linux/kernel/sched/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#define CREATE_TRACE_POINTS
  10#include <trace/events/sched.h>
  11#undef CREATE_TRACE_POINTS
  12
  13#include "sched.h"
  14
  15#include <linux/nospec.h>
  16
  17#include <linux/kcov.h>
  18#include <linux/scs.h>
  19
  20#include <asm/switch_to.h>
  21#include <asm/tlb.h>
  22
  23#include "../workqueue_internal.h"
  24#include "../../fs/io-wq.h"
  25#include "../smpboot.h"
  26
  27#include "pelt.h"
  28#include "smp.h"
  29
  30/*
  31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  32 * associated with them) to allow external modules to probe them.
  33 */
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
  40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  44
  45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  46
  47#ifdef CONFIG_SCHED_DEBUG
  48/*
  49 * Debugging: various feature bits
  50 *
  51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  53 * at compile time and compiler optimization based on features default.
  54 */
  55#define SCHED_FEAT(name, enabled)       \
  56        (1UL << __SCHED_FEAT_##name) * enabled |
  57const_debug unsigned int sysctl_sched_features =
  58#include "features.h"
  59        0;
  60#undef SCHED_FEAT
  61
  62/*
  63 * Print a warning if need_resched is set for the given duration (if
  64 * LATENCY_WARN is enabled).
  65 *
  66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
  67 * per boot.
  68 */
  69__read_mostly int sysctl_resched_latency_warn_ms = 100;
  70__read_mostly int sysctl_resched_latency_warn_once = 1;
  71#endif /* CONFIG_SCHED_DEBUG */
  72
  73/*
  74 * Number of tasks to iterate in a single balance run.
  75 * Limited because this is done with IRQs disabled.
  76 */
  77const_debug unsigned int sysctl_sched_nr_migrate = 32;
  78
  79/*
  80 * period over which we measure -rt task CPU usage in us.
  81 * default: 1s
  82 */
  83unsigned int sysctl_sched_rt_period = 1000000;
  84
  85__read_mostly int scheduler_running;
  86
  87#ifdef CONFIG_SCHED_CORE
  88
  89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
  90
  91/* kernel prio, less is more */
  92static inline int __task_prio(struct task_struct *p)
  93{
  94        if (p->sched_class == &stop_sched_class) /* trumps deadline */
  95                return -2;
  96
  97        if (rt_prio(p->prio)) /* includes deadline */
  98                return p->prio; /* [-1, 99] */
  99
 100        if (p->sched_class == &idle_sched_class)
 101                return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
 102
 103        return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
 104}
 105
 106/*
 107 * l(a,b)
 108 * le(a,b) := !l(b,a)
 109 * g(a,b)  := l(b,a)
 110 * ge(a,b) := !l(a,b)
 111 */
 112
 113/* real prio, less is less */
 114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
 115{
 116
 117        int pa = __task_prio(a), pb = __task_prio(b);
 118
 119        if (-pa < -pb)
 120                return true;
 121
 122        if (-pb < -pa)
 123                return false;
 124
 125        if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
 126                return !dl_time_before(a->dl.deadline, b->dl.deadline);
 127
 128        if (pa == MAX_RT_PRIO + MAX_NICE)       /* fair */
 129                return cfs_prio_less(a, b, in_fi);
 130
 131        return false;
 132}
 133
 134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
 135{
 136        if (a->core_cookie < b->core_cookie)
 137                return true;
 138
 139        if (a->core_cookie > b->core_cookie)
 140                return false;
 141
 142        /* flip prio, so high prio is leftmost */
 143        if (prio_less(b, a, task_rq(a)->core->core_forceidle))
 144                return true;
 145
 146        return false;
 147}
 148
 149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
 150
 151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
 152{
 153        return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
 154}
 155
 156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
 157{
 158        const struct task_struct *p = __node_2_sc(node);
 159        unsigned long cookie = (unsigned long)key;
 160
 161        if (cookie < p->core_cookie)
 162                return -1;
 163
 164        if (cookie > p->core_cookie)
 165                return 1;
 166
 167        return 0;
 168}
 169
 170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
 171{
 172        rq->core->core_task_seq++;
 173
 174        if (!p->core_cookie)
 175                return;
 176
 177        rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
 178}
 179
 180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
 181{
 182        rq->core->core_task_seq++;
 183
 184        if (!sched_core_enqueued(p))
 185                return;
 186
 187        rb_erase(&p->core_node, &rq->core_tree);
 188        RB_CLEAR_NODE(&p->core_node);
 189}
 190
 191/*
 192 * Find left-most (aka, highest priority) task matching @cookie.
 193 */
 194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
 195{
 196        struct rb_node *node;
 197
 198        node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
 199        /*
 200         * The idle task always matches any cookie!
 201         */
 202        if (!node)
 203                return idle_sched_class.pick_task(rq);
 204
 205        return __node_2_sc(node);
 206}
 207
 208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
 209{
 210        struct rb_node *node = &p->core_node;
 211
 212        node = rb_next(node);
 213        if (!node)
 214                return NULL;
 215
 216        p = container_of(node, struct task_struct, core_node);
 217        if (p->core_cookie != cookie)
 218                return NULL;
 219
 220        return p;
 221}
 222
 223/*
 224 * Magic required such that:
 225 *
 226 *      raw_spin_rq_lock(rq);
 227 *      ...
 228 *      raw_spin_rq_unlock(rq);
 229 *
 230 * ends up locking and unlocking the _same_ lock, and all CPUs
 231 * always agree on what rq has what lock.
 232 *
 233 * XXX entirely possible to selectively enable cores, don't bother for now.
 234 */
 235
 236static DEFINE_MUTEX(sched_core_mutex);
 237static atomic_t sched_core_count;
 238static struct cpumask sched_core_mask;
 239
 240static void sched_core_lock(int cpu, unsigned long *flags)
 241{
 242        const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 243        int t, i = 0;
 244
 245        local_irq_save(*flags);
 246        for_each_cpu(t, smt_mask)
 247                raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
 248}
 249
 250static void sched_core_unlock(int cpu, unsigned long *flags)
 251{
 252        const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 253        int t;
 254
 255        for_each_cpu(t, smt_mask)
 256                raw_spin_unlock(&cpu_rq(t)->__lock);
 257        local_irq_restore(*flags);
 258}
 259
 260static void __sched_core_flip(bool enabled)
 261{
 262        unsigned long flags;
 263        int cpu, t;
 264
 265        cpus_read_lock();
 266
 267        /*
 268         * Toggle the online cores, one by one.
 269         */
 270        cpumask_copy(&sched_core_mask, cpu_online_mask);
 271        for_each_cpu(cpu, &sched_core_mask) {
 272                const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 273
 274                sched_core_lock(cpu, &flags);
 275
 276                for_each_cpu(t, smt_mask)
 277                        cpu_rq(t)->core_enabled = enabled;
 278
 279                sched_core_unlock(cpu, &flags);
 280
 281                cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
 282        }
 283
 284        /*
 285         * Toggle the offline CPUs.
 286         */
 287        cpumask_copy(&sched_core_mask, cpu_possible_mask);
 288        cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
 289
 290        for_each_cpu(cpu, &sched_core_mask)
 291                cpu_rq(cpu)->core_enabled = enabled;
 292
 293        cpus_read_unlock();
 294}
 295
 296static void sched_core_assert_empty(void)
 297{
 298        int cpu;
 299
 300        for_each_possible_cpu(cpu)
 301                WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
 302}
 303
 304static void __sched_core_enable(void)
 305{
 306        static_branch_enable(&__sched_core_enabled);
 307        /*
 308         * Ensure all previous instances of raw_spin_rq_*lock() have finished
 309         * and future ones will observe !sched_core_disabled().
 310         */
 311        synchronize_rcu();
 312        __sched_core_flip(true);
 313        sched_core_assert_empty();
 314}
 315
 316static void __sched_core_disable(void)
 317{
 318        sched_core_assert_empty();
 319        __sched_core_flip(false);
 320        static_branch_disable(&__sched_core_enabled);
 321}
 322
 323void sched_core_get(void)
 324{
 325        if (atomic_inc_not_zero(&sched_core_count))
 326                return;
 327
 328        mutex_lock(&sched_core_mutex);
 329        if (!atomic_read(&sched_core_count))
 330                __sched_core_enable();
 331
 332        smp_mb__before_atomic();
 333        atomic_inc(&sched_core_count);
 334        mutex_unlock(&sched_core_mutex);
 335}
 336
 337static void __sched_core_put(struct work_struct *work)
 338{
 339        if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
 340                __sched_core_disable();
 341                mutex_unlock(&sched_core_mutex);
 342        }
 343}
 344
 345void sched_core_put(void)
 346{
 347        static DECLARE_WORK(_work, __sched_core_put);
 348
 349        /*
 350         * "There can be only one"
 351         *
 352         * Either this is the last one, or we don't actually need to do any
 353         * 'work'. If it is the last *again*, we rely on
 354         * WORK_STRUCT_PENDING_BIT.
 355         */
 356        if (!atomic_add_unless(&sched_core_count, -1, 1))
 357                schedule_work(&_work);
 358}
 359
 360#else /* !CONFIG_SCHED_CORE */
 361
 362static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
 363static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
 364
 365#endif /* CONFIG_SCHED_CORE */
 366
 367/*
 368 * part of the period that we allow rt tasks to run in us.
 369 * default: 0.95s
 370 */
 371int sysctl_sched_rt_runtime = 950000;
 372
 373
 374/*
 375 * Serialization rules:
 376 *
 377 * Lock order:
 378 *
 379 *   p->pi_lock
 380 *     rq->lock
 381 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
 382 *
 383 *  rq1->lock
 384 *    rq2->lock  where: rq1 < rq2
 385 *
 386 * Regular state:
 387 *
 388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
 389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
 390 * always looks at the local rq data structures to find the most eligible task
 391 * to run next.
 392 *
 393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
 394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
 395 * the local CPU to avoid bouncing the runqueue state around [ see
 396 * ttwu_queue_wakelist() ]
 397 *
 398 * Task wakeup, specifically wakeups that involve migration, are horribly
 399 * complicated to avoid having to take two rq->locks.
 400 *
 401 * Special state:
 402 *
 403 * System-calls and anything external will use task_rq_lock() which acquires
 404 * both p->pi_lock and rq->lock. As a consequence the state they change is
 405 * stable while holding either lock:
 406 *
 407 *  - sched_setaffinity()/
 408 *    set_cpus_allowed_ptr():   p->cpus_ptr, p->nr_cpus_allowed
 409 *  - set_user_nice():          p->se.load, p->*prio
 410 *  - __sched_setscheduler():   p->sched_class, p->policy, p->*prio,
 411 *                              p->se.load, p->rt_priority,
 412 *                              p->dl.dl_{runtime, deadline, period, flags, bw, density}
 413 *  - sched_setnuma():          p->numa_preferred_nid
 414 *  - sched_move_task()/
 415 *    cpu_cgroup_fork():        p->sched_task_group
 416 *  - uclamp_update_active()    p->uclamp*
 417 *
 418 * p->state <- TASK_*:
 419 *
 420 *   is changed locklessly using set_current_state(), __set_current_state() or
 421 *   set_special_state(), see their respective comments, or by
 422 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
 423 *   concurrent self.
 424 *
 425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
 426 *
 427 *   is set by activate_task() and cleared by deactivate_task(), under
 428 *   rq->lock. Non-zero indicates the task is runnable, the special
 429 *   ON_RQ_MIGRATING state is used for migration without holding both
 430 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
 431 *
 432 * p->on_cpu <- { 0, 1 }:
 433 *
 434 *   is set by prepare_task() and cleared by finish_task() such that it will be
 435 *   set before p is scheduled-in and cleared after p is scheduled-out, both
 436 *   under rq->lock. Non-zero indicates the task is running on its CPU.
 437 *
 438 *   [ The astute reader will observe that it is possible for two tasks on one
 439 *     CPU to have ->on_cpu = 1 at the same time. ]
 440 *
 441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
 442 *
 443 *  - Don't call set_task_cpu() on a blocked task:
 444 *
 445 *    We don't care what CPU we're not running on, this simplifies hotplug,
 446 *    the CPU assignment of blocked tasks isn't required to be valid.
 447 *
 448 *  - for try_to_wake_up(), called under p->pi_lock:
 449 *
 450 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
 451 *
 452 *  - for migration called under rq->lock:
 453 *    [ see task_on_rq_migrating() in task_rq_lock() ]
 454 *
 455 *    o move_queued_task()
 456 *    o detach_task()
 457 *
 458 *  - for migration called under double_rq_lock():
 459 *
 460 *    o __migrate_swap_task()
 461 *    o push_rt_task() / pull_rt_task()
 462 *    o push_dl_task() / pull_dl_task()
 463 *    o dl_task_offline_migration()
 464 *
 465 */
 466
 467void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
 468{
 469        raw_spinlock_t *lock;
 470
 471        /* Matches synchronize_rcu() in __sched_core_enable() */
 472        preempt_disable();
 473        if (sched_core_disabled()) {
 474                raw_spin_lock_nested(&rq->__lock, subclass);
 475                /* preempt_count *MUST* be > 1 */
 476                preempt_enable_no_resched();
 477                return;
 478        }
 479
 480        for (;;) {
 481                lock = __rq_lockp(rq);
 482                raw_spin_lock_nested(lock, subclass);
 483                if (likely(lock == __rq_lockp(rq))) {
 484                        /* preempt_count *MUST* be > 1 */
 485                        preempt_enable_no_resched();
 486                        return;
 487                }
 488                raw_spin_unlock(lock);
 489        }
 490}
 491
 492bool raw_spin_rq_trylock(struct rq *rq)
 493{
 494        raw_spinlock_t *lock;
 495        bool ret;
 496
 497        /* Matches synchronize_rcu() in __sched_core_enable() */
 498        preempt_disable();
 499        if (sched_core_disabled()) {
 500                ret = raw_spin_trylock(&rq->__lock);
 501                preempt_enable();
 502                return ret;
 503        }
 504
 505        for (;;) {
 506                lock = __rq_lockp(rq);
 507                ret = raw_spin_trylock(lock);
 508                if (!ret || (likely(lock == __rq_lockp(rq)))) {
 509                        preempt_enable();
 510                        return ret;
 511                }
 512                raw_spin_unlock(lock);
 513        }
 514}
 515
 516void raw_spin_rq_unlock(struct rq *rq)
 517{
 518        raw_spin_unlock(rq_lockp(rq));
 519}
 520
 521#ifdef CONFIG_SMP
 522/*
 523 * double_rq_lock - safely lock two runqueues
 524 */
 525void double_rq_lock(struct rq *rq1, struct rq *rq2)
 526{
 527        lockdep_assert_irqs_disabled();
 528
 529        if (rq_order_less(rq2, rq1))
 530                swap(rq1, rq2);
 531
 532        raw_spin_rq_lock(rq1);
 533        if (__rq_lockp(rq1) == __rq_lockp(rq2))
 534                return;
 535
 536        raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
 537}
 538#endif
 539
 540/*
 541 * __task_rq_lock - lock the rq @p resides on.
 542 */
 543struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 544        __acquires(rq->lock)
 545{
 546        struct rq *rq;
 547
 548        lockdep_assert_held(&p->pi_lock);
 549
 550        for (;;) {
 551                rq = task_rq(p);
 552                raw_spin_rq_lock(rq);
 553                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 554                        rq_pin_lock(rq, rf);
 555                        return rq;
 556                }
 557                raw_spin_rq_unlock(rq);
 558
 559                while (unlikely(task_on_rq_migrating(p)))
 560                        cpu_relax();
 561        }
 562}
 563
 564/*
 565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 566 */
 567struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 568        __acquires(p->pi_lock)
 569        __acquires(rq->lock)
 570{
 571        struct rq *rq;
 572
 573        for (;;) {
 574                raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 575                rq = task_rq(p);
 576                raw_spin_rq_lock(rq);
 577                /*
 578                 *      move_queued_task()              task_rq_lock()
 579                 *
 580                 *      ACQUIRE (rq->lock)
 581                 *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
 582                 *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
 583                 *      [S] ->cpu = new_cpu             [L] task_rq()
 584                 *                                      [L] ->on_rq
 585                 *      RELEASE (rq->lock)
 586                 *
 587                 * If we observe the old CPU in task_rq_lock(), the acquire of
 588                 * the old rq->lock will fully serialize against the stores.
 589                 *
 590                 * If we observe the new CPU in task_rq_lock(), the address
 591                 * dependency headed by '[L] rq = task_rq()' and the acquire
 592                 * will pair with the WMB to ensure we then also see migrating.
 593                 */
 594                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 595                        rq_pin_lock(rq, rf);
 596                        return rq;
 597                }
 598                raw_spin_rq_unlock(rq);
 599                raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 600
 601                while (unlikely(task_on_rq_migrating(p)))
 602                        cpu_relax();
 603        }
 604}
 605
 606/*
 607 * RQ-clock updating methods:
 608 */
 609
 610static void update_rq_clock_task(struct rq *rq, s64 delta)
 611{
 612/*
 613 * In theory, the compile should just see 0 here, and optimize out the call
 614 * to sched_rt_avg_update. But I don't trust it...
 615 */
 616        s64 __maybe_unused steal = 0, irq_delta = 0;
 617
 618#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 619        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 620
 621        /*
 622         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 623         * this case when a previous update_rq_clock() happened inside a
 624         * {soft,}irq region.
 625         *
 626         * When this happens, we stop ->clock_task and only update the
 627         * prev_irq_time stamp to account for the part that fit, so that a next
 628         * update will consume the rest. This ensures ->clock_task is
 629         * monotonic.
 630         *
 631         * It does however cause some slight miss-attribution of {soft,}irq
 632         * time, a more accurate solution would be to update the irq_time using
 633         * the current rq->clock timestamp, except that would require using
 634         * atomic ops.
 635         */
 636        if (irq_delta > delta)
 637                irq_delta = delta;
 638
 639        rq->prev_irq_time += irq_delta;
 640        delta -= irq_delta;
 641#endif
 642#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 643        if (static_key_false((&paravirt_steal_rq_enabled))) {
 644                steal = paravirt_steal_clock(cpu_of(rq));
 645                steal -= rq->prev_steal_time_rq;
 646
 647                if (unlikely(steal > delta))
 648                        steal = delta;
 649
 650                rq->prev_steal_time_rq += steal;
 651                delta -= steal;
 652        }
 653#endif
 654
 655        rq->clock_task += delta;
 656
 657#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 658        if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 659                update_irq_load_avg(rq, irq_delta + steal);
 660#endif
 661        update_rq_clock_pelt(rq, delta);
 662}
 663
 664void update_rq_clock(struct rq *rq)
 665{
 666        s64 delta;
 667
 668        lockdep_assert_rq_held(rq);
 669
 670        if (rq->clock_update_flags & RQCF_ACT_SKIP)
 671                return;
 672
 673#ifdef CONFIG_SCHED_DEBUG
 674        if (sched_feat(WARN_DOUBLE_CLOCK))
 675                SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 676        rq->clock_update_flags |= RQCF_UPDATED;
 677#endif
 678
 679        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 680        if (delta < 0)
 681                return;
 682        rq->clock += delta;
 683        update_rq_clock_task(rq, delta);
 684}
 685
 686#ifdef CONFIG_SCHED_HRTICK
 687/*
 688 * Use HR-timers to deliver accurate preemption points.
 689 */
 690
 691static void hrtick_clear(struct rq *rq)
 692{
 693        if (hrtimer_active(&rq->hrtick_timer))
 694                hrtimer_cancel(&rq->hrtick_timer);
 695}
 696
 697/*
 698 * High-resolution timer tick.
 699 * Runs from hardirq context with interrupts disabled.
 700 */
 701static enum hrtimer_restart hrtick(struct hrtimer *timer)
 702{
 703        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 704        struct rq_flags rf;
 705
 706        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 707
 708        rq_lock(rq, &rf);
 709        update_rq_clock(rq);
 710        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 711        rq_unlock(rq, &rf);
 712
 713        return HRTIMER_NORESTART;
 714}
 715
 716#ifdef CONFIG_SMP
 717
 718static void __hrtick_restart(struct rq *rq)
 719{
 720        struct hrtimer *timer = &rq->hrtick_timer;
 721        ktime_t time = rq->hrtick_time;
 722
 723        hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
 724}
 725
 726/*
 727 * called from hardirq (IPI) context
 728 */
 729static void __hrtick_start(void *arg)
 730{
 731        struct rq *rq = arg;
 732        struct rq_flags rf;
 733
 734        rq_lock(rq, &rf);
 735        __hrtick_restart(rq);
 736        rq_unlock(rq, &rf);
 737}
 738
 739/*
 740 * Called to set the hrtick timer state.
 741 *
 742 * called with rq->lock held and irqs disabled
 743 */
 744void hrtick_start(struct rq *rq, u64 delay)
 745{
 746        struct hrtimer *timer = &rq->hrtick_timer;
 747        s64 delta;
 748
 749        /*
 750         * Don't schedule slices shorter than 10000ns, that just
 751         * doesn't make sense and can cause timer DoS.
 752         */
 753        delta = max_t(s64, delay, 10000LL);
 754        rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
 755
 756        if (rq == this_rq())
 757                __hrtick_restart(rq);
 758        else
 759                smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 760}
 761
 762#else
 763/*
 764 * Called to set the hrtick timer state.
 765 *
 766 * called with rq->lock held and irqs disabled
 767 */
 768void hrtick_start(struct rq *rq, u64 delay)
 769{
 770        /*
 771         * Don't schedule slices shorter than 10000ns, that just
 772         * doesn't make sense. Rely on vruntime for fairness.
 773         */
 774        delay = max_t(u64, delay, 10000LL);
 775        hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 776                      HRTIMER_MODE_REL_PINNED_HARD);
 777}
 778
 779#endif /* CONFIG_SMP */
 780
 781static void hrtick_rq_init(struct rq *rq)
 782{
 783#ifdef CONFIG_SMP
 784        INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
 785#endif
 786        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 787        rq->hrtick_timer.function = hrtick;
 788}
 789#else   /* CONFIG_SCHED_HRTICK */
 790static inline void hrtick_clear(struct rq *rq)
 791{
 792}
 793
 794static inline void hrtick_rq_init(struct rq *rq)
 795{
 796}
 797#endif  /* CONFIG_SCHED_HRTICK */
 798
 799/*
 800 * cmpxchg based fetch_or, macro so it works for different integer types
 801 */
 802#define fetch_or(ptr, mask)                                             \
 803        ({                                                              \
 804                typeof(ptr) _ptr = (ptr);                               \
 805                typeof(mask) _mask = (mask);                            \
 806                typeof(*_ptr) _old, _val = *_ptr;                       \
 807                                                                        \
 808                for (;;) {                                              \
 809                        _old = cmpxchg(_ptr, _val, _val | _mask);       \
 810                        if (_old == _val)                               \
 811                                break;                                  \
 812                        _val = _old;                                    \
 813                }                                                       \
 814        _old;                                                           \
 815})
 816
 817#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 818/*
 819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 820 * this avoids any races wrt polling state changes and thereby avoids
 821 * spurious IPIs.
 822 */
 823static bool set_nr_and_not_polling(struct task_struct *p)
 824{
 825        struct thread_info *ti = task_thread_info(p);
 826        return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 827}
 828
 829/*
 830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 831 *
 832 * If this returns true, then the idle task promises to call
 833 * sched_ttwu_pending() and reschedule soon.
 834 */
 835static bool set_nr_if_polling(struct task_struct *p)
 836{
 837        struct thread_info *ti = task_thread_info(p);
 838        typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 839
 840        for (;;) {
 841                if (!(val & _TIF_POLLING_NRFLAG))
 842                        return false;
 843                if (val & _TIF_NEED_RESCHED)
 844                        return true;
 845                old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 846                if (old == val)
 847                        break;
 848                val = old;
 849        }
 850        return true;
 851}
 852
 853#else
 854static bool set_nr_and_not_polling(struct task_struct *p)
 855{
 856        set_tsk_need_resched(p);
 857        return true;
 858}
 859
 860#ifdef CONFIG_SMP
 861static bool set_nr_if_polling(struct task_struct *p)
 862{
 863        return false;
 864}
 865#endif
 866#endif
 867
 868static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 869{
 870        struct wake_q_node *node = &task->wake_q;
 871
 872        /*
 873         * Atomically grab the task, if ->wake_q is !nil already it means
 874         * it's already queued (either by us or someone else) and will get the
 875         * wakeup due to that.
 876         *
 877         * In order to ensure that a pending wakeup will observe our pending
 878         * state, even in the failed case, an explicit smp_mb() must be used.
 879         */
 880        smp_mb__before_atomic();
 881        if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 882                return false;
 883
 884        /*
 885         * The head is context local, there can be no concurrency.
 886         */
 887        *head->lastp = node;
 888        head->lastp = &node->next;
 889        return true;
 890}
 891
 892/**
 893 * wake_q_add() - queue a wakeup for 'later' waking.
 894 * @head: the wake_q_head to add @task to
 895 * @task: the task to queue for 'later' wakeup
 896 *
 897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 899 * instantly.
 900 *
 901 * This function must be used as-if it were wake_up_process(); IOW the task
 902 * must be ready to be woken at this location.
 903 */
 904void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 905{
 906        if (__wake_q_add(head, task))
 907                get_task_struct(task);
 908}
 909
 910/**
 911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 912 * @head: the wake_q_head to add @task to
 913 * @task: the task to queue for 'later' wakeup
 914 *
 915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 917 * instantly.
 918 *
 919 * This function must be used as-if it were wake_up_process(); IOW the task
 920 * must be ready to be woken at this location.
 921 *
 922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 923 * that already hold reference to @task can call the 'safe' version and trust
 924 * wake_q to do the right thing depending whether or not the @task is already
 925 * queued for wakeup.
 926 */
 927void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 928{
 929        if (!__wake_q_add(head, task))
 930                put_task_struct(task);
 931}
 932
 933void wake_up_q(struct wake_q_head *head)
 934{
 935        struct wake_q_node *node = head->first;
 936
 937        while (node != WAKE_Q_TAIL) {
 938                struct task_struct *task;
 939
 940                task = container_of(node, struct task_struct, wake_q);
 941                /* Task can safely be re-inserted now: */
 942                node = node->next;
 943                task->wake_q.next = NULL;
 944
 945                /*
 946                 * wake_up_process() executes a full barrier, which pairs with
 947                 * the queueing in wake_q_add() so as not to miss wakeups.
 948                 */
 949                wake_up_process(task);
 950                put_task_struct(task);
 951        }
 952}
 953
 954/*
 955 * resched_curr - mark rq's current task 'to be rescheduled now'.
 956 *
 957 * On UP this means the setting of the need_resched flag, on SMP it
 958 * might also involve a cross-CPU call to trigger the scheduler on
 959 * the target CPU.
 960 */
 961void resched_curr(struct rq *rq)
 962{
 963        struct task_struct *curr = rq->curr;
 964        int cpu;
 965
 966        lockdep_assert_rq_held(rq);
 967
 968        if (test_tsk_need_resched(curr))
 969                return;
 970
 971        cpu = cpu_of(rq);
 972
 973        if (cpu == smp_processor_id()) {
 974                set_tsk_need_resched(curr);
 975                set_preempt_need_resched();
 976                return;
 977        }
 978
 979        if (set_nr_and_not_polling(curr))
 980                smp_send_reschedule(cpu);
 981        else
 982                trace_sched_wake_idle_without_ipi(cpu);
 983}
 984
 985void resched_cpu(int cpu)
 986{
 987        struct rq *rq = cpu_rq(cpu);
 988        unsigned long flags;
 989
 990        raw_spin_rq_lock_irqsave(rq, flags);
 991        if (cpu_online(cpu) || cpu == smp_processor_id())
 992                resched_curr(rq);
 993        raw_spin_rq_unlock_irqrestore(rq, flags);
 994}
 995
 996#ifdef CONFIG_SMP
 997#ifdef CONFIG_NO_HZ_COMMON
 998/*
 999 * In the semi idle case, use the nearest busy CPU for migrating timers
1000 * from an idle CPU.  This is good for power-savings.
1001 *
1002 * We don't do similar optimization for completely idle system, as
1003 * selecting an idle CPU will add more delays to the timers than intended
1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005 */
1006int get_nohz_timer_target(void)
1007{
1008        int i, cpu = smp_processor_id(), default_cpu = -1;
1009        struct sched_domain *sd;
1010
1011        if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1012                if (!idle_cpu(cpu))
1013                        return cpu;
1014                default_cpu = cpu;
1015        }
1016
1017        rcu_read_lock();
1018        for_each_domain(cpu, sd) {
1019                for_each_cpu_and(i, sched_domain_span(sd),
1020                        housekeeping_cpumask(HK_FLAG_TIMER)) {
1021                        if (cpu == i)
1022                                continue;
1023
1024                        if (!idle_cpu(i)) {
1025                                cpu = i;
1026                                goto unlock;
1027                        }
1028                }
1029        }
1030
1031        if (default_cpu == -1)
1032                default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1033        cpu = default_cpu;
1034unlock:
1035        rcu_read_unlock();
1036        return cpu;
1037}
1038
1039/*
1040 * When add_timer_on() enqueues a timer into the timer wheel of an
1041 * idle CPU then this timer might expire before the next timer event
1042 * which is scheduled to wake up that CPU. In case of a completely
1043 * idle system the next event might even be infinite time into the
1044 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1045 * leaves the inner idle loop so the newly added timer is taken into
1046 * account when the CPU goes back to idle and evaluates the timer
1047 * wheel for the next timer event.
1048 */
1049static void wake_up_idle_cpu(int cpu)
1050{
1051        struct rq *rq = cpu_rq(cpu);
1052
1053        if (cpu == smp_processor_id())
1054                return;
1055
1056        if (set_nr_and_not_polling(rq->idle))
1057                smp_send_reschedule(cpu);
1058        else
1059                trace_sched_wake_idle_without_ipi(cpu);
1060}
1061
1062static bool wake_up_full_nohz_cpu(int cpu)
1063{
1064        /*
1065         * We just need the target to call irq_exit() and re-evaluate
1066         * the next tick. The nohz full kick at least implies that.
1067         * If needed we can still optimize that later with an
1068         * empty IRQ.
1069         */
1070        if (cpu_is_offline(cpu))
1071                return true;  /* Don't try to wake offline CPUs. */
1072        if (tick_nohz_full_cpu(cpu)) {
1073                if (cpu != smp_processor_id() ||
1074                    tick_nohz_tick_stopped())
1075                        tick_nohz_full_kick_cpu(cpu);
1076                return true;
1077        }
1078
1079        return false;
1080}
1081
1082/*
1083 * Wake up the specified CPU.  If the CPU is going offline, it is the
1084 * caller's responsibility to deal with the lost wakeup, for example,
1085 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1086 */
1087void wake_up_nohz_cpu(int cpu)
1088{
1089        if (!wake_up_full_nohz_cpu(cpu))
1090                wake_up_idle_cpu(cpu);
1091}
1092
1093static void nohz_csd_func(void *info)
1094{
1095        struct rq *rq = info;
1096        int cpu = cpu_of(rq);
1097        unsigned int flags;
1098
1099        /*
1100         * Release the rq::nohz_csd.
1101         */
1102        flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1103        WARN_ON(!(flags & NOHZ_KICK_MASK));
1104
1105        rq->idle_balance = idle_cpu(cpu);
1106        if (rq->idle_balance && !need_resched()) {
1107                rq->nohz_idle_balance = flags;
1108                raise_softirq_irqoff(SCHED_SOFTIRQ);
1109        }
1110}
1111
1112#endif /* CONFIG_NO_HZ_COMMON */
1113
1114#ifdef CONFIG_NO_HZ_FULL
1115bool sched_can_stop_tick(struct rq *rq)
1116{
1117        int fifo_nr_running;
1118
1119        /* Deadline tasks, even if single, need the tick */
1120        if (rq->dl.dl_nr_running)
1121                return false;
1122
1123        /*
1124         * If there are more than one RR tasks, we need the tick to affect the
1125         * actual RR behaviour.
1126         */
1127        if (rq->rt.rr_nr_running) {
1128                if (rq->rt.rr_nr_running == 1)
1129                        return true;
1130                else
1131                        return false;
1132        }
1133
1134        /*
1135         * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1136         * forced preemption between FIFO tasks.
1137         */
1138        fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1139        if (fifo_nr_running)
1140                return true;
1141
1142        /*
1143         * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1144         * if there's more than one we need the tick for involuntary
1145         * preemption.
1146         */
1147        if (rq->nr_running > 1)
1148                return false;
1149
1150        return true;
1151}
1152#endif /* CONFIG_NO_HZ_FULL */
1153#endif /* CONFIG_SMP */
1154
1155#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1156                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1157/*
1158 * Iterate task_group tree rooted at *from, calling @down when first entering a
1159 * node and @up when leaving it for the final time.
1160 *
1161 * Caller must hold rcu_lock or sufficient equivalent.
1162 */
1163int walk_tg_tree_from(struct task_group *from,
1164                             tg_visitor down, tg_visitor up, void *data)
1165{
1166        struct task_group *parent, *child;
1167        int ret;
1168
1169        parent = from;
1170
1171down:
1172        ret = (*down)(parent, data);
1173        if (ret)
1174                goto out;
1175        list_for_each_entry_rcu(child, &parent->children, siblings) {
1176                parent = child;
1177                goto down;
1178
1179up:
1180                continue;
1181        }
1182        ret = (*up)(parent, data);
1183        if (ret || parent == from)
1184                goto out;
1185
1186        child = parent;
1187        parent = parent->parent;
1188        if (parent)
1189                goto up;
1190out:
1191        return ret;
1192}
1193
1194int tg_nop(struct task_group *tg, void *data)
1195{
1196        return 0;
1197}
1198#endif
1199
1200static void set_load_weight(struct task_struct *p, bool update_load)
1201{
1202        int prio = p->static_prio - MAX_RT_PRIO;
1203        struct load_weight *load = &p->se.load;
1204
1205        /*
1206         * SCHED_IDLE tasks get minimal weight:
1207         */
1208        if (task_has_idle_policy(p)) {
1209                load->weight = scale_load(WEIGHT_IDLEPRIO);
1210                load->inv_weight = WMULT_IDLEPRIO;
1211                return;
1212        }
1213
1214        /*
1215         * SCHED_OTHER tasks have to update their load when changing their
1216         * weight
1217         */
1218        if (update_load && p->sched_class == &fair_sched_class) {
1219                reweight_task(p, prio);
1220        } else {
1221                load->weight = scale_load(sched_prio_to_weight[prio]);
1222                load->inv_weight = sched_prio_to_wmult[prio];
1223        }
1224}
1225
1226#ifdef CONFIG_UCLAMP_TASK
1227/*
1228 * Serializes updates of utilization clamp values
1229 *
1230 * The (slow-path) user-space triggers utilization clamp value updates which
1231 * can require updates on (fast-path) scheduler's data structures used to
1232 * support enqueue/dequeue operations.
1233 * While the per-CPU rq lock protects fast-path update operations, user-space
1234 * requests are serialized using a mutex to reduce the risk of conflicting
1235 * updates or API abuses.
1236 */
1237static DEFINE_MUTEX(uclamp_mutex);
1238
1239/* Max allowed minimum utilization */
1240unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1241
1242/* Max allowed maximum utilization */
1243unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1244
1245/*
1246 * By default RT tasks run at the maximum performance point/capacity of the
1247 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1248 * SCHED_CAPACITY_SCALE.
1249 *
1250 * This knob allows admins to change the default behavior when uclamp is being
1251 * used. In battery powered devices, particularly, running at the maximum
1252 * capacity and frequency will increase energy consumption and shorten the
1253 * battery life.
1254 *
1255 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1256 *
1257 * This knob will not override the system default sched_util_clamp_min defined
1258 * above.
1259 */
1260unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1261
1262/* All clamps are required to be less or equal than these values */
1263static struct uclamp_se uclamp_default[UCLAMP_CNT];
1264
1265/*
1266 * This static key is used to reduce the uclamp overhead in the fast path. It
1267 * primarily disables the call to uclamp_rq_{inc, dec}() in
1268 * enqueue/dequeue_task().
1269 *
1270 * This allows users to continue to enable uclamp in their kernel config with
1271 * minimum uclamp overhead in the fast path.
1272 *
1273 * As soon as userspace modifies any of the uclamp knobs, the static key is
1274 * enabled, since we have an actual users that make use of uclamp
1275 * functionality.
1276 *
1277 * The knobs that would enable this static key are:
1278 *
1279 *   * A task modifying its uclamp value with sched_setattr().
1280 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1281 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1282 */
1283DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1284
1285/* Integer rounded range for each bucket */
1286#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1287
1288#define for_each_clamp_id(clamp_id) \
1289        for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1290
1291static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1292{
1293        return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1294}
1295
1296static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1297{
1298        if (clamp_id == UCLAMP_MIN)
1299                return 0;
1300        return SCHED_CAPACITY_SCALE;
1301}
1302
1303static inline void uclamp_se_set(struct uclamp_se *uc_se,
1304                                 unsigned int value, bool user_defined)
1305{
1306        uc_se->value = value;
1307        uc_se->bucket_id = uclamp_bucket_id(value);
1308        uc_se->user_defined = user_defined;
1309}
1310
1311static inline unsigned int
1312uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1313                  unsigned int clamp_value)
1314{
1315        /*
1316         * Avoid blocked utilization pushing up the frequency when we go
1317         * idle (which drops the max-clamp) by retaining the last known
1318         * max-clamp.
1319         */
1320        if (clamp_id == UCLAMP_MAX) {
1321                rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1322                return clamp_value;
1323        }
1324
1325        return uclamp_none(UCLAMP_MIN);
1326}
1327
1328static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1329                                     unsigned int clamp_value)
1330{
1331        /* Reset max-clamp retention only on idle exit */
1332        if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1333                return;
1334
1335        WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1336}
1337
1338static inline
1339unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1340                                   unsigned int clamp_value)
1341{
1342        struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1343        int bucket_id = UCLAMP_BUCKETS - 1;
1344
1345        /*
1346         * Since both min and max clamps are max aggregated, find the
1347         * top most bucket with tasks in.
1348         */
1349        for ( ; bucket_id >= 0; bucket_id--) {
1350                if (!bucket[bucket_id].tasks)
1351                        continue;
1352                return bucket[bucket_id].value;
1353        }
1354
1355        /* No tasks -- default clamp values */
1356        return uclamp_idle_value(rq, clamp_id, clamp_value);
1357}
1358
1359static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1360{
1361        unsigned int default_util_min;
1362        struct uclamp_se *uc_se;
1363
1364        lockdep_assert_held(&p->pi_lock);
1365
1366        uc_se = &p->uclamp_req[UCLAMP_MIN];
1367
1368        /* Only sync if user didn't override the default */
1369        if (uc_se->user_defined)
1370                return;
1371
1372        default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1373        uclamp_se_set(uc_se, default_util_min, false);
1374}
1375
1376static void uclamp_update_util_min_rt_default(struct task_struct *p)
1377{
1378        struct rq_flags rf;
1379        struct rq *rq;
1380
1381        if (!rt_task(p))
1382                return;
1383
1384        /* Protect updates to p->uclamp_* */
1385        rq = task_rq_lock(p, &rf);
1386        __uclamp_update_util_min_rt_default(p);
1387        task_rq_unlock(rq, p, &rf);
1388}
1389
1390static void uclamp_sync_util_min_rt_default(void)
1391{
1392        struct task_struct *g, *p;
1393
1394        /*
1395         * copy_process()                       sysctl_uclamp
1396         *                                        uclamp_min_rt = X;
1397         *   write_lock(&tasklist_lock)           read_lock(&tasklist_lock)
1398         *   // link thread                       smp_mb__after_spinlock()
1399         *   write_unlock(&tasklist_lock)         read_unlock(&tasklist_lock);
1400         *   sched_post_fork()                    for_each_process_thread()
1401         *     __uclamp_sync_rt()                   __uclamp_sync_rt()
1402         *
1403         * Ensures that either sched_post_fork() will observe the new
1404         * uclamp_min_rt or for_each_process_thread() will observe the new
1405         * task.
