linux/kernel/signal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *              Changes to use preallocated sigqueue structures
  11 *              to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57
  58/*
  59 * SLAB caches for signal bits.
  60 */
  61
  62static struct kmem_cache *sigqueue_cachep;
  63
  64int print_fatal_signals __read_mostly;
  65
  66static void __user *sig_handler(struct task_struct *t, int sig)
  67{
  68        return t->sighand->action[sig - 1].sa.sa_handler;
  69}
  70
  71static inline bool sig_handler_ignored(void __user *handler, int sig)
  72{
  73        /* Is it explicitly or implicitly ignored? */
  74        return handler == SIG_IGN ||
  75               (handler == SIG_DFL && sig_kernel_ignore(sig));
  76}
  77
  78static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  79{
  80        void __user *handler;
  81
  82        handler = sig_handler(t, sig);
  83
  84        /* SIGKILL and SIGSTOP may not be sent to the global init */
  85        if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  86                return true;
  87
  88        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  89            handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  90                return true;
  91
  92        /* Only allow kernel generated signals to this kthread */
  93        if (unlikely((t->flags & PF_KTHREAD) &&
  94                     (handler == SIG_KTHREAD_KERNEL) && !force))
  95                return true;
  96
  97        return sig_handler_ignored(handler, sig);
  98}
  99
 100static bool sig_ignored(struct task_struct *t, int sig, bool force)
 101{
 102        /*
 103         * Blocked signals are never ignored, since the
 104         * signal handler may change by the time it is
 105         * unblocked.
 106         */
 107        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 108                return false;
 109
 110        /*
 111         * Tracers may want to know about even ignored signal unless it
 112         * is SIGKILL which can't be reported anyway but can be ignored
 113         * by SIGNAL_UNKILLABLE task.
 114         */
 115        if (t->ptrace && sig != SIGKILL)
 116                return false;
 117
 118        return sig_task_ignored(t, sig, force);
 119}
 120
 121/*
 122 * Re-calculate pending state from the set of locally pending
 123 * signals, globally pending signals, and blocked signals.
 124 */
 125static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 126{
 127        unsigned long ready;
 128        long i;
 129
 130        switch (_NSIG_WORDS) {
 131        default:
 132                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 133                        ready |= signal->sig[i] &~ blocked->sig[i];
 134                break;
 135
 136        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 137                ready |= signal->sig[2] &~ blocked->sig[2];
 138                ready |= signal->sig[1] &~ blocked->sig[1];
 139                ready |= signal->sig[0] &~ blocked->sig[0];
 140                break;
 141
 142        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 143                ready |= signal->sig[0] &~ blocked->sig[0];
 144                break;
 145
 146        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 147        }
 148        return ready != 0;
 149}
 150
 151#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 152
 153static bool recalc_sigpending_tsk(struct task_struct *t)
 154{
 155        if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 156            PENDING(&t->pending, &t->blocked) ||
 157            PENDING(&t->signal->shared_pending, &t->blocked) ||
 158            cgroup_task_frozen(t)) {
 159                set_tsk_thread_flag(t, TIF_SIGPENDING);
 160                return true;
 161        }
 162
 163        /*
 164         * We must never clear the flag in another thread, or in current
 165         * when it's possible the current syscall is returning -ERESTART*.
 166         * So we don't clear it here, and only callers who know they should do.
 167         */
 168        return false;
 169}
 170
 171/*
 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 173 * This is superfluous when called on current, the wakeup is a harmless no-op.
 174 */
 175void recalc_sigpending_and_wake(struct task_struct *t)
 176{
 177        if (recalc_sigpending_tsk(t))
 178                signal_wake_up(t, 0);
 179}
 180
 181void recalc_sigpending(void)
 182{
 183        if (!recalc_sigpending_tsk(current) && !freezing(current))
 184                clear_thread_flag(TIF_SIGPENDING);
 185
 186}
 187EXPORT_SYMBOL(recalc_sigpending);
 188
 189void calculate_sigpending(void)
 190{
 191        /* Have any signals or users of TIF_SIGPENDING been delayed
 192         * until after fork?
 193         */
 194        spin_lock_irq(&current->sighand->siglock);
 195        set_tsk_thread_flag(current, TIF_SIGPENDING);
 196        recalc_sigpending();
 197        spin_unlock_irq(&current->sighand->siglock);
 198}
 199
 200/* Given the mask, find the first available signal that should be serviced. */
 201
 202#define SYNCHRONOUS_MASK \
 203        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 204         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 205
 206int next_signal(struct sigpending *pending, sigset_t *mask)
 207{
 208        unsigned long i, *s, *m, x;
 209        int sig = 0;
 210
 211        s = pending->signal.sig;
 212        m = mask->sig;
 213
 214        /*
 215         * Handle the first word specially: it contains the
 216         * synchronous signals that need to be dequeued first.
