
1455        /* Determine the size of the records up to @max_seq. */
1456        prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1457                if (info.seq >= max_seq)
1458                        break;
1459                len += get_record_print_text_size(&info, line_count, syslog, time);
1460        }
1461
1462        /*
1463         * Adjust the upper bound for the next loop to avoid subtracting
1464         * lengths that were never added.
1465         */
1466        if (seq < max_seq)
1467                max_seq = seq;
1468
1469        /*
1470         * Move first record forward until length fits into the buffer. Ignore
1471         * newest messages that were not counted in the above cycle. Messages
1472         * might appear and get lost in the meantime. This is a best effort
1473         * that prevents an infinite loop that could occur with a retry.
1474         */
1475        prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1476                if (len <= size || info.seq >= max_seq)
1477                        break;
1478                len -= get_record_print_text_size(&info, line_count, syslog, time);
1479        }
1480
1481        return seq;
1482}
1483
1484static int syslog_print(char __user *buf, int size)
1485{
1486        struct printk_info info;
1487        struct printk_record r;
1488        char *text;
1489        int len = 0;
1490
1491        text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1492        if (!text)
1493                return -ENOMEM;
1494
1495        prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1496
1497        while (size > 0) {
1498                size_t n;
1499                size_t skip;
1500
1501                printk_safe_enter_irq();
1502                raw_spin_lock(&syslog_lock);
1503                if (!prb_read_valid(prb, syslog_seq, &r)) {
1504                        raw_spin_unlock(&syslog_lock);
1505                        printk_safe_exit_irq();
1506                        break;
1507                }
1508                if (r.info->seq != syslog_seq) {
1509                        /* message is gone, move to next valid one */
1510                        syslog_seq = r.info->seq;
1511                        syslog_partial = 0;
1512                }
1513
1514                /*
1515                 * To keep reading/counting partial line consistent,
1516                 * use printk_time value as of the beginning of a line.
1517                 */
1518                if (!syslog_partial)
1519                        syslog_time = printk_time;
1520
1521                skip = syslog_partial;
1522                n = record_print_text(&r, true, syslog_time);
1523                if (n - syslog_partial <= size) {
1524                        /* message fits into buffer, move forward */
1525                        syslog_seq = r.info->seq + 1;
1526                        n -= syslog_partial;
1527                        syslog_partial = 0;
1528                } else if (!len){
1529                        /* partial read(), remember position */
1530                        n = size;
1531                        syslog_partial += n;
1532                } else
1533                        n = 0;
1534                raw_spin_unlock(&syslog_lock);
1535                printk_safe_exit_irq();
1536
1537                if (!n)
1538                        break;
1539
1540                if (copy_to_user(buf, text + skip, n)) {
1541                        if (!len)
1542                                len = -EFAULT;
1543                        break;
1544                }
1545
1546                len += n;
1547                size -= n;
1548                buf += n;
1549        }
1550
1551        kfree(text);
1552        return len;
1553}
1554
1555static int syslog_print_all(char __user *buf, int size, bool clear)
1556{
1557        struct printk_info info;
1558        struct printk_record r;
1559        char *text;
1560        int len = 0;
1561        u64 seq;
1562        bool time;
1563
1564        text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1565        if (!text)
1566                return -ENOMEM;
1567
1568        time = printk_time;
1569        printk_safe_enter_irq();
1570        /*
1571         * Find first record that fits, including all following records,
1572         * into the user-provided buffer for this dump.
1573         */
1574        seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1575                                     size, true, time);
1576
1577        prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1578
1579        len = 0;
1580        prb_for_each_record(seq, prb, seq, &r) {
1581                int textlen;
1582
1583                textlen = record_print_text(&r, true, time);
1584
1585                if (len + textlen > size) {
1586                        seq--;
1587                        break;
1588                }
1589
1590                printk_safe_exit_irq();
1591                if (copy_to_user(buf + len, text, textlen))
1592                        len = -EFAULT;
1593                else
1594                        len += textlen;
1595                printk_safe_enter_irq();
1596
1597                if (len < 0)
1598                        break;
1599        }
1600
1601        if (clear) {
1602                raw_spin_lock(&syslog_lock);
1603                latched_seq_write(&clear_seq, seq);
1604                raw_spin_unlock(&syslog_lock);
1605        }
1606        printk_safe_exit_irq();
1607
1608        kfree(text);
1609        return len;
1610}
1611
1612static void syslog_clear(void)
1613{
1614        printk_safe_enter_irq();
1615        raw_spin_lock(&syslog_lock);
1616        latched_seq_write(&clear_seq, prb_next_seq(prb));
1617        raw_spin_unlock(&syslog_lock);
1618        printk_safe_exit_irq();
1619}
1620
1621/* Return a consistent copy of @syslog_seq. */
1622static u64 read_syslog_seq_irq(void)
1623{
1624        u64 seq;
1625
1626        raw_spin_lock_irq(&syslog_lock);
1627        seq = syslog_seq;
1628        raw_spin_unlock_irq(&syslog_lock);
1629
1630        return seq;
1631}
1632
1633int do_syslog(int type, char __user *buf, int len, int source)
1634{
1635        struct printk_info info;
1636        bool clear = false;
1637        static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1638        int error;
1639
1640        error = check_syslog_permissions(type, source);
1641        if (error)
1642                return error;
1643
1644        switch (type) {
1645        case SYSLOG_ACTION_CLOSE:       /* Close log */
1646                break;
1647        case SYSLOG_ACTION_OPEN:        /* Open log */
1648                break;
1649        case SYSLOG_ACTION_READ:        /* Read from log */
1650                if (!buf || len < 0)
1651                        return -EINVAL;
1652                if (!len)
1653                        return 0;
1654                if (!access_ok(buf, len))
1655                        return -EFAULT;
1656
1657                error = wait_event_interruptible(log_wait,
1658                                prb_read_valid(prb, read_syslog_seq_irq(), NULL));
1659                if (error)
1660                        return error;
1661                error = syslog_print(buf, len);
1662                break;
1663        /* Read/clear last kernel messages */
1664        case SYSLOG_ACTION_READ_CLEAR:
1665                clear = true;
1666                fallthrough;
1667        /* Read last kernel messages */
1668        case SYSLOG_ACTION_READ_ALL:
1669                if (!buf || len < 0)
1670                        return -EINVAL;
1671                if (!len)
1672                        return 0;
1673                if (!access_ok(buf, len))
1674                        return -EFAULT;
1675                error = syslog_print_all(buf, len, clear);
1676                break;
1677        /* Clear ring buffer */
1678        case SYSLOG_ACTION_CLEAR:
1679                syslog_clear();
1680                break;
1681        /* Disable logging to console */
1682        case SYSLOG_ACTION_CONSOLE_OFF:
1683                if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1684                        saved_console_loglevel = console_loglevel;
1685                console_loglevel = minimum_console_loglevel;
1686                break;
1687        /* Enable logging to console */
1688        case SYSLOG_ACTION_CONSOLE_ON:
1689                if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1690                        console_loglevel = saved_console_loglevel;
1691                        saved_console_loglevel = LOGLEVEL_DEFAULT;
1692                }
1693                break;
1694        /* Set level of messages printed to console */
1695        case SYSLOG_ACTION_CONSOLE_LEVEL:
1696                if (len < 1 || len > 8)
1697                        return -EINVAL;
1698                if (len < minimum_console_loglevel)
1699                        len = minimum_console_loglevel;
1700                console_loglevel = len;
1701                /* Implicitly re-enable logging to console */
1702                saved_console_loglevel = LOGLEVEL_DEFAULT;
1703                break;
1704        /* Number of chars in the log buffer */
1705        case SYSLOG_ACTION_SIZE_UNREAD:
1706                printk_safe_enter_irq();
1707                raw_spin_lock(&syslog_lock);
1708                if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1709                        /* No unread messages. */
1710                        raw_spin_unlock(&syslog_lock);
1711                        printk_safe_exit_irq();
1712                        return 0;
1713                }
1714                if (info.seq != syslog_seq) {
1715                        /* messages are gone, move to first one */
1716                        syslog_seq = info.seq;
1717                        syslog_partial = 0;
1718                }
1719                if (source == SYSLOG_FROM_PROC) {
1720                        /*
1721                         * Short-cut for poll(/"proc/kmsg") which simply checks
1722                         * for pending data, not the size; return the count of
1723                         * records, not the length.