1406         */
1407        read_lock(&tasklist_lock);
1408        smp_mb__after_spinlock();
1409        read_unlock(&tasklist_lock);
1410
1411        rcu_read_lock();
1412        for_each_process_thread(g, p)
1413                uclamp_update_util_min_rt_default(p);
1414        rcu_read_unlock();
1415}
1416
1417static inline struct uclamp_se
1418uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1419{
1420        /* Copy by value as we could modify it */
1421        struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1422#ifdef CONFIG_UCLAMP_TASK_GROUP
1423        unsigned int tg_min, tg_max, value;
1424
1425        /*
1426         * Tasks in autogroups or root task group will be
1427         * restricted by system defaults.
1428         */
1429        if (task_group_is_autogroup(task_group(p)))
1430                return uc_req;
1431        if (task_group(p) == &root_task_group)
1432                return uc_req;
1433
1434        tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1435        tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1436        value = uc_req.value;
1437        value = clamp(value, tg_min, tg_max);
1438        uclamp_se_set(&uc_req, value, false);
1439#endif
1440
1441        return uc_req;
1442}
1443
1444/*
1445 * The effective clamp bucket index of a task depends on, by increasing
1446 * priority:
1447 * - the task specific clamp value, when explicitly requested from userspace
1448 * - the task group effective clamp value, for tasks not either in the root
1449 *   group or in an autogroup
1450 * - the system default clamp value, defined by the sysadmin
1451 */
1452static inline struct uclamp_se
1453uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1454{
1455        struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1456        struct uclamp_se uc_max = uclamp_default[clamp_id];
1457
1458        /* System default restrictions always apply */
1459        if (unlikely(uc_req.value > uc_max.value))
1460                return uc_max;
1461
1462        return uc_req;
1463}
1464
1465unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1466{
1467        struct uclamp_se uc_eff;
1468
1469        /* Task currently refcounted: use back-annotated (effective) value */
1470        if (p->uclamp[clamp_id].active)
1471                return (unsigned long)p->uclamp[clamp_id].value;
1472
1473        uc_eff = uclamp_eff_get(p, clamp_id);
1474
1475        return (unsigned long)uc_eff.value;
1476}
1477
1478/*
1479 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1480 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1481 * updates the rq's clamp value if required.
1482 *
1483 * Tasks can have a task-specific value requested from user-space, track
1484 * within each bucket the maximum value for tasks refcounted in it.
1485 * This "local max aggregation" allows to track the exact "requested" value
1486 * for each bucket when all its RUNNABLE tasks require the same clamp.
1487 */
1488static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1489                                    enum uclamp_id clamp_id)
1490{
1491        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1492        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1493        struct uclamp_bucket *bucket;
1494
1495        lockdep_assert_rq_held(rq);
1496
1497        /* Update task effective clamp */
1498        p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1499
1500        bucket = &uc_rq->bucket[uc_se->bucket_id];
1501        bucket->tasks++;
1502        uc_se->active = true;
1503
1504        uclamp_idle_reset(rq, clamp_id, uc_se->value);
1505
1506        /*
1507         * Local max aggregation: rq buckets always track the max
1508         * "requested" clamp value of its RUNNABLE tasks.
1509         */
1510        if (bucket->tasks == 1 || uc_se->value > bucket->value)
1511                bucket->value = uc_se->value;
1512
1513        if (uc_se->value > READ_ONCE(uc_rq->value))
1514                WRITE_ONCE(uc_rq->value, uc_se->value);
1515}
1516
1517/*
1518 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1519 * is released. If this is the last task reference counting the rq's max
1520 * active clamp value, then the rq's clamp value is updated.
1521 *
1522 * Both refcounted tasks and rq's cached clamp values are expected to be
1523 * always valid. If it's detected they are not, as defensive programming,
1524 * enforce the expected state and warn.
1525 */
1526static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1527                                    enum uclamp_id clamp_id)
1528{
1529        struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1530        struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1531        struct uclamp_bucket *bucket;
1532        unsigned int bkt_clamp;
1533        unsigned int rq_clamp;
1534
1535        lockdep_assert_rq_held(rq);
1536
1537        /*
1538         * If sched_uclamp_used was enabled after task @p was enqueued,
1539         * we could end up with unbalanced call to uclamp_rq_dec_id().
1540         *
1541         * In this case the uc_se->active flag should be false since no uclamp
1542         * accounting was performed at enqueue time and we can just return
1543         * here.
1544         *
1545         * Need to be careful of the following enqueue/dequeue ordering
1546         * problem too
1547         *
1548         *      enqueue(taskA)
1549         *      // sched_uclamp_used gets enabled
1550         *      enqueue(taskB)
1551         *      dequeue(taskA)
1552         *      // Must not decrement bucket->tasks here
1553         *      dequeue(taskB)
1554         *
1555         * where we could end up with stale data in uc_se and
1556         * bucket[uc_se->bucket_id].
1557         *
1558         * The following check here eliminates the possibility of such race.
1559         */
1560        if (unlikely(!uc_se->active))
1561                return;
1562
1563        bucket = &uc_rq->bucket[uc_se->bucket_id];
1564
1565        SCHED_WARN_ON(!bucket->tasks);
1566        if (likely(bucket->tasks))
1567                bucket->tasks--;
1568
1569        uc_se->active = false;
1570
1571        /*
1572         * Keep "local max aggregation" simple and accept to (possibly)
1573         * overboost some RUNNABLE tasks in the same bucket.
1574         * The rq clamp bucket value is reset to its base value whenever
1575         * there are no more RUNNABLE tasks refcounting it.
1576         */
1577        if (likely(bucket->tasks))
1578                return;
1579
1580        rq_clamp = READ_ONCE(uc_rq->value);
1581        /*
1582         * Defensive programming: this should never happen. If it happens,
1583         * e.g. due to future modification, warn and fixup the expected value.
1584         */
1585        SCHED_WARN_ON(bucket->value > rq_clamp);
1586        if (bucket->value >= rq_clamp) {
1587                bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1588                WRITE_ONCE(uc_rq->value, bkt_clamp);
1589        }
1590}
1591
1592static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1593{
1594        enum uclamp_id clamp_id;
1595
1596        /*
1597         * Avoid any overhead until uclamp is actually used by the userspace.
1598         *
1599         * The condition is constructed such that a NOP is generated when
1600         * sched_uclamp_used is disabled.
1601         */
1602        if (!static_branch_unlikely(&sched_uclamp_used))
1603                return;
1604
1605        if (unlikely(!p->sched_class->uclamp_enabled))
1606                return;
1607
1608        for_each_clamp_id(clamp_id)
1609                uclamp_rq_inc_id(rq, p, clamp_id);
1610
1611        /* Reset clamp idle holding when there is one RUNNABLE task */
1612        if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1613                rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1614}
1615
1616static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1617{
1618        enum uclamp_id clamp_id;
1619
1620        /*
1621         * Avoid any overhead until uclamp is actually used by the userspace.
1622         *
1623         * The condition is constructed such that a NOP is generated when
1624         * sched_uclamp_used is disabled.
1625         */
1626        if (!static_branch_unlikely(&sched_uclamp_used))
1627                return;
1628
1629        if (unlikely(!p->sched_class->uclamp_enabled))
1630                return;
1631
1632        for_each_clamp_id(clamp_id)
1633                uclamp_rq_dec_id(rq, p, clamp_id);
1634}
1635
1636static inline void
1637uclamp_update_active(struct task_struct *p)
1638{
1639        enum uclamp_id clamp_id;
1640        struct rq_flags rf;
1641        struct rq *rq;
1642
1643        /*
1644         * Lock the task and the rq where the task is (or was) queued.
1645         *
1646         * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1647         * price to pay to safely serialize util_{min,max} updates with
1648         * enqueues, dequeues and migration operations.
1649         * This is the same locking schema used by __set_cpus_allowed_ptr().
1650         */
1651        rq = task_rq_lock(p, &rf);
1652
1653        /*
1654         * Setting the clamp bucket is serialized by task_rq_lock().
1655         * If the task is not yet RUNNABLE and its task_struct is not
1656         * affecting a valid clamp bucket, the next time it's enqueued,
1657         * it will already see the updated clamp bucket value.
1658         */
1659        for_each_clamp_id(clamp_id) {
1660                if (p->uclamp[clamp_id].active) {
1661                        uclamp_rq_dec_id(rq, p, clamp_id);
1662                        uclamp_rq_inc_id(rq, p, clamp_id);
1663                }
1664        }
1665
1666        task_rq_unlock(rq, p, &rf);
1667}
1668
1669#ifdef CONFIG_UCLAMP_TASK_GROUP
1670static inline void
1671uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1672{
1673        struct css_task_iter it;
1674        struct task_struct *p;
1675
1676        css_task_iter_start(css, 0, &it);
1677        while ((p = css_task_iter_next(&it)))
1678                uclamp_update_active(p);
1679        css_task_iter_end(&it);
1680}
1681
1682static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1683static void uclamp_update_root_tg(void)
1684{
1685        struct task_group *tg = &root_task_group;
1686
1687        uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1688                      sysctl_sched_uclamp_util_min, false);
1689        uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1690                      sysctl_sched_uclamp_util_max, false);
1691
1692        rcu_read_lock();
1693        cpu_util_update_eff(&root_task_group.css);
1694        rcu_read_unlock();
1695}
1696#else
1697static void uclamp_update_root_tg(void) { }
1698#endif
1699
1700int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1701                                void *buffer, size_t *lenp, loff_t *ppos)
1702{
1703        bool update_root_tg = false;
1704        int old_min, old_max, old_min_rt;
1705        int result;
1706
1707        mutex_lock(&uclamp_mutex);
1708        old_min = sysctl_sched_uclamp_util_min;
1709        old_max = sysctl_sched_uclamp_util_max;
1710        old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1711
1712        result = proc_dointvec(table, write, buffer, lenp, ppos);
1713        if (result)
1714                goto undo;
1715        if (!write)
1716                goto done;
1717
1718        if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1719            sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1720            sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1721
1722                result = -EINVAL;
1723                goto undo;
1724        }
1725
1726        if (old_min != sysctl_sched_uclamp_util_min) {
1727                uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1728                              sysctl_sched_uclamp_util_min, false);
1729                update_root_tg = true;
1730        }
1731        if (old_max != sysctl_sched_uclamp_util_max) {
1732                uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1733                              sysctl_sched_uclamp_util_max, false);
1734                update_root_tg = true;
1735        }
1736
1737        if (update_root_tg) {
1738                static_branch_enable(&sched_uclamp_used);
1739                uclamp_update_root_tg();
1740        }
1741
1742        if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1743                static_branch_enable(&sched_uclamp_used);
1744                uclamp_sync_util_min_rt_default();
1745        }
1746
1747        /*
1748         * We update all RUNNABLE tasks only when task groups are in use.
1749         * Otherwise, keep it simple and do just a lazy update at each next
1750         * task enqueue time.
1751         */
1752
1753        goto done;
1754
1755undo:
1756        sysctl_sched_uclamp_util_min = old_min;
1757        sysctl_sched_uclamp_util_max = old_max;
1758        sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1759done:
1760        mutex_unlock(&uclamp_mutex);
1761
1762        return result;
1763}
1764
1765static int uclamp_validate(struct task_struct *p,
1766                           const struct sched_attr *attr)
1767{
1768        int util_min = p->uclamp_req[UCLAMP_MIN].value;
1769        int util_max = p->uclamp_req[UCLAMP_MAX].value;
1770
1771        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1772                util_min = attr->sched_util_min;
1773
1774                if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1775                        return -EINVAL;
1776        }
1777
1778        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1779                util_max = attr->sched_util_max;
1780
1781                if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1782                        return -EINVAL;
1783        }
1784
1785        if (util_min != -1 && util_max != -1 && util_min > util_max)
1786                return -EINVAL;
1787
1788        /*
1789         * We have valid uclamp attributes; make sure uclamp is enabled.
1790         *
1791         * We need to do that here, because enabling static branches is a
1792         * blocking operation which obviously cannot be done while holding
1793         * scheduler locks.
1794         */
1795        static_branch_enable(&sched_uclamp_used);
1796
1797        return 0;
1798}
1799
1800static bool uclamp_reset(const struct sched_attr *attr,
1801                         enum uclamp_id clamp_id,
1802                         struct uclamp_se *uc_se)
1803{
1804        /* Reset on sched class change for a non user-defined clamp value. */
1805        if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1806            !uc_se->user_defined)
1807                return true;
1808
1809        /* Reset on sched_util_{min,max} == -1. */
1810        if (clamp_id == UCLAMP_MIN &&
1811            attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1812            attr->sched_util_min == -1) {
1813                return true;
1814        }
1815
1816        if (clamp_id == UCLAMP_MAX &&
1817            attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1818            attr->sched_util_max == -1) {
1819                return true;
1820        }
1821
1822        return false;
1823}
1824
1825static void __setscheduler_uclamp(struct task_struct *p,
1826                                  const struct sched_attr *attr)
1827{
1828        enum uclamp_id clamp_id;
1829
1830        for_each_clamp_id(clamp_id) {
1831                struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1832                unsigned int value;
1833
1834                if (!uclamp_reset(attr, clamp_id, uc_se))
1835                        continue;
1836
1837                /*
1838                 * RT by default have a 100% boost value that could be modified
1839                 * at runtime.
1840                 */
1841                if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1842                        value = sysctl_sched_uclamp_util_min_rt_default;
1843                else
1844                        value = uclamp_none(clamp_id);
1845
1846                uclamp_se_set(uc_se, value, false);
1847
1848        }
1849
1850        if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1851                return;
1852
1853        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1854            attr->sched_util_min != -1) {
1855                uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1856                              attr->sched_util_min, true);
1857        }
1858
1859        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1860            attr->sched_util_max != -1) {
1861                uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1862                              attr->sched_util_max, true);
1863        }
1864}
1865
1866static void uclamp_fork(struct task_struct *p)
1867{
1868        enum uclamp_id clamp_id;
1869
1870        /*
1871         * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1872         * as the task is still at its early fork stages.
1873         */
1874        for_each_clamp_id(clamp_id)
1875                p->uclamp[clamp_id].active = false;
1876
1877        if (likely(!p->sched_reset_on_fork))
1878                return;
1879
1880        for_each_clamp_id(clamp_id) {
1881                uclamp_se_set(&p->uclamp_req[clamp_id],
1882                              uclamp_none(clamp_id), false);
1883        }
1884}
1885
1886static void uclamp_post_fork(struct task_struct *p)
1887{
1888        uclamp_update_util_min_rt_default(p);
1889}
1890
1891static void __init init_uclamp_rq(struct rq *rq)
1892{
1893        enum uclamp_id clamp_id;
1894        struct uclamp_rq *uc_rq = rq->uclamp;
1895
1896        for_each_clamp_id(clamp_id) {
1897                uc_rq[clamp_id] = (struct uclamp_rq) {
1898                        .value = uclamp_none(clamp_id)
1899                };
1900        }
1901
1902        rq->uclamp_flags = 0;
1903}
1904
1905static void __init init_uclamp(void)
1906{
1907        struct uclamp_se uc_max = {};
1908        enum uclamp_id clamp_id;
1909        int cpu;
1910
1911        for_each_possible_cpu(cpu)
1912                init_uclamp_rq(cpu_rq(cpu));
1913
1914        for_each_clamp_id(clamp_id) {
1915                uclamp_se_set(&init_task.uclamp_req[clamp_id],
1916                              uclamp_none(clamp_id), false);
1917        }
1918
1919        /* System defaults allow max clamp values for both indexes */
1920        uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1921        for_each_clamp_id(clamp_id) {
1922                uclamp_default[clamp_id] = uc_max;
1923#ifdef CONFIG_UCLAMP_TASK_GROUP
1924                root_task_group.uclamp_req[clamp_id] = uc_max;
1925                root_task_group.uclamp[clamp_id] = uc_max;
1926#endif
1927        }
1928}
1929
1930#else /* CONFIG_UCLAMP_TASK */
1931static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1932static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1933static inline int uclamp_validate(struct task_struct *p,
1934                                  const struct sched_attr *attr)
1935{
1936        return -EOPNOTSUPP;
1937}
1938static void __setscheduler_uclamp(struct task_struct *p,
1939                                  const struct sched_attr *attr) { }
1940static inline void uclamp_fork(struct task_struct *p) { }
1941static inline void uclamp_post_fork(struct task_struct *p) { }
1942static inline void init_uclamp(void) { }
1943#endif /* CONFIG_UCLAMP_TASK */
1944
1945bool sched_task_on_rq(struct task_struct *p)
1946{
1947        return task_on_rq_queued(p);
1948}
1949
1950static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1951{
1952        if (!(flags & ENQUEUE_NOCLOCK))
1953                update_rq_clock(rq);
1954
1955        if (!(flags & ENQUEUE_RESTORE)) {
1956                sched_info_enqueue(rq, p);
1957                psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1958        }
1959
1960        uclamp_rq_inc(rq, p);
1961        p->sched_class->enqueue_task(rq, p, flags);
1962
1963        if (sched_core_enabled(rq))
1964                sched_core_enqueue(rq, p);
1965}
1966
1967static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1968{
1969        if (sched_core_enabled(rq))
1970                sched_core_dequeue(rq, p);
1971
1972        if (!(flags & DEQUEUE_NOCLOCK))
1973                update_rq_clock(rq);
1974
1975        if (!(flags & DEQUEUE_SAVE)) {
1976                sched_info_dequeue(rq, p);
1977                psi_dequeue(p, flags & DEQUEUE_SLEEP);
1978        }
1979
1980        uclamp_rq_dec(rq, p);
1981        p->sched_class->dequeue_task(rq, p, flags);
1982}
1983
1984void activate_task(struct rq *rq, struct task_struct *p, int flags)
1985{
1986        enqueue_task(rq, p, flags);
1987
1988        p->on_rq = TASK_ON_RQ_QUEUED;
1989}
1990
1991void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1992{
1993        p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1994
1995        dequeue_task(rq, p, flags);
1996}
1997
1998static inline int __normal_prio(int policy, int rt_prio, int nice)
1999{
2000        int prio;
2001
2002        if (dl_policy(policy))
2003                prio = MAX_DL_PRIO - 1;
2004        else if (rt_policy(policy))
2005                prio = MAX_RT_PRIO - 1 - rt_prio;
2006        else
2007                prio = NICE_TO_PRIO(nice);
2008
2009        return prio;
2010}
2011
2012/*
2013 * Calculate the expected normal priority: i.e. priority
2014 * without taking RT-inheritance into account. Might be
2015 * boosted by interactivity modifiers. Changes upon fork,
2016 * setprio syscalls, and whenever the interactivity
2017 * estimator recalculates.
2018 */
2019static inline int normal_prio(struct task_struct *p)
2020{
2021        return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2022}
2023
2024/*
2025 * Calculate the current priority, i.e. the priority
2026 * taken into account by the scheduler. This value might
2027 * be boosted by RT tasks, or might be boosted by
2028 * interactivity modifiers. Will be RT if the task got
2029 * RT-boosted. If not then it returns p->normal_prio.
2030 */
2031static int effective_prio(struct task_struct *p)
2032{
2033        p->normal_prio = normal_prio(p);
2034        /*
2035         * If we are RT tasks or we were boosted to RT priority,
2036         * keep the priority unchanged. Otherwise, update priority
2037         * to the normal priority:
2038         */
2039        if (!rt_prio(p->prio))
2040                return p->normal_prio;
2041        return p->prio;
2042}
2043
2044/**
2045 * task_curr - is this task currently executing on a CPU?
2046 * @p: the task in question.
2047 *
2048 * Return: 1 if the task is currently executing. 0 otherwise.
2049 */
2050inline int task_curr(const struct task_struct *p)
2051{
2052        return cpu_curr(task_cpu(p)) == p;
2053}
2054
2055/*
2056 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2057 * use the balance_callback list if you want balancing.
2058 *
2059 * this means any call to check_class_changed() must be followed by a call to
2060 * balance_callback().
2061 */
2062static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2063                                       const struct sched_class *prev_class,
2064                                       int oldprio)
2065{
2066        if (prev_class != p->sched_class) {
2067                if (prev_class->switched_from)
2068                        prev_class->switched_from(rq, p);
2069
2070                p->sched_class->switched_to(rq, p);
2071        } else if (oldprio != p->prio || dl_task(p))
2072                p->sched_class->prio_changed(rq, p, oldprio);
2073}
2074
2075void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2076{
2077        if (p->sched_class == rq->curr->sched_class)
2078                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2079        else if (p->sched_class > rq->curr->sched_class)
2080                resched_curr(rq);
2081
2082        /*
2083         * A queue event has occurred, and we're going to schedule.  In
2084         * this case, we can save a useless back to back clock update.
2085         */
2086        if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2087                rq_clock_skip_update(rq);
2088}
2089
2090#ifdef CONFIG_SMP
2091
2092static void
2093__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2094
2095static int __set_cpus_allowed_ptr(struct task_struct *p,
2096                                  const struct cpumask *new_mask,
2097                                  u32 flags);
2098
2099static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2100{
2101        if (likely(!p->migration_disabled))
2102                return;
2103
2104        if (p->cpus_ptr != &p->cpus_mask)
2105                return;
2106
2107        /*
2108         * Violates locking rules! see comment in __do_set_cpus_allowed().
2109         */
2110        __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2111}
2112
2113void migrate_disable(void)
2114{
2115        struct task_struct *p = current;
2116
2117        if (p->migration_disabled) {
2118                p->migration_disabled++;
2119                return;
2120        }
2121
2122        preempt_disable();
2123        this_rq()->nr_pinned++;
2124        p->migration_disabled = 1;
2125        preempt_enable();
2126}
2127EXPORT_SYMBOL_GPL(migrate_disable);
2128
2129void migrate_enable(void)
2130{
2131        struct task_struct *p = current;
2132
2133        if (p->migration_disabled > 1) {
2134                p->migration_disabled--;
2135                return;
2136        }
2137
2138        /*
2139         * Ensure stop_task runs either before or after this, and that
2140         * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2141         */
2142        preempt_disable();
2143        if (p->cpus_ptr != &p->cpus_mask)
2144                __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2145        /*
2146         * Mustn't clear migration_disabled() until cpus_ptr points back at the
2147         * regular cpus_mask, otherwise things that race (eg.
2148         * select_fallback_rq) get confused.
2149         */
2150        barrier();
2151        p->migration_disabled = 0;
2152        this_rq()->nr_pinned--;
2153        preempt_enable();
2154}
2155EXPORT_SYMBOL_GPL(migrate_enable);
2156
2157static inline bool rq_has_pinned_tasks(struct rq *rq)
2158{
2159        return rq->nr_pinned;
2160}
2161
2162/*
2163 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2164 * __set_cpus_allowed_ptr() and select_fallback_rq().
2165 */
2166static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2167{
2168        /* When not in the task's cpumask, no point in looking further. */
2169        if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2170                return false;
2171
2172        /* migrate_disabled() must be allowed to finish. */
2173        if (is_migration_disabled(p))
2174                return cpu_online(cpu);
2175
2176        /* Non kernel threads are not allowed during either online or offline. */
2177        if (!(p->flags & PF_KTHREAD))
2178                return cpu_active(cpu);
2179
2180        /* KTHREAD_IS_PER_CPU is always allowed. */
2181        if (kthread_is_per_cpu(p))
2182                return cpu_online(cpu);
2183
2184        /* Regular kernel threads don't get to stay during offline. */
2185        if (cpu_dying(cpu))
2186                return false;
2187
2188        /* But are allowed during online. */
2189        return cpu_online(cpu);
2190}
2191
2192/*
2193 * This is how migration works:
2194 *
2195 * 1) we invoke migration_cpu_stop() on the target CPU using
2196 *    stop_one_cpu().
2197 * 2) stopper starts to run (implicitly forcing the migrated thread
2198 *    off the CPU)
2199 * 3) it checks whether the migrated task is still in the wrong runqueue.
2200 * 4) if it's in the wrong runqueue then the migration thread removes
2201 *    it and puts it into the right queue.
2202 * 5) stopper completes and stop_one_cpu() returns and the migration
2203 *    is done.
2204 */
2205
2206/*
2207 * move_queued_task - move a queued task to new rq.
2208 *
2209 * Returns (locked) new rq. Old rq's lock is released.
2210 */
2211static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2212                                   struct task_struct *p, int new_cpu)
2213{
2214        lockdep_assert_rq_held(rq);
2215
2216        deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2217        set_task_cpu(p, new_cpu);
2218        rq_unlock(rq, rf);
2219
2220        rq = cpu_rq(new_cpu);
2221
2222        rq_lock(rq, rf);
2223        BUG_ON(task_cpu(p) != new_cpu);
2224        activate_task(rq, p, 0);
2225        check_preempt_curr(rq, p, 0);
2226
2227        return rq;
2228}
2229
2230struct migration_arg {
2231        struct task_struct              *task;
2232        int                             dest_cpu;
2233        struct set_affinity_pending     *pending;
2234};
2235
2236/*
2237 * @refs: number of wait_for_completion()
2238 * @stop_pending: is @stop_work in use
2239 */
2240struct set_affinity_pending {
2241        refcount_t              refs;
2242        unsigned int            stop_pending;
2243        struct completion       done;
2244        struct cpu_stop_work    stop_work;
2245        struct migration_arg    arg;
2246};
2247
2248/*
2249 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2250 * this because either it can't run here any more (set_cpus_allowed()
2251 * away from this CPU, or CPU going down), or because we're
2252 * attempting to rebalance this task on exec (sched_exec).
2253 *
2254 * So we race with normal scheduler movements, but that's OK, as long
2255 * as the task is no longer on this CPU.
2256 */
2257static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2258                                 struct task_struct *p, int dest_cpu)
2259{
2260        /* Affinity changed (again). */
2261        if (!is_cpu_allowed(p, dest_cpu))
2262                return rq;
2263
2264        update_rq_clock(rq);
2265        rq = move_queued_task(rq, rf, p, dest_cpu);
2266
2267        return rq;
2268}
2269
2270/*
2271 * migration_cpu_stop - this will be executed by a highprio stopper thread
2272 * and performs thread migration by bumping thread off CPU then
2273 * 'pushing' onto another runqueue.
2274 */
2275static int migration_cpu_stop(void *data)
2276{
2277        struct migration_arg *arg = data;
2278        struct set_affinity_pending *pending = arg->pending;
2279        struct task_struct *p = arg->task;
2280        struct rq *rq = this_rq();
2281        bool complete = false;
2282        struct rq_flags rf;
2283
2284        /*
2285         * The original target CPU might have gone down and we might
2286         * be on another CPU but it doesn't matter.
2287         */
2288        local_irq_save(rf.flags);
2289        /*
2290         * We need to explicitly wake pending tasks before running
2291         * __migrate_task() such that we will not miss enforcing cpus_ptr
2292         * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2293         */
2294        flush_smp_call_function_from_idle();
2295
2296        raw_spin_lock(&p->pi_lock);
2297        rq_lock(rq, &rf);
2298
2299        /*
2300         * If we were passed a pending, then ->stop_pending was set, thus
2301         * p->migration_pending must have remained stable.
2302         */
2303        WARN_ON_ONCE(pending && pending != p->migration_pending);
2304
2305        /*
2306         * If task_rq(p) != rq, it cannot be migrated here, because we're
2307         * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2308         * we're holding p->pi_lock.
2309         */
2310        if (task_rq(p) == rq) {
2311                if (is_migration_disabled(p))
2312                        goto out;
2313
2314                if (pending) {
2315                        p->migration_pending = NULL;
2316                        complete = true;
2317
2318                        if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2319                                goto out;
2320                }
2321
2322                if (task_on_rq_queued(p))
2323                        rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2324                else
2325                        p->wake_cpu = arg->dest_cpu;
2326
2327                /*
2328                 * XXX __migrate_task() can fail, at which point we might end
2329                 * up running on a dodgy CPU, AFAICT this can only happen
2330                 * during CPU hotplug, at which point we'll get pushed out
2331                 * anyway, so it's probably not a big deal.
2332                 */
2333
2334        } else if (pending) {
2335                /*
2336                 * This happens when we get migrated between migrate_enable()'s
2337                 * preempt_enable() and scheduling the stopper task. At that
2338                 * point we're a regular task again and not current anymore.
2339                 *
2340                 * A !PREEMPT kernel has a giant hole here, which makes it far
2341                 * more likely.
2342                 */
2343
2344                /*
2345                 * The task moved before the stopper got to run. We're holding
2346                 * ->pi_lock, so the allowed mask is stable - if it got
2347                 * somewhere allowed, we're done.
2348                 */
2349                if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2350                        p->migration_pending = NULL;
2351                        complete = true;
2352                        goto out;
2353                }
2354
2355                /*
2356                 * When migrate_enable() hits a rq mis-match we can't reliably
2357                 * determine is_migration_disabled() and so have to chase after
2358                 * it.
2359                 */
2360                WARN_ON_ONCE(!pending->stop_pending);
2361                task_rq_unlock(rq, p, &rf);
2362                stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2363                                    &pending->arg, &pending->stop_work);
2364                return 0;
2365        }
2366out:
2367        if (pending)
2368                pending->stop_pending = false;
2369        task_rq_unlock(rq, p, &rf);
2370
2371        if (complete)
2372                complete_all(&pending->done);
2373
2374        return 0;
2375}
2376
2377int push_cpu_stop(void *arg)
2378{
2379        struct rq *lowest_rq = NULL, *rq = this_rq();
2380        struct task_struct *p = arg;
2381
2382        raw_spin_lock_irq(&p->pi_lock);
2383        raw_spin_rq_lock(rq);
2384
2385        if (task_rq(p) != rq)
2386                goto out_unlock;
2387
2388        if (is_migration_disabled(p)) {
2389                p->migration_flags |= MDF_PUSH;
2390                goto out_unlock;
2391        }
2392
2393        p->migration_flags &= ~MDF_PUSH;
2394
2395        if (p->sched_class->find_lock_rq)
2396                lowest_rq = p->sched_class->find_lock_rq(p, rq);
2397
2398        if (!lowest_rq)
2399                goto out_unlock;
2400
2401        // XXX validate p is still the highest prio task
2402        if (task_rq(p) == rq) {
2403                deactivate_task(rq, p, 0);
2404                set_task_cpu(p, lowest_rq->cpu);
2405                activate_task(lowest_rq, p, 0);
2406                resched_curr(lowest_rq);
2407        }
2408
2409        double_unlock_balance(rq, lowest_rq);
2410
2411out_unlock:
2412        rq->push_busy = false;
2413        raw_spin_rq_unlock(rq);
2414        raw_spin_unlock_irq(&p->pi_lock);
2415
2416        put_task_struct(p);
2417        return 0;
2418}
2419
2420/*
2421 * sched_class::set_cpus_allowed must do the below, but is not required to
2422 * actually call this function.
2423 */
2424void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2425{
2426        if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2427                p->cpus_ptr = new_mask;
2428                return;
2429        }
2430
2431        cpumask_copy(&p->cpus_mask, new_mask);
2432        p->nr_cpus_allowed = cpumask_weight(new_mask);
2433}
2434
2435static void
2436__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2437{
2438        struct rq *rq = task_rq(p);
2439        bool queued, running;
2440
2441        /*
2442         * This here violates the locking rules for affinity, since we're only
2443         * supposed to change these variables while holding both rq->lock and
2444         * p->pi_lock.
2445         *
2446         * HOWEVER, it magically works, because ttwu() is the only code that
2447         * accesses these variables under p->pi_lock and only does so after
2448         * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2449         * before finish_task().
2450         *
2451         * XXX do further audits, this smells like something putrid.
2452         */
2453        if (flags & SCA_MIGRATE_DISABLE)
2454                SCHED_WARN_ON(!p->on_cpu);
2455        else
2456                lockdep_assert_held(&p->pi_lock);
2457
2458        queued = task_on_rq_queued(p);
2459        running = task_current(rq, p);
2460
2461        if (queued) {
2462                /*
2463                 * Because __kthread_bind() calls this on blocked tasks without
2464                 * holding rq->lock.
2465                 */
2466                lockdep_assert_rq_held(rq);
2467                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2468        }
2469        if (running)
2470                put_prev_task(rq, p);
2471
2472        p->sched_class->set_cpus_allowed(p, new_mask, flags);
2473
2474        if (queued)
2475                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2476        if (running)
2477                set_next_task(rq, p);
2478}
2479
2480void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2481{
2482        __do_set_cpus_allowed(p, new_mask, 0);
2483}
2484
2485/*
2486 * This function is wildly self concurrent; here be dragons.
2487 *
2488 *
2489 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2490 * designated task is enqueued on an allowed CPU. If that task is currently
2491 * running, we have to kick it out using the CPU stopper.
2492 *
2493 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2494 * Consider:
2495 *
2496 *     Initial conditions: P0->cpus_mask = [0, 1]
2497 *
2498 *     P0@CPU0                  P1
2499 *
2500 *     migrate_disable();
2501 *     <preempted>
2502 *                              set_cpus_allowed_ptr(P0, [1]);
2503 *
2504 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2505 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2506 * This means we need the following scheme:
2507 *
2508 *     P0@CPU0                  P1
2509 *
2510 *     migrate_disable();
2511 *     <preempted>
2512 *                              set_cpus_allowed_ptr(P0, [1]);
2513 *                                <blocks>
2514 *     <resumes>
2515 *     migrate_enable();
2516 *       __set_cpus_allowed_ptr();
2517 *       <wakes local stopper>
2518 *                         `--> <woken on migration completion>
2519 *
2520 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2521 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2522 * task p are serialized by p->pi_lock, which we can leverage: the one that
2523 * should come into effect at the end of the Migrate-Disable region is the last
2524 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2525 * but we still need to properly signal those waiting tasks at the appropriate
2526 * moment.
2527 *
2528 * This is implemented using struct set_affinity_pending. The first
2529 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2530 * setup an instance of that struct and install it on the targeted task_struct.
2531 * Any and all further callers will reuse that instance. Those then wait for
2532 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2533 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2534 *
2535 *
2536 * (1) In the cases covered above. There is one more where the completion is
2537 * signaled within affine_move_task() itself: when a subsequent affinity request
2538 * occurs after the stopper bailed out due to the targeted task still being
2539 * Migrate-Disable. Consider:
2540 *
2541 *     Initial conditions: P0->cpus_mask = [0, 1]
2542 *
2543 *     CPU0               P1                            P2
2544 *     <P0>
2545 *       migrate_disable();
2546 *       <preempted>
2547 *                        set_cpus_allowed_ptr(P0, [1]);
2548 *                          <blocks>
2549 *     <migration/0>
2550 *       migration_cpu_stop()
2551 *         is_migration_disabled()
2552 *           <bails>
2553 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2554 *                                                         <signal completion>
2555 *                          <awakes>
2556 *
2557 * Note that the above is safe vs a concurrent migrate_enable(), as any
2558 * pending affinity completion is preceded by an uninstallation of
2559 * p->migration_pending done with p->pi_lock held.
2560 */
2561static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2562                            int dest_cpu, unsigned int flags)
2563{
2564        struct set_affinity_pending my_pending = { }, *pending = NULL;
2565        bool stop_pending, complete = false;
2566
2567        /* Can the task run on the task's current CPU? If so, we're done */
2568        if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2569                struct task_struct *push_task = NULL;
2570
2571                if ((flags & SCA_MIGRATE_ENABLE) &&
2572                    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2573                        rq->push_busy = true;
2574                        push_task = get_task_struct(p);
2575                }
2576
2577                /*
2578                 * If there are pending waiters, but no pending stop_work,
2579                 * then complete now.
2580                 */
2581                pending = p->migration_pending;
2582                if (pending && !pending->stop_pending) {
2583                        p->migration_pending = NULL;
2584                        complete = true;
2585                }
2586
2587                task_rq_unlock(rq, p, rf);
2588
2589                if (push_task) {
2590                        stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2591                                            p, &rq->push_work);
2592                }
2593
2594                if (complete)
2595                        complete_all(&pending->done);
2596
2597                return 0;
2598        }
2599
2600        if (!(flags & SCA_MIGRATE_ENABLE)) {
2601                /* serialized by p->pi_lock */
2602                if (!p->migration_pending) {
2603                        /* Install the request */
2604                        refcount_set(&my_pending.refs, 1);
2605                        init_completion(&my_pending.done);
2606                        my_pending.arg = (struct migration_arg) {
2607                                .task = p,
2608                                .dest_cpu = dest_cpu,
2609                                .pending = &my_pending,
2610                        };
2611
2612                        p->migration_pending = &my_pending;
2613                } else {
2614                        pending = p->migration_pending;
2615                        refcount_inc(&pending->refs);
2616                        /*
2617                         * Affinity has changed, but we've already installed a
2618                         * pending. migration_cpu_stop() *must* see this, else
2619                         * we risk a completion of the pending despite having a
2620                         * task on a disallowed CPU.
2621                         *
2622                         * Serialized by p->pi_lock, so this is safe.
2623                         */
2624                        pending->arg.dest_cpu = dest_cpu;
2625                }
2626        }
2627        pending = p->migration_pending;
2628        /*
2629         * - !MIGRATE_ENABLE:
2630         *   we'll have installed a pending if there wasn't one already.
2631         *
2632         * - MIGRATE_ENABLE:
2633         *   we're here because the current CPU isn't matching anymore,
2634         *   the only way that can happen is because of a concurrent
2635         *   set_cpus_allowed_ptr() call, which should then still be
2636         *   pending completion.
2637         *
2638         * Either way, we really should have a @pending here.
2639         */
2640        if (WARN_ON_ONCE(!pending)) {
2641                task_rq_unlock(rq, p, rf);
2642                return -EINVAL;
2643        }
2644
2645        if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2646                /*
2647                 * MIGRATE_ENABLE gets here because 'p == current', but for
2648                 * anything else we cannot do is_migration_disabled(), punt
2649                 * and have the stopper function handle it all race-free.
2650                 */
2651                stop_pending = pending->stop_pending;
2652                if (!stop_pending)
2653                        pending->stop_pending = true;
2654
2655                if (flags & SCA_MIGRATE_ENABLE)
2656                        p->migration_flags &= ~MDF_PUSH;
2657
2658                task_rq_unlock(rq, p, rf);
2659
2660                if (!stop_pending) {
2661                        stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2662                                            &pending->arg, &pending->stop_work);
2663                }
2664
2665                if (flags & SCA_MIGRATE_ENABLE)
2666                        return 0;
2667        } else {
2668
2669                if (!is_migration_disabled(p)) {
2670                        if (task_on_rq_queued(p))
2671                                rq = move_queued_task(rq, rf, p, dest_cpu);
2672
2673                        if (!pending->stop_pending) {
2674                                p->migration_pending = NULL;
2675                                complete = true;
2676                        }
2677                }
2678                task_rq_unlock(rq, p, rf);
2679
2680                if (complete)
2681                        complete_all(&pending->done);
2682        }
2683
2684        wait_for_completion(&pending->done);
2685
2686        if (refcount_dec_and_test(&pending->refs))
2687                wake_up_var(&pending->refs); /* No UaF, just an address */
2688
2689        /*
2690         * Block the original owner of &pending until all subsequent callers
2691         * have seen the completion and decremented the refcount
2692         */
2693        wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2694
2695        /* ARGH */
2696        WARN_ON_ONCE(my_pending.stop_pending);
2697
2698        return 0;
2699}
2700
2701/*
2702 * Change a given task's CPU affinity. Migrate the thread to a
2703 * proper CPU and schedule it away if the CPU it's executing on
2704 * is removed from the allowed bitmask.