 217         */
 218        x = *s &~ *m;
 219        if (x) {
 220                if (x & SYNCHRONOUS_MASK)
 221                        x &= SYNCHRONOUS_MASK;
 222                sig = ffz(~x) + 1;
 223                return sig;
 224        }
 225
 226        switch (_NSIG_WORDS) {
 227        default:
 228                for (i = 1; i < _NSIG_WORDS; ++i) {
 229                        x = *++s &~ *++m;
 230                        if (!x)
 231                                continue;
 232                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 233                        break;
 234                }
 235                break;
 236
 237        case 2:
 238                x = s[1] &~ m[1];
 239                if (!x)
 240                        break;
 241                sig = ffz(~x) + _NSIG_BPW + 1;
 242                break;
 243
 244        case 1:
 245                /* Nothing to do */
 246                break;
 247        }
 248
 249        return sig;
 250}
 251
 252static inline void print_dropped_signal(int sig)
 253{
 254        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 255
 256        if (!print_fatal_signals)
 257                return;
 258
 259        if (!__ratelimit(&ratelimit_state))
 260                return;
 261
 262        pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 263                                current->comm, current->pid, sig);
 264}
 265
 266/**
 267 * task_set_jobctl_pending - set jobctl pending bits
 268 * @task: target task
 269 * @mask: pending bits to set
 270 *
 271 * Clear @mask from @task->jobctl.  @mask must be subset of
 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 273 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 274 * cleared.  If @task is already being killed or exiting, this function
 275 * becomes noop.
 276 *
 277 * CONTEXT:
 278 * Must be called with @task->sighand->siglock held.
 279 *
 280 * RETURNS:
 281 * %true if @mask is set, %false if made noop because @task was dying.
 282 */
 283bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 284{
 285        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 286                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 287        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 288
 289        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 290                return false;
 291
 292        if (mask & JOBCTL_STOP_SIGMASK)
 293                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 294
 295        task->jobctl |= mask;
 296        return true;
 297}
 298
 299/**
 300 * task_clear_jobctl_trapping - clear jobctl trapping bit
 301 * @task: target task
 302 *
 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 304 * Clear it and wake up the ptracer.  Note that we don't need any further
 305 * locking.  @task->siglock guarantees that @task->parent points to the
 306 * ptracer.
 307 *
 308 * CONTEXT:
 309 * Must be called with @task->sighand->siglock held.
 310 */
 311void task_clear_jobctl_trapping(struct task_struct *task)
 312{
 313        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 314                task->jobctl &= ~JOBCTL_TRAPPING;
 315                smp_mb();       /* advised by wake_up_bit() */
 316                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 317        }
 318}
 319
 320/**
 321 * task_clear_jobctl_pending - clear jobctl pending bits
 322 * @task: target task
 323 * @mask: pending bits to clear
 324 *
 325 * Clear @mask from @task->jobctl.  @mask must be subset of
 326 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 327 * STOP bits are cleared together.
 328 *
 329 * If clearing of @mask leaves no stop or trap pending, this function calls
 330 * task_clear_jobctl_trapping().
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 */
 335void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 336{
 337        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 338
 339        if (mask & JOBCTL_STOP_PENDING)
 340                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 341
 342        task->jobctl &= ~mask;
 343
 344        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 345                task_clear_jobctl_trapping(task);
 346}
 347
 348/**
 349 * task_participate_group_stop - participate in a group stop
 350 * @task: task participating in a group stop
 351 *
 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 353 * Group stop states are cleared and the group stop count is consumed if
 354 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 355 * stop, the appropriate `SIGNAL_*` flags are set.
 356 *
 357 * CONTEXT:
 358 * Must be called with @task->sighand->siglock held.
 359 *
 360 * RETURNS:
 361 * %true if group stop completion should be notified to the parent, %false
 362 * otherwise.
 363 */
 364static bool task_participate_group_stop(struct task_struct *task)
 365{
 366        struct signal_struct *sig = task->signal;
 367        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 368
 369        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 370
 371        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 372
 373        if (!consume)
 374                return false;
 375
 376        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 377                sig->group_stop_count--;
 378
 379        /*
 380         * Tell the caller to notify completion iff we are entering into a
 381         * fresh group stop.  Read comment in do_signal_stop() for details.
 382         */
 383        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 384                signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 385                return true;
 386        }
 387        return false;
 388}
 389
 390void task_join_group_stop(struct task_struct *task)
 391{
 392        unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 393        struct signal_struct *sig = current->signal;
 394
 395        if (sig->group_stop_count) {
 396                sig->group_stop_count++;
 397                mask |= JOBCTL_STOP_CONSUME;
 398        } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 399                return;
 400
 401        /* Have the new thread join an on-going signal group stop */
 402        task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 403}
 404
 405/*
 406 * allocate a new signal queue record
 407 * - this may be called without locks if and only if t == current, otherwise an
 408 *   appropriate lock must be held to stop the target task from exiting
 409 */
 410static struct sigqueue *
 411__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 412                 int override_rlimit, const unsigned int sigqueue_flags)
 413{
 414        struct sigqueue *q = NULL;
 415        struct ucounts *ucounts = NULL;
 416        long sigpending;
 417
 418        /*
 419         * Protect access to @t credentials. This can go away when all
 420         * callers hold rcu read lock.
 421         *
 422         * NOTE! A pending signal will hold on to the user refcount,
 423         * and we get/put the refcount only when the sigpending count
 424         * changes from/to zero.
 425         */
 426        rcu_read_lock();
 427        ucounts = task_ucounts(t);
 428        sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
 429        switch (sigpending) {
 430        case 1:
 431                if (likely(get_ucounts(ucounts)))
 432                        break;
 433                fallthrough;
 434        case LONG_MAX:
 435                /*
 436                 * we need to decrease the ucount in the userns tree on any
 437                 * failure to avoid counts leaking.