1724                         */
1725                        error = prb_next_seq(prb) - syslog_seq;
1726                } else {
1727                        bool time = syslog_partial ? syslog_time : printk_time;
1728                        unsigned int line_count;
1729                        u64 seq;
1730
1731                        prb_for_each_info(syslog_seq, prb, seq, &info,
1732                                          &line_count) {
1733                                error += get_record_print_text_size(&info, line_count,
1734                                                                    true, time);
1735                                time = printk_time;
1736                        }
1737                        error -= syslog_partial;
1738                }
1739                raw_spin_unlock(&syslog_lock);
1740                printk_safe_exit_irq();
1741                break;
1742        /* Size of the log buffer */
1743        case SYSLOG_ACTION_SIZE_BUFFER:
1744                error = log_buf_len;
1745                break;
1746        default:
1747                error = -EINVAL;
1748                break;
1749        }
1750
1751        return error;
1752}
1753
1754SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1755{
1756        return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1757}
1758
1759/*
1760 * Special console_lock variants that help to reduce the risk of soft-lockups.
1761 * They allow to pass console_lock to another printk() call using a busy wait.
1762 */
1763
1764#ifdef CONFIG_LOCKDEP
1765static struct lockdep_map console_owner_dep_map = {
1766        .name = "console_owner"
1767};
1768#endif
1769
1770static DEFINE_RAW_SPINLOCK(console_owner_lock);
1771static struct task_struct *console_owner;
1772static bool console_waiter;
1773
1774/**
1775 * console_lock_spinning_enable - mark beginning of code where another
1776 *      thread might safely busy wait
1777 *
1778 * This basically converts console_lock into a spinlock. This marks
1779 * the section where the console_lock owner can not sleep, because
1780 * there may be a waiter spinning (like a spinlock). Also it must be
1781 * ready to hand over the lock at the end of the section.
1782 */
1783static void console_lock_spinning_enable(void)
1784{
1785        raw_spin_lock(&console_owner_lock);
1786        console_owner = current;
1787        raw_spin_unlock(&console_owner_lock);
1788
1789        /* The waiter may spin on us after setting console_owner */
1790        spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1791}
1792
1793/**
1794 * console_lock_spinning_disable_and_check - mark end of code where another
1795 *      thread was able to busy wait and check if there is a waiter
1796 *
1797 * This is called at the end of the section where spinning is allowed.
1798 * It has two functions. First, it is a signal that it is no longer
1799 * safe to start busy waiting for the lock. Second, it checks if
1800 * there is a busy waiter and passes the lock rights to her.
1801 *
1802 * Important: Callers lose the lock if there was a busy waiter.
1803 *      They must not touch items synchronized by console_lock
1804 *      in this case.
1805 *
1806 * Return: 1 if the lock rights were passed, 0 otherwise.
1807 */
1808static int console_lock_spinning_disable_and_check(void)
1809{
1810        int waiter;
1811
1812        raw_spin_lock(&console_owner_lock);
1813        waiter = READ_ONCE(console_waiter);
1814        console_owner = NULL;
1815        raw_spin_unlock(&console_owner_lock);
1816
1817        if (!waiter) {
1818                spin_release(&console_owner_dep_map, _THIS_IP_);
1819                return 0;
1820        }
1821
1822        /* The waiter is now free to continue */
1823        WRITE_ONCE(console_waiter, false);
1824
1825        spin_release(&console_owner_dep_map, _THIS_IP_);
1826
1827        /*
1828         * Hand off console_lock to waiter. The waiter will perform
1829         * the up(). After this, the waiter is the console_lock owner.
1830         */
1831        mutex_release(&console_lock_dep_map, _THIS_IP_);
1832        return 1;
1833}
1834
1835/**
1836 * console_trylock_spinning - try to get console_lock by busy waiting
1837 *
1838 * This allows to busy wait for the console_lock when the current
1839 * owner is running in specially marked sections. It means that
1840 * the current owner is running and cannot reschedule until it
1841 * is ready to lose the lock.
1842 *
1843 * Return: 1 if we got the lock, 0 othrewise
1844 */
1845static int console_trylock_spinning(void)
1846{
1847        struct task_struct *owner = NULL;
1848        bool waiter;
1849        bool spin = false;
1850        unsigned long flags;
1851
1852        if (console_trylock())
1853                return 1;
1854
1855        printk_safe_enter_irqsave(flags);
1856
1857        raw_spin_lock(&console_owner_lock);
1858        owner = READ_ONCE(console_owner);
1859        waiter = READ_ONCE(console_waiter);
1860        if (!waiter && owner && owner != current) {
1861                WRITE_ONCE(console_waiter, true);
1862                spin = true;
1863        }
1864        raw_spin_unlock(&console_owner_lock);
1865
1866        /*
1867         * If there is an active printk() writing to the
1868         * consoles, instead of having it write our data too,
1869         * see if we can offload that load from the active
1870         * printer, and do some printing ourselves.
1871         * Go into a spin only if there isn't already a waiter
1872         * spinning, and there is an active printer, and
1873         * that active printer isn't us (recursive printk?).
1874         */
1875        if (!spin) {
1876                printk_safe_exit_irqrestore(flags);
1877                return 0;
1878        }
1879
1880        /* We spin waiting for the owner to release us */
1881        spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1882        /* Owner will clear console_waiter on hand off */
1883        while (READ_ONCE(console_waiter))
1884                cpu_relax();
1885        spin_release(&console_owner_dep_map, _THIS_IP_);
1886
1887        printk_safe_exit_irqrestore(flags);
1888        /*
1889         * The owner passed the console lock to us.
1890         * Since we did not spin on console lock, annotate
1891         * this as a trylock. Otherwise lockdep will
1892         * complain.
1893         */
1894        mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1895
1896        return 1;
1897}
1898
1899/*
1900 * Call the console drivers, asking them to write out
1901 * log_buf[start] to log_buf[end - 1].
1902 * The console_lock must be held.
1903 */
1904static void call_console_drivers(const char *ext_text, size_t ext_len,
1905                                 const char *text, size_t len)
1906{
1907        static char dropped_text[64];
1908        size_t dropped_len = 0;
1909        struct console *con;
1910
1911        trace_console_rcuidle(text, len);
1912
1913        if (!console_drivers)
1914                return;
1915
1916        if (console_dropped) {
1917                dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1918                                       "** %lu printk messages dropped **\n",
1919                                       console_dropped);
1920                console_dropped = 0;
1921        }
1922
1923        for_each_console(con) {
1924                if (exclusive_console && con != exclusive_console)
1925                        continue;
1926                if (!(con->flags & CON_ENABLED))
1927                        continue;
1928                if (!con->write)
1929                        continue;
1930                if (!cpu_online(smp_processor_id()) &&
1931                    !(con->flags & CON_ANYTIME))
1932                        continue;
1933                if (con->flags & CON_EXTENDED)
1934                        con->write(con, ext_text, ext_len);
1935                else {
1936                        if (dropped_len)
1937                                con->write(con, dropped_text, dropped_len);
1938                        con->write(con, text, len);
1939                }
1940        }
1941}
1942
1943int printk_delay_msec __read_mostly;
1944
1945static inline void printk_delay(void)
1946{
1947        if (unlikely(printk_delay_msec)) {
1948                int m = printk_delay_msec;
1949
1950                while (m--) {
1951                        mdelay(1);
1952                        touch_nmi_watchdog();
1953                }
1954        }
1955}
1956
1957static inline u32 printk_caller_id(void)
1958{
1959        return in_task() ? task_pid_nr(current) :
1960                0x80000000 + raw_smp_processor_id();
1961}
1962
1963/**
1964 * parse_prefix - Parse level and control flags.
1965 *
1966 * @text:     The terminated text message.
1967 * @level:    A pointer to the current level value, will be updated.
1968 * @lflags:   A pointer to the current log flags, will be updated.
1969 *
1970 * @level may be NULL if the caller is not interested in the parsed value.
1971 * Otherwise the variable pointed to by @level must be set to
1972 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
1973 *
1974 * @lflags may be NULL if the caller is not interested in the parsed value.
1975 * Otherwise the variable pointed to by @lflags will be OR'd with the parsed
1976 * value.
1977 *
1978 * Return: The length of the parsed level and control flags.
