linux/kernel/sched/fair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   4 *
   5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 *
   7 *  Interactivity improvements by Mike Galbraith
   8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   9 *
  10 *  Various enhancements by Dmitry Adamushko.
  11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12 *
  13 *  Group scheduling enhancements by Srivatsa Vaddagiri
  14 *  Copyright IBM Corporation, 2007
  15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16 *
  17 *  Scaled math optimizations by Thomas Gleixner
  18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19 *
  20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22 */
  23#include "sched.h"
  24
  25/*
  26 * Targeted preemption latency for CPU-bound tasks:
  27 *
  28 * NOTE: this latency value is not the same as the concept of
  29 * 'timeslice length' - timeslices in CFS are of variable length
  30 * and have no persistent notion like in traditional, time-slice
  31 * based scheduling concepts.
  32 *
  33 * (to see the precise effective timeslice length of your workload,
  34 *  run vmstat and monitor the context-switches (cs) field)
  35 *
  36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37 */
  38unsigned int sysctl_sched_latency                       = 6000000ULL;
  39static unsigned int normalized_sysctl_sched_latency     = 6000000ULL;
  40
  41/*
  42 * The initial- and re-scaling of tunables is configurable
  43 *
  44 * Options are:
  45 *
  46 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
  47 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  48 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  49 *
  50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  51 */
  52unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  53
  54/*
  55 * Minimal preemption granularity for CPU-bound tasks:
  56 *
  57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58 */
  59unsigned int sysctl_sched_min_granularity                       = 750000ULL;
  60static unsigned int normalized_sysctl_sched_min_granularity     = 750000ULL;
  61
  62/*
  63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  64 */
  65static unsigned int sched_nr_latency = 8;
  66
  67/*
  68 * After fork, child runs first. If set to 0 (default) then
  69 * parent will (try to) run first.
  70 */
  71unsigned int sysctl_sched_child_runs_first __read_mostly;
  72
  73/*
  74 * SCHED_OTHER wake-up granularity.
  75 *
  76 * This option delays the preemption effects of decoupled workloads
  77 * and reduces their over-scheduling. Synchronous workloads will still
  78 * have immediate wakeup/sleep latencies.
  79 *
  80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  81 */
  82unsigned int sysctl_sched_wakeup_granularity                    = 1000000UL;
  83static unsigned int normalized_sysctl_sched_wakeup_granularity  = 1000000UL;
  84
  85const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
  86
  87int sched_thermal_decay_shift;
  88static int __init setup_sched_thermal_decay_shift(char *str)
  89{
  90        int _shift = 0;
  91
  92        if (kstrtoint(str, 0, &_shift))
  93                pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
  94
  95        sched_thermal_decay_shift = clamp(_shift, 0, 10);
  96        return 1;
  97}
  98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
  99
 100#ifdef CONFIG_SMP
 101/*
 102 * For asym packing, by default the lower numbered CPU has higher priority.
 103 */
 104int __weak arch_asym_cpu_priority(int cpu)
 105{
 106        return -cpu;
 107}
 108
 109/*
 110 * The margin used when comparing utilization with CPU capacity.
 111 *
 112 * (default: ~20%)
 113 */
 114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
 115
 116/*
 117 * The margin used when comparing CPU capacities.
 118 * is 'cap1' noticeably greater than 'cap2'
 119 *
 120 * (default: ~5%)
 121 */
 122#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
 123#endif
 124
 125#ifdef CONFIG_CFS_BANDWIDTH
 126/*
 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 128 * each time a cfs_rq requests quota.
 129 *
 130 * Note: in the case that the slice exceeds the runtime remaining (either due
 131 * to consumption or the quota being specified to be smaller than the slice)
 132 * we will always only issue the remaining available time.
 133 *
 134 * (default: 5 msec, units: microseconds)
 135 */
 136unsigned int sysctl_sched_cfs_bandwidth_slice           = 5000UL;
 137#endif
 138
 139static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 140{
 141        lw->weight += inc;
 142        lw->inv_weight = 0;
 143}
 144
 145static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 146{
 147        lw->weight -= dec;
 148        lw->inv_weight = 0;
 149}
 150
 151static inline void update_load_set(struct load_weight *lw, unsigned long w)
 152{
 153        lw->weight = w;
 154        lw->inv_weight = 0;
 155}
 156
 157/*
 158 * Increase the granularity value when there are more CPUs,
 159 * because with more CPUs the 'effective latency' as visible
 160 * to users decreases. But the relationship is not linear,
 161 * so pick a second-best guess by going with the log2 of the
 162 * number of CPUs.
 163 *
 164 * This idea comes from the SD scheduler of Con Kolivas:
 165 */
 166static unsigned int get_update_sysctl_factor(void)
 167{
 168        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 169        unsigned int factor;
 170
 171        switch (sysctl_sched_tunable_scaling) {
 172        case SCHED_TUNABLESCALING_NONE:
 173                factor = 1;
 174                break;
 175        case SCHED_TUNABLESCALING_LINEAR:
 176                factor = cpus;
 177                break;
 178        case SCHED_TUNABLESCALING_LOG:
 179        default:
 180                factor = 1 + ilog2(cpus);
 181                break;
 182        }
 183
 184        return factor;
 185}
 186
 187static void update_sysctl(void)
 188{
 189        unsigned int factor = get_update_sysctl_factor();
 190
 191#define SET_SYSCTL(name) \
 192        (sysctl_##name = (factor) * normalized_sysctl_##name)
 193        SET_SYSCTL(sched_min_granularity);
 194        SET_SYSCTL(sched_latency);
 195        SET_SYSCTL(sched_wakeup_granularity);
 196#undef SET_SYSCTL
 197}
 198
 199void __init sched_init_granularity(void)
 200{
 201        update_sysctl();
 202}
 203
 204#define WMULT_CONST     (~0U)
 205#define WMULT_SHIFT     32
 206
 207static void __update_inv_weight(struct load_weight *lw)
 208{
 209        unsigned long w;
 210
 211        if (likely(lw->inv_weight))
 212                return;
 213
 214        w = scale_load_down(lw->weight);
 215
 216        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 217                lw->inv_weight = 1;
 218        else if (unlikely(!w))
 219                lw->inv_weight = WMULT_CONST;
 220        else
 221                lw->inv_weight = WMULT_CONST / w;
 222}
 223
 224/*
 225 * delta_exec * weight / lw.weight
 226 *   OR
 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 228 *
 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 232 *
 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 235 */
 236static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 237{
 238        u64 fact = scale_load_down(weight);
 239        u32 fact_hi = (u32)(fact >> 32);
 240        int shift = WMULT_SHIFT;
 241        int fs;
 242
 243        __update_inv_weight(lw);
 244
 245        if (unlikely(fact_hi)) {
 246                fs = fls(fact_hi);
 247                shift -= fs;
 248                fact >>= fs;
 249        }
 250
 251        fact = mul_u32_u32(fact, lw->inv_weight);
 252
 253        fact_hi = (u32)(fact >> 32);
 254        if (fact_hi) {
 255                fs = fls(fact_hi);
 256                shift -= fs;
 257                fact >>= fs;
 258        }
 259
 260        return mul_u64_u32_shr(delta_exec, fact, shift);
 261}
 262
 263
 264const struct sched_class fair_sched_class;
 265
 266/**************************************************************
 267 * CFS operations on generic schedulable entities:
 268 */
 269
 270#ifdef CONFIG_FAIR_GROUP_SCHED
 271
 272/* Walk up scheduling entities hierarchy */
 273#define for_each_sched_entity(se) \
 274                for (; se; se = se->parent)
 275
 276static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
 277{
 278        if (!path)
 279                return;
 280
 281        if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
 282                autogroup_path(cfs_rq->tg, path, len);
 283        else if (cfs_rq && cfs_rq->tg->css.cgroup)
 284                cgroup_path(cfs_rq->tg->css.cgroup, path, len);
 285        else
 286                strlcpy(path, "(null)", len);
 287}
 288
 289static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 290{
 291        struct rq *rq = rq_of(cfs_rq);
 292        int cpu = cpu_of(rq);
 293
 294        if (cfs_rq->on_list)
 295                return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
 296
 297        cfs_rq->on_list = 1;
 298
 299        /*
 300         * Ensure we either appear before our parent (if already
 301         * enqueued) or force our parent to appear after us when it is
 302         * enqueued. The fact that we always enqueue bottom-up
 303         * reduces this to two cases and a special case for the root
 304         * cfs_rq. Furthermore, it also means that we will always reset
 305         * tmp_alone_branch either when the branch is connected
 306         * to a tree or when we reach the top of the tree
 307         */
 308        if (cfs_rq->tg->parent &&
 309            cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
 310                /*
 311                 * If parent is already on the list, we add the child
 312                 * just before. Thanks to circular linked property of
 313                 * the list, this means to put the child at the tail
 314                 * of the list that starts by parent.
 315                 */
 316                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 317                        &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
 318                /*
 319                 * The branch is now connected to its tree so we can
 320                 * reset tmp_alone_branch to the beginning of the
 321                 * list.
 322                 */
 323                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 324                return true;
 325        }
 326
 327        if (!cfs_rq->tg->parent) {
 328                /*
 329                 * cfs rq without parent should be put
 330                 * at the tail of the list.
 331                 */
 332                list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 333                        &rq->leaf_cfs_rq_list);
 334                /*
 335                 * We have reach the top of a tree so we can reset
 336                 * tmp_alone_branch to the beginning of the list.
 337                 */
 338                rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 339                return true;
 340        }
 341
 342        /*
 343         * The parent has not already been added so we want to
 344         * make sure that it will be put after us.
 345         * tmp_alone_branch points to the begin of the branch
 346         * where we will add parent.
 347         */
 348        list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
 349        /*
 350         * update tmp_alone_branch to points to the new begin
 351         * of the branch
 352         */
 353        rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
 354        return false;
 355}
 356
 357static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 358{
 359        if (cfs_rq->on_list) {
 360                struct rq *rq = rq_of(cfs_rq);
 361
 362                /*
 363                 * With cfs_rq being unthrottled/throttled during an enqueue,
 364                 * it can happen the tmp_alone_branch points the a leaf that
 365                 * we finally want to del. In this case, tmp_alone_branch moves
 366                 * to the prev element but it will point to rq->leaf_cfs_rq_list
 367                 * at the end of the enqueue.
 368                 */
 369                if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
 370                        rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
 371
 372                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 373                cfs_rq->on_list = 0;
 374        }
 375}
 376
 377static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 378{
 379        SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
 380}
 381
 382/* Iterate thr' all leaf cfs_rq's on a runqueue */
 383#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
 384        list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,    \
 385                                 leaf_cfs_rq_list)
 386
 387/* Do the two (enqueued) entities belong to the same group ? */
 388static inline struct cfs_rq *
 389is_same_group(struct sched_entity *se, struct sched_entity *pse)
 390{
 391        if (se->cfs_rq == pse->cfs_rq)
 392                return se->cfs_rq;
 393
 394        return NULL;
 395}
 396
 397static inline struct sched_entity *parent_entity(struct sched_entity *se)
 398{
 399        return se->parent;
 400}
 401
 402static void
 403find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 404{
 405        int se_depth, pse_depth;
 406
 407        /*
 408         * preemption test can be made between sibling entities who are in the
 409         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 410         * both tasks until we find their ancestors who are siblings of common
 411         * parent.
 412         */
 413
 414        /* First walk up until both entities are at same depth */
 415        se_depth = (*se)->depth;
 416        pse_depth = (*pse)->depth;
 417
 418        while (se_depth > pse_depth) {
 419                se_depth--;
 420                *se = parent_entity(*se);
 421        }
 422
 423        while (pse_depth > se_depth) {
 424                pse_depth--;
 425                *pse = parent_entity(*pse);
 426        }
 427
 428        while (!is_same_group(*se, *pse)) {
 429                *se = parent_entity(*se);
 430                *pse = parent_entity(*pse);
 431        }
 432}
 433
 434#else   /* !CONFIG_FAIR_GROUP_SCHED */
 435
 436#define for_each_sched_entity(se) \
 437                for (; se; se = NULL)
 438
 439static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
 440{
 441        if (path)
 442                strlcpy(path, "(null)", len);
 443}
 444
 445static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 446{
 447        return true;
 448}
 449
 450static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 451{
 452}
 453
 454static inline void assert_list_leaf_cfs_rq(struct rq *rq)
 455{
 456}
 457
 458#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
 459                for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
 460
 461static inline struct sched_entity *parent_entity(struct sched_entity *se)
 462{
 463        return NULL;
 464}
 465
 466static inline void
 467find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 468{
 469}
 470
 471#endif  /* CONFIG_FAIR_GROUP_SCHED */
 472
 473static __always_inline
 474void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 475
 476/**************************************************************
 477 * Scheduling class tree data structure manipulation methods:
 478 */
 479
 480static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 481{
 482        s64 delta = (s64)(vruntime - max_vruntime);
 483        if (delta > 0)
 484                max_vruntime = vruntime;
 485
 486        return max_vruntime;
 487}
 488
 489static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 490{
 491        s64 delta = (s64)(vruntime - min_vruntime);
 492        if (delta < 0)
 493                min_vruntime = vruntime;
 494
 495        return min_vruntime;
 496}
 497
 498static inline bool entity_before(struct sched_entity *a,
 499                                struct sched_entity *b)
 500{
 501        return (s64)(a->vruntime - b->vruntime) < 0;
 502}
 503
 504#define __node_2_se(node) \
 505        rb_entry((node), struct sched_entity, run_node)
 506
 507static void update_min_vruntime(struct cfs_rq *cfs_rq)
 508{
 509        struct sched_entity *curr = cfs_rq->curr;
 510        struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
 511
 512        u64 vruntime = cfs_rq->min_vruntime;
 513
 514        if (curr) {
 515                if (curr->on_rq)
 516                        vruntime = curr->vruntime;
 517                else
 518                        curr = NULL;
 519        }
 520
 521        if (leftmost) { /* non-empty tree */
 522                struct sched_entity *se = __node_2_se(leftmost);
 523
 524                if (!curr)
 525                        vruntime = se->vruntime;
 526                else
 527                        vruntime = min_vruntime(vruntime, se->vruntime);
 528        }
 529
 530        /* ensure we never gain time by being placed backwards. */
 531        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 532#ifndef CONFIG_64BIT
 533        smp_wmb();
 534        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 535#endif
 536}
 537
 538static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
 539{
 540        return entity_before(__node_2_se(a), __node_2_se(b));
 541}
 542
 543/*
 544 * Enqueue an entity into the rb-tree:
 545 */
 546static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 547{
 548        rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
 549}
 550
 551static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 552{
 553        rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
 554}
 555
 556struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 557{
 558        struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
 559
 560        if (!left)
 561                return NULL;
 562
 563        return __node_2_se(left);
 564}
 565
 566static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 567{
 568        struct rb_node *next = rb_next(&se->run_node);
 569
 570        if (!next)
 571                return NULL;
 572
 573        return __node_2_se(next);
 574}
 575
 576#ifdef CONFIG_SCHED_DEBUG
 577struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 578{
 579        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
 580
 581        if (!last)
 582                return NULL;
 583
 584        return __node_2_se(last);
 585}
 586
 587/**************************************************************
 588 * Scheduling class statistics methods:
 589 */
 590
 591int sched_update_scaling(void)
 592{
 593        unsigned int factor = get_update_sysctl_factor();
 594
 595        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 596                                        sysctl_sched_min_granularity);
 597
 598#define WRT_SYSCTL(name) \
 599        (normalized_sysctl_##name = sysctl_##name / (factor))
 600        WRT_SYSCTL(sched_min_granularity);
 601        WRT_SYSCTL(sched_latency);
 602        WRT_SYSCTL(sched_wakeup_granularity);
 603#undef WRT_SYSCTL
 604
 605        return 0;
 606}
 607#endif
 608
 609/*
 610 * delta /= w
 611 */
 612static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 613{
 614        if (unlikely(se->load.weight != NICE_0_LOAD))
 615                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 616
 617        return delta;
 618}
 619
 620/*
 621 * The idea is to set a period in which each task runs once.
 622 *
 623 * When there are too many tasks (sched_nr_latency) we have to stretch
 624 * this period because otherwise the slices get too small.
 625 *
 626 * p = (nr <= nl) ? l : l*nr/nl
 627 */
 628static u64 __sched_period(unsigned long nr_running)
 629{
 630        if (unlikely(nr_running > sched_nr_latency))
 631                return nr_running * sysctl_sched_min_granularity;
 632        else
 633                return sysctl_sched_latency;
 634}
 635
 636/*
 637 * We calculate the wall-time slice from the period by taking a part
 638 * proportional to the weight.
 639 *
 640 * s = p*P[w/rw]
 641 */
 642static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 643{
 644        unsigned int nr_running = cfs_rq->nr_running;
 645        u64 slice;
 646
 647        if (sched_feat(ALT_PERIOD))
 648                nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
 649
 650        slice = __sched_period(nr_running + !se->on_rq);
 651
 652        for_each_sched_entity(se) {
 653                struct load_weight *load;
 654                struct load_weight lw;
 655
 656                cfs_rq = cfs_rq_of(se);
 657                load = &cfs_rq->load;
 658
 659                if (unlikely(!se->on_rq)) {
 660                        lw = cfs_rq->load;
 661
 662                        update_load_add(&lw, se->load.weight);
 663                        load = &lw;
 664                }
 665                slice = __calc_delta(slice, se->load.weight, load);
 666        }
 667
 668        if (sched_feat(BASE_SLICE))
 669                slice = max(slice, (u64)sysctl_sched_min_granularity);
 670
 671        return slice;
 672}
 673
 674/*
 675 * We calculate the vruntime slice of a to-be-inserted task.
 676 *
 677 * vs = s/w
 678 */
 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 680{
 681        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 682}
 683
 684#include "pelt.h"
 685#ifdef CONFIG_SMP
 686
 687static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
 688static unsigned long task_h_load(struct task_struct *p);
 689static unsigned long capacity_of(int cpu);
 690
 691/* Give new sched_entity start runnable values to heavy its load in infant time */
 692void init_entity_runnable_average(struct sched_entity *se)
 693{
 694        struct sched_avg *sa = &se->avg;
 695
 696        memset(sa, 0, sizeof(*sa));
 697
 698        /*
 699         * Tasks are initialized with full load to be seen as heavy tasks until
 700         * they get a chance to stabilize to their real load level.
 701         * Group entities are initialized with zero load to reflect the fact that
 702         * nothing has been attached to the task group yet.
 703         */
 704        if (entity_is_task(se))
 705                sa->load_avg = scale_load_down(se->load.weight);
 706
 707        /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 708}
 709
 710static void attach_entity_cfs_rq(struct sched_entity *se);
 711
 712/*
 713 * With new tasks being created, their initial util_avgs are extrapolated
 714 * based on the cfs_rq's current util_avg:
 715 *
 716 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 717 *
 718 * However, in many cases, the above util_avg does not give a desired
 719 * value. Moreover, the sum of the util_avgs may be divergent, such
 720 * as when the series is a harmonic series.
 721 *
 722 * To solve this problem, we also cap the util_avg of successive tasks to
 723 * only 1/2 of the left utilization budget:
 724 *
 725 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
 726 *
 727 * where n denotes the nth task and cpu_scale the CPU capacity.
 728 *
 729 * For example, for a CPU with 1024 of capacity, a simplest series from
 730 * the beginning would be like:
 731 *
 732 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 733 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 734 *
 735 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 736 * if util_avg > util_avg_cap.
 737 */
 738void post_init_entity_util_avg(struct task_struct *p)
 739{
 740        struct sched_entity *se = &p->se;
 741        struct cfs_rq *cfs_rq = cfs_rq_of(se);
 742        struct sched_avg *sa = &se->avg;
 743        long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
 744        long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
 745
 746        if (cap > 0) {
 747                if (cfs_rq->avg.util_avg != 0) {
 748                        sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
 749                        sa->util_avg /= (cfs_rq->avg.load_avg + 1);
 750
 751                        if (sa->util_avg > cap)
 752                                sa->util_avg = cap;
 753                } else {
 754                        sa->util_avg = cap;
 755                }
 756        }
 757
 758        sa->runnable_avg = sa->util_avg;
 759
 760        if (p->sched_class != &fair_sched_class) {
 761                /*
 762                 * For !fair tasks do:
 763                 *
 764                update_cfs_rq_load_avg(now, cfs_rq);
 765                attach_entity_load_avg(cfs_rq, se);
 766                switched_from_fair(rq, p);
 767                 *
 768                 * such that the next switched_to_fair() has the
 769                 * expected state.
 770                 */
 771                se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
 772                return;
 773        }
 774
 775        attach_entity_cfs_rq(se);
 776}
 777
 778#else /* !CONFIG_SMP */
 779void init_entity_runnable_average(struct sched_entity *se)
 780{
 781}
 782void post_init_entity_util_avg(struct task_struct *p)
 783{
 784}
 785static void update_tg_load_avg(struct cfs_rq *cfs_rq)
 786{
 787}
 788#endif /* CONFIG_SMP */
 789
 790/*
 791 * Update the current task's runtime statistics.
 792 */
 793static void update_curr(struct cfs_rq *cfs_rq)
 794{
 795        struct sched_entity *curr = cfs_rq->curr;
 796        u64 now = rq_clock_task(rq_of(cfs_rq));
 797        u64 delta_exec;
 798
 799        if (unlikely(!curr))
 800                return;
 801
 802        delta_exec = now - curr->exec_start;
 803        if (unlikely((s64)delta_exec <= 0))
 804                return;
 805
 806        curr->exec_start = now;
 807
 808        schedstat_set(curr->statistics.exec_max,
 809                      max(delta_exec, curr->statistics.exec_max));
 810
 811        curr->sum_exec_runtime += delta_exec;
 812        schedstat_add(cfs_rq->exec_clock, delta_exec);
 813
 814        curr->vruntime += calc_delta_fair(delta_exec, curr);
 815        update_min_vruntime(cfs_rq);
 816
 817        if (entity_is_task(curr)) {
 818                struct task_struct *curtask = task_of(curr);
 819
 820                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 821                cgroup_account_cputime(curtask, delta_exec);
 822                account_group_exec_runtime(curtask, delta_exec);
 823        }
 824
 825        account_cfs_rq_runtime(cfs_rq, delta_exec);
 826}
 827
 828static void update_curr_fair(struct rq *rq)
 829{
 830        update_curr(cfs_rq_of(&rq->curr->se));
 831}
 832
 833static inline void
 834update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 835{
 836        u64 wait_start, prev_wait_start;
 837
 838        if (!schedstat_enabled())
 839                return;
 840
 841        wait_start = rq_clock(rq_of(cfs_rq));
 842        prev_wait_start = schedstat_val(se->statistics.wait_start);
 843
 844        if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 845            likely(wait_start > prev_wait_start))
 846                wait_start -= prev_wait_start;
 847
 848        __schedstat_set(se->statistics.wait_start, wait_start);
 849}
 850
 851static inline void
 852update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 853{
 854        struct task_struct *p;
 855        u64 delta;
 856
 857        if (!schedstat_enabled())
 858                return;
 859
 860        /*
 861         * When the sched_schedstat changes from 0 to 1, some sched se
 862         * maybe already in the runqueue, the se->statistics.wait_start
 863         * will be 0.So it will let the delta wrong. We need to avoid this
 864         * scenario.
 865         */
 866        if (unlikely(!schedstat_val(se->statistics.wait_start)))
 867                return;
 868
 869        delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
 870
 871        if (entity_is_task(se)) {
 872                p = task_of(se);
 873                if (task_on_rq_migrating(p)) {
 874                        /*
 875                         * Preserve migrating task's wait time so wait_start
 876                         * time stamp can be adjusted to accumulate wait time
 877                         * prior to migration.
 878                         */
 879                        __schedstat_set(se->statistics.wait_start, delta);
 880                        return;
 881                }
 882                trace_sched_stat_wait(p, delta);
 883        }
 884
 885        __schedstat_set(se->statistics.wait_max,
 886                      max(schedstat_val(se->statistics.wait_max), delta));
 887        __schedstat_inc(se->statistics.wait_count);
 888        __schedstat_add(se->statistics.wait_sum, delta);
 889        __schedstat_set(se->statistics.wait_start, 0);
 890}
 891
 892static inline void
 893update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 894{
 895        struct task_struct *tsk = NULL;
 896        u64 sleep_start, block_start;
 897
 898        if (!schedstat_enabled())
 899                return;
 900
 901        sleep_start = schedstat_val(se->statistics.sleep_start);
 902        block_start = schedstat_val(se->statistics.block_start);
 903
 904        if (entity_is_task(se))
 905                tsk = task_of(se);
 906
 907        if (sleep_start) {
 908                u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
 909
 910                if ((s64)delta < 0)
 911                        delta = 0;
 912
 913                if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
 914                        __schedstat_set(se->statistics.sleep_max, delta);
 915
 916                __schedstat_set(se->statistics.sleep_start, 0);
 917                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 918
 919                if (tsk) {
 920                        account_scheduler_latency(tsk, delta >> 10, 1);
 921                        trace_sched_stat_sleep(tsk, delta);
 922                }
 923        }
 924        if (block_start) {
 925                u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
 926
 927                if ((s64)delta < 0)
 928                        delta = 0;
 929
 930                if (unlikely(delta > schedstat_val(se->statistics.block_max)))
 931                        __schedstat_set(se->statistics.block_max, delta);
 932
 933                __schedstat_set(se->statistics.block_start, 0);
 934                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 935
 936                if (tsk) {
 937                        if (tsk->in_iowait) {
 938                                __schedstat_add(se->statistics.iowait_sum, delta);
 939                                __schedstat_inc(se->statistics.iowait_count);
 940                                trace_sched_stat_iowait(tsk, delta);
 941                        }
 942
 943                        trace_sched_stat_blocked(tsk, delta);
 944
 945                        /*
 946                         * Blocking time is in units of nanosecs, so shift by
 947                         * 20 to get a milliseconds-range estimation of the
 948                         * amount of time that the task spent sleeping:
 949                         */
 950                        if (unlikely(prof_on == SLEEP_PROFILING)) {
 951                                profile_hits(SLEEP_PROFILING,
 952                                                (void *)get_wchan(tsk),
 953                                                delta >> 20);
 954                        }
 955                        account_scheduler_latency(tsk, delta >> 10, 0);
 956                }
 957        }
 958}
 959
 960/*
 961 * Task is being enqueued - update stats:
 962 */
 963static inline void
 964update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 965{
 966        if (!schedstat_enabled())
 967                return;
 968
 969        /*
 970         * Are we enqueueing a waiting task? (for current tasks
 971         * a dequeue/enqueue event is a NOP)
 972         */
 973        if (se != cfs_rq->curr)
 974                update_stats_wait_start(cfs_rq, se);
 975
 976        if (flags & ENQUEUE_WAKEUP)
 977                update_stats_enqueue_sleeper(cfs_rq, se);
 978}
 979
 980static inline void
 981update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 982{
 983
 984        if (!schedstat_enabled())
 985                return;
 986
 987        /*
 988         * Mark the end of the wait period if dequeueing a
 989         * waiting task:
 990         */
 991        if (se != cfs_rq->curr)
 992                update_stats_wait_end(cfs_rq, se);
 993
 994        if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
 995                struct task_struct *tsk = task_of(se);
 996                unsigned int state;
 997
 998                /* XXX racy against TTWU */
 999                state = READ_ONCE(tsk->__state);
1000                if (state & TASK_INTERRUPTIBLE)
1001                        __schedstat_set(se->statistics.sleep_start,
1002                                      rq_clock(rq_of(cfs_rq)));
1003                if (state & TASK_UNINTERRUPTIBLE)
1004                        __schedstat_set(se->statistics.block_start,
1005                                      rq_clock(rq_of(cfs_rq)));
1006        }
1007}
1008
1009/*
1010 * We are picking a new current task - update its stats:
1011 */
1012static inline void
1013update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1014{
1015        /*
1016         * We are starting a new run period:
1017         */
1018        se->exec_start = rq_clock_task(rq_of(cfs_rq));
1019}
1020
1021/**************************************************
1022 * Scheduling class queueing methods:
1023 */
1024
1025#ifdef CONFIG_NUMA_BALANCING
1026/*
1027 * Approximate time to scan a full NUMA task in ms. The task scan period is
1028 * calculated based on the tasks virtual memory size and
1029 * numa_balancing_scan_size.
1030 */
1031unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1032unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1033
1034/* Portion of address space to scan in MB */
1035unsigned int sysctl_numa_balancing_scan_size = 256;
1036
1037/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1038unsigned int sysctl_numa_balancing_scan_delay = 1000;
1039
1040struct numa_group {
1041        refcount_t refcount;
1042
1043        spinlock_t lock; /* nr_tasks, tasks */
1044        int nr_tasks;
1045        pid_t gid;
1046        int active_nodes;
1047
1048        struct rcu_head rcu;
1049        unsigned long total_faults;
1050        unsigned long max_faults_cpu;
1051        /*
1052         * Faults_cpu is used to decide whether memory should move
1053         * towards the CPU. As a consequence, these stats are weighted
1054         * more by CPU use than by memory faults.
1055         */
1056        unsigned long *faults_cpu;
1057        unsigned long faults[];
1058};
1059
1060/*
1061 * For functions that can be called in multiple contexts that permit reading
1062 * ->numa_group (see struct task_struct for locking rules).
1063 */
1064static struct numa_group *deref_task_numa_group(struct task_struct *p)
1065{
1066        return rcu_dereference_check(p->numa_group, p == current ||
1067                (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1068}
1069
1070static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1071{
1072        return rcu_dereference_protected(p->numa_group, p == current);
1073}
1074
1075static inline unsigned long group_faults_priv(struct numa_group *ng);
1076static inline unsigned long group_faults_shared(struct numa_group *ng);
1077
1078static unsigned int task_nr_scan_windows(struct task_struct *p)
1079{
1080        unsigned long rss = 0;
1081        unsigned long nr_scan_pages;
1082
1083        /*
1084         * Calculations based on RSS as non-present and empty pages are skipped
1085         * by the PTE scanner and NUMA hinting faults should be trapped based
1086         * on resident pages
1087         */
1088        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1089        rss = get_mm_rss(p->mm);
1090        if (!rss)
1091                rss = nr_scan_pages;
1092
1093        rss = round_up(rss, nr_scan_pages);
1094        return rss / nr_scan_pages;
1095}
1096
1097/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1098#define MAX_SCAN_WINDOW 2560
1099
1100static unsigned int task_scan_min(struct task_struct *p)
1101{
1102        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1103        unsigned int scan, floor;
1104        unsigned int windows = 1;
1105
1106        if (scan_size < MAX_SCAN_WINDOW)
1107                windows = MAX_SCAN_WINDOW / scan_size;
1108        floor = 1000 / windows;
1109
1110        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1111        return max_t(unsigned int, floor, scan);
1112}
1113
1114static unsigned int task_scan_start(struct task_struct *p)
1115{
1116        unsigned long smin = task_scan_min(p);
1117        unsigned long period = smin;
1118        struct numa_group *ng;
1119
1120        /* Scale the maximum scan period with the amount of shared memory. */
1121        rcu_read_lock();
1122        ng = rcu_dereference(p->numa_group);
1123        if (ng) {
1124                unsigned long shared = group_faults_shared(ng);
1125                unsigned long private = group_faults_priv(ng);
1126
1127                period *= refcount_read(&ng->refcount);
1128                period *= shared + 1;
1129                period /= private + shared + 1;
1130        }
1131        rcu_read_unlock();
1132
1133        return max(smin, period);
1134}
1135
1136static unsigned int task_scan_max(struct task_struct *p)
1137{
1138        unsigned long smin = task_scan_min(p);
1139        unsigned long smax;
1140        struct numa_group *ng;
1141
1142        /* Watch for min being lower than max due to floor calculations */
1143        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1144
1145        /* Scale the maximum scan period with the amount of shared memory. */
1146        ng = deref_curr_numa_group(p);
1147        if (ng) {
1148                unsigned long shared = group_faults_shared(ng);
1149                unsigned long private = group_faults_priv(ng);
1150                unsigned long period = smax;
1151
1152                period *= refcount_read(&ng->refcount);
1153                period *= shared + 1;
1154                period /= private + shared + 1;
1155
1156                smax = max(smax, period);
1157        }
1158
1159        return max(smin, smax);
1160}
1161
1162static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1163{
1164        rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1165        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1166}
1167
1168static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1169{
1170        rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1171        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1172}
1173
1174/* Shared or private faults. */
1175#define NR_NUMA_HINT_FAULT_TYPES 2
1176
1177/* Memory and CPU locality */
1178#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1179
1180/* Averaged statistics, and temporary buffers. */
1181#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1182
1183pid_t task_numa_group_id(struct task_struct *p)
1184{
1185        struct numa_group *ng;
1186        pid_t gid = 0;
1187
1188        rcu_read_lock();
1189        ng = rcu_dereference(p->numa_group);
1190        if (ng)
1191                gid = ng->gid;
1192        rcu_read_unlock();
1193
1194        return gid;
1195}
1196
1197/*
1198 * The averaged statistics, shared & private, memory & CPU,
1199 * occupy the first half of the array. The second half of the
1200 * array is for current counters, which are averaged into the
1201 * first set by task_numa_placement.
1202 */
1203static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1204{
1205        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1206}
1207
1208static inline unsigned long task_faults(struct task_struct *p, int nid)
1209{
1210        if (!p->numa_faults)
1211                return 0;
1212
1213        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1214                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1215}
1216
1217static inline unsigned long group_faults(struct task_struct *p, int nid)
1218{
1219        struct numa_group *ng = deref_task_numa_group(p);
1220
1221        if (!ng)
1222                return 0;
1223
1224        return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225                ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1226}
1227
1228static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1229{
1230        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1231                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1232}
1233
1234static inline unsigned long group_faults_priv(struct numa_group *ng)
1235{
1236        unsigned long faults = 0;
1237        int node;
1238
1239        for_each_online_node(node) {
1240                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1241        }
1242
1243        return faults;
1244}
1245
1246static inline unsigned long group_faults_shared(struct numa_group *ng)
1247{
1248        unsigned long faults = 0;
1249        int node;
1250
1251        for_each_online_node(node) {
1252                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1253        }
1254
1255        return faults;
1256}
1257
1258/*
1259 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1260 * considered part of a numa group's pseudo-interleaving set. Migrations
1261 * between these nodes are slowed down, to allow things to settle down.
1262 */
1263#define ACTIVE_NODE_FRACTION 3
1264
1265static bool numa_is_active_node(int nid, struct numa_group *ng)
1266{
1267        return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1268}
1269
1270/* Handle placement on systems where not all nodes are directly connected. */
1271static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1272                                        int maxdist, bool task)
1273{
1274        unsigned long score = 0;
1275        int node;
1276
1277        /*
1278         * All nodes are directly connected, and the same distance
1279         * from each other. No need for fancy placement algorithms.
1280         */
1281        if (sched_numa_topology_type == NUMA_DIRECT)
1282                return 0;
1283
1284        /*
1285         * This code is called for each node, introducing N^2 complexity,
1286         * which should be ok given the number of nodes rarely exceeds 8.
1287         */
1288        for_each_online_node(node) {
1289                unsigned long faults;
1290                int dist = node_distance(nid, node);
1291
1292                /*
1293                 * The furthest away nodes in the system are not interesting
1294                 * for placement; nid was already counted.
1295                 */
1296                if (dist == sched_max_numa_distance || node == nid)
1297                        continue;
1298
1299                /*
1300                 * On systems with a backplane NUMA topology, compare groups
1301                 * of nodes, and move tasks towards the group with the most
1302                 * memory accesses. When comparing two nodes at distance
1303                 * "hoplimit", only nodes closer by than "hoplimit" are part
1304                 * of each group. Skip other nodes.
1305                 */
1306                if (sched_numa_topology_type == NUMA_BACKPLANE &&
1307                                        dist >= maxdist)
1308                        continue;
1309
1310                /* Add up the faults from nearby nodes. */
1311                if (task)
1312                        faults = task_faults(p, node);
1313                else
1314                        faults = group_faults(p, node);
1315
1316                /*
1317                 * On systems with a glueless mesh NUMA topology, there are
1318                 * no fixed "groups of nodes". Instead, nodes that are not
1319                 * directly connected bounce traffic through intermediate
1320                 * nodes; a numa_group can occupy any set of nodes.
1321                 * The further away a node is, the less the faults count.
1322                 * This seems to result in good task placement.
1323                 */
1324                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1325                        faults *= (sched_max_numa_distance - dist);
1326                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1327                }
1328
1329                score += faults;
1330        }
1331
1332        return score;
1333}
1334
1335/*
1336 * These return the fraction of accesses done by a particular task, or
1337 * task group, on a particular numa node.  The group weight is given a
1338 * larger multiplier, in order to group tasks together that are almost
1339 * evenly spread out between numa nodes.
1340 */
1341static inline unsigned long task_weight(struct task_struct *p, int nid,
1342                                        int dist)
1343{
1344        unsigned long faults, total_faults;
1345
1346        if (!p->numa_faults)
1347                return 0;
1348
1349        total_faults = p->total_numa_faults;
1350
1351        if (!total_faults)
1352                return 0;
1353
1354        faults = task_faults(p, nid);
1355        faults += score_nearby_nodes(p, nid, dist, true);
1356
1357        return 1000 * faults / total_faults;
1358}
1359
1360static inline unsigned long group_weight(struct task_struct *p, int nid,
1361                                         int dist)
1362{
1363        struct numa_group *ng = deref_task_numa_group(p);
1364        unsigned long faults, total_faults;
1365
1366        if (!ng)
1367                return 0;
1368
1369        total_faults = ng->total_faults;
1370
1371        if (!total_faults)
1372                return 0;
1373
1374        faults = group_faults(p, nid);
1375        faults += score_nearby_nodes(p, nid, dist, false);
1376
1377        return 1000 * faults / total_faults;
1378}
1379
1380bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1381                                int src_nid, int dst_cpu)
1382{
1383        struct numa_group *ng = deref_curr_numa_group(p);
1384        int dst_nid = cpu_to_node(dst_cpu);
1385        int last_cpupid, this_cpupid;
1386
1387        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1388        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1389
1390        /*
1391         * Allow first faults or private faults to migrate immediately early in
1392         * the lifetime of a task. The magic number 4 is based on waiting for
1393         * two full passes of the "multi-stage node selection" test that is
1394         * executed below.
1395         */
1396        if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1397            (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1398                return true;
1399
1400        /*
1401         * Multi-stage node selection is used in conjunction with a periodic
1402         * migration fault to build a temporal task<->page relation. By using
1403         * a two-stage filter we remove short/unlikely relations.
1404         *
1405         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1406         * a task's usage of a particular page (n_p) per total usage of this
1407         * page (n_t) (in a given time-span) to a probability.
1408         *
1409         * Our periodic faults will sample this probability and getting the
1410         * same result twice in a row, given these samples are fully
1411         * independent, is then given by P(n)^2, provided our sample period
1412         * is sufficiently short compared to the usage pattern.
1413         *
1414         * This quadric squishes small probabilities, making it less likely we
1415         * act on an unlikely task<->page relation.
1416         */
1417        if (!cpupid_pid_unset(last_cpupid) &&
1418                                cpupid_to_nid(last_cpupid) != dst_nid)
1419                return false;
1420
1421        /* Always allow migrate on private faults */
1422        if (cpupid_match_pid(p, last_cpupid))
1423                return true;
1424
1425        /* A shared fault, but p->numa_group has not been set up yet. */
1426        if (!ng)
1427                return true;
1428
1429        /*
1430         * Destination node is much more heavily used than the source
1431         * node? Allow migration.
1432         */
1433        if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1434                                        ACTIVE_NODE_FRACTION)
1435                return true;
1436
1437        /*
1438         * Distribute memory according to CPU & memory use on each node,
1439         * with 3/4 hysteresis to avoid unnecessary memory migrations:
1440         *
1441         * faults_cpu(dst)   3   faults_cpu(src)
1442         * --------------- * - > ---------------
1443         * faults_mem(dst)   4   faults_mem(src)
1444         */
1445        return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1446               group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1447}
1448
1449/*
1450 * 'numa_type' describes the node at the moment of load balancing.
1451 */
1452enum numa_type {
1453        /* The node has spare capacity that can be used to run more tasks.  */
1454        node_has_spare = 0,
1455        /*
1456         * The node is fully used and the tasks don't compete for more CPU
1457         * cycles. Nevertheless, some tasks might wait before running.
1458         */
1459        node_fully_busy,
1460        /*
1461         * The node is overloaded and can't provide expected CPU cycles to all
1462         * tasks.
1463         */
1464        node_overloaded
1465};
1466
1467/* Cached statistics for all CPUs within a node */
1468struct numa_stats {
1469        unsigned long load;
1470        unsigned long runnable;
1471        unsigned long util;
1472        /* Total compute capacity of CPUs on a node */
1473        unsigned long compute_capacity;
1474        unsigned int nr_running;
1475        unsigned int weight;
1476        enum numa_type node_type;
1477        int idle_cpu;
1478};
1479
1480static inline bool is_core_idle(int cpu)
1481{
1482#ifdef CONFIG_SCHED_SMT
1483        int sibling;
1484
1485        for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1486                if (cpu == sibling)
1487                        continue;
1488
1489                if (!idle_cpu(cpu))
1490                        return false;
1491        }
1492#endif
1493
1494        return true;
1495}
1496
1497struct task_numa_env {
1498        struct task_struct *p;
1499
1500        int src_cpu, src_nid;
1501        int dst_cpu, dst_nid;
1502
1503        struct numa_stats src_stats, dst_stats;
1504
1505        int imbalance_pct;
1506        int dist;
1507
1508        struct task_struct *best_task;
1509        long best_imp;
1510        int best_cpu;
1511};
1512
1513static unsigned long cpu_load(struct rq *rq);
1514static unsigned long cpu_runnable(struct rq *rq);
1515static unsigned long cpu_util(int cpu);
1516static inline long adjust_numa_imbalance(int imbalance,
1517                                        int dst_running, int dst_weight);
1518
1519static inline enum
1520numa_type numa_classify(unsigned int imbalance_pct,
1521                         struct numa_stats *ns)
1522{
1523        if ((ns->nr_running > ns->weight) &&
1524            (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1525             ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1526                return node_overloaded;
1527
1528        if ((ns->nr_running < ns->weight) ||
1529            (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1530             ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1531                return node_has_spare;
1532
1533        return node_fully_busy;
1534}
1535
1536#ifdef CONFIG_SCHED_SMT
1537/* Forward declarations of select_idle_sibling helpers */
1538static inline bool test_idle_cores(int cpu, bool def);
1539static inline int numa_idle_core(int idle_core, int cpu)
1540{
1541        if (!static_branch_likely(&sched_smt_present) ||
1542            idle_core >= 0 || !test_idle_cores(cpu, false))
1543                return idle_core;
1544
1545        /*
1546         * Prefer cores instead of packing HT siblings
1547         * and triggering future load balancing.
1548         */
1549        if (is_core_idle(cpu))
1550                idle_core = cpu;
1551
1552        return idle_core;
1553}
1554#else
1555static inline int numa_idle_core(int idle_core, int cpu)
1556{
1557        return idle_core;
1558}
1559#endif
1560
1561/*
1562 * Gather all necessary information to make NUMA balancing placement
1563 * decisions that are compatible with standard load balancer. This
1564 * borrows code and logic from update_sg_lb_stats but sharing a
1565 * common implementation is impractical.