 438                 */
 439                dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
 440                rcu_read_unlock();
 441                return NULL;
 442        }
 443        rcu_read_unlock();
 444
 445        if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 446                q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 447        } else {
 448                print_dropped_signal(sig);
 449        }
 450
 451        if (unlikely(q == NULL)) {
 452                if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1))
 453                        put_ucounts(ucounts);
 454        } else {
 455                INIT_LIST_HEAD(&q->list);
 456                q->flags = sigqueue_flags;
 457                q->ucounts = ucounts;
 458        }
 459        return q;
 460}
 461
 462static void __sigqueue_free(struct sigqueue *q)
 463{
 464        if (q->flags & SIGQUEUE_PREALLOC)
 465                return;
 466        if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) {
 467                put_ucounts(q->ucounts);
 468                q->ucounts = NULL;
 469        }
 470        kmem_cache_free(sigqueue_cachep, q);
 471}
 472
 473void flush_sigqueue(struct sigpending *queue)
 474{
 475        struct sigqueue *q;
 476
 477        sigemptyset(&queue->signal);
 478        while (!list_empty(&queue->list)) {
 479                q = list_entry(queue->list.next, struct sigqueue , list);
 480                list_del_init(&q->list);
 481                __sigqueue_free(q);
 482        }
 483}
 484
 485/*
 486 * Flush all pending signals for this kthread.
 487 */
 488void flush_signals(struct task_struct *t)
 489{
 490        unsigned long flags;
 491
 492        spin_lock_irqsave(&t->sighand->siglock, flags);
 493        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 494        flush_sigqueue(&t->pending);
 495        flush_sigqueue(&t->signal->shared_pending);
 496        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 497}
 498EXPORT_SYMBOL(flush_signals);
 499
 500#ifdef CONFIG_POSIX_TIMERS
 501static void __flush_itimer_signals(struct sigpending *pending)
 502{
 503        sigset_t signal, retain;
 504        struct sigqueue *q, *n;
 505
 506        signal = pending->signal;
 507        sigemptyset(&retain);
 508
 509        list_for_each_entry_safe(q, n, &pending->list, list) {
 510                int sig = q->info.si_signo;
 511
 512                if (likely(q->info.si_code != SI_TIMER)) {
 513                        sigaddset(&retain, sig);
 514                } else {
 515                        sigdelset(&signal, sig);
 516                        list_del_init(&q->list);
 517                        __sigqueue_free(q);
 518                }
 519        }
 520
 521        sigorsets(&pending->signal, &signal, &retain);
 522}
 523
 524void flush_itimer_signals(void)
 525{
 526        struct task_struct *tsk = current;
 527        unsigned long flags;
 528
 529        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 530        __flush_itimer_signals(&tsk->pending);
 531        __flush_itimer_signals(&tsk->signal->shared_pending);
 532        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 533}
 534#endif
 535
 536void ignore_signals(struct task_struct *t)
 537{
 538        int i;
 539
 540        for (i = 0; i < _NSIG; ++i)
 541                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 542
 543        flush_signals(t);
 544}
 545
 546/*
 547 * Flush all handlers for a task.
 548 */
 549
 550void
 551flush_signal_handlers(struct task_struct *t, int force_default)
 552{
 553        int i;
 554        struct k_sigaction *ka = &t->sighand->action[0];
 555        for (i = _NSIG ; i != 0 ; i--) {
 556                if (force_default || ka->sa.sa_handler != SIG_IGN)
 557                        ka->sa.sa_handler = SIG_DFL;
 558                ka->sa.sa_flags = 0;
 559#ifdef __ARCH_HAS_SA_RESTORER
 560                ka->sa.sa_restorer = NULL;
 561#endif
 562                sigemptyset(&ka->sa.sa_mask);
 563                ka++;
 564        }
 565}
 566
 567bool unhandled_signal(struct task_struct *tsk, int sig)
 568{
 569        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 570        if (is_global_init(tsk))
 571                return true;
 572
 573        if (handler != SIG_IGN && handler != SIG_DFL)
 574                return false;
 575
 576        /* if ptraced, let the tracer determine */
 577        return !tsk->ptrace;
 578}
 579
 580static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 581                           bool *resched_timer)
 582{
 583        struct sigqueue *q, *first = NULL;
 584
 585        /*
 586         * Collect the siginfo appropriate to this signal.  Check if
 587         * there is another siginfo for the same signal.
 588        */
 589        list_for_each_entry(q, &list->list, list) {
 590                if (q->info.si_signo == sig) {
 591                        if (first)
 592                                goto still_pending;
 593                        first = q;
 594                }
 595        }
 596
 597        sigdelset(&list->signal, sig);
 598
 599        if (first) {
 600still_pending:
 601                list_del_init(&first->list);
 602                copy_siginfo(info, &first->info);
 603
 604                *resched_timer =
 605                        (first->flags & SIGQUEUE_PREALLOC) &&
 606                        (info->si_code == SI_TIMER) &&
 607                        (info->si_sys_private);
 608
 609                __sigqueue_free(first);
 610        } else {
 611                /*
 612                 * Ok, it wasn't in the queue.  This must be
 613                 * a fast-pathed signal or we must have been
 614                 * out of queue space.  So zero out the info.