2705 *
2706 * NOTE: the caller must have a valid reference to the task, the
2707 * task must not exit() & deallocate itself prematurely. The
2708 * call is not atomic; no spinlocks may be held.
2709 */
2710static int __set_cpus_allowed_ptr(struct task_struct *p,
2711                                  const struct cpumask *new_mask,
2712                                  u32 flags)
2713{
2714        const struct cpumask *cpu_valid_mask = cpu_active_mask;
2715        unsigned int dest_cpu;
2716        struct rq_flags rf;
2717        struct rq *rq;
2718        int ret = 0;
2719
2720        rq = task_rq_lock(p, &rf);
2721        update_rq_clock(rq);
2722
2723        if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2724                /*
2725                 * Kernel threads are allowed on online && !active CPUs,
2726                 * however, during cpu-hot-unplug, even these might get pushed
2727                 * away if not KTHREAD_IS_PER_CPU.
2728                 *
2729                 * Specifically, migration_disabled() tasks must not fail the
2730                 * cpumask_any_and_distribute() pick below, esp. so on
2731                 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2732                 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2733                 */
2734                cpu_valid_mask = cpu_online_mask;
2735        }
2736
2737        /*
2738         * Must re-check here, to close a race against __kthread_bind(),
2739         * sched_setaffinity() is not guaranteed to observe the flag.
2740         */
2741        if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2742                ret = -EINVAL;
2743                goto out;
2744        }
2745
2746        if (!(flags & SCA_MIGRATE_ENABLE)) {
2747                if (cpumask_equal(&p->cpus_mask, new_mask))
2748                        goto out;
2749
2750                if (WARN_ON_ONCE(p == current &&
2751                                 is_migration_disabled(p) &&
2752                                 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2753                        ret = -EBUSY;
2754                        goto out;
2755                }
2756        }
2757
2758        /*
2759         * Picking a ~random cpu helps in cases where we are changing affinity
2760         * for groups of tasks (ie. cpuset), so that load balancing is not
2761         * immediately required to distribute the tasks within their new mask.
2762         */
2763        dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2764        if (dest_cpu >= nr_cpu_ids) {
2765                ret = -EINVAL;
2766                goto out;
2767        }
2768
2769        __do_set_cpus_allowed(p, new_mask, flags);
2770
2771        return affine_move_task(rq, p, &rf, dest_cpu, flags);
2772
2773out:
2774        task_rq_unlock(rq, p, &rf);
2775
2776        return ret;
2777}
2778
2779int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2780{
2781        return __set_cpus_allowed_ptr(p, new_mask, 0);
2782}
2783EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2784
2785void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2786{
2787#ifdef CONFIG_SCHED_DEBUG
2788        unsigned int state = READ_ONCE(p->__state);
2789
2790        /*
2791         * We should never call set_task_cpu() on a blocked task,
2792         * ttwu() will sort out the placement.
2793         */
2794        WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2795
2796        /*
2797         * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2798         * because schedstat_wait_{start,end} rebase migrating task's wait_start
2799         * time relying on p->on_rq.
2800         */
2801        WARN_ON_ONCE(state == TASK_RUNNING &&
2802                     p->sched_class == &fair_sched_class &&
2803                     (p->on_rq && !task_on_rq_migrating(p)));
2804
2805#ifdef CONFIG_LOCKDEP
2806        /*
2807         * The caller should hold either p->pi_lock or rq->lock, when changing
2808         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2809         *
2810         * sched_move_task() holds both and thus holding either pins the cgroup,
2811         * see task_group().
2812         *
2813         * Furthermore, all task_rq users should acquire both locks, see
2814         * task_rq_lock().
2815         */
2816        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2817                                      lockdep_is_held(__rq_lockp(task_rq(p)))));
2818#endif
2819        /*
2820         * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2821         */
2822        WARN_ON_ONCE(!cpu_online(new_cpu));
2823
2824        WARN_ON_ONCE(is_migration_disabled(p));
2825#endif
2826
2827        trace_sched_migrate_task(p, new_cpu);
2828
2829        if (task_cpu(p) != new_cpu) {
2830                if (p->sched_class->migrate_task_rq)
2831                        p->sched_class->migrate_task_rq(p, new_cpu);
2832                p->se.nr_migrations++;
2833                rseq_migrate(p);
2834                perf_event_task_migrate(p);
2835        }
2836
2837        __set_task_cpu(p, new_cpu);
2838}
2839
2840#ifdef CONFIG_NUMA_BALANCING
2841static void __migrate_swap_task(struct task_struct *p, int cpu)
2842{
2843        if (task_on_rq_queued(p)) {
2844                struct rq *src_rq, *dst_rq;
2845                struct rq_flags srf, drf;
2846
2847                src_rq = task_rq(p);
2848                dst_rq = cpu_rq(cpu);
2849
2850                rq_pin_lock(src_rq, &srf);
2851                rq_pin_lock(dst_rq, &drf);
2852
2853                deactivate_task(src_rq, p, 0);
2854                set_task_cpu(p, cpu);
2855                activate_task(dst_rq, p, 0);
2856                check_preempt_curr(dst_rq, p, 0);
2857
2858                rq_unpin_lock(dst_rq, &drf);
2859                rq_unpin_lock(src_rq, &srf);
2860
2861        } else {
2862                /*
2863                 * Task isn't running anymore; make it appear like we migrated
2864                 * it before it went to sleep. This means on wakeup we make the
2865                 * previous CPU our target instead of where it really is.
2866                 */
2867                p->wake_cpu = cpu;
2868        }
2869}
2870
2871struct migration_swap_arg {
2872        struct task_struct *src_task, *dst_task;
2873        int src_cpu, dst_cpu;
2874};
2875
2876static int migrate_swap_stop(void *data)
2877{
2878        struct migration_swap_arg *arg = data;
2879        struct rq *src_rq, *dst_rq;
2880        int ret = -EAGAIN;
2881
2882        if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2883                return -EAGAIN;
2884
2885        src_rq = cpu_rq(arg->src_cpu);
2886        dst_rq = cpu_rq(arg->dst_cpu);
2887
2888        double_raw_lock(&arg->src_task->pi_lock,
2889                        &arg->dst_task->pi_lock);
2890        double_rq_lock(src_rq, dst_rq);
2891
2892        if (task_cpu(arg->dst_task) != arg->dst_cpu)
2893                goto unlock;
2894
2895        if (task_cpu(arg->src_task) != arg->src_cpu)
2896                goto unlock;
2897
2898        if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2899                goto unlock;
2900
2901        if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2902                goto unlock;
2903
2904        __migrate_swap_task(arg->src_task, arg->dst_cpu);
2905        __migrate_swap_task(arg->dst_task, arg->src_cpu);
2906
2907        ret = 0;
2908
2909unlock:
2910        double_rq_unlock(src_rq, dst_rq);
2911        raw_spin_unlock(&arg->dst_task->pi_lock);
2912        raw_spin_unlock(&arg->src_task->pi_lock);
2913
2914        return ret;
2915}
2916
2917/*
2918 * Cross migrate two tasks
2919 */
2920int migrate_swap(struct task_struct *cur, struct task_struct *p,
2921                int target_cpu, int curr_cpu)
2922{
2923        struct migration_swap_arg arg;
2924        int ret = -EINVAL;
2925
2926        arg = (struct migration_swap_arg){
2927                .src_task = cur,
2928                .src_cpu = curr_cpu,
2929                .dst_task = p,
2930                .dst_cpu = target_cpu,
2931        };
2932
2933        if (arg.src_cpu == arg.dst_cpu)
2934                goto out;
2935
2936        /*
2937         * These three tests are all lockless; this is OK since all of them
2938         * will be re-checked with proper locks held further down the line.
2939         */
2940        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2941                goto out;
2942
2943        if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2944                goto out;
2945
2946        if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2947                goto out;
2948
2949        trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2950        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2951
2952out:
2953        return ret;
2954}
2955#endif /* CONFIG_NUMA_BALANCING */
2956
2957/*
2958 * wait_task_inactive - wait for a thread to unschedule.
2959 *
2960 * If @match_state is nonzero, it's the @p->state value just checked and
2961 * not expected to change.  If it changes, i.e. @p might have woken up,
2962 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2963 * we return a positive number (its total switch count).  If a second call
2964 * a short while later returns the same number, the caller can be sure that
2965 * @p has remained unscheduled the whole time.
2966 *
2967 * The caller must ensure that the task *will* unschedule sometime soon,
2968 * else this function might spin for a *long* time. This function can't
2969 * be called with interrupts off, or it may introduce deadlock with
2970 * smp_call_function() if an IPI is sent by the same process we are
2971 * waiting to become inactive.
2972 */
2973unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2974{
2975        int running, queued;
2976        struct rq_flags rf;
2977        unsigned long ncsw;
2978        struct rq *rq;
2979
2980        for (;;) {
2981                /*
2982                 * We do the initial early heuristics without holding
2983                 * any task-queue locks at all. We'll only try to get
2984                 * the runqueue lock when things look like they will
2985                 * work out!
2986                 */
2987                rq = task_rq(p);
2988
2989                /*
2990                 * If the task is actively running on another CPU
2991                 * still, just relax and busy-wait without holding
2992                 * any locks.
2993                 *
2994                 * NOTE! Since we don't hold any locks, it's not
2995                 * even sure that "rq" stays as the right runqueue!
2996                 * But we don't care, since "task_running()" will
2997                 * return false if the runqueue has changed and p
2998                 * is actually now running somewhere else!
2999                 */
3000                while (task_running(rq, p)) {
3001                        if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3002                                return 0;
3003                        cpu_relax();
3004                }
3005
3006                /*
3007                 * Ok, time to look more closely! We need the rq
3008                 * lock now, to be *sure*. If we're wrong, we'll
3009                 * just go back and repeat.
3010                 */
3011                rq = task_rq_lock(p, &rf);
3012                trace_sched_wait_task(p);
3013                running = task_running(rq, p);
3014                queued = task_on_rq_queued(p);
3015                ncsw = 0;
3016                if (!match_state || READ_ONCE(p->__state) == match_state)
3017                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3018                task_rq_unlock(rq, p, &rf);
3019
3020                /*
3021                 * If it changed from the expected state, bail out now.
3022                 */
3023                if (unlikely(!ncsw))
3024                        break;
3025
3026                /*
3027                 * Was it really running after all now that we
3028                 * checked with the proper locks actually held?
3029                 *
3030                 * Oops. Go back and try again..
3031                 */
3032                if (unlikely(running)) {
3033                        cpu_relax();
3034                        continue;
3035                }
3036
3037                /*
3038                 * It's not enough that it's not actively running,
3039                 * it must be off the runqueue _entirely_, and not
3040                 * preempted!
3041                 *
3042                 * So if it was still runnable (but just not actively
3043                 * running right now), it's preempted, and we should
3044                 * yield - it could be a while.
3045                 */
3046                if (unlikely(queued)) {
3047                        ktime_t to = NSEC_PER_SEC / HZ;
3048
3049                        set_current_state(TASK_UNINTERRUPTIBLE);
3050                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3051                        continue;
3052                }
3053
3054                /*
3055                 * Ahh, all good. It wasn't running, and it wasn't
3056                 * runnable, which means that it will never become
3057                 * running in the future either. We're all done!
3058                 */
3059                break;
3060        }
3061
3062        return ncsw;
3063}
3064
3065/***
3066 * kick_process - kick a running thread to enter/exit the kernel
3067 * @p: the to-be-kicked thread
3068 *
3069 * Cause a process which is running on another CPU to enter
3070 * kernel-mode, without any delay. (to get signals handled.)
3071 *
3072 * NOTE: this function doesn't have to take the runqueue lock,
3073 * because all it wants to ensure is that the remote task enters
3074 * the kernel. If the IPI races and the task has been migrated
3075 * to another CPU then no harm is done and the purpose has been
3076 * achieved as well.
3077 */
3078void kick_process(struct task_struct *p)
3079{
3080        int cpu;
3081
3082        preempt_disable();
3083        cpu = task_cpu(p);
3084        if ((cpu != smp_processor_id()) && task_curr(p))
3085                smp_send_reschedule(cpu);
3086        preempt_enable();
3087}
3088EXPORT_SYMBOL_GPL(kick_process);
3089
3090/*
3091 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3092 *
3093 * A few notes on cpu_active vs cpu_online:
3094 *
3095 *  - cpu_active must be a subset of cpu_online
3096 *
3097 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3098 *    see __set_cpus_allowed_ptr(). At this point the newly online
3099 *    CPU isn't yet part of the sched domains, and balancing will not
3100 *    see it.
3101 *
3102 *  - on CPU-down we clear cpu_active() to mask the sched domains and
3103 *    avoid the load balancer to place new tasks on the to be removed
3104 *    CPU. Existing tasks will remain running there and will be taken
3105 *    off.
3106 *
3107 * This means that fallback selection must not select !active CPUs.
3108 * And can assume that any active CPU must be online. Conversely
3109 * select_task_rq() below may allow selection of !active CPUs in order
3110 * to satisfy the above rules.
3111 */
3112static int select_fallback_rq(int cpu, struct task_struct *p)
3113{
3114        int nid = cpu_to_node(cpu);
3115        const struct cpumask *nodemask = NULL;
3116        enum { cpuset, possible, fail } state = cpuset;
3117        int dest_cpu;
3118
3119        /*
3120         * If the node that the CPU is on has been offlined, cpu_to_node()
3121         * will return -1. There is no CPU on the node, and we should
3122         * select the CPU on the other node.
3123         */
3124        if (nid != -1) {
3125                nodemask = cpumask_of_node(nid);
3126
3127                /* Look for allowed, online CPU in same node. */
3128                for_each_cpu(dest_cpu, nodemask) {
3129                        if (!cpu_active(dest_cpu))
3130                                continue;
3131                        if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
3132                                return dest_cpu;
3133                }
3134        }
3135
3136        for (;;) {
3137                /* Any allowed, online CPU? */
3138                for_each_cpu(dest_cpu, p->cpus_ptr) {
3139                        if (!is_cpu_allowed(p, dest_cpu))
3140                                continue;
3141
3142                        goto out;
3143                }
3144
3145                /* No more Mr. Nice Guy. */
3146                switch (state) {
3147                case cpuset:
3148                        if (IS_ENABLED(CONFIG_CPUSETS)) {
3149                                cpuset_cpus_allowed_fallback(p);
3150                                state = possible;
3151                                break;
3152                        }
3153                        fallthrough;
3154                case possible:
3155                        /*
3156                         * XXX When called from select_task_rq() we only
3157                         * hold p->pi_lock and again violate locking order.
3158                         *
3159                         * More yuck to audit.
3160                         */
3161                        do_set_cpus_allowed(p, cpu_possible_mask);
3162                        state = fail;
3163                        break;
3164
3165                case fail:
3166                        BUG();
3167                        break;
3168                }
3169        }
3170
3171out:
3172        if (state != cpuset) {
3173                /*
3174                 * Don't tell them about moving exiting tasks or
3175                 * kernel threads (both mm NULL), since they never
3176                 * leave kernel.
3177                 */
3178                if (p->mm && printk_ratelimit()) {
3179                        printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3180                                        task_pid_nr(p), p->comm, cpu);
3181                }
3182        }
3183
3184        return dest_cpu;
3185}
3186
3187/*
3188 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3189 */
3190static inline
3191int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3192{
3193        lockdep_assert_held(&p->pi_lock);
3194
3195        if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3196                cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3197        else
3198                cpu = cpumask_any(p->cpus_ptr);
3199
3200        /*
3201         * In order not to call set_task_cpu() on a blocking task we need
3202         * to rely on ttwu() to place the task on a valid ->cpus_ptr
3203         * CPU.
3204         *
3205         * Since this is common to all placement strategies, this lives here.
3206         *
3207         * [ this allows ->select_task() to simply return task_cpu(p) and
3208         *   not worry about this generic constraint ]
3209         */
3210        if (unlikely(!is_cpu_allowed(p, cpu)))
3211                cpu = select_fallback_rq(task_cpu(p), p);
3212
3213        return cpu;
3214}
3215
3216void sched_set_stop_task(int cpu, struct task_struct *stop)
3217{
3218        static struct lock_class_key stop_pi_lock;
3219        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3220        struct task_struct *old_stop = cpu_rq(cpu)->stop;
3221
3222        if (stop) {
3223                /*
3224                 * Make it appear like a SCHED_FIFO task, its something
3225                 * userspace knows about and won't get confused about.
3226                 *
3227                 * Also, it will make PI more or less work without too
3228                 * much confusion -- but then, stop work should not
3229                 * rely on PI working anyway.
3230                 */
3231                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3232
3233                stop->sched_class = &stop_sched_class;
3234
3235                /*
3236                 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3237                 * adjust the effective priority of a task. As a result,
3238                 * rt_mutex_setprio() can trigger (RT) balancing operations,
3239                 * which can then trigger wakeups of the stop thread to push
3240                 * around the current task.
3241                 *
3242                 * The stop task itself will never be part of the PI-chain, it
3243                 * never blocks, therefore that ->pi_lock recursion is safe.
3244                 * Tell lockdep about this by placing the stop->pi_lock in its
3245                 * own class.
3246                 */
3247                lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3248        }
3249
3250        cpu_rq(cpu)->stop = stop;
3251
3252        if (old_stop) {
3253                /*
3254                 * Reset it back to a normal scheduling class so that
3255                 * it can die in pieces.
3256                 */
3257                old_stop->sched_class = &rt_sched_class;
3258        }
3259}
3260
3261#else /* CONFIG_SMP */
3262
3263static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3264                                         const struct cpumask *new_mask,
3265                                         u32 flags)
3266{
3267        return set_cpus_allowed_ptr(p, new_mask);
3268}
3269
3270static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3271
3272static inline bool rq_has_pinned_tasks(struct rq *rq)
3273{
3274        return false;
3275}
3276
3277#endif /* !CONFIG_SMP */
3278
3279static void
3280ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3281{
3282        struct rq *rq;
3283
3284        if (!schedstat_enabled())
3285                return;
3286
3287        rq = this_rq();
3288
3289#ifdef CONFIG_SMP
3290        if (cpu == rq->cpu) {
3291                __schedstat_inc(rq->ttwu_local);
3292                __schedstat_inc(p->se.statistics.nr_wakeups_local);
3293        } else {
3294                struct sched_domain *sd;
3295
3296                __schedstat_inc(p->se.statistics.nr_wakeups_remote);
3297                rcu_read_lock();
3298                for_each_domain(rq->cpu, sd) {
3299                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3300                                __schedstat_inc(sd->ttwu_wake_remote);
3301                                break;
3302                        }
3303                }
3304                rcu_read_unlock();
3305        }
3306
3307        if (wake_flags & WF_MIGRATED)
3308                __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3309#endif /* CONFIG_SMP */
3310
3311        __schedstat_inc(rq->ttwu_count);
3312        __schedstat_inc(p->se.statistics.nr_wakeups);
3313
3314        if (wake_flags & WF_SYNC)
3315                __schedstat_inc(p->se.statistics.nr_wakeups_sync);
3316}
3317
3318/*
3319 * Mark the task runnable and perform wakeup-preemption.
3320 */
3321static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3322                           struct rq_flags *rf)
3323{
3324        check_preempt_curr(rq, p, wake_flags);
3325        WRITE_ONCE(p->__state, TASK_RUNNING);
3326        trace_sched_wakeup(p);
3327
3328#ifdef CONFIG_SMP
3329        if (p->sched_class->task_woken) {
3330                /*
3331                 * Our task @p is fully woken up and running; so it's safe to
3332                 * drop the rq->lock, hereafter rq is only used for statistics.
3333                 */
3334                rq_unpin_lock(rq, rf);
3335                p->sched_class->task_woken(rq, p);
3336                rq_repin_lock(rq, rf);
3337        }
3338
3339        if (rq->idle_stamp) {
3340                u64 delta = rq_clock(rq) - rq->idle_stamp;
3341                u64 max = 2*rq->max_idle_balance_cost;
3342
3343                update_avg(&rq->avg_idle, delta);
3344
3345                if (rq->avg_idle > max)
3346                        rq->avg_idle = max;
3347
3348                rq->wake_stamp = jiffies;
3349                rq->wake_avg_idle = rq->avg_idle / 2;
3350
3351                rq->idle_stamp = 0;
3352        }
3353#endif
3354}
3355
3356static void
3357ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3358                 struct rq_flags *rf)
3359{
3360        int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3361
3362        lockdep_assert_rq_held(rq);
3363
3364        if (p->sched_contributes_to_load)
3365                rq->nr_uninterruptible--;
3366
3367#ifdef CONFIG_SMP
3368        if (wake_flags & WF_MIGRATED)
3369                en_flags |= ENQUEUE_MIGRATED;
3370        else
3371#endif
3372        if (p->in_iowait) {
3373                delayacct_blkio_end(p);
3374                atomic_dec(&task_rq(p)->nr_iowait);
3375        }
3376
3377        activate_task(rq, p, en_flags);
3378        ttwu_do_wakeup(rq, p, wake_flags, rf);
3379}
3380
3381/*
3382 * Consider @p being inside a wait loop:
3383 *
3384 *   for (;;) {
3385 *      set_current_state(TASK_UNINTERRUPTIBLE);
3386 *
3387 *      if (CONDITION)
3388 *         break;
3389 *
3390 *      schedule();
3391 *   }
3392 *   __set_current_state(TASK_RUNNING);
3393 *
3394 * between set_current_state() and schedule(). In this case @p is still
3395 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3396 * an atomic manner.
3397 *
3398 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3399 * then schedule() must still happen and p->state can be changed to
3400 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3401 * need to do a full wakeup with enqueue.
3402 *
3403 * Returns: %true when the wakeup is done,
3404 *          %false otherwise.
3405 */
3406static int ttwu_runnable(struct task_struct *p, int wake_flags)
3407{
3408        struct rq_flags rf;
3409        struct rq *rq;
3410        int ret = 0;
3411
3412        rq = __task_rq_lock(p, &rf);
3413        if (task_on_rq_queued(p)) {
3414                /* check_preempt_curr() may use rq clock */
3415                update_rq_clock(rq);
3416                ttwu_do_wakeup(rq, p, wake_flags, &rf);
3417                ret = 1;
3418        }
3419        __task_rq_unlock(rq, &rf);
3420
3421        return ret;
3422}
3423
3424#ifdef CONFIG_SMP
3425void sched_ttwu_pending(void *arg)
3426{
3427        struct llist_node *llist = arg;
3428        struct rq *rq = this_rq();
3429        struct task_struct *p, *t;
3430        struct rq_flags rf;
3431
3432        if (!llist)
3433                return;
3434
3435        /*
3436         * rq::ttwu_pending racy indication of out-standing wakeups.
3437         * Races such that false-negatives are possible, since they
3438         * are shorter lived that false-positives would be.
3439         */
3440        WRITE_ONCE(rq->ttwu_pending, 0);
3441
3442        rq_lock_irqsave(rq, &rf);
3443        update_rq_clock(rq);
3444
3445        llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3446                if (WARN_ON_ONCE(p->on_cpu))
3447                        smp_cond_load_acquire(&p->on_cpu, !VAL);
3448
3449                if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3450                        set_task_cpu(p, cpu_of(rq));
3451
3452                ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3453        }
3454
3455        rq_unlock_irqrestore(rq, &rf);
3456}
3457
3458void send_call_function_single_ipi(int cpu)
3459{
3460        struct rq *rq = cpu_rq(cpu);
3461
3462        if (!set_nr_if_polling(rq->idle))
3463                arch_send_call_function_single_ipi(cpu);
3464        else
3465                trace_sched_wake_idle_without_ipi(cpu);
3466}
3467
3468/*
3469 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3470 * necessary. The wakee CPU on receipt of the IPI will queue the task
3471 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3472 * of the wakeup instead of the waker.
3473 */
3474static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3475{
3476        struct rq *rq = cpu_rq(cpu);
3477
3478        p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3479
3480        WRITE_ONCE(rq->ttwu_pending, 1);
3481        __smp_call_single_queue(cpu, &p->wake_entry.llist);
3482}
3483
3484void wake_up_if_idle(int cpu)
3485{
3486        struct rq *rq = cpu_rq(cpu);
3487        struct rq_flags rf;
3488
3489        rcu_read_lock();
3490
3491        if (!is_idle_task(rcu_dereference(rq->curr)))
3492                goto out;
3493
3494        if (set_nr_if_polling(rq->idle)) {
3495                trace_sched_wake_idle_without_ipi(cpu);
3496        } else {
3497                rq_lock_irqsave(rq, &rf);
3498                if (is_idle_task(rq->curr))
3499                        smp_send_reschedule(cpu);
3500                /* Else CPU is not idle, do nothing here: */
3501                rq_unlock_irqrestore(rq, &rf);
3502        }
3503
3504out:
3505        rcu_read_unlock();
3506}
3507
3508bool cpus_share_cache(int this_cpu, int that_cpu)
3509{
3510        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3511}
3512
3513static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3514{
3515        /*
3516         * Do not complicate things with the async wake_list while the CPU is
3517         * in hotplug state.
3518         */
3519        if (!cpu_active(cpu))
3520                return false;
3521
3522        /*
3523         * If the CPU does not share cache, then queue the task on the
3524         * remote rqs wakelist to avoid accessing remote data.
3525         */
3526        if (!cpus_share_cache(smp_processor_id(), cpu))
3527                return true;
3528
3529        /*
3530         * If the task is descheduling and the only running task on the
3531         * CPU then use the wakelist to offload the task activation to
3532         * the soon-to-be-idle CPU as the current CPU is likely busy.
3533         * nr_running is checked to avoid unnecessary task stacking.
3534         */
3535        if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3536                return true;
3537
3538        return false;
3539}
3540
3541static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3542{
3543        if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3544                if (WARN_ON_ONCE(cpu == smp_processor_id()))
3545                        return false;
3546
3547                sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3548                __ttwu_queue_wakelist(p, cpu, wake_flags);
3549                return true;
3550        }
3551
3552        return false;
3553}
3554
3555#else /* !CONFIG_SMP */
3556
3557static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3558{
3559        return false;
3560}
3561
3562#endif /* CONFIG_SMP */
3563
3564static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3565{
3566        struct rq *rq = cpu_rq(cpu);
3567        struct rq_flags rf;
3568
3569        if (ttwu_queue_wakelist(p, cpu, wake_flags))
3570                return;
3571
3572        rq_lock(rq, &rf);
3573        update_rq_clock(rq);
3574        ttwu_do_activate(rq, p, wake_flags, &rf);
3575        rq_unlock(rq, &rf);
3576}
3577
3578/*
3579 * Notes on Program-Order guarantees on SMP systems.
3580 *
3581 *  MIGRATION
3582 *
3583 * The basic program-order guarantee on SMP systems is that when a task [t]
3584 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3585 * execution on its new CPU [c1].
3586 *
3587 * For migration (of runnable tasks) this is provided by the following means:
3588 *
3589 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3590 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3591 *     rq(c1)->lock (if not at the same time, then in that order).
3592 *  C) LOCK of the rq(c1)->lock scheduling in task
3593 *
3594 * Release/acquire chaining guarantees that B happens after A and C after B.
3595 * Note: the CPU doing B need not be c0 or c1
3596 *
3597 * Example:
3598 *
3599 *   CPU0            CPU1            CPU2
3600 *
3601 *   LOCK rq(0)->lock
3602 *   sched-out X
3603 *   sched-in Y
3604 *   UNLOCK rq(0)->lock
3605 *
3606 *                                   LOCK rq(0)->lock // orders against CPU0
3607 *                                   dequeue X
3608 *                                   UNLOCK rq(0)->lock
3609 *
3610 *                                   LOCK rq(1)->lock
3611 *                                   enqueue X
3612 *                                   UNLOCK rq(1)->lock
3613 *
3614 *                   LOCK rq(1)->lock // orders against CPU2
3615 *                   sched-out Z
3616 *                   sched-in X
3617 *                   UNLOCK rq(1)->lock
3618 *
3619 *
3620 *  BLOCKING -- aka. SLEEP + WAKEUP
3621 *
3622 * For blocking we (obviously) need to provide the same guarantee as for
3623 * migration. However the means are completely different as there is no lock
3624 * chain to provide order. Instead we do:
3625 *
3626 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3627 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3628 *
3629 * Example:
3630 *
3631 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3632 *
3633 *   LOCK rq(0)->lock LOCK X->pi_lock
3634 *   dequeue X
3635 *   sched-out X
3636 *   smp_store_release(X->on_cpu, 0);
3637 *
3638 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3639 *                    X->state = WAKING
3640 *                    set_task_cpu(X,2)
3641 *
3642 *                    LOCK rq(2)->lock
3643 *                    enqueue X
3644 *                    X->state = RUNNING
3645 *                    UNLOCK rq(2)->lock
3646 *
3647 *                                          LOCK rq(2)->lock // orders against CPU1
3648 *                                          sched-out Z
3649 *                                          sched-in X
3650 *                                          UNLOCK rq(2)->lock
3651 *
3652 *                    UNLOCK X->pi_lock
3653 *   UNLOCK rq(0)->lock
3654 *
3655 *
3656 * However, for wakeups there is a second guarantee we must provide, namely we
3657 * must ensure that CONDITION=1 done by the caller can not be reordered with
3658 * accesses to the task state; see try_to_wake_up() and set_current_state().
3659 */
3660
3661/**
3662 * try_to_wake_up - wake up a thread
3663 * @p: the thread to be awakened
3664 * @state: the mask of task states that can be woken
3665 * @wake_flags: wake modifier flags (WF_*)
3666 *
3667 * Conceptually does:
3668 *
3669 *   If (@state & @p->state) @p->state = TASK_RUNNING.
3670 *
3671 * If the task was not queued/runnable, also place it back on a runqueue.
3672 *
3673 * This function is atomic against schedule() which would dequeue the task.
3674 *
3675 * It issues a full memory barrier before accessing @p->state, see the comment
3676 * with set_current_state().
3677 *
3678 * Uses p->pi_lock to serialize against concurrent wake-ups.
3679 *
3680 * Relies on p->pi_lock stabilizing:
3681 *  - p->sched_class
3682 *  - p->cpus_ptr
3683 *  - p->sched_task_group
3684 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3685 *
3686 * Tries really hard to only take one task_rq(p)->lock for performance.
3687 * Takes rq->lock in:
3688 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3689 *  - ttwu_queue()       -- new rq, for enqueue of the task;
3690 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3691 *
3692 * As a consequence we race really badly with just about everything. See the
3693 * many memory barriers and their comments for details.
3694 *
3695 * Return: %true if @p->state changes (an actual wakeup was done),
3696 *         %false otherwise.
3697 */
3698static int
3699try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3700{
3701        unsigned long flags;
3702        int cpu, success = 0;
3703
3704        preempt_disable();
3705        if (p == current) {
3706                /*
3707                 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3708                 * == smp_processor_id()'. Together this means we can special
3709                 * case the whole 'p->on_rq && ttwu_runnable()' case below
3710                 * without taking any locks.
3711                 *
3712                 * In particular:
3713                 *  - we rely on Program-Order guarantees for all the ordering,
3714                 *  - we're serialized against set_special_state() by virtue of
3715                 *    it disabling IRQs (this allows not taking ->pi_lock).
3716                 */
3717                if (!(READ_ONCE(p->__state) & state))
3718                        goto out;
3719
3720                success = 1;
3721                trace_sched_waking(p);
3722                WRITE_ONCE(p->__state, TASK_RUNNING);
3723                trace_sched_wakeup(p);
3724                goto out;
3725        }
3726
3727        /*
3728         * If we are going to wake up a thread waiting for CONDITION we
3729         * need to ensure that CONDITION=1 done by the caller can not be
3730         * reordered with p->state check below. This pairs with smp_store_mb()
3731         * in set_current_state() that the waiting thread does.
3732         */
3733        raw_spin_lock_irqsave(&p->pi_lock, flags);
3734        smp_mb__after_spinlock();
3735        if (!(READ_ONCE(p->__state) & state))
3736                goto unlock;
3737
3738        trace_sched_waking(p);
3739
3740        /* We're going to change ->state: */
3741        success = 1;
3742
3743        /*
3744         * Ensure we load p->on_rq _after_ p->state, otherwise it would
3745         * be possible to, falsely, observe p->on_rq == 0 and get stuck
3746         * in smp_cond_load_acquire() below.
3747         *
3748         * sched_ttwu_pending()                 try_to_wake_up()
3749         *   STORE p->on_rq = 1                   LOAD p->state
3750         *   UNLOCK rq->lock
3751         *
3752         * __schedule() (switch to task 'p')
3753         *   LOCK rq->lock                        smp_rmb();
3754         *   smp_mb__after_spinlock();
3755         *   UNLOCK rq->lock
3756         *
3757         * [task p]
3758         *   STORE p->state = UNINTERRUPTIBLE     LOAD p->on_rq
3759         *
3760         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3761         * __schedule().  See the comment for smp_mb__after_spinlock().
3762         *
3763         * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3764         */
3765        smp_rmb();
3766        if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3767                goto unlock;
3768
3769#ifdef CONFIG_SMP
3770        /*
3771         * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3772         * possible to, falsely, observe p->on_cpu == 0.
3773         *
3774         * One must be running (->on_cpu == 1) in order to remove oneself
3775         * from the runqueue.
3776         *
3777         * __schedule() (switch to task 'p')    try_to_wake_up()
3778         *   STORE p->on_cpu = 1                  LOAD p->on_rq
3779         *   UNLOCK rq->lock
3780         *
3781         * __schedule() (put 'p' to sleep)
3782         *   LOCK rq->lock                        smp_rmb();
3783         *   smp_mb__after_spinlock();
3784         *   STORE p->on_rq = 0                   LOAD p->on_cpu
3785         *
3786         * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3787         * __schedule().  See the comment for smp_mb__after_spinlock().
3788         *
3789         * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3790         * schedule()'s deactivate_task() has 'happened' and p will no longer
3791         * care about it's own p->state. See the comment in __schedule().
3792         */
3793        smp_acquire__after_ctrl_dep();
3794
3795        /*
3796         * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3797         * == 0), which means we need to do an enqueue, change p->state to
3798         * TASK_WAKING such that we can unlock p->pi_lock before doing the
3799         * enqueue, such as ttwu_queue_wakelist().
3800         */
3801        WRITE_ONCE(p->__state, TASK_WAKING);
3802
3803        /*
3804         * If the owning (remote) CPU is still in the middle of schedule() with
3805         * this task as prev, considering queueing p on the remote CPUs wake_list
3806         * which potentially sends an IPI instead of spinning on p->on_cpu to
3807         * let the waker make forward progress. This is safe because IRQs are
3808         * disabled and the IPI will deliver after on_cpu is cleared.
3809         *
3810         * Ensure we load task_cpu(p) after p->on_cpu:
3811         *
3812         * set_task_cpu(p, cpu);
3813         *   STORE p->cpu = @cpu
3814         * __schedule() (switch to task 'p')
3815         *   LOCK rq->lock
3816         *   smp_mb__after_spin_lock()          smp_cond_load_acquire(&p->on_cpu)
3817         *   STORE p->on_cpu = 1                LOAD p->cpu
3818         *
3819         * to ensure we observe the correct CPU on which the task is currently
3820         * scheduling.
3821         */
3822        if (smp_load_acquire(&p->on_cpu) &&
3823            ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3824                goto unlock;
3825
3826        /*
3827         * If the owning (remote) CPU is still in the middle of schedule() with
3828         * this task as prev, wait until it's done referencing the task.
3829         *
3830         * Pairs with the smp_store_release() in finish_task().
3831         *
3832         * This ensures that tasks getting woken will be fully ordered against
3833         * their previous state and preserve Program Order.
3834         */
3835        smp_cond_load_acquire(&p->on_cpu, !VAL);
3836
3837        cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3838        if (task_cpu(p) != cpu) {
3839                if (p->in_iowait) {
3840                        delayacct_blkio_end(p);
3841                        atomic_dec(&task_rq(p)->nr_iowait);
3842                }
3843
3844                wake_flags |= WF_MIGRATED;
3845                psi_ttwu_dequeue(p);
3846                set_task_cpu(p, cpu);
3847        }
3848#else
3849        cpu = task_cpu(p);
3850#endif /* CONFIG_SMP */
3851
3852        ttwu_queue(p, cpu, wake_flags);
3853unlock:
3854        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3855out:
3856        if (success)
3857                ttwu_stat(p, task_cpu(p), wake_flags);
3858        preempt_enable();
3859
3860        return success;
3861}
3862
3863/**
3864 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3865 * @p: Process for which the function is to be invoked, can be @current.
3866 * @func: Function to invoke.
3867 * @arg: Argument to function.
3868 *
3869 * If the specified task can be quickly locked into a definite state
3870 * (either sleeping or on a given runqueue), arrange to keep it in that
3871 * state while invoking @func(@arg).  This function can use ->on_rq and
3872 * task_curr() to work out what the state is, if required.  Given that
3873 * @func can be invoked with a runqueue lock held, it had better be quite
3874 * lightweight.
3875 *
3876 * Returns:
3877 *      @false if the task slipped out from under the locks.
3878 *      @true if the task was locked onto a runqueue or is sleeping.
3879 *              However, @func can override this by returning @false.
3880 */
3881bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3882{
3883        struct rq_flags rf;
3884        bool ret = false;
3885        struct rq *rq;
3886
3887        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3888        if (p->on_rq) {
3889                rq = __task_rq_lock(p, &rf);
3890                if (task_rq(p) == rq)
3891                        ret = func(p, arg);
3892                rq_unlock(rq, &rf);
3893        } else {
3894                switch (READ_ONCE(p->__state)) {
3895                case TASK_RUNNING:
3896                case TASK_WAKING:
3897                        break;
3898                default:
3899                        smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3900                        if (!p->on_rq)
3901                                ret = func(p, arg);
3902                }
3903        }
3904        raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3905        return ret;
3906}
3907
3908/**
3909 * wake_up_process - Wake up a specific process
3910 * @p: The process to be woken up.
3911 *
3912 * Attempt to wake up the nominated process and move it to the set of runnable
3913 * processes.
3914 *
3915 * Return: 1 if the process was woken up, 0 if it was already running.
3916 *
3917 * This function executes a full memory barrier before accessing the task state.
3918 */
3919int wake_up_process(struct task_struct *p)
3920{
3921        return try_to_wake_up(p, TASK_NORMAL, 0);
3922}
3923EXPORT_SYMBOL(wake_up_process);
3924
3925int wake_up_state(struct task_struct *p, unsigned int state)
3926{
3927        return try_to_wake_up(p, state, 0);
3928}
3929
3930/*
3931 * Perform scheduler related setup for a newly forked process p.
3932 * p is forked by current.