1566 */
1567static void update_numa_stats(struct task_numa_env *env,
1568                              struct numa_stats *ns, int nid,
1569                              bool find_idle)
1570{
1571        int cpu, idle_core = -1;
1572
1573        memset(ns, 0, sizeof(*ns));
1574        ns->idle_cpu = -1;
1575
1576        rcu_read_lock();
1577        for_each_cpu(cpu, cpumask_of_node(nid)) {
1578                struct rq *rq = cpu_rq(cpu);
1579
1580                ns->load += cpu_load(rq);
1581                ns->runnable += cpu_runnable(rq);
1582                ns->util += cpu_util(cpu);
1583                ns->nr_running += rq->cfs.h_nr_running;
1584                ns->compute_capacity += capacity_of(cpu);
1585
1586                if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1587                        if (READ_ONCE(rq->numa_migrate_on) ||
1588                            !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1589                                continue;
1590
1591                        if (ns->idle_cpu == -1)
1592                                ns->idle_cpu = cpu;
1593
1594                        idle_core = numa_idle_core(idle_core, cpu);
1595                }
1596        }
1597        rcu_read_unlock();
1598
1599        ns->weight = cpumask_weight(cpumask_of_node(nid));
1600
1601        ns->node_type = numa_classify(env->imbalance_pct, ns);
1602
1603        if (idle_core >= 0)
1604                ns->idle_cpu = idle_core;
1605}
1606
1607static void task_numa_assign(struct task_numa_env *env,
1608                             struct task_struct *p, long imp)
1609{
1610        struct rq *rq = cpu_rq(env->dst_cpu);
1611
1612        /* Check if run-queue part of active NUMA balance. */
1613        if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1614                int cpu;
1615                int start = env->dst_cpu;
1616
1617                /* Find alternative idle CPU. */
1618                for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1619                        if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1620                            !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1621                                continue;
1622                        }
1623
1624                        env->dst_cpu = cpu;
1625                        rq = cpu_rq(env->dst_cpu);
1626                        if (!xchg(&rq->numa_migrate_on, 1))
1627                                goto assign;
1628                }
1629
1630                /* Failed to find an alternative idle CPU */
1631                return;
1632        }
1633
1634assign:
1635        /*
1636         * Clear previous best_cpu/rq numa-migrate flag, since task now
1637         * found a better CPU to move/swap.
1638         */
1639        if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1640                rq = cpu_rq(env->best_cpu);
1641                WRITE_ONCE(rq->numa_migrate_on, 0);
1642        }
1643
1644        if (env->best_task)
1645                put_task_struct(env->best_task);
1646        if (p)
1647                get_task_struct(p);
1648
1649        env->best_task = p;
1650        env->best_imp = imp;
1651        env->best_cpu = env->dst_cpu;
1652}
1653
1654static bool load_too_imbalanced(long src_load, long dst_load,
1655                                struct task_numa_env *env)
1656{
1657        long imb, old_imb;
1658        long orig_src_load, orig_dst_load;
1659        long src_capacity, dst_capacity;
1660
1661        /*
1662         * The load is corrected for the CPU capacity available on each node.
1663         *
1664         * src_load        dst_load
1665         * ------------ vs ---------
1666         * src_capacity    dst_capacity
1667         */
1668        src_capacity = env->src_stats.compute_capacity;
1669        dst_capacity = env->dst_stats.compute_capacity;
1670
1671        imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1672
1673        orig_src_load = env->src_stats.load;
1674        orig_dst_load = env->dst_stats.load;
1675
1676        old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1677
1678        /* Would this change make things worse? */
1679        return (imb > old_imb);
1680}
1681
1682/*
1683 * Maximum NUMA importance can be 1998 (2*999);
1684 * SMALLIMP @ 30 would be close to 1998/64.
1685 * Used to deter task migration.
1686 */
1687#define SMALLIMP        30
1688
1689/*
1690 * This checks if the overall compute and NUMA accesses of the system would
1691 * be improved if the source tasks was migrated to the target dst_cpu taking
1692 * into account that it might be best if task running on the dst_cpu should
1693 * be exchanged with the source task
1694 */
1695static bool task_numa_compare(struct task_numa_env *env,
1696                              long taskimp, long groupimp, bool maymove)
1697{
1698        struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1699        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1700        long imp = p_ng ? groupimp : taskimp;
1701        struct task_struct *cur;
1702        long src_load, dst_load;
1703        int dist = env->dist;
1704        long moveimp = imp;
1705        long load;
1706        bool stopsearch = false;
1707
1708        if (READ_ONCE(dst_rq->numa_migrate_on))
1709                return false;
1710
1711        rcu_read_lock();
1712        cur = rcu_dereference(dst_rq->curr);
1713        if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1714                cur = NULL;
1715
1716        /*
1717         * Because we have preemption enabled we can get migrated around and
1718         * end try selecting ourselves (current == env->p) as a swap candidate.
1719         */
1720        if (cur == env->p) {
1721                stopsearch = true;
1722                goto unlock;
1723        }
1724
1725        if (!cur) {
1726                if (maymove && moveimp >= env->best_imp)
1727                        goto assign;
1728                else
1729                        goto unlock;
1730        }
1731
1732        /* Skip this swap candidate if cannot move to the source cpu. */
1733        if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1734                goto unlock;
1735
1736        /*
1737         * Skip this swap candidate if it is not moving to its preferred
1738         * node and the best task is.
1739         */
1740        if (env->best_task &&
1741            env->best_task->numa_preferred_nid == env->src_nid &&
1742            cur->numa_preferred_nid != env->src_nid) {
1743                goto unlock;
1744        }
1745
1746        /*
1747         * "imp" is the fault differential for the source task between the
1748         * source and destination node. Calculate the total differential for
1749         * the source task and potential destination task. The more negative
1750         * the value is, the more remote accesses that would be expected to
1751         * be incurred if the tasks were swapped.
1752         *
1753         * If dst and source tasks are in the same NUMA group, or not
1754         * in any group then look only at task weights.
1755         */
1756        cur_ng = rcu_dereference(cur->numa_group);
1757        if (cur_ng == p_ng) {
1758                imp = taskimp + task_weight(cur, env->src_nid, dist) -
1759                      task_weight(cur, env->dst_nid, dist);
1760                /*
1761                 * Add some hysteresis to prevent swapping the
1762                 * tasks within a group over tiny differences.
1763                 */
1764                if (cur_ng)
1765                        imp -= imp / 16;
1766        } else {
1767                /*
1768                 * Compare the group weights. If a task is all by itself
1769                 * (not part of a group), use the task weight instead.
1770                 */
1771                if (cur_ng && p_ng)
1772                        imp += group_weight(cur, env->src_nid, dist) -
1773                               group_weight(cur, env->dst_nid, dist);
1774                else
1775                        imp += task_weight(cur, env->src_nid, dist) -
1776                               task_weight(cur, env->dst_nid, dist);
1777        }
1778
1779        /* Discourage picking a task already on its preferred node */
1780        if (cur->numa_preferred_nid == env->dst_nid)
1781                imp -= imp / 16;
1782
1783        /*
1784         * Encourage picking a task that moves to its preferred node.
1785         * This potentially makes imp larger than it's maximum of
1786         * 1998 (see SMALLIMP and task_weight for why) but in this
1787         * case, it does not matter.
1788         */
1789        if (cur->numa_preferred_nid == env->src_nid)
1790                imp += imp / 8;
1791
1792        if (maymove && moveimp > imp && moveimp > env->best_imp) {
1793                imp = moveimp;
1794                cur = NULL;
1795                goto assign;
1796        }
1797
1798        /*
1799         * Prefer swapping with a task moving to its preferred node over a
1800         * task that is not.
1801         */
1802        if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1803            env->best_task->numa_preferred_nid != env->src_nid) {
1804                goto assign;
1805        }
1806
1807        /*
1808         * If the NUMA importance is less than SMALLIMP,
1809         * task migration might only result in ping pong
1810         * of tasks and also hurt performance due to cache
1811         * misses.
1812         */
1813        if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1814                goto unlock;
1815
1816        /*
1817         * In the overloaded case, try and keep the load balanced.
1818         */
1819        load = task_h_load(env->p) - task_h_load(cur);
1820        if (!load)
1821                goto assign;
1822
1823        dst_load = env->dst_stats.load + load;
1824        src_load = env->src_stats.load - load;
1825
1826        if (load_too_imbalanced(src_load, dst_load, env))
1827                goto unlock;
1828
1829assign:
1830        /* Evaluate an idle CPU for a task numa move. */
1831        if (!cur) {
1832                int cpu = env->dst_stats.idle_cpu;
1833
1834                /* Nothing cached so current CPU went idle since the search. */
1835                if (cpu < 0)
1836                        cpu = env->dst_cpu;
1837
1838                /*
1839                 * If the CPU is no longer truly idle and the previous best CPU
1840                 * is, keep using it.
1841                 */
1842                if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1843                    idle_cpu(env->best_cpu)) {
1844                        cpu = env->best_cpu;
1845                }
1846
1847                env->dst_cpu = cpu;
1848        }
1849
1850        task_numa_assign(env, cur, imp);
1851
1852        /*
1853         * If a move to idle is allowed because there is capacity or load
1854         * balance improves then stop the search. While a better swap
1855         * candidate may exist, a search is not free.
1856         */
1857        if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1858                stopsearch = true;
1859
1860        /*
1861         * If a swap candidate must be identified and the current best task
1862         * moves its preferred node then stop the search.
1863         */
1864        if (!maymove && env->best_task &&
1865            env->best_task->numa_preferred_nid == env->src_nid) {
1866                stopsearch = true;
1867        }
1868unlock:
1869        rcu_read_unlock();
1870
1871        return stopsearch;
1872}
1873
1874static void task_numa_find_cpu(struct task_numa_env *env,
1875                                long taskimp, long groupimp)
1876{
1877        bool maymove = false;
1878        int cpu;
1879
1880        /*
1881         * If dst node has spare capacity, then check if there is an
1882         * imbalance that would be overruled by the load balancer.
1883         */
1884        if (env->dst_stats.node_type == node_has_spare) {
1885                unsigned int imbalance;
1886                int src_running, dst_running;
1887
1888                /*
1889                 * Would movement cause an imbalance? Note that if src has
1890                 * more running tasks that the imbalance is ignored as the
1891                 * move improves the imbalance from the perspective of the
1892                 * CPU load balancer.
1893                 * */
1894                src_running = env->src_stats.nr_running - 1;
1895                dst_running = env->dst_stats.nr_running + 1;
1896                imbalance = max(0, dst_running - src_running);
1897                imbalance = adjust_numa_imbalance(imbalance, dst_running,
1898                                                        env->dst_stats.weight);
1899
1900                /* Use idle CPU if there is no imbalance */
1901                if (!imbalance) {
1902                        maymove = true;
1903                        if (env->dst_stats.idle_cpu >= 0) {
1904                                env->dst_cpu = env->dst_stats.idle_cpu;
1905                                task_numa_assign(env, NULL, 0);
1906                                return;
1907                        }
1908                }
1909        } else {
1910                long src_load, dst_load, load;
1911                /*
1912                 * If the improvement from just moving env->p direction is better
1913                 * than swapping tasks around, check if a move is possible.
1914                 */
1915                load = task_h_load(env->p);
1916                dst_load = env->dst_stats.load + load;
1917                src_load = env->src_stats.load - load;
1918                maymove = !load_too_imbalanced(src_load, dst_load, env);
1919        }
1920
1921        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1922                /* Skip this CPU if the source task cannot migrate */
1923                if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1924                        continue;
1925
1926                env->dst_cpu = cpu;
1927                if (task_numa_compare(env, taskimp, groupimp, maymove))
1928                        break;
1929        }
1930}
1931
1932static int task_numa_migrate(struct task_struct *p)
1933{
1934        struct task_numa_env env = {
1935                .p = p,
1936
1937                .src_cpu = task_cpu(p),
1938                .src_nid = task_node(p),
1939
1940                .imbalance_pct = 112,
1941
1942                .best_task = NULL,
1943                .best_imp = 0,
1944                .best_cpu = -1,
1945        };
1946        unsigned long taskweight, groupweight;
1947        struct sched_domain *sd;
1948        long taskimp, groupimp;
1949        struct numa_group *ng;
1950        struct rq *best_rq;
1951        int nid, ret, dist;
1952
1953        /*
1954         * Pick the lowest SD_NUMA domain, as that would have the smallest
1955         * imbalance and would be the first to start moving tasks about.
1956         *
1957         * And we want to avoid any moving of tasks about, as that would create
1958         * random movement of tasks -- counter the numa conditions we're trying
1959         * to satisfy here.
1960         */
1961        rcu_read_lock();
1962        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1963        if (sd)
1964                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1965        rcu_read_unlock();
1966
1967        /*
1968         * Cpusets can break the scheduler domain tree into smaller
1969         * balance domains, some of which do not cross NUMA boundaries.
1970         * Tasks that are "trapped" in such domains cannot be migrated
1971         * elsewhere, so there is no point in (re)trying.
1972         */
1973        if (unlikely(!sd)) {
1974                sched_setnuma(p, task_node(p));
1975                return -EINVAL;
1976        }
1977
1978        env.dst_nid = p->numa_preferred_nid;
1979        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1980        taskweight = task_weight(p, env.src_nid, dist);
1981        groupweight = group_weight(p, env.src_nid, dist);
1982        update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1983        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1984        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1985        update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1986
1987        /* Try to find a spot on the preferred nid. */
1988        task_numa_find_cpu(&env, taskimp, groupimp);
1989
1990        /*
1991         * Look at other nodes in these cases:
1992         * - there is no space available on the preferred_nid
1993         * - the task is part of a numa_group that is interleaved across
1994         *   multiple NUMA nodes; in order to better consolidate the group,
1995         *   we need to check other locations.
1996         */
1997        ng = deref_curr_numa_group(p);
1998        if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1999                for_each_online_node(nid) {
2000                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
2001                                continue;
2002
2003                        dist = node_distance(env.src_nid, env.dst_nid);
2004                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
2005                                                dist != env.dist) {
2006                                taskweight = task_weight(p, env.src_nid, dist);
2007                                groupweight = group_weight(p, env.src_nid, dist);
2008                        }
2009
2010                        /* Only consider nodes where both task and groups benefit */
2011                        taskimp = task_weight(p, nid, dist) - taskweight;
2012                        groupimp = group_weight(p, nid, dist) - groupweight;
2013                        if (taskimp < 0 && groupimp < 0)
2014                                continue;
2015
2016                        env.dist = dist;
2017                        env.dst_nid = nid;
2018                        update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2019                        task_numa_find_cpu(&env, taskimp, groupimp);
2020                }
2021        }
2022
2023        /*
2024         * If the task is part of a workload that spans multiple NUMA nodes,
2025         * and is migrating into one of the workload's active nodes, remember
2026         * this node as the task's preferred numa node, so the workload can
2027         * settle down.
2028         * A task that migrated to a second choice node will be better off
2029         * trying for a better one later. Do not set the preferred node here.
2030         */
2031        if (ng) {
2032                if (env.best_cpu == -1)
2033                        nid = env.src_nid;
2034                else
2035                        nid = cpu_to_node(env.best_cpu);
2036
2037                if (nid != p->numa_preferred_nid)
2038                        sched_setnuma(p, nid);
2039        }
2040
2041        /* No better CPU than the current one was found. */
2042        if (env.best_cpu == -1) {
2043                trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2044                return -EAGAIN;
2045        }
2046
2047        best_rq = cpu_rq(env.best_cpu);
2048        if (env.best_task == NULL) {
2049                ret = migrate_task_to(p, env.best_cpu);
2050                WRITE_ONCE(best_rq->numa_migrate_on, 0);
2051                if (ret != 0)
2052                        trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2053                return ret;
2054        }
2055
2056        ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2057        WRITE_ONCE(best_rq->numa_migrate_on, 0);
2058
2059        if (ret != 0)
2060                trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2061        put_task_struct(env.best_task);
2062        return ret;
2063}
2064
2065/* Attempt to migrate a task to a CPU on the preferred node. */
2066static void numa_migrate_preferred(struct task_struct *p)
2067{
2068        unsigned long interval = HZ;
2069
2070        /* This task has no NUMA fault statistics yet */
2071        if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2072                return;
2073
2074        /* Periodically retry migrating the task to the preferred node */
2075        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2076        p->numa_migrate_retry = jiffies + interval;
2077
2078        /* Success if task is already running on preferred CPU */
2079        if (task_node(p) == p->numa_preferred_nid)
2080                return;
2081
2082        /* Otherwise, try migrate to a CPU on the preferred node */
2083        task_numa_migrate(p);
2084}
2085
2086/*
2087 * Find out how many nodes on the workload is actively running on. Do this by
2088 * tracking the nodes from which NUMA hinting faults are triggered. This can
2089 * be different from the set of nodes where the workload's memory is currently
2090 * located.
2091 */
2092static void numa_group_count_active_nodes(struct numa_group *numa_group)
2093{
2094        unsigned long faults, max_faults = 0;
2095        int nid, active_nodes = 0;
2096
2097        for_each_online_node(nid) {
2098                faults = group_faults_cpu(numa_group, nid);
2099                if (faults > max_faults)
2100                        max_faults = faults;
2101        }
2102
2103        for_each_online_node(nid) {
2104                faults = group_faults_cpu(numa_group, nid);
2105                if (faults * ACTIVE_NODE_FRACTION > max_faults)
2106                        active_nodes++;
2107        }
2108
2109        numa_group->max_faults_cpu = max_faults;
2110        numa_group->active_nodes = active_nodes;
2111}
2112
2113/*
2114 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2115 * increments. The more local the fault statistics are, the higher the scan
2116 * period will be for the next scan window. If local/(local+remote) ratio is
2117 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2118 * the scan period will decrease. Aim for 70% local accesses.
2119 */
2120#define NUMA_PERIOD_SLOTS 10
2121#define NUMA_PERIOD_THRESHOLD 7
2122
2123/*
2124 * Increase the scan period (slow down scanning) if the majority of
2125 * our memory is already on our local node, or if the majority of
2126 * the page accesses are shared with other processes.
2127 * Otherwise, decrease the scan period.
2128 */
2129static void update_task_scan_period(struct task_struct *p,
2130                        unsigned long shared, unsigned long private)
2131{
2132        unsigned int period_slot;
2133        int lr_ratio, ps_ratio;
2134        int diff;
2135
2136        unsigned long remote = p->numa_faults_locality[0];
2137        unsigned long local = p->numa_faults_locality[1];
2138
2139        /*
2140         * If there were no record hinting faults then either the task is
2141         * completely idle or all activity is areas that are not of interest
2142         * to automatic numa balancing. Related to that, if there were failed
2143         * migration then it implies we are migrating too quickly or the local
2144         * node is overloaded. In either case, scan slower
2145         */
2146        if (local + shared == 0 || p->numa_faults_locality[2]) {
2147                p->numa_scan_period = min(p->numa_scan_period_max,
2148                        p->numa_scan_period << 1);
2149
2150                p->mm->numa_next_scan = jiffies +
2151                        msecs_to_jiffies(p->numa_scan_period);
2152
2153                return;
2154        }
2155
2156        /*
2157         * Prepare to scale scan period relative to the current period.
2158         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
2159         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2160         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2161         */
2162        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2163        lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2164        ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2165
2166        if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2167                /*
2168                 * Most memory accesses are local. There is no need to
2169                 * do fast NUMA scanning, since memory is already local.
2170                 */
2171                int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2172                if (!slot)
2173                        slot = 1;
2174                diff = slot * period_slot;
2175        } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2176                /*
2177                 * Most memory accesses are shared with other tasks.
2178                 * There is no point in continuing fast NUMA scanning,
2179                 * since other tasks may just move the memory elsewhere.
2180                 */
2181                int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2182                if (!slot)
2183                        slot = 1;
2184                diff = slot * period_slot;
2185        } else {
2186                /*
2187                 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2188                 * yet they are not on the local NUMA node. Speed up
2189                 * NUMA scanning to get the memory moved over.
2190                 */
2191                int ratio = max(lr_ratio, ps_ratio);
2192                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2193        }
2194
2195        p->numa_scan_period = clamp(p->numa_scan_period + diff,
2196                        task_scan_min(p), task_scan_max(p));
2197        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2198}
2199
2200/*
2201 * Get the fraction of time the task has been running since the last
2202 * NUMA placement cycle. The scheduler keeps similar statistics, but
2203 * decays those on a 32ms period, which is orders of magnitude off
2204 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2205 * stats only if the task is so new there are no NUMA statistics yet.
2206 */
2207static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2208{
2209        u64 runtime, delta, now;
2210        /* Use the start of this time slice to avoid calculations. */
2211        now = p->se.exec_start;
2212        runtime = p->se.sum_exec_runtime;
2213
2214        if (p->last_task_numa_placement) {
2215                delta = runtime - p->last_sum_exec_runtime;
2216                *period = now - p->last_task_numa_placement;
2217
2218                /* Avoid time going backwards, prevent potential divide error: */
2219                if (unlikely((s64)*period < 0))
2220                        *period = 0;
2221        } else {
2222                delta = p->se.avg.load_sum;
2223                *period = LOAD_AVG_MAX;
2224        }
2225
2226        p->last_sum_exec_runtime = runtime;
2227        p->last_task_numa_placement = now;
2228
2229        return delta;
2230}
2231
2232/*
2233 * Determine the preferred nid for a task in a numa_group. This needs to
2234 * be done in a way that produces consistent results with group_weight,
2235 * otherwise workloads might not converge.
2236 */
2237static int preferred_group_nid(struct task_struct *p, int nid)
2238{
2239        nodemask_t nodes;
2240        int dist;
2241
2242        /* Direct connections between all NUMA nodes. */
2243        if (sched_numa_topology_type == NUMA_DIRECT)
2244                return nid;
2245
2246        /*
2247         * On a system with glueless mesh NUMA topology, group_weight
2248         * scores nodes according to the number of NUMA hinting faults on
2249         * both the node itself, and on nearby nodes.
2250         */
2251        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2252                unsigned long score, max_score = 0;
2253                int node, max_node = nid;
2254
2255                dist = sched_max_numa_distance;
2256
2257                for_each_online_node(node) {
2258                        score = group_weight(p, node, dist);
2259                        if (score > max_score) {
2260                                max_score = score;
2261                                max_node = node;
2262                        }
2263                }
2264                return max_node;
2265        }
2266
2267        /*
2268         * Finding the preferred nid in a system with NUMA backplane
2269         * interconnect topology is more involved. The goal is to locate
2270         * tasks from numa_groups near each other in the system, and
2271         * untangle workloads from different sides of the system. This requires
2272         * searching down the hierarchy of node groups, recursively searching
2273         * inside the highest scoring group of nodes. The nodemask tricks
2274         * keep the complexity of the search down.
2275         */
2276        nodes = node_online_map;
2277        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2278                unsigned long max_faults = 0;
2279                nodemask_t max_group = NODE_MASK_NONE;
2280                int a, b;
2281
2282                /* Are there nodes at this distance from each other? */
2283                if (!find_numa_distance(dist))
2284                        continue;
2285
2286                for_each_node_mask(a, nodes) {
2287                        unsigned long faults = 0;
2288                        nodemask_t this_group;
2289                        nodes_clear(this_group);
2290
2291                        /* Sum group's NUMA faults; includes a==b case. */
2292                        for_each_node_mask(b, nodes) {
2293                                if (node_distance(a, b) < dist) {
2294                                        faults += group_faults(p, b);
2295                                        node_set(b, this_group);
2296                                        node_clear(b, nodes);
2297                                }
2298                        }
2299
2300                        /* Remember the top group. */
2301                        if (faults > max_faults) {
2302                                max_faults = faults;
2303                                max_group = this_group;
2304                                /*
2305                                 * subtle: at the smallest distance there is
2306                                 * just one node left in each "group", the
2307                                 * winner is the preferred nid.
2308                                 */
2309                                nid = a;
2310                        }
2311                }
2312                /* Next round, evaluate the nodes within max_group. */
2313                if (!max_faults)
2314                        break;
2315                nodes = max_group;
2316        }
2317        return nid;
2318}
2319
2320static void task_numa_placement(struct task_struct *p)
2321{
2322        int seq, nid, max_nid = NUMA_NO_NODE;
2323        unsigned long max_faults = 0;
2324        unsigned long fault_types[2] = { 0, 0 };
2325        unsigned long total_faults;
2326        u64 runtime, period;
2327        spinlock_t *group_lock = NULL;
2328        struct numa_group *ng;
2329
2330        /*
2331         * The p->mm->numa_scan_seq field gets updated without
2332         * exclusive access. Use READ_ONCE() here to ensure
2333         * that the field is read in a single access:
2334         */
2335        seq = READ_ONCE(p->mm->numa_scan_seq);
2336        if (p->numa_scan_seq == seq)
2337                return;
2338        p->numa_scan_seq = seq;
2339        p->numa_scan_period_max = task_scan_max(p);
2340
2341        total_faults = p->numa_faults_locality[0] +
2342                       p->numa_faults_locality[1];
2343        runtime = numa_get_avg_runtime(p, &period);
2344
2345        /* If the task is part of a group prevent parallel updates to group stats */
2346        ng = deref_curr_numa_group(p);
2347        if (ng) {
2348                group_lock = &ng->lock;
2349                spin_lock_irq(group_lock);
2350        }
2351
2352        /* Find the node with the highest number of faults */
2353        for_each_online_node(nid) {
2354                /* Keep track of the offsets in numa_faults array */
2355                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2356                unsigned long faults = 0, group_faults = 0;
2357                int priv;
2358
2359                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2360                        long diff, f_diff, f_weight;
2361
2362                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2363                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2364                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2365                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2366
2367                        /* Decay existing window, copy faults since last scan */
2368                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2369                        fault_types[priv] += p->numa_faults[membuf_idx];
2370                        p->numa_faults[membuf_idx] = 0;
2371
2372                        /*
2373                         * Normalize the faults_from, so all tasks in a group
2374                         * count according to CPU use, instead of by the raw
2375                         * number of faults. Tasks with little runtime have
2376                         * little over-all impact on throughput, and thus their
2377                         * faults are less important.
2378                         */
2379                        f_weight = div64_u64(runtime << 16, period + 1);
2380                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2381                                   (total_faults + 1);
2382                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2383                        p->numa_faults[cpubuf_idx] = 0;
2384
2385                        p->numa_faults[mem_idx] += diff;
2386                        p->numa_faults[cpu_idx] += f_diff;
2387                        faults += p->numa_faults[mem_idx];
2388                        p->total_numa_faults += diff;
2389                        if (ng) {
2390                                /*
2391                                 * safe because we can only change our own group
2392                                 *
2393                                 * mem_idx represents the offset for a given
2394                                 * nid and priv in a specific region because it
2395                                 * is at the beginning of the numa_faults array.
2396                                 */
2397                                ng->faults[mem_idx] += diff;
2398                                ng->faults_cpu[mem_idx] += f_diff;
2399                                ng->total_faults += diff;
2400                                group_faults += ng->faults[mem_idx];
2401                        }
2402                }
2403
2404                if (!ng) {
2405                        if (faults > max_faults) {
2406                                max_faults = faults;
2407                                max_nid = nid;
2408                        }
2409                } else if (group_faults > max_faults) {
2410                        max_faults = group_faults;
2411                        max_nid = nid;
2412                }
2413        }
2414
2415        if (ng) {
2416                numa_group_count_active_nodes(ng);
2417                spin_unlock_irq(group_lock);
2418                max_nid = preferred_group_nid(p, max_nid);
2419        }
2420
2421        if (max_faults) {
2422                /* Set the new preferred node */
2423                if (max_nid != p->numa_preferred_nid)
2424                        sched_setnuma(p, max_nid);
2425        }
2426
2427        update_task_scan_period(p, fault_types[0], fault_types[1]);
2428}
2429
2430static inline int get_numa_group(struct numa_group *grp)
2431{
2432        return refcount_inc_not_zero(&grp->refcount);
2433}
2434
2435static inline void put_numa_group(struct numa_group *grp)
2436{
2437        if (refcount_dec_and_test(&grp->refcount))
2438                kfree_rcu(grp, rcu);
2439}
2440
2441static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2442                        int *priv)
2443{
2444        struct numa_group *grp, *my_grp;
2445        struct task_struct *tsk;
2446        bool join = false;
2447        int cpu = cpupid_to_cpu(cpupid);
2448        int i;
2449
2450        if (unlikely(!deref_curr_numa_group(p))) {
2451                unsigned int size = sizeof(struct numa_group) +
2452                                    4*nr_node_ids*sizeof(unsigned long);
2453
2454                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2455                if (!grp)
2456                        return;
2457
2458                refcount_set(&grp->refcount, 1);
2459                grp->active_nodes = 1;
2460                grp->max_faults_cpu = 0;
2461                spin_lock_init(&grp->lock);
2462                grp->gid = p->pid;
2463                /* Second half of the array tracks nids where faults happen */
2464                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2465                                                nr_node_ids;
2466
2467                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2468                        grp->faults[i] = p->numa_faults[i];
2469
2470                grp->total_faults = p->total_numa_faults;
2471
2472                grp->nr_tasks++;
2473                rcu_assign_pointer(p->numa_group, grp);
2474        }
2475
2476        rcu_read_lock();
2477        tsk = READ_ONCE(cpu_rq(cpu)->curr);
2478
2479        if (!cpupid_match_pid(tsk, cpupid))
2480                goto no_join;
2481
2482        grp = rcu_dereference(tsk->numa_group);
2483        if (!grp)
2484                goto no_join;
2485
2486        my_grp = deref_curr_numa_group(p);
2487        if (grp == my_grp)
2488                goto no_join;
2489
2490        /*
2491         * Only join the other group if its bigger; if we're the bigger group,
2492         * the other task will join us.
2493         */
2494        if (my_grp->nr_tasks > grp->nr_tasks)
2495                goto no_join;
2496
2497        /*
2498         * Tie-break on the grp address.
2499         */
2500        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2501                goto no_join;
2502
2503        /* Always join threads in the same process. */
2504        if (tsk->mm == current->mm)
2505                join = true;
2506
2507        /* Simple filter to avoid false positives due to PID collisions */
2508        if (flags & TNF_SHARED)
2509                join = true;
2510
2511        /* Update priv based on whether false sharing was detected */
2512        *priv = !join;
2513
2514        if (join && !get_numa_group(grp))
2515                goto no_join;
2516
2517        rcu_read_unlock();
2518
2519        if (!join)
2520                return;
2521
2522        BUG_ON(irqs_disabled());
2523        double_lock_irq(&my_grp->lock, &grp->lock);
2524
2525        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2526                my_grp->faults[i] -= p->numa_faults[i];
2527                grp->faults[i] += p->numa_faults[i];
2528        }
2529        my_grp->total_faults -= p->total_numa_faults;
2530        grp->total_faults += p->total_numa_faults;
2531
2532        my_grp->nr_tasks--;
2533        grp->nr_tasks++;
2534
2535        spin_unlock(&my_grp->lock);
2536        spin_unlock_irq(&grp->lock);
2537
2538        rcu_assign_pointer(p->numa_group, grp);
2539
2540        put_numa_group(my_grp);
2541        return;
2542
2543no_join:
2544        rcu_read_unlock();
2545        return;
2546}
2547
2548/*
2549 * Get rid of NUMA statistics associated with a task (either current or dead).
2550 * If @final is set, the task is dead and has reached refcount zero, so we can
2551 * safely free all relevant data structures. Otherwise, there might be
2552 * concurrent reads from places like load balancing and procfs, and we should
2553 * reset the data back to default state without freeing ->numa_faults.
2554 */
2555void task_numa_free(struct task_struct *p, bool final)
2556{
2557        /* safe: p either is current or is being freed by current */
2558        struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2559        unsigned long *numa_faults = p->numa_faults;
2560        unsigned long flags;
2561        int i;
2562
2563        if (!numa_faults)
2564                return;
2565
2566        if (grp) {
2567                spin_lock_irqsave(&grp->lock, flags);
2568                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2569                        grp->faults[i] -= p->numa_faults[i];
2570                grp->total_faults -= p->total_numa_faults;
2571
2572                grp->nr_tasks--;
2573                spin_unlock_irqrestore(&grp->lock, flags);
2574                RCU_INIT_POINTER(p->numa_group, NULL);
2575                put_numa_group(grp);
2576        }
2577
2578        if (final) {
2579                p->numa_faults = NULL;
2580                kfree(numa_faults);
2581        } else {
2582                p->total_numa_faults = 0;
2583                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2584                        numa_faults[i] = 0;
2585        }
2586}
2587
2588/*
2589 * Got a PROT_NONE fault for a page on @node.
2590 */
2591void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2592{
2593        struct task_struct *p = current;
2594        bool migrated = flags & TNF_MIGRATED;
2595        int cpu_node = task_node(current);
2596        int local = !!(flags & TNF_FAULT_LOCAL);
2597        struct numa_group *ng;
2598        int priv;
2599
2600        if (!static_branch_likely(&sched_numa_balancing))
2601                return;
2602
2603        /* for example, ksmd faulting in a user's mm */
2604        if (!p->mm)
2605                return;
2606
2607        /* Allocate buffer to track faults on a per-node basis */
2608        if (unlikely(!p->numa_faults)) {
2609                int size = sizeof(*p->numa_faults) *
2610                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2611
2612                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2613                if (!p->numa_faults)
2614                        return;
2615
2616                p->total_numa_faults = 0;
2617                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2618        }
2619
2620        /*
2621         * First accesses are treated as private, otherwise consider accesses
2622         * to be private if the accessing pid has not changed
2623         */
2624        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2625                priv = 1;
2626        } else {
2627                priv = cpupid_match_pid(p, last_cpupid);
2628                if (!priv && !(flags & TNF_NO_GROUP))
2629                        task_numa_group(p, last_cpupid, flags, &priv);
2630        }
2631
2632        /*
2633         * If a workload spans multiple NUMA nodes, a shared fault that
2634         * occurs wholly within the set of nodes that the workload is
2635         * actively using should be counted as local. This allows the
2636         * scan rate to slow down when a workload has settled down.
2637         */
2638        ng = deref_curr_numa_group(p);
2639        if (!priv && !local && ng && ng->active_nodes > 1 &&
2640                                numa_is_active_node(cpu_node, ng) &&
2641                                numa_is_active_node(mem_node, ng))
2642                local = 1;
2643
2644        /*
2645         * Retry to migrate task to preferred node periodically, in case it
2646         * previously failed, or the scheduler moved us.
2647         */
2648        if (time_after(jiffies, p->numa_migrate_retry)) {
2649                task_numa_placement(p);
2650                numa_migrate_preferred(p);
2651        }
2652
2653        if (migrated)
2654                p->numa_pages_migrated += pages;
2655        if (flags & TNF_MIGRATE_FAIL)
2656                p->numa_faults_locality[2] += pages;
2657
2658        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2659        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2660        p->numa_faults_locality[local] += pages;
2661}
2662
2663static void reset_ptenuma_scan(struct task_struct *p)
2664{
2665        /*
2666         * We only did a read acquisition of the mmap sem, so
2667         * p->mm->numa_scan_seq is written to without exclusive access
2668         * and the update is not guaranteed to be atomic. That's not
2669         * much of an issue though, since this is just used for
2670         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2671         * expensive, to avoid any form of compiler optimizations:
2672         */
2673        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2674        p->mm->numa_scan_offset = 0;
2675}
2676
2677/*
2678 * The expensive part of numa migration is done from task_work context.
2679 * Triggered from task_tick_numa().
2680 */
2681static void task_numa_work(struct callback_head *work)
2682{
2683        unsigned long migrate, next_scan, now = jiffies;
2684        struct task_struct *p = current;
2685        struct mm_struct *mm = p->mm;
2686        u64 runtime = p->se.sum_exec_runtime;
2687        struct vm_area_struct *vma;
2688        unsigned long start, end;
2689        unsigned long nr_pte_updates = 0;
2690        long pages, virtpages;
2691
2692        SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2693
2694        work->next = work;
2695        /*
2696         * Who cares about NUMA placement when they're dying.
2697         *
2698         * NOTE: make sure not to dereference p->mm before this check,
2699         * exit_task_work() happens _after_ exit_mm() so we could be called
2700         * without p->mm even though we still had it when we enqueued this
2701         * work.
2702         */
2703        if (p->flags & PF_EXITING)
2704                return;
2705
2706        if (!mm->numa_next_scan) {
2707                mm->numa_next_scan = now +
2708                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2709        }
2710
2711        /*
2712         * Enforce maximal scan/migration frequency..
2713         */
2714        migrate = mm->numa_next_scan;
2715        if (time_before(now, migrate))
2716                return;
2717
2718        if (p->numa_scan_period == 0) {
2719                p->numa_scan_period_max = task_scan_max(p);
2720                p->numa_scan_period = task_scan_start(p);
2721        }
2722
2723        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2724        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2725                return;
2726
2727        /*
2728         * Delay this task enough that another task of this mm will likely win
2729         * the next time around.
2730         */
2731        p->node_stamp += 2 * TICK_NSEC;
2732
2733        start = mm->numa_scan_offset;
2734        pages = sysctl_numa_balancing_scan_size;
2735        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2736        virtpages = pages * 8;     /* Scan up to this much virtual space */
2737        if (!pages)
2738                return;
2739
2740
2741        if (!mmap_read_trylock(mm))
2742                return;
2743        vma = find_vma(mm, start);
2744        if (!vma) {
2745                reset_ptenuma_scan(p);
2746                start = 0;
2747                vma = mm->mmap;
2748        }
2749        for (; vma; vma = vma->vm_next) {
2750                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2751                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2752                        continue;
2753                }
2754
2755                /*
2756                 * Shared library pages mapped by multiple processes are not
2757                 * migrated as it is expected they are cache replicated. Avoid
2758                 * hinting faults in read-only file-backed mappings or the vdso
2759                 * as migrating the pages will be of marginal benefit.
2760                 */
2761                if (!vma->vm_mm ||
2762                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2763                        continue;
2764
2765                /*
2766                 * Skip inaccessible VMAs to avoid any confusion between
2767                 * PROT_NONE and NUMA hinting ptes
2768                 */
2769                if (!vma_is_accessible(vma))
2770                        continue;
2771
2772                do {
2773                        start = max(start, vma->vm_start);
2774                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2775                        end = min(end, vma->vm_end);
2776                        nr_pte_updates = change_prot_numa(vma, start, end);
2777
2778                        /*
2779                         * Try to scan sysctl_numa_balancing_size worth of
2780                         * hpages that have at least one present PTE that
2781                         * is not already pte-numa. If the VMA contains
2782                         * areas that are unused or already full of prot_numa
2783                         * PTEs, scan up to virtpages, to skip through those
2784                         * areas faster.
2785                         */
2786                        if (nr_pte_updates)
2787                                pages -= (end - start) >> PAGE_SHIFT;
2788                        virtpages -= (end - start) >> PAGE_SHIFT;
2789
2790                        start = end;
2791                        if (pages <= 0 || virtpages <= 0)
2792                                goto out;
2793
2794                        cond_resched();
2795                } while (end != vma->vm_end);
2796        }
2797
2798out:
2799        /*
2800         * It is possible to reach the end of the VMA list but the last few
2801         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2802         * would find the !migratable VMA on the next scan but not reset the
2803         * scanner to the start so check it now.
2804         */
2805        if (vma)
2806                mm->numa_scan_offset = start;
2807        else
2808                reset_ptenuma_scan(p);
2809        mmap_read_unlock(mm);
2810
2811        /*
2812         * Make sure tasks use at least 32x as much time to run other code
2813         * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2814         * Usually update_task_scan_period slows down scanning enough; on an
2815         * overloaded system we need to limit overhead on a per task basis.
2816         */
2817        if (unlikely(p->se.sum_exec_runtime != runtime)) {
2818                u64 diff = p->se.sum_exec_runtime - runtime;
2819                p->node_stamp += 32 * diff;
2820        }
2821}
2822
2823void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2824{
2825        int mm_users = 0;
2826        struct mm_struct *mm = p->mm;
2827
2828        if (mm) {
2829                mm_users = atomic_read(&mm->mm_users);
2830                if (mm_users == 1) {
2831                        mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2832                        mm->numa_scan_seq = 0;
2833                }
2834        }
2835        p->node_stamp                   = 0;
2836        p->numa_scan_seq                = mm ? mm->numa_scan_seq : 0;
2837        p->numa_scan_period             = sysctl_numa_balancing_scan_delay;
2838        /* Protect against double add, see task_tick_numa and task_numa_work */
2839        p->numa_work.next               = &p->numa_work;
2840        p->numa_faults                  = NULL;
2841        RCU_INIT_POINTER(p->numa_group, NULL);
2842        p->last_task_numa_placement     = 0;
2843        p->last_sum_exec_runtime        = 0;
2844
2845        init_task_work(&p->numa_work, task_numa_work);
2846
2847        /* New address space, reset the preferred nid */
2848        if (!(clone_flags & CLONE_VM)) {
2849                p->numa_preferred_nid = NUMA_NO_NODE;
2850                return;
2851        }
2852
2853        /*
2854         * New thread, keep existing numa_preferred_nid which should be copied
2855         * already by arch_dup_task_struct but stagger when scans start.
2856         */
2857        if (mm) {
2858                unsigned int delay;
2859
2860                delay = min_t(unsigned int, task_scan_max(current),
2861                        current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2862                delay += 2 * TICK_NSEC;
2863                p->node_stamp = delay;
2864        }
2865}
2866
2867/*
2868 * Drive the periodic memory faults..
2869 */
2870static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2871{
2872        struct callback_head *work = &curr->numa_work;
2873        u64 period, now;
2874
2875        /*
2876         * We don't care about NUMA placement if we don't have memory.
2877         */
2878        if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2879                return;
2880
2881        /*
2882         * Using runtime rather than walltime has the dual advantage that
2883         * we (mostly) drive the selection from busy threads and that the
2884         * task needs to have done some actual work before we bother with
2885         * NUMA placement.
2886         */
2887        now = curr->se.sum_exec_runtime;
2888        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2889
2890        if (now > curr->node_stamp + period) {
2891                if (!curr->node_stamp)
2892                        curr->numa_scan_period = task_scan_start(curr);
2893                curr->node_stamp += period;
2894
2895                if (!time_before(jiffies, curr->mm->numa_next_scan))
2896                        task_work_add(curr, work, TWA_RESUME);
2897        }
2898}
2899
2900static void update_scan_period(struct task_struct *p, int new_cpu)
2901{
2902        int src_nid = cpu_to_node(task_cpu(p));
2903        int dst_nid = cpu_to_node(new_cpu);
2904
2905        if (!static_branch_likely(&sched_numa_balancing))
2906                return;
2907
2908        if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2909                return;
2910
2911        if (src_nid == dst_nid)
2912                return;
2913
2914        /*
2915         * Allow resets if faults have been trapped before one scan
2916         * has completed. This is most likely due to a new task that
2917         * is pulled cross-node due to wakeups or load balancing.
2918         */
2919        if (p->numa_scan_seq) {
2920                /*
2921                 * Avoid scan adjustments if moving to the preferred
2922                 * node or if the task was not previously running on
2923                 * the preferred node.