 615                 */
 616                clear_siginfo(info);
 617                info->si_signo = sig;
 618                info->si_errno = 0;
 619                info->si_code = SI_USER;
 620                info->si_pid = 0;
 621                info->si_uid = 0;
 622        }
 623}
 624
 625static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 626                        kernel_siginfo_t *info, bool *resched_timer)
 627{
 628        int sig = next_signal(pending, mask);
 629
 630        if (sig)
 631                collect_signal(sig, pending, info, resched_timer);
 632        return sig;
 633}
 634
 635/*
 636 * Dequeue a signal and return the element to the caller, which is
 637 * expected to free it.
 638 *
 639 * All callers have to hold the siglock.
 640 */
 641int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 642{
 643        bool resched_timer = false;
 644        int signr;
 645
 646        /* We only dequeue private signals from ourselves, we don't let
 647         * signalfd steal them
 648         */
 649        signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 650        if (!signr) {
 651                signr = __dequeue_signal(&tsk->signal->shared_pending,
 652                                         mask, info, &resched_timer);
 653#ifdef CONFIG_POSIX_TIMERS
 654                /*
 655                 * itimer signal ?
 656                 *
 657                 * itimers are process shared and we restart periodic
 658                 * itimers in the signal delivery path to prevent DoS
 659                 * attacks in the high resolution timer case. This is
 660                 * compliant with the old way of self-restarting
 661                 * itimers, as the SIGALRM is a legacy signal and only
 662                 * queued once. Changing the restart behaviour to
 663                 * restart the timer in the signal dequeue path is
 664                 * reducing the timer noise on heavy loaded !highres
 665                 * systems too.
 666                 */
 667                if (unlikely(signr == SIGALRM)) {
 668                        struct hrtimer *tmr = &tsk->signal->real_timer;
 669
 670                        if (!hrtimer_is_queued(tmr) &&
 671                            tsk->signal->it_real_incr != 0) {
 672                                hrtimer_forward(tmr, tmr->base->get_time(),
 673                                                tsk->signal->it_real_incr);
 674                                hrtimer_restart(tmr);
 675                        }
 676                }
 677#endif
 678        }
 679
 680        recalc_sigpending();
 681        if (!signr)
 682                return 0;
 683
 684        if (unlikely(sig_kernel_stop(signr))) {
 685                /*
 686                 * Set a marker that we have dequeued a stop signal.  Our
 687                 * caller might release the siglock and then the pending
 688                 * stop signal it is about to process is no longer in the
 689                 * pending bitmasks, but must still be cleared by a SIGCONT
 690                 * (and overruled by a SIGKILL).  So those cases clear this
 691                 * shared flag after we've set it.  Note that this flag may
 692                 * remain set after the signal we return is ignored or
 693                 * handled.  That doesn't matter because its only purpose
 694                 * is to alert stop-signal processing code when another
 695                 * processor has come along and cleared the flag.
 696                 */
 697                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 698        }
 699#ifdef CONFIG_POSIX_TIMERS
 700        if (resched_timer) {
 701                /*
 702                 * Release the siglock to ensure proper locking order
 703                 * of timer locks outside of siglocks.  Note, we leave
 704                 * irqs disabled here, since the posix-timers code is
 705                 * about to disable them again anyway.
 706                 */
 707                spin_unlock(&tsk->sighand->siglock);
 708                posixtimer_rearm(info);
 709                spin_lock(&tsk->sighand->siglock);
 710
 711                /* Don't expose the si_sys_private value to userspace */
 712                info->si_sys_private = 0;
 713        }
 714#endif
 715        return signr;
 716}
 717EXPORT_SYMBOL_GPL(dequeue_signal);
 718
 719static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 720{
 721        struct task_struct *tsk = current;
 722        struct sigpending *pending = &tsk->pending;
 723        struct sigqueue *q, *sync = NULL;
 724
 725        /*
 726         * Might a synchronous signal be in the queue?
 727         */
 728        if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 729                return 0;
 730
 731        /*
 732         * Return the first synchronous signal in the queue.
 733         */
 734        list_for_each_entry(q, &pending->list, list) {
 735                /* Synchronous signals have a positive si_code */
 736                if ((q->info.si_code > SI_USER) &&
 737                    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 738                        sync = q;
 739                        goto next;
 740                }
 741        }
 742        return 0;
 743next:
 744        /*
 745         * Check if there is another siginfo for the same signal.
 746         */
 747        list_for_each_entry_continue(q, &pending->list, list) {
 748                if (q->info.si_signo == sync->info.si_signo)
 749                        goto still_pending;
 750        }
 751
 752        sigdelset(&pending->signal, sync->info.si_signo);
 753        recalc_sigpending();
 754still_pending:
 755        list_del_init(&sync->list);
 756        copy_siginfo(info, &sync->info);
 757        __sigqueue_free(sync);
 758        return info->si_signo;
 759}
 760
 761/*
 762 * Tell a process that it has a new active signal..
 763 *
 764 * NOTE! we rely on the previous spin_lock to
 765 * lock interrupts for us! We can only be called with
 766 * "siglock" held, and the local interrupt must
 767 * have been disabled when that got acquired!