3933 *
3934 * __sched_fork() is basic setup used by init_idle() too:
3935 */
3936static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3937{
3938        p->on_rq                        = 0;
3939
3940        p->se.on_rq                     = 0;
3941        p->se.exec_start                = 0;
3942        p->se.sum_exec_runtime          = 0;
3943        p->se.prev_sum_exec_runtime     = 0;
3944        p->se.nr_migrations             = 0;
3945        p->se.vruntime                  = 0;
3946        INIT_LIST_HEAD(&p->se.group_node);
3947
3948#ifdef CONFIG_FAIR_GROUP_SCHED
3949        p->se.cfs_rq                    = NULL;
3950#endif
3951
3952#ifdef CONFIG_SCHEDSTATS
3953        /* Even if schedstat is disabled, there should not be garbage */
3954        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3955#endif
3956
3957        RB_CLEAR_NODE(&p->dl.rb_node);
3958        init_dl_task_timer(&p->dl);
3959        init_dl_inactive_task_timer(&p->dl);
3960        __dl_clear_params(p);
3961
3962        INIT_LIST_HEAD(&p->rt.run_list);
3963        p->rt.timeout           = 0;
3964        p->rt.time_slice        = sched_rr_timeslice;
3965        p->rt.on_rq             = 0;
3966        p->rt.on_list           = 0;
3967
3968#ifdef CONFIG_PREEMPT_NOTIFIERS
3969        INIT_HLIST_HEAD(&p->preempt_notifiers);
3970#endif
3971
3972#ifdef CONFIG_COMPACTION
3973        p->capture_control = NULL;
3974#endif
3975        init_numa_balancing(clone_flags, p);
3976#ifdef CONFIG_SMP
3977        p->wake_entry.u_flags = CSD_TYPE_TTWU;
3978        p->migration_pending = NULL;
3979#endif
3980}
3981
3982DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3983
3984#ifdef CONFIG_NUMA_BALANCING
3985
3986void set_numabalancing_state(bool enabled)
3987{
3988        if (enabled)
3989                static_branch_enable(&sched_numa_balancing);
3990        else
3991                static_branch_disable(&sched_numa_balancing);
3992}
3993
3994#ifdef CONFIG_PROC_SYSCTL
3995int sysctl_numa_balancing(struct ctl_table *table, int write,
3996                          void *buffer, size_t *lenp, loff_t *ppos)
3997{
3998        struct ctl_table t;
3999        int err;
4000        int state = static_branch_likely(&sched_numa_balancing);
4001
4002        if (write && !capable(CAP_SYS_ADMIN))
4003                return -EPERM;
4004
4005        t = *table;
4006        t.data = &state;
4007        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4008        if (err < 0)
4009                return err;
4010        if (write)
4011                set_numabalancing_state(state);
4012        return err;
4013}
4014#endif
4015#endif
4016
4017#ifdef CONFIG_SCHEDSTATS
4018
4019DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4020
4021static void set_schedstats(bool enabled)
4022{
4023        if (enabled)
4024                static_branch_enable(&sched_schedstats);
4025        else
4026                static_branch_disable(&sched_schedstats);
4027}
4028
4029void force_schedstat_enabled(void)
4030{
4031        if (!schedstat_enabled()) {
4032                pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4033                static_branch_enable(&sched_schedstats);
4034        }
4035}
4036
4037static int __init setup_schedstats(char *str)
4038{
4039        int ret = 0;
4040        if (!str)
4041                goto out;
4042
4043        if (!strcmp(str, "enable")) {
4044                set_schedstats(true);
4045                ret = 1;
4046        } else if (!strcmp(str, "disable")) {
4047                set_schedstats(false);
4048                ret = 1;
4049        }
4050out:
4051        if (!ret)
4052                pr_warn("Unable to parse schedstats=\n");
4053
4054        return ret;
4055}
4056__setup("schedstats=", setup_schedstats);
4057
4058#ifdef CONFIG_PROC_SYSCTL
4059int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4060                size_t *lenp, loff_t *ppos)
4061{
4062        struct ctl_table t;
4063        int err;
4064        int state = static_branch_likely(&sched_schedstats);
4065
4066        if (write && !capable(CAP_SYS_ADMIN))
4067                return -EPERM;
4068
4069        t = *table;
4070        t.data = &state;
4071        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4072        if (err < 0)
4073                return err;
4074        if (write)
4075                set_schedstats(state);
4076        return err;
4077}
4078#endif /* CONFIG_PROC_SYSCTL */
4079#endif /* CONFIG_SCHEDSTATS */
4080
4081/*
4082 * fork()/clone()-time setup:
4083 */
4084int sched_fork(unsigned long clone_flags, struct task_struct *p)
4085{
4086        unsigned long flags;
4087
4088        __sched_fork(clone_flags, p);
4089        /*
4090         * We mark the process as NEW here. This guarantees that
4091         * nobody will actually run it, and a signal or other external
4092         * event cannot wake it up and insert it on the runqueue either.
4093         */
4094        p->__state = TASK_NEW;
4095
4096        /*
4097         * Make sure we do not leak PI boosting priority to the child.
4098         */
4099        p->prio = current->normal_prio;
4100
4101        uclamp_fork(p);
4102
4103        /*
4104         * Revert to default priority/policy on fork if requested.
4105         */
4106        if (unlikely(p->sched_reset_on_fork)) {
4107                if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4108                        p->policy = SCHED_NORMAL;
4109                        p->static_prio = NICE_TO_PRIO(0);
4110                        p->rt_priority = 0;
4111                } else if (PRIO_TO_NICE(p->static_prio) < 0)
4112                        p->static_prio = NICE_TO_PRIO(0);
4113
4114                p->prio = p->normal_prio = p->static_prio;
4115                set_load_weight(p, false);
4116
4117                /*
4118                 * We don't need the reset flag anymore after the fork. It has
4119                 * fulfilled its duty:
4120                 */
4121                p->sched_reset_on_fork = 0;
4122        }
4123
4124        if (dl_prio(p->prio))
4125                return -EAGAIN;
4126        else if (rt_prio(p->prio))
4127                p->sched_class = &rt_sched_class;
4128        else
4129                p->sched_class = &fair_sched_class;
4130
4131        init_entity_runnable_average(&p->se);
4132
4133        /*
4134         * The child is not yet in the pid-hash so no cgroup attach races,
4135         * and the cgroup is pinned to this child due to cgroup_fork()
4136         * is ran before sched_fork().
4137         *
4138         * Silence PROVE_RCU.
4139         */
4140        raw_spin_lock_irqsave(&p->pi_lock, flags);
4141        rseq_migrate(p);
4142        /*
4143         * We're setting the CPU for the first time, we don't migrate,
4144         * so use __set_task_cpu().
4145         */
4146        __set_task_cpu(p, smp_processor_id());
4147        if (p->sched_class->task_fork)
4148                p->sched_class->task_fork(p);
4149        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4150
4151#ifdef CONFIG_SCHED_INFO
4152        if (likely(sched_info_on()))
4153                memset(&p->sched_info, 0, sizeof(p->sched_info));
4154#endif
4155#if defined(CONFIG_SMP)
4156        p->on_cpu = 0;
4157#endif
4158        init_task_preempt_count(p);
4159#ifdef CONFIG_SMP
4160        plist_node_init(&p->pushable_tasks, MAX_PRIO);
4161        RB_CLEAR_NODE(&p->pushable_dl_tasks);
4162#endif
4163        return 0;
4164}
4165
4166void sched_post_fork(struct task_struct *p)
4167{
4168        uclamp_post_fork(p);
4169}
4170
4171unsigned long to_ratio(u64 period, u64 runtime)
4172{
4173        if (runtime == RUNTIME_INF)
4174                return BW_UNIT;
4175
4176        /*
4177         * Doing this here saves a lot of checks in all
4178         * the calling paths, and returning zero seems
4179         * safe for them anyway.
4180         */
4181        if (period == 0)
4182                return 0;
4183
4184        return div64_u64(runtime << BW_SHIFT, period);
4185}
4186
4187/*
4188 * wake_up_new_task - wake up a newly created task for the first time.
4189 *
4190 * This function will do some initial scheduler statistics housekeeping
4191 * that must be done for every newly created context, then puts the task
4192 * on the runqueue and wakes it.
4193 */
4194void wake_up_new_task(struct task_struct *p)
4195{
4196        struct rq_flags rf;
4197        struct rq *rq;
4198
4199        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4200        WRITE_ONCE(p->__state, TASK_RUNNING);
4201#ifdef CONFIG_SMP
4202        /*
4203         * Fork balancing, do it here and not earlier because:
4204         *  - cpus_ptr can change in the fork path
4205         *  - any previously selected CPU might disappear through hotplug
4206         *
4207         * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4208         * as we're not fully set-up yet.
4209         */
4210        p->recent_used_cpu = task_cpu(p);
4211        rseq_migrate(p);
4212        __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4213#endif
4214        rq = __task_rq_lock(p, &rf);
4215        update_rq_clock(rq);
4216        post_init_entity_util_avg(p);
4217
4218        activate_task(rq, p, ENQUEUE_NOCLOCK);
4219        trace_sched_wakeup_new(p);
4220        check_preempt_curr(rq, p, WF_FORK);
4221#ifdef CONFIG_SMP
4222        if (p->sched_class->task_woken) {
4223                /*
4224                 * Nothing relies on rq->lock after this, so it's fine to
4225                 * drop it.
4226                 */
4227                rq_unpin_lock(rq, &rf);
4228                p->sched_class->task_woken(rq, p);
4229                rq_repin_lock(rq, &rf);
4230        }
4231#endif
4232        task_rq_unlock(rq, p, &rf);
4233}
4234
4235#ifdef CONFIG_PREEMPT_NOTIFIERS
4236
4237static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4238
4239void preempt_notifier_inc(void)
4240{
4241        static_branch_inc(&preempt_notifier_key);
4242}
4243EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4244
4245void preempt_notifier_dec(void)
4246{
4247        static_branch_dec(&preempt_notifier_key);
4248}
4249EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4250
4251/**
4252 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4253 * @notifier: notifier struct to register
4254 */
4255void preempt_notifier_register(struct preempt_notifier *notifier)
4256{
4257        if (!static_branch_unlikely(&preempt_notifier_key))
4258                WARN(1, "registering preempt_notifier while notifiers disabled\n");
4259
4260        hlist_add_head(&notifier->link, &current->preempt_notifiers);
4261}
4262EXPORT_SYMBOL_GPL(preempt_notifier_register);
4263
4264/**
4265 * preempt_notifier_unregister - no longer interested in preemption notifications
4266 * @notifier: notifier struct to unregister
4267 *
4268 * This is *not* safe to call from within a preemption notifier.
4269 */
4270void preempt_notifier_unregister(struct preempt_notifier *notifier)
4271{
4272        hlist_del(&notifier->link);
4273}
4274EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4275
4276static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4277{
4278        struct preempt_notifier *notifier;
4279
4280        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4281                notifier->ops->sched_in(notifier, raw_smp_processor_id());
4282}
4283
4284static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4285{
4286        if (static_branch_unlikely(&preempt_notifier_key))
4287                __fire_sched_in_preempt_notifiers(curr);
4288}
4289
4290static void
4291__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4292                                   struct task_struct *next)
4293{
4294        struct preempt_notifier *notifier;
4295
4296        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4297                notifier->ops->sched_out(notifier, next);
4298}
4299
4300static __always_inline void
4301fire_sched_out_preempt_notifiers(struct task_struct *curr,
4302                                 struct task_struct *next)
4303{
4304        if (static_branch_unlikely(&preempt_notifier_key))
4305                __fire_sched_out_preempt_notifiers(curr, next);
4306}
4307
4308#else /* !CONFIG_PREEMPT_NOTIFIERS */
4309
4310static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4311{
4312}
4313
4314static inline void
4315fire_sched_out_preempt_notifiers(struct task_struct *curr,
4316                                 struct task_struct *next)
4317{
4318}
4319
4320#endif /* CONFIG_PREEMPT_NOTIFIERS */
4321
4322static inline void prepare_task(struct task_struct *next)
4323{
4324#ifdef CONFIG_SMP
4325        /*
4326         * Claim the task as running, we do this before switching to it
4327         * such that any running task will have this set.
4328         *
4329         * See the ttwu() WF_ON_CPU case and its ordering comment.
4330         */
4331        WRITE_ONCE(next->on_cpu, 1);
4332#endif
4333}
4334
4335static inline void finish_task(struct task_struct *prev)
4336{
4337#ifdef CONFIG_SMP
4338        /*
4339         * This must be the very last reference to @prev from this CPU. After
4340         * p->on_cpu is cleared, the task can be moved to a different CPU. We
4341         * must ensure this doesn't happen until the switch is completely
4342         * finished.
4343         *
4344         * In particular, the load of prev->state in finish_task_switch() must
4345         * happen before this.
4346         *
4347         * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4348         */
4349        smp_store_release(&prev->on_cpu, 0);
4350#endif
4351}
4352
4353#ifdef CONFIG_SMP
4354
4355static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4356{
4357        void (*func)(struct rq *rq);
4358        struct callback_head *next;
4359
4360        lockdep_assert_rq_held(rq);
4361
4362        while (head) {
4363                func = (void (*)(struct rq *))head->func;
4364                next = head->next;
4365                head->next = NULL;
4366                head = next;
4367
4368                func(rq);
4369        }
4370}
4371
4372static void balance_push(struct rq *rq);
4373
4374struct callback_head balance_push_callback = {
4375        .next = NULL,
4376        .func = (void (*)(struct callback_head *))balance_push,
4377};
4378
4379static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4380{
4381        struct callback_head *head = rq->balance_callback;
4382
4383        lockdep_assert_rq_held(rq);
4384        if (head)
4385                rq->balance_callback = NULL;
4386
4387        return head;
4388}
4389
4390static void __balance_callbacks(struct rq *rq)
4391{
4392        do_balance_callbacks(rq, splice_balance_callbacks(rq));
4393}
4394
4395static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4396{
4397        unsigned long flags;
4398
4399        if (unlikely(head)) {
4400                raw_spin_rq_lock_irqsave(rq, flags);
4401                do_balance_callbacks(rq, head);
4402                raw_spin_rq_unlock_irqrestore(rq, flags);
4403        }
4404}
4405
4406#else
4407
4408static inline void __balance_callbacks(struct rq *rq)
4409{
4410}
4411
4412static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4413{
4414        return NULL;
4415}
4416
4417static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4418{
4419}
4420
4421#endif
4422
4423static inline void
4424prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4425{
4426        /*
4427         * Since the runqueue lock will be released by the next
4428         * task (which is an invalid locking op but in the case
4429         * of the scheduler it's an obvious special-case), so we
4430         * do an early lockdep release here:
4431         */
4432        rq_unpin_lock(rq, rf);
4433        spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4434#ifdef CONFIG_DEBUG_SPINLOCK
4435        /* this is a valid case when another task releases the spinlock */
4436        rq_lockp(rq)->owner = next;
4437#endif
4438}
4439
4440static inline void finish_lock_switch(struct rq *rq)
4441{
4442        /*
4443         * If we are tracking spinlock dependencies then we have to
4444         * fix up the runqueue lock - which gets 'carried over' from
4445         * prev into current:
4446         */
4447        spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4448        __balance_callbacks(rq);
4449        raw_spin_rq_unlock_irq(rq);
4450}
4451
4452/*
4453 * NOP if the arch has not defined these:
4454 */
4455
4456#ifndef prepare_arch_switch
4457# define prepare_arch_switch(next)      do { } while (0)
4458#endif
4459
4460#ifndef finish_arch_post_lock_switch
4461# define finish_arch_post_lock_switch() do { } while (0)
4462#endif
4463
4464static inline void kmap_local_sched_out(void)
4465{
4466#ifdef CONFIG_KMAP_LOCAL
4467        if (unlikely(current->kmap_ctrl.idx))
4468                __kmap_local_sched_out();
4469#endif
4470}
4471
4472static inline void kmap_local_sched_in(void)
4473{
4474#ifdef CONFIG_KMAP_LOCAL
4475        if (unlikely(current->kmap_ctrl.idx))
4476                __kmap_local_sched_in();
4477#endif
4478}
4479
4480/**
4481 * prepare_task_switch - prepare to switch tasks
4482 * @rq: the runqueue preparing to switch
4483 * @prev: the current task that is being switched out
4484 * @next: the task we are going to switch to.
4485 *
4486 * This is called with the rq lock held and interrupts off. It must
4487 * be paired with a subsequent finish_task_switch after the context
4488 * switch.
4489 *
4490 * prepare_task_switch sets up locking and calls architecture specific
4491 * hooks.
4492 */
4493static inline void
4494prepare_task_switch(struct rq *rq, struct task_struct *prev,
4495                    struct task_struct *next)
4496{
4497        kcov_prepare_switch(prev);
4498        sched_info_switch(rq, prev, next);
4499        perf_event_task_sched_out(prev, next);
4500        rseq_preempt(prev);
4501        fire_sched_out_preempt_notifiers(prev, next);
4502        kmap_local_sched_out();
4503        prepare_task(next);
4504        prepare_arch_switch(next);
4505}
4506
4507/**
4508 * finish_task_switch - clean up after a task-switch
4509 * @prev: the thread we just switched away from.
4510 *
4511 * finish_task_switch must be called after the context switch, paired
4512 * with a prepare_task_switch call before the context switch.
4513 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4514 * and do any other architecture-specific cleanup actions.
4515 *
4516 * Note that we may have delayed dropping an mm in context_switch(). If
4517 * so, we finish that here outside of the runqueue lock. (Doing it
4518 * with the lock held can cause deadlocks; see schedule() for
4519 * details.)
4520 *
4521 * The context switch have flipped the stack from under us and restored the
4522 * local variables which were saved when this task called schedule() in the
4523 * past. prev == current is still correct but we need to recalculate this_rq
4524 * because prev may have moved to another CPU.
4525 */
4526static struct rq *finish_task_switch(struct task_struct *prev)
4527        __releases(rq->lock)
4528{
4529        struct rq *rq = this_rq();
4530        struct mm_struct *mm = rq->prev_mm;
4531        long prev_state;
4532
4533        /*
4534         * The previous task will have left us with a preempt_count of 2
4535         * because it left us after:
4536         *
4537         *      schedule()
4538         *        preempt_disable();                    // 1
4539         *        __schedule()
4540         *          raw_spin_lock_irq(&rq->lock)        // 2
4541         *
4542         * Also, see FORK_PREEMPT_COUNT.
4543         */
4544        if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4545                      "corrupted preempt_count: %s/%d/0x%x\n",
4546                      current->comm, current->pid, preempt_count()))
4547                preempt_count_set(FORK_PREEMPT_COUNT);
4548
4549        rq->prev_mm = NULL;
4550
4551        /*
4552         * A task struct has one reference for the use as "current".
4553         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4554         * schedule one last time. The schedule call will never return, and
4555         * the scheduled task must drop that reference.
4556         *
4557         * We must observe prev->state before clearing prev->on_cpu (in
4558         * finish_task), otherwise a concurrent wakeup can get prev
4559         * running on another CPU and we could rave with its RUNNING -> DEAD
4560         * transition, resulting in a double drop.
4561         */
4562        prev_state = READ_ONCE(prev->__state);
4563        vtime_task_switch(prev);
4564        perf_event_task_sched_in(prev, current);
4565        finish_task(prev);
4566        tick_nohz_task_switch();
4567        finish_lock_switch(rq);
4568        finish_arch_post_lock_switch();
4569        kcov_finish_switch(current);
4570        /*
4571         * kmap_local_sched_out() is invoked with rq::lock held and
4572         * interrupts disabled. There is no requirement for that, but the
4573         * sched out code does not have an interrupt enabled section.
4574         * Restoring the maps on sched in does not require interrupts being
4575         * disabled either.
4576         */
4577        kmap_local_sched_in();
4578
4579        fire_sched_in_preempt_notifiers(current);
4580        /*
4581         * When switching through a kernel thread, the loop in
4582         * membarrier_{private,global}_expedited() may have observed that
4583         * kernel thread and not issued an IPI. It is therefore possible to
4584         * schedule between user->kernel->user threads without passing though
4585         * switch_mm(). Membarrier requires a barrier after storing to
4586         * rq->curr, before returning to userspace, so provide them here:
4587         *
4588         * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4589         *   provided by mmdrop(),
4590         * - a sync_core for SYNC_CORE.
4591         */
4592        if (mm) {
4593                membarrier_mm_sync_core_before_usermode(mm);
4594                mmdrop(mm);
4595        }
4596        if (unlikely(prev_state == TASK_DEAD)) {
4597                if (prev->sched_class->task_dead)
4598                        prev->sched_class->task_dead(prev);
4599
4600                /*
4601                 * Remove function-return probe instances associated with this
4602                 * task and put them back on the free list.
4603                 */
4604                kprobe_flush_task(prev);
4605
4606                /* Task is done with its stack. */
4607                put_task_stack(prev);
4608
4609                put_task_struct_rcu_user(prev);
4610        }
4611
4612        return rq;
4613}
4614
4615/**
4616 * schedule_tail - first thing a freshly forked thread must call.
4617 * @prev: the thread we just switched away from.
4618 */
4619asmlinkage __visible void schedule_tail(struct task_struct *prev)
4620        __releases(rq->lock)
4621{
4622        /*
4623         * New tasks start with FORK_PREEMPT_COUNT, see there and
4624         * finish_task_switch() for details.
4625         *
4626         * finish_task_switch() will drop rq->lock() and lower preempt_count
4627         * and the preempt_enable() will end up enabling preemption (on
4628         * PREEMPT_COUNT kernels).
4629         */
4630
4631        finish_task_switch(prev);
4632        preempt_enable();
4633
4634        if (current->set_child_tid)
4635                put_user(task_pid_vnr(current), current->set_child_tid);
4636
4637        calculate_sigpending();
4638}
4639
4640/*
4641 * context_switch - switch to the new MM and the new thread's register state.
4642 */
4643static __always_inline struct rq *
4644context_switch(struct rq *rq, struct task_struct *prev,
4645               struct task_struct *next, struct rq_flags *rf)
4646{
4647        prepare_task_switch(rq, prev, next);
4648
4649        /*
4650         * For paravirt, this is coupled with an exit in switch_to to
4651         * combine the page table reload and the switch backend into
4652         * one hypercall.
4653         */
4654        arch_start_context_switch(prev);
4655
4656        /*
4657         * kernel -> kernel   lazy + transfer active
4658         *   user -> kernel   lazy + mmgrab() active
4659         *
4660         * kernel ->   user   switch + mmdrop() active
4661         *   user ->   user   switch
4662         */
4663        if (!next->mm) {                                // to kernel
4664                enter_lazy_tlb(prev->active_mm, next);
4665
4666                next->active_mm = prev->active_mm;
4667                if (prev->mm)                           // from user
4668                        mmgrab(prev->active_mm);
4669                else
4670                        prev->active_mm = NULL;
4671        } else {                                        // to user
4672                membarrier_switch_mm(rq, prev->active_mm, next->mm);
4673                /*
4674                 * sys_membarrier() requires an smp_mb() between setting
4675                 * rq->curr / membarrier_switch_mm() and returning to userspace.
4676                 *
4677                 * The below provides this either through switch_mm(), or in
4678                 * case 'prev->active_mm == next->mm' through
4679                 * finish_task_switch()'s mmdrop().
4680                 */
4681                switch_mm_irqs_off(prev->active_mm, next->mm, next);
4682
4683                if (!prev->mm) {                        // from kernel
4684                        /* will mmdrop() in finish_task_switch(). */
4685                        rq->prev_mm = prev->active_mm;
4686                        prev->active_mm = NULL;
4687                }
4688        }
4689
4690        rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4691
4692        prepare_lock_switch(rq, next, rf);
4693
4694        /* Here we just switch the register state and the stack. */
4695        switch_to(prev, next, prev);
4696        barrier();
4697
4698        return finish_task_switch(prev);
4699}
4700
4701/*
4702 * nr_running and nr_context_switches:
4703 *
4704 * externally visible scheduler statistics: current number of runnable
4705 * threads, total number of context switches performed since bootup.
4706 */
4707unsigned int nr_running(void)
4708{
4709        unsigned int i, sum = 0;
4710
4711        for_each_online_cpu(i)
4712                sum += cpu_rq(i)->nr_running;
4713
4714        return sum;
4715}
4716
4717/*
4718 * Check if only the current task is running on the CPU.
4719 *
4720 * Caution: this function does not check that the caller has disabled
4721 * preemption, thus the result might have a time-of-check-to-time-of-use
4722 * race.  The caller is responsible to use it correctly, for example:
4723 *
4724 * - from a non-preemptible section (of course)
4725 *
4726 * - from a thread that is bound to a single CPU
4727 *
4728 * - in a loop with very short iterations (e.g. a polling loop)
4729 */
4730bool single_task_running(void)
4731{
4732        return raw_rq()->nr_running == 1;
4733}
4734EXPORT_SYMBOL(single_task_running);
4735
4736unsigned long long nr_context_switches(void)
4737{
4738        int i;
4739        unsigned long long sum = 0;
4740
4741        for_each_possible_cpu(i)
4742                sum += cpu_rq(i)->nr_switches;
4743
4744        return sum;
4745}
4746
4747/*
4748 * Consumers of these two interfaces, like for example the cpuidle menu
4749 * governor, are using nonsensical data. Preferring shallow idle state selection
4750 * for a CPU that has IO-wait which might not even end up running the task when
4751 * it does become runnable.
4752 */
4753
4754unsigned int nr_iowait_cpu(int cpu)
4755{
4756        return atomic_read(&cpu_rq(cpu)->nr_iowait);
4757}
4758
4759/*
4760 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4761 *
4762 * The idea behind IO-wait account is to account the idle time that we could
4763 * have spend running if it were not for IO. That is, if we were to improve the
4764 * storage performance, we'd have a proportional reduction in IO-wait time.
4765 *
4766 * This all works nicely on UP, where, when a task blocks on IO, we account
4767 * idle time as IO-wait, because if the storage were faster, it could've been
4768 * running and we'd not be idle.
4769 *
4770 * This has been extended to SMP, by doing the same for each CPU. This however
4771 * is broken.
4772 *
4773 * Imagine for instance the case where two tasks block on one CPU, only the one
4774 * CPU will have IO-wait accounted, while the other has regular idle. Even
4775 * though, if the storage were faster, both could've ran at the same time,
4776 * utilising both CPUs.
4777 *
4778 * This means, that when looking globally, the current IO-wait accounting on
4779 * SMP is a lower bound, by reason of under accounting.
4780 *
4781 * Worse, since the numbers are provided per CPU, they are sometimes
4782 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4783 * associated with any one particular CPU, it can wake to another CPU than it
4784 * blocked on. This means the per CPU IO-wait number is meaningless.
4785 *
4786 * Task CPU affinities can make all that even more 'interesting'.
4787 */
4788
4789unsigned int nr_iowait(void)
4790{
4791        unsigned int i, sum = 0;
4792
4793        for_each_possible_cpu(i)
4794                sum += nr_iowait_cpu(i);
4795
4796        return sum;
4797}
4798
4799#ifdef CONFIG_SMP
4800
4801/*
4802 * sched_exec - execve() is a valuable balancing opportunity, because at
4803 * this point the task has the smallest effective memory and cache footprint.
4804 */
4805void sched_exec(void)
4806{
4807        struct task_struct *p = current;
4808        unsigned long flags;
4809        int dest_cpu;
4810
4811        raw_spin_lock_irqsave(&p->pi_lock, flags);
4812        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4813        if (dest_cpu == smp_processor_id())
4814                goto unlock;
4815
4816        if (likely(cpu_active(dest_cpu))) {
4817                struct migration_arg arg = { p, dest_cpu };
4818
4819                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4820                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4821                return;
4822        }
4823unlock:
4824        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4825}
4826
4827#endif
4828
4829DEFINE_PER_CPU(struct kernel_stat, kstat);
4830DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4831
4832EXPORT_PER_CPU_SYMBOL(kstat);
4833EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4834
4835/*
4836 * The function fair_sched_class.update_curr accesses the struct curr
4837 * and its field curr->exec_start; when called from task_sched_runtime(),
4838 * we observe a high rate of cache misses in practice.
4839 * Prefetching this data results in improved performance.
4840 */
4841static inline void prefetch_curr_exec_start(struct task_struct *p)
4842{
4843#ifdef CONFIG_FAIR_GROUP_SCHED
4844        struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4845#else
4846        struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4847#endif
4848        prefetch(curr);
4849        prefetch(&curr->exec_start);
4850}
4851
4852/*
4853 * Return accounted runtime for the task.
4854 * In case the task is currently running, return the runtime plus current's
4855 * pending runtime that have not been accounted yet.
4856 */
4857unsigned long long task_sched_runtime(struct task_struct *p)
4858{
4859        struct rq_flags rf;
4860        struct rq *rq;
4861        u64 ns;
4862
4863#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4864        /*
4865         * 64-bit doesn't need locks to atomically read a 64-bit value.
4866         * So we have a optimization chance when the task's delta_exec is 0.
4867         * Reading ->on_cpu is racy, but this is ok.
4868         *
4869         * If we race with it leaving CPU, we'll take a lock. So we're correct.
4870         * If we race with it entering CPU, unaccounted time is 0. This is
4871         * indistinguishable from the read occurring a few cycles earlier.
4872         * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4873         * been accounted, so we're correct here as well.
4874         */
4875        if (!p->on_cpu || !task_on_rq_queued(p))
4876                return p->se.sum_exec_runtime;
4877#endif
4878
4879        rq = task_rq_lock(p, &rf);
4880        /*
4881         * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4882         * project cycles that may never be accounted to this
4883         * thread, breaking clock_gettime().
4884         */
4885        if (task_current(rq, p) && task_on_rq_queued(p)) {
4886                prefetch_curr_exec_start(p);
4887                update_rq_clock(rq);
4888                p->sched_class->update_curr(rq);
4889        }
4890        ns = p->se.sum_exec_runtime;
4891        task_rq_unlock(rq, p, &rf);
4892
4893        return ns;
4894}
4895
4896#ifdef CONFIG_SCHED_DEBUG
4897static u64 cpu_resched_latency(struct rq *rq)
4898{
4899        int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4900        u64 resched_latency, now = rq_clock(rq);
4901        static bool warned_once;
4902
4903        if (sysctl_resched_latency_warn_once && warned_once)
4904                return 0;
4905
4906        if (!need_resched() || !latency_warn_ms)
4907                return 0;
4908
4909        if (system_state == SYSTEM_BOOTING)
4910                return 0;
4911
4912        if (!rq->last_seen_need_resched_ns) {
4913                rq->last_seen_need_resched_ns = now;
4914                rq->ticks_without_resched = 0;
4915                return 0;
4916        }
4917
4918        rq->ticks_without_resched++;
4919        resched_latency = now - rq->last_seen_need_resched_ns;
4920        if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4921                return 0;
4922
4923        warned_once = true;
4924
4925        return resched_latency;
4926}
4927
4928static int __init setup_resched_latency_warn_ms(char *str)
4929{
4930        long val;
4931
4932        if ((kstrtol(str, 0, &val))) {
4933                pr_warn("Unable to set resched_latency_warn_ms\n");
4934                return 1;
4935        }
4936
4937        sysctl_resched_latency_warn_ms = val;
4938        return 1;
4939}
4940__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4941#else
4942static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4943#endif /* CONFIG_SCHED_DEBUG */
4944
4945/*
4946 * This function gets called by the timer code, with HZ frequency.
4947 * We call it with interrupts disabled.
4948 */
4949void scheduler_tick(void)
4950{
4951        int cpu = smp_processor_id();
4952        struct rq *rq = cpu_rq(cpu);
4953        struct task_struct *curr = rq->curr;
4954        struct rq_flags rf;
4955        unsigned long thermal_pressure;
4956        u64 resched_latency;
4957
4958        arch_scale_freq_tick();
4959        sched_clock_tick();
4960
4961        rq_lock(rq, &rf);
4962
4963        update_rq_clock(rq);
4964        thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4965        update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4966        curr->sched_class->task_tick(rq, curr, 0);
4967        if (sched_feat(LATENCY_WARN))
4968                resched_latency = cpu_resched_latency(rq);
4969        calc_global_load_tick(rq);
4970
4971        rq_unlock(rq, &rf);
4972
4973        if (sched_feat(LATENCY_WARN) && resched_latency)
4974                resched_latency_warn(cpu, resched_latency);
4975
4976        perf_event_task_tick();
4977
4978#ifdef CONFIG_SMP
4979        rq->idle_balance = idle_cpu(cpu);
4980        trigger_load_balance(rq);
4981#endif
4982}
4983
4984#ifdef CONFIG_NO_HZ_FULL
4985
4986struct tick_work {
4987        int                     cpu;
4988        atomic_t                state;
4989        struct delayed_work     work;
4990};
4991/* Values for ->state, see diagram below. */
4992#define TICK_SCHED_REMOTE_OFFLINE       0
4993#define TICK_SCHED_REMOTE_OFFLINING     1
4994#define TICK_SCHED_REMOTE_RUNNING       2
4995
4996/*
4997 * State diagram for ->state:
4998 *
4999 *
5000 *          TICK_SCHED_REMOTE_OFFLINE
5001 *                    |   ^
5002 *                    |   |
5003 *                    |   | sched_tick_remote()
5004 *                    |   |
5005 *                    |   |
5006 *                    +--TICK_SCHED_REMOTE_OFFLINING
5007 *                    |   ^
5008 *                    |   |
5009 * sched_tick_start() |   | sched_tick_stop()
5010 *                    |   |
5011 *                    V   |
5012 *          TICK_SCHED_REMOTE_RUNNING
5013 *
5014 *
5015 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5016 * and sched_tick_start() are happy to leave the state in RUNNING.
5017 */
5018
5019static struct tick_work __percpu *tick_work_cpu;
5020
5021static void sched_tick_remote(struct work_struct *work)
5022{
5023        struct delayed_work *dwork = to_delayed_work(work);
5024        struct tick_work *twork = container_of(dwork, struct tick_work, work);
5025        int cpu = twork->cpu;
5026        struct rq *rq = cpu_rq(cpu);
5027        struct task_struct *curr;
5028        struct rq_flags rf;
5029        u64 delta;
5030        int os;
5031
5032        /*
5033         * Handle the tick only if it appears the remote CPU is running in full
5034         * dynticks mode. The check is racy by nature, but missing a tick or
5035         * having one too much is no big deal because the scheduler tick updates
5036         * statistics and checks timeslices in a time-independent way, regardless
5037         * of when exactly it is running.
5038         */
5039        if (!tick_nohz_tick_stopped_cpu(cpu))
5040                goto out_requeue;
5041
5042        rq_lock_irq(rq, &rf);
5043        curr = rq->curr;
5044        if (cpu_is_offline(cpu))
5045                goto out_unlock;
5046
5047        update_rq_clock(rq);
5048
5049        if (!is_idle_task(curr)) {
5050                /*
5051                 * Make sure the next tick runs within a reasonable
5052                 * amount of time.
5053                 */
5054                delta = rq_clock_task(rq) - curr->se.exec_start;
5055                WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5056        }
5057        curr->sched_class->task_tick(rq, curr, 0);
5058
5059        calc_load_nohz_remote(rq);
5060out_unlock:
5061        rq_unlock_irq(rq, &rf);
5062out_requeue:
5063
5064        /*
5065         * Run the remote tick once per second (1Hz). This arbitrary
5066         * frequency is large enough to avoid overload but short enough
5067         * to keep scheduler internal stats reasonably up to date.  But
5068         * first update state to reflect hotplug activity if required.
5069         */
5070        os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5071        WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5072        if (os == TICK_SCHED_REMOTE_RUNNING)
5073                queue_delayed_work(system_unbound_wq, dwork, HZ);
5074}
5075
5076static void sched_tick_start(int cpu)
5077{
5078        int os;
5079        struct tick_work *twork;
5080
5081        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5082                return;
5083
5084        WARN_ON_ONCE(!tick_work_cpu);
5085
5086        twork = per_cpu_ptr(tick_work_cpu, cpu);
5087        os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5088        WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5089        if (os == TICK_SCHED_REMOTE_OFFLINE) {
5090                twork->cpu = cpu;
5091                INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5092                queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5093        }
5094}
5095
5096#ifdef CONFIG_HOTPLUG_CPU
5097static void sched_tick_stop(int cpu)
5098{
5099        struct tick_work *twork;
5100        int os;
5101
5102        if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5103                return;
5104
5105        WARN_ON_ONCE(!tick_work_cpu);
5106
5107        twork = per_cpu_ptr(tick_work_cpu, cpu);
5108        /* There cannot be competing actions, but don't rely on stop-machine. */
5109        os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5110        WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5111        /* Don't cancel, as this would mess up the state machine. */
5112}
5113#endif /* CONFIG_HOTPLUG_CPU */
5114
5115int __init sched_tick_offload_init(void)
5116{
5117        tick_work_cpu = alloc_percpu(struct tick_work);
5118        BUG_ON(!tick_work_cpu);
5119        return 0;
5120}
5121
5122#else /* !CONFIG_NO_HZ_FULL */
5123static inline void sched_tick_start(int cpu) { }
5124static inline void sched_tick_stop(int cpu) { }
5125#endif
5126
5127#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5128                                defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5129/*
5130 * If the value passed in is equal to the current preempt count
5131 * then we just disabled preemption. Start timing the latency.
5132 */
5133static inline void preempt_latency_start(int val)
5134{
5135        if (preempt_count() == val) {
5136                unsigned long ip = get_lock_parent_ip();
5137#ifdef CONFIG_DEBUG_PREEMPT
5138                current->preempt_disable_ip = ip;
5139#endif
5140                trace_preempt_off(CALLER_ADDR0, ip);
5141        }
5142}
5143
5144void preempt_count_add(int val)
5145{
5146#ifdef CONFIG_DEBUG_PREEMPT
5147        /*
5148         * Underflow?
5149         */
5150        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5151                return;
5152#endif
5153        __preempt_count_add(val);
5154#ifdef CONFIG_DEBUG_PREEMPT
5155        /*
5156         * Spinlock count overflowing soon?
5157         */
5158        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5159                                PREEMPT_MASK - 10);
5160#endif
5161        preempt_latency_start(val);
5162}
5163EXPORT_SYMBOL(preempt_count_add);
5164NOKPROBE_SYMBOL(preempt_count_add);
5165
5166/*
5167 * If the value passed in equals to the current preempt count
5168 * then we just enabled preemption. Stop timing the latency.
5169 */
5170static inline void preempt_latency_stop(int val)
5171{
5172        if (preempt_count() == val)
5173                trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5174}
5175
5176void preempt_count_sub(int val)
5177{
5178#ifdef CONFIG_DEBUG_PREEMPT
5179        /*
5180         * Underflow?
5181         */
5182        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5183                return;
5184        /*
5185         * Is the spinlock portion underflowing?