2924                 */
2925                if (dst_nid == p->numa_preferred_nid ||
2926                    (p->numa_preferred_nid != NUMA_NO_NODE &&
2927                        src_nid != p->numa_preferred_nid))
2928                        return;
2929        }
2930
2931        p->numa_scan_period = task_scan_start(p);
2932}
2933
2934#else
2935static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2936{
2937}
2938
2939static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2940{
2941}
2942
2943static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2944{
2945}
2946
2947static inline void update_scan_period(struct task_struct *p, int new_cpu)
2948{
2949}
2950
2951#endif /* CONFIG_NUMA_BALANCING */
2952
2953static void
2954account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955{
2956        update_load_add(&cfs_rq->load, se->load.weight);
2957#ifdef CONFIG_SMP
2958        if (entity_is_task(se)) {
2959                struct rq *rq = rq_of(cfs_rq);
2960
2961                account_numa_enqueue(rq, task_of(se));
2962                list_add(&se->group_node, &rq->cfs_tasks);
2963        }
2964#endif
2965        cfs_rq->nr_running++;
2966}
2967
2968static void
2969account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2970{
2971        update_load_sub(&cfs_rq->load, se->load.weight);
2972#ifdef CONFIG_SMP
2973        if (entity_is_task(se)) {
2974                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2975                list_del_init(&se->group_node);
2976        }
2977#endif
2978        cfs_rq->nr_running--;
2979}
2980
2981/*
2982 * Signed add and clamp on underflow.
2983 *
2984 * Explicitly do a load-store to ensure the intermediate value never hits
2985 * memory. This allows lockless observations without ever seeing the negative
2986 * values.
2987 */
2988#define add_positive(_ptr, _val) do {                           \
2989        typeof(_ptr) ptr = (_ptr);                              \
2990        typeof(_val) val = (_val);                              \
2991        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2992                                                                \
2993        res = var + val;                                        \
2994                                                                \
2995        if (val < 0 && res > var)                               \
2996                res = 0;                                        \
2997                                                                \
2998        WRITE_ONCE(*ptr, res);                                  \
2999} while (0)
3000
3001/*
3002 * Unsigned subtract and clamp on underflow.
3003 *
3004 * Explicitly do a load-store to ensure the intermediate value never hits
3005 * memory. This allows lockless observations without ever seeing the negative
3006 * values.
3007 */
3008#define sub_positive(_ptr, _val) do {                           \
3009        typeof(_ptr) ptr = (_ptr);                              \
3010        typeof(*ptr) val = (_val);                              \
3011        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3012        res = var - val;                                        \
3013        if (res > var)                                          \
3014                res = 0;                                        \
3015        WRITE_ONCE(*ptr, res);                                  \
3016} while (0)
3017
3018/*
3019 * Remove and clamp on negative, from a local variable.
3020 *
3021 * A variant of sub_positive(), which does not use explicit load-store
3022 * and is thus optimized for local variable updates.
3023 */
3024#define lsub_positive(_ptr, _val) do {                          \
3025        typeof(_ptr) ptr = (_ptr);                              \
3026        *ptr -= min_t(typeof(*ptr), *ptr, _val);                \
3027} while (0)
3028
3029#ifdef CONFIG_SMP
3030static inline void
3031enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3032{
3033        cfs_rq->avg.load_avg += se->avg.load_avg;
3034        cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3035}
3036
3037static inline void
3038dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3039{
3040        u32 divider = get_pelt_divider(&se->avg);
3041        sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3042        cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3043}
3044#else
3045static inline void
3046enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3047static inline void
3048dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3049#endif
3050
3051static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3052                            unsigned long weight)
3053{
3054        if (se->on_rq) {
3055                /* commit outstanding execution time */
3056                if (cfs_rq->curr == se)
3057                        update_curr(cfs_rq);
3058                update_load_sub(&cfs_rq->load, se->load.weight);
3059        }
3060        dequeue_load_avg(cfs_rq, se);
3061
3062        update_load_set(&se->load, weight);
3063
3064#ifdef CONFIG_SMP
3065        do {
3066                u32 divider = get_pelt_divider(&se->avg);
3067
3068                se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3069        } while (0);
3070#endif
3071
3072        enqueue_load_avg(cfs_rq, se);
3073        if (se->on_rq)
3074                update_load_add(&cfs_rq->load, se->load.weight);
3075
3076}
3077
3078void reweight_task(struct task_struct *p, int prio)
3079{
3080        struct sched_entity *se = &p->se;
3081        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3082        struct load_weight *load = &se->load;
3083        unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3084
3085        reweight_entity(cfs_rq, se, weight);
3086        load->inv_weight = sched_prio_to_wmult[prio];
3087}
3088
3089#ifdef CONFIG_FAIR_GROUP_SCHED
3090#ifdef CONFIG_SMP
3091/*
3092 * All this does is approximate the hierarchical proportion which includes that
3093 * global sum we all love to hate.
3094 *
3095 * That is, the weight of a group entity, is the proportional share of the
3096 * group weight based on the group runqueue weights. That is:
3097 *
3098 *                     tg->weight * grq->load.weight
3099 *   ge->load.weight = -----------------------------               (1)
3100 *                       \Sum grq->load.weight
3101 *
3102 * Now, because computing that sum is prohibitively expensive to compute (been
3103 * there, done that) we approximate it with this average stuff. The average
3104 * moves slower and therefore the approximation is cheaper and more stable.
3105 *
3106 * So instead of the above, we substitute:
3107 *
3108 *   grq->load.weight -> grq->avg.load_avg                         (2)
3109 *
3110 * which yields the following:
3111 *
3112 *                     tg->weight * grq->avg.load_avg
3113 *   ge->load.weight = ------------------------------              (3)
3114 *                             tg->load_avg
3115 *
3116 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3117 *
3118 * That is shares_avg, and it is right (given the approximation (2)).
3119 *
3120 * The problem with it is that because the average is slow -- it was designed
3121 * to be exactly that of course -- this leads to transients in boundary
3122 * conditions. In specific, the case where the group was idle and we start the
3123 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3124 * yielding bad latency etc..
3125 *
3126 * Now, in that special case (1) reduces to:
3127 *
3128 *                     tg->weight * grq->load.weight
3129 *   ge->load.weight = ----------------------------- = tg->weight   (4)
3130 *                         grp->load.weight
3131 *
3132 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3133 *
3134 * So what we do is modify our approximation (3) to approach (4) in the (near)
3135 * UP case, like:
3136 *
3137 *   ge->load.weight =
3138 *
3139 *              tg->weight * grq->load.weight
3140 *     ---------------------------------------------------         (5)
3141 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3142 *
3143 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3144 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3145 *
3146 *
3147 *                     tg->weight * grq->load.weight
3148 *   ge->load.weight = -----------------------------               (6)
3149 *                             tg_load_avg'
3150 *
3151 * Where:
3152 *
3153 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3154 *                  max(grq->load.weight, grq->avg.load_avg)
3155 *
3156 * And that is shares_weight and is icky. In the (near) UP case it approaches
3157 * (4) while in the normal case it approaches (3). It consistently
3158 * overestimates the ge->load.weight and therefore:
3159 *
3160 *   \Sum ge->load.weight >= tg->weight
3161 *
3162 * hence icky!
3163 */
3164static long calc_group_shares(struct cfs_rq *cfs_rq)
3165{
3166        long tg_weight, tg_shares, load, shares;
3167        struct task_group *tg = cfs_rq->tg;
3168
3169        tg_shares = READ_ONCE(tg->shares);
3170
3171        load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3172
3173        tg_weight = atomic_long_read(&tg->load_avg);
3174
3175        /* Ensure tg_weight >= load */
3176        tg_weight -= cfs_rq->tg_load_avg_contrib;
3177        tg_weight += load;
3178
3179        shares = (tg_shares * load);
3180        if (tg_weight)
3181                shares /= tg_weight;
3182
3183        /*
3184         * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3185         * of a group with small tg->shares value. It is a floor value which is
3186         * assigned as a minimum load.weight to the sched_entity representing
3187         * the group on a CPU.
3188         *
3189         * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3190         * on an 8-core system with 8 tasks each runnable on one CPU shares has
3191         * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3192         * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3193         * instead of 0.
3194         */
3195        return clamp_t(long, shares, MIN_SHARES, tg_shares);
3196}
3197#endif /* CONFIG_SMP */
3198
3199static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3200
3201/*
3202 * Recomputes the group entity based on the current state of its group
3203 * runqueue.
3204 */
3205static void update_cfs_group(struct sched_entity *se)
3206{
3207        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3208        long shares;
3209
3210        if (!gcfs_rq)
3211                return;
3212
3213        if (throttled_hierarchy(gcfs_rq))
3214                return;
3215
3216#ifndef CONFIG_SMP
3217        shares = READ_ONCE(gcfs_rq->tg->shares);
3218
3219        if (likely(se->load.weight == shares))
3220                return;
3221#else
3222        shares   = calc_group_shares(gcfs_rq);
3223#endif
3224
3225        reweight_entity(cfs_rq_of(se), se, shares);
3226}
3227
3228#else /* CONFIG_FAIR_GROUP_SCHED */
3229static inline void update_cfs_group(struct sched_entity *se)
3230{
3231}
3232#endif /* CONFIG_FAIR_GROUP_SCHED */
3233
3234static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3235{
3236        struct rq *rq = rq_of(cfs_rq);
3237
3238        if (&rq->cfs == cfs_rq) {
3239                /*
3240                 * There are a few boundary cases this might miss but it should
3241                 * get called often enough that that should (hopefully) not be
3242                 * a real problem.
3243                 *
3244                 * It will not get called when we go idle, because the idle
3245                 * thread is a different class (!fair), nor will the utilization
3246                 * number include things like RT tasks.
3247                 *
3248                 * As is, the util number is not freq-invariant (we'd have to
3249                 * implement arch_scale_freq_capacity() for that).
3250                 *
3251                 * See cpu_util().
3252                 */
3253                cpufreq_update_util(rq, flags);
3254        }
3255}
3256
3257#ifdef CONFIG_SMP
3258#ifdef CONFIG_FAIR_GROUP_SCHED
3259/*
3260 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3261 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3262 * bottom-up, we only have to test whether the cfs_rq before us on the list
3263 * is our child.
3264 * If cfs_rq is not on the list, test whether a child needs its to be added to
3265 * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3266 */
3267static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3268{
3269        struct cfs_rq *prev_cfs_rq;
3270        struct list_head *prev;
3271
3272        if (cfs_rq->on_list) {
3273                prev = cfs_rq->leaf_cfs_rq_list.prev;
3274        } else {
3275                struct rq *rq = rq_of(cfs_rq);
3276
3277                prev = rq->tmp_alone_branch;
3278        }
3279
3280        prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3281
3282        return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3283}
3284
3285static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3286{
3287        if (cfs_rq->load.weight)
3288                return false;
3289
3290        if (cfs_rq->avg.load_sum)
3291                return false;
3292
3293        if (cfs_rq->avg.util_sum)
3294                return false;
3295
3296        if (cfs_rq->avg.runnable_sum)
3297                return false;
3298
3299        if (child_cfs_rq_on_list(cfs_rq))
3300                return false;
3301
3302        /*
3303         * _avg must be null when _sum are null because _avg = _sum / divider
3304         * Make sure that rounding and/or propagation of PELT values never
3305         * break this.
3306         */
3307        SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3308                      cfs_rq->avg.util_avg ||
3309                      cfs_rq->avg.runnable_avg);
3310
3311        return true;
3312}
3313
3314/**
3315 * update_tg_load_avg - update the tg's load avg
3316 * @cfs_rq: the cfs_rq whose avg changed
3317 *
3318 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3319 * However, because tg->load_avg is a global value there are performance
3320 * considerations.
3321 *
3322 * In order to avoid having to look at the other cfs_rq's, we use a
3323 * differential update where we store the last value we propagated. This in
3324 * turn allows skipping updates if the differential is 'small'.
3325 *
3326 * Updating tg's load_avg is necessary before update_cfs_share().
3327 */
3328static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3329{
3330        long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3331
3332        /*
3333         * No need to update load_avg for root_task_group as it is not used.
3334         */
3335        if (cfs_rq->tg == &root_task_group)
3336                return;
3337
3338        if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3339                atomic_long_add(delta, &cfs_rq->tg->load_avg);
3340                cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3341        }
3342}
3343
3344/*
3345 * Called within set_task_rq() right before setting a task's CPU. The
3346 * caller only guarantees p->pi_lock is held; no other assumptions,
3347 * including the state of rq->lock, should be made.
3348 */
3349void set_task_rq_fair(struct sched_entity *se,
3350                      struct cfs_rq *prev, struct cfs_rq *next)
3351{
3352        u64 p_last_update_time;
3353        u64 n_last_update_time;
3354
3355        if (!sched_feat(ATTACH_AGE_LOAD))
3356                return;
3357
3358        /*
3359         * We are supposed to update the task to "current" time, then its up to
3360         * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3361         * getting what current time is, so simply throw away the out-of-date
3362         * time. This will result in the wakee task is less decayed, but giving
3363         * the wakee more load sounds not bad.
3364         */
3365        if (!(se->avg.last_update_time && prev))
3366                return;
3367
3368#ifndef CONFIG_64BIT
3369        {
3370                u64 p_last_update_time_copy;
3371                u64 n_last_update_time_copy;
3372
3373                do {
3374                        p_last_update_time_copy = prev->load_last_update_time_copy;
3375                        n_last_update_time_copy = next->load_last_update_time_copy;
3376
3377                        smp_rmb();
3378
3379                        p_last_update_time = prev->avg.last_update_time;
3380                        n_last_update_time = next->avg.last_update_time;
3381
3382                } while (p_last_update_time != p_last_update_time_copy ||
3383                         n_last_update_time != n_last_update_time_copy);
3384        }
3385#else
3386        p_last_update_time = prev->avg.last_update_time;
3387        n_last_update_time = next->avg.last_update_time;
3388#endif
3389        __update_load_avg_blocked_se(p_last_update_time, se);
3390        se->avg.last_update_time = n_last_update_time;
3391}
3392
3393
3394/*
3395 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3396 * propagate its contribution. The key to this propagation is the invariant
3397 * that for each group:
3398 *
3399 *   ge->avg == grq->avg                                                (1)
3400 *
3401 * _IFF_ we look at the pure running and runnable sums. Because they
3402 * represent the very same entity, just at different points in the hierarchy.
3403 *
3404 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3405 * and simply copies the running/runnable sum over (but still wrong, because
3406 * the group entity and group rq do not have their PELT windows aligned).
3407 *
3408 * However, update_tg_cfs_load() is more complex. So we have:
3409 *
3410 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg          (2)
3411 *
3412 * And since, like util, the runnable part should be directly transferable,
3413 * the following would _appear_ to be the straight forward approach:
3414 *
3415 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg       (3)
3416 *
3417 * And per (1) we have:
3418 *
3419 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3420 *
3421 * Which gives:
3422 *
3423 *                      ge->load.weight * grq->avg.load_avg
3424 *   ge->avg.load_avg = -----------------------------------             (4)
3425 *                               grq->load.weight
3426 *
3427 * Except that is wrong!
3428 *
3429 * Because while for entities historical weight is not important and we
3430 * really only care about our future and therefore can consider a pure
3431 * runnable sum, runqueues can NOT do this.
3432 *
3433 * We specifically want runqueues to have a load_avg that includes
3434 * historical weights. Those represent the blocked load, the load we expect
3435 * to (shortly) return to us. This only works by keeping the weights as
3436 * integral part of the sum. We therefore cannot decompose as per (3).
3437 *
3438 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3439 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3440 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3441 * runnable section of these tasks overlap (or not). If they were to perfectly
3442 * align the rq as a whole would be runnable 2/3 of the time. If however we
3443 * always have at least 1 runnable task, the rq as a whole is always runnable.
3444 *
3445 * So we'll have to approximate.. :/
3446 *
3447 * Given the constraint:
3448 *
3449 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3450 *
3451 * We can construct a rule that adds runnable to a rq by assuming minimal
3452 * overlap.
3453 *
3454 * On removal, we'll assume each task is equally runnable; which yields:
3455 *
3456 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3457 *
3458 * XXX: only do this for the part of runnable > running ?
3459 *
3460 */
3461
3462static inline void
3463update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464{
3465        long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3466        u32 divider;
3467
3468        /* Nothing to update */
3469        if (!delta)
3470                return;
3471
3472        /*
3473         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474         * See ___update_load_avg() for details.
3475         */
3476        divider = get_pelt_divider(&cfs_rq->avg);
3477
3478        /* Set new sched_entity's utilization */
3479        se->avg.util_avg = gcfs_rq->avg.util_avg;
3480        se->avg.util_sum = se->avg.util_avg * divider;
3481
3482        /* Update parent cfs_rq utilization */
3483        add_positive(&cfs_rq->avg.util_avg, delta);
3484        cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3485}
3486
3487static inline void
3488update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3489{
3490        long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3491        u32 divider;
3492
3493        /* Nothing to update */
3494        if (!delta)
3495                return;
3496
3497        /*
3498         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3499         * See ___update_load_avg() for details.
3500         */
3501        divider = get_pelt_divider(&cfs_rq->avg);
3502
3503        /* Set new sched_entity's runnable */
3504        se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3505        se->avg.runnable_sum = se->avg.runnable_avg * divider;
3506
3507        /* Update parent cfs_rq runnable */
3508        add_positive(&cfs_rq->avg.runnable_avg, delta);
3509        cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3510}
3511
3512static inline void
3513update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3514{
3515        long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3516        unsigned long load_avg;
3517        u64 load_sum = 0;
3518        u32 divider;
3519
3520        if (!runnable_sum)
3521                return;
3522
3523        gcfs_rq->prop_runnable_sum = 0;
3524
3525        /*
3526         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3527         * See ___update_load_avg() for details.
3528         */
3529        divider = get_pelt_divider(&cfs_rq->avg);
3530
3531        if (runnable_sum >= 0) {
3532                /*
3533                 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3534                 * the CPU is saturated running == runnable.
3535                 */
3536                runnable_sum += se->avg.load_sum;
3537                runnable_sum = min_t(long, runnable_sum, divider);
3538        } else {
3539                /*
3540                 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3541                 * assuming all tasks are equally runnable.
3542                 */
3543                if (scale_load_down(gcfs_rq->load.weight)) {
3544                        load_sum = div_s64(gcfs_rq->avg.load_sum,
3545                                scale_load_down(gcfs_rq->load.weight));
3546                }
3547
3548                /* But make sure to not inflate se's runnable */
3549                runnable_sum = min(se->avg.load_sum, load_sum);
3550        }
3551
3552        /*
3553         * runnable_sum can't be lower than running_sum
3554         * Rescale running sum to be in the same range as runnable sum
3555         * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3556         * runnable_sum is in [0 : LOAD_AVG_MAX]
3557         */
3558        running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3559        runnable_sum = max(runnable_sum, running_sum);
3560
3561        load_sum = (s64)se_weight(se) * runnable_sum;
3562        load_avg = div_s64(load_sum, divider);
3563
3564        se->avg.load_sum = runnable_sum;
3565
3566        delta = load_avg - se->avg.load_avg;
3567        if (!delta)
3568                return;
3569
3570        se->avg.load_avg = load_avg;
3571
3572        add_positive(&cfs_rq->avg.load_avg, delta);
3573        cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3574}
3575
3576static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3577{
3578        cfs_rq->propagate = 1;
3579        cfs_rq->prop_runnable_sum += runnable_sum;
3580}
3581
3582/* Update task and its cfs_rq load average */
3583static inline int propagate_entity_load_avg(struct sched_entity *se)
3584{
3585        struct cfs_rq *cfs_rq, *gcfs_rq;
3586
3587        if (entity_is_task(se))
3588                return 0;
3589
3590        gcfs_rq = group_cfs_rq(se);
3591        if (!gcfs_rq->propagate)
3592                return 0;
3593
3594        gcfs_rq->propagate = 0;
3595
3596        cfs_rq = cfs_rq_of(se);
3597
3598        add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3599
3600        update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3601        update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3602        update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3603
3604        trace_pelt_cfs_tp(cfs_rq);
3605        trace_pelt_se_tp(se);
3606
3607        return 1;
3608}
3609
3610/*
3611 * Check if we need to update the load and the utilization of a blocked
3612 * group_entity:
3613 */
3614static inline bool skip_blocked_update(struct sched_entity *se)
3615{
3616        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3617
3618        /*
3619         * If sched_entity still have not zero load or utilization, we have to
3620         * decay it:
3621         */
3622        if (se->avg.load_avg || se->avg.util_avg)
3623                return false;
3624
3625        /*
3626         * If there is a pending propagation, we have to update the load and
3627         * the utilization of the sched_entity:
3628         */
3629        if (gcfs_rq->propagate)
3630                return false;
3631
3632        /*
3633         * Otherwise, the load and the utilization of the sched_entity is
3634         * already zero and there is no pending propagation, so it will be a
3635         * waste of time to try to decay it:
3636         */
3637        return true;
3638}
3639
3640#else /* CONFIG_FAIR_GROUP_SCHED */
3641
3642static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3643
3644static inline int propagate_entity_load_avg(struct sched_entity *se)
3645{
3646        return 0;
3647}
3648
3649static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3650
3651#endif /* CONFIG_FAIR_GROUP_SCHED */
3652
3653/**
3654 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3655 * @now: current time, as per cfs_rq_clock_pelt()
3656 * @cfs_rq: cfs_rq to update
3657 *
3658 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3659 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3660 * post_init_entity_util_avg().
3661 *
3662 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3663 *
3664 * Returns true if the load decayed or we removed load.
3665 *
3666 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3667 * call update_tg_load_avg() when this function returns true.
3668 */
3669static inline int
3670update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3671{
3672        unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3673        struct sched_avg *sa = &cfs_rq->avg;
3674        int decayed = 0;
3675
3676        if (cfs_rq->removed.nr) {
3677                unsigned long r;
3678                u32 divider = get_pelt_divider(&cfs_rq->avg);
3679
3680                raw_spin_lock(&cfs_rq->removed.lock);
3681                swap(cfs_rq->removed.util_avg, removed_util);
3682                swap(cfs_rq->removed.load_avg, removed_load);
3683                swap(cfs_rq->removed.runnable_avg, removed_runnable);
3684                cfs_rq->removed.nr = 0;
3685                raw_spin_unlock(&cfs_rq->removed.lock);
3686
3687                r = removed_load;
3688                sub_positive(&sa->load_avg, r);
3689                sa->load_sum = sa->load_avg * divider;
3690
3691                r = removed_util;
3692                sub_positive(&sa->util_avg, r);
3693                sa->util_sum = sa->util_avg * divider;
3694
3695                r = removed_runnable;
3696                sub_positive(&sa->runnable_avg, r);
3697                sa->runnable_sum = sa->runnable_avg * divider;
3698
3699                /*
3700                 * removed_runnable is the unweighted version of removed_load so we
3701                 * can use it to estimate removed_load_sum.
3702                 */
3703                add_tg_cfs_propagate(cfs_rq,
3704                        -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3705
3706                decayed = 1;
3707        }
3708
3709        decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3710
3711#ifndef CONFIG_64BIT
3712        smp_wmb();
3713        cfs_rq->load_last_update_time_copy = sa->last_update_time;
3714#endif
3715
3716        return decayed;
3717}
3718
3719/**
3720 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3721 * @cfs_rq: cfs_rq to attach to
3722 * @se: sched_entity to attach
3723 *
3724 * Must call update_cfs_rq_load_avg() before this, since we rely on
3725 * cfs_rq->avg.last_update_time being current.
3726 */
3727static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3728{
3729        /*
3730         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3731         * See ___update_load_avg() for details.
3732         */
3733        u32 divider = get_pelt_divider(&cfs_rq->avg);
3734
3735        /*
3736         * When we attach the @se to the @cfs_rq, we must align the decay
3737         * window because without that, really weird and wonderful things can
3738         * happen.
3739         *
3740         * XXX illustrate
3741         */
3742        se->avg.last_update_time = cfs_rq->avg.last_update_time;
3743        se->avg.period_contrib = cfs_rq->avg.period_contrib;
3744
3745        /*
3746         * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3747         * period_contrib. This isn't strictly correct, but since we're
3748         * entirely outside of the PELT hierarchy, nobody cares if we truncate
3749         * _sum a little.
3750         */
3751        se->avg.util_sum = se->avg.util_avg * divider;
3752
3753        se->avg.runnable_sum = se->avg.runnable_avg * divider;
3754
3755        se->avg.load_sum = divider;
3756        if (se_weight(se)) {
3757                se->avg.load_sum =
3758                        div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3759        }
3760
3761        enqueue_load_avg(cfs_rq, se);
3762        cfs_rq->avg.util_avg += se->avg.util_avg;
3763        cfs_rq->avg.util_sum += se->avg.util_sum;
3764        cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3765        cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3766
3767        add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3768
3769        cfs_rq_util_change(cfs_rq, 0);
3770
3771        trace_pelt_cfs_tp(cfs_rq);
3772}
3773
3774/**
3775 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3776 * @cfs_rq: cfs_rq to detach from
3777 * @se: sched_entity to detach
3778 *
3779 * Must call update_cfs_rq_load_avg() before this, since we rely on
3780 * cfs_rq->avg.last_update_time being current.
3781 */
3782static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3783{
3784        /*
3785         * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3786         * See ___update_load_avg() for details.
3787         */
3788        u32 divider = get_pelt_divider(&cfs_rq->avg);
3789
3790        dequeue_load_avg(cfs_rq, se);
3791        sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3792        cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3793        sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3794        cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3795
3796        add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3797
3798        cfs_rq_util_change(cfs_rq, 0);
3799
3800        trace_pelt_cfs_tp(cfs_rq);
3801}
3802
3803/*
3804 * Optional action to be done while updating the load average
3805 */
3806#define UPDATE_TG       0x1
3807#define SKIP_AGE_LOAD   0x2
3808#define DO_ATTACH       0x4
3809
3810/* Update task and its cfs_rq load average */
3811static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3812{
3813        u64 now = cfs_rq_clock_pelt(cfs_rq);
3814        int decayed;
3815
3816        /*
3817         * Track task load average for carrying it to new CPU after migrated, and
3818         * track group sched_entity load average for task_h_load calc in migration
3819         */
3820        if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3821                __update_load_avg_se(now, cfs_rq, se);
3822
3823        decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3824        decayed |= propagate_entity_load_avg(se);
3825
3826        if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3827
3828                /*
3829                 * DO_ATTACH means we're here from enqueue_entity().
3830                 * !last_update_time means we've passed through
3831                 * migrate_task_rq_fair() indicating we migrated.
3832                 *
3833                 * IOW we're enqueueing a task on a new CPU.
3834                 */
3835                attach_entity_load_avg(cfs_rq, se);
3836                update_tg_load_avg(cfs_rq);
3837
3838        } else if (decayed) {
3839                cfs_rq_util_change(cfs_rq, 0);
3840
3841                if (flags & UPDATE_TG)
3842                        update_tg_load_avg(cfs_rq);
3843        }
3844}
3845
3846#ifndef CONFIG_64BIT
3847static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3848{
3849        u64 last_update_time_copy;
3850        u64 last_update_time;
3851
3852        do {
3853                last_update_time_copy = cfs_rq->load_last_update_time_copy;
3854                smp_rmb();
3855                last_update_time = cfs_rq->avg.last_update_time;
3856        } while (last_update_time != last_update_time_copy);
3857
3858        return last_update_time;
3859}
3860#else
3861static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3862{
3863        return cfs_rq->avg.last_update_time;
3864}
3865#endif
3866
3867/*
3868 * Synchronize entity load avg of dequeued entity without locking
3869 * the previous rq.
3870 */
3871static void sync_entity_load_avg(struct sched_entity *se)
3872{
3873        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3874        u64 last_update_time;
3875
3876        last_update_time = cfs_rq_last_update_time(cfs_rq);
3877        __update_load_avg_blocked_se(last_update_time, se);
3878}
3879
3880/*
3881 * Task first catches up with cfs_rq, and then subtract
3882 * itself from the cfs_rq (task must be off the queue now).
3883 */
3884static void remove_entity_load_avg(struct sched_entity *se)
3885{
3886        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3887        unsigned long flags;
3888
3889        /*
3890         * tasks cannot exit without having gone through wake_up_new_task() ->
3891         * post_init_entity_util_avg() which will have added things to the
3892         * cfs_rq, so we can remove unconditionally.
3893         */
3894
3895        sync_entity_load_avg(se);
3896
3897        raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3898        ++cfs_rq->removed.nr;
3899        cfs_rq->removed.util_avg        += se->avg.util_avg;
3900        cfs_rq->removed.load_avg        += se->avg.load_avg;
3901        cfs_rq->removed.runnable_avg    += se->avg.runnable_avg;
3902        raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3903}
3904
3905static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3906{
3907        return cfs_rq->avg.runnable_avg;
3908}
3909
3910static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3911{
3912        return cfs_rq->avg.load_avg;
3913}
3914
3915static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3916
3917static inline unsigned long task_util(struct task_struct *p)
3918{
3919        return READ_ONCE(p->se.avg.util_avg);
3920}
3921
3922static inline unsigned long _task_util_est(struct task_struct *p)
3923{
3924        struct util_est ue = READ_ONCE(p->se.avg.util_est);
3925
3926        return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3927}
3928
3929static inline unsigned long task_util_est(struct task_struct *p)
3930{
3931        return max(task_util(p), _task_util_est(p));
3932}
3933
3934#ifdef CONFIG_UCLAMP_TASK
3935static inline unsigned long uclamp_task_util(struct task_struct *p)
3936{
3937        return clamp(task_util_est(p),
3938                     uclamp_eff_value(p, UCLAMP_MIN),
3939                     uclamp_eff_value(p, UCLAMP_MAX));
3940}
3941#else
3942static inline unsigned long uclamp_task_util(struct task_struct *p)
3943{
3944        return task_util_est(p);
3945}
3946#endif
3947
3948static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3949                                    struct task_struct *p)
3950{
3951        unsigned int enqueued;
3952
3953        if (!sched_feat(UTIL_EST))
3954                return;
3955
3956        /* Update root cfs_rq's estimated utilization */
3957        enqueued  = cfs_rq->avg.util_est.enqueued;
3958        enqueued += _task_util_est(p);
3959        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3960
3961        trace_sched_util_est_cfs_tp(cfs_rq);
3962}
3963
3964static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3965                                    struct task_struct *p)
3966{
3967        unsigned int enqueued;
3968
3969        if (!sched_feat(UTIL_EST))
3970                return;
3971
3972        /* Update root cfs_rq's estimated utilization */
3973        enqueued  = cfs_rq->avg.util_est.enqueued;
3974        enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3975        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3976
3977        trace_sched_util_est_cfs_tp(cfs_rq);
3978}
3979
3980#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3981
3982/*
3983 * Check if a (signed) value is within a specified (unsigned) margin,
3984 * based on the observation that:
3985 *
3986 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3987 *
3988 * NOTE: this only works when value + margin < INT_MAX.
3989 */
3990static inline bool within_margin(int value, int margin)
3991{
3992        return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3993}
3994
3995static inline void util_est_update(struct cfs_rq *cfs_rq,
3996                                   struct task_struct *p,
3997                                   bool task_sleep)
3998{
3999        long last_ewma_diff, last_enqueued_diff;
4000        struct util_est ue;
4001
4002        if (!sched_feat(UTIL_EST))
4003                return;
4004
4005        /*
4006         * Skip update of task's estimated utilization when the task has not
4007         * yet completed an activation, e.g. being migrated.
4008         */
4009        if (!task_sleep)
4010                return;
4011
4012        /*
4013         * If the PELT values haven't changed since enqueue time,
4014         * skip the util_est update.
4015         */
4016        ue = p->se.avg.util_est;
4017        if (ue.enqueued & UTIL_AVG_UNCHANGED)
4018                return;
4019
4020        last_enqueued_diff = ue.enqueued;
4021
4022        /*
4023         * Reset EWMA on utilization increases, the moving average is used only
4024         * to smooth utilization decreases.
4025         */
4026        ue.enqueued = task_util(p);
4027        if (sched_feat(UTIL_EST_FASTUP)) {
4028                if (ue.ewma < ue.enqueued) {
4029                        ue.ewma = ue.enqueued;
4030                        goto done;
4031                }
4032        }
4033
4034        /*
4035         * Skip update of task's estimated utilization when its members are
4036         * already ~1% close to its last activation value.
4037         */
4038        last_ewma_diff = ue.enqueued - ue.ewma;
4039        last_enqueued_diff -= ue.enqueued;
4040        if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4041                if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4042                        goto done;
4043
4044                return;
4045        }
4046
4047        /*
4048         * To avoid overestimation of actual task utilization, skip updates if
4049         * we cannot grant there is idle time in this CPU.
4050         */
4051        if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4052                return;
4053
4054        /*
4055         * Update Task's estimated utilization
4056         *
4057         * When *p completes an activation we can consolidate another sample
4058         * of the task size. This is done by storing the current PELT value
4059         * as ue.enqueued and by using this value to update the Exponential
4060         * Weighted Moving Average (EWMA):
4061         *
4062         *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4063         *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4064         *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4065         *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4066         *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4067         *
4068         * Where 'w' is the weight of new samples, which is configured to be
4069         * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4070         */
4071        ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4072        ue.ewma  += last_ewma_diff;
4073        ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4074done:
4075        ue.enqueued |= UTIL_AVG_UNCHANGED;
4076        WRITE_ONCE(p->se.avg.util_est, ue);
4077
4078        trace_sched_util_est_se_tp(&p->se);
4079}
4080
4081static inline int task_fits_capacity(struct task_struct *p, long capacity)
4082{
4083        return fits_capacity(uclamp_task_util(p), capacity);
4084}
4085
4086static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4087{
4088        if (!static_branch_unlikely(&sched_asym_cpucapacity))
4089                return;
4090
4091        if (!p || p->nr_cpus_allowed == 1) {
4092                rq->misfit_task_load = 0;
4093                return;
4094        }
4095
4096        if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4097                rq->misfit_task_load = 0;
4098                return;
4099        }
4100
4101        /*
4102         * Make sure that misfit_task_load will not be null even if
4103         * task_h_load() returns 0.
4104         */
4105        rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4106}
4107
4108#else /* CONFIG_SMP */
4109
4110static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4111{
4112        return true;
4113}
4114
4115#define UPDATE_TG       0x0
4116#define SKIP_AGE_LOAD   0x0
4117#define DO_ATTACH       0x0
4118
4119static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4120{
4121        cfs_rq_util_change(cfs_rq, 0);
4122}
4123
4124static inline void remove_entity_load_avg(struct sched_entity *se) {}
4125
4126static inline void
4127attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4128static inline void
4129detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4130
4131static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4132{
4133        return 0;
4134}
4135
4136static inline void
4137util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4138
4139static inline void
4140util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4141
4142static inline void
4143util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4144                bool task_sleep) {}
4145static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4146
4147#endif /* CONFIG_SMP */
4148
4149static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4150{
4151#ifdef CONFIG_SCHED_DEBUG
4152        s64 d = se->vruntime - cfs_rq->min_vruntime;
4153
4154        if (d < 0)
4155                d = -d;
4156
4157        if (d > 3*sysctl_sched_latency)
4158                schedstat_inc(cfs_rq->nr_spread_over);
4159#endif
4160}
4161
4162static void
4163place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4164{
4165        u64 vruntime = cfs_rq->min_vruntime;
4166
4167        /*
4168         * The 'current' period is already promised to the current tasks,
4169         * however the extra weight of the new task will slow them down a
4170         * little, place the new task so that it fits in the slot that
4171         * stays open at the end.
4172         */
4173        if (initial && sched_feat(START_DEBIT))
4174                vruntime += sched_vslice(cfs_rq, se);
4175
4176        /* sleeps up to a single latency don't count. */
4177        if (!initial) {
4178                unsigned long thresh = sysctl_sched_latency;
4179
4180                /*
4181                 * Halve their sleep time's effect, to allow
4182                 * for a gentler effect of sleepers:
4183                 */
4184                if (sched_feat(GENTLE_FAIR_SLEEPERS))
4185                        thresh >>= 1;
4186
4187                vruntime -= thresh;
4188        }
4189
4190        /* ensure we never gain time by being placed backwards. */
4191        se->vruntime = max_vruntime(se->vruntime, vruntime);
4192}
4193
4194static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4195
4196static inline void check_schedstat_required(void)
4197{
4198#ifdef CONFIG_SCHEDSTATS
4199        if (schedstat_enabled())
4200                return;
4201
4202        /* Force schedstat enabled if a dependent tracepoint is active */
4203        if (trace_sched_stat_wait_enabled()    ||
4204                        trace_sched_stat_sleep_enabled()   ||
4205                        trace_sched_stat_iowait_enabled()  ||
4206                        trace_sched_stat_blocked_enabled() ||
4207                        trace_sched_stat_runtime_enabled())  {
4208                printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4209                             "stat_blocked and stat_runtime require the "
4210                             "kernel parameter schedstats=enable or "
4211                             "kernel.sched_schedstats=1\n");
4212        }
4213#endif
4214}
4215
4216static inline bool cfs_bandwidth_used(void);
4217
4218/*
4219 * MIGRATION
4220 *
4221 *      dequeue
4222 *        update_curr()
4223 *          update_min_vruntime()
4224 *        vruntime -= min_vruntime
4225 *
4226 *      enqueue
4227 *        update_curr()
4228 *          update_min_vruntime()
4229 *        vruntime += min_vruntime
4230 *
4231 * this way the vruntime transition between RQs is done when both
4232 * min_vruntime are up-to-date.
4233 *
4234 * WAKEUP (remote)
4235 *
4236 *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4237 *        vruntime -= min_vruntime
4238 *
4239 *      enqueue
4240 *        update_curr()
4241 *          update_min_vruntime()
4242 *        vruntime += min_vruntime
4243 *
4244 * this way we don't have the most up-to-date min_vruntime on the originating
4245 * CPU and an up-to-date min_vruntime on the destination CPU.
4246 */
4247
4248static void
4249enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4250{
4251        bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4252        bool curr = cfs_rq->curr == se;
4253
4254        /*
4255         * If we're the current task, we must renormalise before calling
4256         * update_curr().
4257         */
4258        if (renorm && curr)
4259                se->vruntime += cfs_rq->min_vruntime;
4260
4261        update_curr(cfs_rq);
4262
4263        /*
4264         * Otherwise, renormalise after, such that we're placed at the current
4265         * moment in time, instead of some random moment in the past. Being
4266         * placed in the past could significantly boost this task to the
4267         * fairness detriment of existing tasks.
4268         */
4269        if (renorm && !curr)
4270                se->vruntime += cfs_rq->min_vruntime;
4271
4272        /*
4273         * When enqueuing a sched_entity, we must:
4274         *   - Update loads to have both entity and cfs_rq synced with now.
4275         *   - Add its load to cfs_rq->runnable_avg
4276         *   - For group_entity, update its weight to reflect the new share of
4277         *     its group cfs_rq
4278         *   - Add its new weight to cfs_rq->load.weight
4279         */
4280        update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4281        se_update_runnable(se);
4282        update_cfs_group(se);
4283        account_entity_enqueue(cfs_rq, se);
4284
4285        if (flags & ENQUEUE_WAKEUP)
4286                place_entity(cfs_rq, se, 0);
4287
4288        check_schedstat_required();
4289        update_stats_enqueue(cfs_rq, se, flags);
4290        check_spread(cfs_rq, se);
4291        if (!curr)
4292                __enqueue_entity(cfs_rq, se);
4293        se->on_rq = 1;
4294
4295        /*
4296         * When bandwidth control is enabled, cfs might have been removed
4297         * because of a parent been throttled but cfs->nr_running > 1. Try to
4298         * add it unconditionally.
4299         */
4300        if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4301                list_add_leaf_cfs_rq(cfs_rq);
4302
4303        if (cfs_rq->nr_running == 1)
4304                check_enqueue_throttle(cfs_rq);
4305}
4306
4307static void __clear_buddies_last(struct sched_entity *se)
4308{
4309        for_each_sched_entity(se) {
4310                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4311                if (cfs_rq->last != se)
4312                        break;
4313
4314                cfs_rq->last = NULL;
4315        }
4316}
4317
4318static void __clear_buddies_next(struct sched_entity *se)
4319{
4320        for_each_sched_entity(se) {
4321                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4322                if (cfs_rq->next != se)
4323                        break;
4324
4325                cfs_rq->next = NULL;
4326        }
4327}
4328
4329static void __clear_buddies_skip(struct sched_entity *se)
4330{
4331        for_each_sched_entity(se) {
4332                struct cfs_rq *cfs_rq = cfs_rq_of(se);
4333                if (cfs_rq->skip != se)
4334                        break;
4335
4336                cfs_rq->skip = NULL;
4337        }
4338}
4339
4340static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4341{
4342        if (cfs_rq->last == se)
4343                __clear_buddies_last(se);
4344
4345        if (cfs_rq->next == se)
4346                __clear_buddies_next(se);
4347
4348        if (cfs_rq->skip == se)
4349                __clear_buddies_skip(se);
4350}
4351
4352static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4353
4354static void
4355dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4356{
4357        /*
4358         * Update run-time statistics of the 'current'.
4359         */
4360        update_curr(cfs_rq);
4361
4362        /*
4363         * When dequeuing a sched_entity, we must:
4364         *   - Update loads to have both entity and cfs_rq synced with now.
4365         *   - Subtract its load from the cfs_rq->runnable_avg.
4366         *   - Subtract its previous weight from cfs_rq->load.weight.
4367         *   - For group entity, update its weight to reflect the new share
4368         *     of its group cfs_rq.
4369         */
4370        update_load_avg(cfs_rq, se, UPDATE_TG);
4371        se_update_runnable(se);
4372
4373        update_stats_dequeue(cfs_rq, se, flags);
4374
4375        clear_buddies(cfs_rq, se);
4376
4377        if (se != cfs_rq->curr)
4378                __dequeue_entity(cfs_rq, se);
4379        se->on_rq = 0;
4380        account_entity_dequeue(cfs_rq, se);
4381
4382        /*
4383         * Normalize after update_curr(); which will also have moved
4384         * min_vruntime if @se is the one holding it back. But before doing
4385         * update_min_vruntime() again, which will discount @se's position and
4386         * can move min_vruntime forward still more.
4387         */
4388        if (!(flags & DEQUEUE_SLEEP))
4389                se->vruntime -= cfs_rq->min_vruntime;
4390
4391        /* return excess runtime on last dequeue */
4392        return_cfs_rq_runtime(cfs_rq);
4393
4394        update_cfs_group(se);
4395
4396        /*
4397         * Now advance min_vruntime if @se was the entity holding it back,
4398         * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4399         * put back on, and if we advance min_vruntime, we'll be placed back
4400         * further than we started -- ie. we'll be penalized.
4401         */
4402        if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4403                update_min_vruntime(cfs_rq);
4404}
4405
4406/*
4407 * Preempt the current task with a newly woken task if needed:
4408 */
4409static void
4410check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4411{
4412        unsigned long ideal_runtime, delta_exec;
4413        struct sched_entity *se;
4414        s64 delta;
4415
4416        ideal_runtime = sched_slice(cfs_rq, curr);
4417        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4418        if (delta_exec > ideal_runtime) {
4419                resched_curr(rq_of(cfs_rq));
4420                /*
4421                 * The current task ran long enough, ensure it doesn't get
4422                 * re-elected due to buddy favours.