 768 *
 769 * No need to set need_resched since signal event passing
 770 * goes through ->blocked
 771 */
 772void signal_wake_up_state(struct task_struct *t, unsigned int state)
 773{
 774        set_tsk_thread_flag(t, TIF_SIGPENDING);
 775        /*
 776         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 777         * case. We don't check t->state here because there is a race with it
 778         * executing another processor and just now entering stopped state.
 779         * By using wake_up_state, we ensure the process will wake up and
 780         * handle its death signal.
 781         */
 782        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 783                kick_process(t);
 784}
 785
 786/*
 787 * Remove signals in mask from the pending set and queue.
 788 * Returns 1 if any signals were found.
 789 *
 790 * All callers must be holding the siglock.
 791 */
 792static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 793{
 794        struct sigqueue *q, *n;
 795        sigset_t m;
 796
 797        sigandsets(&m, mask, &s->signal);
 798        if (sigisemptyset(&m))
 799                return;
 800
 801        sigandnsets(&s->signal, &s->signal, mask);
 802        list_for_each_entry_safe(q, n, &s->list, list) {
 803                if (sigismember(mask, q->info.si_signo)) {
 804                        list_del_init(&q->list);
 805                        __sigqueue_free(q);
 806                }
 807        }
 808}
 809
 810static inline int is_si_special(const struct kernel_siginfo *info)
 811{
 812        return info <= SEND_SIG_PRIV;
 813}
 814
 815static inline bool si_fromuser(const struct kernel_siginfo *info)
 816{
 817        return info == SEND_SIG_NOINFO ||
 818                (!is_si_special(info) && SI_FROMUSER(info));
 819}
 820
 821/*
 822 * called with RCU read lock from check_kill_permission()
 823 */
 824static bool kill_ok_by_cred(struct task_struct *t)
 825{
 826        const struct cred *cred = current_cred();
 827        const struct cred *tcred = __task_cred(t);
 828
 829        return uid_eq(cred->euid, tcred->suid) ||
 830               uid_eq(cred->euid, tcred->uid) ||
 831               uid_eq(cred->uid, tcred->suid) ||
 832               uid_eq(cred->uid, tcred->uid) ||
 833               ns_capable(tcred->user_ns, CAP_KILL);
 834}
 835
 836/*
 837 * Bad permissions for sending the signal
 838 * - the caller must hold the RCU read lock
 839 */
 840static int check_kill_permission(int sig, struct kernel_siginfo *info,
 841                                 struct task_struct *t)
 842{
 843        struct pid *sid;
 844        int error;
 845
 846        if (!valid_signal(sig))
 847                return -EINVAL;
 848
 849        if (!si_fromuser(info))
 850                return 0;
 851
 852        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 853        if (error)
 854                return error;
 855
 856        if (!same_thread_group(current, t) &&
 857            !kill_ok_by_cred(t)) {
 858                switch (sig) {
 859                case SIGCONT:
 860                        sid = task_session(t);
 861                        /*
 862                         * We don't return the error if sid == NULL. The
 863                         * task was unhashed, the caller must notice this.
 864                         */
 865                        if (!sid || sid == task_session(current))
 866                                break;
 867                        fallthrough;
 868                default:
 869                        return -EPERM;
 870                }
 871        }
 872
 873        return security_task_kill(t, info, sig, NULL);
 874}
 875
 876/**
 877 * ptrace_trap_notify - schedule trap to notify ptracer
 878 * @t: tracee wanting to notify tracer
 879 *
 880 * This function schedules sticky ptrace trap which is cleared on the next
 881 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 882 * ptracer.
 883 *
 884 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 885 * ptracer is listening for events, tracee is woken up so that it can
 886 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 887 * eventually taken without returning to userland after the existing traps
 888 * are finished by PTRACE_CONT.
 889 *
 890 * CONTEXT:
 891 * Must be called with @task->sighand->siglock held.
 892 */
 893static void ptrace_trap_notify(struct task_struct *t)
 894{
 895        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 896        assert_spin_locked(&t->sighand->siglock);
 897
 898        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 899        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 900}
 901
 902/*
 903 * Handle magic process-wide effects of stop/continue signals. Unlike
 904 * the signal actions, these happen immediately at signal-generation
 905 * time regardless of blocking, ignoring, or handling.  This does the
 906 * actual continuing for SIGCONT, but not the actual stopping for stop
 907 * signals. The process stop is done as a signal action for SIG_DFL.
 908 *
 909 * Returns true if the signal should be actually delivered, otherwise
 910 * it should be dropped.
 911 */
 912static bool prepare_signal(int sig, struct task_struct *p, bool force)
 913{
 914        struct signal_struct *signal = p->signal;
 915        struct task_struct *t;
 916        sigset_t flush;
 917
 918        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 919                if (!(signal->flags & SIGNAL_GROUP_EXIT))
 920                        return sig == SIGKILL;
 921                /*
 922                 * The process is in the middle of dying, nothing to do.
 923                 */
 924        } else if (sig_kernel_stop(sig)) {
 925                /*
 926                 * This is a stop signal.  Remove SIGCONT from all queues.