5186         */
5187        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5188                        !(preempt_count() & PREEMPT_MASK)))
5189                return;
5190#endif
5191
5192        preempt_latency_stop(val);
5193        __preempt_count_sub(val);
5194}
5195EXPORT_SYMBOL(preempt_count_sub);
5196NOKPROBE_SYMBOL(preempt_count_sub);
5197
5198#else
5199static inline void preempt_latency_start(int val) { }
5200static inline void preempt_latency_stop(int val) { }
5201#endif
5202
5203static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5204{
5205#ifdef CONFIG_DEBUG_PREEMPT
5206        return p->preempt_disable_ip;
5207#else
5208        return 0;
5209#endif
5210}
5211
5212/*
5213 * Print scheduling while atomic bug:
5214 */
5215static noinline void __schedule_bug(struct task_struct *prev)
5216{
5217        /* Save this before calling printk(), since that will clobber it */
5218        unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5219
5220        if (oops_in_progress)
5221                return;
5222
5223        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5224                prev->comm, prev->pid, preempt_count());
5225
5226        debug_show_held_locks(prev);
5227        print_modules();
5228        if (irqs_disabled())
5229                print_irqtrace_events(prev);
5230        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5231            && in_atomic_preempt_off()) {
5232                pr_err("Preemption disabled at:");
5233                print_ip_sym(KERN_ERR, preempt_disable_ip);
5234        }
5235        if (panic_on_warn)
5236                panic("scheduling while atomic\n");
5237
5238        dump_stack();
5239        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5240}
5241
5242/*
5243 * Various schedule()-time debugging checks and statistics:
5244 */
5245static inline void schedule_debug(struct task_struct *prev, bool preempt)
5246{
5247#ifdef CONFIG_SCHED_STACK_END_CHECK
5248        if (task_stack_end_corrupted(prev))
5249                panic("corrupted stack end detected inside scheduler\n");
5250
5251        if (task_scs_end_corrupted(prev))
5252                panic("corrupted shadow stack detected inside scheduler\n");
5253#endif
5254
5255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5256        if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5257                printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5258                        prev->comm, prev->pid, prev->non_block_count);
5259                dump_stack();
5260                add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5261        }
5262#endif
5263
5264        if (unlikely(in_atomic_preempt_off())) {
5265                __schedule_bug(prev);
5266                preempt_count_set(PREEMPT_DISABLED);
5267        }
5268        rcu_sleep_check();
5269        SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5270
5271        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5272
5273        schedstat_inc(this_rq()->sched_count);
5274}
5275
5276static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5277                                  struct rq_flags *rf)
5278{
5279#ifdef CONFIG_SMP
5280        const struct sched_class *class;
5281        /*
5282         * We must do the balancing pass before put_prev_task(), such
5283         * that when we release the rq->lock the task is in the same
5284         * state as before we took rq->lock.
5285         *
5286         * We can terminate the balance pass as soon as we know there is
5287         * a runnable task of @class priority or higher.
5288         */
5289        for_class_range(class, prev->sched_class, &idle_sched_class) {
5290                if (class->balance(rq, prev, rf))
5291                        break;
5292        }
5293#endif
5294
5295        put_prev_task(rq, prev);
5296}
5297
5298/*
5299 * Pick up the highest-prio task:
5300 */
5301static inline struct task_struct *
5302__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5303{
5304        const struct sched_class *class;
5305        struct task_struct *p;
5306
5307        /*
5308         * Optimization: we know that if all tasks are in the fair class we can
5309         * call that function directly, but only if the @prev task wasn't of a
5310         * higher scheduling class, because otherwise those lose the
5311         * opportunity to pull in more work from other CPUs.
5312         */
5313        if (likely(prev->sched_class <= &fair_sched_class &&
5314                   rq->nr_running == rq->cfs.h_nr_running)) {
5315
5316                p = pick_next_task_fair(rq, prev, rf);
5317                if (unlikely(p == RETRY_TASK))
5318                        goto restart;
5319
5320                /* Assume the next prioritized class is idle_sched_class */
5321                if (!p) {
5322                        put_prev_task(rq, prev);
5323                        p = pick_next_task_idle(rq);
5324                }
5325
5326                return p;
5327        }
5328
5329restart:
5330        put_prev_task_balance(rq, prev, rf);
5331
5332        for_each_class(class) {
5333                p = class->pick_next_task(rq);
5334                if (p)
5335                        return p;
5336        }
5337
5338        /* The idle class should always have a runnable task: */
5339        BUG();
5340}
5341
5342#ifdef CONFIG_SCHED_CORE
5343static inline bool is_task_rq_idle(struct task_struct *t)
5344{
5345        return (task_rq(t)->idle == t);
5346}
5347
5348static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5349{
5350        return is_task_rq_idle(a) || (a->core_cookie == cookie);
5351}
5352
5353static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5354{
5355        if (is_task_rq_idle(a) || is_task_rq_idle(b))
5356                return true;
5357
5358        return a->core_cookie == b->core_cookie;
5359}
5360
5361// XXX fairness/fwd progress conditions
5362/*
5363 * Returns
5364 * - NULL if there is no runnable task for this class.
5365 * - the highest priority task for this runqueue if it matches
5366 *   rq->core->core_cookie or its priority is greater than max.
5367 * - Else returns idle_task.
5368 */
5369static struct task_struct *
5370pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5371{
5372        struct task_struct *class_pick, *cookie_pick;
5373        unsigned long cookie = rq->core->core_cookie;
5374
5375        class_pick = class->pick_task(rq);
5376        if (!class_pick)
5377                return NULL;
5378
5379        if (!cookie) {
5380                /*
5381                 * If class_pick is tagged, return it only if it has
5382                 * higher priority than max.
5383                 */
5384                if (max && class_pick->core_cookie &&
5385                    prio_less(class_pick, max, in_fi))
5386                        return idle_sched_class.pick_task(rq);
5387
5388                return class_pick;
5389        }
5390
5391        /*
5392         * If class_pick is idle or matches cookie, return early.
5393         */
5394        if (cookie_equals(class_pick, cookie))
5395                return class_pick;
5396
5397        cookie_pick = sched_core_find(rq, cookie);
5398
5399        /*
5400         * If class > max && class > cookie, it is the highest priority task on
5401         * the core (so far) and it must be selected, otherwise we must go with
5402         * the cookie pick in order to satisfy the constraint.
5403         */
5404        if (prio_less(cookie_pick, class_pick, in_fi) &&
5405            (!max || prio_less(max, class_pick, in_fi)))
5406                return class_pick;
5407
5408        return cookie_pick;
5409}
5410
5411extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5412
5413static struct task_struct *
5414pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5415{
5416        struct task_struct *next, *max = NULL;
5417        const struct sched_class *class;
5418        const struct cpumask *smt_mask;
5419        bool fi_before = false;
5420        int i, j, cpu, occ = 0;
5421        bool need_sync;
5422
5423        if (!sched_core_enabled(rq))
5424                return __pick_next_task(rq, prev, rf);
5425
5426        cpu = cpu_of(rq);
5427
5428        /* Stopper task is switching into idle, no need core-wide selection. */
5429        if (cpu_is_offline(cpu)) {
5430                /*
5431                 * Reset core_pick so that we don't enter the fastpath when
5432                 * coming online. core_pick would already be migrated to
5433                 * another cpu during offline.
5434                 */
5435                rq->core_pick = NULL;
5436                return __pick_next_task(rq, prev, rf);
5437        }
5438
5439        /*
5440         * If there were no {en,de}queues since we picked (IOW, the task
5441         * pointers are all still valid), and we haven't scheduled the last
5442         * pick yet, do so now.
5443         *
5444         * rq->core_pick can be NULL if no selection was made for a CPU because
5445         * it was either offline or went offline during a sibling's core-wide
5446         * selection. In this case, do a core-wide selection.
5447         */
5448        if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5449            rq->core->core_pick_seq != rq->core_sched_seq &&
5450            rq->core_pick) {
5451                WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5452
5453                next = rq->core_pick;
5454                if (next != prev) {
5455                        put_prev_task(rq, prev);
5456                        set_next_task(rq, next);
5457                }
5458
5459                rq->core_pick = NULL;
5460                return next;
5461        }
5462
5463        put_prev_task_balance(rq, prev, rf);
5464
5465        smt_mask = cpu_smt_mask(cpu);
5466        need_sync = !!rq->core->core_cookie;
5467
5468        /* reset state */
5469        rq->core->core_cookie = 0UL;
5470        if (rq->core->core_forceidle) {
5471                need_sync = true;
5472                fi_before = true;
5473                rq->core->core_forceidle = false;
5474        }
5475
5476        /*
5477         * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5478         *
5479         * @task_seq guards the task state ({en,de}queues)
5480         * @pick_seq is the @task_seq we did a selection on
5481         * @sched_seq is the @pick_seq we scheduled
5482         *
5483         * However, preemptions can cause multiple picks on the same task set.
5484         * 'Fix' this by also increasing @task_seq for every pick.
5485         */
5486        rq->core->core_task_seq++;
5487
5488        /*
5489         * Optimize for common case where this CPU has no cookies
5490         * and there are no cookied tasks running on siblings.
5491         */
5492        if (!need_sync) {
5493                for_each_class(class) {
5494                        next = class->pick_task(rq);
5495                        if (next)
5496                                break;
5497                }
5498
5499                if (!next->core_cookie) {
5500                        rq->core_pick = NULL;
5501                        /*
5502                         * For robustness, update the min_vruntime_fi for
5503                         * unconstrained picks as well.
5504                         */
5505                        WARN_ON_ONCE(fi_before);
5506                        task_vruntime_update(rq, next, false);
5507                        goto done;
5508                }
5509        }
5510
5511        for_each_cpu(i, smt_mask) {
5512                struct rq *rq_i = cpu_rq(i);
5513
5514                rq_i->core_pick = NULL;
5515
5516                if (i != cpu)
5517                        update_rq_clock(rq_i);
5518        }
5519
5520        /*
5521         * Try and select tasks for each sibling in descending sched_class
5522         * order.
5523         */
5524        for_each_class(class) {
5525again:
5526                for_each_cpu_wrap(i, smt_mask, cpu) {
5527                        struct rq *rq_i = cpu_rq(i);
5528                        struct task_struct *p;
5529
5530                        if (rq_i->core_pick)
5531                                continue;
5532
5533                        /*
5534                         * If this sibling doesn't yet have a suitable task to
5535                         * run; ask for the most eligible task, given the
5536                         * highest priority task already selected for this
5537                         * core.
5538                         */
5539                        p = pick_task(rq_i, class, max, fi_before);
5540                        if (!p)
5541                                continue;
5542
5543                        if (!is_task_rq_idle(p))
5544                                occ++;
5545
5546                        rq_i->core_pick = p;
5547                        if (rq_i->idle == p && rq_i->nr_running) {
5548                                rq->core->core_forceidle = true;
5549                                if (!fi_before)
5550                                        rq->core->core_forceidle_seq++;
5551                        }
5552
5553                        /*
5554                         * If this new candidate is of higher priority than the
5555                         * previous; and they're incompatible; we need to wipe
5556                         * the slate and start over. pick_task makes sure that
5557                         * p's priority is more than max if it doesn't match
5558                         * max's cookie.
5559                         *
5560                         * NOTE: this is a linear max-filter and is thus bounded
5561                         * in execution time.
5562                         */
5563                        if (!max || !cookie_match(max, p)) {
5564                                struct task_struct *old_max = max;
5565
5566                                rq->core->core_cookie = p->core_cookie;
5567                                max = p;
5568
5569                                if (old_max) {
5570                                        rq->core->core_forceidle = false;
5571                                        for_each_cpu(j, smt_mask) {
5572                                                if (j == i)
5573                                                        continue;
5574
5575                                                cpu_rq(j)->core_pick = NULL;
5576                                        }
5577                                        occ = 1;
5578                                        goto again;
5579                                }
5580                        }
5581                }
5582        }
5583
5584        rq->core->core_pick_seq = rq->core->core_task_seq;
5585        next = rq->core_pick;
5586        rq->core_sched_seq = rq->core->core_pick_seq;
5587
5588        /* Something should have been selected for current CPU */
5589        WARN_ON_ONCE(!next);
5590
5591        /*
5592         * Reschedule siblings
5593         *
5594         * NOTE: L1TF -- at this point we're no longer running the old task and
5595         * sending an IPI (below) ensures the sibling will no longer be running
5596         * their task. This ensures there is no inter-sibling overlap between
5597         * non-matching user state.
5598         */
5599        for_each_cpu(i, smt_mask) {
5600                struct rq *rq_i = cpu_rq(i);
5601
5602                /*
5603                 * An online sibling might have gone offline before a task
5604                 * could be picked for it, or it might be offline but later
5605                 * happen to come online, but its too late and nothing was
5606                 * picked for it.  That's Ok - it will pick tasks for itself,
5607                 * so ignore it.
5608                 */
5609                if (!rq_i->core_pick)
5610                        continue;
5611
5612                /*
5613                 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5614                 * fi_before     fi      update?
5615                 *  0            0       1
5616                 *  0            1       1
5617                 *  1            0       1
5618                 *  1            1       0
5619                 */
5620                if (!(fi_before && rq->core->core_forceidle))
5621                        task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5622
5623                rq_i->core_pick->core_occupation = occ;
5624
5625                if (i == cpu) {
5626                        rq_i->core_pick = NULL;
5627                        continue;
5628                }
5629
5630                /* Did we break L1TF mitigation requirements? */
5631                WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5632
5633                if (rq_i->curr == rq_i->core_pick) {
5634                        rq_i->core_pick = NULL;
5635                        continue;
5636                }
5637
5638                resched_curr(rq_i);
5639        }
5640
5641done:
5642        set_next_task(rq, next);
5643        return next;
5644}
5645
5646static bool try_steal_cookie(int this, int that)
5647{
5648        struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5649        struct task_struct *p;
5650        unsigned long cookie;
5651        bool success = false;
5652
5653        local_irq_disable();
5654        double_rq_lock(dst, src);
5655
5656        cookie = dst->core->core_cookie;
5657        if (!cookie)
5658                goto unlock;
5659
5660        if (dst->curr != dst->idle)
5661                goto unlock;
5662
5663        p = sched_core_find(src, cookie);
5664        if (p == src->idle)
5665                goto unlock;
5666
5667        do {
5668                if (p == src->core_pick || p == src->curr)
5669                        goto next;
5670
5671                if (!cpumask_test_cpu(this, &p->cpus_mask))
5672                        goto next;
5673
5674                if (p->core_occupation > dst->idle->core_occupation)
5675                        goto next;
5676
5677                p->on_rq = TASK_ON_RQ_MIGRATING;
5678                deactivate_task(src, p, 0);
5679                set_task_cpu(p, this);
5680                activate_task(dst, p, 0);
5681                p->on_rq = TASK_ON_RQ_QUEUED;
5682
5683                resched_curr(dst);
5684
5685                success = true;
5686                break;
5687
5688next:
5689                p = sched_core_next(p, cookie);
5690        } while (p);
5691
5692unlock:
5693        double_rq_unlock(dst, src);
5694        local_irq_enable();
5695
5696        return success;
5697}
5698
5699static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5700{
5701        int i;
5702
5703        for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5704                if (i == cpu)
5705                        continue;
5706
5707                if (need_resched())
5708                        break;
5709
5710                if (try_steal_cookie(cpu, i))
5711                        return true;
5712        }
5713
5714        return false;
5715}
5716
5717static void sched_core_balance(struct rq *rq)
5718{
5719        struct sched_domain *sd;
5720        int cpu = cpu_of(rq);
5721
5722        preempt_disable();
5723        rcu_read_lock();
5724        raw_spin_rq_unlock_irq(rq);
5725        for_each_domain(cpu, sd) {
5726                if (need_resched())
5727                        break;
5728
5729                if (steal_cookie_task(cpu, sd))
5730                        break;
5731        }
5732        raw_spin_rq_lock_irq(rq);
5733        rcu_read_unlock();
5734        preempt_enable();
5735}
5736
5737static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5738
5739void queue_core_balance(struct rq *rq)
5740{
5741        if (!sched_core_enabled(rq))
5742                return;
5743
5744        if (!rq->core->core_cookie)
5745                return;
5746
5747        if (!rq->nr_running) /* not forced idle */
5748                return;
5749
5750        queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5751}
5752
5753static void sched_core_cpu_starting(unsigned int cpu)
5754{
5755        const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5756        struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5757        unsigned long flags;
5758        int t;
5759
5760        sched_core_lock(cpu, &flags);
5761
5762        WARN_ON_ONCE(rq->core != rq);
5763
5764        /* if we're the first, we'll be our own leader */
5765        if (cpumask_weight(smt_mask) == 1)
5766                goto unlock;
5767
5768        /* find the leader */
5769        for_each_cpu(t, smt_mask) {
5770                if (t == cpu)
5771                        continue;
5772                rq = cpu_rq(t);
5773                if (rq->core == rq) {
5774                        core_rq = rq;
5775                        break;
5776                }
5777        }
5778
5779        if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5780                goto unlock;
5781
5782        /* install and validate core_rq */
5783        for_each_cpu(t, smt_mask) {
5784                rq = cpu_rq(t);
5785
5786                if (t == cpu)
5787                        rq->core = core_rq;
5788
5789                WARN_ON_ONCE(rq->core != core_rq);
5790        }
5791
5792unlock:
5793        sched_core_unlock(cpu, &flags);
5794}
5795
5796static void sched_core_cpu_deactivate(unsigned int cpu)
5797{
5798        const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5799        struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5800        unsigned long flags;
5801        int t;
5802
5803        sched_core_lock(cpu, &flags);
5804
5805        /* if we're the last man standing, nothing to do */
5806        if (cpumask_weight(smt_mask) == 1) {
5807                WARN_ON_ONCE(rq->core != rq);
5808                goto unlock;
5809        }
5810
5811        /* if we're not the leader, nothing to do */
5812        if (rq->core != rq)
5813                goto unlock;
5814
5815        /* find a new leader */
5816        for_each_cpu(t, smt_mask) {
5817                if (t == cpu)
5818                        continue;
5819                core_rq = cpu_rq(t);
5820                break;
5821        }
5822
5823        if (WARN_ON_ONCE(!core_rq)) /* impossible */
5824                goto unlock;
5825
5826        /* copy the shared state to the new leader */
5827        core_rq->core_task_seq      = rq->core_task_seq;
5828        core_rq->core_pick_seq      = rq->core_pick_seq;
5829        core_rq->core_cookie        = rq->core_cookie;
5830        core_rq->core_forceidle     = rq->core_forceidle;
5831        core_rq->core_forceidle_seq = rq->core_forceidle_seq;
5832
5833        /* install new leader */
5834        for_each_cpu(t, smt_mask) {
5835                rq = cpu_rq(t);
5836                rq->core = core_rq;
5837        }
5838
5839unlock:
5840        sched_core_unlock(cpu, &flags);
5841}
5842
5843static inline void sched_core_cpu_dying(unsigned int cpu)
5844{
5845        struct rq *rq = cpu_rq(cpu);
5846
5847        if (rq->core != rq)
5848                rq->core = rq;
5849}
5850
5851#else /* !CONFIG_SCHED_CORE */
5852
5853static inline void sched_core_cpu_starting(unsigned int cpu) {}
5854static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
5855static inline void sched_core_cpu_dying(unsigned int cpu) {}
5856
5857static struct task_struct *
5858pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5859{
5860        return __pick_next_task(rq, prev, rf);
5861}
5862
5863#endif /* CONFIG_SCHED_CORE */
5864
5865/*
5866 * __schedule() is the main scheduler function.
5867 *
5868 * The main means of driving the scheduler and thus entering this function are:
5869 *
5870 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5871 *
5872 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5873 *      paths. For example, see arch/x86/entry_64.S.
5874 *
5875 *      To drive preemption between tasks, the scheduler sets the flag in timer
5876 *      interrupt handler scheduler_tick().
5877 *
5878 *   3. Wakeups don't really cause entry into schedule(). They add a
5879 *      task to the run-queue and that's it.
5880 *
5881 *      Now, if the new task added to the run-queue preempts the current
5882 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5883 *      called on the nearest possible occasion:
5884 *
5885 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5886 *
5887 *         - in syscall or exception context, at the next outmost
5888 *           preempt_enable(). (this might be as soon as the wake_up()'s
5889 *           spin_unlock()!)
5890 *
5891 *         - in IRQ context, return from interrupt-handler to
5892 *           preemptible context
5893 *
5894 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5895 *         then at the next:
5896 *
5897 *          - cond_resched() call
5898 *          - explicit schedule() call
5899 *          - return from syscall or exception to user-space
5900 *          - return from interrupt-handler to user-space
5901 *
5902 * WARNING: must be called with preemption disabled!
5903 */
5904static void __sched notrace __schedule(bool preempt)
5905{
5906        struct task_struct *prev, *next;
5907        unsigned long *switch_count;
5908        unsigned long prev_state;
5909        struct rq_flags rf;
5910        struct rq *rq;
5911        int cpu;
5912
5913        cpu = smp_processor_id();
5914        rq = cpu_rq(cpu);
5915        prev = rq->curr;
5916
5917        schedule_debug(prev, preempt);
5918
5919        if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5920                hrtick_clear(rq);
5921
5922        local_irq_disable();
5923        rcu_note_context_switch(preempt);
5924
5925        /*
5926         * Make sure that signal_pending_state()->signal_pending() below
5927         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5928         * done by the caller to avoid the race with signal_wake_up():
5929         *
5930         * __set_current_state(@state)          signal_wake_up()
5931         * schedule()                             set_tsk_thread_flag(p, TIF_SIGPENDING)
5932         *                                        wake_up_state(p, state)
5933         *   LOCK rq->lock                          LOCK p->pi_state
5934         *   smp_mb__after_spinlock()               smp_mb__after_spinlock()
5935         *     if (signal_pending_state())          if (p->state & @state)
5936         *
5937         * Also, the membarrier system call requires a full memory barrier
5938         * after coming from user-space, before storing to rq->curr.
5939         */
5940        rq_lock(rq, &rf);
5941        smp_mb__after_spinlock();
5942
5943        /* Promote REQ to ACT */
5944        rq->clock_update_flags <<= 1;
5945        update_rq_clock(rq);
5946
5947        switch_count = &prev->nivcsw;
5948
5949        /*
5950         * We must load prev->state once (task_struct::state is volatile), such
5951         * that:
5952         *
5953         *  - we form a control dependency vs deactivate_task() below.
5954         *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
5955         */
5956        prev_state = READ_ONCE(prev->__state);
5957        if (!preempt && prev_state) {
5958                if (signal_pending_state(prev_state, prev)) {
5959                        WRITE_ONCE(prev->__state, TASK_RUNNING);
5960                } else {
5961                        prev->sched_contributes_to_load =
5962                                (prev_state & TASK_UNINTERRUPTIBLE) &&
5963                                !(prev_state & TASK_NOLOAD) &&
5964                                !(prev->flags & PF_FROZEN);
5965
5966                        if (prev->sched_contributes_to_load)
5967                                rq->nr_uninterruptible++;
5968
5969                        /*
5970                         * __schedule()                 ttwu()
5971                         *   prev_state = prev->state;    if (p->on_rq && ...)
5972                         *   if (prev_state)                goto out;
5973                         *     p->on_rq = 0;              smp_acquire__after_ctrl_dep();
5974                         *                                p->state = TASK_WAKING
5975                         *
5976                         * Where __schedule() and ttwu() have matching control dependencies.
5977                         *
5978                         * After this, schedule() must not care about p->state any more.
5979                         */
5980                        deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5981
5982                        if (prev->in_iowait) {
5983                                atomic_inc(&rq->nr_iowait);
5984                                delayacct_blkio_start();
5985                        }
5986                }
5987                switch_count = &prev->nvcsw;
5988        }
5989
5990        next = pick_next_task(rq, prev, &rf);
5991        clear_tsk_need_resched(prev);
5992        clear_preempt_need_resched();
5993#ifdef CONFIG_SCHED_DEBUG
5994        rq->last_seen_need_resched_ns = 0;
5995#endif
5996
5997        if (likely(prev != next)) {
5998                rq->nr_switches++;
5999                /*
6000                 * RCU users of rcu_dereference(rq->curr) may not see
6001                 * changes to task_struct made by pick_next_task().
6002                 */
6003                RCU_INIT_POINTER(rq->curr, next);
6004                /*
6005                 * The membarrier system call requires each architecture
6006                 * to have a full memory barrier after updating
6007                 * rq->curr, before returning to user-space.
6008                 *
6009                 * Here are the schemes providing that barrier on the
6010                 * various architectures:
6011                 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6012                 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6013                 * - finish_lock_switch() for weakly-ordered
6014                 *   architectures where spin_unlock is a full barrier,
6015                 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6016                 *   is a RELEASE barrier),
6017                 */
6018                ++*switch_count;
6019
6020                migrate_disable_switch(rq, prev);
6021                psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6022
6023                trace_sched_switch(preempt, prev, next);
6024
6025                /* Also unlocks the rq: */
6026                rq = context_switch(rq, prev, next, &rf);
6027        } else {
6028                rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6029
6030                rq_unpin_lock(rq, &rf);
6031                __balance_callbacks(rq);
6032                raw_spin_rq_unlock_irq(rq);
6033        }
6034}
6035
6036void __noreturn do_task_dead(void)
6037{
6038        /* Causes final put_task_struct in finish_task_switch(): */
6039        set_special_state(TASK_DEAD);
6040
6041        /* Tell freezer to ignore us: */
6042        current->flags |= PF_NOFREEZE;
6043
6044        __schedule(false);
6045        BUG();
6046
6047        /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6048        for (;;)
6049                cpu_relax();
6050}
6051
6052static inline void sched_submit_work(struct task_struct *tsk)
6053{
6054        unsigned int task_flags;
6055
6056        if (task_is_running(tsk))
6057                return;
6058
6059        task_flags = tsk->flags;
6060        /*
6061         * If a worker went to sleep, notify and ask workqueue whether
6062         * it wants to wake up a task to maintain concurrency.
6063         * As this function is called inside the schedule() context,
6064         * we disable preemption to avoid it calling schedule() again
6065         * in the possible wakeup of a kworker and because wq_worker_sleeping()
6066         * requires it.
6067         */
6068        if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6069                preempt_disable();
6070                if (task_flags & PF_WQ_WORKER)
6071                        wq_worker_sleeping(tsk);
6072                else
6073                        io_wq_worker_sleeping(tsk);
6074                preempt_enable_no_resched();
6075        }
6076
6077        if (tsk_is_pi_blocked(tsk))
6078                return;
6079
6080        /*
6081         * If we are going to sleep and we have plugged IO queued,
6082         * make sure to submit it to avoid deadlocks.
6083         */
6084        if (blk_needs_flush_plug(tsk))
6085                blk_schedule_flush_plug(tsk);
6086}
6087
6088static void sched_update_worker(struct task_struct *tsk)
6089{
6090        if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6091                if (tsk->flags & PF_WQ_WORKER)
6092                        wq_worker_running(tsk);
6093                else
6094                        io_wq_worker_running(tsk);
6095        }
6096}
6097
6098asmlinkage __visible void __sched schedule(void)
6099{
6100        struct task_struct *tsk = current;
6101
6102        sched_submit_work(tsk);
6103        do {
6104                preempt_disable();
6105                __schedule(false);
6106                sched_preempt_enable_no_resched();
6107        } while (need_resched());
6108        sched_update_worker(tsk);
6109}
6110EXPORT_SYMBOL(schedule);
6111
6112/*
6113 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6114 * state (have scheduled out non-voluntarily) by making sure that all
6115 * tasks have either left the run queue or have gone into user space.
6116 * As idle tasks do not do either, they must not ever be preempted
6117 * (schedule out non-voluntarily).
6118 *
6119 * schedule_idle() is similar to schedule_preempt_disable() except that it
6120 * never enables preemption because it does not call sched_submit_work().
6121 */
6122void __sched schedule_idle(void)
6123{
6124        /*
6125         * As this skips calling sched_submit_work(), which the idle task does
6126         * regardless because that function is a nop when the task is in a
6127         * TASK_RUNNING state, make sure this isn't used someplace that the
6128         * current task can be in any other state. Note, idle is always in the
6129         * TASK_RUNNING state.
6130         */
6131        WARN_ON_ONCE(current->__state);
6132        do {
6133                __schedule(false);
6134        } while (need_resched());
6135}
6136
6137#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6138asmlinkage __visible void __sched schedule_user(void)
6139{
6140        /*
6141         * If we come here after a random call to set_need_resched(),
6142         * or we have been woken up remotely but the IPI has not yet arrived,
6143         * we haven't yet exited the RCU idle mode. Do it here manually until
6144         * we find a better solution.
6145         *
6146         * NB: There are buggy callers of this function.  Ideally we
6147         * should warn if prev_state != CONTEXT_USER, but that will trigger
6148         * too frequently to make sense yet.
6149         */
6150        enum ctx_state prev_state = exception_enter();
6151        schedule();
6152        exception_exit(prev_state);
6153}
6154#endif
6155
6156/**
6157 * schedule_preempt_disabled - called with preemption disabled
6158 *
6159 * Returns with preemption disabled. Note: preempt_count must be 1
6160 */
6161void __sched schedule_preempt_disabled(void)
6162{
6163        sched_preempt_enable_no_resched();
6164        schedule();
6165        preempt_disable();
6166}
6167
6168static void __sched notrace preempt_schedule_common(void)
6169{
6170        do {
6171                /*
6172                 * Because the function tracer can trace preempt_count_sub()
6173                 * and it also uses preempt_enable/disable_notrace(), if
6174                 * NEED_RESCHED is set, the preempt_enable_notrace() called
6175                 * by the function tracer will call this function again and
6176                 * cause infinite recursion.
6177                 *
6178                 * Preemption must be disabled here before the function
6179                 * tracer can trace. Break up preempt_disable() into two
6180                 * calls. One to disable preemption without fear of being
6181                 * traced. The other to still record the preemption latency,
6182                 * which can also be traced by the function tracer.
6183                 */
6184                preempt_disable_notrace();
6185                preempt_latency_start(1);
6186                __schedule(true);
6187                preempt_latency_stop(1);
6188                preempt_enable_no_resched_notrace();
6189
6190                /*
6191                 * Check again in case we missed a preemption opportunity
6192                 * between schedule and now.
6193                 */
6194        } while (need_resched());
6195}
6196
6197#ifdef CONFIG_PREEMPTION
6198/*
6199 * This is the entry point to schedule() from in-kernel preemption
6200 * off of preempt_enable.
6201 */
6202asmlinkage __visible void __sched notrace preempt_schedule(void)
6203{
6204        /*
6205         * If there is a non-zero preempt_count or interrupts are disabled,
6206         * we do not want to preempt the current task. Just return..
6207         */
6208        if (likely(!preemptible()))
6209                return;
6210
6211        preempt_schedule_common();
6212}
6213NOKPROBE_SYMBOL(preempt_schedule);
6214EXPORT_SYMBOL(preempt_schedule);
6215
6216#ifdef CONFIG_PREEMPT_DYNAMIC
6217DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6218EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6219#endif
6220
6221
6222/**
6223 * preempt_schedule_notrace - preempt_schedule called by tracing
6224 *
6225 * The tracing infrastructure uses preempt_enable_notrace to prevent
6226 * recursion and tracing preempt enabling caused by the tracing
6227 * infrastructure itself. But as tracing can happen in areas coming
6228 * from userspace or just about to enter userspace, a preempt enable
6229 * can occur before user_exit() is called. This will cause the scheduler
6230 * to be called when the system is still in usermode.
6231 *
6232 * To prevent this, the preempt_enable_notrace will use this function
6233 * instead of preempt_schedule() to exit user context if needed before
6234 * calling the scheduler.
6235 */
6236asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6237{
6238        enum ctx_state prev_ctx;
6239
6240        if (likely(!preemptible()))
6241                return;
6242
6243        do {
6244                /*
6245                 * Because the function tracer can trace preempt_count_sub()
6246                 * and it also uses preempt_enable/disable_notrace(), if
6247                 * NEED_RESCHED is set, the preempt_enable_notrace() called
6248                 * by the function tracer will call this function again and
6249                 * cause infinite recursion.
6250                 *
6251                 * Preemption must be disabled here before the function
6252                 * tracer can trace. Break up preempt_disable() into two
6253                 * calls. One to disable preemption without fear of being
6254                 * traced. The other to still record the preemption latency,
6255                 * which can also be traced by the function tracer.
6256                 */
6257                preempt_disable_notrace();
6258                preempt_latency_start(1);
6259                /*
6260                 * Needs preempt disabled in case user_exit() is traced
6261                 * and the tracer calls preempt_enable_notrace() causing
6262                 * an infinite recursion.
6263                 */
6264                prev_ctx = exception_enter();
6265                __schedule(true);
6266                exception_exit(prev_ctx);
6267
6268                preempt_latency_stop(1);
6269                preempt_enable_no_resched_notrace();
6270        } while (need_resched());
6271}
6272EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6273
6274#ifdef CONFIG_PREEMPT_DYNAMIC
6275DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6276EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6277#endif
6278
6279#endif /* CONFIG_PREEMPTION */
6280
6281#ifdef CONFIG_PREEMPT_DYNAMIC
6282
6283#include <linux/entry-common.h>
6284
6285/*
6286 * SC:cond_resched
6287 * SC:might_resched
6288 * SC:preempt_schedule
6289 * SC:preempt_schedule_notrace
6290 * SC:irqentry_exit_cond_resched
6291 *
6292 *
6293 * NONE:
6294 *   cond_resched               <- __cond_resched
6295 *   might_resched              <- RET0
6296 *   preempt_schedule           <- NOP
6297 *   preempt_schedule_notrace   <- NOP
6298 *   irqentry_exit_cond_resched <- NOP
6299 *
6300 * VOLUNTARY:
6301 *   cond_resched               <- __cond_resched
6302 *   might_resched              <- __cond_resched
6303 *   preempt_schedule           <- NOP
6304 *   preempt_schedule_notrace   <- NOP
6305 *   irqentry_exit_cond_resched <- NOP
6306 *
6307 * FULL:
6308 *   cond_resched               <- RET0
6309 *   might_resched              <- RET0
6310 *   preempt_schedule           <- preempt_schedule
6311 *   preempt_schedule_notrace   <- preempt_schedule_notrace
6312 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6313 */
6314
6315enum {
6316        preempt_dynamic_none = 0,
6317        preempt_dynamic_voluntary,
6318        preempt_dynamic_full,
6319};
6320
6321int preempt_dynamic_mode = preempt_dynamic_full;
6322
6323int sched_dynamic_mode(const char *str)
6324{
6325        if (!strcmp(str, "none"))
6326                return preempt_dynamic_none;
6327
6328        if (!strcmp(str, "voluntary"))
6329                return preempt_dynamic_voluntary;
6330
6331        if (!strcmp(str, "full"))
6332                return preempt_dynamic_full;
6333
6334        return -EINVAL;
6335}
6336
6337void sched_dynamic_update(int mode)
6338{
6339        /*
6340         * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6341         * the ZERO state, which is invalid.
6342         */
6343        static_call_update(cond_resched, __cond_resched);
6344        static_call_update(might_resched, __cond_resched);
6345        static_call_update(preempt_schedule, __preempt_schedule_func);
6346        static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6347        static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6348
6349        switch (mode) {
6350        case preempt_dynamic_none:
6351                static_call_update(cond_resched, __cond_resched);
6352                static_call_update(might_resched, (void *)&__static_call_return0);
6353                static_call_update(preempt_schedule, NULL);
6354                static_call_update(preempt_schedule_notrace, NULL);
6355                static_call_update(irqentry_exit_cond_resched, NULL);
6356                pr_info("Dynamic Preempt: none\n");
6357                break;
6358
6359        case preempt_dynamic_voluntary:
6360                static_call_update(cond_resched, __cond_resched);
6361                static_call_update(might_resched, __cond_resched);
6362                static_call_update(preempt_schedule, NULL);
6363                static_call_update(preempt_schedule_notrace, NULL);
6364                static_call_update(irqentry_exit_cond_resched, NULL);
6365                pr_info("Dynamic Preempt: voluntary\n");
6366                break;
6367
6368        case preempt_dynamic_full:
6369                static_call_update(cond_resched, (void *)&__static_call_return0);
6370                static_call_update(might_resched, (void *)&__static_call_return0);
6371                static_call_update(preempt_schedule, __preempt_schedule_func);
6372                static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6373                static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6374                pr_info("Dynamic Preempt: full\n");
6375                break;
6376        }
6377
6378        preempt_dynamic_mode = mode;
6379}
6380
6381static int __init setup_preempt_mode(char *str)
6382{
6383        int mode = sched_dynamic_mode(str);
6384        if (mode < 0) {
6385                pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6386                return 1;
6387        }
6388
6389        sched_dynamic_update(mode);
6390        return 0;
6391}
6392__setup("preempt=", setup_preempt_mode);
6393
6394#endif /* CONFIG_PREEMPT_DYNAMIC */
6395
6396/*
6397 * This is the entry point to schedule() from kernel preemption
6398 * off of irq context.
6399 * Note, that this is called and return with irqs disabled. This will
6400 * protect us against recursive calling from irq.
6401 */
6402asmlinkage __visible void __sched preempt_schedule_irq(void)
6403{
6404        enum ctx_state prev_state;
6405
6406        /* Catch callers which need to be fixed */
6407        BUG_ON(preempt_count() || !irqs_disabled());
6408
6409        prev_state = exception_enter();
6410
6411        do {
6412                preempt_disable();
6413                local_irq_enable();
6414                __schedule(true);
6415                local_irq_disable();
6416                sched_preempt_enable_no_resched();
6417        } while (need_resched());
6418
6419        exception_exit(prev_state);
6420}
6421
6422int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6423                          void *key)
6424{
6425        WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6426        return try_to_wake_up(curr->private, mode, wake_flags);
6427}
6428EXPORT_SYMBOL(default_wake_function);
6429
6430static void __setscheduler_prio(struct task_struct *p, int prio)
6431{
6432        if (dl_prio(prio))
6433                p->sched_class = &dl_sched_class;
6434        else if (rt_prio(prio))
6435                p->sched_class = &rt_sched_class;
6436        else
6437                p->sched_class = &fair_sched_class;
6438
6439        p->prio = prio;
6440}
6441
6442#ifdef CONFIG_RT_MUTEXES
6443
6444static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6445{
6446        if (pi_task)
6447                prio = min(prio, pi_task->prio);
6448
6449        return prio;
6450}
6451
6452static inline int rt_effective_prio(struct task_struct *p, int prio)
6453{
6454        struct task_struct *pi_task = rt_mutex_get_top_task(p);
6455
6456        return __rt_effective_prio(pi_task, prio);
6457}
6458
6459/*
6460 * rt_mutex_setprio - set the current priority of a task
6461 * @p: task to boost
6462 * @pi_task: donor task
6463 *
6464 * This function changes the 'effective' priority of a task. It does
6465 * not touch ->normal_prio like __setscheduler().
6466 *
6467 * Used by the rt_mutex code to implement priority inheritance
6468 * logic. Call site only calls if the priority of the task changed.
6469 */
6470void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6471{
6472        int prio, oldprio, queued, running, queue_flag =
6473                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6474        const struct sched_class *prev_class;
6475        struct rq_flags rf;
6476        struct rq *rq;
6477
6478        /* XXX used to be waiter->prio, not waiter->task->prio */
6479        prio = __rt_effective_prio(pi_task, p->normal_prio);
6480
6481        /*
6482         * If nothing changed; bail early.
6483         */
6484        if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6485                return;
6486
6487        rq = __task_rq_lock(p, &rf);
6488        update_rq_clock(rq);
6489        /*
6490         * Set under pi_lock && rq->lock, such that the value can be used under
6491         * either lock.
6492         *
6493         * Note that there is loads of tricky to make this pointer cache work
6494         * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6495         * ensure a task is de-boosted (pi_task is set to NULL) before the
6496         * task is allowed to run again (and can exit). This ensures the pointer
6497         * points to a blocked task -- which guarantees the task is present.
6498         */
6499        p->pi_top_task = pi_task;
6500
6501        /*
6502         * For FIFO/RR we only need to set prio, if that matches we're done.
6503         */
6504        if (prio == p->prio && !dl_prio(prio))
6505                goto out_unlock;
6506
6507        /*
6508         * Idle task boosting is a nono in general. There is one
6509         * exception, when PREEMPT_RT and NOHZ is active:
6510         *
6511         * The idle task calls get_next_timer_interrupt() and holds
6512         * the timer wheel base->lock on the CPU and another CPU wants
6513         * to access the timer (probably to cancel it). We can safely
6514         * ignore the boosting request, as the idle CPU runs this code
6515         * with interrupts disabled and will complete the lock
6516         * protected section without being interrupted. So there is no
6517         * real need to boost.