4423                 */
4424                clear_buddies(cfs_rq, curr);
4425                return;
4426        }
4427
4428        /*
4429         * Ensure that a task that missed wakeup preemption by a
4430         * narrow margin doesn't have to wait for a full slice.
4431         * This also mitigates buddy induced latencies under load.
4432         */
4433        if (delta_exec < sysctl_sched_min_granularity)
4434                return;
4435
4436        se = __pick_first_entity(cfs_rq);
4437        delta = curr->vruntime - se->vruntime;
4438
4439        if (delta < 0)
4440                return;
4441
4442        if (delta > ideal_runtime)
4443                resched_curr(rq_of(cfs_rq));
4444}
4445
4446static void
4447set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4448{
4449        clear_buddies(cfs_rq, se);
4450
4451        /* 'current' is not kept within the tree. */
4452        if (se->on_rq) {
4453                /*
4454                 * Any task has to be enqueued before it get to execute on
4455                 * a CPU. So account for the time it spent waiting on the
4456                 * runqueue.
4457                 */
4458                update_stats_wait_end(cfs_rq, se);
4459                __dequeue_entity(cfs_rq, se);
4460                update_load_avg(cfs_rq, se, UPDATE_TG);
4461        }
4462
4463        update_stats_curr_start(cfs_rq, se);
4464        cfs_rq->curr = se;
4465
4466        /*
4467         * Track our maximum slice length, if the CPU's load is at
4468         * least twice that of our own weight (i.e. dont track it
4469         * when there are only lesser-weight tasks around):
4470         */
4471        if (schedstat_enabled() &&
4472            rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4473                schedstat_set(se->statistics.slice_max,
4474                        max((u64)schedstat_val(se->statistics.slice_max),
4475                            se->sum_exec_runtime - se->prev_sum_exec_runtime));
4476        }
4477
4478        se->prev_sum_exec_runtime = se->sum_exec_runtime;
4479}
4480
4481static int
4482wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4483
4484/*
4485 * Pick the next process, keeping these things in mind, in this order:
4486 * 1) keep things fair between processes/task groups
4487 * 2) pick the "next" process, since someone really wants that to run
4488 * 3) pick the "last" process, for cache locality
4489 * 4) do not run the "skip" process, if something else is available
4490 */
4491static struct sched_entity *
4492pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4493{
4494        struct sched_entity *left = __pick_first_entity(cfs_rq);
4495        struct sched_entity *se;
4496
4497        /*
4498         * If curr is set we have to see if its left of the leftmost entity
4499         * still in the tree, provided there was anything in the tree at all.
4500         */
4501        if (!left || (curr && entity_before(curr, left)))
4502                left = curr;
4503
4504        se = left; /* ideally we run the leftmost entity */
4505
4506        /*
4507         * Avoid running the skip buddy, if running something else can
4508         * be done without getting too unfair.
4509         */
4510        if (cfs_rq->skip && cfs_rq->skip == se) {
4511                struct sched_entity *second;
4512
4513                if (se == curr) {
4514                        second = __pick_first_entity(cfs_rq);
4515                } else {
4516                        second = __pick_next_entity(se);
4517                        if (!second || (curr && entity_before(curr, second)))
4518                                second = curr;
4519                }
4520
4521                if (second && wakeup_preempt_entity(second, left) < 1)
4522                        se = second;
4523        }
4524
4525        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4526                /*
4527                 * Someone really wants this to run. If it's not unfair, run it.
4528                 */
4529                se = cfs_rq->next;
4530        } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4531                /*
4532                 * Prefer last buddy, try to return the CPU to a preempted task.
4533                 */
4534                se = cfs_rq->last;
4535        }
4536
4537        return se;
4538}
4539
4540static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4541
4542static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4543{
4544        /*
4545         * If still on the runqueue then deactivate_task()
4546         * was not called and update_curr() has to be done:
4547         */
4548        if (prev->on_rq)
4549                update_curr(cfs_rq);
4550
4551        /* throttle cfs_rqs exceeding runtime */
4552        check_cfs_rq_runtime(cfs_rq);
4553
4554        check_spread(cfs_rq, prev);
4555
4556        if (prev->on_rq) {
4557                update_stats_wait_start(cfs_rq, prev);
4558                /* Put 'current' back into the tree. */
4559                __enqueue_entity(cfs_rq, prev);
4560                /* in !on_rq case, update occurred at dequeue */
4561                update_load_avg(cfs_rq, prev, 0);
4562        }
4563        cfs_rq->curr = NULL;
4564}
4565
4566static void
4567entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4568{
4569        /*
4570         * Update run-time statistics of the 'current'.
4571         */
4572        update_curr(cfs_rq);
4573
4574        /*
4575         * Ensure that runnable average is periodically updated.
4576         */
4577        update_load_avg(cfs_rq, curr, UPDATE_TG);
4578        update_cfs_group(curr);
4579
4580#ifdef CONFIG_SCHED_HRTICK
4581        /*
4582         * queued ticks are scheduled to match the slice, so don't bother
4583         * validating it and just reschedule.
4584         */
4585        if (queued) {
4586                resched_curr(rq_of(cfs_rq));
4587                return;
4588        }
4589        /*
4590         * don't let the period tick interfere with the hrtick preemption
4591         */
4592        if (!sched_feat(DOUBLE_TICK) &&
4593                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4594                return;
4595#endif
4596
4597        if (cfs_rq->nr_running > 1)
4598                check_preempt_tick(cfs_rq, curr);
4599}
4600
4601
4602/**************************************************
4603 * CFS bandwidth control machinery
4604 */
4605
4606#ifdef CONFIG_CFS_BANDWIDTH
4607
4608#ifdef CONFIG_JUMP_LABEL
4609static struct static_key __cfs_bandwidth_used;
4610
4611static inline bool cfs_bandwidth_used(void)
4612{
4613        return static_key_false(&__cfs_bandwidth_used);
4614}
4615
4616void cfs_bandwidth_usage_inc(void)
4617{
4618        static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4619}
4620
4621void cfs_bandwidth_usage_dec(void)
4622{
4623        static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4624}
4625#else /* CONFIG_JUMP_LABEL */
4626static bool cfs_bandwidth_used(void)
4627{
4628        return true;
4629}
4630
4631void cfs_bandwidth_usage_inc(void) {}
4632void cfs_bandwidth_usage_dec(void) {}
4633#endif /* CONFIG_JUMP_LABEL */
4634
4635/*
4636 * default period for cfs group bandwidth.
4637 * default: 0.1s, units: nanoseconds
4638 */
4639static inline u64 default_cfs_period(void)
4640{
4641        return 100000000ULL;
4642}
4643
4644static inline u64 sched_cfs_bandwidth_slice(void)
4645{
4646        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4647}
4648
4649/*
4650 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4651 * directly instead of rq->clock to avoid adding additional synchronization
4652 * around rq->lock.
4653 *
4654 * requires cfs_b->lock
4655 */
4656void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4657{
4658        if (unlikely(cfs_b->quota == RUNTIME_INF))
4659                return;
4660
4661        cfs_b->runtime += cfs_b->quota;
4662        cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4663}
4664
4665static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4666{
4667        return &tg->cfs_bandwidth;
4668}
4669
4670/* returns 0 on failure to allocate runtime */
4671static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4672                                   struct cfs_rq *cfs_rq, u64 target_runtime)
4673{
4674        u64 min_amount, amount = 0;
4675
4676        lockdep_assert_held(&cfs_b->lock);
4677
4678        /* note: this is a positive sum as runtime_remaining <= 0 */
4679        min_amount = target_runtime - cfs_rq->runtime_remaining;
4680
4681        if (cfs_b->quota == RUNTIME_INF)
4682                amount = min_amount;
4683        else {
4684                start_cfs_bandwidth(cfs_b);
4685
4686                if (cfs_b->runtime > 0) {
4687                        amount = min(cfs_b->runtime, min_amount);
4688                        cfs_b->runtime -= amount;
4689                        cfs_b->idle = 0;
4690                }
4691        }
4692
4693        cfs_rq->runtime_remaining += amount;
4694
4695        return cfs_rq->runtime_remaining > 0;
4696}
4697
4698/* returns 0 on failure to allocate runtime */
4699static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4700{
4701        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4702        int ret;
4703
4704        raw_spin_lock(&cfs_b->lock);
4705        ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4706        raw_spin_unlock(&cfs_b->lock);
4707
4708        return ret;
4709}
4710
4711static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4712{
4713        /* dock delta_exec before expiring quota (as it could span periods) */
4714        cfs_rq->runtime_remaining -= delta_exec;
4715
4716        if (likely(cfs_rq->runtime_remaining > 0))
4717                return;
4718
4719        if (cfs_rq->throttled)
4720                return;
4721        /*
4722         * if we're unable to extend our runtime we resched so that the active
4723         * hierarchy can be throttled
4724         */
4725        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4726                resched_curr(rq_of(cfs_rq));
4727}
4728
4729static __always_inline
4730void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4731{
4732        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4733                return;
4734
4735        __account_cfs_rq_runtime(cfs_rq, delta_exec);
4736}
4737
4738static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4739{
4740        return cfs_bandwidth_used() && cfs_rq->throttled;
4741}
4742
4743/* check whether cfs_rq, or any parent, is throttled */
4744static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4745{
4746        return cfs_bandwidth_used() && cfs_rq->throttle_count;
4747}
4748
4749/*
4750 * Ensure that neither of the group entities corresponding to src_cpu or
4751 * dest_cpu are members of a throttled hierarchy when performing group
4752 * load-balance operations.
4753 */
4754static inline int throttled_lb_pair(struct task_group *tg,
4755                                    int src_cpu, int dest_cpu)
4756{
4757        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4758
4759        src_cfs_rq = tg->cfs_rq[src_cpu];
4760        dest_cfs_rq = tg->cfs_rq[dest_cpu];
4761
4762        return throttled_hierarchy(src_cfs_rq) ||
4763               throttled_hierarchy(dest_cfs_rq);
4764}
4765
4766static int tg_unthrottle_up(struct task_group *tg, void *data)
4767{
4768        struct rq *rq = data;
4769        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4770
4771        cfs_rq->throttle_count--;
4772        if (!cfs_rq->throttle_count) {
4773                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4774                                             cfs_rq->throttled_clock_task;
4775
4776                /* Add cfs_rq with load or one or more already running entities to the list */
4777                if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4778                        list_add_leaf_cfs_rq(cfs_rq);
4779        }
4780
4781        return 0;
4782}
4783
4784static int tg_throttle_down(struct task_group *tg, void *data)
4785{
4786        struct rq *rq = data;
4787        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4788
4789        /* group is entering throttled state, stop time */
4790        if (!cfs_rq->throttle_count) {
4791                cfs_rq->throttled_clock_task = rq_clock_task(rq);
4792                list_del_leaf_cfs_rq(cfs_rq);
4793        }
4794        cfs_rq->throttle_count++;
4795
4796        return 0;
4797}
4798
4799static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4800{
4801        struct rq *rq = rq_of(cfs_rq);
4802        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4803        struct sched_entity *se;
4804        long task_delta, idle_task_delta, dequeue = 1;
4805
4806        raw_spin_lock(&cfs_b->lock);
4807        /* This will start the period timer if necessary */
4808        if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4809                /*
4810                 * We have raced with bandwidth becoming available, and if we
4811                 * actually throttled the timer might not unthrottle us for an
4812                 * entire period. We additionally needed to make sure that any
4813                 * subsequent check_cfs_rq_runtime calls agree not to throttle
4814                 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4815                 * for 1ns of runtime rather than just check cfs_b.
4816                 */
4817                dequeue = 0;
4818        } else {
4819                list_add_tail_rcu(&cfs_rq->throttled_list,
4820                                  &cfs_b->throttled_cfs_rq);
4821        }
4822        raw_spin_unlock(&cfs_b->lock);
4823
4824        if (!dequeue)
4825                return false;  /* Throttle no longer required. */
4826
4827        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4828
4829        /* freeze hierarchy runnable averages while throttled */
4830        rcu_read_lock();
4831        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4832        rcu_read_unlock();
4833
4834        task_delta = cfs_rq->h_nr_running;
4835        idle_task_delta = cfs_rq->idle_h_nr_running;
4836        for_each_sched_entity(se) {
4837                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4838                /* throttled entity or throttle-on-deactivate */
4839                if (!se->on_rq)
4840                        goto done;
4841
4842                dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4843
4844                qcfs_rq->h_nr_running -= task_delta;
4845                qcfs_rq->idle_h_nr_running -= idle_task_delta;
4846
4847                if (qcfs_rq->load.weight) {
4848                        /* Avoid re-evaluating load for this entity: */
4849                        se = parent_entity(se);
4850                        break;
4851                }
4852        }
4853
4854        for_each_sched_entity(se) {
4855                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4856                /* throttled entity or throttle-on-deactivate */
4857                if (!se->on_rq)
4858                        goto done;
4859
4860                update_load_avg(qcfs_rq, se, 0);
4861                se_update_runnable(se);
4862
4863                qcfs_rq->h_nr_running -= task_delta;
4864                qcfs_rq->idle_h_nr_running -= idle_task_delta;
4865        }
4866
4867        /* At this point se is NULL and we are at root level*/
4868        sub_nr_running(rq, task_delta);
4869
4870done:
4871        /*
4872         * Note: distribution will already see us throttled via the
4873         * throttled-list.  rq->lock protects completion.
4874         */
4875        cfs_rq->throttled = 1;
4876        cfs_rq->throttled_clock = rq_clock(rq);
4877        return true;
4878}
4879
4880void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4881{
4882        struct rq *rq = rq_of(cfs_rq);
4883        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4884        struct sched_entity *se;
4885        long task_delta, idle_task_delta;
4886
4887        se = cfs_rq->tg->se[cpu_of(rq)];
4888
4889        cfs_rq->throttled = 0;
4890
4891        update_rq_clock(rq);
4892
4893        raw_spin_lock(&cfs_b->lock);
4894        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4895        list_del_rcu(&cfs_rq->throttled_list);
4896        raw_spin_unlock(&cfs_b->lock);
4897
4898        /* update hierarchical throttle state */
4899        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4900
4901        if (!cfs_rq->load.weight)
4902                return;
4903
4904        task_delta = cfs_rq->h_nr_running;
4905        idle_task_delta = cfs_rq->idle_h_nr_running;
4906        for_each_sched_entity(se) {
4907                if (se->on_rq)
4908                        break;
4909                cfs_rq = cfs_rq_of(se);
4910                enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4911
4912                cfs_rq->h_nr_running += task_delta;
4913                cfs_rq->idle_h_nr_running += idle_task_delta;
4914
4915                /* end evaluation on encountering a throttled cfs_rq */
4916                if (cfs_rq_throttled(cfs_rq))
4917                        goto unthrottle_throttle;
4918        }
4919
4920        for_each_sched_entity(se) {
4921                cfs_rq = cfs_rq_of(se);
4922
4923                update_load_avg(cfs_rq, se, UPDATE_TG);
4924                se_update_runnable(se);
4925
4926                cfs_rq->h_nr_running += task_delta;
4927                cfs_rq->idle_h_nr_running += idle_task_delta;
4928
4929
4930                /* end evaluation on encountering a throttled cfs_rq */
4931                if (cfs_rq_throttled(cfs_rq))
4932                        goto unthrottle_throttle;
4933
4934                /*
4935                 * One parent has been throttled and cfs_rq removed from the
4936                 * list. Add it back to not break the leaf list.
4937                 */
4938                if (throttled_hierarchy(cfs_rq))
4939                        list_add_leaf_cfs_rq(cfs_rq);
4940        }
4941
4942        /* At this point se is NULL and we are at root level*/
4943        add_nr_running(rq, task_delta);
4944
4945unthrottle_throttle:
4946        /*
4947         * The cfs_rq_throttled() breaks in the above iteration can result in
4948         * incomplete leaf list maintenance, resulting in triggering the
4949         * assertion below.
4950         */
4951        for_each_sched_entity(se) {
4952                cfs_rq = cfs_rq_of(se);
4953
4954                if (list_add_leaf_cfs_rq(cfs_rq))
4955                        break;
4956        }
4957
4958        assert_list_leaf_cfs_rq(rq);
4959
4960        /* Determine whether we need to wake up potentially idle CPU: */
4961        if (rq->curr == rq->idle && rq->cfs.nr_running)
4962                resched_curr(rq);
4963}
4964
4965static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4966{
4967        struct cfs_rq *cfs_rq;
4968        u64 runtime, remaining = 1;
4969
4970        rcu_read_lock();
4971        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4972                                throttled_list) {
4973                struct rq *rq = rq_of(cfs_rq);
4974                struct rq_flags rf;
4975
4976                rq_lock_irqsave(rq, &rf);
4977                if (!cfs_rq_throttled(cfs_rq))
4978                        goto next;
4979
4980                /* By the above check, this should never be true */
4981                SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4982
4983                raw_spin_lock(&cfs_b->lock);
4984                runtime = -cfs_rq->runtime_remaining + 1;
4985                if (runtime > cfs_b->runtime)
4986                        runtime = cfs_b->runtime;
4987                cfs_b->runtime -= runtime;
4988                remaining = cfs_b->runtime;
4989                raw_spin_unlock(&cfs_b->lock);
4990
4991                cfs_rq->runtime_remaining += runtime;
4992
4993                /* we check whether we're throttled above */
4994                if (cfs_rq->runtime_remaining > 0)
4995                        unthrottle_cfs_rq(cfs_rq);
4996
4997next:
4998                rq_unlock_irqrestore(rq, &rf);
4999
5000                if (!remaining)
5001                        break;
5002        }
5003        rcu_read_unlock();
5004}
5005
5006/*
5007 * Responsible for refilling a task_group's bandwidth and unthrottling its
5008 * cfs_rqs as appropriate. If there has been no activity within the last
5009 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5010 * used to track this state.
5011 */
5012static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5013{
5014        int throttled;
5015
5016        /* no need to continue the timer with no bandwidth constraint */
5017        if (cfs_b->quota == RUNTIME_INF)
5018                goto out_deactivate;
5019
5020        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5021        cfs_b->nr_periods += overrun;
5022
5023        /* Refill extra burst quota even if cfs_b->idle */
5024        __refill_cfs_bandwidth_runtime(cfs_b);
5025
5026        /*
5027         * idle depends on !throttled (for the case of a large deficit), and if
5028         * we're going inactive then everything else can be deferred
5029         */
5030        if (cfs_b->idle && !throttled)
5031                goto out_deactivate;
5032
5033        if (!throttled) {
5034                /* mark as potentially idle for the upcoming period */
5035                cfs_b->idle = 1;
5036                return 0;
5037        }
5038
5039        /* account preceding periods in which throttling occurred */
5040        cfs_b->nr_throttled += overrun;
5041
5042        /*
5043         * This check is repeated as we release cfs_b->lock while we unthrottle.
5044         */
5045        while (throttled && cfs_b->runtime > 0) {
5046                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5047                /* we can't nest cfs_b->lock while distributing bandwidth */
5048                distribute_cfs_runtime(cfs_b);
5049                raw_spin_lock_irqsave(&cfs_b->lock, flags);
5050
5051                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5052        }
5053
5054        /*
5055         * While we are ensured activity in the period following an
5056         * unthrottle, this also covers the case in which the new bandwidth is
5057         * insufficient to cover the existing bandwidth deficit.  (Forcing the
5058         * timer to remain active while there are any throttled entities.)
5059         */
5060        cfs_b->idle = 0;
5061
5062        return 0;
5063
5064out_deactivate:
5065        return 1;
5066}
5067
5068/* a cfs_rq won't donate quota below this amount */
5069static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5070/* minimum remaining period time to redistribute slack quota */
5071static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5072/* how long we wait to gather additional slack before distributing */
5073static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5074
5075/*
5076 * Are we near the end of the current quota period?
5077 *
5078 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5079 * hrtimer base being cleared by hrtimer_start. In the case of
5080 * migrate_hrtimers, base is never cleared, so we are fine.
5081 */
5082static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5083{
5084        struct hrtimer *refresh_timer = &cfs_b->period_timer;
5085        s64 remaining;
5086
5087        /* if the call-back is running a quota refresh is already occurring */
5088        if (hrtimer_callback_running(refresh_timer))
5089                return 1;
5090
5091        /* is a quota refresh about to occur? */
5092        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5093        if (remaining < (s64)min_expire)
5094                return 1;
5095
5096        return 0;
5097}
5098
5099static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5100{
5101        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5102
5103        /* if there's a quota refresh soon don't bother with slack */
5104        if (runtime_refresh_within(cfs_b, min_left))
5105                return;
5106
5107        /* don't push forwards an existing deferred unthrottle */
5108        if (cfs_b->slack_started)
5109                return;
5110        cfs_b->slack_started = true;
5111
5112        hrtimer_start(&cfs_b->slack_timer,
5113                        ns_to_ktime(cfs_bandwidth_slack_period),
5114                        HRTIMER_MODE_REL);
5115}
5116
5117/* we know any runtime found here is valid as update_curr() precedes return */
5118static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5119{
5120        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5121        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5122
5123        if (slack_runtime <= 0)
5124                return;
5125
5126        raw_spin_lock(&cfs_b->lock);
5127        if (cfs_b->quota != RUNTIME_INF) {
5128                cfs_b->runtime += slack_runtime;
5129
5130                /* we are under rq->lock, defer unthrottling using a timer */
5131                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5132                    !list_empty(&cfs_b->throttled_cfs_rq))
5133                        start_cfs_slack_bandwidth(cfs_b);
5134        }
5135        raw_spin_unlock(&cfs_b->lock);
5136
5137        /* even if it's not valid for return we don't want to try again */
5138        cfs_rq->runtime_remaining -= slack_runtime;
5139}
5140
5141static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5142{
5143        if (!cfs_bandwidth_used())
5144                return;
5145
5146        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5147                return;
5148
5149        __return_cfs_rq_runtime(cfs_rq);
5150}
5151
5152/*
5153 * This is done with a timer (instead of inline with bandwidth return) since
5154 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5155 */
5156static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5157{
5158        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5159        unsigned long flags;
5160
5161        /* confirm we're still not at a refresh boundary */
5162        raw_spin_lock_irqsave(&cfs_b->lock, flags);
5163        cfs_b->slack_started = false;
5164
5165        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5166                raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5167                return;
5168        }
5169
5170        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5171                runtime = cfs_b->runtime;
5172
5173        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5174
5175        if (!runtime)
5176                return;
5177
5178        distribute_cfs_runtime(cfs_b);
5179}
5180
5181/*
5182 * When a group wakes up we want to make sure that its quota is not already
5183 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5184 * runtime as update_curr() throttling can not trigger until it's on-rq.
5185 */
5186static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5187{
5188        if (!cfs_bandwidth_used())
5189                return;
5190
5191        /* an active group must be handled by the update_curr()->put() path */
5192        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5193                return;
5194
5195        /* ensure the group is not already throttled */
5196        if (cfs_rq_throttled(cfs_rq))
5197                return;
5198
5199        /* update runtime allocation */
5200        account_cfs_rq_runtime(cfs_rq, 0);
5201        if (cfs_rq->runtime_remaining <= 0)
5202                throttle_cfs_rq(cfs_rq);
5203}
5204
5205static void sync_throttle(struct task_group *tg, int cpu)
5206{
5207        struct cfs_rq *pcfs_rq, *cfs_rq;
5208
5209        if (!cfs_bandwidth_used())
5210                return;
5211
5212        if (!tg->parent)
5213                return;
5214
5215        cfs_rq = tg->cfs_rq[cpu];
5216        pcfs_rq = tg->parent->cfs_rq[cpu];
5217
5218        cfs_rq->throttle_count = pcfs_rq->throttle_count;
5219        cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5220}
5221
5222/* conditionally throttle active cfs_rq's from put_prev_entity() */
5223static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5224{
5225        if (!cfs_bandwidth_used())
5226                return false;
5227
5228        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5229                return false;
5230
5231        /*
5232         * it's possible for a throttled entity to be forced into a running
5233         * state (e.g. set_curr_task), in this case we're finished.
5234         */
5235        if (cfs_rq_throttled(cfs_rq))
5236                return true;
5237
5238        return throttle_cfs_rq(cfs_rq);
5239}
5240
5241static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5242{
5243        struct cfs_bandwidth *cfs_b =
5244                container_of(timer, struct cfs_bandwidth, slack_timer);
5245
5246        do_sched_cfs_slack_timer(cfs_b);
5247
5248        return HRTIMER_NORESTART;
5249}
5250
5251extern const u64 max_cfs_quota_period;
5252
5253static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5254{
5255        struct cfs_bandwidth *cfs_b =
5256                container_of(timer, struct cfs_bandwidth, period_timer);
5257        unsigned long flags;
5258        int overrun;
5259        int idle = 0;
5260        int count = 0;
5261
5262        raw_spin_lock_irqsave(&cfs_b->lock, flags);
5263        for (;;) {
5264                overrun = hrtimer_forward_now(timer, cfs_b->period);
5265                if (!overrun)
5266                        break;
5267
5268                idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5269
5270                if (++count > 3) {
5271                        u64 new, old = ktime_to_ns(cfs_b->period);
5272
5273                        /*
5274                         * Grow period by a factor of 2 to avoid losing precision.
5275                         * Precision loss in the quota/period ratio can cause __cfs_schedulable
5276                         * to fail.
5277                         */
5278                        new = old * 2;
5279                        if (new < max_cfs_quota_period) {
5280                                cfs_b->period = ns_to_ktime(new);
5281                                cfs_b->quota *= 2;
5282                                cfs_b->burst *= 2;
5283
5284                                pr_warn_ratelimited(
5285        "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5286                                        smp_processor_id(),
5287                                        div_u64(new, NSEC_PER_USEC),
5288                                        div_u64(cfs_b->quota, NSEC_PER_USEC));
5289                        } else {
5290                                pr_warn_ratelimited(
5291        "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5292                                        smp_processor_id(),
5293                                        div_u64(old, NSEC_PER_USEC),
5294                                        div_u64(cfs_b->quota, NSEC_PER_USEC));
5295                        }
5296
5297                        /* reset count so we don't come right back in here */
5298                        count = 0;
5299                }
5300        }
5301        if (idle)
5302                cfs_b->period_active = 0;
5303        raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5304
5305        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5306}
5307
5308void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5309{
5310        raw_spin_lock_init(&cfs_b->lock);
5311        cfs_b->runtime = 0;
5312        cfs_b->quota = RUNTIME_INF;
5313        cfs_b->period = ns_to_ktime(default_cfs_period());
5314        cfs_b->burst = 0;
5315
5316        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5317        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5318        cfs_b->period_timer.function = sched_cfs_period_timer;
5319        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5320        cfs_b->slack_timer.function = sched_cfs_slack_timer;
5321        cfs_b->slack_started = false;
5322}
5323
5324static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5325{
5326        cfs_rq->runtime_enabled = 0;
5327        INIT_LIST_HEAD(&cfs_rq->throttled_list);
5328}
5329
5330void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5331{
5332        lockdep_assert_held(&cfs_b->lock);
5333
5334        if (cfs_b->period_active)
5335                return;
5336
5337        cfs_b->period_active = 1;
5338        hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5339        hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5340}
5341
5342static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5343{
5344        /* init_cfs_bandwidth() was not called */
5345        if (!cfs_b->throttled_cfs_rq.next)
5346                return;
5347
5348        hrtimer_cancel(&cfs_b->period_timer);
5349        hrtimer_cancel(&cfs_b->slack_timer);
5350}
5351
5352/*
5353 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5354 *
5355 * The race is harmless, since modifying bandwidth settings of unhooked group
5356 * bits doesn't do much.
5357 */
5358
5359/* cpu online callback */
5360static void __maybe_unused update_runtime_enabled(struct rq *rq)
5361{
5362        struct task_group *tg;
5363
5364        lockdep_assert_rq_held(rq);
5365
5366        rcu_read_lock();
5367        list_for_each_entry_rcu(tg, &task_groups, list) {
5368                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5369                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5370
5371                raw_spin_lock(&cfs_b->lock);
5372                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5373                raw_spin_unlock(&cfs_b->lock);
5374        }
5375        rcu_read_unlock();
5376}
5377
5378/* cpu offline callback */
5379static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5380{
5381        struct task_group *tg;
5382
5383        lockdep_assert_rq_held(rq);
5384
5385        rcu_read_lock();
5386        list_for_each_entry_rcu(tg, &task_groups, list) {
5387                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5388
5389                if (!cfs_rq->runtime_enabled)
5390                        continue;
5391
5392                /*
5393                 * clock_task is not advancing so we just need to make sure
5394                 * there's some valid quota amount
5395                 */
5396                cfs_rq->runtime_remaining = 1;
5397                /*
5398                 * Offline rq is schedulable till CPU is completely disabled
5399                 * in take_cpu_down(), so we prevent new cfs throttling here.
5400                 */
5401                cfs_rq->runtime_enabled = 0;
5402
5403                if (cfs_rq_throttled(cfs_rq))
5404                        unthrottle_cfs_rq(cfs_rq);
5405        }
5406        rcu_read_unlock();
5407}
5408
5409#else /* CONFIG_CFS_BANDWIDTH */
5410
5411static inline bool cfs_bandwidth_used(void)
5412{
5413        return false;
5414}
5415
5416static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5417static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5418static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5419static inline void sync_throttle(struct task_group *tg, int cpu) {}
5420static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5421
5422static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5423{
5424        return 0;
5425}
5426
5427static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5428{
5429        return 0;
5430}
5431
5432static inline int throttled_lb_pair(struct task_group *tg,
5433                                    int src_cpu, int dest_cpu)
5434{
5435        return 0;
5436}
5437
5438void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5439
5440#ifdef CONFIG_FAIR_GROUP_SCHED
5441static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5442#endif
5443
5444static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5445{
5446        return NULL;
5447}
5448static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5449static inline void update_runtime_enabled(struct rq *rq) {}
5450static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5451
5452#endif /* CONFIG_CFS_BANDWIDTH */
5453
5454/**************************************************
5455 * CFS operations on tasks:
5456 */
5457
5458#ifdef CONFIG_SCHED_HRTICK
5459static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5460{
5461        struct sched_entity *se = &p->se;
5462        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5463
5464        SCHED_WARN_ON(task_rq(p) != rq);
5465
5466        if (rq->cfs.h_nr_running > 1) {
5467                u64 slice = sched_slice(cfs_rq, se);
5468                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5469                s64 delta = slice - ran;
5470
5471                if (delta < 0) {
5472                        if (task_current(rq, p))
5473                                resched_curr(rq);
5474                        return;
5475                }
5476                hrtick_start(rq, delta);
5477        }
5478}
5479
5480/*
5481 * called from enqueue/dequeue and updates the hrtick when the
5482 * current task is from our class and nr_running is low enough
5483 * to matter.
5484 */
5485static void hrtick_update(struct rq *rq)
5486{
5487        struct task_struct *curr = rq->curr;
5488
5489        if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5490                return;
5491
5492        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5493                hrtick_start_fair(rq, curr);
5494}
5495#else /* !CONFIG_SCHED_HRTICK */
5496static inline void
5497hrtick_start_fair(struct rq *rq, struct task_struct *p)
5498{
5499}
5500
5501static inline void hrtick_update(struct rq *rq)
5502{
5503}
5504#endif
5505
5506#ifdef CONFIG_SMP
5507static inline unsigned long cpu_util(int cpu);
5508
5509static inline bool cpu_overutilized(int cpu)
5510{
5511        return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5512}
5513
5514static inline void update_overutilized_status(struct rq *rq)
5515{
5516        if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5517                WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5518                trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5519        }
5520}
5521#else
5522static inline void update_overutilized_status(struct rq *rq) { }
5523#endif
5524
5525/* Runqueue only has SCHED_IDLE tasks enqueued */
5526static int sched_idle_rq(struct rq *rq)
5527{
5528        return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5529                        rq->nr_running);
5530}
5531
5532#ifdef CONFIG_SMP
5533static int sched_idle_cpu(int cpu)
5534{
5535        return sched_idle_rq(cpu_rq(cpu));
5536}
5537#endif
5538
5539/*
5540 * The enqueue_task method is called before nr_running is
5541 * increased. Here we update the fair scheduling stats and
5542 * then put the task into the rbtree:
5543 */
5544static void
5545enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5546{
5547        struct cfs_rq *cfs_rq;
5548        struct sched_entity *se = &p->se;
5549        int idle_h_nr_running = task_has_idle_policy(p);
5550        int task_new = !(flags & ENQUEUE_WAKEUP);
5551
5552        /*
5553         * The code below (indirectly) updates schedutil which looks at
5554         * the cfs_rq utilization to select a frequency.
5555         * Let's add the task's estimated utilization to the cfs_rq's
5556         * estimated utilization, before we update schedutil.
5557         */
5558        util_est_enqueue(&rq->cfs, p);
5559
5560        /*
5561         * If in_iowait is set, the code below may not trigger any cpufreq
5562         * utilization updates, so do it here explicitly with the IOWAIT flag
5563         * passed.
5564         */
5565        if (p->in_iowait)
5566                cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5567
5568        for_each_sched_entity(se) {
5569                if (se->on_rq)
5570                        break;
5571                cfs_rq = cfs_rq_of(se);
5572                enqueue_entity(cfs_rq, se, flags);
5573
5574                cfs_rq->h_nr_running++;
5575                cfs_rq->idle_h_nr_running += idle_h_nr_running;
5576
5577                /* end evaluation on encountering a throttled cfs_rq */
5578                if (cfs_rq_throttled(cfs_rq))
5579                        goto enqueue_throttle;
5580
5581                flags = ENQUEUE_WAKEUP;
5582        }
5583
5584        for_each_sched_entity(se) {
5585                cfs_rq = cfs_rq_of(se);
5586
5587                update_load_avg(cfs_rq, se, UPDATE_TG);
5588                se_update_runnable(se);
5589                update_cfs_group(se);
5590
5591                cfs_rq->h_nr_running++;
5592                cfs_rq->idle_h_nr_running += idle_h_nr_running;
5593
5594                /* end evaluation on encountering a throttled cfs_rq */
5595                if (cfs_rq_throttled(cfs_rq))
5596                        goto enqueue_throttle;
5597
5598               /*
5599                * One parent has been throttled and cfs_rq removed from the
5600                * list. Add it back to not break the leaf list.
5601                */
5602               if (throttled_hierarchy(cfs_rq))
5603                       list_add_leaf_cfs_rq(cfs_rq);
5604        }
5605
5606        /* At this point se is NULL and we are at root level*/
5607        add_nr_running(rq, 1);
5608
5609        /*
5610         * Since new tasks are assigned an initial util_avg equal to
5611         * half of the spare capacity of their CPU, tiny tasks have the
5612         * ability to cross the overutilized threshold, which will
5613         * result in the load balancer ruining all the task placement
5614         * done by EAS. As a way to mitigate that effect, do not account
5615         * for the first enqueue operation of new tasks during the
5616         * overutilized flag detection.
5617         *
5618         * A better way of solving this problem would be to wait for
5619         * the PELT signals of tasks to converge before taking them
5620         * into account, but that is not straightforward to implement,
5621         * and the following generally works well enough in practice.
5622         */
5623        if (!task_new)
5624                update_overutilized_status(rq);
5625
5626enqueue_throttle:
5627        if (cfs_bandwidth_used()) {
5628                /*
5629                 * When bandwidth control is enabled; the cfs_rq_throttled()
5630                 * breaks in the above iteration can result in incomplete
5631                 * leaf list maintenance, resulting in triggering the assertion
5632                 * below.
5633                 */
5634                for_each_sched_entity(se) {
5635                        cfs_rq = cfs_rq_of(se);
5636
5637                        if (list_add_leaf_cfs_rq(cfs_rq))
5638                                break;
5639                }
5640        }
5641
5642        assert_list_leaf_cfs_rq(rq);
5643
5644        hrtick_update(rq);
5645}
5646
5647static void set_next_buddy(struct sched_entity *se);
5648
5649/*
5650 * The dequeue_task method is called before nr_running is
5651 * decreased. We remove the task from the rbtree and
5652 * update the fair scheduling stats:
5653 */
5654static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5655{
5656        struct cfs_rq *cfs_rq;
5657        struct sched_entity *se = &p->se;
5658        int task_sleep = flags & DEQUEUE_SLEEP;
5659        int idle_h_nr_running = task_has_idle_policy(p);
5660        bool was_sched_idle = sched_idle_rq(rq);
5661
5662        util_est_dequeue(&rq->cfs, p);
5663
5664        for_each_sched_entity(se) {
5665                cfs_rq = cfs_rq_of(se);
5666                dequeue_entity(cfs_rq, se, flags);
5667
5668                cfs_rq->h_nr_running--;
5669                cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5670
5671                /* end evaluation on encountering a throttled cfs_rq */
5672                if (cfs_rq_throttled(cfs_rq))
5673                        goto dequeue_throttle;
5674
5675                /* Don't dequeue parent if it has other entities besides us */
5676                if (cfs_rq->load.weight) {
5677                        /* Avoid re-evaluating load for this entity: */
5678                        se = parent_entity(se);
5679                        /*
5680                         * Bias pick_next to pick a task from this cfs_rq, as
5681                         * p is sleeping when it is within its sched_slice.
5682                         */
5683                        if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5684                                set_next_buddy(se);
5685                        break;
5686                }
5687                flags |= DEQUEUE_SLEEP;
5688        }
5689
5690        for_each_sched_entity(se) {
5691                cfs_rq = cfs_rq_of(se);
5692
5693                update_load_avg(cfs_rq, se, UPDATE_TG);
5694                se_update_runnable(se);
5695                update_cfs_group(se);
5696
5697                cfs_rq->h_nr_running--;
5698                cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5699
5700                /* end evaluation on encountering a throttled cfs_rq */
5701                if (cfs_rq_throttled(cfs_rq))
5702                        goto dequeue_throttle;
5703
5704        }
5705
5706        /* At this point se is NULL and we are at root level*/
5707        sub_nr_running(rq, 1);
5708
5709        /* balance early to pull high priority tasks */
5710        if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5711                rq->next_balance = jiffies;
5712
5713dequeue_throttle:
5714        util_est_update(&rq->cfs, p, task_sleep);
5715        hrtick_update(rq);
5716}
5717
5718#ifdef CONFIG_SMP
5719
5720/* Working cpumask for: load_balance, load_balance_newidle. */
5721DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5722DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5723
5724#ifdef CONFIG_NO_HZ_COMMON
5725
5726static struct {
5727        cpumask_var_t idle_cpus_mask;
5728        atomic_t nr_cpus;
5729        int has_blocked;                /* Idle CPUS has blocked load */
5730        unsigned long next_balance;     /* in jiffy units */
5731        unsigned long next_blocked;     /* Next update of blocked load in jiffies */
5732} nohz ____cacheline_aligned;
5733
5734#endif /* CONFIG_NO_HZ_COMMON */
5735
5736static unsigned long cpu_load(struct rq *rq)
5737{
5738        return cfs_rq_load_avg(&rq->cfs);
5739}
5740
5741/*
5742 * cpu_load_without - compute CPU load without any contributions from *p
5743 * @cpu: the CPU which load is requested
5744 * @p: the task which load should be discounted
5745 *
5746 * The load of a CPU is defined by the load of tasks currently enqueued on that
5747 * CPU as well as tasks which are currently sleeping after an execution on that
5748 * CPU.
5749 *
5750 * This method returns the load of the specified CPU by discounting the load of
5751 * the specified task, whenever the task is currently contributing to the CPU
5752 * load.
5753 */
5754static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5755{
5756        struct cfs_rq *cfs_rq;
5757        unsigned int load;
5758
5759        /* Task has no contribution or is new */
5760        if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5761                return cpu_load(rq);
5762
5763        cfs_rq = &rq->cfs;
5764        load = READ_ONCE(cfs_rq->avg.load_avg);
5765
5766        /* Discount task's util from CPU's util */
5767        lsub_positive(&load, task_h_load(p));
5768
5769        return load;
5770}
5771
5772static unsigned long cpu_runnable(struct rq *rq)
5773{
5774        return cfs_rq_runnable_avg(&rq->cfs);
5775}
5776
5777static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5778{
5779        struct cfs_rq *cfs_rq;
5780        unsigned int runnable;
5781
5782        /* Task has no contribution or is new */
5783        if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5784                return cpu_runnable(rq);
5785
5786        cfs_rq = &rq->cfs;
5787        runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5788
5789        /* Discount task's runnable from CPU's runnable */
5790        lsub_positive(&runnable, p->se.avg.runnable_avg);
5791
5792        return runnable;
5793}
5794
5795static unsigned long capacity_of(int cpu)
5796{
5797        return cpu_rq(cpu)->cpu_capacity;
5798}
5799
5800static void record_wakee(struct task_struct *p)
5801{
5802        /*
5803         * Only decay a single time; tasks that have less then 1 wakeup per
5804         * jiffy will not have built up many flips.
5805         */
5806        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5807                current->wakee_flips >>= 1;
5808                current->wakee_flip_decay_ts = jiffies;
5809        }
5810
5811        if (current->last_wakee != p) {
5812                current->last_wakee = p;
5813                current->wakee_flips++;
5814        }
5815}
5816
5817/*
5818 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5819 *
5820 * A waker of many should wake a different task than the one last awakened
5821 * at a frequency roughly N times higher than one of its wakees.
5822 *
5823 * In order to determine whether we should let the load spread vs consolidating
5824 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5825 * partner, and a factor of lls_size higher frequency in the other.
5826 *
5827 * With both conditions met, we can be relatively sure that the relationship is
5828 * non-monogamous, with partner count exceeding socket size.
5829 *
5830 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5831 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5832 * socket size.
5833 */
5834static int wake_wide(struct task_struct *p)
5835{
5836        unsigned int master = current->wakee_flips;
5837        unsigned int slave = p->wakee_flips;
5838        int factor = __this_cpu_read(sd_llc_size);
5839
5840        if (master < slave)
5841                swap(master, slave);
5842        if (slave < factor || master < slave * factor)
5843                return 0;
5844        return 1;
5845}
5846
5847/*
5848 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5849 * soonest. For the purpose of speed we only consider the waking and previous
5850 * CPU.
5851 *
5852 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5853 *                      cache-affine and is (or will be) idle.
5854 *
5855 * wake_affine_weight() - considers the weight to reflect the average
5856 *                        scheduling latency of the CPUs. This seems to work
5857 *                        for the overloaded case.
5858 */
5859static int
5860wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5861{
5862        /*
5863         * If this_cpu is idle, it implies the wakeup is from interrupt
5864         * context. Only allow the move if cache is shared. Otherwise an
5865         * interrupt intensive workload could force all tasks onto one
5866         * node depending on the IO topology or IRQ affinity settings.
5867         *
5868         * If the prev_cpu is idle and cache affine then avoid a migration.
5869         * There is no guarantee that the cache hot data from an interrupt
5870         * is more important than cache hot data on the prev_cpu and from
5871         * a cpufreq perspective, it's better to have higher utilisation
5872         * on one CPU.