 927                 */
 928                siginitset(&flush, sigmask(SIGCONT));
 929                flush_sigqueue_mask(&flush, &signal->shared_pending);
 930                for_each_thread(p, t)
 931                        flush_sigqueue_mask(&flush, &t->pending);
 932        } else if (sig == SIGCONT) {
 933                unsigned int why;
 934                /*
 935                 * Remove all stop signals from all queues, wake all threads.
 936                 */
 937                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 938                flush_sigqueue_mask(&flush, &signal->shared_pending);
 939                for_each_thread(p, t) {
 940                        flush_sigqueue_mask(&flush, &t->pending);
 941                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 942                        if (likely(!(t->ptrace & PT_SEIZED)))
 943                                wake_up_state(t, __TASK_STOPPED);
 944                        else
 945                                ptrace_trap_notify(t);
 946                }
 947
 948                /*
 949                 * Notify the parent with CLD_CONTINUED if we were stopped.
 950                 *
 951                 * If we were in the middle of a group stop, we pretend it
 952                 * was already finished, and then continued. Since SIGCHLD
 953                 * doesn't queue we report only CLD_STOPPED, as if the next
 954                 * CLD_CONTINUED was dropped.
 955                 */
 956                why = 0;
 957                if (signal->flags & SIGNAL_STOP_STOPPED)
 958                        why |= SIGNAL_CLD_CONTINUED;
 959                else if (signal->group_stop_count)
 960                        why |= SIGNAL_CLD_STOPPED;
 961
 962                if (why) {
 963                        /*
 964                         * The first thread which returns from do_signal_stop()
 965                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 966                         * notify its parent. See get_signal().
 967                         */
 968                        signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 969                        signal->group_stop_count = 0;
 970                        signal->group_exit_code = 0;
 971                }
 972        }
 973
 974        return !sig_ignored(p, sig, force);
 975}
 976
 977/*
 978 * Test if P wants to take SIG.  After we've checked all threads with this,
 979 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 980 * blocking SIG were ruled out because they are not running and already
 981 * have pending signals.  Such threads will dequeue from the shared queue
 982 * as soon as they're available, so putting the signal on the shared queue
 983 * will be equivalent to sending it to one such thread.
 984 */
 985static inline bool wants_signal(int sig, struct task_struct *p)
 986{
 987        if (sigismember(&p->blocked, sig))
 988                return false;
 989
 990        if (p->flags & PF_EXITING)
 991                return false;
 992
 993        if (sig == SIGKILL)
 994                return true;
 995
 996        if (task_is_stopped_or_traced(p))
 997                return false;
 998
 999        return task_curr(p) || !task_sigpending(p);
1000}
1001
1002static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1003{
1004        struct signal_struct *signal = p->signal;
1005        struct task_struct *t;
1006
1007        /*
1008         * Now find a thread we can wake up to take the signal off the queue.
1009         *
1010         * If the main thread wants the signal, it gets first crack.
1011         * Probably the least surprising to the average bear.
1012         */
1013        if (wants_signal(sig, p))
1014                t = p;
1015        else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1016                /*
1017                 * There is just one thread and it does not need to be woken.
1018                 * It will dequeue unblocked signals before it runs again.
1019                 */
1020                return;
1021        else {
1022                /*
1023                 * Otherwise try to find a suitable thread.
1024                 */
1025                t = signal->curr_target;
1026                while (!wants_signal(sig, t)) {
1027                        t = next_thread(t);
1028                        if (t == signal->curr_target)
1029                                /*
1030                                 * No thread needs to be woken.
1031                                 * Any eligible threads will see
1032                                 * the signal in the queue soon.
1033                                 */
1034                                return;
1035                }
1036                signal->curr_target = t;
1037        }
1038
1039        /*
1040         * Found a killable thread.  If the signal will be fatal,
1041         * then start taking the whole group down immediately.
1042         */
1043        if (sig_fatal(p, sig) &&
1044            !(signal->flags & SIGNAL_GROUP_EXIT) &&
1045            !sigismember(&t->real_blocked, sig) &&
1046            (sig == SIGKILL || !p->ptrace)) {
1047                /*
1048                 * This signal will be fatal to the whole group.
1049                 */
1050                if (!sig_kernel_coredump(sig)) {
1051                        /*
1052                         * Start a group exit and wake everybody up.
1053                         * This way we don't have other threads
1054                         * running and doing things after a slower
1055                         * thread has the fatal signal pending.
1056                         */
1057                        signal->flags = SIGNAL_GROUP_EXIT;
1058                        signal->group_exit_code = sig;
1059                        signal->group_stop_count = 0;
1060                        t = p;
1061                        do {
1062                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063                                sigaddset(&t->pending.signal, SIGKILL);
1064                                signal_wake_up(t, 1);
1065                        } while_each_thread(p, t);
1066                        return;
1067                }
1068        }
1069
1070        /*
1071         * The signal is already in the shared-pending queue.
1072         * Tell the chosen thread to wake up and dequeue it.