1979 */
1980static u16 parse_prefix(char *text, int *level, enum log_flags *lflags)
1981{
1982        u16 prefix_len = 0;
1983        int kern_level;
1984
1985        while (*text) {
1986                kern_level = printk_get_level(text);
1987                if (!kern_level)
1988                        break;
1989
1990                switch (kern_level) {
1991                case '0' ... '7':
1992                        if (level && *level == LOGLEVEL_DEFAULT)
1993                                *level = kern_level - '0';
1994                        break;
1995                case 'c':       /* KERN_CONT */
1996                        if (lflags)
1997                                *lflags |= LOG_CONT;
1998                }
1999
2000                prefix_len += 2;
2001                text += 2;
2002        }
2003
2004        return prefix_len;
2005}
2006
2007static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags,
2008                         const char *fmt, va_list args)
2009{
2010        u16 text_len;
2011
2012        text_len = vscnprintf(text, size, fmt, args);
2013
2014        /* Mark and strip a trailing newline. */
2015        if (text_len && text[text_len - 1] == '\n') {
2016                text_len--;
2017                *lflags |= LOG_NEWLINE;
2018        }
2019
2020        /* Strip log level and control flags. */
2021        if (facility == 0) {
2022                u16 prefix_len;
2023
2024                prefix_len = parse_prefix(text, NULL, NULL);
2025                if (prefix_len) {
2026                        text_len -= prefix_len;
2027                        memmove(text, text + prefix_len, text_len);
2028                }
2029        }
2030
2031        return text_len;
2032}
2033
2034__printf(4, 0)
2035int vprintk_store(int facility, int level,
2036                  const struct dev_printk_info *dev_info,
2037                  const char *fmt, va_list args)
2038{
2039        const u32 caller_id = printk_caller_id();
2040        struct prb_reserved_entry e;
2041        enum log_flags lflags = 0;
2042        struct printk_record r;
2043        u16 trunc_msg_len = 0;
2044        char prefix_buf[8];
2045        u16 reserve_size;
2046        va_list args2;
2047        u16 text_len;
2048        u64 ts_nsec;
2049
2050        /*
2051         * Since the duration of printk() can vary depending on the message
2052         * and state of the ringbuffer, grab the timestamp now so that it is
2053         * close to the call of printk(). This provides a more deterministic
2054         * timestamp with respect to the caller.
2055         */
2056        ts_nsec = local_clock();
2057
2058        /*
2059         * The sprintf needs to come first since the syslog prefix might be
2060         * passed in as a parameter. An extra byte must be reserved so that
2061         * later the vscnprintf() into the reserved buffer has room for the
2062         * terminating '\0', which is not counted by vsnprintf().
2063         */
2064        va_copy(args2, args);
2065        reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2066        va_end(args2);
2067
2068        if (reserve_size > LOG_LINE_MAX)
2069                reserve_size = LOG_LINE_MAX;
2070
2071        /* Extract log level or control flags. */
2072        if (facility == 0)
2073                parse_prefix(&prefix_buf[0], &level, &lflags);
2074
2075        if (level == LOGLEVEL_DEFAULT)
2076                level = default_message_loglevel;
2077
2078        if (dev_info)
2079                lflags |= LOG_NEWLINE;
2080
2081        if (lflags & LOG_CONT) {
2082                prb_rec_init_wr(&r, reserve_size);
2083                if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2084                        text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2085                                                 facility, &lflags, fmt, args);
2086                        r.info->text_len += text_len;
2087
2088                        if (lflags & LOG_NEWLINE) {
2089                                r.info->flags |= LOG_NEWLINE;
2090                                prb_final_commit(&e);
2091                        } else {
2092                                prb_commit(&e);
2093                        }
2094
2095                        return text_len;
2096                }
2097        }
2098
2099        /*
2100         * Explicitly initialize the record before every prb_reserve() call.
2101         * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2102         * structure when they fail.
2103         */
2104        prb_rec_init_wr(&r, reserve_size);
2105        if (!prb_reserve(&e, prb, &r)) {
2106                /* truncate the message if it is too long for empty buffer */
2107                truncate_msg(&reserve_size, &trunc_msg_len);
2108
2109                prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2110                if (!prb_reserve(&e, prb, &r))
2111                        return 0;
2112        }
2113
2114        /* fill message */
2115        text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args);
2116        if (trunc_msg_len)
2117                memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2118        r.info->text_len = text_len + trunc_msg_len;
2119        r.info->facility = facility;
2120        r.info->level = level & 7;
2121        r.info->flags = lflags & 0x1f;
2122        r.info->ts_nsec = ts_nsec;
2123        r.info->caller_id = caller_id;
2124        if (dev_info)
2125                memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2126
2127        /* A message without a trailing newline can be continued. */
2128        if (!(lflags & LOG_NEWLINE))
2129                prb_commit(&e);
2130        else
2131                prb_final_commit(&e);
2132
2133        return (text_len + trunc_msg_len);
2134}
2135
2136asmlinkage int vprintk_emit(int facility, int level,
2137                            const struct dev_printk_info *dev_info,
2138                            const char *fmt, va_list args)
2139{
2140        int printed_len;
2141        bool in_sched = false;
2142        unsigned long flags;
2143
2144        /* Suppress unimportant messages after panic happens */
2145        if (unlikely(suppress_printk))
2146                return 0;
2147
2148        if (level == LOGLEVEL_SCHED) {
2149                level = LOGLEVEL_DEFAULT;
2150                in_sched = true;
2151        }
2152
2153        boot_delay_msec(level);
2154        printk_delay();
2155
2156        printk_safe_enter_irqsave(flags);
2157        printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2158        printk_safe_exit_irqrestore(flags);
2159
2160        /* If called from the scheduler, we can not call up(). */
2161        if (!in_sched) {
2162                /*
2163                 * Disable preemption to avoid being preempted while holding
2164                 * console_sem which would prevent anyone from printing to
2165                 * console
2166                 */
2167                preempt_disable();
2168                /*
2169                 * Try to acquire and then immediately release the console
2170                 * semaphore.  The release will print out buffers and wake up
2171                 * /dev/kmsg and syslog() users.
2172                 */
2173                if (console_trylock_spinning())
2174                        console_unlock();
2175                preempt_enable();
2176        }
2177
2178        wake_up_klogd();
2179        return printed_len;
2180}
2181EXPORT_SYMBOL(vprintk_emit);
2182
2183int vprintk_default(const char *fmt, va_list args)
2184{
2185        return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2186}
2187EXPORT_SYMBOL_GPL(vprintk_default);
2188
2189/**
2190 * printk - print a kernel message
2191 * @fmt: format string
2192 *
2193 * This is printk(). It can be called from any context. We want it to work.
2194 *
2195 * We try to grab the console_lock. If we succeed, it's easy - we log the
2196 * output and call the console drivers.  If we fail to get the semaphore, we
2197 * place the output into the log buffer and return. The current holder of
2198 * the console_sem will notice the new output in console_unlock(); and will
2199 * send it to the consoles before releasing the lock.
2200 *
2201 * One effect of this deferred printing is that code which calls printk() and
2202 * then changes console_loglevel may break. This is because console_loglevel
2203 * is inspected when the actual printing occurs.
2204 *
2205 * See also:
2206 * printf(3)
2207 *
2208 * See the vsnprintf() documentation for format string extensions over C99.
2209 */
2210asmlinkage __visible int printk(const char *fmt, ...)
2211{
2212        va_list args;
2213        int r;
2214
2215        va_start(args, fmt);
2216        r = vprintk(fmt, args);
2217        va_end(args);
2218
2219        return r;
2220}
2221EXPORT_SYMBOL(printk);
2222
2223#else /* CONFIG_PRINTK */
2224
2225#define CONSOLE_LOG_MAX         0
2226#define printk_time             false
2227
2228#define prb_read_valid(rb, seq, r)      false
2229#define prb_first_valid_seq(rb)         0
2230
2231static u64 syslog_seq;
2232static u64 console_seq;
2233static u64 exclusive_console_stop_seq;
2234static unsigned long console_dropped;
2235
2236static size_t record_print_text(const struct printk_record *r,
2237                                bool syslog, bool time)
2238{
2239        return 0;
2240}
2241static ssize_t info_print_ext_header(char *buf, size_t size,
2242                                     struct printk_info *info)
2243{
2244        return 0;
2245}
2246static ssize_t msg_print_ext_body(char *buf, size_t size,
2247                                  char *text, size_t text_len,
2248                                  struct dev_printk_info *dev_info) { return 0; }
2249static void console_lock_spinning_enable(void) { }
2250static int console_lock_spinning_disable_and_check(void) { return 0; }
2251static void call_console_drivers(const char *ext_text, size_t ext_len,
2252                                 const char *text, size_t len) {}
2253static bool suppress_message_printing(int level) { return false; }
2254
2255#endif /* CONFIG_PRINTK */
2256
2257#ifdef CONFIG_EARLY_PRINTK
2258struct console *early_console;
2259
2260asmlinkage __visible void early_printk(const char *fmt, ...)