6518         */
6519        if (unlikely(p == rq->idle)) {
6520                WARN_ON(p != rq->curr);
6521                WARN_ON(p->pi_blocked_on);
6522                goto out_unlock;
6523        }
6524
6525        trace_sched_pi_setprio(p, pi_task);
6526        oldprio = p->prio;
6527
6528        if (oldprio == prio)
6529                queue_flag &= ~DEQUEUE_MOVE;
6530
6531        prev_class = p->sched_class;
6532        queued = task_on_rq_queued(p);
6533        running = task_current(rq, p);
6534        if (queued)
6535                dequeue_task(rq, p, queue_flag);
6536        if (running)
6537                put_prev_task(rq, p);
6538
6539        /*
6540         * Boosting condition are:
6541         * 1. -rt task is running and holds mutex A
6542         *      --> -dl task blocks on mutex A
6543         *
6544         * 2. -dl task is running and holds mutex A
6545         *      --> -dl task blocks on mutex A and could preempt the
6546         *          running task
6547         */
6548        if (dl_prio(prio)) {
6549                if (!dl_prio(p->normal_prio) ||
6550                    (pi_task && dl_prio(pi_task->prio) &&
6551                     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6552                        p->dl.pi_se = pi_task->dl.pi_se;
6553                        queue_flag |= ENQUEUE_REPLENISH;
6554                } else {
6555                        p->dl.pi_se = &p->dl;
6556                }
6557        } else if (rt_prio(prio)) {
6558                if (dl_prio(oldprio))
6559                        p->dl.pi_se = &p->dl;
6560                if (oldprio < prio)
6561                        queue_flag |= ENQUEUE_HEAD;
6562        } else {
6563                if (dl_prio(oldprio))
6564                        p->dl.pi_se = &p->dl;
6565                if (rt_prio(oldprio))
6566                        p->rt.timeout = 0;
6567        }
6568
6569        __setscheduler_prio(p, prio);
6570
6571        if (queued)
6572                enqueue_task(rq, p, queue_flag);
6573        if (running)
6574                set_next_task(rq, p);
6575
6576        check_class_changed(rq, p, prev_class, oldprio);
6577out_unlock:
6578        /* Avoid rq from going away on us: */
6579        preempt_disable();
6580
6581        rq_unpin_lock(rq, &rf);
6582        __balance_callbacks(rq);
6583        raw_spin_rq_unlock(rq);
6584
6585        preempt_enable();
6586}
6587#else
6588static inline int rt_effective_prio(struct task_struct *p, int prio)
6589{
6590        return prio;
6591}
6592#endif
6593
6594void set_user_nice(struct task_struct *p, long nice)
6595{
6596        bool queued, running;
6597        int old_prio;
6598        struct rq_flags rf;
6599        struct rq *rq;
6600
6601        if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6602                return;
6603        /*
6604         * We have to be careful, if called from sys_setpriority(),
6605         * the task might be in the middle of scheduling on another CPU.
6606         */
6607        rq = task_rq_lock(p, &rf);
6608        update_rq_clock(rq);
6609
6610        /*
6611         * The RT priorities are set via sched_setscheduler(), but we still
6612         * allow the 'normal' nice value to be set - but as expected
6613         * it won't have any effect on scheduling until the task is
6614         * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6615         */
6616        if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6617                p->static_prio = NICE_TO_PRIO(nice);
6618                goto out_unlock;
6619        }
6620        queued = task_on_rq_queued(p);
6621        running = task_current(rq, p);
6622        if (queued)
6623                dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6624        if (running)
6625                put_prev_task(rq, p);
6626
6627        p->static_prio = NICE_TO_PRIO(nice);
6628        set_load_weight(p, true);
6629        old_prio = p->prio;
6630        p->prio = effective_prio(p);
6631
6632        if (queued)
6633                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6634        if (running)
6635                set_next_task(rq, p);
6636
6637        /*
6638         * If the task increased its priority or is running and
6639         * lowered its priority, then reschedule its CPU:
6640         */
6641        p->sched_class->prio_changed(rq, p, old_prio);
6642
6643out_unlock:
6644        task_rq_unlock(rq, p, &rf);
6645}
6646EXPORT_SYMBOL(set_user_nice);
6647
6648/*
6649 * can_nice - check if a task can reduce its nice value
6650 * @p: task
6651 * @nice: nice value
6652 */
6653int can_nice(const struct task_struct *p, const int nice)
6654{
6655        /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6656        int nice_rlim = nice_to_rlimit(nice);
6657
6658        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6659                capable(CAP_SYS_NICE));
6660}
6661
6662#ifdef __ARCH_WANT_SYS_NICE
6663
6664/*
6665 * sys_nice - change the priority of the current process.
6666 * @increment: priority increment
6667 *
6668 * sys_setpriority is a more generic, but much slower function that
6669 * does similar things.
6670 */
6671SYSCALL_DEFINE1(nice, int, increment)
6672{
6673        long nice, retval;
6674
6675        /*
6676         * Setpriority might change our priority at the same moment.
6677         * We don't have to worry. Conceptually one call occurs first
6678         * and we have a single winner.
6679         */
6680        increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6681        nice = task_nice(current) + increment;
6682
6683        nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6684        if (increment < 0 && !can_nice(current, nice))
6685                return -EPERM;
6686
6687        retval = security_task_setnice(current, nice);
6688        if (retval)
6689                return retval;
6690
6691        set_user_nice(current, nice);
6692        return 0;
6693}
6694
6695#endif
6696
6697/**
6698 * task_prio - return the priority value of a given task.
6699 * @p: the task in question.
6700 *
6701 * Return: The priority value as seen by users in /proc.
6702 *
6703 * sched policy         return value   kernel prio    user prio/nice
6704 *
6705 * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6706 * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6707 * deadline                     -101             -1           0
6708 */
6709int task_prio(const struct task_struct *p)
6710{
6711        return p->prio - MAX_RT_PRIO;
6712}
6713
6714/**
6715 * idle_cpu - is a given CPU idle currently?
6716 * @cpu: the processor in question.
6717 *
6718 * Return: 1 if the CPU is currently idle. 0 otherwise.
6719 */
6720int idle_cpu(int cpu)
6721{
6722        struct rq *rq = cpu_rq(cpu);
6723
6724        if (rq->curr != rq->idle)
6725                return 0;
6726
6727        if (rq->nr_running)
6728                return 0;
6729
6730#ifdef CONFIG_SMP
6731        if (rq->ttwu_pending)
6732                return 0;
6733#endif
6734
6735        return 1;
6736}
6737
6738/**
6739 * available_idle_cpu - is a given CPU idle for enqueuing work.
6740 * @cpu: the CPU in question.
6741 *
6742 * Return: 1 if the CPU is currently idle. 0 otherwise.
6743 */
6744int available_idle_cpu(int cpu)
6745{
6746        if (!idle_cpu(cpu))
6747                return 0;
6748
6749        if (vcpu_is_preempted(cpu))
6750                return 0;
6751
6752        return 1;
6753}
6754
6755/**
6756 * idle_task - return the idle task for a given CPU.
6757 * @cpu: the processor in question.
6758 *
6759 * Return: The idle task for the CPU @cpu.
6760 */
6761struct task_struct *idle_task(int cpu)
6762{
6763        return cpu_rq(cpu)->idle;
6764}
6765
6766#ifdef CONFIG_SMP
6767/*
6768 * This function computes an effective utilization for the given CPU, to be
6769 * used for frequency selection given the linear relation: f = u * f_max.
6770 *
6771 * The scheduler tracks the following metrics:
6772 *
6773 *   cpu_util_{cfs,rt,dl,irq}()
6774 *   cpu_bw_dl()
6775 *
6776 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6777 * synchronized windows and are thus directly comparable.
6778 *
6779 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6780 * which excludes things like IRQ and steal-time. These latter are then accrued
6781 * in the irq utilization.
6782 *
6783 * The DL bandwidth number otoh is not a measured metric but a value computed
6784 * based on the task model parameters and gives the minimal utilization
6785 * required to meet deadlines.
6786 */
6787unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6788                                 unsigned long max, enum cpu_util_type type,
6789                                 struct task_struct *p)
6790{
6791        unsigned long dl_util, util, irq;
6792        struct rq *rq = cpu_rq(cpu);
6793
6794        if (!uclamp_is_used() &&
6795            type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6796                return max;
6797        }
6798
6799        /*
6800         * Early check to see if IRQ/steal time saturates the CPU, can be
6801         * because of inaccuracies in how we track these -- see
6802         * update_irq_load_avg().
6803         */
6804        irq = cpu_util_irq(rq);
6805        if (unlikely(irq >= max))
6806                return max;
6807
6808        /*
6809         * Because the time spend on RT/DL tasks is visible as 'lost' time to
6810         * CFS tasks and we use the same metric to track the effective
6811         * utilization (PELT windows are synchronized) we can directly add them
6812         * to obtain the CPU's actual utilization.
6813         *
6814         * CFS and RT utilization can be boosted or capped, depending on
6815         * utilization clamp constraints requested by currently RUNNABLE
6816         * tasks.
6817         * When there are no CFS RUNNABLE tasks, clamps are released and
6818         * frequency will be gracefully reduced with the utilization decay.
6819         */
6820        util = util_cfs + cpu_util_rt(rq);
6821        if (type == FREQUENCY_UTIL)
6822                util = uclamp_rq_util_with(rq, util, p);
6823
6824        dl_util = cpu_util_dl(rq);
6825
6826        /*
6827         * For frequency selection we do not make cpu_util_dl() a permanent part
6828         * of this sum because we want to use cpu_bw_dl() later on, but we need
6829         * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6830         * that we select f_max when there is no idle time.
6831         *
6832         * NOTE: numerical errors or stop class might cause us to not quite hit
6833         * saturation when we should -- something for later.
6834         */
6835        if (util + dl_util >= max)
6836                return max;
6837
6838        /*
6839         * OTOH, for energy computation we need the estimated running time, so
6840         * include util_dl and ignore dl_bw.
6841         */
6842        if (type == ENERGY_UTIL)
6843                util += dl_util;
6844
6845        /*
6846         * There is still idle time; further improve the number by using the
6847         * irq metric. Because IRQ/steal time is hidden from the task clock we
6848         * need to scale the task numbers:
6849         *
6850         *              max - irq
6851         *   U' = irq + --------- * U
6852         *                 max
6853         */
6854        util = scale_irq_capacity(util, irq, max);
6855        util += irq;
6856
6857        /*
6858         * Bandwidth required by DEADLINE must always be granted while, for
6859         * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6860         * to gracefully reduce the frequency when no tasks show up for longer
6861         * periods of time.
6862         *
6863         * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6864         * bw_dl as requested freq. However, cpufreq is not yet ready for such
6865         * an interface. So, we only do the latter for now.
6866         */
6867        if (type == FREQUENCY_UTIL)
6868                util += cpu_bw_dl(rq);
6869
6870        return min(max, util);
6871}
6872
6873unsigned long sched_cpu_util(int cpu, unsigned long max)
6874{
6875        return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6876                                  ENERGY_UTIL, NULL);
6877}
6878#endif /* CONFIG_SMP */
6879
6880/**
6881 * find_process_by_pid - find a process with a matching PID value.
6882 * @pid: the pid in question.
6883 *
6884 * The task of @pid, if found. %NULL otherwise.
6885 */
6886static struct task_struct *find_process_by_pid(pid_t pid)
6887{
6888        return pid ? find_task_by_vpid(pid) : current;
6889}
6890
6891/*
6892 * sched_setparam() passes in -1 for its policy, to let the functions
6893 * it calls know not to change it.
6894 */
6895#define SETPARAM_POLICY -1
6896
6897static void __setscheduler_params(struct task_struct *p,
6898                const struct sched_attr *attr)
6899{
6900        int policy = attr->sched_policy;
6901
6902        if (policy == SETPARAM_POLICY)
6903                policy = p->policy;
6904
6905        p->policy = policy;
6906
6907        if (dl_policy(policy))
6908                __setparam_dl(p, attr);
6909        else if (fair_policy(policy))
6910                p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6911
6912        /*
6913         * __sched_setscheduler() ensures attr->sched_priority == 0 when
6914         * !rt_policy. Always setting this ensures that things like
6915         * getparam()/getattr() don't report silly values for !rt tasks.
6916         */
6917        p->rt_priority = attr->sched_priority;
6918        p->normal_prio = normal_prio(p);
6919        set_load_weight(p, true);
6920}
6921
6922/*
6923 * Check the target process has a UID that matches the current process's:
6924 */
6925static bool check_same_owner(struct task_struct *p)
6926{
6927        const struct cred *cred = current_cred(), *pcred;
6928        bool match;
6929
6930        rcu_read_lock();
6931        pcred = __task_cred(p);
6932        match = (uid_eq(cred->euid, pcred->euid) ||
6933                 uid_eq(cred->euid, pcred->uid));
6934        rcu_read_unlock();
6935        return match;
6936}
6937
6938static int __sched_setscheduler(struct task_struct *p,
6939                                const struct sched_attr *attr,
6940                                bool user, bool pi)
6941{
6942        int oldpolicy = -1, policy = attr->sched_policy;
6943        int retval, oldprio, newprio, queued, running;
6944        const struct sched_class *prev_class;
6945        struct callback_head *head;
6946        struct rq_flags rf;
6947        int reset_on_fork;
6948        int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6949        struct rq *rq;
6950
6951        /* The pi code expects interrupts enabled */
6952        BUG_ON(pi && in_interrupt());
6953recheck:
6954        /* Double check policy once rq lock held: */
6955        if (policy < 0) {
6956                reset_on_fork = p->sched_reset_on_fork;
6957                policy = oldpolicy = p->policy;
6958        } else {
6959                reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6960
6961                if (!valid_policy(policy))
6962                        return -EINVAL;
6963        }
6964
6965        if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6966                return -EINVAL;
6967
6968        /*
6969         * Valid priorities for SCHED_FIFO and SCHED_RR are
6970         * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6971         * SCHED_BATCH and SCHED_IDLE is 0.
6972         */
6973        if (attr->sched_priority > MAX_RT_PRIO-1)
6974                return -EINVAL;
6975        if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6976            (rt_policy(policy) != (attr->sched_priority != 0)))
6977                return -EINVAL;
6978
6979        /*
6980         * Allow unprivileged RT tasks to decrease priority:
6981         */
6982        if (user && !capable(CAP_SYS_NICE)) {
6983                if (fair_policy(policy)) {
6984                        if (attr->sched_nice < task_nice(p) &&
6985                            !can_nice(p, attr->sched_nice))
6986                                return -EPERM;
6987                }
6988
6989                if (rt_policy(policy)) {
6990                        unsigned long rlim_rtprio =
6991                                        task_rlimit(p, RLIMIT_RTPRIO);
6992
6993                        /* Can't set/change the rt policy: */
6994                        if (policy != p->policy && !rlim_rtprio)
6995                                return -EPERM;
6996
6997                        /* Can't increase priority: */
6998                        if (attr->sched_priority > p->rt_priority &&
6999                            attr->sched_priority > rlim_rtprio)
7000                                return -EPERM;
7001                }
7002
7003                 /*
7004                  * Can't set/change SCHED_DEADLINE policy at all for now
7005                  * (safest behavior); in the future we would like to allow
7006                  * unprivileged DL tasks to increase their relative deadline
7007                  * or reduce their runtime (both ways reducing utilization)
7008                  */
7009                if (dl_policy(policy))
7010                        return -EPERM;
7011
7012                /*
7013                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7014                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7015                 */
7016                if (task_has_idle_policy(p) && !idle_policy(policy)) {
7017                        if (!can_nice(p, task_nice(p)))
7018                                return -EPERM;
7019                }
7020
7021                /* Can't change other user's priorities: */
7022                if (!check_same_owner(p))
7023                        return -EPERM;
7024
7025                /* Normal users shall not reset the sched_reset_on_fork flag: */
7026                if (p->sched_reset_on_fork && !reset_on_fork)
7027                        return -EPERM;
7028        }
7029
7030        if (user) {
7031                if (attr->sched_flags & SCHED_FLAG_SUGOV)
7032                        return -EINVAL;
7033
7034                retval = security_task_setscheduler(p);
7035                if (retval)
7036                        return retval;
7037        }
7038
7039        /* Update task specific "requested" clamps */
7040        if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7041                retval = uclamp_validate(p, attr);
7042                if (retval)
7043                        return retval;
7044        }
7045
7046        if (pi)
7047                cpuset_read_lock();
7048
7049        /*
7050         * Make sure no PI-waiters arrive (or leave) while we are
7051         * changing the priority of the task:
7052         *
7053         * To be able to change p->policy safely, the appropriate
7054         * runqueue lock must be held.
7055         */
7056        rq = task_rq_lock(p, &rf);
7057        update_rq_clock(rq);
7058
7059        /*
7060         * Changing the policy of the stop threads its a very bad idea:
7061         */
7062        if (p == rq->stop) {
7063                retval = -EINVAL;
7064                goto unlock;
7065        }
7066
7067        /*
7068         * If not changing anything there's no need to proceed further,
7069         * but store a possible modification of reset_on_fork.
7070         */
7071        if (unlikely(policy == p->policy)) {
7072                if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7073                        goto change;
7074                if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7075                        goto change;
7076                if (dl_policy(policy) && dl_param_changed(p, attr))
7077                        goto change;
7078                if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7079                        goto change;
7080
7081                p->sched_reset_on_fork = reset_on_fork;
7082                retval = 0;
7083                goto unlock;
7084        }
7085change:
7086
7087        if (user) {
7088#ifdef CONFIG_RT_GROUP_SCHED
7089                /*
7090                 * Do not allow realtime tasks into groups that have no runtime
7091                 * assigned.
7092                 */
7093                if (rt_bandwidth_enabled() && rt_policy(policy) &&
7094                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7095                                !task_group_is_autogroup(task_group(p))) {
7096                        retval = -EPERM;
7097                        goto unlock;
7098                }
7099#endif
7100#ifdef CONFIG_SMP
7101                if (dl_bandwidth_enabled() && dl_policy(policy) &&
7102                                !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7103                        cpumask_t *span = rq->rd->span;
7104
7105                        /*
7106                         * Don't allow tasks with an affinity mask smaller than
7107                         * the entire root_domain to become SCHED_DEADLINE. We
7108                         * will also fail if there's no bandwidth available.
7109                         */
7110                        if (!cpumask_subset(span, p->cpus_ptr) ||
7111                            rq->rd->dl_bw.bw == 0) {
7112                                retval = -EPERM;
7113                                goto unlock;
7114                        }
7115                }
7116#endif
7117        }
7118
7119        /* Re-check policy now with rq lock held: */
7120        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7121                policy = oldpolicy = -1;
7122                task_rq_unlock(rq, p, &rf);
7123                if (pi)
7124                        cpuset_read_unlock();
7125                goto recheck;
7126        }
7127
7128        /*
7129         * If setscheduling to SCHED_DEADLINE (or changing the parameters
7130         * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7131         * is available.
7132         */
7133        if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7134                retval = -EBUSY;
7135                goto unlock;
7136        }
7137
7138        p->sched_reset_on_fork = reset_on_fork;
7139        oldprio = p->prio;
7140
7141        newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7142        if (pi) {
7143                /*
7144                 * Take priority boosted tasks into account. If the new
7145                 * effective priority is unchanged, we just store the new
7146                 * normal parameters and do not touch the scheduler class and
7147                 * the runqueue. This will be done when the task deboost
7148                 * itself.
7149                 */
7150                newprio = rt_effective_prio(p, newprio);
7151                if (newprio == oldprio)
7152                        queue_flags &= ~DEQUEUE_MOVE;
7153        }
7154
7155        queued = task_on_rq_queued(p);
7156        running = task_current(rq, p);
7157        if (queued)
7158                dequeue_task(rq, p, queue_flags);
7159        if (running)
7160                put_prev_task(rq, p);
7161
7162        prev_class = p->sched_class;
7163
7164        if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7165                __setscheduler_params(p, attr);
7166                __setscheduler_prio(p, newprio);
7167        }
7168        __setscheduler_uclamp(p, attr);
7169
7170        if (queued) {
7171                /*
7172                 * We enqueue to tail when the priority of a task is
7173                 * increased (user space view).
7174                 */
7175                if (oldprio < p->prio)
7176                        queue_flags |= ENQUEUE_HEAD;
7177
7178                enqueue_task(rq, p, queue_flags);
7179        }
7180        if (running)
7181                set_next_task(rq, p);
7182
7183        check_class_changed(rq, p, prev_class, oldprio);
7184
7185        /* Avoid rq from going away on us: */
7186        preempt_disable();
7187        head = splice_balance_callbacks(rq);
7188        task_rq_unlock(rq, p, &rf);
7189
7190        if (pi) {
7191                cpuset_read_unlock();
7192                rt_mutex_adjust_pi(p);
7193        }
7194
7195        /* Run balance callbacks after we've adjusted the PI chain: */
7196        balance_callbacks(rq, head);
7197        preempt_enable();
7198
7199        return 0;
7200
7201unlock:
7202        task_rq_unlock(rq, p, &rf);
7203        if (pi)
7204                cpuset_read_unlock();
7205        return retval;
7206}
7207
7208static int _sched_setscheduler(struct task_struct *p, int policy,
7209                               const struct sched_param *param, bool check)
7210{
7211        struct sched_attr attr = {
7212                .sched_policy   = policy,
7213                .sched_priority = param->sched_priority,
7214                .sched_nice     = PRIO_TO_NICE(p->static_prio),
7215        };
7216
7217        /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7218        if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7219                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7220                policy &= ~SCHED_RESET_ON_FORK;
7221                attr.sched_policy = policy;
7222        }
7223
7224        return __sched_setscheduler(p, &attr, check, true);
7225}
7226/**
7227 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7228 * @p: the task in question.
7229 * @policy: new policy.
7230 * @param: structure containing the new RT priority.
7231 *
7232 * Use sched_set_fifo(), read its comment.
7233 *
7234 * Return: 0 on success. An error code otherwise.
7235 *
7236 * NOTE that the task may be already dead.
7237 */
7238int sched_setscheduler(struct task_struct *p, int policy,
7239                       const struct sched_param *param)
7240{
7241        return _sched_setscheduler(p, policy, param, true);
7242}
7243
7244int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7245{
7246        return __sched_setscheduler(p, attr, true, true);
7247}
7248
7249int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7250{
7251        return __sched_setscheduler(p, attr, false, true);
7252}
7253EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7254
7255/**
7256 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7257 * @p: the task in question.
7258 * @policy: new policy.
7259 * @param: structure containing the new RT priority.
7260 *
7261 * Just like sched_setscheduler, only don't bother checking if the
7262 * current context has permission.  For example, this is needed in
7263 * stop_machine(): we create temporary high priority worker threads,
7264 * but our caller might not have that capability.
7265 *
7266 * Return: 0 on success. An error code otherwise.
7267 */
7268int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7269                               const struct sched_param *param)
7270{
7271        return _sched_setscheduler(p, policy, param, false);
7272}
7273
7274/*
7275 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7276 * incapable of resource management, which is the one thing an OS really should
7277 * be doing.
7278 *
7279 * This is of course the reason it is limited to privileged users only.
7280 *
7281 * Worse still; it is fundamentally impossible to compose static priority
7282 * workloads. You cannot take two correctly working static prio workloads
7283 * and smash them together and still expect them to work.
7284 *
7285 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7286 *
7287 *   MAX_RT_PRIO / 2
7288 *
7289 * The administrator _MUST_ configure the system, the kernel simply doesn't
7290 * know enough information to make a sensible choice.
7291 */
7292void sched_set_fifo(struct task_struct *p)
7293{
7294        struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7295        WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7296}
7297EXPORT_SYMBOL_GPL(sched_set_fifo);
7298
7299/*
7300 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7301 */
7302void sched_set_fifo_low(struct task_struct *p)
7303{
7304        struct sched_param sp = { .sched_priority = 1 };
7305        WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7306}
7307EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7308
7309void sched_set_normal(struct task_struct *p, int nice)
7310{
7311        struct sched_attr attr = {
7312                .sched_policy = SCHED_NORMAL,
7313                .sched_nice = nice,
7314        };
7315        WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7316}
7317EXPORT_SYMBOL_GPL(sched_set_normal);
7318
7319static int
7320do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7321{
7322        struct sched_param lparam;
7323        struct task_struct *p;
7324        int retval;
7325
7326        if (!param || pid < 0)
7327                return -EINVAL;
7328        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7329                return -EFAULT;
7330
7331        rcu_read_lock();
7332        retval = -ESRCH;
7333        p = find_process_by_pid(pid);
7334        if (likely(p))
7335                get_task_struct(p);
7336        rcu_read_unlock();
7337
7338        if (likely(p)) {
7339                retval = sched_setscheduler(p, policy, &lparam);
7340                put_task_struct(p);
7341        }
7342
7343        return retval;
7344}
7345
7346/*
7347 * Mimics kernel/events/core.c perf_copy_attr().
7348 */
7349static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7350{
7351        u32 size;
7352        int ret;
7353
7354        /* Zero the full structure, so that a short copy will be nice: */
7355        memset(attr, 0, sizeof(*attr));
7356
7357        ret = get_user(size, &uattr->size);
7358        if (ret)
7359                return ret;
7360
7361        /* ABI compatibility quirk: */
7362        if (!size)
7363                size = SCHED_ATTR_SIZE_VER0;
7364        if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7365                goto err_size;
7366
7367        ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7368        if (ret) {
7369                if (ret == -E2BIG)
7370                        goto err_size;
7371                return ret;
7372        }
7373
7374        if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7375            size < SCHED_ATTR_SIZE_VER1)
7376                return -EINVAL;
7377
7378        /*
7379         * XXX: Do we want to be lenient like existing syscalls; or do we want
7380         * to be strict and return an error on out-of-bounds values?
7381         */
7382        attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7383
7384        return 0;
7385
7386err_size:
7387        put_user(sizeof(*attr), &uattr->size);
7388        return -E2BIG;
7389}
7390
7391/**
7392 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7393 * @pid: the pid in question.
7394 * @policy: new policy.
7395 * @param: structure containing the new RT priority.
7396 *
7397 * Return: 0 on success. An error code otherwise.
7398 */
7399SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7400{
7401        if (policy < 0)
7402                return -EINVAL;
7403
7404        return do_sched_setscheduler(pid, policy, param);
7405}
7406
7407/**
7408 * sys_sched_setparam - set/change the RT priority of a thread
7409 * @pid: the pid in question.
7410 * @param: structure containing the new RT priority.
7411 *
7412 * Return: 0 on success. An error code otherwise.
7413 */
7414SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7415{
7416        return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7417}
7418
7419/**
7420 * sys_sched_setattr - same as above, but with extended sched_attr
7421 * @pid: the pid in question.
7422 * @uattr: structure containing the extended parameters.
7423 * @flags: for future extension.
7424 */
7425SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7426                               unsigned int, flags)
7427{
7428        struct sched_attr attr;
7429        struct task_struct *p;
7430        int retval;
7431
7432        if (!uattr || pid < 0 || flags)
7433                return -EINVAL;
7434
7435        retval = sched_copy_attr(uattr, &attr);
7436        if (retval)
7437                return retval;
7438
7439        if ((int)attr.sched_policy < 0)
7440                return -EINVAL;
7441        if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7442                attr.sched_policy = SETPARAM_POLICY;
7443
7444        rcu_read_lock();
7445        retval = -ESRCH;
7446        p = find_process_by_pid(pid);
7447        if (likely(p))
7448                get_task_struct(p);
7449        rcu_read_unlock();
7450
7451        if (likely(p)) {
7452                retval = sched_setattr(p, &attr);
7453                put_task_struct(p);
7454        }
7455
7456        return retval;
7457}
7458
7459/**
7460 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7461 * @pid: the pid in question.
7462 *
7463 * Return: On success, the policy of the thread. Otherwise, a negative error
7464 * code.
7465 */
7466SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7467{
7468        struct task_struct *p;
7469        int retval;
7470
7471        if (pid < 0)
7472                return -EINVAL;
7473
7474        retval = -ESRCH;
7475        rcu_read_lock();
7476        p = find_process_by_pid(pid);
7477        if (p) {
7478                retval = security_task_getscheduler(p);
7479                if (!retval)
7480                        retval = p->policy
7481                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7482        }
7483        rcu_read_unlock();
7484        return retval;
7485}
7486
7487/**
7488 * sys_sched_getparam - get the RT priority of a thread
7489 * @pid: the pid in question.
7490 * @param: structure containing the RT priority.
7491 *
7492 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7493 * code.
7494 */
7495SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7496{
7497        struct sched_param lp = { .sched_priority = 0 };
7498        struct task_struct *p;
7499        int retval;
7500
7501        if (!param || pid < 0)
7502                return -EINVAL;
7503
7504        rcu_read_lock();
7505        p = find_process_by_pid(pid);
7506        retval = -ESRCH;
7507        if (!p)
7508                goto out_unlock;
7509
7510        retval = security_task_getscheduler(p);
7511        if (retval)
7512                goto out_unlock;
7513
7514        if (task_has_rt_policy(p))
7515                lp.sched_priority = p->rt_priority;
7516        rcu_read_unlock();
7517
7518        /*
7519         * This one might sleep, we cannot do it with a spinlock held ...
7520         */
7521        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7522
7523        return retval;
7524
7525out_unlock:
7526        rcu_read_unlock();
7527        return retval;
7528}
7529
7530/*
7531 * Copy the kernel size attribute structure (which might be larger
7532 * than what user-space knows about) to user-space.
7533 *
7534 * Note that all cases are valid: user-space buffer can be larger or
7535 * smaller than the kernel-space buffer. The usual case is that both
7536 * have the same size.
7537 */
7538static int
7539sched_attr_copy_to_user(struct sched_attr __user *uattr,
7540                        struct sched_attr *kattr,
7541                        unsigned int usize)
7542{
7543        unsigned int ksize = sizeof(*kattr);
7544
7545        if (!access_ok(uattr, usize))
7546                return -EFAULT;
7547
7548        /*
7549         * sched_getattr() ABI forwards and backwards compatibility:
7550         *
7551         * If usize == ksize then we just copy everything to user-space and all is good.
7552         *
7553         * If usize < ksize then we only copy as much as user-space has space for,
7554         * this keeps ABI compatibility as well. We skip the rest.
7555         *
7556         * If usize > ksize then user-space is using a newer version of the ABI,
7557         * which part the kernel doesn't know about. Just ignore it - tooling can
7558         * detect the kernel's knowledge of attributes from the attr->size value
7559         * which is set to ksize in this case.
7560         */
7561        kattr->size = min(usize, ksize);
7562
7563        if (copy_to_user(uattr, kattr, kattr->size))
7564                return -EFAULT;
7565
7566        return 0;
7567}
7568
7569/**
7570 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7571 * @pid: the pid in question.
7572 * @uattr: structure containing the extended parameters.
7573 * @usize: sizeof(attr) for fwd/bwd comp.
7574 * @flags: for future extension.
7575 */
7576SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7577                unsigned int, usize, unsigned int, flags)
7578{
7579        struct sched_attr kattr = { };
7580        struct task_struct *p;
7581        int retval;
7582
7583        if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7584            usize < SCHED_ATTR_SIZE_VER0 || flags)
7585                return -EINVAL;
7586
7587        rcu_read_lock();
7588        p = find_process_by_pid(pid);
7589        retval = -ESRCH;
7590        if (!p)
7591                goto out_unlock;
7592
7593        retval = security_task_getscheduler(p);
7594        if (retval)
7595                goto out_unlock;
7596
7597        kattr.sched_policy = p->policy;
7598        if (p->sched_reset_on_fork)
7599                kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7600        if (task_has_dl_policy(p))
7601                __getparam_dl(p, &kattr);
7602        else if (task_has_rt_policy(p))
7603                kattr.sched_priority = p->rt_priority;
7604        else
7605                kattr.sched_nice = task_nice(p);
7606
7607#ifdef CONFIG_UCLAMP_TASK
7608        /*
7609         * This could race with another potential updater, but this is fine
7610         * because it'll correctly read the old or the new value. We don't need
7611         * to guarantee who wins the race as long as it doesn't return garbage.
7612         */
7613        kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7614        kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7615#endif
7616
7617        rcu_read_unlock();
7618
7619        return sched_attr_copy_to_user(uattr, &kattr, usize);
7620
7621out_unlock:
7622        rcu_read_unlock();
7623        return retval;
7624}
7625
7626long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7627{
7628        cpumask_var_t cpus_allowed, new_mask;
7629        struct task_struct *p;
7630        int retval;
7631
7632        rcu_read_lock();
7633
7634        p = find_process_by_pid(pid);
7635        if (!p) {
7636                rcu_read_unlock();
7637                return -ESRCH;
7638        }
7639
7640        /* Prevent p going away */
7641        get_task_struct(p);
7642        rcu_read_unlock();
7643
7644        if (p->flags & PF_NO_SETAFFINITY) {
7645                retval = -EINVAL;
7646                goto out_put_task;
7647        }
7648        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7649                retval = -ENOMEM;
7650                goto out_put_task;
7651        }
7652        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7653                retval = -ENOMEM;
7654                goto out_free_cpus_allowed;
7655        }
7656        retval = -EPERM;
7657        if (!check_same_owner(p)) {
7658                rcu_read_lock();
7659                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7660                        rcu_read_unlock();
7661                        goto out_free_new_mask;
7662                }
7663                rcu_read_unlock();
7664        }
7665
7666        retval = security_task_setscheduler(p);
7667        if (retval)
7668                goto out_free_new_mask;
7669
7670
7671        cpuset_cpus_allowed(p, cpus_allowed);
7672        cpumask_and(new_mask, in_mask, cpus_allowed);
7673
7674        /*
7675         * Since bandwidth control happens on root_domain basis,
7676         * if admission test is enabled, we only admit -deadline
7677         * tasks allowed to run on all the CPUs in the task's
7678         * root_domain.
7679         */
7680#ifdef CONFIG_SMP
7681        if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7682                rcu_read_lock();
7683                if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
7684                        retval = -EBUSY;
7685                        rcu_read_unlock();
7686                        goto out_free_new_mask;
7687                }
7688                rcu_read_unlock();
7689        }
7690#endif
7691again:
7692        retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
7693
7694        if (!retval) {
7695                cpuset_cpus_allowed(p, cpus_allowed);
7696                if (!cpumask_subset(new_mask, cpus_allowed)) {
7697                        /*
7698                         * We must have raced with a concurrent cpuset
7699                         * update. Just reset the cpus_allowed to the
7700                         * cpuset's cpus_allowed
7701                         */
7702                        cpumask_copy(new_mask, cpus_allowed);
7703                        goto again;
7704                }
7705        }
7706out_free_new_mask:
7707        free_cpumask_var(new_mask);
7708out_free_cpus_allowed:
7709        free_cpumask_var(cpus_allowed);
7710out_put_task:
7711        put_task_struct(p);
7712        return retval;
7713}
7714
7715static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7716                             struct cpumask *new_mask)
7717{
7718        if (len < cpumask_size())
7719                cpumask_clear(new_mask);
7720        else if (len > cpumask_size())
7721                len = cpumask_size();
7722
7723        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7724}
7725
7726/**
7727 * sys_sched_setaffinity - set the CPU affinity of a process
7728 * @pid: pid of the process
7729 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7730 * @user_mask_ptr: user-space pointer to the new CPU mask
7731 *
7732 * Return: 0 on success. An error code otherwise.
7733 */
7734SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7735                unsigned long __user *, user_mask_ptr)
7736{
7737        cpumask_var_t new_mask;
7738        int retval;
7739
7740        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7741                return -ENOMEM;
7742
7743        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7744        if (retval == 0)
7745                retval = sched_setaffinity(pid, new_mask);
7746        free_cpumask_var(new_mask);
7747        return retval;
7748}
7749
7750long sched_getaffinity(pid_t pid, struct cpumask *mask)
7751{
7752        struct task_struct *p;
7753        unsigned long flags;
7754        int retval;
7755
7756        rcu_read_lock();
7757
7758        retval = -ESRCH;
7759        p = find_process_by_pid(pid);
7760        if (!p)
7761                goto out_unlock;
7762
7763        retval = security_task_getscheduler(p);
7764        if (retval)
7765                goto out_unlock;
7766
7767        raw_spin_lock_irqsave(&p->pi_lock, flags);
7768        cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
7769        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
7770
7771out_unlock:
7772        rcu_read_unlock();
7773
7774        return retval;
7775}
7776
7777/**
7778 * sys_sched_getaffinity - get the CPU affinity of a process
7779 * @pid: pid of the process
7780 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7781 * @user_mask_ptr: user-space pointer to hold the current CPU mask
7782 *
7783 * Return: size of CPU mask copied to user_mask_ptr on success. An
7784 * error code otherwise.
7785 */
7786SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7787                unsigned long __user *, user_mask_ptr)
7788{
7789        int ret;
7790        cpumask_var_t mask;
7791
7792        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
7793                return -EINVAL;
7794        if (len & (sizeof(unsigned long)-1))
7795                return -EINVAL;
7796
7797        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7798                return -ENOMEM;
7799
7800        ret = sched_getaffinity(pid, mask);
7801        if (ret == 0) {
7802                unsigned int retlen = min(len, cpumask_size());
7803
7804                if (copy_to_user(user_mask_ptr, mask, retlen))
7805                        ret = -EFAULT;
7806                else
7807                        ret = retlen;
7808        }
7809        free_cpumask_var(mask);
7810
7811        return ret;
7812}
7813
7814static void do_sched_yield(void)
7815{
7816        struct rq_flags rf;
7817        struct rq *rq;
7818
7819        rq = this_rq_lock_irq(&rf);
7820
7821        schedstat_inc(rq->yld_count);
7822        current->sched_class->yield_task(rq);
7823
7824        preempt_disable();
7825        rq_unlock_irq(rq, &rf);
7826        sched_preempt_enable_no_resched();
7827
7828        schedule();
7829}
7830
7831/**
7832 * sys_sched_yield - yield the current processor to other threads.
7833 *
7834 * This function yields the current CPU to other tasks. If there are no
7835 * other threads running on this CPU then this function will return.
7836 *
7837 * Return: 0.
7838 */
7839SYSCALL_DEFINE0(sched_yield)
7840{
7841        do_sched_yield();
7842        return 0;
7843}
7844
7845#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7846int __sched __cond_resched(void)
7847{
7848        if (should_resched(0)) {
7849                preempt_schedule_common();
7850                return 1;
7851        }
7852#ifndef CONFIG_PREEMPT_RCU
7853        rcu_all_qs();
7854#endif
7855        return 0;
7856}
7857EXPORT_SYMBOL(__cond_resched);
7858#endif
7859
7860#ifdef CONFIG_PREEMPT_DYNAMIC
7861DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7862EXPORT_STATIC_CALL_TRAMP(cond_resched);
7863
7864DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7865EXPORT_STATIC_CALL_TRAMP(might_resched);
7866#endif
7867
7868/*
7869 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7870 * call schedule, and on return reacquire the lock.
7871 *
7872 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7873 * operations here to prevent schedule() from being called twice (once via
7874 * spin_unlock(), once by hand).