5873         */
5874        if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5875                return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5876
5877        if (sync && cpu_rq(this_cpu)->nr_running == 1)
5878                return this_cpu;
5879
5880        if (available_idle_cpu(prev_cpu))
5881                return prev_cpu;
5882
5883        return nr_cpumask_bits;
5884}
5885
5886static int
5887wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5888                   int this_cpu, int prev_cpu, int sync)
5889{
5890        s64 this_eff_load, prev_eff_load;
5891        unsigned long task_load;
5892
5893        this_eff_load = cpu_load(cpu_rq(this_cpu));
5894
5895        if (sync) {
5896                unsigned long current_load = task_h_load(current);
5897
5898                if (current_load > this_eff_load)
5899                        return this_cpu;
5900
5901                this_eff_load -= current_load;
5902        }
5903
5904        task_load = task_h_load(p);
5905
5906        this_eff_load += task_load;
5907        if (sched_feat(WA_BIAS))
5908                this_eff_load *= 100;
5909        this_eff_load *= capacity_of(prev_cpu);
5910
5911        prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5912        prev_eff_load -= task_load;
5913        if (sched_feat(WA_BIAS))
5914                prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5915        prev_eff_load *= capacity_of(this_cpu);
5916
5917        /*
5918         * If sync, adjust the weight of prev_eff_load such that if
5919         * prev_eff == this_eff that select_idle_sibling() will consider
5920         * stacking the wakee on top of the waker if no other CPU is
5921         * idle.
5922         */
5923        if (sync)
5924                prev_eff_load += 1;
5925
5926        return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5927}
5928
5929static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5930                       int this_cpu, int prev_cpu, int sync)
5931{
5932        int target = nr_cpumask_bits;
5933
5934        if (sched_feat(WA_IDLE))
5935                target = wake_affine_idle(this_cpu, prev_cpu, sync);
5936
5937        if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5938                target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5939
5940        schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5941        if (target == nr_cpumask_bits)
5942                return prev_cpu;
5943
5944        schedstat_inc(sd->ttwu_move_affine);
5945        schedstat_inc(p->se.statistics.nr_wakeups_affine);
5946        return target;
5947}
5948
5949static struct sched_group *
5950find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5951
5952/*
5953 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5954 */
5955static int
5956find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5957{
5958        unsigned long load, min_load = ULONG_MAX;
5959        unsigned int min_exit_latency = UINT_MAX;
5960        u64 latest_idle_timestamp = 0;
5961        int least_loaded_cpu = this_cpu;
5962        int shallowest_idle_cpu = -1;
5963        int i;
5964
5965        /* Check if we have any choice: */
5966        if (group->group_weight == 1)
5967                return cpumask_first(sched_group_span(group));
5968
5969        /* Traverse only the allowed CPUs */
5970        for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5971                struct rq *rq = cpu_rq(i);
5972
5973                if (!sched_core_cookie_match(rq, p))
5974                        continue;
5975
5976                if (sched_idle_cpu(i))
5977                        return i;
5978
5979                if (available_idle_cpu(i)) {
5980                        struct cpuidle_state *idle = idle_get_state(rq);
5981                        if (idle && idle->exit_latency < min_exit_latency) {
5982                                /*
5983                                 * We give priority to a CPU whose idle state
5984                                 * has the smallest exit latency irrespective
5985                                 * of any idle timestamp.
5986                                 */
5987                                min_exit_latency = idle->exit_latency;
5988                                latest_idle_timestamp = rq->idle_stamp;
5989                                shallowest_idle_cpu = i;
5990                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5991                                   rq->idle_stamp > latest_idle_timestamp) {
5992                                /*
5993                                 * If equal or no active idle state, then
5994                                 * the most recently idled CPU might have
5995                                 * a warmer cache.
5996                                 */
5997                                latest_idle_timestamp = rq->idle_stamp;
5998                                shallowest_idle_cpu = i;
5999                        }
6000                } else if (shallowest_idle_cpu == -1) {
6001                        load = cpu_load(cpu_rq(i));
6002                        if (load < min_load) {
6003                                min_load = load;
6004                                least_loaded_cpu = i;
6005                        }
6006                }
6007        }
6008
6009        return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6010}
6011
6012static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6013                                  int cpu, int prev_cpu, int sd_flag)
6014{
6015        int new_cpu = cpu;
6016
6017        if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6018                return prev_cpu;
6019
6020        /*
6021         * We need task's util for cpu_util_without, sync it up to
6022         * prev_cpu's last_update_time.
6023         */
6024        if (!(sd_flag & SD_BALANCE_FORK))
6025                sync_entity_load_avg(&p->se);
6026
6027        while (sd) {
6028                struct sched_group *group;
6029                struct sched_domain *tmp;
6030                int weight;
6031
6032                if (!(sd->flags & sd_flag)) {
6033                        sd = sd->child;
6034                        continue;
6035                }
6036
6037                group = find_idlest_group(sd, p, cpu);
6038                if (!group) {
6039                        sd = sd->child;
6040                        continue;
6041                }
6042
6043                new_cpu = find_idlest_group_cpu(group, p, cpu);
6044                if (new_cpu == cpu) {
6045                        /* Now try balancing at a lower domain level of 'cpu': */
6046                        sd = sd->child;
6047                        continue;
6048                }
6049
6050                /* Now try balancing at a lower domain level of 'new_cpu': */
6051                cpu = new_cpu;
6052                weight = sd->span_weight;
6053                sd = NULL;
6054                for_each_domain(cpu, tmp) {
6055                        if (weight <= tmp->span_weight)
6056                                break;
6057                        if (tmp->flags & sd_flag)
6058                                sd = tmp;
6059                }
6060        }
6061
6062        return new_cpu;
6063}
6064
6065static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6066{
6067        if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6068            sched_cpu_cookie_match(cpu_rq(cpu), p))
6069                return cpu;
6070
6071        return -1;
6072}
6073
6074#ifdef CONFIG_SCHED_SMT
6075DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6076EXPORT_SYMBOL_GPL(sched_smt_present);
6077
6078static inline void set_idle_cores(int cpu, int val)
6079{
6080        struct sched_domain_shared *sds;
6081
6082        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6083        if (sds)
6084                WRITE_ONCE(sds->has_idle_cores, val);
6085}
6086
6087static inline bool test_idle_cores(int cpu, bool def)
6088{
6089        struct sched_domain_shared *sds;
6090
6091        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6092        if (sds)
6093                return READ_ONCE(sds->has_idle_cores);
6094
6095        return def;
6096}
6097
6098/*
6099 * Scans the local SMT mask to see if the entire core is idle, and records this
6100 * information in sd_llc_shared->has_idle_cores.
6101 *
6102 * Since SMT siblings share all cache levels, inspecting this limited remote
6103 * state should be fairly cheap.
6104 */
6105void __update_idle_core(struct rq *rq)
6106{
6107        int core = cpu_of(rq);
6108        int cpu;
6109
6110        rcu_read_lock();
6111        if (test_idle_cores(core, true))
6112                goto unlock;
6113
6114        for_each_cpu(cpu, cpu_smt_mask(core)) {
6115                if (cpu == core)
6116                        continue;
6117
6118                if (!available_idle_cpu(cpu))
6119                        goto unlock;
6120        }
6121
6122        set_idle_cores(core, 1);
6123unlock:
6124        rcu_read_unlock();
6125}
6126
6127/*
6128 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6129 * there are no idle cores left in the system; tracked through
6130 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6131 */
6132static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6133{
6134        bool idle = true;
6135        int cpu;
6136
6137        if (!static_branch_likely(&sched_smt_present))
6138                return __select_idle_cpu(core, p);
6139
6140        for_each_cpu(cpu, cpu_smt_mask(core)) {
6141                if (!available_idle_cpu(cpu)) {
6142                        idle = false;
6143                        if (*idle_cpu == -1) {
6144                                if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6145                                        *idle_cpu = cpu;
6146                                        break;
6147                                }
6148                                continue;
6149                        }
6150                        break;
6151                }
6152                if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6153                        *idle_cpu = cpu;
6154        }
6155
6156        if (idle)
6157                return core;
6158
6159        cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6160        return -1;
6161}
6162
6163/*
6164 * Scan the local SMT mask for idle CPUs.
6165 */
6166static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6167{
6168        int cpu;
6169
6170        for_each_cpu(cpu, cpu_smt_mask(target)) {
6171                if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6172                    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6173                        continue;
6174                if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6175                        return cpu;
6176        }
6177
6178        return -1;
6179}
6180
6181#else /* CONFIG_SCHED_SMT */
6182
6183static inline void set_idle_cores(int cpu, int val)
6184{
6185}
6186
6187static inline bool test_idle_cores(int cpu, bool def)
6188{
6189        return def;
6190}
6191
6192static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6193{
6194        return __select_idle_cpu(core, p);
6195}
6196
6197static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6198{
6199        return -1;
6200}
6201
6202#endif /* CONFIG_SCHED_SMT */
6203
6204/*
6205 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6206 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6207 * average idle time for this rq (as found in rq->avg_idle).
6208 */
6209static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6210{
6211        struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6212        int i, cpu, idle_cpu = -1, nr = INT_MAX;
6213        struct rq *this_rq = this_rq();
6214        int this = smp_processor_id();
6215        struct sched_domain *this_sd;
6216        u64 time = 0;
6217
6218        this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6219        if (!this_sd)
6220                return -1;
6221
6222        cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6223
6224        if (sched_feat(SIS_PROP) && !has_idle_core) {
6225                u64 avg_cost, avg_idle, span_avg;
6226                unsigned long now = jiffies;
6227
6228                /*
6229                 * If we're busy, the assumption that the last idle period
6230                 * predicts the future is flawed; age away the remaining
6231                 * predicted idle time.
6232                 */
6233                if (unlikely(this_rq->wake_stamp < now)) {
6234                        while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6235                                this_rq->wake_stamp++;
6236                                this_rq->wake_avg_idle >>= 1;
6237                        }
6238                }
6239
6240                avg_idle = this_rq->wake_avg_idle;
6241                avg_cost = this_sd->avg_scan_cost + 1;
6242
6243                span_avg = sd->span_weight * avg_idle;
6244                if (span_avg > 4*avg_cost)
6245                        nr = div_u64(span_avg, avg_cost);
6246                else
6247                        nr = 4;
6248
6249                time = cpu_clock(this);
6250        }
6251
6252        for_each_cpu_wrap(cpu, cpus, target) {
6253                if (has_idle_core) {
6254                        i = select_idle_core(p, cpu, cpus, &idle_cpu);
6255                        if ((unsigned int)i < nr_cpumask_bits)
6256                                return i;
6257
6258                } else {
6259                        if (!--nr)
6260                                return -1;
6261                        idle_cpu = __select_idle_cpu(cpu, p);
6262                        if ((unsigned int)idle_cpu < nr_cpumask_bits)
6263                                break;
6264                }
6265        }
6266
6267        if (has_idle_core)
6268                set_idle_cores(target, false);
6269
6270        if (sched_feat(SIS_PROP) && !has_idle_core) {
6271                time = cpu_clock(this) - time;
6272
6273                /*
6274                 * Account for the scan cost of wakeups against the average
6275                 * idle time.
6276                 */
6277                this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6278
6279                update_avg(&this_sd->avg_scan_cost, time);
6280        }
6281
6282        return idle_cpu;
6283}
6284
6285/*
6286 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6287 * the task fits. If no CPU is big enough, but there are idle ones, try to
6288 * maximize capacity.
6289 */
6290static int
6291select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6292{
6293        unsigned long task_util, best_cap = 0;
6294        int cpu, best_cpu = -1;
6295        struct cpumask *cpus;
6296
6297        cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6298        cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6299
6300        task_util = uclamp_task_util(p);
6301
6302        for_each_cpu_wrap(cpu, cpus, target) {
6303                unsigned long cpu_cap = capacity_of(cpu);
6304
6305                if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6306                        continue;
6307                if (fits_capacity(task_util, cpu_cap))
6308                        return cpu;
6309
6310                if (cpu_cap > best_cap) {
6311                        best_cap = cpu_cap;
6312                        best_cpu = cpu;
6313                }
6314        }
6315
6316        return best_cpu;
6317}
6318
6319static inline bool asym_fits_capacity(int task_util, int cpu)
6320{
6321        if (static_branch_unlikely(&sched_asym_cpucapacity))
6322                return fits_capacity(task_util, capacity_of(cpu));
6323
6324        return true;
6325}
6326
6327/*
6328 * Try and locate an idle core/thread in the LLC cache domain.
6329 */
6330static int select_idle_sibling(struct task_struct *p, int prev, int target)
6331{
6332        bool has_idle_core = false;
6333        struct sched_domain *sd;
6334        unsigned long task_util;
6335        int i, recent_used_cpu;
6336
6337        /*
6338         * On asymmetric system, update task utilization because we will check
6339         * that the task fits with cpu's capacity.
6340         */
6341        if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6342                sync_entity_load_avg(&p->se);
6343                task_util = uclamp_task_util(p);
6344        }
6345
6346        /*
6347         * per-cpu select_idle_mask usage
6348         */
6349        lockdep_assert_irqs_disabled();
6350
6351        if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6352            asym_fits_capacity(task_util, target))
6353                return target;
6354
6355        /*
6356         * If the previous CPU is cache affine and idle, don't be stupid:
6357         */
6358        if (prev != target && cpus_share_cache(prev, target) &&
6359            (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6360            asym_fits_capacity(task_util, prev))
6361                return prev;
6362
6363        /*
6364         * Allow a per-cpu kthread to stack with the wakee if the
6365         * kworker thread and the tasks previous CPUs are the same.
6366         * The assumption is that the wakee queued work for the
6367         * per-cpu kthread that is now complete and the wakeup is
6368         * essentially a sync wakeup. An obvious example of this
6369         * pattern is IO completions.
6370         */
6371        if (is_per_cpu_kthread(current) &&
6372            prev == smp_processor_id() &&
6373            this_rq()->nr_running <= 1) {
6374                return prev;
6375        }
6376
6377        /* Check a recently used CPU as a potential idle candidate: */
6378        recent_used_cpu = p->recent_used_cpu;
6379        if (recent_used_cpu != prev &&
6380            recent_used_cpu != target &&
6381            cpus_share_cache(recent_used_cpu, target) &&
6382            (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6383            cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6384            asym_fits_capacity(task_util, recent_used_cpu)) {
6385                /*
6386                 * Replace recent_used_cpu with prev as it is a potential
6387                 * candidate for the next wake:
6388                 */
6389                p->recent_used_cpu = prev;
6390                return recent_used_cpu;
6391        }
6392
6393        /*
6394         * For asymmetric CPU capacity systems, our domain of interest is
6395         * sd_asym_cpucapacity rather than sd_llc.
6396         */
6397        if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6398                sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6399                /*
6400                 * On an asymmetric CPU capacity system where an exclusive
6401                 * cpuset defines a symmetric island (i.e. one unique
6402                 * capacity_orig value through the cpuset), the key will be set
6403                 * but the CPUs within that cpuset will not have a domain with
6404                 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6405                 * capacity path.
6406                 */
6407                if (sd) {
6408                        i = select_idle_capacity(p, sd, target);
6409                        return ((unsigned)i < nr_cpumask_bits) ? i : target;
6410                }
6411        }
6412
6413        sd = rcu_dereference(per_cpu(sd_llc, target));
6414        if (!sd)
6415                return target;
6416
6417        if (sched_smt_active()) {
6418                has_idle_core = test_idle_cores(target, false);
6419
6420                if (!has_idle_core && cpus_share_cache(prev, target)) {
6421                        i = select_idle_smt(p, sd, prev);
6422                        if ((unsigned int)i < nr_cpumask_bits)
6423                                return i;
6424                }
6425        }
6426
6427        i = select_idle_cpu(p, sd, has_idle_core, target);
6428        if ((unsigned)i < nr_cpumask_bits)
6429                return i;
6430
6431        return target;
6432}
6433
6434/**
6435 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6436 * @cpu: the CPU to get the utilization of
6437 *
6438 * The unit of the return value must be the one of capacity so we can compare
6439 * the utilization with the capacity of the CPU that is available for CFS task
6440 * (ie cpu_capacity).
6441 *
6442 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6443 * recent utilization of currently non-runnable tasks on a CPU. It represents
6444 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6445 * capacity_orig is the cpu_capacity available at the highest frequency
6446 * (arch_scale_freq_capacity()).
6447 * The utilization of a CPU converges towards a sum equal to or less than the
6448 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6449 * the running time on this CPU scaled by capacity_curr.
6450 *
6451 * The estimated utilization of a CPU is defined to be the maximum between its
6452 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6453 * currently RUNNABLE on that CPU.
6454 * This allows to properly represent the expected utilization of a CPU which
6455 * has just got a big task running since a long sleep period. At the same time
6456 * however it preserves the benefits of the "blocked utilization" in
6457 * describing the potential for other tasks waking up on the same CPU.
6458 *
6459 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6460 * higher than capacity_orig because of unfortunate rounding in
6461 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6462 * the average stabilizes with the new running time. We need to check that the
6463 * utilization stays within the range of [0..capacity_orig] and cap it if
6464 * necessary. Without utilization capping, a group could be seen as overloaded
6465 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6466 * available capacity. We allow utilization to overshoot capacity_curr (but not
6467 * capacity_orig) as it useful for predicting the capacity required after task
6468 * migrations (scheduler-driven DVFS).
6469 *
6470 * Return: the (estimated) utilization for the specified CPU
6471 */
6472static inline unsigned long cpu_util(int cpu)
6473{
6474        struct cfs_rq *cfs_rq;
6475        unsigned int util;
6476
6477        cfs_rq = &cpu_rq(cpu)->cfs;
6478        util = READ_ONCE(cfs_rq->avg.util_avg);
6479
6480        if (sched_feat(UTIL_EST))
6481                util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6482
6483        return min_t(unsigned long, util, capacity_orig_of(cpu));
6484}
6485
6486/*
6487 * cpu_util_without: compute cpu utilization without any contributions from *p
6488 * @cpu: the CPU which utilization is requested
6489 * @p: the task which utilization should be discounted
6490 *
6491 * The utilization of a CPU is defined by the utilization of tasks currently
6492 * enqueued on that CPU as well as tasks which are currently sleeping after an
6493 * execution on that CPU.
6494 *
6495 * This method returns the utilization of the specified CPU by discounting the
6496 * utilization of the specified task, whenever the task is currently
6497 * contributing to the CPU utilization.
6498 */
6499static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6500{
6501        struct cfs_rq *cfs_rq;
6502        unsigned int util;
6503
6504        /* Task has no contribution or is new */
6505        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6506                return cpu_util(cpu);
6507
6508        cfs_rq = &cpu_rq(cpu)->cfs;
6509        util = READ_ONCE(cfs_rq->avg.util_avg);
6510
6511        /* Discount task's util from CPU's util */
6512        lsub_positive(&util, task_util(p));
6513
6514        /*
6515         * Covered cases:
6516         *
6517         * a) if *p is the only task sleeping on this CPU, then:
6518         *      cpu_util (== task_util) > util_est (== 0)
6519         *    and thus we return:
6520         *      cpu_util_without = (cpu_util - task_util) = 0
6521         *
6522         * b) if other tasks are SLEEPING on this CPU, which is now exiting
6523         *    IDLE, then:
6524         *      cpu_util >= task_util
6525         *      cpu_util > util_est (== 0)
6526         *    and thus we discount *p's blocked utilization to return:
6527         *      cpu_util_without = (cpu_util - task_util) >= 0
6528         *
6529         * c) if other tasks are RUNNABLE on that CPU and
6530         *      util_est > cpu_util
6531         *    then we use util_est since it returns a more restrictive
6532         *    estimation of the spare capacity on that CPU, by just
6533         *    considering the expected utilization of tasks already
6534         *    runnable on that CPU.
6535         *
6536         * Cases a) and b) are covered by the above code, while case c) is
6537         * covered by the following code when estimated utilization is
6538         * enabled.
6539         */
6540        if (sched_feat(UTIL_EST)) {
6541                unsigned int estimated =
6542                        READ_ONCE(cfs_rq->avg.util_est.enqueued);
6543
6544                /*
6545                 * Despite the following checks we still have a small window
6546                 * for a possible race, when an execl's select_task_rq_fair()
6547                 * races with LB's detach_task():
6548                 *
6549                 *   detach_task()
6550                 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6551                 *     ---------------------------------- A
6552                 *     deactivate_task()                   \
6553                 *       dequeue_task()                     + RaceTime
6554                 *         util_est_dequeue()              /
6555                 *     ---------------------------------- B
6556                 *
6557                 * The additional check on "current == p" it's required to
6558                 * properly fix the execl regression and it helps in further
6559                 * reducing the chances for the above race.
6560                 */
6561                if (unlikely(task_on_rq_queued(p) || current == p))
6562                        lsub_positive(&estimated, _task_util_est(p));
6563
6564                util = max(util, estimated);
6565        }
6566
6567        /*
6568         * Utilization (estimated) can exceed the CPU capacity, thus let's
6569         * clamp to the maximum CPU capacity to ensure consistency with
6570         * the cpu_util call.
6571         */
6572        return min_t(unsigned long, util, capacity_orig_of(cpu));
6573}
6574
6575/*
6576 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6577 * to @dst_cpu.
6578 */
6579static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6580{
6581        struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6582        unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6583
6584        /*
6585         * If @p migrates from @cpu to another, remove its contribution. Or,
6586         * if @p migrates from another CPU to @cpu, add its contribution. In
6587         * the other cases, @cpu is not impacted by the migration, so the
6588         * util_avg should already be correct.
6589         */
6590        if (task_cpu(p) == cpu && dst_cpu != cpu)
6591                lsub_positive(&util, task_util(p));
6592        else if (task_cpu(p) != cpu && dst_cpu == cpu)
6593                util += task_util(p);
6594
6595        if (sched_feat(UTIL_EST)) {
6596                util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6597
6598                /*
6599                 * During wake-up, the task isn't enqueued yet and doesn't
6600                 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6601                 * so just add it (if needed) to "simulate" what will be
6602                 * cpu_util() after the task has been enqueued.
6603                 */
6604                if (dst_cpu == cpu)
6605                        util_est += _task_util_est(p);
6606
6607                util = max(util, util_est);
6608        }
6609
6610        return min(util, capacity_orig_of(cpu));
6611}
6612
6613/*
6614 * compute_energy(): Estimates the energy that @pd would consume if @p was
6615 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6616 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6617 * to compute what would be the energy if we decided to actually migrate that
6618 * task.
6619 */
6620static long
6621compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6622{
6623        struct cpumask *pd_mask = perf_domain_span(pd);
6624        unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6625        unsigned long max_util = 0, sum_util = 0;
6626        unsigned long _cpu_cap = cpu_cap;
6627        int cpu;
6628
6629        _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6630
6631        /*
6632         * The capacity state of CPUs of the current rd can be driven by CPUs
6633         * of another rd if they belong to the same pd. So, account for the
6634         * utilization of these CPUs too by masking pd with cpu_online_mask
6635         * instead of the rd span.
6636         *
6637         * If an entire pd is outside of the current rd, it will not appear in
6638         * its pd list and will not be accounted by compute_energy().
6639         */
6640        for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6641                unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6642                unsigned long cpu_util, util_running = util_freq;
6643                struct task_struct *tsk = NULL;
6644
6645                /*
6646                 * When @p is placed on @cpu:
6647                 *
6648                 * util_running = max(cpu_util, cpu_util_est) +
6649                 *                max(task_util, _task_util_est)
6650                 *
6651                 * while cpu_util_next is: max(cpu_util + task_util,
6652                 *                             cpu_util_est + _task_util_est)
6653                 */
6654                if (cpu == dst_cpu) {
6655                        tsk = p;
6656                        util_running =
6657                                cpu_util_next(cpu, p, -1) + task_util_est(p);
6658                }
6659
6660                /*
6661                 * Busy time computation: utilization clamping is not
6662                 * required since the ratio (sum_util / cpu_capacity)
6663                 * is already enough to scale the EM reported power
6664                 * consumption at the (eventually clamped) cpu_capacity.
6665                 */
6666                cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6667                                              ENERGY_UTIL, NULL);
6668
6669                sum_util += min(cpu_util, _cpu_cap);
6670
6671                /*
6672                 * Performance domain frequency: utilization clamping
6673                 * must be considered since it affects the selection
6674                 * of the performance domain frequency.
6675                 * NOTE: in case RT tasks are running, by default the
6676                 * FREQUENCY_UTIL's utilization can be max OPP.
6677                 */
6678                cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6679                                              FREQUENCY_UTIL, tsk);
6680                max_util = max(max_util, min(cpu_util, _cpu_cap));
6681        }
6682
6683        return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6684}
6685
6686/*
6687 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6688 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6689 * spare capacity in each performance domain and uses it as a potential
6690 * candidate to execute the task. Then, it uses the Energy Model to figure
6691 * out which of the CPU candidates is the most energy-efficient.
6692 *
6693 * The rationale for this heuristic is as follows. In a performance domain,
6694 * all the most energy efficient CPU candidates (according to the Energy
6695 * Model) are those for which we'll request a low frequency. When there are
6696 * several CPUs for which the frequency request will be the same, we don't
6697 * have enough data to break the tie between them, because the Energy Model
6698 * only includes active power costs. With this model, if we assume that
6699 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6700 * the maximum spare capacity in a performance domain is guaranteed to be among
6701 * the best candidates of the performance domain.
6702 *
6703 * In practice, it could be preferable from an energy standpoint to pack
6704 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6705 * but that could also hurt our chances to go cluster idle, and we have no
6706 * ways to tell with the current Energy Model if this is actually a good
6707 * idea or not. So, find_energy_efficient_cpu() basically favors
6708 * cluster-packing, and spreading inside a cluster. That should at least be
6709 * a good thing for latency, and this is consistent with the idea that most
6710 * of the energy savings of EAS come from the asymmetry of the system, and
6711 * not so much from breaking the tie between identical CPUs. That's also the
6712 * reason why EAS is enabled in the topology code only for systems where
6713 * SD_ASYM_CPUCAPACITY is set.
6714 *
6715 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6716 * they don't have any useful utilization data yet and it's not possible to
6717 * forecast their impact on energy consumption. Consequently, they will be
6718 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6719 * to be energy-inefficient in some use-cases. The alternative would be to
6720 * bias new tasks towards specific types of CPUs first, or to try to infer
6721 * their util_avg from the parent task, but those heuristics could hurt
6722 * other use-cases too. So, until someone finds a better way to solve this,
6723 * let's keep things simple by re-using the existing slow path.
6724 */
6725static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6726{
6727        unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6728        struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6729        int cpu, best_energy_cpu = prev_cpu, target = -1;
6730        unsigned long cpu_cap, util, base_energy = 0;
6731        struct sched_domain *sd;
6732        struct perf_domain *pd;
6733
6734        rcu_read_lock();
6735        pd = rcu_dereference(rd->pd);
6736        if (!pd || READ_ONCE(rd->overutilized))
6737                goto unlock;
6738
6739        /*
6740         * Energy-aware wake-up happens on the lowest sched_domain starting
6741         * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6742         */
6743        sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6744        while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6745                sd = sd->parent;
6746        if (!sd)
6747                goto unlock;
6748
6749        target = prev_cpu;
6750
6751        sync_entity_load_avg(&p->se);
6752        if (!task_util_est(p))
6753                goto unlock;
6754
6755        for (; pd; pd = pd->next) {
6756                unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6757                bool compute_prev_delta = false;
6758                unsigned long base_energy_pd;
6759                int max_spare_cap_cpu = -1;
6760
6761                for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6762                        if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6763                                continue;
6764
6765                        util = cpu_util_next(cpu, p, cpu);
6766                        cpu_cap = capacity_of(cpu);
6767                        spare_cap = cpu_cap;
6768                        lsub_positive(&spare_cap, util);
6769
6770                        /*
6771                         * Skip CPUs that cannot satisfy the capacity request.
6772                         * IOW, placing the task there would make the CPU
6773                         * overutilized. Take uclamp into account to see how
6774                         * much capacity we can get out of the CPU; this is
6775                         * aligned with sched_cpu_util().
6776                         */
6777                        util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6778                        if (!fits_capacity(util, cpu_cap))
6779                                continue;
6780
6781                        if (cpu == prev_cpu) {
6782                                /* Always use prev_cpu as a candidate. */
6783                                compute_prev_delta = true;
6784                        } else if (spare_cap > max_spare_cap) {
6785                                /*
6786                                 * Find the CPU with the maximum spare capacity
6787                                 * in the performance domain.
6788                                 */
6789                                max_spare_cap = spare_cap;
6790                                max_spare_cap_cpu = cpu;
6791                        }
6792                }
6793
6794                if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6795                        continue;
6796
6797                /* Compute the 'base' energy of the pd, without @p */
6798                base_energy_pd = compute_energy(p, -1, pd);
6799                base_energy += base_energy_pd;
6800
6801                /* Evaluate the energy impact of using prev_cpu. */
6802                if (compute_prev_delta) {
6803                        prev_delta = compute_energy(p, prev_cpu, pd);
6804                        if (prev_delta < base_energy_pd)
6805                                goto unlock;
6806                        prev_delta -= base_energy_pd;
6807                        best_delta = min(best_delta, prev_delta);
6808                }
6809
6810                /* Evaluate the energy impact of using max_spare_cap_cpu. */
6811                if (max_spare_cap_cpu >= 0) {
6812                        cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6813                        if (cur_delta < base_energy_pd)
6814                                goto unlock;
6815                        cur_delta -= base_energy_pd;
6816                        if (cur_delta < best_delta) {
6817                                best_delta = cur_delta;
6818                                best_energy_cpu = max_spare_cap_cpu;
6819                        }
6820                }
6821        }
6822        rcu_read_unlock();
6823
6824        /*
6825         * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6826         * least 6% of the energy used by prev_cpu.
6827         */
6828        if ((prev_delta == ULONG_MAX) ||
6829            (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6830                target = best_energy_cpu;
6831
6832        return target;
6833
6834unlock:
6835        rcu_read_unlock();
6836
6837        return target;
6838}
6839
6840/*
6841 * select_task_rq_fair: Select target runqueue for the waking task in domains
6842 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6843 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6844 *
6845 * Balances load by selecting the idlest CPU in the idlest group, or under
6846 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6847 *
6848 * Returns the target CPU number.
6849 */
6850static int
6851select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6852{
6853        int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6854        struct sched_domain *tmp, *sd = NULL;
6855        int cpu = smp_processor_id();
6856        int new_cpu = prev_cpu;
6857        int want_affine = 0;
6858        /* SD_flags and WF_flags share the first nibble */
6859        int sd_flag = wake_flags & 0xF;
6860
6861        /*
6862         * required for stable ->cpus_allowed
6863         */
6864        lockdep_assert_held(&p->pi_lock);
6865        if (wake_flags & WF_TTWU) {
6866                record_wakee(p);
6867
6868                if (sched_energy_enabled()) {
6869                        new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6870                        if (new_cpu >= 0)
6871                                return new_cpu;
6872                        new_cpu = prev_cpu;
6873                }
6874
6875                want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6876        }
6877
6878        rcu_read_lock();
6879        for_each_domain(cpu, tmp) {
6880                /*
6881                 * If both 'cpu' and 'prev_cpu' are part of this domain,
6882                 * cpu is a valid SD_WAKE_AFFINE target.
6883                 */
6884                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6885                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6886                        if (cpu != prev_cpu)
6887                                new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6888
6889                        sd = NULL; /* Prefer wake_affine over balance flags */
6890                        break;
6891                }
6892
6893                if (tmp->flags & sd_flag)
6894                        sd = tmp;
6895                else if (!want_affine)
6896                        break;
6897        }
6898
6899        if (unlikely(sd)) {
6900                /* Slow path */
6901                new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6902        } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6903                /* Fast path */
6904                new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6905
6906                if (want_affine)
6907                        current->recent_used_cpu = cpu;
6908        }
6909        rcu_read_unlock();
6910
6911        return new_cpu;
6912}
6913
6914static void detach_entity_cfs_rq(struct sched_entity *se);
6915
6916/*
6917 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6918 * cfs_rq_of(p) references at time of call are still valid and identify the
6919 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6920 */
6921static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6922{
6923        /*
6924         * As blocked tasks retain absolute vruntime the migration needs to
6925         * deal with this by subtracting the old and adding the new
6926         * min_vruntime -- the latter is done by enqueue_entity() when placing
6927         * the task on the new runqueue.
6928         */
6929        if (READ_ONCE(p->__state) == TASK_WAKING) {
6930                struct sched_entity *se = &p->se;
6931                struct cfs_rq *cfs_rq = cfs_rq_of(se);
6932                u64 min_vruntime;
6933
6934#ifndef CONFIG_64BIT
6935                u64 min_vruntime_copy;
6936
6937                do {
6938                        min_vruntime_copy = cfs_rq->min_vruntime_copy;
6939                        smp_rmb();
6940                        min_vruntime = cfs_rq->min_vruntime;
6941                } while (min_vruntime != min_vruntime_copy);
6942#else
6943                min_vruntime = cfs_rq->min_vruntime;
6944#endif
6945
6946                se->vruntime -= min_vruntime;
6947        }
6948
6949        if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6950                /*
6951                 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6952                 * rq->lock and can modify state directly.
6953                 */
6954                lockdep_assert_rq_held(task_rq(p));
6955                detach_entity_cfs_rq(&p->se);
6956
6957        } else {
6958                /*
6959                 * We are supposed to update the task to "current" time, then
6960                 * its up to date and ready to go to new CPU/cfs_rq. But we
6961                 * have difficulty in getting what current time is, so simply
6962                 * throw away the out-of-date time. This will result in the
6963                 * wakee task is less decayed, but giving the wakee more load
6964                 * sounds not bad.
6965                 */
6966                remove_entity_load_avg(&p->se);
6967        }
6968
6969        /* Tell new CPU we are migrated */
6970        p->se.avg.last_update_time = 0;
6971
6972        /* We have migrated, no longer consider this task hot */
6973        p->se.exec_start = 0;
6974
6975        update_scan_period(p, new_cpu);
6976}
6977
6978static void task_dead_fair(struct task_struct *p)
6979{
6980        remove_entity_load_avg(&p->se);
6981}
6982
6983static int
6984balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6985{
6986        if (rq->nr_running)
6987                return 1;
6988
6989        return newidle_balance(rq, rf) != 0;
6990}
6991#endif /* CONFIG_SMP */
6992
6993static unsigned long wakeup_gran(struct sched_entity *se)
6994{
6995        unsigned long gran = sysctl_sched_wakeup_granularity;
6996
6997        /*
6998         * Since its curr running now, convert the gran from real-time
6999         * to virtual-time in his units.
7000         *
7001         * By using 'se' instead of 'curr' we penalize light tasks, so
7002         * they get preempted easier. That is, if 'se' < 'curr' then
7003         * the resulting gran will be larger, therefore penalizing the
7004         * lighter, if otoh 'se' > 'curr' then the resulting gran will
7005         * be smaller, again penalizing the lighter task.
7006         *
7007         * This is especially important for buddies when the leftmost
7008         * task is higher priority than the buddy.
7009         */
7010        return calc_delta_fair(gran, se);
7011}
7012
7013/*
7014 * Should 'se' preempt 'curr'.
7015 *
7016 *             |s1
7017 *        |s2
7018 *   |s3
7019 *         g
7020 *      |<--->|c
7021 *
7022 *  w(c, s1) = -1
7023 *  w(c, s2) =  0
7024 *  w(c, s3) =  1
7025 *
7026 */
7027static int
7028wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7029{
7030        s64 gran, vdiff = curr->vruntime - se->vruntime;
7031
7032        if (vdiff <= 0)
7033                return -1;
7034
7035        gran = wakeup_gran(se);
7036        if (vdiff > gran)
7037                return 1;
7038
7039        return 0;
7040}
7041
7042static void set_last_buddy(struct sched_entity *se)
7043{
7044        if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7045                return;
7046
7047        for_each_sched_entity(se) {
7048                if (SCHED_WARN_ON(!se->on_rq))
7049                        return;
7050                cfs_rq_of(se)->last = se;
7051        }
7052}
7053
7054static void set_next_buddy(struct sched_entity *se)
7055{
7056        if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7057                return;
7058
7059        for_each_sched_entity(se) {
7060                if (SCHED_WARN_ON(!se->on_rq))
7061                        return;
7062                cfs_rq_of(se)->next = se;
7063        }
7064}
7065
7066static void set_skip_buddy(struct sched_entity *se)
7067{
7068        for_each_sched_entity(se)
7069                cfs_rq_of(se)->skip = se;
7070}
7071
7072/*
7073 * Preempt the current task with a newly woken task if needed:
7074 */
7075static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7076{
7077        struct task_struct *curr = rq->curr;
7078        struct sched_entity *se = &curr->se, *pse = &p->se;
7079        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7080        int scale = cfs_rq->nr_running >= sched_nr_latency;
7081        int next_buddy_marked = 0;
7082
7083        if (unlikely(se == pse))
7084                return;
7085
7086        /*
7087         * This is possible from callers such as attach_tasks(), in which we
7088         * unconditionally check_preempt_curr() after an enqueue (which may have
7089         * lead to a throttle).  This both saves work and prevents false
7090         * next-buddy nomination below.
7091         */
7092        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7093                return;
7094
7095        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7096                set_next_buddy(pse);
7097                next_buddy_marked = 1;
7098        }
7099
7100        /*
7101         * We can come here with TIF_NEED_RESCHED already set from new task
7102         * wake up path.
7103         *
7104         * Note: this also catches the edge-case of curr being in a throttled
7105         * group (e.g. via set_curr_task), since update_curr() (in the
7106         * enqueue of curr) will have resulted in resched being set.  This
7107         * prevents us from potentially nominating it as a false LAST_BUDDY
7108         * below.
7109         */
7110        if (test_tsk_need_resched(curr))
7111                return;
7112
7113        /* Idle tasks are by definition preempted by non-idle tasks. */
7114        if (unlikely(task_has_idle_policy(curr)) &&
7115            likely(!task_has_idle_policy(p)))
7116                goto preempt;
7117
7118        /*
7119         * Batch and idle tasks do not preempt non-idle tasks (their preemption
7120         * is driven by the tick):
7121         */
7122        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7123                return;
7124
7125        find_matching_se(&se, &pse);
7126        update_curr(cfs_rq_of(se));
7127        BUG_ON(!pse);
7128        if (wakeup_preempt_entity(se, pse) == 1) {
7129                /*
7130                 * Bias pick_next to pick the sched entity that is
7131                 * triggering this preemption.
7132                 */
7133                if (!next_buddy_marked)
7134                        set_next_buddy(pse);
7135                goto preempt;
7136        }
7137
7138        return;
7139
7140preempt:
7141        resched_curr(rq);
7142        /*
7143         * Only set the backward buddy when the current task is still
7144         * on the rq. This can happen when a wakeup gets interleaved
7145         * with schedule on the ->pre_schedule() or idle_balance()
7146         * point, either of which can * drop the rq lock.
7147         *
7148         * Also, during early boot the idle thread is in the fair class,
7149         * for obvious reasons its a bad idea to schedule back to it.
7150         */
7151        if (unlikely(!se->on_rq || curr == rq->idle))
7152                return;
7153
7154        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7155                set_last_buddy(se);
7156}
7157
7158#ifdef CONFIG_SMP
7159static struct task_struct *pick_task_fair(struct rq *rq)
7160{
7161        struct sched_entity *se;
7162        struct cfs_rq *cfs_rq;
7163
7164again:
7165        cfs_rq = &rq->cfs;
7166        if (!cfs_rq->nr_running)
7167                return NULL;
7168
7169        do {
7170                struct sched_entity *curr = cfs_rq->curr;
7171
7172                /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7173                if (curr) {
7174                        if (curr->on_rq)
7175                                update_curr(cfs_rq);
7176                        else
7177                                curr = NULL;
7178
7179                        if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7180                                goto again;
7181                }
7182
7183                se = pick_next_entity(cfs_rq, curr);
7184                cfs_rq = group_cfs_rq(se);
7185        } while (cfs_rq);
7186
7187        return task_of(se);
7188}
7189#endif
7190
7191struct task_struct *
7192pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7193{
7194        struct cfs_rq *cfs_rq = &rq->cfs;
7195        struct sched_entity *se;
7196        struct task_struct *p;
7197        int new_tasks;
7198
7199again:
7200        if (!sched_fair_runnable(rq))
7201                goto idle;
7202
7203#ifdef CONFIG_FAIR_GROUP_SCHED
7204        if (!prev || prev->sched_class != &fair_sched_class)
7205                goto simple;
7206
7207        /*
7208         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7209         * likely that a next task is from the same cgroup as the current.
7210         *
7211         * Therefore attempt to avoid putting and setting the entire cgroup
7212         * hierarchy, only change the part that actually changes.
7213         */
7214
7215        do {
7216                struct sched_entity *curr = cfs_rq->curr;
7217
7218                /*
7219                 * Since we got here without doing put_prev_entity() we also
7220                 * have to consider cfs_rq->curr. If it is still a runnable
7221                 * entity, update_curr() will update its vruntime, otherwise
7222                 * forget we've ever seen it.
7223                 */
7224                if (curr) {
7225                        if (curr->on_rq)
7226                                update_curr(cfs_rq);
7227                        else
7228                                curr = NULL;
7229
7230                        /*
7231                         * This call to check_cfs_rq_runtime() will do the
7232                         * throttle and dequeue its entity in the parent(s).
7233                         * Therefore the nr_running test will indeed
7234                         * be correct.
7235                         */
7236                        if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7237                                cfs_rq = &rq->cfs;
7238
7239                                if (!cfs_rq->nr_running)
7240                                        goto idle;
7241
7242                                goto simple;
7243                        }
7244                }
7245
7246                se = pick_next_entity(cfs_rq, curr);
7247                cfs_rq = group_cfs_rq(se);
7248        } while (cfs_rq);
7249
7250        p = task_of(se);
7251
7252        /*
7253         * Since we haven't yet done put_prev_entity and if the selected task
7254         * is a different task than we started out with, try and touch the
7255         * least amount of cfs_rqs.
7256         */
7257        if (prev != p) {
7258                struct sched_entity *pse = &prev->se;
7259
7260                while (!(cfs_rq = is_same_group(se, pse))) {
7261                        int se_depth = se->depth;
7262                        int pse_depth = pse->depth;
7263
7264                        if (se_depth <= pse_depth) {
7265                                put_prev_entity(cfs_rq_of(pse), pse);
7266                                pse = parent_entity(pse);
7267                        }
7268                        if (se_depth >= pse_depth) {
7269                                set_next_entity(cfs_rq_of(se), se);
7270                                se = parent_entity(se);
7271                        }
7272                }
7273
7274                put_prev_entity(cfs_rq, pse);
7275                set_next_entity(cfs_rq, se);
7276        }
7277
7278        goto done;
7279simple:
7280#endif
7281        if (prev)
7282                put_prev_task(rq, prev);
7283
7284        do {
7285                se = pick_next_entity(cfs_rq, NULL);
7286                set_next_entity(cfs_rq, se);
7287                cfs_rq = group_cfs_rq(se);
7288        } while (cfs_rq);
7289
7290        p = task_of(se);
7291
7292done: __maybe_unused;
7293#ifdef CONFIG_SMP
7294        /*
7295         * Move the next running task to the front of
7296         * the list, so our cfs_tasks list becomes MRU
7297         * one.
7298         */
7299        list_move(&p->se.group_node, &rq->cfs_tasks);
7300#endif
7301
7302        if (hrtick_enabled_fair(rq))
7303                hrtick_start_fair(rq, p);
7304
7305        update_misfit_status(p, rq);
7306
7307        return p;
7308
7309idle:
7310        if (!rf)
7311                return NULL;
7312
7313        new_tasks = newidle_balance(rq, rf);
7314
7315        /*
7316         * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7317         * possible for any higher priority task to appear. In that case we
7318         * must re-start the pick_next_entity() loop.