2261{
2262        va_list ap;
2263        char buf[512];
2264        int n;
2265
2266        if (!early_console)
2267                return;
2268
2269        va_start(ap, fmt);
2270        n = vscnprintf(buf, sizeof(buf), fmt, ap);
2271        va_end(ap);
2272
2273        early_console->write(early_console, buf, n);
2274}
2275#endif
2276
2277static int __add_preferred_console(char *name, int idx, char *options,
2278                                   char *brl_options, bool user_specified)
2279{
2280        struct console_cmdline *c;
2281        int i;
2282
2283        /*
2284         *      See if this tty is not yet registered, and
2285         *      if we have a slot free.
2286         */
2287        for (i = 0, c = console_cmdline;
2288             i < MAX_CMDLINECONSOLES && c->name[0];
2289             i++, c++) {
2290                if (strcmp(c->name, name) == 0 && c->index == idx) {
2291                        if (!brl_options)
2292                                preferred_console = i;
2293                        if (user_specified)
2294                                c->user_specified = true;
2295                        return 0;
2296                }
2297        }
2298        if (i == MAX_CMDLINECONSOLES)
2299                return -E2BIG;
2300        if (!brl_options)
2301                preferred_console = i;
2302        strlcpy(c->name, name, sizeof(c->name));
2303        c->options = options;
2304        c->user_specified = user_specified;
2305        braille_set_options(c, brl_options);
2306
2307        c->index = idx;
2308        return 0;
2309}
2310
2311static int __init console_msg_format_setup(char *str)
2312{
2313        if (!strcmp(str, "syslog"))
2314                console_msg_format = MSG_FORMAT_SYSLOG;
2315        if (!strcmp(str, "default"))
2316                console_msg_format = MSG_FORMAT_DEFAULT;
2317        return 1;
2318}
2319__setup("console_msg_format=", console_msg_format_setup);
2320
2321/*
2322 * Set up a console.  Called via do_early_param() in init/main.c
2323 * for each "console=" parameter in the boot command line.
2324 */
2325static int __init console_setup(char *str)
2326{
2327        char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2328        char *s, *options, *brl_options = NULL;
2329        int idx;
2330
2331        /*
2332         * console="" or console=null have been suggested as a way to
2333         * disable console output. Use ttynull that has been created
2334         * for exactly this purpose.
2335         */
2336        if (str[0] == 0 || strcmp(str, "null") == 0) {
2337                __add_preferred_console("ttynull", 0, NULL, NULL, true);
2338                return 1;
2339        }
2340
2341        if (_braille_console_setup(&str, &brl_options))
2342                return 1;
2343
2344        /*
2345         * Decode str into name, index, options.
2346         */
2347        if (str[0] >= '0' && str[0] <= '9') {
2348                strcpy(buf, "ttyS");
2349                strncpy(buf + 4, str, sizeof(buf) - 5);
2350        } else {
2351                strncpy(buf, str, sizeof(buf) - 1);
2352        }
2353        buf[sizeof(buf) - 1] = 0;
2354        options = strchr(str, ',');
2355        if (options)
2356                *(options++) = 0;
2357#ifdef __sparc__
2358        if (!strcmp(str, "ttya"))
2359                strcpy(buf, "ttyS0");
2360        if (!strcmp(str, "ttyb"))
2361                strcpy(buf, "ttyS1");
2362#endif
2363        for (s = buf; *s; s++)
2364                if (isdigit(*s) || *s == ',')
2365                        break;
2366        idx = simple_strtoul(s, NULL, 10);
2367        *s = 0;
2368
2369        __add_preferred_console(buf, idx, options, brl_options, true);
2370        console_set_on_cmdline = 1;
2371        return 1;
2372}
2373__setup("console=", console_setup);
2374
2375/**
2376 * add_preferred_console - add a device to the list of preferred consoles.
2377 * @name: device name
2378 * @idx: device index
2379 * @options: options for this console
2380 *
2381 * The last preferred console added will be used for kernel messages
2382 * and stdin/out/err for init.  Normally this is used by console_setup
2383 * above to handle user-supplied console arguments; however it can also
2384 * be used by arch-specific code either to override the user or more
2385 * commonly to provide a default console (ie from PROM variables) when
2386 * the user has not supplied one.
2387 */
2388int add_preferred_console(char *name, int idx, char *options)
2389{
2390        return __add_preferred_console(name, idx, options, NULL, false);
2391}
2392
2393bool console_suspend_enabled = true;
2394EXPORT_SYMBOL(console_suspend_enabled);
2395
2396static int __init console_suspend_disable(char *str)
2397{
2398        console_suspend_enabled = false;
2399        return 1;
2400}
2401__setup("no_console_suspend", console_suspend_disable);
2402module_param_named(console_suspend, console_suspend_enabled,
2403                bool, S_IRUGO | S_IWUSR);
2404MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2405        " and hibernate operations");
2406
2407/**
2408 * suspend_console - suspend the console subsystem
2409 *
2410 * This disables printk() while we go into suspend states
2411 */
2412void suspend_console(void)
2413{
2414        if (!console_suspend_enabled)
2415                return;
2416        pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2417        console_lock();
2418        console_suspended = 1;
2419        up_console_sem();
2420}
2421
2422void resume_console(void)
2423{
2424        if (!console_suspend_enabled)
2425                return;
2426        down_console_sem();
2427        console_suspended = 0;
2428        console_unlock();
2429}
2430
2431/**
2432 * console_cpu_notify - print deferred console messages after CPU hotplug
2433 * @cpu: unused
2434 *
2435 * If printk() is called from a CPU that is not online yet, the messages
2436 * will be printed on the console only if there are CON_ANYTIME consoles.
2437 * This function is called when a new CPU comes online (or fails to come
2438 * up) or goes offline.
2439 */
2440static int console_cpu_notify(unsigned int cpu)
2441{
2442        if (!cpuhp_tasks_frozen) {
2443                /* If trylock fails, someone else is doing the printing */
2444                if (console_trylock())
2445                        console_unlock();
2446        }
2447        return 0;
2448}
2449
2450/**
2451 * console_lock - lock the console system for exclusive use.
2452 *
2453 * Acquires a lock which guarantees that the caller has
2454 * exclusive access to the console system and the console_drivers list.
2455 *
2456 * Can sleep, returns nothing.
2457 */
2458void console_lock(void)
2459{
2460        might_sleep();
2461
2462        down_console_sem();
2463        if (console_suspended)
2464                return;
2465        console_locked = 1;
2466        console_may_schedule = 1;
2467}
2468EXPORT_SYMBOL(console_lock);
2469
2470/**
2471 * console_trylock - try to lock the console system for exclusive use.
2472 *
2473 * Try to acquire a lock which guarantees that the caller has exclusive
2474 * access to the console system and the console_drivers list.
2475 *
2476 * returns 1 on success, and 0 on failure to acquire the lock.
2477 */
2478int console_trylock(void)
2479{
2480        if (down_trylock_console_sem())
2481                return 0;
2482        if (console_suspended) {
2483                up_console_sem();
2484                return 0;
2485        }
2486        console_locked = 1;
2487        console_may_schedule = 0;
2488        return 1;
2489}
2490EXPORT_SYMBOL(console_trylock);
2491
2492int is_console_locked(void)
2493{
2494        return console_locked;
2495}
2496EXPORT_SYMBOL(is_console_locked);
2497
2498/*
2499 * Check if we have any console that is capable of printing while cpu is
2500 * booting or shutting down. Requires console_sem.
2501 */
2502static int have_callable_console(void)
2503{
2504        struct console *con;
2505
2506        for_each_console(con)
2507                if ((con->flags & CON_ENABLED) &&
2508                                (con->flags & CON_ANYTIME))
2509                        return 1;
2510
2511        return 0;
2512}
2513
2514/*
2515 * Can we actually use the console at this time on this cpu?
2516 *
2517 * Console drivers may assume that per-cpu resources have been allocated. So
2518 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2519 * call them until this CPU is officially up.
2520 */
2521static inline int can_use_console(void)
2522{
2523        return cpu_online(raw_smp_processor_id()) || have_callable_console();
2524}
2525
2526/**
2527 * console_unlock - unlock the console system
2528 *
2529 * Releases the console_lock which the caller holds on the console system
2530 * and the console driver list.
2531 *
2532 * While the console_lock was held, console output may have been buffered
2533 * by printk().  If this is the case, console_unlock(); emits
2534 * the output prior to releasing the lock.
2535 *
2536 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2537 *
2538 * console_unlock(); may be called from any context.