7875 */
7876int __cond_resched_lock(spinlock_t *lock)
7877{
7878        int resched = should_resched(PREEMPT_LOCK_OFFSET);
7879        int ret = 0;
7880
7881        lockdep_assert_held(lock);
7882
7883        if (spin_needbreak(lock) || resched) {
7884                spin_unlock(lock);
7885                if (resched)
7886                        preempt_schedule_common();
7887                else
7888                        cpu_relax();
7889                ret = 1;
7890                spin_lock(lock);
7891        }
7892        return ret;
7893}
7894EXPORT_SYMBOL(__cond_resched_lock);
7895
7896int __cond_resched_rwlock_read(rwlock_t *lock)
7897{
7898        int resched = should_resched(PREEMPT_LOCK_OFFSET);
7899        int ret = 0;
7900
7901        lockdep_assert_held_read(lock);
7902
7903        if (rwlock_needbreak(lock) || resched) {
7904                read_unlock(lock);
7905                if (resched)
7906                        preempt_schedule_common();
7907                else
7908                        cpu_relax();
7909                ret = 1;
7910                read_lock(lock);
7911        }
7912        return ret;
7913}
7914EXPORT_SYMBOL(__cond_resched_rwlock_read);
7915
7916int __cond_resched_rwlock_write(rwlock_t *lock)
7917{
7918        int resched = should_resched(PREEMPT_LOCK_OFFSET);
7919        int ret = 0;
7920
7921        lockdep_assert_held_write(lock);
7922
7923        if (rwlock_needbreak(lock) || resched) {
7924                write_unlock(lock);
7925                if (resched)
7926                        preempt_schedule_common();
7927                else
7928                        cpu_relax();
7929                ret = 1;
7930                write_lock(lock);
7931        }
7932        return ret;
7933}
7934EXPORT_SYMBOL(__cond_resched_rwlock_write);
7935
7936/**
7937 * yield - yield the current processor to other threads.
7938 *
7939 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7940 *
7941 * The scheduler is at all times free to pick the calling task as the most
7942 * eligible task to run, if removing the yield() call from your code breaks
7943 * it, it's already broken.
7944 *
7945 * Typical broken usage is:
7946 *
7947 * while (!event)
7948 *      yield();
7949 *
7950 * where one assumes that yield() will let 'the other' process run that will
7951 * make event true. If the current task is a SCHED_FIFO task that will never
7952 * happen. Never use yield() as a progress guarantee!!
7953 *
7954 * If you want to use yield() to wait for something, use wait_event().
7955 * If you want to use yield() to be 'nice' for others, use cond_resched().
7956 * If you still want to use yield(), do not!
7957 */
7958void __sched yield(void)
7959{
7960        set_current_state(TASK_RUNNING);
7961        do_sched_yield();
7962}
7963EXPORT_SYMBOL(yield);
7964
7965/**
7966 * yield_to - yield the current processor to another thread in
7967 * your thread group, or accelerate that thread toward the
7968 * processor it's on.
7969 * @p: target task
7970 * @preempt: whether task preemption is allowed or not
7971 *
7972 * It's the caller's job to ensure that the target task struct
7973 * can't go away on us before we can do any checks.
7974 *
7975 * Return:
7976 *      true (>0) if we indeed boosted the target task.
7977 *      false (0) if we failed to boost the target.
7978 *      -ESRCH if there's no task to yield to.
7979 */
7980int __sched yield_to(struct task_struct *p, bool preempt)
7981{
7982        struct task_struct *curr = current;
7983        struct rq *rq, *p_rq;
7984        unsigned long flags;
7985        int yielded = 0;
7986
7987        local_irq_save(flags);
7988        rq = this_rq();
7989
7990again:
7991        p_rq = task_rq(p);
7992        /*
7993         * If we're the only runnable task on the rq and target rq also
7994         * has only one task, there's absolutely no point in yielding.
7995         */
7996        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7997                yielded = -ESRCH;
7998                goto out_irq;
7999        }
8000
8001        double_rq_lock(rq, p_rq);
8002        if (task_rq(p) != p_rq) {
8003                double_rq_unlock(rq, p_rq);
8004                goto again;
8005        }
8006
8007        if (!curr->sched_class->yield_to_task)
8008                goto out_unlock;
8009
8010        if (curr->sched_class != p->sched_class)
8011                goto out_unlock;
8012
8013        if (task_running(p_rq, p) || !task_is_running(p))
8014                goto out_unlock;
8015
8016        yielded = curr->sched_class->yield_to_task(rq, p);
8017        if (yielded) {
8018                schedstat_inc(rq->yld_count);
8019                /*
8020                 * Make p's CPU reschedule; pick_next_entity takes care of
8021                 * fairness.
8022                 */
8023                if (preempt && rq != p_rq)
8024                        resched_curr(p_rq);
8025        }
8026
8027out_unlock:
8028        double_rq_unlock(rq, p_rq);
8029out_irq:
8030        local_irq_restore(flags);
8031
8032        if (yielded > 0)
8033                schedule();
8034
8035        return yielded;
8036}
8037EXPORT_SYMBOL_GPL(yield_to);
8038
8039int io_schedule_prepare(void)
8040{
8041        int old_iowait = current->in_iowait;
8042
8043        current->in_iowait = 1;
8044        blk_schedule_flush_plug(current);
8045
8046        return old_iowait;
8047}
8048
8049void io_schedule_finish(int token)
8050{
8051        current->in_iowait = token;
8052}
8053
8054/*
8055 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8056 * that process accounting knows that this is a task in IO wait state.
8057 */
8058long __sched io_schedule_timeout(long timeout)
8059{
8060        int token;
8061        long ret;
8062
8063        token = io_schedule_prepare();
8064        ret = schedule_timeout(timeout);
8065        io_schedule_finish(token);
8066
8067        return ret;
8068}
8069EXPORT_SYMBOL(io_schedule_timeout);
8070
8071void __sched io_schedule(void)
8072{
8073        int token;
8074
8075        token = io_schedule_prepare();
8076        schedule();
8077        io_schedule_finish(token);
8078}
8079EXPORT_SYMBOL(io_schedule);
8080
8081/**
8082 * sys_sched_get_priority_max - return maximum RT priority.
8083 * @policy: scheduling class.
8084 *
8085 * Return: On success, this syscall returns the maximum
8086 * rt_priority that can be used by a given scheduling class.
8087 * On failure, a negative error code is returned.
8088 */
8089SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8090{
8091        int ret = -EINVAL;
8092
8093        switch (policy) {
8094        case SCHED_FIFO:
8095        case SCHED_RR:
8096                ret = MAX_RT_PRIO-1;
8097                break;
8098        case SCHED_DEADLINE:
8099        case SCHED_NORMAL:
8100        case SCHED_BATCH:
8101        case SCHED_IDLE:
8102                ret = 0;
8103                break;
8104        }
8105        return ret;
8106}
8107
8108/**
8109 * sys_sched_get_priority_min - return minimum RT priority.
8110 * @policy: scheduling class.
8111 *
8112 * Return: On success, this syscall returns the minimum
8113 * rt_priority that can be used by a given scheduling class.
8114 * On failure, a negative error code is returned.
8115 */
8116SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8117{
8118        int ret = -EINVAL;
8119
8120        switch (policy) {
8121        case SCHED_FIFO:
8122        case SCHED_RR:
8123                ret = 1;
8124                break;
8125        case SCHED_DEADLINE:
8126        case SCHED_NORMAL:
8127        case SCHED_BATCH:
8128        case SCHED_IDLE:
8129                ret = 0;
8130        }
8131        return ret;
8132}
8133
8134static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8135{
8136        struct task_struct *p;
8137        unsigned int time_slice;
8138        struct rq_flags rf;
8139        struct rq *rq;
8140        int retval;
8141
8142        if (pid < 0)
8143                return -EINVAL;
8144
8145        retval = -ESRCH;
8146        rcu_read_lock();
8147        p = find_process_by_pid(pid);
8148        if (!p)
8149                goto out_unlock;
8150
8151        retval = security_task_getscheduler(p);
8152        if (retval)
8153                goto out_unlock;
8154
8155        rq = task_rq_lock(p, &rf);
8156        time_slice = 0;
8157        if (p->sched_class->get_rr_interval)
8158                time_slice = p->sched_class->get_rr_interval(rq, p);
8159        task_rq_unlock(rq, p, &rf);
8160
8161        rcu_read_unlock();
8162        jiffies_to_timespec64(time_slice, t);
8163        return 0;
8164
8165out_unlock:
8166        rcu_read_unlock();
8167        return retval;
8168}
8169
8170/**
8171 * sys_sched_rr_get_interval - return the default timeslice of a process.
8172 * @pid: pid of the process.
8173 * @interval: userspace pointer to the timeslice value.
8174 *
8175 * this syscall writes the default timeslice value of a given process
8176 * into the user-space timespec buffer. A value of '0' means infinity.
8177 *
8178 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8179 * an error code.
8180 */
8181SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8182                struct __kernel_timespec __user *, interval)
8183{
8184        struct timespec64 t;
8185        int retval = sched_rr_get_interval(pid, &t);
8186
8187        if (retval == 0)
8188                retval = put_timespec64(&t, interval);
8189
8190        return retval;
8191}
8192
8193#ifdef CONFIG_COMPAT_32BIT_TIME
8194SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8195                struct old_timespec32 __user *, interval)
8196{
8197        struct timespec64 t;
8198        int retval = sched_rr_get_interval(pid, &t);
8199
8200        if (retval == 0)
8201                retval = put_old_timespec32(&t, interval);
8202        return retval;
8203}
8204#endif
8205
8206void sched_show_task(struct task_struct *p)
8207{
8208        unsigned long free = 0;
8209        int ppid;
8210
8211        if (!try_get_task_stack(p))
8212                return;
8213
8214        pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8215
8216        if (task_is_running(p))
8217                pr_cont("  running task    ");
8218#ifdef CONFIG_DEBUG_STACK_USAGE
8219        free = stack_not_used(p);
8220#endif
8221        ppid = 0;
8222        rcu_read_lock();
8223        if (pid_alive(p))
8224                ppid = task_pid_nr(rcu_dereference(p->real_parent));
8225        rcu_read_unlock();
8226        pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8227                free, task_pid_nr(p), ppid,
8228                (unsigned long)task_thread_info(p)->flags);
8229
8230        print_worker_info(KERN_INFO, p);
8231        print_stop_info(KERN_INFO, p);
8232        show_stack(p, NULL, KERN_INFO);
8233        put_task_stack(p);
8234}
8235EXPORT_SYMBOL_GPL(sched_show_task);
8236
8237static inline bool
8238state_filter_match(unsigned long state_filter, struct task_struct *p)
8239{
8240        unsigned int state = READ_ONCE(p->__state);
8241
8242        /* no filter, everything matches */
8243        if (!state_filter)
8244                return true;
8245
8246        /* filter, but doesn't match */
8247        if (!(state & state_filter))
8248                return false;
8249
8250        /*
8251         * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8252         * TASK_KILLABLE).
8253         */
8254        if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8255                return false;
8256
8257        return true;
8258}
8259
8260
8261void show_state_filter(unsigned int state_filter)
8262{
8263        struct task_struct *g, *p;
8264
8265        rcu_read_lock();
8266        for_each_process_thread(g, p) {
8267                /*
8268                 * reset the NMI-timeout, listing all files on a slow
8269                 * console might take a lot of time:
8270                 * Also, reset softlockup watchdogs on all CPUs, because
8271                 * another CPU might be blocked waiting for us to process
8272                 * an IPI.
8273                 */
8274                touch_nmi_watchdog();
8275                touch_all_softlockup_watchdogs();
8276                if (state_filter_match(state_filter, p))
8277                        sched_show_task(p);
8278        }
8279
8280#ifdef CONFIG_SCHED_DEBUG
8281        if (!state_filter)
8282                sysrq_sched_debug_show();
8283#endif
8284        rcu_read_unlock();
8285        /*
8286         * Only show locks if all tasks are dumped:
8287         */
8288        if (!state_filter)
8289                debug_show_all_locks();
8290}
8291
8292/**
8293 * init_idle - set up an idle thread for a given CPU
8294 * @idle: task in question
8295 * @cpu: CPU the idle task belongs to
8296 *
8297 * NOTE: this function does not set the idle thread's NEED_RESCHED
8298 * flag, to make booting more robust.
8299 */
8300void __init init_idle(struct task_struct *idle, int cpu)
8301{
8302        struct rq *rq = cpu_rq(cpu);
8303        unsigned long flags;
8304
8305        __sched_fork(0, idle);
8306
8307        /*
8308         * The idle task doesn't need the kthread struct to function, but it
8309         * is dressed up as a per-CPU kthread and thus needs to play the part
8310         * if we want to avoid special-casing it in code that deals with per-CPU
8311         * kthreads.
8312         */
8313        set_kthread_struct(idle);
8314
8315        raw_spin_lock_irqsave(&idle->pi_lock, flags);
8316        raw_spin_rq_lock(rq);
8317
8318        idle->__state = TASK_RUNNING;
8319        idle->se.exec_start = sched_clock();
8320        /*
8321         * PF_KTHREAD should already be set at this point; regardless, make it
8322         * look like a proper per-CPU kthread.
8323         */
8324        idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8325        kthread_set_per_cpu(idle, cpu);
8326
8327        scs_task_reset(idle);
8328        kasan_unpoison_task_stack(idle);
8329
8330#ifdef CONFIG_SMP
8331        /*
8332         * It's possible that init_idle() gets called multiple times on a task,
8333         * in that case do_set_cpus_allowed() will not do the right thing.
8334         *
8335         * And since this is boot we can forgo the serialization.
8336         */
8337        set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8338#endif
8339        /*
8340         * We're having a chicken and egg problem, even though we are
8341         * holding rq->lock, the CPU isn't yet set to this CPU so the
8342         * lockdep check in task_group() will fail.
8343         *
8344         * Similar case to sched_fork(). / Alternatively we could
8345         * use task_rq_lock() here and obtain the other rq->lock.
8346         *
8347         * Silence PROVE_RCU
8348         */
8349        rcu_read_lock();
8350        __set_task_cpu(idle, cpu);
8351        rcu_read_unlock();
8352
8353        rq->idle = idle;
8354        rcu_assign_pointer(rq->curr, idle);
8355        idle->on_rq = TASK_ON_RQ_QUEUED;
8356#ifdef CONFIG_SMP
8357        idle->on_cpu = 1;
8358#endif
8359        raw_spin_rq_unlock(rq);
8360        raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8361
8362        /* Set the preempt count _outside_ the spinlocks! */
8363        init_idle_preempt_count(idle, cpu);
8364
8365        /*
8366         * The idle tasks have their own, simple scheduling class:
8367         */
8368        idle->sched_class = &idle_sched_class;
8369        ftrace_graph_init_idle_task(idle, cpu);
8370        vtime_init_idle(idle, cpu);
8371#ifdef CONFIG_SMP
8372        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8373#endif
8374}
8375
8376#ifdef CONFIG_SMP
8377
8378int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8379                              const struct cpumask *trial)
8380{
8381        int ret = 1;
8382
8383        if (!cpumask_weight(cur))
8384                return ret;
8385
8386        ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8387
8388        return ret;
8389}
8390
8391int task_can_attach(struct task_struct *p,
8392                    const struct cpumask *cs_cpus_allowed)
8393{
8394        int ret = 0;
8395
8396        /*
8397         * Kthreads which disallow setaffinity shouldn't be moved
8398         * to a new cpuset; we don't want to change their CPU
8399         * affinity and isolating such threads by their set of
8400         * allowed nodes is unnecessary.  Thus, cpusets are not
8401         * applicable for such threads.  This prevents checking for
8402         * success of set_cpus_allowed_ptr() on all attached tasks
8403         * before cpus_mask may be changed.
8404         */
8405        if (p->flags & PF_NO_SETAFFINITY) {
8406                ret = -EINVAL;
8407                goto out;
8408        }
8409
8410        if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8411                                              cs_cpus_allowed))
8412                ret = dl_task_can_attach(p, cs_cpus_allowed);
8413
8414out:
8415        return ret;
8416}
8417
8418bool sched_smp_initialized __read_mostly;
8419
8420#ifdef CONFIG_NUMA_BALANCING
8421/* Migrate current task p to target_cpu */
8422int migrate_task_to(struct task_struct *p, int target_cpu)
8423{
8424        struct migration_arg arg = { p, target_cpu };
8425        int curr_cpu = task_cpu(p);
8426
8427        if (curr_cpu == target_cpu)
8428                return 0;
8429
8430        if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8431                return -EINVAL;
8432
8433        /* TODO: This is not properly updating schedstats */
8434
8435        trace_sched_move_numa(p, curr_cpu, target_cpu);
8436        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8437}
8438
8439/*
8440 * Requeue a task on a given node and accurately track the number of NUMA
8441 * tasks on the runqueues
8442 */
8443void sched_setnuma(struct task_struct *p, int nid)
8444{
8445        bool queued, running;
8446        struct rq_flags rf;
8447        struct rq *rq;
8448
8449        rq = task_rq_lock(p, &rf);
8450        queued = task_on_rq_queued(p);
8451        running = task_current(rq, p);
8452
8453        if (queued)
8454                dequeue_task(rq, p, DEQUEUE_SAVE);
8455        if (running)
8456                put_prev_task(rq, p);
8457
8458        p->numa_preferred_nid = nid;
8459
8460        if (queued)
8461                enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8462        if (running)
8463                set_next_task(rq, p);
8464        task_rq_unlock(rq, p, &rf);
8465}
8466#endif /* CONFIG_NUMA_BALANCING */
8467
8468#ifdef CONFIG_HOTPLUG_CPU
8469/*
8470 * Ensure that the idle task is using init_mm right before its CPU goes
8471 * offline.
8472 */
8473void idle_task_exit(void)
8474{
8475        struct mm_struct *mm = current->active_mm;
8476
8477        BUG_ON(cpu_online(smp_processor_id()));
8478        BUG_ON(current != this_rq()->idle);
8479
8480        if (mm != &init_mm) {
8481                switch_mm(mm, &init_mm, current);
8482                finish_arch_post_lock_switch();
8483        }
8484
8485        /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8486}
8487
8488static int __balance_push_cpu_stop(void *arg)
8489{
8490        struct task_struct *p = arg;
8491        struct rq *rq = this_rq();
8492        struct rq_flags rf;
8493        int cpu;
8494
8495        raw_spin_lock_irq(&p->pi_lock);
8496        rq_lock(rq, &rf);
8497
8498        update_rq_clock(rq);
8499
8500        if (task_rq(p) == rq && task_on_rq_queued(p)) {
8501                cpu = select_fallback_rq(rq->cpu, p);
8502                rq = __migrate_task(rq, &rf, p, cpu);
8503        }
8504
8505        rq_unlock(rq, &rf);
8506        raw_spin_unlock_irq(&p->pi_lock);
8507
8508        put_task_struct(p);
8509
8510        return 0;
8511}
8512
8513static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8514
8515/*
8516 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8517 *
8518 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8519 * effective when the hotplug motion is down.
8520 */
8521static void balance_push(struct rq *rq)
8522{
8523        struct task_struct *push_task = rq->curr;
8524
8525        lockdep_assert_rq_held(rq);
8526        SCHED_WARN_ON(rq->cpu != smp_processor_id());
8527
8528        /*
8529         * Ensure the thing is persistent until balance_push_set(.on = false);
8530         */
8531        rq->balance_callback = &balance_push_callback;
8532
8533        /*
8534         * Only active while going offline.
8535         */
8536        if (!cpu_dying(rq->cpu))
8537                return;
8538
8539        /*
8540         * Both the cpu-hotplug and stop task are in this case and are
8541         * required to complete the hotplug process.
8542         */
8543        if (kthread_is_per_cpu(push_task) ||
8544            is_migration_disabled(push_task)) {
8545
8546                /*
8547                 * If this is the idle task on the outgoing CPU try to wake
8548                 * up the hotplug control thread which might wait for the
8549                 * last task to vanish. The rcuwait_active() check is
8550                 * accurate here because the waiter is pinned on this CPU
8551                 * and can't obviously be running in parallel.
8552                 *
8553                 * On RT kernels this also has to check whether there are
8554                 * pinned and scheduled out tasks on the runqueue. They
8555                 * need to leave the migrate disabled section first.
8556                 */
8557                if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8558                    rcuwait_active(&rq->hotplug_wait)) {
8559                        raw_spin_rq_unlock(rq);
8560                        rcuwait_wake_up(&rq->hotplug_wait);
8561                        raw_spin_rq_lock(rq);
8562                }
8563                return;
8564        }
8565
8566        get_task_struct(push_task);
8567        /*
8568         * Temporarily drop rq->lock such that we can wake-up the stop task.
8569         * Both preemption and IRQs are still disabled.
8570         */
8571        raw_spin_rq_unlock(rq);
8572        stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8573                            this_cpu_ptr(&push_work));
8574        /*
8575         * At this point need_resched() is true and we'll take the loop in
8576         * schedule(). The next pick is obviously going to be the stop task
8577         * which kthread_is_per_cpu() and will push this task away.
8578         */
8579        raw_spin_rq_lock(rq);
8580}
8581
8582static void balance_push_set(int cpu, bool on)
8583{
8584        struct rq *rq = cpu_rq(cpu);
8585        struct rq_flags rf;
8586
8587        rq_lock_irqsave(rq, &rf);
8588        if (on) {
8589                WARN_ON_ONCE(rq->balance_callback);
8590                rq->balance_callback = &balance_push_callback;
8591        } else if (rq->balance_callback == &balance_push_callback) {
8592                rq->balance_callback = NULL;
8593        }
8594        rq_unlock_irqrestore(rq, &rf);
8595}
8596
8597/*
8598 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8599 * inactive. All tasks which are not per CPU kernel threads are either
8600 * pushed off this CPU now via balance_push() or placed on a different CPU
8601 * during wakeup. Wait until the CPU is quiescent.
8602 */
8603static void balance_hotplug_wait(void)
8604{
8605        struct rq *rq = this_rq();
8606
8607        rcuwait_wait_event(&rq->hotplug_wait,
8608                           rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8609                           TASK_UNINTERRUPTIBLE);
8610}
8611
8612#else
8613
8614static inline void balance_push(struct rq *rq)
8615{
8616}
8617
8618static inline void balance_push_set(int cpu, bool on)
8619{
8620}
8621
8622static inline void balance_hotplug_wait(void)
8623{
8624}
8625
8626#endif /* CONFIG_HOTPLUG_CPU */
8627
8628void set_rq_online(struct rq *rq)
8629{
8630        if (!rq->online) {
8631                const struct sched_class *class;
8632
8633                cpumask_set_cpu(rq->cpu, rq->rd->online);
8634                rq->online = 1;
8635
8636                for_each_class(class) {
8637                        if (class->rq_online)
8638                                class->rq_online(rq);
8639                }
8640        }
8641}
8642
8643void set_rq_offline(struct rq *rq)
8644{
8645        if (rq->online) {
8646                const struct sched_class *class;
8647
8648                for_each_class(class) {
8649                        if (class->rq_offline)
8650                                class->rq_offline(rq);
8651                }
8652
8653                cpumask_clear_cpu(rq->cpu, rq->rd->online);
8654                rq->online = 0;
8655        }
8656}
8657
8658/*
8659 * used to mark begin/end of suspend/resume:
8660 */
8661static int num_cpus_frozen;
8662
8663/*
8664 * Update cpusets according to cpu_active mask.  If cpusets are
8665 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8666 * around partition_sched_domains().
8667 *
8668 * If we come here as part of a suspend/resume, don't touch cpusets because we
8669 * want to restore it back to its original state upon resume anyway.
8670 */
8671static void cpuset_cpu_active(void)
8672{
8673        if (cpuhp_tasks_frozen) {
8674                /*
8675                 * num_cpus_frozen tracks how many CPUs are involved in suspend
8676                 * resume sequence. As long as this is not the last online
8677                 * operation in the resume sequence, just build a single sched
8678                 * domain, ignoring cpusets.
8679                 */
8680                partition_sched_domains(1, NULL, NULL);
8681                if (--num_cpus_frozen)
8682                        return;
8683                /*
8684                 * This is the last CPU online operation. So fall through and
8685                 * restore the original sched domains by considering the
8686                 * cpuset configurations.
8687                 */
8688                cpuset_force_rebuild();
8689        }
8690        cpuset_update_active_cpus();
8691}
8692
8693static int cpuset_cpu_inactive(unsigned int cpu)
8694{
8695        if (!cpuhp_tasks_frozen) {
8696                if (dl_cpu_busy(cpu))
8697                        return -EBUSY;
8698                cpuset_update_active_cpus();
8699        } else {
8700                num_cpus_frozen++;
8701                partition_sched_domains(1, NULL, NULL);
8702        }
8703        return 0;
8704}
8705
8706int sched_cpu_activate(unsigned int cpu)
8707{
8708        struct rq *rq = cpu_rq(cpu);
8709        struct rq_flags rf;
8710
8711        /*
8712         * Clear the balance_push callback and prepare to schedule
8713         * regular tasks.
8714         */
8715        balance_push_set(cpu, false);
8716
8717#ifdef CONFIG_SCHED_SMT
8718        /*
8719         * When going up, increment the number of cores with SMT present.
8720         */
8721        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8722                static_branch_inc_cpuslocked(&sched_smt_present);
8723#endif
8724        set_cpu_active(cpu, true);
8725
8726        if (sched_smp_initialized) {
8727                sched_domains_numa_masks_set(cpu);
8728                cpuset_cpu_active();
8729        }
8730
8731        /*
8732         * Put the rq online, if not already. This happens:
8733         *
8734         * 1) In the early boot process, because we build the real domains
8735         *    after all CPUs have been brought up.
8736         *
8737         * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8738         *    domains.
8739         */
8740        rq_lock_irqsave(rq, &rf);
8741        if (rq->rd) {
8742                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8743                set_rq_online(rq);
8744        }
8745        rq_unlock_irqrestore(rq, &rf);
8746
8747        return 0;
8748}
8749
8750int sched_cpu_deactivate(unsigned int cpu)
8751{
8752        struct rq *rq = cpu_rq(cpu);
8753        struct rq_flags rf;
8754        int ret;
8755
8756        /*
8757         * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8758         * load balancing when not active
8759         */
8760        nohz_balance_exit_idle(rq);
8761
8762        set_cpu_active(cpu, false);
8763
8764        /*
8765         * From this point forward, this CPU will refuse to run any task that
8766         * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8767         * push those tasks away until this gets cleared, see
8768         * sched_cpu_dying().
8769         */
8770        balance_push_set(cpu, true);
8771
8772        /*
8773         * We've cleared cpu_active_mask / set balance_push, wait for all
8774         * preempt-disabled and RCU users of this state to go away such that
8775         * all new such users will observe it.
8776         *
8777         * Specifically, we rely on ttwu to no longer target this CPU, see
8778         * ttwu_queue_cond() and is_cpu_allowed().
8779         *
8780         * Do sync before park smpboot threads to take care the rcu boost case.
8781         */
8782        synchronize_rcu();
8783
8784        rq_lock_irqsave(rq, &rf);
8785        if (rq->rd) {
8786                update_rq_clock(rq);
8787                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8788                set_rq_offline(rq);
8789        }
8790        rq_unlock_irqrestore(rq, &rf);
8791
8792#ifdef CONFIG_SCHED_SMT
8793        /*
8794         * When going down, decrement the number of cores with SMT present.
8795         */
8796        if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8797                static_branch_dec_cpuslocked(&sched_smt_present);
8798
8799        sched_core_cpu_deactivate(cpu);
8800#endif
8801
8802        if (!sched_smp_initialized)
8803                return 0;
8804
8805        ret = cpuset_cpu_inactive(cpu);
8806        if (ret) {
8807                balance_push_set(cpu, false);
8808                set_cpu_active(cpu, true);
8809                return ret;
8810        }
8811        sched_domains_numa_masks_clear(cpu);
8812        return 0;
8813}
8814
8815static void sched_rq_cpu_starting(unsigned int cpu)
8816{
8817        struct rq *rq = cpu_rq(cpu);
8818
8819        rq->calc_load_update = calc_load_update;
8820        update_max_interval();
8821}
8822
8823int sched_cpu_starting(unsigned int cpu)
8824{
8825        sched_core_cpu_starting(cpu);
8826        sched_rq_cpu_starting(cpu);
8827        sched_tick_start(cpu);
8828        return 0;
8829}
8830
8831#ifdef CONFIG_HOTPLUG_CPU
8832
8833/*
8834 * Invoked immediately before the stopper thread is invoked to bring the
8835 * CPU down completely. At this point all per CPU kthreads except the
8836 * hotplug thread (current) and the stopper thread (inactive) have been
8837 * either parked or have been unbound from the outgoing CPU. Ensure that
8838 * any of those which might be on the way out are gone.
8839 *
8840 * If after this point a bound task is being woken on this CPU then the
8841 * responsible hotplug callback has failed to do it's job.
8842 * sched_cpu_dying() will catch it with the appropriate fireworks.
8843 */
8844int sched_cpu_wait_empty(unsigned int cpu)
8845{
8846        balance_hotplug_wait();
8847        return 0;
8848}
8849
8850/*
8851 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8852 * might have. Called from the CPU stopper task after ensuring that the
8853 * stopper is the last running task on the CPU, so nr_active count is
8854 * stable. We need to take the teardown thread which is calling this into
8855 * account, so we hand in adjust = 1 to the load calculation.
8856 *
8857 * Also see the comment "Global load-average calculations".
8858 */
8859static void calc_load_migrate(struct rq *rq)
8860{
8861        long delta = calc_load_fold_active(rq, 1);
8862
8863        if (delta)
8864                atomic_long_add(delta, &calc_load_tasks);
8865}
8866
8867static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8868{
8869        struct task_struct *g, *p;
8870        int cpu = cpu_of(rq);
8871
8872        lockdep_assert_rq_held(rq);
8873
8874        printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8875        for_each_process_thread(g, p) {
8876                if (task_cpu(p) != cpu)
8877                        continue;
8878
8879                if (!task_on_rq_queued(p))
8880                        continue;
8881
8882                printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8883        }
8884}
8885
8886int sched_cpu_dying(unsigned int cpu)
8887{
8888        struct rq *rq = cpu_rq(cpu);
8889        struct rq_flags rf;
8890
8891        /* Handle pending wakeups and then migrate everything off */
8892        sched_tick_stop(cpu);
8893
8894        rq_lock_irqsave(rq, &rf);
8895        if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8896                WARN(true, "Dying CPU not properly vacated!");
8897                dump_rq_tasks(rq, KERN_WARNING);
8898        }
8899        rq_unlock_irqrestore(rq, &rf);
8900
8901        calc_load_migrate(rq);
8902        update_max_interval();
8903        hrtick_clear(rq);
8904        sched_core_cpu_dying(cpu);
8905        return 0;
8906}
8907#endif
8908
8909void __init sched_init_smp(void)
8910{
8911        sched_init_numa();
8912
8913        /*
8914         * There's no userspace yet to cause hotplug operations; hence all the
8915         * CPU masks are stable and all blatant races in the below code cannot
8916         * happen.
8917         */
8918        mutex_lock(&sched_domains_mutex);
8919        sched_init_domains(cpu_active_mask);
8920        mutex_unlock(&sched_domains_mutex);
8921
8922        /* Move init over to a non-isolated CPU */
8923        if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8924                BUG();
8925        current->flags &= ~PF_NO_SETAFFINITY;
8926        sched_init_granularity();
8927
8928        init_sched_rt_class();
8929        init_sched_dl_class();
8930
8931        sched_smp_initialized = true;
8932}
8933
8934static int __init migration_init(void)
8935{
8936        sched_cpu_starting(smp_processor_id());
8937        return 0;
8938}
8939early_initcall(migration_init);
8940
8941#else
8942void __init sched_init_smp(void)
8943{
8944        sched_init_granularity();
8945}
8946#endif /* CONFIG_SMP */
8947
8948int in_sched_functions(unsigned long addr)
8949{
8950        return in_lock_functions(addr) ||
8951                (addr >= (unsigned long)__sched_text_start
8952                && addr < (unsigned long)__sched_text_end);
8953}
8954
8955#ifdef CONFIG_CGROUP_SCHED
8956/*
8957 * Default task group.
8958 * Every task in system belongs to this group at bootup.
8959 */
8960struct task_group root_task_group;
8961LIST_HEAD(task_groups);
8962
8963/* Cacheline aligned slab cache for task_group */
8964static struct kmem_cache *task_group_cache __read_mostly;
8965#endif
8966
8967DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8968DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8969
8970void __init sched_init(void)
8971{
8972        unsigned long ptr = 0;
8973        int i;
8974
8975        /* Make sure the linker didn't screw up */
8976        BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8977               &fair_sched_class + 1 != &rt_sched_class ||
8978               &rt_sched_class + 1   != &dl_sched_class);
8979#ifdef CONFIG_SMP
8980        BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8981#endif
8982
8983        wait_bit_init();
8984
8985#ifdef CONFIG_FAIR_GROUP_SCHED
8986        ptr += 2 * nr_cpu_ids * sizeof(void **);
8987#endif
8988#ifdef CONFIG_RT_GROUP_SCHED
8989        ptr += 2 * nr_cpu_ids * sizeof(void **);
8990#endif
8991        if (ptr) {
8992                ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8993
8994#ifdef CONFIG_FAIR_GROUP_SCHED
8995                root_task_group.se = (struct sched_entity **)ptr;
8996                ptr += nr_cpu_ids * sizeof(void **);
8997
8998                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8999                ptr += nr_cpu_ids * sizeof(void **);
9000
9001                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9002                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9003#endif /* CONFIG_FAIR_GROUP_SCHED */
9004#ifdef CONFIG_RT_GROUP_SCHED
9005                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9006                ptr += nr_cpu_ids * sizeof(void **);
9007
9008                root_task_group.rt_rq = (struct rt_rq **)ptr;
9009                ptr += nr_cpu_ids * sizeof(void **);
9010
9011#endif /* CONFIG_RT_GROUP_SCHED */
9012        }
9013#ifdef CONFIG_CPUMASK_OFFSTACK
9014        for_each_possible_cpu(i) {
9015                per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9016                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9017                per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9018                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9019        }
9020#endif /* CONFIG_CPUMASK_OFFSTACK */
9021
9022        init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9023        init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9024
9025#ifdef CONFIG_SMP
9026        init_defrootdomain();
9027#endif
9028
9029#ifdef CONFIG_RT_GROUP_SCHED
9030        init_rt_bandwidth(&root_task_group.rt_bandwidth,
9031                        global_rt_period(), global_rt_runtime());
9032#endif /* CONFIG_RT_GROUP_SCHED */
9033
9034#ifdef CONFIG_CGROUP_SCHED
9035        task_group_cache = KMEM_CACHE(task_group, 0);
9036
9037        list_add(&root_task_group.list, &task_groups);
9038        INIT_LIST_HEAD(&root_task_group.children);
9039        INIT_LIST_HEAD(&root_task_group.siblings);
9040        autogroup_init(&init_task);
9041#endif /* CONFIG_CGROUP_SCHED */
9042
9043        for_each_possible_cpu(i) {
9044                struct rq *rq;
9045
9046                rq = cpu_rq(i);
9047                raw_spin_lock_init(&rq->__lock);
9048                rq->nr_running = 0;
9049                rq->calc_load_active = 0;
9050                rq->calc_load_update = jiffies + LOAD_FREQ;
9051                init_cfs_rq(&rq->cfs);
9052                init_rt_rq(&rq->rt);
9053                init_dl_rq(&rq->dl);
9054#ifdef CONFIG_FAIR_GROUP_SCHED
9055                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9056                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9057                /*
9058                 * How much CPU bandwidth does root_task_group get?
9059                 *
9060                 * In case of task-groups formed thr' the cgroup filesystem, it
9061                 * gets 100% of the CPU resources in the system. This overall
9062                 * system CPU resource is divided among the tasks of
9063                 * root_task_group and its child task-groups in a fair manner,
9064                 * based on each entity's (task or task-group's) weight
9065                 * (se->load.weight).
9066                 *
9067                 * In other words, if root_task_group has 10 tasks of weight
9068                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9069                 * then A0's share of the CPU resource is:
9070                 *
9071                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9072                 *
9073                 * We achieve this by letting root_task_group's tasks sit
9074                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9075                 */
9076                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9077#endif /* CONFIG_FAIR_GROUP_SCHED */
9078
9079                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9080#ifdef CONFIG_RT_GROUP_SCHED
9081                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9082#endif
9083#ifdef CONFIG_SMP
9084                rq->sd = NULL;
9085                rq->rd = NULL;
9086                rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9087                rq->balance_callback = &balance_push_callback;
9088                rq->active_balance = 0;
9089                rq->next_balance = jiffies;
9090                rq->push_cpu = 0;
9091                rq->cpu = i;
9092                rq->online = 0;
9093                rq->idle_stamp = 0;
9094                rq->avg_idle = 2*sysctl_sched_migration_cost;
9095                rq->wake_stamp = jiffies;
9096                rq->wake_avg_idle = rq->avg_idle;
9097                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9098
9099                INIT_LIST_HEAD(&rq->cfs_tasks);
9100
9101                rq_attach_root(rq, &def_root_domain);
9102#ifdef CONFIG_NO_HZ_COMMON
9103                rq->last_blocked_load_update_tick = jiffies;
9104                atomic_set(&rq->nohz_flags, 0);
9105
9106                INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9107#endif
9108#ifdef CONFIG_HOTPLUG_CPU
9109                rcuwait_init(&rq->hotplug_wait);
9110#endif
9111#endif /* CONFIG_SMP */
9112                hrtick_rq_init(rq);
9113                atomic_set(&rq->nr_iowait, 0);
9114
9115#ifdef CONFIG_SCHED_CORE
9116                rq->core = rq;
9117                rq->core_pick = NULL;
9118                rq->core_enabled = 0;
9119                rq->core_tree = RB_ROOT;
9120                rq->core_forceidle = false;
9121
9122                rq->core_cookie = 0UL;
9123#endif
9124        }
9125
9126        set_load_weight(&init_task, false);
9127
9128        /*
9129         * The boot idle thread does lazy MMU switching as well:
9130         */
9131        mmgrab(&init_mm);
9132        enter_lazy_tlb(&init_mm, current);
9133
9134        /*
9135         * Make us the idle thread. Technically, schedule() should not be
9136         * called from this thread, however somewhere below it might be,
9137         * but because we are the idle thread, we just pick up running again
9138         * when this runqueue becomes "idle".
9139         */
9140        init_idle(current, smp_processor_id());
9141
9142        calc_load_update = jiffies + LOAD_FREQ;
9143
9144#ifdef CONFIG_SMP
9145        idle_thread_set_boot_cpu();
9146        balance_push_set(smp_processor_id(), false);
9147#endif
9148        init_sched_fair_class();
9149
9150        psi_init();
9151
9152        init_uclamp();
9153
9154        scheduler_running = 1;
9155}
9156
9157#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9158static inline int preempt_count_equals(int preempt_offset)
9159{
9160        int nested = preempt_count() + rcu_preempt_depth();
9161
9162        return (nested == preempt_offset);
9163}
9164
9165void __might_sleep(const char *file, int line, int preempt_offset)
9166{
9167        unsigned int state = get_current_state();
9168        /*
9169         * Blocking primitives will set (and therefore destroy) current->state,
9170         * since we will exit with TASK_RUNNING make sure we enter with it,
9171         * otherwise we will destroy state.