7319         */
7320        if (new_tasks < 0)
7321                return RETRY_TASK;
7322
7323        if (new_tasks > 0)
7324                goto again;
7325
7326        /*
7327         * rq is about to be idle, check if we need to update the
7328         * lost_idle_time of clock_pelt
7329         */
7330        update_idle_rq_clock_pelt(rq);
7331
7332        return NULL;
7333}
7334
7335static struct task_struct *__pick_next_task_fair(struct rq *rq)
7336{
7337        return pick_next_task_fair(rq, NULL, NULL);
7338}
7339
7340/*
7341 * Account for a descheduled task:
7342 */
7343static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7344{
7345        struct sched_entity *se = &prev->se;
7346        struct cfs_rq *cfs_rq;
7347
7348        for_each_sched_entity(se) {
7349                cfs_rq = cfs_rq_of(se);
7350                put_prev_entity(cfs_rq, se);
7351        }
7352}
7353
7354/*
7355 * sched_yield() is very simple
7356 *
7357 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7358 */
7359static void yield_task_fair(struct rq *rq)
7360{
7361        struct task_struct *curr = rq->curr;
7362        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7363        struct sched_entity *se = &curr->se;
7364
7365        /*
7366         * Are we the only task in the tree?
7367         */
7368        if (unlikely(rq->nr_running == 1))
7369                return;
7370
7371        clear_buddies(cfs_rq, se);
7372
7373        if (curr->policy != SCHED_BATCH) {
7374                update_rq_clock(rq);
7375                /*
7376                 * Update run-time statistics of the 'current'.
7377                 */
7378                update_curr(cfs_rq);
7379                /*
7380                 * Tell update_rq_clock() that we've just updated,
7381                 * so we don't do microscopic update in schedule()
7382                 * and double the fastpath cost.
7383                 */
7384                rq_clock_skip_update(rq);
7385        }
7386
7387        set_skip_buddy(se);
7388}
7389
7390static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7391{
7392        struct sched_entity *se = &p->se;
7393
7394        /* throttled hierarchies are not runnable */
7395        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7396                return false;
7397
7398        /* Tell the scheduler that we'd really like pse to run next. */
7399        set_next_buddy(se);
7400
7401        yield_task_fair(rq);
7402
7403        return true;
7404}
7405
7406#ifdef CONFIG_SMP
7407/**************************************************
7408 * Fair scheduling class load-balancing methods.
7409 *
7410 * BASICS
7411 *
7412 * The purpose of load-balancing is to achieve the same basic fairness the
7413 * per-CPU scheduler provides, namely provide a proportional amount of compute
7414 * time to each task. This is expressed in the following equation:
7415 *
7416 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7417 *
7418 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7419 * W_i,0 is defined as:
7420 *
7421 *   W_i,0 = \Sum_j w_i,j                                             (2)
7422 *
7423 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7424 * is derived from the nice value as per sched_prio_to_weight[].
7425 *
7426 * The weight average is an exponential decay average of the instantaneous
7427 * weight:
7428 *
7429 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7430 *
7431 * C_i is the compute capacity of CPU i, typically it is the
7432 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7433 * can also include other factors [XXX].
7434 *
7435 * To achieve this balance we define a measure of imbalance which follows
7436 * directly from (1):
7437 *
7438 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7439 *
7440 * We them move tasks around to minimize the imbalance. In the continuous
7441 * function space it is obvious this converges, in the discrete case we get
7442 * a few fun cases generally called infeasible weight scenarios.
7443 *
7444 * [XXX expand on:
7445 *     - infeasible weights;
7446 *     - local vs global optima in the discrete case. ]
7447 *
7448 *
7449 * SCHED DOMAINS
7450 *
7451 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7452 * for all i,j solution, we create a tree of CPUs that follows the hardware
7453 * topology where each level pairs two lower groups (or better). This results
7454 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7455 * tree to only the first of the previous level and we decrease the frequency
7456 * of load-balance at each level inv. proportional to the number of CPUs in
7457 * the groups.
7458 *
7459 * This yields:
7460 *
7461 *     log_2 n     1     n
7462 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7463 *     i = 0      2^i   2^i
7464 *                               `- size of each group
7465 *         |         |     `- number of CPUs doing load-balance
7466 *         |         `- freq
7467 *         `- sum over all levels
7468 *
7469 * Coupled with a limit on how many tasks we can migrate every balance pass,
7470 * this makes (5) the runtime complexity of the balancer.
7471 *
7472 * An important property here is that each CPU is still (indirectly) connected
7473 * to every other CPU in at most O(log n) steps:
7474 *
7475 * The adjacency matrix of the resulting graph is given by:
7476 *
7477 *             log_2 n
7478 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7479 *             k = 0
7480 *
7481 * And you'll find that:
7482 *
7483 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7484 *
7485 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7486 * The task movement gives a factor of O(m), giving a convergence complexity
7487 * of:
7488 *
7489 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7490 *
7491 *
7492 * WORK CONSERVING
7493 *
7494 * In order to avoid CPUs going idle while there's still work to do, new idle
7495 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7496 * tree itself instead of relying on other CPUs to bring it work.
7497 *
7498 * This adds some complexity to both (5) and (8) but it reduces the total idle
7499 * time.
7500 *
7501 * [XXX more?]
7502 *
7503 *
7504 * CGROUPS
7505 *
7506 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7507 *
7508 *                                s_k,i
7509 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7510 *                                 S_k
7511 *
7512 * Where
7513 *
7514 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7515 *
7516 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7517 *
7518 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7519 * property.
7520 *
7521 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7522 *      rewrite all of this once again.]
7523 */
7524
7525static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7526
7527enum fbq_type { regular, remote, all };
7528
7529/*
7530 * 'group_type' describes the group of CPUs at the moment of load balancing.
7531 *
7532 * The enum is ordered by pulling priority, with the group with lowest priority
7533 * first so the group_type can simply be compared when selecting the busiest
7534 * group. See update_sd_pick_busiest().
7535 */
7536enum group_type {
7537        /* The group has spare capacity that can be used to run more tasks.  */
7538        group_has_spare = 0,
7539        /*
7540         * The group is fully used and the tasks don't compete for more CPU
7541         * cycles. Nevertheless, some tasks might wait before running.
7542         */
7543        group_fully_busy,
7544        /*
7545         * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7546         * and must be migrated to a more powerful CPU.
7547         */
7548        group_misfit_task,
7549        /*
7550         * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7551         * and the task should be migrated to it instead of running on the
7552         * current CPU.
7553         */
7554        group_asym_packing,
7555        /*
7556         * The tasks' affinity constraints previously prevented the scheduler
7557         * from balancing the load across the system.
7558         */
7559        group_imbalanced,
7560        /*
7561         * The CPU is overloaded and can't provide expected CPU cycles to all
7562         * tasks.
7563         */
7564        group_overloaded
7565};
7566
7567enum migration_type {
7568        migrate_load = 0,
7569        migrate_util,
7570        migrate_task,
7571        migrate_misfit
7572};
7573
7574#define LBF_ALL_PINNED  0x01
7575#define LBF_NEED_BREAK  0x02
7576#define LBF_DST_PINNED  0x04
7577#define LBF_SOME_PINNED 0x08
7578#define LBF_ACTIVE_LB   0x10
7579
7580struct lb_env {
7581        struct sched_domain     *sd;
7582
7583        struct rq               *src_rq;
7584        int                     src_cpu;
7585
7586        int                     dst_cpu;
7587        struct rq               *dst_rq;
7588
7589        struct cpumask          *dst_grpmask;
7590        int                     new_dst_cpu;
7591        enum cpu_idle_type      idle;
7592        long                    imbalance;
7593        /* The set of CPUs under consideration for load-balancing */
7594        struct cpumask          *cpus;
7595
7596        unsigned int            flags;
7597
7598        unsigned int            loop;
7599        unsigned int            loop_break;
7600        unsigned int            loop_max;
7601
7602        enum fbq_type           fbq_type;
7603        enum migration_type     migration_type;
7604        struct list_head        tasks;
7605};
7606
7607/*
7608 * Is this task likely cache-hot:
7609 */
7610static int task_hot(struct task_struct *p, struct lb_env *env)
7611{
7612        s64 delta;
7613
7614        lockdep_assert_rq_held(env->src_rq);
7615
7616        if (p->sched_class != &fair_sched_class)
7617                return 0;
7618
7619        if (unlikely(task_has_idle_policy(p)))
7620                return 0;
7621
7622        /* SMT siblings share cache */
7623        if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7624                return 0;
7625
7626        /*
7627         * Buddy candidates are cache hot:
7628         */
7629        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7630                        (&p->se == cfs_rq_of(&p->se)->next ||
7631                         &p->se == cfs_rq_of(&p->se)->last))
7632                return 1;
7633
7634        if (sysctl_sched_migration_cost == -1)
7635                return 1;
7636
7637        /*
7638         * Don't migrate task if the task's cookie does not match
7639         * with the destination CPU's core cookie.
7640         */
7641        if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7642                return 1;
7643
7644        if (sysctl_sched_migration_cost == 0)
7645                return 0;
7646
7647        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7648
7649        return delta < (s64)sysctl_sched_migration_cost;
7650}
7651
7652#ifdef CONFIG_NUMA_BALANCING
7653/*
7654 * Returns 1, if task migration degrades locality
7655 * Returns 0, if task migration improves locality i.e migration preferred.
7656 * Returns -1, if task migration is not affected by locality.
7657 */
7658static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7659{
7660        struct numa_group *numa_group = rcu_dereference(p->numa_group);
7661        unsigned long src_weight, dst_weight;
7662        int src_nid, dst_nid, dist;
7663
7664        if (!static_branch_likely(&sched_numa_balancing))
7665                return -1;
7666
7667        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7668                return -1;
7669
7670        src_nid = cpu_to_node(env->src_cpu);
7671        dst_nid = cpu_to_node(env->dst_cpu);
7672
7673        if (src_nid == dst_nid)
7674                return -1;
7675
7676        /* Migrating away from the preferred node is always bad. */
7677        if (src_nid == p->numa_preferred_nid) {
7678                if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7679                        return 1;
7680                else
7681                        return -1;
7682        }
7683
7684        /* Encourage migration to the preferred node. */
7685        if (dst_nid == p->numa_preferred_nid)
7686                return 0;
7687
7688        /* Leaving a core idle is often worse than degrading locality. */
7689        if (env->idle == CPU_IDLE)
7690                return -1;
7691
7692        dist = node_distance(src_nid, dst_nid);
7693        if (numa_group) {
7694                src_weight = group_weight(p, src_nid, dist);
7695                dst_weight = group_weight(p, dst_nid, dist);
7696        } else {
7697                src_weight = task_weight(p, src_nid, dist);
7698                dst_weight = task_weight(p, dst_nid, dist);
7699        }
7700
7701        return dst_weight < src_weight;
7702}
7703
7704#else
7705static inline int migrate_degrades_locality(struct task_struct *p,
7706                                             struct lb_env *env)
7707{
7708        return -1;
7709}
7710#endif
7711
7712/*
7713 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7714 */
7715static
7716int can_migrate_task(struct task_struct *p, struct lb_env *env)
7717{
7718        int tsk_cache_hot;
7719
7720        lockdep_assert_rq_held(env->src_rq);
7721
7722        /*
7723         * We do not migrate tasks that are:
7724         * 1) throttled_lb_pair, or
7725         * 2) cannot be migrated to this CPU due to cpus_ptr, or
7726         * 3) running (obviously), or
7727         * 4) are cache-hot on their current CPU.
7728         */
7729        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7730                return 0;
7731
7732        /* Disregard pcpu kthreads; they are where they need to be. */
7733        if (kthread_is_per_cpu(p))
7734                return 0;
7735
7736        if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7737                int cpu;
7738
7739                schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7740
7741                env->flags |= LBF_SOME_PINNED;
7742
7743                /*
7744                 * Remember if this task can be migrated to any other CPU in
7745                 * our sched_group. We may want to revisit it if we couldn't
7746                 * meet load balance goals by pulling other tasks on src_cpu.
7747                 *
7748                 * Avoid computing new_dst_cpu
7749                 * - for NEWLY_IDLE
7750                 * - if we have already computed one in current iteration
7751                 * - if it's an active balance
7752                 */
7753                if (env->idle == CPU_NEWLY_IDLE ||
7754                    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7755                        return 0;
7756
7757                /* Prevent to re-select dst_cpu via env's CPUs: */
7758                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7759                        if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7760                                env->flags |= LBF_DST_PINNED;
7761                                env->new_dst_cpu = cpu;
7762                                break;
7763                        }
7764                }
7765
7766                return 0;
7767        }
7768
7769        /* Record that we found at least one task that could run on dst_cpu */
7770        env->flags &= ~LBF_ALL_PINNED;
7771
7772        if (task_running(env->src_rq, p)) {
7773                schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7774                return 0;
7775        }
7776
7777        /*
7778         * Aggressive migration if:
7779         * 1) active balance
7780         * 2) destination numa is preferred
7781         * 3) task is cache cold, or
7782         * 4) too many balance attempts have failed.
7783         */
7784        if (env->flags & LBF_ACTIVE_LB)
7785                return 1;
7786
7787        tsk_cache_hot = migrate_degrades_locality(p, env);
7788        if (tsk_cache_hot == -1)
7789                tsk_cache_hot = task_hot(p, env);
7790
7791        if (tsk_cache_hot <= 0 ||
7792            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7793                if (tsk_cache_hot == 1) {
7794                        schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7795                        schedstat_inc(p->se.statistics.nr_forced_migrations);
7796                }
7797                return 1;
7798        }
7799
7800        schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7801        return 0;
7802}
7803
7804/*
7805 * detach_task() -- detach the task for the migration specified in env
7806 */
7807static void detach_task(struct task_struct *p, struct lb_env *env)
7808{
7809        lockdep_assert_rq_held(env->src_rq);
7810
7811        deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7812        set_task_cpu(p, env->dst_cpu);
7813}
7814
7815/*
7816 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7817 * part of active balancing operations within "domain".
7818 *
7819 * Returns a task if successful and NULL otherwise.
7820 */
7821static struct task_struct *detach_one_task(struct lb_env *env)
7822{
7823        struct task_struct *p;
7824
7825        lockdep_assert_rq_held(env->src_rq);
7826
7827        list_for_each_entry_reverse(p,
7828                        &env->src_rq->cfs_tasks, se.group_node) {
7829                if (!can_migrate_task(p, env))
7830                        continue;
7831
7832                detach_task(p, env);
7833
7834                /*
7835                 * Right now, this is only the second place where
7836                 * lb_gained[env->idle] is updated (other is detach_tasks)
7837                 * so we can safely collect stats here rather than
7838                 * inside detach_tasks().
7839                 */
7840                schedstat_inc(env->sd->lb_gained[env->idle]);
7841                return p;
7842        }
7843        return NULL;
7844}
7845
7846static const unsigned int sched_nr_migrate_break = 32;
7847
7848/*
7849 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7850 * busiest_rq, as part of a balancing operation within domain "sd".
7851 *
7852 * Returns number of detached tasks if successful and 0 otherwise.
7853 */
7854static int detach_tasks(struct lb_env *env)
7855{
7856        struct list_head *tasks = &env->src_rq->cfs_tasks;
7857        unsigned long util, load;
7858        struct task_struct *p;
7859        int detached = 0;
7860
7861        lockdep_assert_rq_held(env->src_rq);
7862
7863        /*
7864         * Source run queue has been emptied by another CPU, clear
7865         * LBF_ALL_PINNED flag as we will not test any task.
7866         */
7867        if (env->src_rq->nr_running <= 1) {
7868                env->flags &= ~LBF_ALL_PINNED;
7869                return 0;
7870        }
7871
7872        if (env->imbalance <= 0)
7873                return 0;
7874
7875        while (!list_empty(tasks)) {
7876                /*
7877                 * We don't want to steal all, otherwise we may be treated likewise,
7878                 * which could at worst lead to a livelock crash.
7879                 */
7880                if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7881                        break;
7882
7883                p = list_last_entry(tasks, struct task_struct, se.group_node);
7884
7885                env->loop++;
7886                /* We've more or less seen every task there is, call it quits */
7887                if (env->loop > env->loop_max)
7888                        break;
7889
7890                /* take a breather every nr_migrate tasks */
7891                if (env->loop > env->loop_break) {
7892                        env->loop_break += sched_nr_migrate_break;
7893                        env->flags |= LBF_NEED_BREAK;
7894                        break;
7895                }
7896
7897                if (!can_migrate_task(p, env))
7898                        goto next;
7899
7900                switch (env->migration_type) {
7901                case migrate_load:
7902                        /*
7903                         * Depending of the number of CPUs and tasks and the
7904                         * cgroup hierarchy, task_h_load() can return a null
7905                         * value. Make sure that env->imbalance decreases
7906                         * otherwise detach_tasks() will stop only after
7907                         * detaching up to loop_max tasks.
7908                         */
7909                        load = max_t(unsigned long, task_h_load(p), 1);
7910
7911                        if (sched_feat(LB_MIN) &&
7912                            load < 16 && !env->sd->nr_balance_failed)
7913                                goto next;
7914
7915                        /*
7916                         * Make sure that we don't migrate too much load.
7917                         * Nevertheless, let relax the constraint if
7918                         * scheduler fails to find a good waiting task to
7919                         * migrate.
7920                         */
7921                        if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7922                                goto next;
7923
7924                        env->imbalance -= load;
7925                        break;
7926
7927                case migrate_util:
7928                        util = task_util_est(p);
7929
7930                        if (util > env->imbalance)
7931                                goto next;
7932
7933                        env->imbalance -= util;
7934                        break;
7935
7936                case migrate_task:
7937                        env->imbalance--;
7938                        break;
7939
7940                case migrate_misfit:
7941                        /* This is not a misfit task */
7942                        if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7943                                goto next;
7944
7945                        env->imbalance = 0;
7946                        break;
7947                }
7948
7949                detach_task(p, env);
7950                list_add(&p->se.group_node, &env->tasks);
7951
7952                detached++;
7953
7954#ifdef CONFIG_PREEMPTION
7955                /*
7956                 * NEWIDLE balancing is a source of latency, so preemptible
7957                 * kernels will stop after the first task is detached to minimize
7958                 * the critical section.
7959                 */
7960                if (env->idle == CPU_NEWLY_IDLE)
7961                        break;
7962#endif
7963
7964                /*
7965                 * We only want to steal up to the prescribed amount of
7966                 * load/util/tasks.
7967                 */
7968                if (env->imbalance <= 0)
7969                        break;
7970
7971                continue;
7972next:
7973                list_move(&p->se.group_node, tasks);
7974        }
7975
7976        /*
7977         * Right now, this is one of only two places we collect this stat
7978         * so we can safely collect detach_one_task() stats here rather
7979         * than inside detach_one_task().
7980         */
7981        schedstat_add(env->sd->lb_gained[env->idle], detached);
7982
7983        return detached;
7984}
7985
7986/*
7987 * attach_task() -- attach the task detached by detach_task() to its new rq.
7988 */
7989static void attach_task(struct rq *rq, struct task_struct *p)
7990{
7991        lockdep_assert_rq_held(rq);
7992
7993        BUG_ON(task_rq(p) != rq);
7994        activate_task(rq, p, ENQUEUE_NOCLOCK);
7995        check_preempt_curr(rq, p, 0);
7996}
7997
7998/*
7999 * attach_one_task() -- attaches the task returned from detach_one_task() to
8000 * its new rq.
8001 */
8002static void attach_one_task(struct rq *rq, struct task_struct *p)
8003{
8004        struct rq_flags rf;
8005
8006        rq_lock(rq, &rf);
8007        update_rq_clock(rq);
8008        attach_task(rq, p);
8009        rq_unlock(rq, &rf);
8010}
8011
8012/*
8013 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8014 * new rq.
8015 */
8016static void attach_tasks(struct lb_env *env)
8017{
8018        struct list_head *tasks = &env->tasks;
8019        struct task_struct *p;
8020        struct rq_flags rf;
8021
8022        rq_lock(env->dst_rq, &rf);
8023        update_rq_clock(env->dst_rq);
8024
8025        while (!list_empty(tasks)) {
8026                p = list_first_entry(tasks, struct task_struct, se.group_node);
8027                list_del_init(&p->se.group_node);
8028
8029                attach_task(env->dst_rq, p);
8030        }
8031
8032        rq_unlock(env->dst_rq, &rf);
8033}
8034
8035#ifdef CONFIG_NO_HZ_COMMON
8036static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8037{
8038        if (cfs_rq->avg.load_avg)
8039                return true;
8040
8041        if (cfs_rq->avg.util_avg)
8042                return true;
8043
8044        return false;
8045}
8046
8047static inline bool others_have_blocked(struct rq *rq)
8048{
8049        if (READ_ONCE(rq->avg_rt.util_avg))
8050                return true;
8051
8052        if (READ_ONCE(rq->avg_dl.util_avg))
8053                return true;
8054
8055        if (thermal_load_avg(rq))
8056                return true;
8057
8058#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8059        if (READ_ONCE(rq->avg_irq.util_avg))
8060                return true;
8061#endif
8062
8063        return false;
8064}
8065
8066static inline void update_blocked_load_tick(struct rq *rq)
8067{
8068        WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8069}
8070
8071static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8072{
8073        if (!has_blocked)
8074                rq->has_blocked_load = 0;
8075}
8076#else
8077static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8078static inline bool others_have_blocked(struct rq *rq) { return false; }
8079static inline void update_blocked_load_tick(struct rq *rq) {}
8080static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8081#endif
8082
8083static bool __update_blocked_others(struct rq *rq, bool *done)
8084{
8085        const struct sched_class *curr_class;
8086        u64 now = rq_clock_pelt(rq);
8087        unsigned long thermal_pressure;
8088        bool decayed;
8089
8090        /*
8091         * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8092         * DL and IRQ signals have been updated before updating CFS.
8093         */
8094        curr_class = rq->curr->sched_class;
8095
8096        thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8097
8098        decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8099                  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8100                  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8101                  update_irq_load_avg(rq, 0);
8102
8103        if (others_have_blocked(rq))
8104                *done = false;
8105
8106        return decayed;
8107}
8108
8109#ifdef CONFIG_FAIR_GROUP_SCHED
8110
8111static bool __update_blocked_fair(struct rq *rq, bool *done)
8112{
8113        struct cfs_rq *cfs_rq, *pos;
8114        bool decayed = false;
8115        int cpu = cpu_of(rq);
8116
8117        /*
8118         * Iterates the task_group tree in a bottom up fashion, see
8119         * list_add_leaf_cfs_rq() for details.
8120         */
8121        for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8122                struct sched_entity *se;
8123
8124                if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8125                        update_tg_load_avg(cfs_rq);
8126
8127                        if (cfs_rq == &rq->cfs)
8128                                decayed = true;
8129                }
8130
8131                /* Propagate pending load changes to the parent, if any: */
8132                se = cfs_rq->tg->se[cpu];
8133                if (se && !skip_blocked_update(se))
8134                        update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8135
8136                /*
8137                 * There can be a lot of idle CPU cgroups.  Don't let fully
8138                 * decayed cfs_rqs linger on the list.
8139                 */
8140                if (cfs_rq_is_decayed(cfs_rq))
8141                        list_del_leaf_cfs_rq(cfs_rq);
8142
8143                /* Don't need periodic decay once load/util_avg are null */
8144                if (cfs_rq_has_blocked(cfs_rq))
8145                        *done = false;
8146        }
8147
8148        return decayed;
8149}
8150
8151/*
8152 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8153 * This needs to be done in a top-down fashion because the load of a child
8154 * group is a fraction of its parents load.
8155 */
8156static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8157{
8158        struct rq *rq = rq_of(cfs_rq);
8159        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8160        unsigned long now = jiffies;
8161        unsigned long load;
8162
8163        if (cfs_rq->last_h_load_update == now)
8164                return;
8165
8166        WRITE_ONCE(cfs_rq->h_load_next, NULL);
8167        for_each_sched_entity(se) {
8168                cfs_rq = cfs_rq_of(se);
8169                WRITE_ONCE(cfs_rq->h_load_next, se);
8170                if (cfs_rq->last_h_load_update == now)
8171                        break;
8172        }
8173
8174        if (!se) {
8175                cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8176                cfs_rq->last_h_load_update = now;
8177        }
8178
8179        while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8180                load = cfs_rq->h_load;
8181                load = div64_ul(load * se->avg.load_avg,
8182                        cfs_rq_load_avg(cfs_rq) + 1);
8183                cfs_rq = group_cfs_rq(se);
8184                cfs_rq->h_load = load;
8185                cfs_rq->last_h_load_update = now;
8186        }
8187}
8188
8189static unsigned long task_h_load(struct task_struct *p)
8190{
8191        struct cfs_rq *cfs_rq = task_cfs_rq(p);
8192
8193        update_cfs_rq_h_load(cfs_rq);
8194        return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8195                        cfs_rq_load_avg(cfs_rq) + 1);
8196}
8197#else
8198static bool __update_blocked_fair(struct rq *rq, bool *done)
8199{
8200        struct cfs_rq *cfs_rq = &rq->cfs;
8201        bool decayed;
8202
8203        decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8204        if (cfs_rq_has_blocked(cfs_rq))
8205                *done = false;
8206
8207        return decayed;
8208}
8209
8210static unsigned long task_h_load(struct task_struct *p)
8211{
8212        return p->se.avg.load_avg;
8213}
8214#endif
8215
8216static void update_blocked_averages(int cpu)
8217{
8218        bool decayed = false, done = true;
8219        struct rq *rq = cpu_rq(cpu);
8220        struct rq_flags rf;
8221
8222        rq_lock_irqsave(rq, &rf);
8223        update_blocked_load_tick(rq);
8224        update_rq_clock(rq);
8225
8226        decayed |= __update_blocked_others(rq, &done);
8227        decayed |= __update_blocked_fair(rq, &done);
8228
8229        update_blocked_load_status(rq, !done);
8230        if (decayed)
8231                cpufreq_update_util(rq, 0);
8232        rq_unlock_irqrestore(rq, &rf);
8233}
8234
8235/********** Helpers for find_busiest_group ************************/
8236
8237/*
8238 * sg_lb_stats - stats of a sched_group required for load_balancing
8239 */
8240struct sg_lb_stats {
8241        unsigned long avg_load; /*Avg load across the CPUs of the group */
8242        unsigned long group_load; /* Total load over the CPUs of the group */
8243        unsigned long group_capacity;
8244        unsigned long group_util; /* Total utilization over the CPUs of the group */
8245        unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8246        unsigned int sum_nr_running; /* Nr of tasks running in the group */
8247        unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8248        unsigned int idle_cpus;
8249        unsigned int group_weight;
8250        enum group_type group_type;
8251        unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8252        unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8253#ifdef CONFIG_NUMA_BALANCING
8254        unsigned int nr_numa_running;
8255        unsigned int nr_preferred_running;
8256#endif
8257};
8258
8259/*
8260 * sd_lb_stats - Structure to store the statistics of a sched_domain
8261 *               during load balancing.
8262 */
8263struct sd_lb_stats {
8264        struct sched_group *busiest;    /* Busiest group in this sd */
8265        struct sched_group *local;      /* Local group in this sd */
8266        unsigned long total_load;       /* Total load of all groups in sd */
8267        unsigned long total_capacity;   /* Total capacity of all groups in sd */
8268        unsigned long avg_load; /* Average load across all groups in sd */
8269        unsigned int prefer_sibling; /* tasks should go to sibling first */
8270
8271        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8272        struct sg_lb_stats local_stat;  /* Statistics of the local group */
8273};
8274
8275static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8276{
8277        /*
8278         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8279         * local_stat because update_sg_lb_stats() does a full clear/assignment.
8280         * We must however set busiest_stat::group_type and
8281         * busiest_stat::idle_cpus to the worst busiest group because
8282         * update_sd_pick_busiest() reads these before assignment.
8283         */
8284        *sds = (struct sd_lb_stats){
8285                .busiest = NULL,
8286                .local = NULL,
8287                .total_load = 0UL,
8288                .total_capacity = 0UL,
8289                .busiest_stat = {
8290                        .idle_cpus = UINT_MAX,
8291                        .group_type = group_has_spare,
8292                },
8293        };
8294}
8295
8296static unsigned long scale_rt_capacity(int cpu)
8297{
8298        struct rq *rq = cpu_rq(cpu);
8299        unsigned long max = arch_scale_cpu_capacity(cpu);
8300        unsigned long used, free;
8301        unsigned long irq;
8302
8303        irq = cpu_util_irq(rq);
8304
8305        if (unlikely(irq >= max))
8306                return 1;
8307
8308        /*
8309         * avg_rt.util_avg and avg_dl.util_avg track binary signals
8310         * (running and not running) with weights 0 and 1024 respectively.
8311         * avg_thermal.load_avg tracks thermal pressure and the weighted
8312         * average uses the actual delta max capacity(load).
8313         */
8314        used = READ_ONCE(rq->avg_rt.util_avg);
8315        used += READ_ONCE(rq->avg_dl.util_avg);
8316        used += thermal_load_avg(rq);
8317
8318        if (unlikely(used >= max))
8319                return 1;
8320
8321        free = max - used;
8322
8323        return scale_irq_capacity(free, irq, max);
8324}
8325
8326static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8327{
8328        unsigned long capacity = scale_rt_capacity(cpu);
8329        struct sched_group *sdg = sd->groups;
8330
8331        cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8332
8333        if (!capacity)
8334                capacity = 1;
8335
8336        cpu_rq(cpu)->cpu_capacity = capacity;
8337        trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8338
8339        sdg->sgc->capacity = capacity;
8340        sdg->sgc->min_capacity = capacity;
8341        sdg->sgc->max_capacity = capacity;
8342}
8343
8344void update_group_capacity(struct sched_domain *sd, int cpu)
8345{
8346        struct sched_domain *child = sd->child;
8347        struct sched_group *group, *sdg = sd->groups;
8348        unsigned long capacity, min_capacity, max_capacity;
8349        unsigned long interval;
8350
8351        interval = msecs_to_jiffies(sd->balance_interval);
8352        interval = clamp(interval, 1UL, max_load_balance_interval);
8353        sdg->sgc->next_update = jiffies + interval;
8354
8355        if (!child) {
8356                update_cpu_capacity(sd, cpu);
8357                return;
8358        }
8359
8360        capacity = 0;
8361        min_capacity = ULONG_MAX;
8362        max_capacity = 0;
8363
8364        if (child->flags & SD_OVERLAP) {
8365                /*
8366                 * SD_OVERLAP domains cannot assume that child groups
8367                 * span the current group.
8368                 */
8369
8370                for_each_cpu(cpu, sched_group_span(sdg)) {
8371                        unsigned long cpu_cap = capacity_of(cpu);
8372
8373                        capacity += cpu_cap;
8374                        min_capacity = min(cpu_cap, min_capacity);
8375                        max_capacity = max(cpu_cap, max_capacity);
8376                }
8377        } else  {
8378                /*
8379                 * !SD_OVERLAP domains can assume that child groups
8380                 * span the current group.
8381                 */
8382
8383                group = child->groups;
8384                do {
8385                        struct sched_group_capacity *sgc = group->sgc;
8386
8387                        capacity += sgc->capacity;
8388                        min_capacity = min(sgc->min_capacity, min_capacity);
8389                        max_capacity = max(sgc->max_capacity, max_capacity);
8390                        group = group->next;
8391                } while (group != child->groups);
8392        }
8393
8394        sdg->sgc->capacity = capacity;
8395        sdg->sgc->min_capacity = min_capacity;
8396        sdg->sgc->max_capacity = max_capacity;
8397}
8398
8399/*
8400 * Check whether the capacity of the rq has been noticeably reduced by side
8401 * activity. The imbalance_pct is used for the threshold.
8402 * Return true is the capacity is reduced
8403 */
8404static inline int
8405check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8406{
8407        return ((rq->cpu_capacity * sd->imbalance_pct) <
8408                                (rq->cpu_capacity_orig * 100));
8409}
8410
8411/*
8412 * Check whether a rq has a misfit task and if it looks like we can actually
8413 * help that task: we can migrate the task to a CPU of higher capacity, or
8414 * the task's current CPU is heavily pressured.
8415 */
8416static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8417{
8418        return rq->misfit_task_load &&
8419                (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8420                 check_cpu_capacity(rq, sd));
8421}
8422
8423/*
8424 * Group imbalance indicates (and tries to solve) the problem where balancing
8425 * groups is inadequate due to ->cpus_ptr constraints.
8426 *
8427 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8428 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8429 * Something like:
8430 *
8431 *      { 0 1 2 3 } { 4 5 6 7 }
8432 *              *     * * *
8433 *
8434 * If we were to balance group-wise we'd place two tasks in the first group and
8435 * two tasks in the second group. Clearly this is undesired as it will overload
8436 * cpu 3 and leave one of the CPUs in the second group unused.
8437 *
8438 * The current solution to this issue is detecting the skew in the first group
8439 * by noticing the lower domain failed to reach balance and had difficulty
8440 * moving tasks due to affinity constraints.
8441 *
8442 * When this is so detected; this group becomes a candidate for busiest; see
8443 * update_sd_pick_busiest(). And calculate_imbalance() and
8444 * find_busiest_group() avoid some of the usual balance conditions to allow it
8445 * to create an effective group imbalance.
8446 *
8447 * This is a somewhat tricky proposition since the next run might not find the
8448 * group imbalance and decide the groups need to be balanced again. A most
8449 * subtle and fragile situation.
8450 */
8451
8452static inline int sg_imbalanced(struct sched_group *group)
8453{
8454        return group->sgc->imbalance;
8455}
8456
8457/*
8458 * group_has_capacity returns true if the group has spare capacity that could
8459 * be used by some tasks.
8460 * We consider that a group has spare capacity if the  * number of task is
8461 * smaller than the number of CPUs or if the utilization is lower than the
8462 * available capacity for CFS tasks.
8463 * For the latter, we use a threshold to stabilize the state, to take into
8464 * account the variance of the tasks' load and to return true if the available
8465 * capacity in meaningful for the load balancer.
8466 * As an example, an available capacity of 1% can appear but it doesn't make
8467 * any benefit for the load balance.
8468 */
8469static inline bool
8470group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8471{
8472        if (sgs->sum_nr_running < sgs->group_weight)
8473                return true;
8474
8475        if ((sgs->group_capacity * imbalance_pct) <
8476                        (sgs->group_runnable * 100))
8477                return false;
8478
8479        if ((sgs->group_capacity * 100) >
8480                        (sgs->group_util * imbalance_pct))
8481                return true;
8482
8483        return false;
8484}
8485
8486/*
8487 *  group_is_overloaded returns true if the group has more tasks than it can
8488 *  handle.
8489 *  group_is_overloaded is not equals to !group_has_capacity because a group
8490 *  with the exact right number of tasks, has no more spare capacity but is not
8491 *  overloaded so both group_has_capacity and group_is_overloaded return
8492 *  false.
8493 */
8494static inline bool
8495group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8496{
8497        if (sgs->sum_nr_running <= sgs->group_weight)
8498                return false;
8499
8500        if ((sgs->group_capacity * 100) <
8501                        (sgs->group_util * imbalance_pct))
8502                return true;
8503
8504        if ((sgs->group_capacity * imbalance_pct) <
8505                        (sgs->group_runnable * 100))
8506                return true;
8507
8508        return false;
8509}
8510
8511static inline enum
8512group_type group_classify(unsigned int imbalance_pct,
8513                          struct sched_group *group,
8514                          struct sg_lb_stats *sgs)
8515{
8516        if (group_is_overloaded(imbalance_pct, sgs))
8517                return group_overloaded;
8518
8519        if (sg_imbalanced(group))
8520                return group_imbalanced;
8521
8522        if (sgs->group_asym_packing)
8523                return group_asym_packing;
8524
8525        if (sgs->group_misfit_task_load)
8526                return group_misfit_task;
8527
8528        if (!group_has_capacity(imbalance_pct, sgs))
8529                return group_fully_busy;
8530
8531        return group_has_spare;
8532}
8533
8534/**
8535 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8536 * @env: The load balancing environment.
8537 * @group: sched_group whose statistics are to be updated.
8538 * @sgs: variable to hold the statistics for this group.
8539 * @sg_status: Holds flag indicating the status of the sched_group
8540 */
8541static inline void update_sg_lb_stats(struct lb_env *env,
8542                                      struct sched_group *group,
8543                                      struct sg_lb_stats *sgs,
8544                                      int *sg_status)
8545{
8546        int i, nr_running, local_group;
8547
8548        memset(sgs, 0, sizeof(*sgs));
8549
8550        local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8551
8552        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8553                struct rq *rq = cpu_rq(i);
8554
8555                sgs->group_load += cpu_load(rq);
8556                sgs->group_util += cpu_util(i);
8557                sgs->group_runnable += cpu_runnable(rq);
8558                sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8559
8560                nr_running = rq->nr_running;
8561                sgs->sum_nr_running += nr_running;
8562
8563                if (nr_running > 1)
8564                        *sg_status |= SG_OVERLOAD;
8565
8566                if (cpu_overutilized(i))
8567                        *sg_status |= SG_OVERUTILIZED;
8568
8569#ifdef CONFIG_NUMA_BALANCING
8570                sgs->nr_numa_running += rq->nr_numa_running;
8571                sgs->nr_preferred_running += rq->nr_preferred_running;
8572#endif
8573                /*
8574                 * No need to call idle_cpu() if nr_running is not 0
8575                 */
8576                if (!nr_running && idle_cpu(i)) {
8577                        sgs->idle_cpus++;
8578                        /* Idle cpu can't have misfit task */
8579                        continue;
8580                }
8581
8582                if (local_group)
8583                        continue;
8584
8585                /* Check for a misfit task on the cpu */
8586                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8587                    sgs->group_misfit_task_load < rq->misfit_task_load) {
8588                        sgs->group_misfit_task_load = rq->misfit_task_load;
8589                        *sg_status |= SG_OVERLOAD;
8590                }
8591        }
8592
8593        /* Check if dst CPU is idle and preferred to this group */
8594        if (env->sd->flags & SD_ASYM_PACKING &&
8595            env->idle != CPU_NOT_IDLE &&
8596            sgs->sum_h_nr_running &&
8597            sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8598                sgs->group_asym_packing = 1;
8599        }
8600
8601        sgs->group_capacity = group->sgc->capacity;
8602
8603        sgs->group_weight = group->group_weight;
8604
8605        sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8606
8607        /* Computing avg_load makes sense only when group is overloaded */
8608        if (sgs->group_type == group_overloaded)
8609                sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8610                                sgs->group_capacity;
8611}
8612
8613/**
8614 * update_sd_pick_busiest - return 1 on busiest group
8615 * @env: The load balancing environment.
8616 * @sds: sched_domain statistics
8617 * @sg: sched_group candidate to be checked for being the busiest
8618 * @sgs: sched_group statistics
8619 *
8620 * Determine if @sg is a busier group than the previously selected
8621 * busiest group.
8622 *
8623 * Return: %true if @sg is a busier group than the previously selected
8624 * busiest group. %false otherwise.
8625 */
8626static bool update_sd_pick_busiest(struct lb_env *env,
8627                                   struct sd_lb_stats *sds,
8628                                   struct sched_group *sg,
8629                                   struct sg_lb_stats *sgs)
8630{
8631        struct sg_lb_stats *busiest = &sds->busiest_stat;
8632
8633        /* Make sure that there is at least one task to pull */
8634        if (!sgs->sum_h_nr_running)
8635                return false;
8636
8637        /*
8638         * Don't try to pull misfit tasks we can't help.
8639         * We can use max_capacity here as reduction in capacity on some
8640         * CPUs in the group should either be possible to resolve
8641         * internally or be covered by avg_load imbalance (eventually).
8642         */
8643        if (sgs->group_type == group_misfit_task &&
8644            (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8645             sds->local_stat.group_type != group_has_spare))
8646                return false;
8647
8648        if (sgs->group_type > busiest->group_type)
8649                return true;
8650
8651        if (sgs->group_type < busiest->group_type)
8652                return false;
8653
8654        /*
8655         * The candidate and the current busiest group are the same type of
8656         * group. Let check which one is the busiest according to the type.
8657         */
8658
8659        switch (sgs->group_type) {
8660        case group_overloaded:
8661                /* Select the overloaded group with highest avg_load. */
8662                if (sgs->avg_load <= busiest->avg_load)
8663                        return false;
8664                break;
8665
8666        case group_imbalanced:
8667                /*
8668                 * Select the 1st imbalanced group as we don't have any way to
8669                 * choose one more than another.
8670                 */
8671                return false;
8672
8673        case group_asym_packing:
8674                /* Prefer to move from lowest priority CPU's work */
8675                if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8676                        return false;
8677                break;
8678
8679        case group_misfit_task:
8680                /*
8681                 * If we have more than one misfit sg go with the biggest
8682                 * misfit.
8683                 */
8684                if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8685                        return false;
8686                break;
8687
8688        case group_fully_busy:
8689                /*
8690                 * Select the fully busy group with highest avg_load. In
8691                 * theory, there is no need to pull task from such kind of
8692                 * group because tasks have all compute capacity that they need
8693                 * but we can still improve the overall throughput by reducing
8694                 * contention when accessing shared HW resources.
8695                 *
8696                 * XXX for now avg_load is not computed and always 0 so we
8697                 * select the 1st one.
8698                 */
8699                if (sgs->avg_load <= busiest->avg_load)
8700                        return false;
8701                break;
8702
8703        case group_has_spare:
8704                /*
8705                 * Select not overloaded group with lowest number of idle cpus
8706                 * and highest number of running tasks. We could also compare
8707                 * the spare capacity which is more stable but it can end up
8708                 * that the group has less spare capacity but finally more idle
8709                 * CPUs which means less opportunity to pull tasks.
8710                 */
8711                if (sgs->idle_cpus > busiest->idle_cpus)
8712                        return false;
8713                else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8714                         (sgs->sum_nr_running <= busiest->sum_nr_running))
8715                        return false;
8716
8717                break;
8718        }
8719
8720        /*
8721         * Candidate sg has no more than one task per CPU and has higher
8722         * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8723         * throughput. Maximize throughput, power/energy consequences are not
8724         * considered.
8725         */
8726        if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8727            (sgs->group_type <= group_fully_busy) &&
8728            (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8729                return false;
8730
8731        return true;
8732}
8733
8734#ifdef CONFIG_NUMA_BALANCING
8735static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8736{
8737        if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8738                return regular;
8739        if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8740                return remote;
8741        return all;
8742}
8743
8744static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8745{
8746        if (rq->nr_running > rq->nr_numa_running)
8747                return regular;
8748        if (rq->nr_running > rq->nr_preferred_running)
8749                return remote;
8750        return all;
8751}
8752#else
8753static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8754{
8755        return all;
8756}
8757
8758static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8759{
8760        return regular;
8761}
8762#endif /* CONFIG_NUMA_BALANCING */
8763
8764
8765struct sg_lb_stats;
8766
8767/*
8768 * task_running_on_cpu - return 1 if @p is running on @cpu.
8769 */
8770
8771static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8772{
8773        /* Task has no contribution or is new */
8774        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8775                return 0;
8776
8777        if (task_on_rq_queued(p))
8778                return 1;
8779
8780        return 0;
8781}
8782
8783/**
8784 * idle_cpu_without - would a given CPU be idle without p ?
8785 * @cpu: the processor on which idleness is tested.