2539 */
2540void console_unlock(void)
2541{
2542        static char ext_text[CONSOLE_EXT_LOG_MAX];
2543        static char text[CONSOLE_LOG_MAX];
2544        unsigned long flags;
2545        bool do_cond_resched, retry;
2546        struct printk_info info;
2547        struct printk_record r;
2548
2549        if (console_suspended) {
2550                up_console_sem();
2551                return;
2552        }
2553
2554        prb_rec_init_rd(&r, &info, text, sizeof(text));
2555
2556        /*
2557         * Console drivers are called with interrupts disabled, so
2558         * @console_may_schedule should be cleared before; however, we may
2559         * end up dumping a lot of lines, for example, if called from
2560         * console registration path, and should invoke cond_resched()
2561         * between lines if allowable.  Not doing so can cause a very long
2562         * scheduling stall on a slow console leading to RCU stall and
2563         * softlockup warnings which exacerbate the issue with more
2564         * messages practically incapacitating the system.
2565         *
2566         * console_trylock() is not able to detect the preemptive
2567         * context reliably. Therefore the value must be stored before
2568         * and cleared after the "again" goto label.
2569         */
2570        do_cond_resched = console_may_schedule;
2571again:
2572        console_may_schedule = 0;
2573
2574        /*
2575         * We released the console_sem lock, so we need to recheck if
2576         * cpu is online and (if not) is there at least one CON_ANYTIME
2577         * console.
2578         */
2579        if (!can_use_console()) {
2580                console_locked = 0;
2581                up_console_sem();
2582                return;
2583        }
2584
2585        for (;;) {
2586                size_t ext_len = 0;
2587                size_t len;
2588
2589                printk_safe_enter_irqsave(flags);
2590skip:
2591                if (!prb_read_valid(prb, console_seq, &r))
2592                        break;
2593
2594                if (console_seq != r.info->seq) {
2595                        console_dropped += r.info->seq - console_seq;
2596                        console_seq = r.info->seq;
2597                }
2598
2599                if (suppress_message_printing(r.info->level)) {
2600                        /*
2601                         * Skip record we have buffered and already printed
2602                         * directly to the console when we received it, and
2603                         * record that has level above the console loglevel.
2604                         */
2605                        console_seq++;
2606                        goto skip;
2607                }
2608
2609                /* Output to all consoles once old messages replayed. */
2610                if (unlikely(exclusive_console &&
2611                             console_seq >= exclusive_console_stop_seq)) {
2612                        exclusive_console = NULL;
2613                }
2614
2615                /*
2616                 * Handle extended console text first because later
2617                 * record_print_text() will modify the record buffer in-place.
2618                 */
2619                if (nr_ext_console_drivers) {
2620                        ext_len = info_print_ext_header(ext_text,
2621                                                sizeof(ext_text),
2622                                                r.info);
2623                        ext_len += msg_print_ext_body(ext_text + ext_len,
2624                                                sizeof(ext_text) - ext_len,
2625                                                &r.text_buf[0],
2626                                                r.info->text_len,
2627                                                &r.info->dev_info);
2628                }
2629                len = record_print_text(&r,
2630                                console_msg_format & MSG_FORMAT_SYSLOG,
2631                                printk_time);
2632                console_seq++;
2633
2634                /*
2635                 * While actively printing out messages, if another printk()
2636                 * were to occur on another CPU, it may wait for this one to
2637                 * finish. This task can not be preempted if there is a
2638                 * waiter waiting to take over.
2639                 */
2640                console_lock_spinning_enable();
2641
2642                stop_critical_timings();        /* don't trace print latency */
2643                call_console_drivers(ext_text, ext_len, text, len);
2644                start_critical_timings();
2645
2646                if (console_lock_spinning_disable_and_check()) {
2647                        printk_safe_exit_irqrestore(flags);
2648                        return;
2649                }
2650
2651                printk_safe_exit_irqrestore(flags);
2652
2653                if (do_cond_resched)
2654                        cond_resched();
2655        }
2656
2657        console_locked = 0;
2658
2659        up_console_sem();
2660
2661        /*
2662         * Someone could have filled up the buffer again, so re-check if there's
2663         * something to flush. In case we cannot trylock the console_sem again,
2664         * there's a new owner and the console_unlock() from them will do the
2665         * flush, no worries.
2666         */
2667        retry = prb_read_valid(prb, console_seq, NULL);
2668        printk_safe_exit_irqrestore(flags);
2669
2670        if (retry && console_trylock())
2671                goto again;
2672}
2673EXPORT_SYMBOL(console_unlock);
2674
2675/**
2676 * console_conditional_schedule - yield the CPU if required
2677 *
2678 * If the console code is currently allowed to sleep, and
2679 * if this CPU should yield the CPU to another task, do
2680 * so here.
2681 *
2682 * Must be called within console_lock();.
2683 */
2684void __sched console_conditional_schedule(void)
2685{
2686        if (console_may_schedule)
2687                cond_resched();
2688}
2689EXPORT_SYMBOL(console_conditional_schedule);
2690
2691void console_unblank(void)
2692{
2693        struct console *c;
2694
2695        /*
2696         * console_unblank can no longer be called in interrupt context unless
2697         * oops_in_progress is set to 1..
2698         */
2699        if (oops_in_progress) {
2700                if (down_trylock_console_sem() != 0)
2701                        return;
2702        } else
2703                console_lock();
2704
2705        console_locked = 1;
2706        console_may_schedule = 0;
2707        for_each_console(c)
2708                if ((c->flags & CON_ENABLED) && c->unblank)
2709                        c->unblank();
2710        console_unlock();
2711}
2712
2713/**
2714 * console_flush_on_panic - flush console content on panic
2715 * @mode: flush all messages in buffer or just the pending ones
2716 *
2717 * Immediately output all pending messages no matter what.
2718 */
2719void console_flush_on_panic(enum con_flush_mode mode)
2720{
2721        /*
2722         * If someone else is holding the console lock, trylock will fail
2723         * and may_schedule may be set.  Ignore and proceed to unlock so
2724         * that messages are flushed out.  As this can be called from any
2725         * context and we don't want to get preempted while flushing,
2726         * ensure may_schedule is cleared.
2727         */
2728        console_trylock();
2729        console_may_schedule = 0;
2730
2731        if (mode == CONSOLE_REPLAY_ALL) {
2732                unsigned long flags;
2733
2734                printk_safe_enter_irqsave(flags);
2735                console_seq = prb_first_valid_seq(prb);
2736                printk_safe_exit_irqrestore(flags);
2737        }
2738        console_unlock();
2739}
2740
2741/*
2742 * Return the console tty driver structure and its associated index
2743 */
2744struct tty_driver *console_device(int *index)
2745{
2746        struct console *c;
2747        struct tty_driver *driver = NULL;
2748
2749        console_lock();
2750        for_each_console(c) {
2751                if (!c->device)
2752                        continue;
2753                driver = c->device(c, index);
2754                if (driver)
2755                        break;
2756        }
2757        console_unlock();
2758        return driver;
2759}
2760
2761/*
2762 * Prevent further output on the passed console device so that (for example)
2763 * serial drivers can disable console output before suspending a port, and can
2764 * re-enable output afterwards.
2765 */
2766void console_stop(struct console *console)
2767{
2768        console_lock();
2769        console->flags &= ~CON_ENABLED;
2770        console_unlock();
2771}
2772EXPORT_SYMBOL(console_stop);
2773
2774void console_start(struct console *console)
2775{
2776        console_lock();
2777        console->flags |= CON_ENABLED;
2778        console_unlock();
2779}
2780EXPORT_SYMBOL(console_start);
2781
2782static int __read_mostly keep_bootcon;
2783
2784static int __init keep_bootcon_setup(char *str)
2785{
2786        keep_bootcon = 1;
2787        pr_info("debug: skip boot console de-registration.\n");
2788
2789        return 0;
2790}
2791
2792early_param("keep_bootcon", keep_bootcon_setup);
2793
2794/*
2795 * This is called by register_console() to try to match
2796 * the newly registered console with any of the ones selected
2797 * by either the command line or add_preferred_console() and
2798 * setup/enable it.