1073         */
1074        signal_wake_up(t, sig == SIGKILL);
1075        return;
1076}
1077
1078static inline bool legacy_queue(struct sigpending *signals, int sig)
1079{
1080        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1081}
1082
1083static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1084                        enum pid_type type, bool force)
1085{
1086        struct sigpending *pending;
1087        struct sigqueue *q;
1088        int override_rlimit;
1089        int ret = 0, result;
1090
1091        assert_spin_locked(&t->sighand->siglock);
1092
1093        result = TRACE_SIGNAL_IGNORED;
1094        if (!prepare_signal(sig, t, force))
1095                goto ret;
1096
1097        pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1098        /*
1099         * Short-circuit ignored signals and support queuing
1100         * exactly one non-rt signal, so that we can get more
1101         * detailed information about the cause of the signal.
1102         */
1103        result = TRACE_SIGNAL_ALREADY_PENDING;
1104        if (legacy_queue(pending, sig))
1105                goto ret;
1106
1107        result = TRACE_SIGNAL_DELIVERED;
1108        /*
1109         * Skip useless siginfo allocation for SIGKILL and kernel threads.
1110         */
1111        if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1112                goto out_set;
1113
1114        /*
1115         * Real-time signals must be queued if sent by sigqueue, or
1116         * some other real-time mechanism.  It is implementation
1117         * defined whether kill() does so.  We attempt to do so, on
1118         * the principle of least surprise, but since kill is not
1119         * allowed to fail with EAGAIN when low on memory we just
1120         * make sure at least one signal gets delivered and don't
1121         * pass on the info struct.
1122         */
1123        if (sig < SIGRTMIN)
1124                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1125        else
1126                override_rlimit = 0;
1127
1128        q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1129
1130        if (q) {
1131                list_add_tail(&q->list, &pending->list);
1132                switch ((unsigned long) info) {
1133                case (unsigned long) SEND_SIG_NOINFO:
1134                        clear_siginfo(&q->info);
1135                        q->info.si_signo = sig;
1136                        q->info.si_errno = 0;
1137                        q->info.si_code = SI_USER;
1138                        q->info.si_pid = task_tgid_nr_ns(current,
1139                                                        task_active_pid_ns(t));
1140                        rcu_read_lock();
1141                        q->info.si_uid =
1142                                from_kuid_munged(task_cred_xxx(t, user_ns),
1143                                                 current_uid());
1144                        rcu_read_unlock();
1145                        break;
1146                case (unsigned long) SEND_SIG_PRIV:
1147                        clear_siginfo(&q->info);
1148                        q->info.si_signo = sig;
1149                        q->info.si_errno = 0;
1150                        q->info.si_code = SI_KERNEL;
1151                        q->info.si_pid = 0;
1152                        q->info.si_uid = 0;
1153                        break;
1154                default:
1155                        copy_siginfo(&q->info, info);
1156                        break;
1157                }
1158        } else if (!is_si_special(info) &&
1159                   sig >= SIGRTMIN && info->si_code != SI_USER) {
1160                /*
1161                 * Queue overflow, abort.  We may abort if the
1162                 * signal was rt and sent by user using something
1163                 * other than kill().
1164                 */
1165                result = TRACE_SIGNAL_OVERFLOW_FAIL;
1166                ret = -EAGAIN;
1167                goto ret;
1168        } else {
1169                /*
1170                 * This is a silent loss of information.  We still
1171                 * send the signal, but the *info bits are lost.
1172                 */
1173                result = TRACE_SIGNAL_LOSE_INFO;
1174        }
1175
1176out_set:
1177        signalfd_notify(t, sig);
1178        sigaddset(&pending->signal, sig);
1179
1180        /* Let multiprocess signals appear after on-going forks */
1181        if (type > PIDTYPE_TGID) {
1182                struct multiprocess_signals *delayed;
1183                hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184                        sigset_t *signal = &delayed->signal;
1185                        /* Can't queue both a stop and a continue signal */
1186                        if (sig == SIGCONT)
1187                                sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188                        else if (sig_kernel_stop(sig))
1189                                sigdelset(signal, SIGCONT);
1190                        sigaddset(signal, sig);
1191                }
1192        }
1193
1194        complete_signal(sig, t, type);
1195ret:
1196        trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1197        return ret;
1198}
1199
1200static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1201{
1202        bool ret = false;
1203        switch (siginfo_layout(info->si_signo, info->si_code)) {
1204        case SIL_KILL:
1205        case SIL_CHLD:
1206        case SIL_RT:
1207                ret = true;
1208                break;
1209        case SIL_TIMER:
1210        case SIL_POLL:
1211        case SIL_FAULT:
1212        case SIL_FAULT_TRAPNO:
1213        case SIL_FAULT_MCEERR:
1214        case SIL_FAULT_BNDERR:
1215        case SIL_FAULT_PKUERR:
1216        case SIL_PERF_EVENT:
1217        case SIL_SYS:
1218                ret = false;
1219                break;
1220        }
1221        return ret;
1222}
1223
1224static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1225                        enum pid_type type)
1226{
1227        /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1228        bool force = false;
1229
1230        if (info == SEND_SIG_NOINFO) {
1231                /* Force if sent from an ancestor pid namespace */
1232                force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233        } else if (info == SEND_SIG_PRIV) {
1234                /* Don't ignore kernel generated signals */
1235                force = true;
1236        } else if (has_si_pid_and_uid(info)) {
1237                /* SIGKILL and SIGSTOP is special or has ids */
1238                struct user_namespace *t_user_ns;