8786 * @p: task which should be ignored.
8787 *
8788 * Return: 1 if the CPU would be idle. 0 otherwise.
8789 */
8790static int idle_cpu_without(int cpu, struct task_struct *p)
8791{
8792        struct rq *rq = cpu_rq(cpu);
8793
8794        if (rq->curr != rq->idle && rq->curr != p)
8795                return 0;
8796
8797        /*
8798         * rq->nr_running can't be used but an updated version without the
8799         * impact of p on cpu must be used instead. The updated nr_running
8800         * be computed and tested before calling idle_cpu_without().
8801         */
8802
8803#ifdef CONFIG_SMP
8804        if (rq->ttwu_pending)
8805                return 0;
8806#endif
8807
8808        return 1;
8809}
8810
8811/*
8812 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8813 * @sd: The sched_domain level to look for idlest group.
8814 * @group: sched_group whose statistics are to be updated.
8815 * @sgs: variable to hold the statistics for this group.
8816 * @p: The task for which we look for the idlest group/CPU.
8817 */
8818static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8819                                          struct sched_group *group,
8820                                          struct sg_lb_stats *sgs,
8821                                          struct task_struct *p)
8822{
8823        int i, nr_running;
8824
8825        memset(sgs, 0, sizeof(*sgs));
8826
8827        for_each_cpu(i, sched_group_span(group)) {
8828                struct rq *rq = cpu_rq(i);
8829                unsigned int local;
8830
8831                sgs->group_load += cpu_load_without(rq, p);
8832                sgs->group_util += cpu_util_without(i, p);
8833                sgs->group_runnable += cpu_runnable_without(rq, p);
8834                local = task_running_on_cpu(i, p);
8835                sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8836
8837                nr_running = rq->nr_running - local;
8838                sgs->sum_nr_running += nr_running;
8839
8840                /*
8841                 * No need to call idle_cpu_without() if nr_running is not 0
8842                 */
8843                if (!nr_running && idle_cpu_without(i, p))
8844                        sgs->idle_cpus++;
8845
8846        }
8847
8848        /* Check if task fits in the group */
8849        if (sd->flags & SD_ASYM_CPUCAPACITY &&
8850            !task_fits_capacity(p, group->sgc->max_capacity)) {
8851                sgs->group_misfit_task_load = 1;
8852        }
8853
8854        sgs->group_capacity = group->sgc->capacity;
8855
8856        sgs->group_weight = group->group_weight;
8857
8858        sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8859
8860        /*
8861         * Computing avg_load makes sense only when group is fully busy or
8862         * overloaded
8863         */
8864        if (sgs->group_type == group_fully_busy ||
8865                sgs->group_type == group_overloaded)
8866                sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8867                                sgs->group_capacity;
8868}
8869
8870static bool update_pick_idlest(struct sched_group *idlest,
8871                               struct sg_lb_stats *idlest_sgs,
8872                               struct sched_group *group,
8873                               struct sg_lb_stats *sgs)
8874{
8875        if (sgs->group_type < idlest_sgs->group_type)
8876                return true;
8877
8878        if (sgs->group_type > idlest_sgs->group_type)
8879                return false;
8880
8881        /*
8882         * The candidate and the current idlest group are the same type of
8883         * group. Let check which one is the idlest according to the type.
8884         */
8885
8886        switch (sgs->group_type) {
8887        case group_overloaded:
8888        case group_fully_busy:
8889                /* Select the group with lowest avg_load. */
8890                if (idlest_sgs->avg_load <= sgs->avg_load)
8891                        return false;
8892                break;
8893
8894        case group_imbalanced:
8895        case group_asym_packing:
8896                /* Those types are not used in the slow wakeup path */
8897                return false;
8898
8899        case group_misfit_task:
8900                /* Select group with the highest max capacity */
8901                if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8902                        return false;
8903                break;
8904
8905        case group_has_spare:
8906                /* Select group with most idle CPUs */
8907                if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8908                        return false;
8909
8910                /* Select group with lowest group_util */
8911                if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8912                        idlest_sgs->group_util <= sgs->group_util)
8913                        return false;
8914
8915                break;
8916        }
8917
8918        return true;
8919}
8920
8921/*
8922 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8923 * This is an approximation as the number of running tasks may not be
8924 * related to the number of busy CPUs due to sched_setaffinity.
8925 */
8926static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8927{
8928        return (dst_running < (dst_weight >> 2));
8929}
8930
8931/*
8932 * find_idlest_group() finds and returns the least busy CPU group within the
8933 * domain.
8934 *
8935 * Assumes p is allowed on at least one CPU in sd.
8936 */
8937static struct sched_group *
8938find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8939{
8940        struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8941        struct sg_lb_stats local_sgs, tmp_sgs;
8942        struct sg_lb_stats *sgs;
8943        unsigned long imbalance;
8944        struct sg_lb_stats idlest_sgs = {
8945                        .avg_load = UINT_MAX,
8946                        .group_type = group_overloaded,
8947        };
8948
8949        do {
8950                int local_group;
8951
8952                /* Skip over this group if it has no CPUs allowed */
8953                if (!cpumask_intersects(sched_group_span(group),
8954                                        p->cpus_ptr))
8955                        continue;
8956
8957                /* Skip over this group if no cookie matched */
8958                if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
8959                        continue;
8960
8961                local_group = cpumask_test_cpu(this_cpu,
8962                                               sched_group_span(group));
8963
8964                if (local_group) {
8965                        sgs = &local_sgs;
8966                        local = group;
8967                } else {
8968                        sgs = &tmp_sgs;
8969                }
8970
8971                update_sg_wakeup_stats(sd, group, sgs, p);
8972
8973                if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8974                        idlest = group;
8975                        idlest_sgs = *sgs;
8976                }
8977
8978        } while (group = group->next, group != sd->groups);
8979
8980
8981        /* There is no idlest group to push tasks to */
8982        if (!idlest)
8983                return NULL;
8984
8985        /* The local group has been skipped because of CPU affinity */
8986        if (!local)
8987                return idlest;
8988
8989        /*
8990         * If the local group is idler than the selected idlest group
8991         * don't try and push the task.
8992         */
8993        if (local_sgs.group_type < idlest_sgs.group_type)
8994                return NULL;
8995
8996        /*
8997         * If the local group is busier than the selected idlest group
8998         * try and push the task.
8999         */
9000        if (local_sgs.group_type > idlest_sgs.group_type)
9001                return idlest;
9002
9003        switch (local_sgs.group_type) {
9004        case group_overloaded:
9005        case group_fully_busy:
9006
9007                /* Calculate allowed imbalance based on load */
9008                imbalance = scale_load_down(NICE_0_LOAD) *
9009                                (sd->imbalance_pct-100) / 100;
9010
9011                /*
9012                 * When comparing groups across NUMA domains, it's possible for
9013                 * the local domain to be very lightly loaded relative to the
9014                 * remote domains but "imbalance" skews the comparison making
9015                 * remote CPUs look much more favourable. When considering
9016                 * cross-domain, add imbalance to the load on the remote node
9017                 * and consider staying local.
9018                 */
9019
9020                if ((sd->flags & SD_NUMA) &&
9021                    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9022                        return NULL;
9023
9024                /*
9025                 * If the local group is less loaded than the selected
9026                 * idlest group don't try and push any tasks.
9027                 */
9028                if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9029                        return NULL;
9030
9031                if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9032                        return NULL;
9033                break;
9034
9035        case group_imbalanced:
9036        case group_asym_packing:
9037                /* Those type are not used in the slow wakeup path */
9038                return NULL;
9039
9040        case group_misfit_task:
9041                /* Select group with the highest max capacity */
9042                if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9043                        return NULL;
9044                break;
9045
9046        case group_has_spare:
9047                if (sd->flags & SD_NUMA) {
9048#ifdef CONFIG_NUMA_BALANCING
9049                        int idlest_cpu;
9050                        /*
9051                         * If there is spare capacity at NUMA, try to select
9052                         * the preferred node
9053                         */
9054                        if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9055                                return NULL;
9056
9057                        idlest_cpu = cpumask_first(sched_group_span(idlest));
9058                        if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9059                                return idlest;
9060#endif
9061                        /*
9062                         * Otherwise, keep the task on this node to stay close
9063                         * its wakeup source and improve locality. If there is
9064                         * a real need of migration, periodic load balance will
9065                         * take care of it.
9066                         */
9067                        if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9068                                return NULL;
9069                }
9070
9071                /*
9072                 * Select group with highest number of idle CPUs. We could also
9073                 * compare the utilization which is more stable but it can end
9074                 * up that the group has less spare capacity but finally more
9075                 * idle CPUs which means more opportunity to run task.
9076                 */
9077                if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9078                        return NULL;
9079                break;
9080        }
9081
9082        return idlest;
9083}
9084
9085/**
9086 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9087 * @env: The load balancing environment.
9088 * @sds: variable to hold the statistics for this sched_domain.
9089 */
9090
9091static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9092{
9093        struct sched_domain *child = env->sd->child;
9094        struct sched_group *sg = env->sd->groups;
9095        struct sg_lb_stats *local = &sds->local_stat;
9096        struct sg_lb_stats tmp_sgs;
9097        int sg_status = 0;
9098
9099        do {
9100                struct sg_lb_stats *sgs = &tmp_sgs;
9101                int local_group;
9102
9103                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9104                if (local_group) {
9105                        sds->local = sg;
9106                        sgs = local;
9107
9108                        if (env->idle != CPU_NEWLY_IDLE ||
9109                            time_after_eq(jiffies, sg->sgc->next_update))
9110                                update_group_capacity(env->sd, env->dst_cpu);
9111                }
9112
9113                update_sg_lb_stats(env, sg, sgs, &sg_status);
9114
9115                if (local_group)
9116                        goto next_group;
9117
9118
9119                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9120                        sds->busiest = sg;
9121                        sds->busiest_stat = *sgs;
9122                }
9123
9124next_group:
9125                /* Now, start updating sd_lb_stats */
9126                sds->total_load += sgs->group_load;
9127                sds->total_capacity += sgs->group_capacity;
9128
9129                sg = sg->next;
9130        } while (sg != env->sd->groups);
9131
9132        /* Tag domain that child domain prefers tasks go to siblings first */
9133        sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9134
9135
9136        if (env->sd->flags & SD_NUMA)
9137                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9138
9139        if (!env->sd->parent) {
9140                struct root_domain *rd = env->dst_rq->rd;
9141
9142                /* update overload indicator if we are at root domain */
9143                WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9144
9145                /* Update over-utilization (tipping point, U >= 0) indicator */
9146                WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9147                trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9148        } else if (sg_status & SG_OVERUTILIZED) {
9149                struct root_domain *rd = env->dst_rq->rd;
9150
9151                WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9152                trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9153        }
9154}
9155
9156#define NUMA_IMBALANCE_MIN 2
9157
9158static inline long adjust_numa_imbalance(int imbalance,
9159                                int dst_running, int dst_weight)
9160{
9161        if (!allow_numa_imbalance(dst_running, dst_weight))
9162                return imbalance;
9163
9164        /*
9165         * Allow a small imbalance based on a simple pair of communicating
9166         * tasks that remain local when the destination is lightly loaded.
9167         */
9168        if (imbalance <= NUMA_IMBALANCE_MIN)
9169                return 0;
9170
9171        return imbalance;
9172}
9173
9174/**
9175 * calculate_imbalance - Calculate the amount of imbalance present within the
9176 *                       groups of a given sched_domain during load balance.
9177 * @env: load balance environment
9178 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9179 */
9180static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9181{
9182        struct sg_lb_stats *local, *busiest;
9183
9184        local = &sds->local_stat;
9185        busiest = &sds->busiest_stat;
9186
9187        if (busiest->group_type == group_misfit_task) {
9188                /* Set imbalance to allow misfit tasks to be balanced. */
9189                env->migration_type = migrate_misfit;
9190                env->imbalance = 1;
9191                return;
9192        }
9193
9194        if (busiest->group_type == group_asym_packing) {
9195                /*
9196                 * In case of asym capacity, we will try to migrate all load to
9197                 * the preferred CPU.
9198                 */
9199                env->migration_type = migrate_task;
9200                env->imbalance = busiest->sum_h_nr_running;
9201                return;
9202        }
9203
9204        if (busiest->group_type == group_imbalanced) {
9205                /*
9206                 * In the group_imb case we cannot rely on group-wide averages
9207                 * to ensure CPU-load equilibrium, try to move any task to fix
9208                 * the imbalance. The next load balance will take care of
9209                 * balancing back the system.
9210                 */
9211                env->migration_type = migrate_task;
9212                env->imbalance = 1;
9213                return;
9214        }
9215
9216        /*
9217         * Try to use spare capacity of local group without overloading it or
9218         * emptying busiest.
9219         */
9220        if (local->group_type == group_has_spare) {
9221                if ((busiest->group_type > group_fully_busy) &&
9222                    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9223                        /*
9224                         * If busiest is overloaded, try to fill spare
9225                         * capacity. This might end up creating spare capacity
9226                         * in busiest or busiest still being overloaded but
9227                         * there is no simple way to directly compute the
9228                         * amount of load to migrate in order to balance the
9229                         * system.
9230                         */
9231                        env->migration_type = migrate_util;
9232                        env->imbalance = max(local->group_capacity, local->group_util) -
9233                                         local->group_util;
9234
9235                        /*
9236                         * In some cases, the group's utilization is max or even
9237                         * higher than capacity because of migrations but the
9238                         * local CPU is (newly) idle. There is at least one
9239                         * waiting task in this overloaded busiest group. Let's
9240                         * try to pull it.
9241                         */
9242                        if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9243                                env->migration_type = migrate_task;
9244                                env->imbalance = 1;
9245                        }
9246
9247                        return;
9248                }
9249
9250                if (busiest->group_weight == 1 || sds->prefer_sibling) {
9251                        unsigned int nr_diff = busiest->sum_nr_running;
9252                        /*
9253                         * When prefer sibling, evenly spread running tasks on
9254                         * groups.
9255                         */
9256                        env->migration_type = migrate_task;
9257                        lsub_positive(&nr_diff, local->sum_nr_running);
9258                        env->imbalance = nr_diff >> 1;
9259                } else {
9260
9261                        /*
9262                         * If there is no overload, we just want to even the number of
9263                         * idle cpus.
9264                         */
9265                        env->migration_type = migrate_task;
9266                        env->imbalance = max_t(long, 0, (local->idle_cpus -
9267                                                 busiest->idle_cpus) >> 1);
9268                }
9269
9270                /* Consider allowing a small imbalance between NUMA groups */
9271                if (env->sd->flags & SD_NUMA) {
9272                        env->imbalance = adjust_numa_imbalance(env->imbalance,
9273                                busiest->sum_nr_running, busiest->group_weight);
9274                }
9275
9276                return;
9277        }
9278
9279        /*
9280         * Local is fully busy but has to take more load to relieve the
9281         * busiest group
9282         */
9283        if (local->group_type < group_overloaded) {
9284                /*
9285                 * Local will become overloaded so the avg_load metrics are
9286                 * finally needed.
9287                 */
9288
9289                local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9290                                  local->group_capacity;
9291
9292                sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9293                                sds->total_capacity;
9294                /*
9295                 * If the local group is more loaded than the selected
9296                 * busiest group don't try to pull any tasks.
9297                 */
9298                if (local->avg_load >= busiest->avg_load) {
9299                        env->imbalance = 0;
9300                        return;
9301                }
9302        }
9303
9304        /*
9305         * Both group are or will become overloaded and we're trying to get all
9306         * the CPUs to the average_load, so we don't want to push ourselves
9307         * above the average load, nor do we wish to reduce the max loaded CPU
9308         * below the average load. At the same time, we also don't want to
9309         * reduce the group load below the group capacity. Thus we look for
9310         * the minimum possible imbalance.
9311         */
9312        env->migration_type = migrate_load;
9313        env->imbalance = min(
9314                (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9315                (sds->avg_load - local->avg_load) * local->group_capacity
9316        ) / SCHED_CAPACITY_SCALE;
9317}
9318
9319/******* find_busiest_group() helpers end here *********************/
9320
9321/*
9322 * Decision matrix according to the local and busiest group type:
9323 *
9324 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9325 * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9326 * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9327 * misfit_task      force     N/A        N/A    N/A  force      force
9328 * asym_packing     force     force      N/A    N/A  force      force
9329 * imbalanced       force     force      N/A    N/A  force      force
9330 * overloaded       force     force      N/A    N/A  force      avg_load
9331 *
9332 * N/A :      Not Applicable because already filtered while updating
9333 *            statistics.
9334 * balanced : The system is balanced for these 2 groups.
9335 * force :    Calculate the imbalance as load migration is probably needed.
9336 * avg_load : Only if imbalance is significant enough.
9337 * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9338 *            different in groups.
9339 */
9340
9341/**
9342 * find_busiest_group - Returns the busiest group within the sched_domain
9343 * if there is an imbalance.
9344 *
9345 * Also calculates the amount of runnable load which should be moved
9346 * to restore balance.
9347 *
9348 * @env: The load balancing environment.
9349 *
9350 * Return:      - The busiest group if imbalance exists.
9351 */
9352static struct sched_group *find_busiest_group(struct lb_env *env)
9353{
9354        struct sg_lb_stats *local, *busiest;
9355        struct sd_lb_stats sds;
9356
9357        init_sd_lb_stats(&sds);
9358
9359        /*
9360         * Compute the various statistics relevant for load balancing at
9361         * this level.
9362         */
9363        update_sd_lb_stats(env, &sds);
9364
9365        if (sched_energy_enabled()) {
9366                struct root_domain *rd = env->dst_rq->rd;
9367
9368                if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9369                        goto out_balanced;
9370        }
9371
9372        local = &sds.local_stat;
9373        busiest = &sds.busiest_stat;
9374
9375        /* There is no busy sibling group to pull tasks from */
9376        if (!sds.busiest)
9377                goto out_balanced;
9378
9379        /* Misfit tasks should be dealt with regardless of the avg load */
9380        if (busiest->group_type == group_misfit_task)
9381                goto force_balance;
9382
9383        /* ASYM feature bypasses nice load balance check */
9384        if (busiest->group_type == group_asym_packing)
9385                goto force_balance;
9386
9387        /*
9388         * If the busiest group is imbalanced the below checks don't
9389         * work because they assume all things are equal, which typically
9390         * isn't true due to cpus_ptr constraints and the like.
9391         */
9392        if (busiest->group_type == group_imbalanced)
9393                goto force_balance;
9394
9395        /*
9396         * If the local group is busier than the selected busiest group
9397         * don't try and pull any tasks.
9398         */
9399        if (local->group_type > busiest->group_type)
9400                goto out_balanced;
9401
9402        /*
9403         * When groups are overloaded, use the avg_load to ensure fairness
9404         * between tasks.
9405         */
9406        if (local->group_type == group_overloaded) {
9407                /*
9408                 * If the local group is more loaded than the selected
9409                 * busiest group don't try to pull any tasks.
9410                 */
9411                if (local->avg_load >= busiest->avg_load)
9412                        goto out_balanced;
9413
9414                /* XXX broken for overlapping NUMA groups */
9415                sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9416                                sds.total_capacity;
9417
9418                /*
9419                 * Don't pull any tasks if this group is already above the
9420                 * domain average load.
9421                 */
9422                if (local->avg_load >= sds.avg_load)
9423                        goto out_balanced;
9424
9425                /*
9426                 * If the busiest group is more loaded, use imbalance_pct to be
9427                 * conservative.
9428                 */
9429                if (100 * busiest->avg_load <=
9430                                env->sd->imbalance_pct * local->avg_load)
9431                        goto out_balanced;
9432        }
9433
9434        /* Try to move all excess tasks to child's sibling domain */
9435        if (sds.prefer_sibling && local->group_type == group_has_spare &&
9436            busiest->sum_nr_running > local->sum_nr_running + 1)
9437                goto force_balance;
9438
9439        if (busiest->group_type != group_overloaded) {
9440                if (env->idle == CPU_NOT_IDLE)
9441                        /*
9442                         * If the busiest group is not overloaded (and as a
9443                         * result the local one too) but this CPU is already
9444                         * busy, let another idle CPU try to pull task.
9445                         */
9446                        goto out_balanced;
9447
9448                if (busiest->group_weight > 1 &&
9449                    local->idle_cpus <= (busiest->idle_cpus + 1))
9450                        /*
9451                         * If the busiest group is not overloaded
9452                         * and there is no imbalance between this and busiest
9453                         * group wrt idle CPUs, it is balanced. The imbalance
9454                         * becomes significant if the diff is greater than 1
9455                         * otherwise we might end up to just move the imbalance
9456                         * on another group. Of course this applies only if
9457                         * there is more than 1 CPU per group.
9458                         */
9459                        goto out_balanced;
9460
9461                if (busiest->sum_h_nr_running == 1)
9462                        /*
9463                         * busiest doesn't have any tasks waiting to run
9464                         */
9465                        goto out_balanced;
9466        }
9467
9468force_balance:
9469        /* Looks like there is an imbalance. Compute it */
9470        calculate_imbalance(env, &sds);
9471        return env->imbalance ? sds.busiest : NULL;
9472
9473out_balanced:
9474        env->imbalance = 0;
9475        return NULL;
9476}
9477
9478/*
9479 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9480 */
9481static struct rq *find_busiest_queue(struct lb_env *env,
9482                                     struct sched_group *group)
9483{
9484        struct rq *busiest = NULL, *rq;
9485        unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9486        unsigned int busiest_nr = 0;
9487        int i;
9488
9489        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9490                unsigned long capacity, load, util;
9491                unsigned int nr_running;
9492                enum fbq_type rt;
9493
9494                rq = cpu_rq(i);
9495                rt = fbq_classify_rq(rq);
9496
9497                /*
9498                 * We classify groups/runqueues into three groups:
9499                 *  - regular: there are !numa tasks
9500                 *  - remote:  there are numa tasks that run on the 'wrong' node
9501                 *  - all:     there is no distinction
9502                 *
9503                 * In order to avoid migrating ideally placed numa tasks,
9504                 * ignore those when there's better options.
9505                 *
9506                 * If we ignore the actual busiest queue to migrate another
9507                 * task, the next balance pass can still reduce the busiest
9508                 * queue by moving tasks around inside the node.
9509                 *
9510                 * If we cannot move enough load due to this classification
9511                 * the next pass will adjust the group classification and
9512                 * allow migration of more tasks.
9513                 *
9514                 * Both cases only affect the total convergence complexity.
9515                 */
9516                if (rt > env->fbq_type)
9517                        continue;
9518
9519                nr_running = rq->cfs.h_nr_running;
9520                if (!nr_running)
9521                        continue;
9522
9523                capacity = capacity_of(i);
9524
9525                /*
9526                 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9527                 * eventually lead to active_balancing high->low capacity.
9528                 * Higher per-CPU capacity is considered better than balancing
9529                 * average load.
9530                 */
9531                if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9532                    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9533                    nr_running == 1)
9534                        continue;
9535
9536                switch (env->migration_type) {
9537                case migrate_load:
9538                        /*
9539                         * When comparing with load imbalance, use cpu_load()
9540                         * which is not scaled with the CPU capacity.
9541                         */
9542                        load = cpu_load(rq);
9543
9544                        if (nr_running == 1 && load > env->imbalance &&
9545                            !check_cpu_capacity(rq, env->sd))
9546                                break;
9547
9548                        /*
9549                         * For the load comparisons with the other CPUs,
9550                         * consider the cpu_load() scaled with the CPU
9551                         * capacity, so that the load can be moved away
9552                         * from the CPU that is potentially running at a
9553                         * lower capacity.
9554                         *
9555                         * Thus we're looking for max(load_i / capacity_i),
9556                         * crosswise multiplication to rid ourselves of the
9557                         * division works out to:
9558                         * load_i * capacity_j > load_j * capacity_i;
9559                         * where j is our previous maximum.
9560                         */
9561                        if (load * busiest_capacity > busiest_load * capacity) {
9562                                busiest_load = load;
9563                                busiest_capacity = capacity;
9564                                busiest = rq;
9565                        }
9566                        break;
9567
9568                case migrate_util:
9569                        util = cpu_util(cpu_of(rq));
9570
9571                        /*
9572                         * Don't try to pull utilization from a CPU with one
9573                         * running task. Whatever its utilization, we will fail
9574                         * detach the task.
9575                         */
9576                        if (nr_running <= 1)
9577                                continue;
9578
9579                        if (busiest_util < util) {
9580                                busiest_util = util;
9581                                busiest = rq;
9582                        }
9583                        break;
9584
9585                case migrate_task:
9586                        if (busiest_nr < nr_running) {
9587                                busiest_nr = nr_running;
9588                                busiest = rq;
9589                        }
9590                        break;
9591
9592                case migrate_misfit:
9593                        /*
9594                         * For ASYM_CPUCAPACITY domains with misfit tasks we
9595                         * simply seek the "biggest" misfit task.
9596                         */
9597                        if (rq->misfit_task_load > busiest_load) {
9598                                busiest_load = rq->misfit_task_load;
9599                                busiest = rq;
9600                        }
9601
9602                        break;
9603
9604                }
9605        }
9606
9607        return busiest;
9608}
9609
9610/*
9611 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9612 * so long as it is large enough.
9613 */
9614#define MAX_PINNED_INTERVAL     512
9615
9616static inline bool
9617asym_active_balance(struct lb_env *env)
9618{
9619        /*
9620         * ASYM_PACKING needs to force migrate tasks from busy but
9621         * lower priority CPUs in order to pack all tasks in the
9622         * highest priority CPUs.
9623         */
9624        return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9625               sched_asym_prefer(env->dst_cpu, env->src_cpu);
9626}
9627
9628static inline bool
9629imbalanced_active_balance(struct lb_env *env)
9630{
9631        struct sched_domain *sd = env->sd;
9632
9633        /*
9634         * The imbalanced case includes the case of pinned tasks preventing a fair
9635         * distribution of the load on the system but also the even distribution of the
9636         * threads on a system with spare capacity
9637         */
9638        if ((env->migration_type == migrate_task) &&
9639            (sd->nr_balance_failed > sd->cache_nice_tries+2))
9640                return 1;
9641
9642        return 0;
9643}
9644
9645static int need_active_balance(struct lb_env *env)
9646{
9647        struct sched_domain *sd = env->sd;
9648
9649        if (asym_active_balance(env))
9650                return 1;
9651
9652        if (imbalanced_active_balance(env))
9653                return 1;
9654
9655        /*
9656         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9657         * It's worth migrating the task if the src_cpu's capacity is reduced
9658         * because of other sched_class or IRQs if more capacity stays
9659         * available on dst_cpu.
9660         */
9661        if ((env->idle != CPU_NOT_IDLE) &&
9662            (env->src_rq->cfs.h_nr_running == 1)) {
9663                if ((check_cpu_capacity(env->src_rq, sd)) &&
9664                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9665                        return 1;
9666        }
9667
9668        if (env->migration_type == migrate_misfit)
9669                return 1;
9670
9671        return 0;
9672}
9673
9674static int active_load_balance_cpu_stop(void *data);
9675
9676static int should_we_balance(struct lb_env *env)
9677{
9678        struct sched_group *sg = env->sd->groups;
9679        int cpu;
9680
9681        /*
9682         * Ensure the balancing environment is consistent; can happen
9683         * when the softirq triggers 'during' hotplug.
9684         */
9685        if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9686                return 0;
9687
9688        /*
9689         * In the newly idle case, we will allow all the CPUs
9690         * to do the newly idle load balance.
9691         */
9692        if (env->idle == CPU_NEWLY_IDLE)
9693                return 1;
9694
9695        /* Try to find first idle CPU */
9696        for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9697                if (!idle_cpu(cpu))
9698                        continue;
9699
9700                /* Are we the first idle CPU? */
9701                return cpu == env->dst_cpu;
9702        }
9703
9704        /* Are we the first CPU of this group ? */
9705        return group_balance_cpu(sg) == env->dst_cpu;
9706}
9707
9708/*
9709 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9710 * tasks if there is an imbalance.
9711 */
9712static int load_balance(int this_cpu, struct rq *this_rq,
9713                        struct sched_domain *sd, enum cpu_idle_type idle,
9714                        int *continue_balancing)
9715{
9716        int ld_moved, cur_ld_moved, active_balance = 0;
9717        struct sched_domain *sd_parent = sd->parent;
9718        struct sched_group *group;
9719        struct rq *busiest;
9720        struct rq_flags rf;
9721        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9722
9723        struct lb_env env = {
9724                .sd             = sd,
9725                .dst_cpu        = this_cpu,
9726                .dst_rq         = this_rq,
9727                .dst_grpmask    = sched_group_span(sd->groups),
9728                .idle           = idle,
9729                .loop_break     = sched_nr_migrate_break,
9730                .cpus           = cpus,
9731                .fbq_type       = all,
9732                .tasks          = LIST_HEAD_INIT(env.tasks),
9733        };
9734
9735        cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9736
9737        schedstat_inc(sd->lb_count[idle]);
9738
9739redo:
9740        if (!should_we_balance(&env)) {
9741                *continue_balancing = 0;
9742                goto out_balanced;
9743        }
9744
9745        group = find_busiest_group(&env);
9746        if (!group) {
9747                schedstat_inc(sd->lb_nobusyg[idle]);
9748                goto out_balanced;
9749        }
9750
9751        busiest = find_busiest_queue(&env, group);
9752        if (!busiest) {
9753                schedstat_inc(sd->lb_nobusyq[idle]);
9754                goto out_balanced;
9755        }
9756
9757        BUG_ON(busiest == env.dst_rq);
9758
9759        schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9760
9761        env.src_cpu = busiest->cpu;
9762        env.src_rq = busiest;
9763
9764        ld_moved = 0;
9765        /* Clear this flag as soon as we find a pullable task */
9766        env.flags |= LBF_ALL_PINNED;
9767        if (busiest->nr_running > 1) {
9768                /*
9769                 * Attempt to move tasks. If find_busiest_group has found
9770                 * an imbalance but busiest->nr_running <= 1, the group is
9771                 * still unbalanced. ld_moved simply stays zero, so it is
9772                 * correctly treated as an imbalance.
9773                 */
9774                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9775
9776more_balance:
9777                rq_lock_irqsave(busiest, &rf);
9778                update_rq_clock(busiest);
9779
9780                /*
9781                 * cur_ld_moved - load moved in current iteration
9782                 * ld_moved     - cumulative load moved across iterations
9783                 */
9784                cur_ld_moved = detach_tasks(&env);
9785
9786                /*
9787                 * We've detached some tasks from busiest_rq. Every
9788                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9789                 * unlock busiest->lock, and we are able to be sure
9790                 * that nobody can manipulate the tasks in parallel.
9791                 * See task_rq_lock() family for the details.
9792                 */
9793
9794                rq_unlock(busiest, &rf);
9795
9796                if (cur_ld_moved) {
9797                        attach_tasks(&env);
9798                        ld_moved += cur_ld_moved;
9799                }
9800
9801                local_irq_restore(rf.flags);
9802
9803                if (env.flags & LBF_NEED_BREAK) {
9804                        env.flags &= ~LBF_NEED_BREAK;
9805                        goto more_balance;
9806                }
9807
9808                /*
9809                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9810                 * us and move them to an alternate dst_cpu in our sched_group
9811                 * where they can run. The upper limit on how many times we
9812                 * iterate on same src_cpu is dependent on number of CPUs in our
9813                 * sched_group.
9814                 *
9815                 * This changes load balance semantics a bit on who can move
9816                 * load to a given_cpu. In addition to the given_cpu itself
9817                 * (or a ilb_cpu acting on its behalf where given_cpu is
9818                 * nohz-idle), we now have balance_cpu in a position to move
9819                 * load to given_cpu. In rare situations, this may cause
9820                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9821                 * _independently_ and at _same_ time to move some load to
9822                 * given_cpu) causing excess load to be moved to given_cpu.
9823                 * This however should not happen so much in practice and
9824                 * moreover subsequent load balance cycles should correct the
9825                 * excess load moved.
9826                 */
9827                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9828
9829                        /* Prevent to re-select dst_cpu via env's CPUs */
9830                        __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9831
9832                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
9833                        env.dst_cpu      = env.new_dst_cpu;
9834                        env.flags       &= ~LBF_DST_PINNED;
9835                        env.loop         = 0;
9836                        env.loop_break   = sched_nr_migrate_break;
9837
9838                        /*
9839                         * Go back to "more_balance" rather than "redo" since we
9840                         * need to continue with same src_cpu.
9841                         */
9842                        goto more_balance;
9843                }
9844
9845                /*
9846                 * We failed to reach balance because of affinity.
9847                 */
9848                if (sd_parent) {
9849                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9850
9851                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9852                                *group_imbalance = 1;
9853                }
9854
9855                /* All tasks on this runqueue were pinned by CPU affinity */
9856                if (unlikely(env.flags & LBF_ALL_PINNED)) {
9857                        __cpumask_clear_cpu(cpu_of(busiest), cpus);
9858                        /*
9859                         * Attempting to continue load balancing at the current
9860                         * sched_domain level only makes sense if there are
9861                         * active CPUs remaining as possible busiest CPUs to
9862                         * pull load from which are not contained within the
9863                         * destination group that is receiving any migrated
9864                         * load.
9865                         */
9866                        if (!cpumask_subset(cpus, env.dst_grpmask)) {
9867                                env.loop = 0;
9868                                env.loop_break = sched_nr_migrate_break;
9869                                goto redo;
9870                        }
9871                        goto out_all_pinned;
9872                }
9873        }
9874
9875        if (!ld_moved) {
9876                schedstat_inc(sd->lb_failed[idle]);
9877                /*
9878                 * Increment the failure counter only on periodic balance.
9879                 * We do not want newidle balance, which can be very
9880                 * frequent, pollute the failure counter causing
9881                 * excessive cache_hot migrations and active balances.
9882                 */
9883                if (idle != CPU_NEWLY_IDLE)
9884                        sd->nr_balance_failed++;
9885
9886                if (need_active_balance(&env)) {
9887                        unsigned long flags;
9888
9889                        raw_spin_rq_lock_irqsave(busiest, flags);
9890
9891                        /*
9892                         * Don't kick the active_load_balance_cpu_stop,
9893                         * if the curr task on busiest CPU can't be
9894                         * moved to this_cpu:
9895                         */
9896                        if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9897                                raw_spin_rq_unlock_irqrestore(busiest, flags);
9898                                goto out_one_pinned;
9899                        }
9900
9901                        /* Record that we found at least one task that could run on this_cpu */
9902                        env.flags &= ~LBF_ALL_PINNED;
9903
9904                        /*
9905                         * ->active_balance synchronizes accesses to
9906                         * ->active_balance_work.  Once set, it's cleared
9907                         * only after active load balance is finished.
9908                         */
9909                        if (!busiest->active_balance) {
9910                                busiest->active_balance = 1;
9911                                busiest->push_cpu = this_cpu;
9912                                active_balance = 1;
9913                        }
9914                        raw_spin_rq_unlock_irqrestore(busiest, flags);
9915
9916                        if (active_balance) {
9917                                stop_one_cpu_nowait(cpu_of(busiest),
9918                                        active_load_balance_cpu_stop, busiest,
9919                                        &busiest->active_balance_work);
9920                        }
9921                }
9922        } else {
9923                sd->nr_balance_failed = 0;
9924        }
9925
9926        if (likely(!active_balance) || need_active_balance(&env)) {
9927                /* We were unbalanced, so reset the balancing interval */
9928                sd->balance_interval = sd->min_interval;
9929        }
9930
9931        goto out;
9932
9933out_balanced:
9934        /*
9935         * We reach balance although we may have faced some affinity
9936         * constraints. Clear the imbalance flag only if other tasks got
9937         * a chance to move and fix the imbalance.
9938         */
9939        if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9940                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9941
9942                if (*group_imbalance)
9943                        *group_imbalance = 0;
9944        }
9945
9946out_all_pinned:
9947        /*
9948         * We reach balance because all tasks are pinned at this level so
9949         * we can't migrate them. Let the imbalance flag set so parent level
9950         * can try to migrate them.
9951         */
9952        schedstat_inc(sd->lb_balanced[idle]);
9953
9954        sd->nr_balance_failed = 0;
9955
9956out_one_pinned:
9957        ld_moved = 0;
9958
9959        /*
9960         * newidle_balance() disregards balance intervals, so we could
9961         * repeatedly reach this code, which would lead to balance_interval
9962         * skyrocketing in a short amount of time. Skip the balance_interval
9963         * increase logic to avoid that.
9964         */
9965        if (env.idle == CPU_NEWLY_IDLE)
9966                goto out;
9967
9968        /* tune up the balancing interval */
9969        if ((env.flags & LBF_ALL_PINNED &&
9970             sd->balance_interval < MAX_PINNED_INTERVAL) ||
9971            sd->balance_interval < sd->max_interval)
9972                sd->balance_interval *= 2;
9973out:
9974        return ld_moved;
9975}
9976
9977static inline unsigned long
9978get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9979{
9980        unsigned long interval = sd->balance_interval;
9981
9982        if (cpu_busy)
9983                interval *= sd->busy_factor;
9984
9985        /* scale ms to jiffies */
9986        interval = msecs_to_jiffies(interval);
9987
9988        /*
9989         * Reduce likelihood of busy balancing at higher domains racing with
9990         * balancing at lower domains by preventing their balancing periods
9991         * from being multiples of each other.
9992         */
9993        if (cpu_busy)
9994                interval -= 1;
9995
9996        interval = clamp(interval, 1UL, max_load_balance_interval);
9997
9998        return interval;
9999}
10000
10001static inline void
10002update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10003{
10004        unsigned long interval, next;
10005
10006        /* used by idle balance, so cpu_busy = 0 */
10007        interval = get_sd_balance_interval(sd, 0);
10008        next = sd->last_balance + interval;
10009
10010        if (time_after(*next_balance, next))
10011                *next_balance = next;
10012}
10013
10014/*
10015 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10016 * running tasks off the busiest CPU onto idle CPUs. It requires at
10017 * least 1 task to be running on each physical CPU where possible, and
10018 * avoids physical / logical imbalances.
10019 */
10020static int active_load_balance_cpu_stop(void *data)
10021{
10022        struct rq *busiest_rq = data;
10023        int busiest_cpu = cpu_of(busiest_rq);
10024        int target_cpu = busiest_rq->push_cpu;
10025        struct rq *target_rq = cpu_rq(target_cpu);
10026        struct sched_domain *sd;
10027        struct task_struct *p = NULL;
10028        struct rq_flags rf;
10029
10030        rq_lock_irq(busiest_rq, &rf);
10031        /*
10032         * Between queueing the stop-work and running it is a hole in which
10033         * CPUs can become inactive. We should not move tasks from or to
10034         * inactive CPUs.
10035         */
10036        if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10037                goto out_unlock;
10038
10039        /* Make sure the requested CPU hasn't gone down in the meantime: */
10040        if (unlikely(busiest_cpu != smp_processor_id() ||
10041                     !busiest_rq->active_balance))
10042                goto out_unlock;
10043
10044        /* Is there any task to move? */
10045        if (busiest_rq->nr_running <= 1)
10046                goto out_unlock;
10047
10048        /*
10049         * This condition is "impossible", if it occurs
10050         * we need to fix it. Originally reported by
10051         * Bjorn Helgaas on a 128-CPU setup.
10052         */
10053        BUG_ON(busiest_rq == target_rq);
10054
10055        /* Search for an sd spanning us and the target CPU. */
10056        rcu_read_lock();
10057        for_each_domain(target_cpu, sd) {
10058                if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10059                        break;
10060        }
10061
10062        if (likely(sd)) {
10063                struct lb_env env = {
10064                        .sd             = sd,
10065                        .dst_cpu        = target_cpu,
10066                        .dst_rq         = target_rq,
10067                        .src_cpu        = busiest_rq->cpu,
10068                        .src_rq         = busiest_rq,
10069                        .idle           = CPU_IDLE,
10070                        .flags          = LBF_ACTIVE_LB,
10071                };
10072
10073                schedstat_inc(sd->alb_count);
10074                update_rq_clock(busiest_rq);
10075
10076                p = detach_one_task(&env);
10077                if (p) {
10078                        schedstat_inc(sd->alb_pushed);
10079                        /* Active balancing done, reset the failure counter. */
10080                        sd->nr_balance_failed = 0;
10081                } else {
10082                        schedstat_inc(sd->alb_failed);
10083                }
10084        }
10085        rcu_read_unlock();
10086out_unlock:
10087        busiest_rq->active_balance = 0;
10088        rq_unlock(busiest_rq, &rf);
10089
10090        if (p)
10091                attach_one_task(target_rq, p);
10092
10093        local_irq_enable();
10094
10095        return 0;
10096}
10097
10098static DEFINE_SPINLOCK(balancing);
10099
10100/*
10101 * Scale the max load_balance interval with the number of CPUs in the system.
10102 * This trades load-balance latency on larger machines for less cross talk.
10103 */
10104void update_max_interval(void)
10105{
10106        max_load_balance_interval = HZ*num_online_cpus()/10;
10107}
10108
10109/*
10110 * It checks each scheduling domain to see if it is due to be balanced,
10111 * and initiates a balancing operation if so.
10112 *
10113 * Balancing parameters are set up in init_sched_domains.
10114 */
10115static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10116{
10117        int continue_balancing = 1;
10118        int cpu = rq->cpu;
10119        int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10120        unsigned long interval;
10121        struct sched_domain *sd;
10122        /* Earliest time when we have to do rebalance again */
10123        unsigned long next_balance = jiffies + 60*HZ;
10124        int update_next_balance = 0;
10125        int need_serialize, need_decay = 0;
10126        u64 max_cost = 0;
10127
10128        rcu_read_lock();
10129        for_each_domain(cpu, sd) {
10130                /*
10131                 * Decay the newidle max times here because this is a regular
10132                 * visit to all the domains. Decay ~1% per second.
10133                 */
10134                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10135                        sd->max_newidle_lb_cost =
10136                                (sd->max_newidle_lb_cost * 253) / 256;
10137                        sd->next_decay_max_lb_cost = jiffies + HZ;
10138                        need_decay = 1;
10139                }
10140                max_cost += sd->max_newidle_lb_cost;
10141
10142                /*
10143                 * Stop the load balance at this level. There is another
10144                 * CPU in our sched group which is doing load balancing more
10145                 * actively.
10146                 */
10147                if (!continue_balancing) {
10148                        if (need_decay)
10149                                continue;
10150                        break;
10151                }
10152
10153                interval = get_sd_balance_interval(sd, busy);
10154
10155                need_serialize = sd->flags & SD_SERIALIZE;
10156                if (need_serialize) {
10157                        if (!spin_trylock(&balancing))
10158                                goto out;
10159                }
10160
10161                if (time_after_eq(jiffies, sd->last_balance + interval)) {
10162                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10163                                /*
10164                                 * The LBF_DST_PINNED logic could have changed
10165                                 * env->dst_cpu, so we can't know our idle
10166                                 * state even if we migrated tasks. Update it.
10167                                 */
10168                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10169                                busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10170                        }
10171                        sd->last_balance = jiffies;
10172                        interval = get_sd_balance_interval(sd, busy);
10173                }
10174                if (need_serialize)
10175                        spin_unlock(&balancing);
10176out:
10177                if (time_after(next_balance, sd->last_balance + interval)) {
10178                        next_balance = sd->last_balance + interval;
10179                        update_next_balance = 1;
10180                }
10181        }
10182        if (need_decay) {
10183                /*
10184                 * Ensure the rq-wide value also decays but keep it at a
10185                 * reasonable floor to avoid funnies with rq->avg_idle.