2799 *
2800 * Care need to be taken with consoles that are statically
2801 * enabled such as netconsole
2802 */
2803static int try_enable_new_console(struct console *newcon, bool user_specified)
2804{
2805        struct console_cmdline *c;
2806        int i, err;
2807
2808        for (i = 0, c = console_cmdline;
2809             i < MAX_CMDLINECONSOLES && c->name[0];
2810             i++, c++) {
2811                if (c->user_specified != user_specified)
2812                        continue;
2813                if (!newcon->match ||
2814                    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2815                        /* default matching */
2816                        BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2817                        if (strcmp(c->name, newcon->name) != 0)
2818                                continue;
2819                        if (newcon->index >= 0 &&
2820                            newcon->index != c->index)
2821                                continue;
2822                        if (newcon->index < 0)
2823                                newcon->index = c->index;
2824
2825                        if (_braille_register_console(newcon, c))
2826                                return 0;
2827
2828                        if (newcon->setup &&
2829                            (err = newcon->setup(newcon, c->options)) != 0)
2830                                return err;
2831                }
2832                newcon->flags |= CON_ENABLED;
2833                if (i == preferred_console) {
2834                        newcon->flags |= CON_CONSDEV;
2835                        has_preferred_console = true;
2836                }
2837                return 0;
2838        }
2839
2840        /*
2841         * Some consoles, such as pstore and netconsole, can be enabled even
2842         * without matching. Accept the pre-enabled consoles only when match()
2843         * and setup() had a chance to be called.
2844         */
2845        if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
2846                return 0;
2847
2848        return -ENOENT;
2849}
2850
2851/*
2852 * The console driver calls this routine during kernel initialization
2853 * to register the console printing procedure with printk() and to
2854 * print any messages that were printed by the kernel before the
2855 * console driver was initialized.
2856 *
2857 * This can happen pretty early during the boot process (because of
2858 * early_printk) - sometimes before setup_arch() completes - be careful
2859 * of what kernel features are used - they may not be initialised yet.
2860 *
2861 * There are two types of consoles - bootconsoles (early_printk) and
2862 * "real" consoles (everything which is not a bootconsole) which are
2863 * handled differently.
2864 *  - Any number of bootconsoles can be registered at any time.
2865 *  - As soon as a "real" console is registered, all bootconsoles
2866 *    will be unregistered automatically.
2867 *  - Once a "real" console is registered, any attempt to register a
2868 *    bootconsoles will be rejected
2869 */
2870void register_console(struct console *newcon)
2871{
2872        unsigned long flags;
2873        struct console *bcon = NULL;
2874        int err;
2875
2876        for_each_console(bcon) {
2877                if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2878                                         bcon->name, bcon->index))
2879                        return;
2880        }
2881
2882        /*
2883         * before we register a new CON_BOOT console, make sure we don't
2884         * already have a valid console
2885         */
2886        if (newcon->flags & CON_BOOT) {
2887                for_each_console(bcon) {
2888                        if (!(bcon->flags & CON_BOOT)) {
2889                                pr_info("Too late to register bootconsole %s%d\n",
2890                                        newcon->name, newcon->index);
2891                                return;
2892                        }
2893                }
2894        }
2895
2896        if (console_drivers && console_drivers->flags & CON_BOOT)
2897                bcon = console_drivers;
2898
2899        if (!has_preferred_console || bcon || !console_drivers)
2900                has_preferred_console = preferred_console >= 0;
2901
2902        /*
2903         *      See if we want to use this console driver. If we
2904         *      didn't select a console we take the first one
2905         *      that registers here.
2906         */
2907        if (!has_preferred_console) {
2908                if (newcon->index < 0)
2909                        newcon->index = 0;
2910                if (newcon->setup == NULL ||
2911                    newcon->setup(newcon, NULL) == 0) {
2912                        newcon->flags |= CON_ENABLED;
2913                        if (newcon->device) {
2914                                newcon->flags |= CON_CONSDEV;
2915                                has_preferred_console = true;
2916                        }
2917                }
2918        }
2919
2920        /* See if this console matches one we selected on the command line */
2921        err = try_enable_new_console(newcon, true);
2922
2923        /* If not, try to match against the platform default(s) */
2924        if (err == -ENOENT)
2925                err = try_enable_new_console(newcon, false);
2926
2927        /* printk() messages are not printed to the Braille console. */
2928        if (err || newcon->flags & CON_BRL)
2929                return;
2930
2931        /*
2932         * If we have a bootconsole, and are switching to a real console,
2933         * don't print everything out again, since when the boot console, and
2934         * the real console are the same physical device, it's annoying to
2935         * see the beginning boot messages twice
2936         */
2937        if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2938                newcon->flags &= ~CON_PRINTBUFFER;
2939
2940        /*
2941         *      Put this console in the list - keep the
2942         *      preferred driver at the head of the list.
2943         */
2944        console_lock();
2945        if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2946                newcon->next = console_drivers;
2947                console_drivers = newcon;
2948                if (newcon->next)
2949                        newcon->next->flags &= ~CON_CONSDEV;
2950                /* Ensure this flag is always set for the head of the list */
2951                newcon->flags |= CON_CONSDEV;
2952        } else {
2953                newcon->next = console_drivers->next;
2954                console_drivers->next = newcon;
2955        }
2956
2957        if (newcon->flags & CON_EXTENDED)
2958                nr_ext_console_drivers++;
2959
2960        if (newcon->flags & CON_PRINTBUFFER) {
2961                /*
2962                 * console_unlock(); will print out the buffered messages
2963                 * for us.
2964                 *
2965                 * We're about to replay the log buffer.  Only do this to the
2966                 * just-registered console to avoid excessive message spam to
2967                 * the already-registered consoles.
2968                 *
2969                 * Set exclusive_console with disabled interrupts to reduce
2970                 * race window with eventual console_flush_on_panic() that
2971                 * ignores console_lock.
2972                 */
2973                exclusive_console = newcon;
2974                exclusive_console_stop_seq = console_seq;
2975
2976                /* Get a consistent copy of @syslog_seq. */
2977                raw_spin_lock_irqsave(&syslog_lock, flags);
2978                console_seq = syslog_seq;
2979                raw_spin_unlock_irqrestore(&syslog_lock, flags);
2980        }
2981        console_unlock();
2982        console_sysfs_notify();
2983
2984        /*
2985         * By unregistering the bootconsoles after we enable the real console
2986         * we get the "console xxx enabled" message on all the consoles -
2987         * boot consoles, real consoles, etc - this is to ensure that end
2988         * users know there might be something in the kernel's log buffer that
2989         * went to the bootconsole (that they do not see on the real console)
2990         */
2991        pr_info("%sconsole [%s%d] enabled\n",
2992                (newcon->flags & CON_BOOT) ? "boot" : "" ,
2993                newcon->name, newcon->index);
2994        if (bcon &&
2995            ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2996            !keep_bootcon) {
2997                /* We need to iterate through all boot consoles, to make
2998                 * sure we print everything out, before we unregister them.
2999                 */
3000                for_each_console(bcon)
3001                        if (bcon->flags & CON_BOOT)
3002                                unregister_console(bcon);
3003        }
3004}
3005EXPORT_SYMBOL(register_console);
3006
3007int unregister_console(struct console *console)
3008{
3009        struct console *con;
3010        int res;
3011
3012        pr_info("%sconsole [%s%d] disabled\n",
3013                (console->flags & CON_BOOT) ? "boot" : "" ,
3014                console->name, console->index);
3015
3016        res = _braille_unregister_console(console);
3017        if (res < 0)
3018                return res;
3019        if (res > 0)
3020                return 0;
3021
3022        res = -ENODEV;
3023        console_lock();
3024        if (console_drivers == console) {
3025                console_drivers=console->next;
3026                res = 0;
3027        } else {
3028                for_each_console(con) {
3029                        if (con->next == console) {
3030                                con->next = console->next;
3031                                res = 0;
3032                                break;
3033                        }
3034                }
3035        }
3036
3037        if (res)
3038                goto out_disable_unlock;
3039
3040        if (console->flags & CON_EXTENDED)
3041                nr_ext_console_drivers--;
3042
3043        /*
3044         * If this isn't the last console and it has CON_CONSDEV set, we
3045         * need to set it on the next preferred console.
3046         */
3047        if (console_drivers != NULL && console->flags & CON_CONSDEV)
3048                console_drivers->flags |= CON_CONSDEV;
3049
3050        console->flags &= ~CON_ENABLED;
3051        console_unlock();
3052        console_sysfs_notify();
3053
3054        if (console->exit)
3055                res = console->exit(console);
3056
3057        return res;
3058
3059out_disable_unlock:
3060        console->flags &= ~CON_ENABLED;
3061        console_unlock();
3062
3063        return res;
3064}
3065EXPORT_SYMBOL(unregister_console);
3066
3067/*
3068 * Initialize the console device. This is called *early*, so
3069 * we can't necessarily depend on lots of kernel help here.
3070 * Just do some early initializations, and do the complex setup
3071 * later.