9172         */
9173        WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9174                        "do not call blocking ops when !TASK_RUNNING; "
9175                        "state=%x set at [<%p>] %pS\n", state,
9176                        (void *)current->task_state_change,
9177                        (void *)current->task_state_change);
9178
9179        ___might_sleep(file, line, preempt_offset);
9180}
9181EXPORT_SYMBOL(__might_sleep);
9182
9183void ___might_sleep(const char *file, int line, int preempt_offset)
9184{
9185        /* Ratelimiting timestamp: */
9186        static unsigned long prev_jiffy;
9187
9188        unsigned long preempt_disable_ip;
9189
9190        /* WARN_ON_ONCE() by default, no rate limit required: */
9191        rcu_sleep_check();
9192
9193        if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9194             !is_idle_task(current) && !current->non_block_count) ||
9195            system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9196            oops_in_progress)
9197                return;
9198
9199        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9200                return;
9201        prev_jiffy = jiffies;
9202
9203        /* Save this before calling printk(), since that will clobber it: */
9204        preempt_disable_ip = get_preempt_disable_ip(current);
9205
9206        printk(KERN_ERR
9207                "BUG: sleeping function called from invalid context at %s:%d\n",
9208                        file, line);
9209        printk(KERN_ERR
9210                "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9211                        in_atomic(), irqs_disabled(), current->non_block_count,
9212                        current->pid, current->comm);
9213
9214        if (task_stack_end_corrupted(current))
9215                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9216
9217        debug_show_held_locks(current);
9218        if (irqs_disabled())
9219                print_irqtrace_events(current);
9220        if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9221            && !preempt_count_equals(preempt_offset)) {
9222                pr_err("Preemption disabled at:");
9223                print_ip_sym(KERN_ERR, preempt_disable_ip);
9224        }
9225        dump_stack();
9226        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9227}
9228EXPORT_SYMBOL(___might_sleep);
9229
9230void __cant_sleep(const char *file, int line, int preempt_offset)
9231{
9232        static unsigned long prev_jiffy;
9233
9234        if (irqs_disabled())
9235                return;
9236
9237        if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9238                return;
9239
9240        if (preempt_count() > preempt_offset)
9241                return;
9242
9243        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9244                return;
9245        prev_jiffy = jiffies;
9246
9247        printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9248        printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9249                        in_atomic(), irqs_disabled(),
9250                        current->pid, current->comm);
9251
9252        debug_show_held_locks(current);
9253        dump_stack();
9254        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9255}
9256EXPORT_SYMBOL_GPL(__cant_sleep);
9257
9258#ifdef CONFIG_SMP
9259void __cant_migrate(const char *file, int line)
9260{
9261        static unsigned long prev_jiffy;
9262
9263        if (irqs_disabled())
9264                return;
9265
9266        if (is_migration_disabled(current))
9267                return;
9268
9269        if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9270                return;
9271
9272        if (preempt_count() > 0)
9273                return;
9274
9275        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9276                return;
9277        prev_jiffy = jiffies;
9278
9279        pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9280        pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9281               in_atomic(), irqs_disabled(), is_migration_disabled(current),
9282               current->pid, current->comm);
9283
9284        debug_show_held_locks(current);
9285        dump_stack();
9286        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9287}
9288EXPORT_SYMBOL_GPL(__cant_migrate);
9289#endif
9290#endif
9291
9292#ifdef CONFIG_MAGIC_SYSRQ
9293void normalize_rt_tasks(void)
9294{
9295        struct task_struct *g, *p;
9296        struct sched_attr attr = {
9297                .sched_policy = SCHED_NORMAL,
9298        };
9299
9300        read_lock(&tasklist_lock);
9301        for_each_process_thread(g, p) {
9302                /*
9303                 * Only normalize user tasks:
9304                 */
9305                if (p->flags & PF_KTHREAD)
9306                        continue;
9307
9308                p->se.exec_start = 0;
9309                schedstat_set(p->se.statistics.wait_start,  0);
9310                schedstat_set(p->se.statistics.sleep_start, 0);
9311                schedstat_set(p->se.statistics.block_start, 0);
9312
9313                if (!dl_task(p) && !rt_task(p)) {
9314                        /*
9315                         * Renice negative nice level userspace
9316                         * tasks back to 0:
9317                         */
9318                        if (task_nice(p) < 0)
9319                                set_user_nice(p, 0);
9320                        continue;
9321                }
9322
9323                __sched_setscheduler(p, &attr, false, false);
9324        }
9325        read_unlock(&tasklist_lock);
9326}
9327
9328#endif /* CONFIG_MAGIC_SYSRQ */
9329
9330#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9331/*
9332 * These functions are only useful for the IA64 MCA handling, or kdb.
9333 *
9334 * They can only be called when the whole system has been
9335 * stopped - every CPU needs to be quiescent, and no scheduling
9336 * activity can take place. Using them for anything else would
9337 * be a serious bug, and as a result, they aren't even visible
9338 * under any other configuration.
9339 */
9340
9341/**
9342 * curr_task - return the current task for a given CPU.
9343 * @cpu: the processor in question.
9344 *
9345 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9346 *
9347 * Return: The current task for @cpu.
9348 */
9349struct task_struct *curr_task(int cpu)
9350{
9351        return cpu_curr(cpu);
9352}
9353
9354#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9355
9356#ifdef CONFIG_IA64
9357/**
9358 * ia64_set_curr_task - set the current task for a given CPU.
9359 * @cpu: the processor in question.
9360 * @p: the task pointer to set.
9361 *
9362 * Description: This function must only be used when non-maskable interrupts
9363 * are serviced on a separate stack. It allows the architecture to switch the
9364 * notion of the current task on a CPU in a non-blocking manner. This function
9365 * must be called with all CPU's synchronized, and interrupts disabled, the
9366 * and caller must save the original value of the current task (see
9367 * curr_task() above) and restore that value before reenabling interrupts and
9368 * re-starting the system.
9369 *
9370 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9371 */
9372void ia64_set_curr_task(int cpu, struct task_struct *p)
9373{
9374        cpu_curr(cpu) = p;
9375}
9376
9377#endif
9378
9379#ifdef CONFIG_CGROUP_SCHED
9380/* task_group_lock serializes the addition/removal of task groups */
9381static DEFINE_SPINLOCK(task_group_lock);
9382
9383static inline void alloc_uclamp_sched_group(struct task_group *tg,
9384                                            struct task_group *parent)
9385{
9386#ifdef CONFIG_UCLAMP_TASK_GROUP
9387        enum uclamp_id clamp_id;
9388
9389        for_each_clamp_id(clamp_id) {
9390                uclamp_se_set(&tg->uclamp_req[clamp_id],
9391                              uclamp_none(clamp_id), false);
9392                tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9393        }
9394#endif
9395}
9396
9397static void sched_free_group(struct task_group *tg)
9398{
9399        free_fair_sched_group(tg);
9400        free_rt_sched_group(tg);
9401        autogroup_free(tg);
9402        kmem_cache_free(task_group_cache, tg);
9403}
9404
9405/* allocate runqueue etc for a new task group */
9406struct task_group *sched_create_group(struct task_group *parent)
9407{
9408        struct task_group *tg;
9409
9410        tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9411        if (!tg)
9412                return ERR_PTR(-ENOMEM);
9413
9414        if (!alloc_fair_sched_group(tg, parent))
9415                goto err;
9416
9417        if (!alloc_rt_sched_group(tg, parent))
9418                goto err;
9419
9420        alloc_uclamp_sched_group(tg, parent);
9421
9422        return tg;
9423
9424err:
9425        sched_free_group(tg);
9426        return ERR_PTR(-ENOMEM);
9427}
9428
9429void sched_online_group(struct task_group *tg, struct task_group *parent)
9430{
9431        unsigned long flags;
9432
9433        spin_lock_irqsave(&task_group_lock, flags);
9434        list_add_rcu(&tg->list, &task_groups);
9435
9436        /* Root should already exist: */
9437        WARN_ON(!parent);
9438
9439        tg->parent = parent;
9440        INIT_LIST_HEAD(&tg->children);
9441        list_add_rcu(&tg->siblings, &parent->children);
9442        spin_unlock_irqrestore(&task_group_lock, flags);
9443
9444        online_fair_sched_group(tg);
9445}
9446
9447/* rcu callback to free various structures associated with a task group */
9448static void sched_free_group_rcu(struct rcu_head *rhp)
9449{
9450        /* Now it should be safe to free those cfs_rqs: */
9451        sched_free_group(container_of(rhp, struct task_group, rcu));
9452}
9453
9454void sched_destroy_group(struct task_group *tg)
9455{
9456        /* Wait for possible concurrent references to cfs_rqs complete: */
9457        call_rcu(&tg->rcu, sched_free_group_rcu);
9458}
9459
9460void sched_offline_group(struct task_group *tg)
9461{
9462        unsigned long flags;
9463
9464        /* End participation in shares distribution: */
9465        unregister_fair_sched_group(tg);
9466
9467        spin_lock_irqsave(&task_group_lock, flags);
9468        list_del_rcu(&tg->list);
9469        list_del_rcu(&tg->siblings);
9470        spin_unlock_irqrestore(&task_group_lock, flags);
9471}
9472
9473static void sched_change_group(struct task_struct *tsk, int type)
9474{
9475        struct task_group *tg;
9476
9477        /*
9478         * All callers are synchronized by task_rq_lock(); we do not use RCU
9479         * which is pointless here. Thus, we pass "true" to task_css_check()
9480         * to prevent lockdep warnings.
9481         */
9482        tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9483                          struct task_group, css);
9484        tg = autogroup_task_group(tsk, tg);
9485        tsk->sched_task_group = tg;
9486
9487#ifdef CONFIG_FAIR_GROUP_SCHED
9488        if (tsk->sched_class->task_change_group)
9489                tsk->sched_class->task_change_group(tsk, type);
9490        else
9491#endif
9492                set_task_rq(tsk, task_cpu(tsk));
9493}
9494
9495/*
9496 * Change task's runqueue when it moves between groups.
9497 *
9498 * The caller of this function should have put the task in its new group by
9499 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9500 * its new group.
9501 */
9502void sched_move_task(struct task_struct *tsk)
9503{
9504        int queued, running, queue_flags =
9505                DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9506        struct rq_flags rf;
9507        struct rq *rq;
9508
9509        rq = task_rq_lock(tsk, &rf);
9510        update_rq_clock(rq);
9511
9512        running = task_current(rq, tsk);
9513        queued = task_on_rq_queued(tsk);
9514
9515        if (queued)
9516                dequeue_task(rq, tsk, queue_flags);
9517        if (running)
9518                put_prev_task(rq, tsk);
9519
9520        sched_change_group(tsk, TASK_MOVE_GROUP);
9521
9522        if (queued)
9523                enqueue_task(rq, tsk, queue_flags);
9524        if (running) {
9525                set_next_task(rq, tsk);
9526                /*
9527                 * After changing group, the running task may have joined a
9528                 * throttled one but it's still the running task. Trigger a
9529                 * resched to make sure that task can still run.
9530                 */
9531                resched_curr(rq);
9532        }
9533
9534        task_rq_unlock(rq, tsk, &rf);
9535}
9536
9537static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9538{
9539        return css ? container_of(css, struct task_group, css) : NULL;
9540}
9541
9542static struct cgroup_subsys_state *
9543cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9544{
9545        struct task_group *parent = css_tg(parent_css);
9546        struct task_group *tg;
9547
9548        if (!parent) {
9549                /* This is early initialization for the top cgroup */
9550                return &root_task_group.css;
9551        }
9552
9553        tg = sched_create_group(parent);
9554        if (IS_ERR(tg))
9555                return ERR_PTR(-ENOMEM);
9556
9557        return &tg->css;
9558}
9559
9560/* Expose task group only after completing cgroup initialization */
9561static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9562{
9563        struct task_group *tg = css_tg(css);
9564        struct task_group *parent = css_tg(css->parent);
9565
9566        if (parent)
9567                sched_online_group(tg, parent);
9568
9569#ifdef CONFIG_UCLAMP_TASK_GROUP
9570        /* Propagate the effective uclamp value for the new group */
9571        mutex_lock(&uclamp_mutex);
9572        rcu_read_lock();
9573        cpu_util_update_eff(css);
9574        rcu_read_unlock();
9575        mutex_unlock(&uclamp_mutex);
9576#endif
9577
9578        return 0;
9579}
9580
9581static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9582{
9583        struct task_group *tg = css_tg(css);
9584
9585        sched_offline_group(tg);
9586}
9587
9588static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9589{
9590        struct task_group *tg = css_tg(css);
9591
9592        /*
9593         * Relies on the RCU grace period between css_released() and this.
9594         */
9595        sched_free_group(tg);
9596}
9597
9598/*
9599 * This is called before wake_up_new_task(), therefore we really only
9600 * have to set its group bits, all the other stuff does not apply.
9601 */
9602static void cpu_cgroup_fork(struct task_struct *task)
9603{
9604        struct rq_flags rf;
9605        struct rq *rq;
9606
9607        rq = task_rq_lock(task, &rf);
9608
9609        update_rq_clock(rq);
9610        sched_change_group(task, TASK_SET_GROUP);
9611
9612        task_rq_unlock(rq, task, &rf);
9613}
9614
9615static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9616{
9617        struct task_struct *task;
9618        struct cgroup_subsys_state *css;
9619        int ret = 0;
9620
9621        cgroup_taskset_for_each(task, css, tset) {
9622#ifdef CONFIG_RT_GROUP_SCHED
9623                if (!sched_rt_can_attach(css_tg(css), task))
9624                        return -EINVAL;
9625#endif
9626                /*
9627                 * Serialize against wake_up_new_task() such that if it's
9628                 * running, we're sure to observe its full state.
9629                 */
9630                raw_spin_lock_irq(&task->pi_lock);
9631                /*
9632                 * Avoid calling sched_move_task() before wake_up_new_task()
9633                 * has happened. This would lead to problems with PELT, due to
9634                 * move wanting to detach+attach while we're not attached yet.
9635                 */
9636                if (READ_ONCE(task->__state) == TASK_NEW)
9637                        ret = -EINVAL;
9638                raw_spin_unlock_irq(&task->pi_lock);
9639
9640                if (ret)
9641                        break;
9642        }
9643        return ret;
9644}
9645
9646static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9647{
9648        struct task_struct *task;
9649        struct cgroup_subsys_state *css;
9650
9651        cgroup_taskset_for_each(task, css, tset)
9652                sched_move_task(task);
9653}
9654
9655#ifdef CONFIG_UCLAMP_TASK_GROUP
9656static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9657{
9658        struct cgroup_subsys_state *top_css = css;
9659        struct uclamp_se *uc_parent = NULL;
9660        struct uclamp_se *uc_se = NULL;
9661        unsigned int eff[UCLAMP_CNT];
9662        enum uclamp_id clamp_id;
9663        unsigned int clamps;
9664
9665        lockdep_assert_held(&uclamp_mutex);
9666        SCHED_WARN_ON(!rcu_read_lock_held());
9667
9668        css_for_each_descendant_pre(css, top_css) {
9669                uc_parent = css_tg(css)->parent
9670                        ? css_tg(css)->parent->uclamp : NULL;
9671
9672                for_each_clamp_id(clamp_id) {
9673                        /* Assume effective clamps matches requested clamps */
9674                        eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9675                        /* Cap effective clamps with parent's effective clamps */
9676                        if (uc_parent &&
9677                            eff[clamp_id] > uc_parent[clamp_id].value) {
9678                                eff[clamp_id] = uc_parent[clamp_id].value;
9679                        }
9680                }
9681                /* Ensure protection is always capped by limit */
9682                eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9683
9684                /* Propagate most restrictive effective clamps */
9685                clamps = 0x0;
9686                uc_se = css_tg(css)->uclamp;
9687                for_each_clamp_id(clamp_id) {
9688                        if (eff[clamp_id] == uc_se[clamp_id].value)
9689                                continue;
9690                        uc_se[clamp_id].value = eff[clamp_id];
9691                        uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9692                        clamps |= (0x1 << clamp_id);
9693                }
9694                if (!clamps) {
9695                        css = css_rightmost_descendant(css);
9696                        continue;
9697                }
9698
9699                /* Immediately update descendants RUNNABLE tasks */
9700                uclamp_update_active_tasks(css);
9701        }
9702}
9703
9704/*
9705 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9706 * C expression. Since there is no way to convert a macro argument (N) into a
9707 * character constant, use two levels of macros.
9708 */
9709#define _POW10(exp) ((unsigned int)1e##exp)
9710#define POW10(exp) _POW10(exp)
9711
9712struct uclamp_request {
9713#define UCLAMP_PERCENT_SHIFT    2
9714#define UCLAMP_PERCENT_SCALE    (100 * POW10(UCLAMP_PERCENT_SHIFT))
9715        s64 percent;
9716        u64 util;
9717        int ret;
9718};
9719
9720static inline struct uclamp_request
9721capacity_from_percent(char *buf)
9722{
9723        struct uclamp_request req = {
9724                .percent = UCLAMP_PERCENT_SCALE,
9725                .util = SCHED_CAPACITY_SCALE,
9726                .ret = 0,
9727        };
9728
9729        buf = strim(buf);
9730        if (strcmp(buf, "max")) {
9731                req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9732                                             &req.percent);
9733                if (req.ret)
9734                        return req;
9735                if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9736                        req.ret = -ERANGE;
9737                        return req;
9738                }
9739
9740                req.util = req.percent << SCHED_CAPACITY_SHIFT;
9741                req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9742        }
9743
9744        return req;
9745}
9746
9747static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9748                                size_t nbytes, loff_t off,
9749                                enum uclamp_id clamp_id)
9750{
9751        struct uclamp_request req;
9752        struct task_group *tg;
9753
9754        req = capacity_from_percent(buf);
9755        if (req.ret)
9756                return req.ret;
9757
9758        static_branch_enable(&sched_uclamp_used);
9759
9760        mutex_lock(&uclamp_mutex);
9761        rcu_read_lock();
9762
9763        tg = css_tg(of_css(of));
9764        if (tg->uclamp_req[clamp_id].value != req.util)
9765                uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9766
9767        /*
9768         * Because of not recoverable conversion rounding we keep track of the
9769         * exact requested value
9770         */
9771        tg->uclamp_pct[clamp_id] = req.percent;
9772
9773        /* Update effective clamps to track the most restrictive value */
9774        cpu_util_update_eff(of_css(of));
9775
9776        rcu_read_unlock();
9777        mutex_unlock(&uclamp_mutex);
9778
9779        return nbytes;
9780}
9781
9782static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9783                                    char *buf, size_t nbytes,
9784                                    loff_t off)
9785{
9786        return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9787}
9788
9789static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9790                                    char *buf, size_t nbytes,
9791                                    loff_t off)
9792{
9793        return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9794}
9795
9796static inline void cpu_uclamp_print(struct seq_file *sf,
9797                                    enum uclamp_id clamp_id)
9798{
9799        struct task_group *tg;
9800        u64 util_clamp;
9801        u64 percent;
9802        u32 rem;
9803
9804        rcu_read_lock();
9805        tg = css_tg(seq_css(sf));
9806        util_clamp = tg->uclamp_req[clamp_id].value;
9807        rcu_read_unlock();
9808
9809        if (util_clamp == SCHED_CAPACITY_SCALE) {
9810                seq_puts(sf, "max\n");
9811                return;
9812        }
9813
9814        percent = tg->uclamp_pct[clamp_id];
9815        percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9816        seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9817}
9818
9819static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9820{
9821        cpu_uclamp_print(sf, UCLAMP_MIN);
9822        return 0;
9823}
9824
9825static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9826{
9827        cpu_uclamp_print(sf, UCLAMP_MAX);
9828        return 0;
9829}
9830#endif /* CONFIG_UCLAMP_TASK_GROUP */
9831
9832#ifdef CONFIG_FAIR_GROUP_SCHED
9833static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9834                                struct cftype *cftype, u64 shareval)
9835{
9836        if (shareval > scale_load_down(ULONG_MAX))
9837                shareval = MAX_SHARES;
9838        return sched_group_set_shares(css_tg(css), scale_load(shareval));
9839}
9840
9841static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9842                               struct cftype *cft)
9843{
9844        struct task_group *tg = css_tg(css);
9845
9846        return (u64) scale_load_down(tg->shares);
9847}
9848
9849#ifdef CONFIG_CFS_BANDWIDTH
9850static DEFINE_MUTEX(cfs_constraints_mutex);
9851
9852const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9853static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9854/* More than 203 days if BW_SHIFT equals 20. */
9855static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9856
9857static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9858
9859static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9860                                u64 burst)
9861{
9862        int i, ret = 0, runtime_enabled, runtime_was_enabled;
9863        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9864
9865        if (tg == &root_task_group)
9866                return -EINVAL;
9867
9868        /*
9869         * Ensure we have at some amount of bandwidth every period.  This is
9870         * to prevent reaching a state of large arrears when throttled via
9871         * entity_tick() resulting in prolonged exit starvation.
9872         */
9873        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9874                return -EINVAL;
9875
9876        /*
9877         * Likewise, bound things on the other side by preventing insane quota
9878         * periods.  This also allows us to normalize in computing quota
9879         * feasibility.
9880         */
9881        if (period > max_cfs_quota_period)
9882                return -EINVAL;
9883
9884        /*
9885         * Bound quota to defend quota against overflow during bandwidth shift.
9886         */
9887        if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9888                return -EINVAL;
9889
9890        if (quota != RUNTIME_INF && (burst > quota ||
9891                                     burst + quota > max_cfs_runtime))
9892                return -EINVAL;
9893
9894        /*
9895         * Prevent race between setting of cfs_rq->runtime_enabled and
9896         * unthrottle_offline_cfs_rqs().
9897         */
9898        get_online_cpus();
9899        mutex_lock(&cfs_constraints_mutex);
9900        ret = __cfs_schedulable(tg, period, quota);
9901        if (ret)
9902                goto out_unlock;
9903
9904        runtime_enabled = quota != RUNTIME_INF;
9905        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9906        /*
9907         * If we need to toggle cfs_bandwidth_used, off->on must occur
9908         * before making related changes, and on->off must occur afterwards
9909         */
9910        if (runtime_enabled && !runtime_was_enabled)
9911                cfs_bandwidth_usage_inc();
9912        raw_spin_lock_irq(&cfs_b->lock);
9913        cfs_b->period = ns_to_ktime(period);
9914        cfs_b->quota = quota;
9915        cfs_b->burst = burst;
9916
9917        __refill_cfs_bandwidth_runtime(cfs_b);
9918
9919        /* Restart the period timer (if active) to handle new period expiry: */
9920        if (runtime_enabled)
9921                start_cfs_bandwidth(cfs_b);
9922
9923        raw_spin_unlock_irq(&cfs_b->lock);
9924
9925        for_each_online_cpu(i) {
9926                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9927                struct rq *rq = cfs_rq->rq;
9928                struct rq_flags rf;
9929
9930                rq_lock_irq(rq, &rf);
9931                cfs_rq->runtime_enabled = runtime_enabled;
9932                cfs_rq->runtime_remaining = 0;
9933
9934                if (cfs_rq->throttled)
9935                        unthrottle_cfs_rq(cfs_rq);
9936                rq_unlock_irq(rq, &rf);
9937        }
9938        if (runtime_was_enabled && !runtime_enabled)
9939                cfs_bandwidth_usage_dec();
9940out_unlock:
9941        mutex_unlock(&cfs_constraints_mutex);
9942        put_online_cpus();
9943
9944        return ret;
9945}
9946
9947static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9948{
9949        u64 quota, period, burst;
9950
9951        period = ktime_to_ns(tg->cfs_bandwidth.period);
9952        burst = tg->cfs_bandwidth.burst;
9953        if (cfs_quota_us < 0)
9954                quota = RUNTIME_INF;
9955        else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9956                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9957        else
9958                return -EINVAL;
9959
9960        return tg_set_cfs_bandwidth(tg, period, quota, burst);
9961}
9962
9963static long tg_get_cfs_quota(struct task_group *tg)
9964{
9965        u64 quota_us;
9966
9967        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9968                return -1;
9969
9970        quota_us = tg->cfs_bandwidth.quota;
9971        do_div(quota_us, NSEC_PER_USEC);
9972
9973        return quota_us;
9974}
9975
9976static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9977{
9978        u64 quota, period, burst;
9979
9980        if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9981                return -EINVAL;
9982
9983        period = (u64)cfs_period_us * NSEC_PER_USEC;
9984        quota = tg->cfs_bandwidth.quota;
9985        burst = tg->cfs_bandwidth.burst;
9986
9987        return tg_set_cfs_bandwidth(tg, period, quota, burst);
9988}
9989
9990static long tg_get_cfs_period(struct task_group *tg)
9991{
9992        u64 cfs_period_us;
9993
9994        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9995        do_div(cfs_period_us, NSEC_PER_USEC);
9996
9997        return cfs_period_us;
9998}
9999
10000static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10001{
10002        u64 quota, period, burst;
10003
10004        if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10005                return -EINVAL;
10006
10007        burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10008        period = ktime_to_ns(tg->cfs_bandwidth.period);
10009        quota = tg->cfs_bandwidth.quota;
10010
10011        return tg_set_cfs_bandwidth(tg, period, quota, burst);
10012}
10013
10014static long tg_get_cfs_burst(struct task_group *tg)
10015{
10016        u64 burst_us;
10017
10018        burst_us = tg->cfs_bandwidth.burst;
10019        do_div(burst_us, NSEC_PER_USEC);
10020
10021        return burst_us;
10022}
10023
10024static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10025                                  struct cftype *cft)
10026{
10027        return tg_get_cfs_quota(css_tg(css));
10028}
10029
10030static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10031                                   struct cftype *cftype, s64 cfs_quota_us)
10032{
10033        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10034}
10035
10036static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10037                                   struct cftype *cft)
10038{
10039        return tg_get_cfs_period(css_tg(css));
10040}
10041
10042static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10043                                    struct cftype *cftype, u64 cfs_period_us)
10044{
10045        return tg_set_cfs_period(css_tg(css), cfs_period_us);
10046}
10047
10048static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10049                                  struct cftype *cft)
10050{
10051        return tg_get_cfs_burst(css_tg(css));
10052}
10053
10054static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10055                                   struct cftype *cftype, u64 cfs_burst_us)
10056{
10057        return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10058}
10059
10060struct cfs_schedulable_data {
10061        struct task_group *tg;
10062        u64 period, quota;
10063};
10064
10065/*
10066 * normalize group quota/period to be quota/max_period
10067 * note: units are usecs
10068 */
10069static u64 normalize_cfs_quota(struct task_group *tg,
10070                               struct cfs_schedulable_data *d)
10071{
10072        u64 quota, period;
10073
10074        if (tg == d->tg) {
10075                period = d->period;
10076                quota = d->quota;
10077        } else {
10078                period = tg_get_cfs_period(tg);
10079                quota = tg_get_cfs_quota(tg);
10080        }
10081
10082        /* note: these should typically be equivalent */
10083        if (quota == RUNTIME_INF || quota == -1)
10084                return RUNTIME_INF;
10085
10086        return to_ratio(period, quota);
10087}
10088
10089static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10090{
10091        struct cfs_schedulable_data *d = data;
10092        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10093        s64 quota = 0, parent_quota = -1;
10094
10095        if (!tg->parent) {
10096                quota = RUNTIME_INF;
10097        } else {
10098                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10099
10100                quota = normalize_cfs_quota(tg, d);
10101                parent_quota = parent_b->hierarchical_quota;
10102
10103                /*
10104                 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10105                 * always take the min.  On cgroup1, only inherit when no
10106                 * limit is set:
10107                 */
10108                if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10109                        quota = min(quota, parent_quota);
10110                } else {
10111                        if (quota == RUNTIME_INF)
10112                                quota = parent_quota;
10113                        else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10114                                return -EINVAL;
10115                }
10116        }
10117        cfs_b->hierarchical_quota = quota;
10118
10119        return 0;
10120}
10121
10122static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10123{
10124        int ret;
10125        struct cfs_schedulable_data data = {
10126                .tg = tg,
10127                .period = period,
10128                .quota = quota,
10129        };
10130
10131        if (quota != RUNTIME_INF) {
10132                do_div(data.period, NSEC_PER_USEC);
10133                do_div(data.quota, NSEC_PER_USEC);
10134        }
10135
10136        rcu_read_lock();
10137        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10138        rcu_read_unlock();
10139
10140        return ret;
10141}
10142
10143static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10144{
10145        struct task_group *tg = css_tg(seq_css(sf));
10146        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10147
10148        seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10149        seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10150        seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10151
10152        if (schedstat_enabled() && tg != &root_task_group) {
10153                u64 ws = 0;
10154                int i;
10155
10156                for_each_possible_cpu(i)
10157                        ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10158
10159                seq_printf(sf, "wait_sum %llu\n", ws);
10160        }
10161
10162        return 0;
10163}
10164#endif /* CONFIG_CFS_BANDWIDTH */
10165#endif /* CONFIG_FAIR_GROUP_SCHED */
10166
10167#ifdef CONFIG_RT_GROUP_SCHED
10168static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10169                                struct cftype *cft, s64 val)
10170{
10171        return sched_group_set_rt_runtime(css_tg(css), val);
10172}
10173
10174static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10175                               struct cftype *cft)
10176{
10177        return sched_group_rt_runtime(css_tg(css));
10178}
10179
10180static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10181                                    struct cftype *cftype, u64 rt_period_us)
10182{
10183        return sched_group_set_rt_period(css_tg(css), rt_period_us);
10184}
10185
10186static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10187                                   struct cftype *cft)
10188{
10189        return sched_group_rt_period(css_tg(css));
10190}
10191#endif /* CONFIG_RT_GROUP_SCHED */
10192
10193static struct cftype cpu_legacy_files[] = {
10194#ifdef CONFIG_FAIR_GROUP_SCHED
10195        {
10196                .name = "shares",
10197                .read_u64 = cpu_shares_read_u64,
10198                .write_u64 = cpu_shares_write_u64,
10199        },
10200#endif
10201#ifdef CONFIG_CFS_BANDWIDTH
10202        {
10203                .name = "cfs_quota_us",
10204                .read_s64 = cpu_cfs_quota_read_s64,
10205                .write_s64 = cpu_cfs_quota_write_s64,
10206        },
10207        {
10208                .name = "cfs_period_us",
10209                .read_u64 = cpu_cfs_period_read_u64,
10210                .write_u64 = cpu_cfs_period_write_u64,
10211        },
10212        {
10213                .name = "cfs_burst_us",
10214                .read_u64 = cpu_cfs_burst_read_u64,
10215                .write_u64 = cpu_cfs_burst_write_u64,
10216        },
10217        {
10218                .name = "stat",
10219                .seq_show = cpu_cfs_stat_show,
10220        },
10221#endif
10222#ifdef CONFIG_RT_GROUP_SCHED
10223        {
10224                .name = "rt_runtime_us",
10225                .read_s64 = cpu_rt_runtime_read,
10226                .write_s64 = cpu_rt_runtime_write,
10227        },
10228        {
10229                .name = "rt_period_us",
10230                .read_u64 = cpu_rt_period_read_uint,
10231                .write_u64 = cpu_rt_period_write_uint,
10232        },
10233#endif
10234#ifdef CONFIG_UCLAMP_TASK_GROUP
10235        {
10236                .name = "uclamp.min",
10237                .flags = CFTYPE_NOT_ON_ROOT,
10238                .seq_show = cpu_uclamp_min_show,
10239                .write = cpu_uclamp_min_write,
10240        },
10241        {
10242                .name = "uclamp.max",
10243                .flags = CFTYPE_NOT_ON_ROOT,
10244                .seq_show = cpu_uclamp_max_show,
10245                .write = cpu_uclamp_max_write,
10246        },
10247#endif
10248        { }     /* Terminate */
10249};
10250
10251static int cpu_extra_stat_show(struct seq_file *sf,
10252                               struct cgroup_subsys_state *css)
10253{
10254#ifdef CONFIG_CFS_BANDWIDTH
10255        {
10256                struct task_group *tg = css_tg(css);
10257                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10258                u64 throttled_usec;
10259
10260                throttled_usec = cfs_b->throttled_time;
10261                do_div(throttled_usec, NSEC_PER_USEC);
10262
10263                seq_printf(sf, "nr_periods %d\n"
10264                           "nr_throttled %d\n"
10265                           "throttled_usec %llu\n",
10266                           cfs_b->nr_periods, cfs_b->nr_throttled,
10267                           throttled_usec);
10268        }
10269#endif
10270        return 0;
10271}
10272
10273#ifdef CONFIG_FAIR_GROUP_SCHED
10274static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10275                               struct cftype *cft)
10276{
10277        struct task_group *tg = css_tg(css);
10278        u64 weight = scale_load_down(tg->shares);
10279
10280        return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10281}
10282
10283static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10284                                struct cftype *cft, u64 weight)
10285{
10286        /*
10287         * cgroup weight knobs should use the common MIN, DFL and MAX
10288         * values which are 1, 100 and 10000 respectively.  While it loses
10289         * a bit of range on both ends, it maps pretty well onto the shares
10290         * value used by scheduler and the round-trip conversions preserve
10291         * the original value over the entire range.
10292         */
10293        if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10294                return -ERANGE;
10295
10296        weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10297
10298        return sched_group_set_shares(css_tg(css), scale_load(weight));
10299}
10300
10301static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10302                                    struct cftype *cft)
10303{
10304        unsigned long weight = scale_load_down(css_tg(css)->shares);
10305        int last_delta = INT_MAX;
10306        int prio, delta;
10307
10308        /* find the closest nice value to the current weight */
10309        for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10310                delta = abs(sched_prio_to_weight[prio] - weight);
10311                if (delta >= last_delta)
10312                        break;
10313                last_delta = delta;
10314        }
10315
10316        return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10317}
10318
10319static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10320                                     struct cftype *cft, s64 nice)
10321{
10322        unsigned long weight;
10323        int idx;
10324
10325        if (nice < MIN_NICE || nice > MAX_NICE)
10326                return -ERANGE;
10327
10328        idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10329        idx = array_index_nospec(idx, 40);
10330        weight = sched_prio_to_weight[idx];
10331
10332        return sched_group_set_shares(css_tg(css), scale_load(weight));
10333}
10334#endif
10335
10336static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10337                                                  long period, long quota)
10338{
10339        if (quota < 0)
10340                seq_puts(sf, "max");
10341        else
10342                seq_printf(sf, "%ld", quota);
10343
10344        seq_printf(sf, " %ld\n", period);
10345}
10346
10347/* caller should put the current value in *@periodp before calling */
10348static int __maybe_unused cpu_period_quota_parse(char *buf,
10349                                                 u64 *periodp, u64 *quotap)
10350{
10351        char tok[21];   /* U64_MAX */
10352
10353        if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10354                return -EINVAL;
10355
10356        *periodp *= NSEC_PER_USEC;
10357
10358        if (sscanf(tok, "%llu", quotap))
10359                *quotap *= NSEC_PER_USEC;
10360        else if (!strcmp(tok, "max"))
10361                *quotap = RUNTIME_INF;
10362        else
10363                return -EINVAL;
10364
10365        return 0;
10366}
10367
10368#ifdef CONFIG_CFS_BANDWIDTH
10369static int cpu_max_show(struct seq_file *sf, void *v)
10370{
10371        struct task_group *tg = css_tg(seq_css(sf));
10372
10373        cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10374        return 0;
10375}
10376
10377static ssize_t cpu_max_write(struct kernfs_open_file *of,
10378                             char *buf, size_t nbytes, loff_t off)
10379{
10380        struct task_group *tg = css_tg(of_css(of));
10381        u64 period = tg_get_cfs_period(tg);
10382        u64 burst = tg_get_cfs_burst(tg);
10383        u64 quota;
10384        int ret;
10385
10386        ret = cpu_period_quota_parse(buf, &period, &quota);
10387        if (!ret)
10388                ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10389        return ret ?: nbytes;
10390}
10391#endif
10392
10393static struct cftype cpu_files[] = {
10394#ifdef CONFIG_FAIR_GROUP_SCHED
10395        {
10396                .name = "weight",
10397                .flags = CFTYPE_NOT_ON_ROOT,
10398                .read_u64 = cpu_weight_read_u64,
10399                .write_u64 = cpu_weight_write_u64,
10400        },
10401        {
10402                .name = "weight.nice",
10403                .flags = CFTYPE_NOT_ON_ROOT,
10404                .read_s64 = cpu_weight_nice_read_s64,
10405                .write_s64 = cpu_weight_nice_write_s64,
10406        },
10407#endif
10408#ifdef CONFIG_CFS_BANDWIDTH
10409        {
10410                .name = "max",
10411                .flags = CFTYPE_NOT_ON_ROOT,
10412                .seq_show = cpu_max_show,
10413                .write = cpu_max_write,
10414        },
10415        {
10416                .name = "max.burst",
10417                .flags = CFTYPE_NOT_ON_ROOT,
10418                .read_u64 = cpu_cfs_burst_read_u64,
10419                .write_u64 = cpu_cfs_burst_write_u64,
10420        },
10421#endif
10422#ifdef CONFIG_UCLAMP_TASK_GROUP
10423        {
10424                .name = "uclamp.min",
10425                .flags = CFTYPE_NOT_ON_ROOT,
10426                .seq_show = cpu_uclamp_min_show,
10427                .write = cpu_uclamp_min_write,
10428        },
10429        {
10430                .name = "uclamp.max",
10431                .flags = CFTYPE_NOT_ON_ROOT,
10432                .seq_show = cpu_uclamp_max_show,
10433                .write = cpu_uclamp_max_write,
10434        },
10435#endif
10436        { }     /* terminate */
10437};
10438
10439struct cgroup_subsys cpu_cgrp_subsys = {
10440        .css_alloc      = cpu_cgroup_css_alloc,
10441        .css_online     = cpu_cgroup_css_online,
10442        .css_released   = cpu_cgroup_css_released,
10443        .css_free       = cpu_cgroup_css_free,
10444        .css_extra_stat_show = cpu_extra_stat_show,
10445        .fork           = cpu_cgroup_fork,
10446        .can_attach     = cpu_cgroup_can_attach,
10447        .attach         = cpu_cgroup_attach,
10448        .legacy_cftypes = cpu_legacy_files,
10449        .dfl_cftypes    = cpu_files,
10450        .early_init     = true,
10451        .threaded       = true,
10452};
10453
10454#endif  /* CONFIG_CGROUP_SCHED */
10455
10456void dump_cpu_task(int cpu)
10457{
10458        pr_info("Task dump for CPU %d:\n", cpu);
10459        sched_show_task(cpu_curr(cpu));
10460}
10461
10462/*
10463 * Nice levels are multiplicative, with a gentle 10% change for every
10464 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10465 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10466 * that remained on nice 0.
10467 *
10468 * The "10% effect" is relative and cumulative: from _any_ nice level,
10469 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10470 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10471 * If a task goes up by ~10% and another task goes down by ~10% then
10472 * the relative distance between them is ~25%.)
10473 */
10474const int sched_prio_to_weight[40] = {
10475 /* -20 */     88761,     71755,     56483,     46273,     36291,
10476 /* -15 */     29154,     23254,     18705,     14949,     11916,
10477 /* -10 */      9548,      7620,      6100,      4904,      3906,
10478 /*  -5 */      3121,      2501,      1991,      1586,      1277,
10479 /*   0 */      1024,       820,       655,       526,       423,
10480 /*   5 */       335,       272,       215,       172,       137,
10481 /*  10 */       110,        87,        70,        56,        45,
10482 /*  15 */        36,        29,        23,        18,        15,
10483};
10484
10485/*
10486 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10487 *
10488 * In cases where the weight does not change often, we can use the
10489 * precalculated inverse to speed up arithmetics by turning divisions
10490 * into multiplications:
10491 */
10492const u32 sched_prio_to_wmult[40] = {
10493 /* -20 */     48388,     59856,     76040,     92818,    118348,
10494 /* -15 */    147320,    184698,    229616,    287308,    360437,
10495 /* -10 */    449829,    563644,    704093,    875809,   1099582,
10496 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10497 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10498 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10499 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10500 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10501};
10502
10503void call_trace_sched_update_nr_running(struct rq *rq, int count)
10504{
10505        trace_sched_update_nr_running_tp(rq, count);
10506}
10507