10186                 */
10187                rq->max_idle_balance_cost =
10188                        max((u64)sysctl_sched_migration_cost, max_cost);
10189        }
10190        rcu_read_unlock();
10191
10192        /*
10193         * next_balance will be updated only when there is a need.
10194         * When the cpu is attached to null domain for ex, it will not be
10195         * updated.
10196         */
10197        if (likely(update_next_balance))
10198                rq->next_balance = next_balance;
10199
10200}
10201
10202static inline int on_null_domain(struct rq *rq)
10203{
10204        return unlikely(!rcu_dereference_sched(rq->sd));
10205}
10206
10207#ifdef CONFIG_NO_HZ_COMMON
10208/*
10209 * idle load balancing details
10210 * - When one of the busy CPUs notice that there may be an idle rebalancing
10211 *   needed, they will kick the idle load balancer, which then does idle
10212 *   load balancing for all the idle CPUs.
10213 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10214 *   anywhere yet.
10215 */
10216
10217static inline int find_new_ilb(void)
10218{
10219        int ilb;
10220
10221        for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10222                              housekeeping_cpumask(HK_FLAG_MISC)) {
10223
10224                if (ilb == smp_processor_id())
10225                        continue;
10226
10227                if (idle_cpu(ilb))
10228                        return ilb;
10229        }
10230
10231        return nr_cpu_ids;
10232}
10233
10234/*
10235 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10236 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10237 */
10238static void kick_ilb(unsigned int flags)
10239{
10240        int ilb_cpu;
10241
10242        /*
10243         * Increase nohz.next_balance only when if full ilb is triggered but
10244         * not if we only update stats.
10245         */
10246        if (flags & NOHZ_BALANCE_KICK)
10247                nohz.next_balance = jiffies+1;
10248
10249        ilb_cpu = find_new_ilb();
10250
10251        if (ilb_cpu >= nr_cpu_ids)
10252                return;
10253
10254        /*
10255         * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10256         * the first flag owns it; cleared by nohz_csd_func().
10257         */
10258        flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10259        if (flags & NOHZ_KICK_MASK)
10260                return;
10261
10262        /*
10263         * This way we generate an IPI on the target CPU which
10264         * is idle. And the softirq performing nohz idle load balance
10265         * will be run before returning from the IPI.
10266         */
10267        smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10268}
10269
10270/*
10271 * Current decision point for kicking the idle load balancer in the presence
10272 * of idle CPUs in the system.
10273 */
10274static void nohz_balancer_kick(struct rq *rq)
10275{
10276        unsigned long now = jiffies;
10277        struct sched_domain_shared *sds;
10278        struct sched_domain *sd;
10279        int nr_busy, i, cpu = rq->cpu;
10280        unsigned int flags = 0;
10281
10282        if (unlikely(rq->idle_balance))
10283                return;
10284
10285        /*
10286         * We may be recently in ticked or tickless idle mode. At the first
10287         * busy tick after returning from idle, we will update the busy stats.
10288         */
10289        nohz_balance_exit_idle(rq);
10290
10291        /*
10292         * None are in tickless mode and hence no need for NOHZ idle load
10293         * balancing.
10294         */
10295        if (likely(!atomic_read(&nohz.nr_cpus)))
10296                return;
10297
10298        if (READ_ONCE(nohz.has_blocked) &&
10299            time_after(now, READ_ONCE(nohz.next_blocked)))
10300                flags = NOHZ_STATS_KICK;
10301
10302        if (time_before(now, nohz.next_balance))
10303                goto out;
10304
10305        if (rq->nr_running >= 2) {
10306                flags = NOHZ_KICK_MASK;
10307                goto out;
10308        }
10309
10310        rcu_read_lock();
10311
10312        sd = rcu_dereference(rq->sd);
10313        if (sd) {
10314                /*
10315                 * If there's a CFS task and the current CPU has reduced
10316                 * capacity; kick the ILB to see if there's a better CPU to run
10317                 * on.
10318                 */
10319                if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10320                        flags = NOHZ_KICK_MASK;
10321                        goto unlock;
10322                }
10323        }
10324
10325        sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10326        if (sd) {
10327                /*
10328                 * When ASYM_PACKING; see if there's a more preferred CPU
10329                 * currently idle; in which case, kick the ILB to move tasks
10330                 * around.
10331                 */
10332                for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10333                        if (sched_asym_prefer(i, cpu)) {
10334                                flags = NOHZ_KICK_MASK;
10335                                goto unlock;
10336                        }
10337                }
10338        }
10339
10340        sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10341        if (sd) {
10342                /*
10343                 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10344                 * to run the misfit task on.
10345                 */
10346                if (check_misfit_status(rq, sd)) {
10347                        flags = NOHZ_KICK_MASK;
10348                        goto unlock;
10349                }
10350
10351                /*
10352                 * For asymmetric systems, we do not want to nicely balance
10353                 * cache use, instead we want to embrace asymmetry and only
10354                 * ensure tasks have enough CPU capacity.
10355                 *
10356                 * Skip the LLC logic because it's not relevant in that case.
10357                 */
10358                goto unlock;
10359        }
10360
10361        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10362        if (sds) {
10363                /*
10364                 * If there is an imbalance between LLC domains (IOW we could
10365                 * increase the overall cache use), we need some less-loaded LLC
10366                 * domain to pull some load. Likewise, we may need to spread
10367                 * load within the current LLC domain (e.g. packed SMT cores but
10368                 * other CPUs are idle). We can't really know from here how busy
10369                 * the others are - so just get a nohz balance going if it looks
10370                 * like this LLC domain has tasks we could move.
10371                 */
10372                nr_busy = atomic_read(&sds->nr_busy_cpus);
10373                if (nr_busy > 1) {
10374                        flags = NOHZ_KICK_MASK;
10375                        goto unlock;
10376                }
10377        }
10378unlock:
10379        rcu_read_unlock();
10380out:
10381        if (flags)
10382                kick_ilb(flags);
10383}
10384
10385static void set_cpu_sd_state_busy(int cpu)
10386{
10387        struct sched_domain *sd;
10388
10389        rcu_read_lock();
10390        sd = rcu_dereference(per_cpu(sd_llc, cpu));
10391
10392        if (!sd || !sd->nohz_idle)
10393                goto unlock;
10394        sd->nohz_idle = 0;
10395
10396        atomic_inc(&sd->shared->nr_busy_cpus);
10397unlock:
10398        rcu_read_unlock();
10399}
10400
10401void nohz_balance_exit_idle(struct rq *rq)
10402{
10403        SCHED_WARN_ON(rq != this_rq());
10404
10405        if (likely(!rq->nohz_tick_stopped))
10406                return;
10407
10408        rq->nohz_tick_stopped = 0;
10409        cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10410        atomic_dec(&nohz.nr_cpus);
10411
10412        set_cpu_sd_state_busy(rq->cpu);
10413}
10414
10415static void set_cpu_sd_state_idle(int cpu)
10416{
10417        struct sched_domain *sd;
10418
10419        rcu_read_lock();
10420        sd = rcu_dereference(per_cpu(sd_llc, cpu));
10421
10422        if (!sd || sd->nohz_idle)
10423                goto unlock;
10424        sd->nohz_idle = 1;
10425
10426        atomic_dec(&sd->shared->nr_busy_cpus);
10427unlock:
10428        rcu_read_unlock();
10429}
10430
10431/*
10432 * This routine will record that the CPU is going idle with tick stopped.
10433 * This info will be used in performing idle load balancing in the future.
10434 */
10435void nohz_balance_enter_idle(int cpu)
10436{
10437        struct rq *rq = cpu_rq(cpu);
10438
10439        SCHED_WARN_ON(cpu != smp_processor_id());
10440
10441        /* If this CPU is going down, then nothing needs to be done: */
10442        if (!cpu_active(cpu))
10443                return;
10444
10445        /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10446        if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10447                return;
10448
10449        /*
10450         * Can be set safely without rq->lock held
10451         * If a clear happens, it will have evaluated last additions because
10452         * rq->lock is held during the check and the clear
10453         */
10454        rq->has_blocked_load = 1;
10455
10456        /*
10457         * The tick is still stopped but load could have been added in the
10458         * meantime. We set the nohz.has_blocked flag to trig a check of the
10459         * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10460         * of nohz.has_blocked can only happen after checking the new load
10461         */
10462        if (rq->nohz_tick_stopped)
10463                goto out;
10464
10465        /* If we're a completely isolated CPU, we don't play: */
10466        if (on_null_domain(rq))
10467                return;
10468
10469        rq->nohz_tick_stopped = 1;
10470
10471        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10472        atomic_inc(&nohz.nr_cpus);
10473
10474        /*
10475         * Ensures that if nohz_idle_balance() fails to observe our
10476         * @idle_cpus_mask store, it must observe the @has_blocked
10477         * store.
10478         */
10479        smp_mb__after_atomic();
10480
10481        set_cpu_sd_state_idle(cpu);
10482
10483out:
10484        /*
10485         * Each time a cpu enter idle, we assume that it has blocked load and
10486         * enable the periodic update of the load of idle cpus
10487         */
10488        WRITE_ONCE(nohz.has_blocked, 1);
10489}
10490
10491static bool update_nohz_stats(struct rq *rq)
10492{
10493        unsigned int cpu = rq->cpu;
10494
10495        if (!rq->has_blocked_load)
10496                return false;
10497
10498        if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10499                return false;
10500
10501        if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10502                return true;
10503
10504        update_blocked_averages(cpu);
10505
10506        return rq->has_blocked_load;
10507}
10508
10509/*
10510 * Internal function that runs load balance for all idle cpus. The load balance
10511 * can be a simple update of blocked load or a complete load balance with
10512 * tasks movement depending of flags.
10513 */
10514static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10515                               enum cpu_idle_type idle)
10516{
10517        /* Earliest time when we have to do rebalance again */
10518        unsigned long now = jiffies;
10519        unsigned long next_balance = now + 60*HZ;
10520        bool has_blocked_load = false;
10521        int update_next_balance = 0;
10522        int this_cpu = this_rq->cpu;
10523        int balance_cpu;
10524        struct rq *rq;
10525
10526        SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10527
10528        /*
10529         * We assume there will be no idle load after this update and clear
10530         * the has_blocked flag. If a cpu enters idle in the mean time, it will
10531         * set the has_blocked flag and trig another update of idle load.
10532         * Because a cpu that becomes idle, is added to idle_cpus_mask before
10533         * setting the flag, we are sure to not clear the state and not
10534         * check the load of an idle cpu.
10535         */
10536        WRITE_ONCE(nohz.has_blocked, 0);
10537
10538        /*
10539         * Ensures that if we miss the CPU, we must see the has_blocked
10540         * store from nohz_balance_enter_idle().
10541         */
10542        smp_mb();
10543
10544        /*
10545         * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10546         * chance for other idle cpu to pull load.
10547         */
10548        for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10549                if (!idle_cpu(balance_cpu))
10550                        continue;
10551
10552                /*
10553                 * If this CPU gets work to do, stop the load balancing
10554                 * work being done for other CPUs. Next load
10555                 * balancing owner will pick it up.
10556                 */
10557                if (need_resched()) {
10558                        has_blocked_load = true;
10559                        goto abort;
10560                }
10561
10562                rq = cpu_rq(balance_cpu);
10563
10564                has_blocked_load |= update_nohz_stats(rq);
10565
10566                /*
10567                 * If time for next balance is due,
10568                 * do the balance.
10569                 */
10570                if (time_after_eq(jiffies, rq->next_balance)) {
10571                        struct rq_flags rf;
10572
10573                        rq_lock_irqsave(rq, &rf);
10574                        update_rq_clock(rq);
10575                        rq_unlock_irqrestore(rq, &rf);
10576
10577                        if (flags & NOHZ_BALANCE_KICK)
10578                                rebalance_domains(rq, CPU_IDLE);
10579                }
10580
10581                if (time_after(next_balance, rq->next_balance)) {
10582                        next_balance = rq->next_balance;
10583                        update_next_balance = 1;
10584                }
10585        }
10586
10587        /*
10588         * next_balance will be updated only when there is a need.
10589         * When the CPU is attached to null domain for ex, it will not be
10590         * updated.
10591         */
10592        if (likely(update_next_balance))
10593                nohz.next_balance = next_balance;
10594
10595        WRITE_ONCE(nohz.next_blocked,
10596                now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10597
10598abort:
10599        /* There is still blocked load, enable periodic update */
10600        if (has_blocked_load)
10601                WRITE_ONCE(nohz.has_blocked, 1);
10602}
10603
10604/*
10605 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10606 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10607 */
10608static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10609{
10610        unsigned int flags = this_rq->nohz_idle_balance;
10611
10612        if (!flags)
10613                return false;
10614
10615        this_rq->nohz_idle_balance = 0;
10616
10617        if (idle != CPU_IDLE)
10618                return false;
10619
10620        _nohz_idle_balance(this_rq, flags, idle);
10621
10622        return true;
10623}
10624
10625/*
10626 * Check if we need to run the ILB for updating blocked load before entering
10627 * idle state.
10628 */
10629void nohz_run_idle_balance(int cpu)
10630{
10631        unsigned int flags;
10632
10633        flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10634
10635        /*
10636         * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10637         * (ie NOHZ_STATS_KICK set) and will do the same.
10638         */
10639        if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10640                _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10641}
10642
10643static void nohz_newidle_balance(struct rq *this_rq)
10644{
10645        int this_cpu = this_rq->cpu;
10646
10647        /*
10648         * This CPU doesn't want to be disturbed by scheduler
10649         * housekeeping
10650         */
10651        if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10652                return;
10653
10654        /* Will wake up very soon. No time for doing anything else*/
10655        if (this_rq->avg_idle < sysctl_sched_migration_cost)
10656                return;
10657
10658        /* Don't need to update blocked load of idle CPUs*/
10659        if (!READ_ONCE(nohz.has_blocked) ||
10660            time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10661                return;
10662
10663        /*
10664         * Set the need to trigger ILB in order to update blocked load
10665         * before entering idle state.
10666         */
10667        atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10668}
10669
10670#else /* !CONFIG_NO_HZ_COMMON */
10671static inline void nohz_balancer_kick(struct rq *rq) { }
10672
10673static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10674{
10675        return false;
10676}
10677
10678static inline void nohz_newidle_balance(struct rq *this_rq) { }
10679#endif /* CONFIG_NO_HZ_COMMON */
10680
10681/*
10682 * newidle_balance is called by schedule() if this_cpu is about to become
10683 * idle. Attempts to pull tasks from other CPUs.
10684 *
10685 * Returns:
10686 *   < 0 - we released the lock and there are !fair tasks present
10687 *     0 - failed, no new tasks
10688 *   > 0 - success, new (fair) tasks present
10689 */
10690static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10691{
10692        unsigned long next_balance = jiffies + HZ;
10693        int this_cpu = this_rq->cpu;
10694        struct sched_domain *sd;
10695        int pulled_task = 0;
10696        u64 curr_cost = 0;
10697
10698        update_misfit_status(NULL, this_rq);
10699
10700        /*
10701         * There is a task waiting to run. No need to search for one.
10702         * Return 0; the task will be enqueued when switching to idle.
10703         */
10704        if (this_rq->ttwu_pending)
10705                return 0;
10706
10707        /*
10708         * We must set idle_stamp _before_ calling idle_balance(), such that we
10709         * measure the duration of idle_balance() as idle time.
10710         */
10711        this_rq->idle_stamp = rq_clock(this_rq);
10712
10713        /*
10714         * Do not pull tasks towards !active CPUs...
10715         */
10716        if (!cpu_active(this_cpu))
10717                return 0;
10718
10719        /*
10720         * This is OK, because current is on_cpu, which avoids it being picked
10721         * for load-balance and preemption/IRQs are still disabled avoiding
10722         * further scheduler activity on it and we're being very careful to
10723         * re-start the picking loop.
10724         */
10725        rq_unpin_lock(this_rq, rf);
10726
10727        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10728            !READ_ONCE(this_rq->rd->overload)) {
10729
10730                rcu_read_lock();
10731                sd = rcu_dereference_check_sched_domain(this_rq->sd);
10732                if (sd)
10733                        update_next_balance(sd, &next_balance);
10734                rcu_read_unlock();
10735
10736                goto out;
10737        }
10738
10739        raw_spin_rq_unlock(this_rq);
10740
10741        update_blocked_averages(this_cpu);
10742        rcu_read_lock();
10743        for_each_domain(this_cpu, sd) {
10744                int continue_balancing = 1;
10745                u64 t0, domain_cost;
10746
10747                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10748                        update_next_balance(sd, &next_balance);
10749                        break;
10750                }
10751
10752                if (sd->flags & SD_BALANCE_NEWIDLE) {
10753                        t0 = sched_clock_cpu(this_cpu);
10754
10755                        pulled_task = load_balance(this_cpu, this_rq,
10756                                                   sd, CPU_NEWLY_IDLE,
10757                                                   &continue_balancing);
10758
10759                        domain_cost = sched_clock_cpu(this_cpu) - t0;
10760                        if (domain_cost > sd->max_newidle_lb_cost)
10761                                sd->max_newidle_lb_cost = domain_cost;
10762
10763                        curr_cost += domain_cost;
10764                }
10765
10766                update_next_balance(sd, &next_balance);
10767
10768                /*
10769                 * Stop searching for tasks to pull if there are
10770                 * now runnable tasks on this rq.
10771                 */
10772                if (pulled_task || this_rq->nr_running > 0 ||
10773                    this_rq->ttwu_pending)
10774                        break;
10775        }
10776        rcu_read_unlock();
10777
10778        raw_spin_rq_lock(this_rq);
10779
10780        if (curr_cost > this_rq->max_idle_balance_cost)
10781                this_rq->max_idle_balance_cost = curr_cost;
10782
10783        /*
10784         * While browsing the domains, we released the rq lock, a task could
10785         * have been enqueued in the meantime. Since we're not going idle,
10786         * pretend we pulled a task.
10787         */
10788        if (this_rq->cfs.h_nr_running && !pulled_task)
10789                pulled_task = 1;
10790
10791        /* Is there a task of a high priority class? */
10792        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10793                pulled_task = -1;
10794
10795out:
10796        /* Move the next balance forward */
10797        if (time_after(this_rq->next_balance, next_balance))
10798                this_rq->next_balance = next_balance;
10799
10800        if (pulled_task)
10801                this_rq->idle_stamp = 0;
10802        else
10803                nohz_newidle_balance(this_rq);
10804
10805        rq_repin_lock(this_rq, rf);
10806
10807        return pulled_task;
10808}
10809
10810/*
10811 * run_rebalance_domains is triggered when needed from the scheduler tick.
10812 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10813 */
10814static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10815{
10816        struct rq *this_rq = this_rq();
10817        enum cpu_idle_type idle = this_rq->idle_balance ?
10818                                                CPU_IDLE : CPU_NOT_IDLE;
10819
10820        /*
10821         * If this CPU has a pending nohz_balance_kick, then do the
10822         * balancing on behalf of the other idle CPUs whose ticks are
10823         * stopped. Do nohz_idle_balance *before* rebalance_domains to
10824         * give the idle CPUs a chance to load balance. Else we may
10825         * load balance only within the local sched_domain hierarchy
10826         * and abort nohz_idle_balance altogether if we pull some load.
10827         */
10828        if (nohz_idle_balance(this_rq, idle))
10829                return;
10830
10831        /* normal load balance */
10832        update_blocked_averages(this_rq->cpu);
10833        rebalance_domains(this_rq, idle);
10834}
10835
10836/*
10837 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10838 */
10839void trigger_load_balance(struct rq *rq)
10840{
10841        /*
10842         * Don't need to rebalance while attached to NULL domain or
10843         * runqueue CPU is not active
10844         */
10845        if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10846                return;
10847
10848        if (time_after_eq(jiffies, rq->next_balance))
10849                raise_softirq(SCHED_SOFTIRQ);
10850
10851        nohz_balancer_kick(rq);
10852}
10853
10854static void rq_online_fair(struct rq *rq)
10855{
10856        update_sysctl();
10857
10858        update_runtime_enabled(rq);
10859}
10860
10861static void rq_offline_fair(struct rq *rq)
10862{
10863        update_sysctl();
10864
10865        /* Ensure any throttled groups are reachable by pick_next_task */
10866        unthrottle_offline_cfs_rqs(rq);
10867}
10868
10869#endif /* CONFIG_SMP */
10870
10871#ifdef CONFIG_SCHED_CORE
10872static inline bool
10873__entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10874{
10875        u64 slice = sched_slice(cfs_rq_of(se), se);
10876        u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10877
10878        return (rtime * min_nr_tasks > slice);
10879}
10880
10881#define MIN_NR_TASKS_DURING_FORCEIDLE   2
10882static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10883{
10884        if (!sched_core_enabled(rq))
10885                return;
10886
10887        /*
10888         * If runqueue has only one task which used up its slice and
10889         * if the sibling is forced idle, then trigger schedule to
10890         * give forced idle task a chance.
10891         *
10892         * sched_slice() considers only this active rq and it gets the
10893         * whole slice. But during force idle, we have siblings acting
10894         * like a single runqueue and hence we need to consider runnable
10895         * tasks on this CPU and the forced idle CPU. Ideally, we should
10896         * go through the forced idle rq, but that would be a perf hit.
10897         * We can assume that the forced idle CPU has at least
10898         * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10899         * if we need to give up the CPU.
10900         */
10901        if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10902            __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10903                resched_curr(rq);
10904}
10905
10906/*
10907 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10908 */
10909static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10910{
10911        for_each_sched_entity(se) {
10912                struct cfs_rq *cfs_rq = cfs_rq_of(se);
10913
10914                if (forceidle) {
10915                        if (cfs_rq->forceidle_seq == fi_seq)
10916                                break;
10917                        cfs_rq->forceidle_seq = fi_seq;
10918                }
10919
10920                cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10921        }
10922}
10923
10924void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10925{
10926        struct sched_entity *se = &p->se;
10927
10928        if (p->sched_class != &fair_sched_class)
10929                return;
10930
10931        se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
10932}
10933
10934bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
10935{
10936        struct rq *rq = task_rq(a);
10937        struct sched_entity *sea = &a->se;
10938        struct sched_entity *seb = &b->se;
10939        struct cfs_rq *cfs_rqa;
10940        struct cfs_rq *cfs_rqb;
10941        s64 delta;
10942
10943        SCHED_WARN_ON(task_rq(b)->core != rq->core);
10944
10945#ifdef CONFIG_FAIR_GROUP_SCHED
10946        /*
10947         * Find an se in the hierarchy for tasks a and b, such that the se's
10948         * are immediate siblings.
10949         */
10950        while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
10951                int sea_depth = sea->depth;
10952                int seb_depth = seb->depth;
10953
10954                if (sea_depth >= seb_depth)
10955                        sea = parent_entity(sea);
10956                if (sea_depth <= seb_depth)
10957                        seb = parent_entity(seb);
10958        }
10959
10960        se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
10961        se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
10962
10963        cfs_rqa = sea->cfs_rq;
10964        cfs_rqb = seb->cfs_rq;
10965#else
10966        cfs_rqa = &task_rq(a)->cfs;
10967        cfs_rqb = &task_rq(b)->cfs;
10968#endif
10969
10970        /*
10971         * Find delta after normalizing se's vruntime with its cfs_rq's
10972         * min_vruntime_fi, which would have been updated in prior calls
10973         * to se_fi_update().
10974         */
10975        delta = (s64)(sea->vruntime - seb->vruntime) +
10976                (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
10977
10978        return delta > 0;
10979}
10980#else
10981static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
10982#endif
10983
10984/*
10985 * scheduler tick hitting a task of our scheduling class.
10986 *
10987 * NOTE: This function can be called remotely by the tick offload that
10988 * goes along full dynticks. Therefore no local assumption can be made
10989 * and everything must be accessed through the @rq and @curr passed in
10990 * parameters.
10991 */
10992static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10993{
10994        struct cfs_rq *cfs_rq;
10995        struct sched_entity *se = &curr->se;
10996
10997        for_each_sched_entity(se) {
10998                cfs_rq = cfs_rq_of(se);
10999                entity_tick(cfs_rq, se, queued);
11000        }
11001
11002        if (static_branch_unlikely(&sched_numa_balancing))
11003                task_tick_numa(rq, curr);
11004
11005        update_misfit_status(curr, rq);
11006        update_overutilized_status(task_rq(curr));
11007
11008        task_tick_core(rq, curr);
11009}
11010
11011/*
11012 * called on fork with the child task as argument from the parent's context
11013 *  - child not yet on the tasklist
11014 *  - preemption disabled
11015 */
11016static void task_fork_fair(struct task_struct *p)
11017{
11018        struct cfs_rq *cfs_rq;
11019        struct sched_entity *se = &p->se, *curr;
11020        struct rq *rq = this_rq();
11021        struct rq_flags rf;
11022
11023        rq_lock(rq, &rf);
11024        update_rq_clock(rq);
11025
11026        cfs_rq = task_cfs_rq(current);
11027        curr = cfs_rq->curr;
11028        if (curr) {
11029                update_curr(cfs_rq);
11030                se->vruntime = curr->vruntime;
11031        }
11032        place_entity(cfs_rq, se, 1);
11033
11034        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11035                /*
11036                 * Upon rescheduling, sched_class::put_prev_task() will place
11037                 * 'current' within the tree based on its new key value.
11038                 */
11039                swap(curr->vruntime, se->vruntime);
11040                resched_curr(rq);
11041        }
11042
11043        se->vruntime -= cfs_rq->min_vruntime;
11044        rq_unlock(rq, &rf);
11045}
11046
11047/*
11048 * Priority of the task has changed. Check to see if we preempt
11049 * the current task.
11050 */
11051static void
11052prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11053{
11054        if (!task_on_rq_queued(p))
11055                return;
11056
11057        if (rq->cfs.nr_running == 1)
11058                return;
11059
11060        /*
11061         * Reschedule if we are currently running on this runqueue and
11062         * our priority decreased, or if we are not currently running on
11063         * this runqueue and our priority is higher than the current's
11064         */
11065        if (task_current(rq, p)) {
11066                if (p->prio > oldprio)
11067                        resched_curr(rq);
11068        } else
11069                check_preempt_curr(rq, p, 0);
11070}
11071
11072static inline bool vruntime_normalized(struct task_struct *p)
11073{
11074        struct sched_entity *se = &p->se;
11075
11076        /*
11077         * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11078         * the dequeue_entity(.flags=0) will already have normalized the
11079         * vruntime.
11080         */
11081        if (p->on_rq)
11082                return true;
11083
11084        /*
11085         * When !on_rq, vruntime of the task has usually NOT been normalized.
11086         * But there are some cases where it has already been normalized:
11087         *
11088         * - A forked child which is waiting for being woken up by
11089         *   wake_up_new_task().
11090         * - A task which has been woken up by try_to_wake_up() and
11091         *   waiting for actually being woken up by sched_ttwu_pending().
11092         */
11093        if (!se->sum_exec_runtime ||
11094            (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11095                return true;
11096
11097        return false;
11098}
11099
11100#ifdef CONFIG_FAIR_GROUP_SCHED
11101/*
11102 * Propagate the changes of the sched_entity across the tg tree to make it
11103 * visible to the root
11104 */
11105static void propagate_entity_cfs_rq(struct sched_entity *se)
11106{
11107        struct cfs_rq *cfs_rq;
11108
11109        list_add_leaf_cfs_rq(cfs_rq_of(se));
11110
11111        /* Start to propagate at parent */
11112        se = se->parent;
11113
11114        for_each_sched_entity(se) {
11115                cfs_rq = cfs_rq_of(se);
11116
11117                if (!cfs_rq_throttled(cfs_rq)){
11118                        update_load_avg(cfs_rq, se, UPDATE_TG);
11119                        list_add_leaf_cfs_rq(cfs_rq);
11120                        continue;
11121                }
11122
11123                if (list_add_leaf_cfs_rq(cfs_rq))
11124                        break;
11125        }
11126}
11127#else
11128static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11129#endif
11130
11131static void detach_entity_cfs_rq(struct sched_entity *se)
11132{
11133        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11134
11135        /* Catch up with the cfs_rq and remove our load when we leave */
11136        update_load_avg(cfs_rq, se, 0);
11137        detach_entity_load_avg(cfs_rq, se);
11138        update_tg_load_avg(cfs_rq);
11139        propagate_entity_cfs_rq(se);
11140}
11141
11142static void attach_entity_cfs_rq(struct sched_entity *se)
11143{
11144        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11145
11146#ifdef CONFIG_FAIR_GROUP_SCHED
11147        /*
11148         * Since the real-depth could have been changed (only FAIR
11149         * class maintain depth value), reset depth properly.
11150         */
11151        se->depth = se->parent ? se->parent->depth + 1 : 0;
11152#endif
11153
11154        /* Synchronize entity with its cfs_rq */
11155        update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11156        attach_entity_load_avg(cfs_rq, se);
11157        update_tg_load_avg(cfs_rq);
11158        propagate_entity_cfs_rq(se);
11159}
11160
11161static void detach_task_cfs_rq(struct task_struct *p)
11162{
11163        struct sched_entity *se = &p->se;
11164        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11165
11166        if (!vruntime_normalized(p)) {
11167                /*
11168                 * Fix up our vruntime so that the current sleep doesn't
11169                 * cause 'unlimited' sleep bonus.
11170                 */
11171                place_entity(cfs_rq, se, 0);
11172                se->vruntime -= cfs_rq->min_vruntime;
11173        }
11174
11175        detach_entity_cfs_rq(se);
11176}
11177
11178static void attach_task_cfs_rq(struct task_struct *p)
11179{
11180        struct sched_entity *se = &p->se;
11181        struct cfs_rq *cfs_rq = cfs_rq_of(se);
11182
11183        attach_entity_cfs_rq(se);
11184
11185        if (!vruntime_normalized(p))
11186                se->vruntime += cfs_rq->min_vruntime;
11187}
11188
11189static void switched_from_fair(struct rq *rq, struct task_struct *p)
11190{
11191        detach_task_cfs_rq(p);
11192}
11193
11194static void switched_to_fair(struct rq *rq, struct task_struct *p)
11195{
11196        attach_task_cfs_rq(p);
11197
11198        if (task_on_rq_queued(p)) {
11199                /*
11200                 * We were most likely switched from sched_rt, so
11201                 * kick off the schedule if running, otherwise just see
11202                 * if we can still preempt the current task.
11203                 */
11204                if (task_current(rq, p))
11205                        resched_curr(rq);
11206                else
11207                        check_preempt_curr(rq, p, 0);
11208        }
11209}
11210
11211/* Account for a task changing its policy or group.
11212 *
11213 * This routine is mostly called to set cfs_rq->curr field when a task
11214 * migrates between groups/classes.
11215 */
11216static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11217{
11218        struct sched_entity *se = &p->se;
11219
11220#ifdef CONFIG_SMP
11221        if (task_on_rq_queued(p)) {
11222                /*
11223                 * Move the next running task to the front of the list, so our
11224                 * cfs_tasks list becomes MRU one.
11225                 */
11226                list_move(&se->group_node, &rq->cfs_tasks);
11227        }
11228#endif
11229
11230        for_each_sched_entity(se) {
11231                struct cfs_rq *cfs_rq = cfs_rq_of(se);
11232
11233                set_next_entity(cfs_rq, se);
11234                /* ensure bandwidth has been allocated on our new cfs_rq */
11235                account_cfs_rq_runtime(cfs_rq, 0);
11236        }
11237}
11238
11239void init_cfs_rq(struct cfs_rq *cfs_rq)
11240{
11241        cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11242        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11243#ifndef CONFIG_64BIT
11244        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11245#endif
11246#ifdef CONFIG_SMP
11247        raw_spin_lock_init(&cfs_rq->removed.lock);
11248#endif
11249}
11250
11251#ifdef CONFIG_FAIR_GROUP_SCHED
11252static void task_set_group_fair(struct task_struct *p)
11253{
11254        struct sched_entity *se = &p->se;
11255
11256        set_task_rq(p, task_cpu(p));
11257        se->depth = se->parent ? se->parent->depth + 1 : 0;
11258}
11259
11260static void task_move_group_fair(struct task_struct *p)
11261{
11262        detach_task_cfs_rq(p);
11263        set_task_rq(p, task_cpu(p));
11264
11265#ifdef CONFIG_SMP
11266        /* Tell se's cfs_rq has been changed -- migrated */
11267        p->se.avg.last_update_time = 0;
11268#endif
11269        attach_task_cfs_rq(p);
11270}
11271
11272static void task_change_group_fair(struct task_struct *p, int type)
11273{
11274        switch (type) {
11275        case TASK_SET_GROUP:
11276                task_set_group_fair(p);
11277                break;
11278
11279        case TASK_MOVE_GROUP:
11280                task_move_group_fair(p);
11281                break;
11282        }
11283}
11284
11285void free_fair_sched_group(struct task_group *tg)
11286{
11287        int i;
11288
11289        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11290
11291        for_each_possible_cpu(i) {
11292                if (tg->cfs_rq)
11293                        kfree(tg->cfs_rq[i]);
11294                if (tg->se)
11295                        kfree(tg->se[i]);
11296        }
11297
11298        kfree(tg->cfs_rq);
11299        kfree(tg->se);
11300}
11301
11302int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11303{
11304        struct sched_entity *se;
11305        struct cfs_rq *cfs_rq;
11306        int i;
11307
11308        tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11309        if (!tg->cfs_rq)
11310                goto err;
11311        tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11312        if (!tg->se)
11313                goto err;
11314
11315        tg->shares = NICE_0_LOAD;
11316
11317        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11318
11319        for_each_possible_cpu(i) {
11320                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11321                                      GFP_KERNEL, cpu_to_node(i));
11322                if (!cfs_rq)
11323                        goto err;
11324
11325                se = kzalloc_node(sizeof(struct sched_entity),
11326                                  GFP_KERNEL, cpu_to_node(i));
11327                if (!se)
11328                        goto err_free_rq;
11329
11330                init_cfs_rq(cfs_rq);
11331                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11332                init_entity_runnable_average(se);
11333        }
11334
11335        return 1;
11336
11337err_free_rq:
11338        kfree(cfs_rq);
11339err:
11340        return 0;
11341}
11342
11343void online_fair_sched_group(struct task_group *tg)
11344{
11345        struct sched_entity *se;
11346        struct rq_flags rf;
11347        struct rq *rq;
11348        int i;
11349
11350        for_each_possible_cpu(i) {
11351                rq = cpu_rq(i);
11352                se = tg->se[i];
11353                rq_lock_irq(rq, &rf);
11354                update_rq_clock(rq);
11355                attach_entity_cfs_rq(se);
11356                sync_throttle(tg, i);
11357                rq_unlock_irq(rq, &rf);
11358        }
11359}
11360
11361void unregister_fair_sched_group(struct task_group *tg)
11362{
11363        unsigned long flags;
11364        struct rq *rq;
11365        int cpu;
11366
11367        for_each_possible_cpu(cpu) {
11368                if (tg->se[cpu])
11369                        remove_entity_load_avg(tg->se[cpu]);
11370
11371                /*
11372                 * Only empty task groups can be destroyed; so we can speculatively
11373                 * check on_list without danger of it being re-added.
11374                 */
11375                if (!tg->cfs_rq[cpu]->on_list)
11376                        continue;
11377
11378                rq = cpu_rq(cpu);
11379
11380                raw_spin_rq_lock_irqsave(rq, flags);
11381                list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11382                raw_spin_rq_unlock_irqrestore(rq, flags);
11383        }
11384}
11385
11386void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11387                        struct sched_entity *se, int cpu,
11388                        struct sched_entity *parent)
11389{
11390        struct rq *rq = cpu_rq(cpu);
11391
11392        cfs_rq->tg = tg;
11393        cfs_rq->rq = rq;
11394        init_cfs_rq_runtime(cfs_rq);
11395
11396        tg->cfs_rq[cpu] = cfs_rq;
11397        tg->se[cpu] = se;
11398
11399        /* se could be NULL for root_task_group */
11400        if (!se)
11401                return;
11402
11403        if (!parent) {
11404                se->cfs_rq = &rq->cfs;
11405                se->depth = 0;
11406        } else {
11407                se->cfs_rq = parent->my_q;
11408                se->depth = parent->depth + 1;
11409        }
11410
11411        se->my_q = cfs_rq;
11412        /* guarantee group entities always have weight */
11413        update_load_set(&se->load, NICE_0_LOAD);
11414        se->parent = parent;
11415}
11416
11417static DEFINE_MUTEX(shares_mutex);
11418
11419int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11420{
11421        int i;
11422
11423        /*
11424         * We can't change the weight of the root cgroup.
11425         */
11426        if (!tg->se[0])
11427                return -EINVAL;
11428
11429        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11430
11431        mutex_lock(&shares_mutex);
11432        if (tg->shares == shares)
11433                goto done;
11434
11435        tg->shares = shares;
11436        for_each_possible_cpu(i) {
11437                struct rq *rq = cpu_rq(i);
11438                struct sched_entity *se = tg->se[i];
11439                struct rq_flags rf;
11440
11441                /* Propagate contribution to hierarchy */
11442                rq_lock_irqsave(rq, &rf);
11443                update_rq_clock(rq);
11444                for_each_sched_entity(se) {
11445                        update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11446                        update_cfs_group(se);
11447                }
11448                rq_unlock_irqrestore(rq, &rf);
11449        }
11450
11451done:
11452        mutex_unlock(&shares_mutex);
11453        return 0;
11454}
11455#else /* CONFIG_FAIR_GROUP_SCHED */
11456
11457void free_fair_sched_group(struct task_group *tg) { }
11458
11459int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11460{
11461        return 1;
11462}
11463
11464void online_fair_sched_group(struct task_group *tg) { }
11465
11466void unregister_fair_sched_group(struct task_group *tg) { }
11467
11468#endif /* CONFIG_FAIR_GROUP_SCHED */
11469
11470
11471static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11472{
11473        struct sched_entity *se = &task->se;
11474        unsigned int rr_interval = 0;
11475
11476        /*
11477         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11478         * idle runqueue:
11479         */
11480        if (rq->cfs.load.weight)
11481                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11482
11483        return rr_interval;
11484}
11485
11486/*
11487 * All the scheduling class methods:
11488 */
11489DEFINE_SCHED_CLASS(fair) = {
11490
11491        .enqueue_task           = enqueue_task_fair,
11492        .dequeue_task           = dequeue_task_fair,
11493        .yield_task             = yield_task_fair,
11494        .yield_to_task          = yield_to_task_fair,
11495
11496        .check_preempt_curr     = check_preempt_wakeup,
11497
11498        .pick_next_task         = __pick_next_task_fair,
11499        .put_prev_task          = put_prev_task_fair,
11500        .set_next_task          = set_next_task_fair,
11501
11502#ifdef CONFIG_SMP
11503        .balance                = balance_fair,
11504        .pick_task              = pick_task_fair,
11505        .select_task_rq         = select_task_rq_fair,
11506        .migrate_task_rq        = migrate_task_rq_fair,
11507
11508        .rq_online              = rq_online_fair,
11509        .rq_offline             = rq_offline_fair,
11510
11511        .task_dead              = task_dead_fair,
11512        .set_cpus_allowed       = set_cpus_allowed_common,
11513#endif
11514
11515        .task_tick              = task_tick_fair,
11516        .task_fork              = task_fork_fair,
11517
11518        .prio_changed           = prio_changed_fair,
11519        .switched_from          = switched_from_fair,
11520        .switched_to            = switched_to_fair,
11521
11522        .get_rr_interval        = get_rr_interval_fair,
11523
11524        .update_curr            = update_curr_fair,
11525
11526#ifdef CONFIG_FAIR_GROUP_SCHED
11527        .task_change_group      = task_change_group_fair,
11528#endif
11529
11530#ifdef CONFIG_UCLAMP_TASK
11531        .uclamp_enabled         = 1,
11532#endif
11533};
11534
11535#ifdef CONFIG_SCHED_DEBUG
11536void print_cfs_stats(struct seq_file *m, int cpu)
11537{
11538        struct cfs_rq *cfs_rq, *pos;
11539
11540        rcu_read_lock();
11541        for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11542                print_cfs_rq(m, cpu, cfs_rq);
11543        rcu_read_unlock();
11544}
11545
11546#ifdef CONFIG_NUMA_BALANCING
11547void show_numa_stats(struct task_struct *p, struct seq_file *m)
11548{
11549        int node;
11550        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11551        struct numa_group *ng;
11552
11553        rcu_read_lock();
11554        ng = rcu_dereference(p->numa_group);
11555        for_each_online_node(node) {
11556                if (p->numa_faults) {
11557                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11558                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11559                }
11560                if (ng) {
11561                        gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11562                        gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11563                }
11564                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11565        }
11566        rcu_read_unlock();
11567}
11568#endif /* CONFIG_NUMA_BALANCING */
11569#endif /* CONFIG_SCHED_DEBUG */
11570
11571__init void init_sched_fair_class(void)
11572{
11573#ifdef CONFIG_SMP
11574        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11575
11576#ifdef CONFIG_NO_HZ_COMMON
11577        nohz.next_balance = jiffies;
11578        nohz.next_blocked = jiffies;
11579        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11580#endif
11581#endif /* SMP */
11582
11583}
11584
11585/*
11586 * Helper functions to facilitate extracting info from tracepoints.
11587 */
11588
11589const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11590{
11591#ifdef CONFIG_SMP
11592        return cfs_rq ? &cfs_rq->avg : NULL;
11593#else
11594        return NULL;
11595#endif
11596}
11597EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11598
11599char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11600{
11601        if (!cfs_rq) {
11602                if (str)
11603                        strlcpy(str, "(null)", len);
11604                else
11605                        return NULL;
11606        }
11607
11608        cfs_rq_tg_path(cfs_rq, str, len);
11609        return str;
11610}
11611EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11612
11613int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11614{
11615        return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11616}
11617EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11618
11619const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11620{
11621#ifdef CONFIG_SMP
11622        return rq ? &rq->avg_rt : NULL;
11623#else
11624        return NULL;
11625#endif
11626}
11627EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11628
11629const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11630{
11631#ifdef CONFIG_SMP
11632        return rq ? &rq->avg_dl : NULL;
11633#else
11634        return NULL;
11635#endif
11636}
11637EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11638
11639const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11640{
11641#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11642        return rq ? &rq->avg_irq : NULL;
11643#else
11644        return NULL;
11645#endif
11646}
11647EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11648
11649int sched_trace_rq_cpu(struct rq *rq)
11650{
11651        return rq ? cpu_of(rq) : -1;
11652}
11653EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11654
11655int sched_trace_rq_cpu_capacity(struct rq *rq)
11656{
11657        return rq ?
11658#ifdef CONFIG_SMP
11659                rq->cpu_capacity
11660#else
11661                SCHED_CAPACITY_SCALE
11662#endif
11663                : -1;
11664}
11665EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11666
11667const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11668{
11669#ifdef CONFIG_SMP
11670        return rd ? rd->span : NULL;
11671#else
11672        return NULL;
11673#endif
11674}
11675EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11676
11677int sched_trace_rq_nr_running(struct rq *rq)
11678{
11679        return rq ? rq->nr_running : -1;
11680}
11681EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11682