3072 */
3073void __init console_init(void)
3074{
3075        int ret;
3076        initcall_t call;
3077        initcall_entry_t *ce;
3078
3079        /* Setup the default TTY line discipline. */
3080        n_tty_init();
3081
3082        /*
3083         * set up the console device so that later boot sequences can
3084         * inform about problems etc..
3085         */
3086        ce = __con_initcall_start;
3087        trace_initcall_level("console");
3088        while (ce < __con_initcall_end) {
3089                call = initcall_from_entry(ce);
3090                trace_initcall_start(call);
3091                ret = call();
3092                trace_initcall_finish(call, ret);
3093                ce++;
3094        }
3095}
3096
3097/*
3098 * Some boot consoles access data that is in the init section and which will
3099 * be discarded after the initcalls have been run. To make sure that no code
3100 * will access this data, unregister the boot consoles in a late initcall.
3101 *
3102 * If for some reason, such as deferred probe or the driver being a loadable
3103 * module, the real console hasn't registered yet at this point, there will
3104 * be a brief interval in which no messages are logged to the console, which
3105 * makes it difficult to diagnose problems that occur during this time.
3106 *
3107 * To mitigate this problem somewhat, only unregister consoles whose memory
3108 * intersects with the init section. Note that all other boot consoles will
3109 * get unregistered when the real preferred console is registered.
3110 */
3111static int __init printk_late_init(void)
3112{
3113        struct console *con;
3114        int ret;
3115
3116        for_each_console(con) {
3117                if (!(con->flags & CON_BOOT))
3118                        continue;
3119
3120                /* Check addresses that might be used for enabled consoles. */
3121                if (init_section_intersects(con, sizeof(*con)) ||
3122                    init_section_contains(con->write, 0) ||
3123                    init_section_contains(con->read, 0) ||
3124                    init_section_contains(con->device, 0) ||
3125                    init_section_contains(con->unblank, 0) ||
3126                    init_section_contains(con->data, 0)) {
3127                        /*
3128                         * Please, consider moving the reported consoles out
3129                         * of the init section.
3130                         */
3131                        pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3132                                con->name, con->index);
3133                        unregister_console(con);
3134                }
3135        }
3136        ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3137                                        console_cpu_notify);
3138        WARN_ON(ret < 0);
3139        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3140                                        console_cpu_notify, NULL);
3141        WARN_ON(ret < 0);
3142        return 0;
3143}
3144late_initcall(printk_late_init);
3145
3146#if defined CONFIG_PRINTK
3147/*
3148 * Delayed printk version, for scheduler-internal messages:
3149 */
3150#define PRINTK_PENDING_WAKEUP   0x01
3151#define PRINTK_PENDING_OUTPUT   0x02
3152
3153static DEFINE_PER_CPU(int, printk_pending);
3154
3155static void wake_up_klogd_work_func(struct irq_work *irq_work)
3156{
3157        int pending = __this_cpu_xchg(printk_pending, 0);
3158
3159        if (pending & PRINTK_PENDING_OUTPUT) {
3160                /* If trylock fails, someone else is doing the printing */
3161                if (console_trylock())
3162                        console_unlock();
3163        }
3164
3165        if (pending & PRINTK_PENDING_WAKEUP)
3166                wake_up_interruptible(&log_wait);
3167}
3168
3169static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3170        IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3171
3172void wake_up_klogd(void)
3173{
3174        if (!printk_percpu_data_ready())
3175                return;
3176
3177        preempt_disable();
3178        if (waitqueue_active(&log_wait)) {
3179                this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3180                irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3181        }
3182        preempt_enable();
3183}
3184
3185void defer_console_output(void)
3186{
3187        if (!printk_percpu_data_ready())
3188                return;
3189
3190        preempt_disable();
3191        __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3192        irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3193        preempt_enable();
3194}
3195
3196int vprintk_deferred(const char *fmt, va_list args)
3197{
3198        int r;
3199
3200        r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3201        defer_console_output();
3202
3203        return r;
3204}
3205
3206int printk_deferred(const char *fmt, ...)
3207{
3208        va_list args;
3209        int r;
3210
3211        va_start(args, fmt);
3212        r = vprintk_deferred(fmt, args);
3213        va_end(args);
3214
3215        return r;
3216}
3217
3218/*
3219 * printk rate limiting, lifted from the networking subsystem.
3220 *
3221 * This enforces a rate limit: not more than 10 kernel messages
3222 * every 5s to make a denial-of-service attack impossible.
3223 */
3224DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3225
3226int __printk_ratelimit(const char *func)
3227{
3228        return ___ratelimit(&printk_ratelimit_state, func);
3229}
3230EXPORT_SYMBOL(__printk_ratelimit);
3231
3232/**
3233 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3234 * @caller_jiffies: pointer to caller's state
3235 * @interval_msecs: minimum interval between prints
3236 *
3237 * printk_timed_ratelimit() returns true if more than @interval_msecs
3238 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3239 * returned true.
3240 */
3241bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3242                        unsigned int interval_msecs)
3243{
3244        unsigned long elapsed = jiffies - *caller_jiffies;
3245
3246        if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3247                return false;
3248
3249        *caller_jiffies = jiffies;
3250        return true;
3251}
3252EXPORT_SYMBOL(printk_timed_ratelimit);
3253
3254static DEFINE_SPINLOCK(dump_list_lock);
3255static LIST_HEAD(dump_list);
3256
3257/**
3258 * kmsg_dump_register - register a kernel log dumper.
3259 * @dumper: pointer to the kmsg_dumper structure
3260 *
3261 * Adds a kernel log dumper to the system. The dump callback in the
3262 * structure will be called when the kernel oopses or panics and must be
3263 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3264 */
3265int kmsg_dump_register(struct kmsg_dumper *dumper)
3266{
3267        unsigned long flags;
3268        int err = -EBUSY;
3269
3270        /* The dump callback needs to be set */
3271        if (!dumper->dump)
3272                return -EINVAL;
3273
3274        spin_lock_irqsave(&dump_list_lock, flags);
3275        /* Don't allow registering multiple times */
3276        if (!dumper->registered) {
3277                dumper->registered = 1;
3278                list_add_tail_rcu(&dumper->list, &dump_list);
3279                err = 0;
3280        }
3281        spin_unlock_irqrestore(&dump_list_lock, flags);
3282
3283        return err;
3284}
3285EXPORT_SYMBOL_GPL(kmsg_dump_register);
3286
3287/**
3288 * kmsg_dump_unregister - unregister a kmsg dumper.
3289 * @dumper: pointer to the kmsg_dumper structure
3290 *
3291 * Removes a dump device from the system. Returns zero on success and
3292 * %-EINVAL otherwise.
3293 */
3294int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3295{
3296        unsigned long flags;
3297        int err = -EINVAL;
3298
3299        spin_lock_irqsave(&dump_list_lock, flags);
3300        if (dumper->registered) {
3301                dumper->registered = 0;
3302                list_del_rcu(&dumper->list);
3303                err = 0;
3304        }
3305        spin_unlock_irqrestore(&dump_list_lock, flags);
3306        synchronize_rcu();
3307
3308        return err;
3309}
3310EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3311
3312static bool always_kmsg_dump;
3313module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3314
3315const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3316{
3317        switch (reason) {
3318        case KMSG_DUMP_PANIC:
3319                return "Panic";
3320        case KMSG_DUMP_OOPS:
3321                return "Oops";
3322        case KMSG_DUMP_EMERG:
3323                return "Emergency";
3324        case KMSG_DUMP_SHUTDOWN:
3325                return "Shutdown";
3326        default:
3327                return "Unknown";
3328        }
3329}
3330EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3331
3332/**
3333 * kmsg_dump - dump kernel log to kernel message dumpers.
3334 * @reason: the reason (oops, panic etc) for dumping
3335 *
3336 * Call each of the registered dumper's dump() callback, which can
3337 * retrieve the kmsg records with kmsg_dump_get_line() or
3338 * kmsg_dump_get_buffer().
3339 */
3340void kmsg_dump(enum kmsg_dump_reason reason)
3341{
3342        struct kmsg_dumper *dumper;
3343
3344        rcu_read_lock();
3345        list_for_each_entry_rcu(dumper, &dump_list, list) {
3346                enum kmsg_dump_reason max_reason = dumper->max_reason;
3347
3348                /*
3349                 * If client has not provided a specific max_reason, default
3350                 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3351                 */
3352                if (max_reason == KMSG_DUMP_UNDEF) {
3353                        max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3354                                                        KMSG_DUMP_OOPS;
3355                }
3356                if (reason > max_reason)
3357                        continue;
3358
3359                /* invoke dumper which will iterate over records */
3360                dumper->dump(dumper, reason);
3361        }
3362        rcu_read_unlock();
3363}
3364
3365/**
3366 * kmsg_dump_get_line - retrieve one kmsg log line
3367 * @iter: kmsg dump iterator
3368 * @syslog: include the "<4>" prefixes
3369 * @line: buffer to copy the line to
3370 * @size: maximum size of the buffer
3371 * @len: length of line placed into buffer
3372 *
3373 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3374 * record, and copy one record into the provided buffer.
3375 *
3376 * Consecutive calls will return the next available record moving
3377 * towards the end of the buffer with the youngest messages.
3378 *
3379 * A return value of FALSE indicates that there are no more records to
3380 * read.
3381 */
3382bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3383                        char *line, size_t size, size_t *len)
3384{
3385        u64 min_seq = latched_seq_read_nolock(&clear_seq);
3386        struct printk_info info;
3387        unsigned int line_count;
3388        struct printk_record r;
3389        unsigned long flags;
3390        size_t l = 0;
3391        bool ret = false;
3392
3393        if (iter->cur_seq < min_seq)
3394                iter->cur_seq = min_seq;
3395
3396        printk_safe_enter_irqsave(flags);
3397        prb_rec_init_rd(&r, &info, line, size);
3398
3399        /* Read text or count text lines? */
3400        if (line) {
3401                if (!prb_read_valid(prb, iter->cur_seq, &r))
3402                        goto out;
3403                l = record_print_text(&r, syslog, printk_time);
3404        } else {
3405                if (!prb_read_valid_info(prb, iter->cur_seq,
3406                                         &info, &line_count)) {
3407                        goto out;
3408                }
3409                l = get_record_print_text_size(&info, line_count, syslog,
3410                                               printk_time);
3411
3412        }
3413
3414        iter->cur_seq = r.info->seq + 1;
3415        ret = true;
3416out:
3417        printk_safe_exit_irqrestore(flags);
3418        if (len)
3419                *len = l;
3420        return ret;
3421}
3422EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3423
3424/**
3425 * kmsg_dump_get_buffer - copy kmsg log lines
3426 * @iter: kmsg dump iterator
3427 * @syslog: include the "<4>" prefixes
3428 * @buf: buffer to copy the line to
3429 * @size: maximum size of the buffer
3430 * @len_out: length of line placed into buffer
3431 *
3432 * Start at the end of the kmsg buffer and fill the provided buffer
3433 * with as many of the *youngest* kmsg records that fit into it.
3434 * If the buffer is large enough, all available kmsg records will be
3435 * copied with a single call.
3436 *
3437 * Consecutive calls will fill the buffer with the next block of
3438 * available older records, not including the earlier retrieved ones.
3439 *
3440 * A return value of FALSE indicates that there are no more records to
3441 * read.
3442 */
3443bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3444                          char *buf, size_t size, size_t *len_out)
3445{
3446        u64 min_seq = latched_seq_read_nolock(&clear_seq);
3447        struct printk_info info;
3448        struct printk_record r;
3449        unsigned long flags;
3450        u64 seq;
3451        u64 next_seq;
3452        size_t len = 0;
3453        bool ret = false;
3454        bool time = printk_time;
3455
3456        if (!buf || !size)
3457                goto out;
3458
3459        if (iter->cur_seq < min_seq)
3460                iter->cur_seq = min_seq;
3461
3462        printk_safe_enter_irqsave(flags);
3463        if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3464                if (info.seq != iter->cur_seq) {
3465                        /* messages are gone, move to first available one */
3466                        iter->cur_seq = info.seq;
3467                }
3468        }
3469
3470        /* last entry */
3471        if (iter->cur_seq >= iter->next_seq) {
3472                printk_safe_exit_irqrestore(flags);
3473                goto out;
3474        }
3475
3476        /*
3477         * Find first record that fits, including all following records,
3478         * into the user-provided buffer for this dump. Pass in size-1
3479         * because this function (by way of record_print_text()) will
3480         * not write more than size-1 bytes of text into @buf.
3481         */
3482        seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3483                                     size - 1, syslog, time);
3484
3485        /*
3486         * Next kmsg_dump_get_buffer() invocation will dump block of
3487         * older records stored right before this one.
3488         */
3489        next_seq = seq;
3490
3491        prb_rec_init_rd(&r, &info, buf, size);
3492
3493        len = 0;
3494        prb_for_each_record(seq, prb, seq, &r) {
3495                if (r.info->seq >= iter->next_seq)
3496                        break;
3497
3498                len += record_print_text(&r, syslog, time);
3499
3500                /* Adjust record to store to remaining buffer space. */
3501                prb_rec_init_rd(&r, &info, buf + len, size - len);
3502        }
3503
3504        iter->next_seq = next_seq;
3505        ret = true;
3506        printk_safe_exit_irqrestore(flags);
3507out:
3508        if (len_out)
3509                *len_out = len;
3510        return ret;
3511}
3512EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3513
3514/**
3515 * kmsg_dump_rewind - reset the iterator
3516 * @iter: kmsg dump iterator
3517 *
3518 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3519 * kmsg_dump_get_buffer() can be called again and used multiple
3520 * times within the same dumper.dump() callback.
3521 */
3522void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3523{
3524        unsigned long flags;
3525
3526        printk_safe_enter_irqsave(flags);
3527        iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3528        iter->next_seq = prb_next_seq(prb);
3529        printk_safe_exit_irqrestore(flags);
3530}
3531EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3532
3533#endif
3534
3535#ifdef CONFIG_SMP
3536static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3537static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3538
3539/**
3540 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3541 *                               spinning lock is not owned by any CPU.
3542 *
3543 * Context: Any context.
3544 */
3545void __printk_wait_on_cpu_lock(void)
3546{
3547        do {
3548                cpu_relax();
3549        } while (atomic_read(&printk_cpulock_owner) != -1);
3550}
3551EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3552
3553/**
3554 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3555 *                          spinning lock.
3556 *
3557 * If no processor has the lock, the calling processor takes the lock and
3558 * becomes the owner. If the calling processor is already the owner of the
3559 * lock, this function succeeds immediately.
3560 *
3561 * Context: Any context. Expects interrupts to be disabled.
3562 * Return: 1 on success, otherwise 0.
3563 */
3564int __printk_cpu_trylock(void)
3565{
3566        int cpu;
3567        int old;
3568
3569        cpu = smp_processor_id();
3570
3571        /*
3572         * Guarantee loads and stores from this CPU when it is the lock owner
3573         * are _not_ visible to the previous lock owner. This pairs with
3574         * __printk_cpu_unlock:B.
3575         *
3576         * Memory barrier involvement:
3577         *
3578         * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3579         * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3580         *
3581         * Relies on:
3582         *
3583         * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3584         * of the previous CPU
3585         *    matching
3586         * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3587         * of this CPU
3588         */
3589        old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3590                                     cpu); /* LMM(__printk_cpu_trylock:A) */
3591        if (old == -1) {
3592                /*
3593                 * This CPU is now the owner and begins loading/storing
3594                 * data: LMM(__printk_cpu_trylock:B)
3595                 */
3596                return 1;
3597
3598        } else if (old == cpu) {
3599                /* This CPU is already the owner. */
3600                atomic_inc(&printk_cpulock_nested);
3601                return 1;
3602        }
3603
3604        return 0;
3605}
3606EXPORT_SYMBOL(__printk_cpu_trylock);
3607
3608/**
3609 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3610 *
3611 * The calling processor must be the owner of the lock.
3612 *
3613 * Context: Any context. Expects interrupts to be disabled.
3614 */
3615void __printk_cpu_unlock(void)
3616{
3617        if (atomic_read(&printk_cpulock_nested)) {
3618                atomic_dec(&printk_cpulock_nested);
3619                return;
3620        }
3621
3622        /*
3623         * This CPU is finished loading/storing data:
3624         * LMM(__printk_cpu_unlock:A)
3625         */
3626
3627        /*
3628         * Guarantee loads and stores from this CPU when it was the
3629         * lock owner are visible to the next lock owner. This pairs
3630         * with __printk_cpu_trylock:A.
3631         *
3632         * Memory barrier involvement:
3633         *
3634         * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3635         * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3636         *
3637         * Relies on:
3638         *
3639         * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3640         * of this CPU
3641         *    matching
3642         * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3643         * of the next CPU
3644         */
3645        atomic_set_release(&printk_cpulock_owner,
3646                           -1); /* LMM(__printk_cpu_unlock:B) */
3647}
3648EXPORT_SYMBOL(__printk_cpu_unlock);
3649#endif /* CONFIG_SMP */
3650