1239
1240                rcu_read_lock();
1241                t_user_ns = task_cred_xxx(t, user_ns);
1242                if (current_user_ns() != t_user_ns) {
1243                        kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244                        info->si_uid = from_kuid_munged(t_user_ns, uid);
1245                }
1246                rcu_read_unlock();
1247
1248                /* A kernel generated signal? */
1249                force = (info->si_code == SI_KERNEL);
1250
1251                /* From an ancestor pid namespace? */
1252                if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1253                        info->si_pid = 0;
1254                        force = true;
1255                }
1256        }
1257        return __send_signal(sig, info, t, type, force);
1258}
1259
1260static void print_fatal_signal(int signr)
1261{
1262        struct pt_regs *regs = signal_pt_regs();
1263        pr_info("potentially unexpected fatal signal %d.\n", signr);
1264
1265#if defined(__i386__) && !defined(__arch_um__)
1266        pr_info("code at %08lx: ", regs->ip);
1267        {
1268                int i;
1269                for (i = 0; i < 16; i++) {
1270                        unsigned char insn;
1271
1272                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273                                break;
1274                        pr_cont("%02x ", insn);
1275                }
1276        }
1277        pr_cont("\n");
1278#endif
1279        preempt_disable();
1280        show_regs(regs);
1281        preempt_enable();
1282}
1283
1284static int __init setup_print_fatal_signals(char *str)
1285{
1286        get_option (&str, &print_fatal_signals);
1287
1288        return 1;
1289}
1290
1291__setup("print-fatal-signals=", setup_print_fatal_signals);
1292
1293int
1294__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1295{
1296        return send_signal(sig, info, p, PIDTYPE_TGID);
1297}
1298
1299int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1300                        enum pid_type type)
1301{
1302        unsigned long flags;
1303        int ret = -ESRCH;
1304
1305        if (lock_task_sighand(p, &flags)) {
1306                ret = send_signal(sig, info, p, type);
1307                unlock_task_sighand(p, &flags);
1308        }
1309
1310        return ret;
1311}
1312
1313/*
1314 * Force a signal that the process can't ignore: if necessary
1315 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316 *
1317 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318 * since we do not want to have a signal handler that was blocked
1319 * be invoked when user space had explicitly blocked it.
1320 *
1321 * We don't want to have recursive SIGSEGV's etc, for example,
1322 * that is why we also clear SIGNAL_UNKILLABLE.
1323 */
1324static int
1325force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1326{
1327        unsigned long int flags;
1328        int ret, blocked, ignored;
1329        struct k_sigaction *action;
1330        int sig = info->si_signo;
1331
1332        spin_lock_irqsave(&t->sighand->siglock, flags);
1333        action = &t->sighand->action[sig-1];
1334        ignored = action->sa.sa_handler == SIG_IGN;
1335        blocked = sigismember(&t->blocked, sig);
1336        if (blocked || ignored) {
1337                action->sa.sa_handler = SIG_DFL;
1338                if (blocked) {
1339                        sigdelset(&t->blocked, sig);
1340                        recalc_sigpending_and_wake(t);
1341                }
1342        }
1343        /*
1344         * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345         * debugging to leave init killable.
1346         */
1347        if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1348                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349        ret = send_signal(sig, info, t, PIDTYPE_PID);
1350        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352        return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357        return force_sig_info_to_task(info, current);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365        struct task_struct *t = p;
1366        int count = 0;
1367
1368        p->signal->group_stop_count = 0;
1369
1370        while_each_thread(p, t) {
1371                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372                count++;
1373
1374                /* Don't bother with already dead threads */
1375                if (t->exit_state)
1376                        continue;
1377                sigaddset(&t->pending.signal, SIGKILL);
1378                signal_wake_up(t, 1);
1379        }
1380
1381        return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385                                           unsigned long *flags)
1386{
1387        struct sighand_struct *sighand;
1388
1389        rcu_read_lock();
1390        for (;;) {
1391                sighand = rcu_dereference(tsk->sighand);
1392                if (unlikely(sighand == NULL))
1393                        break;
1394
1395                /*
1396                 * This sighand can be already freed and even reused, but
1397                 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398                 * initializes ->siglock: this slab can't go away, it has
1399                 * the same object type, ->siglock can't be reinitialized.
1400                 *
1401                 * We need to ensure that tsk->sighand is still the same
1402                 * after we take the lock, we can race with de_thread() or
1403                 * __exit_signal(). In the latter case the next iteration
1404                 * must see ->sighand == NULL.
1405                 */
1406                spin_lock_irqsave(&sighand->siglock, *flags);
1407                if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408                        break;
1409                spin_unlock_irqrestore(&sighand->siglock, *flags);
1410        }
1411        rcu_read_unlock();
1412
1413        return sighand;
1414}
1415
1416/*
1417 * send signal info to all the members of a group
1418 */
1419int group_send_sig_info(int sig, struct kernel_siginfo *info,
1420                        struct task_struct *p, enum pid_type type)
1421{
1422        int ret;
1423
1424        rcu_read_lock();
1425        ret = check_kill_permission(sig, info, p);
1426        rcu_read_unlock();
1427
1428        if (!ret && sig)
1429                ret = do_send_sig_info(sig, info, p, type);
1430
1431        return ret;
1432}
1433
1434/*
1435 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1436 * control characters do (^C, ^Z etc)
1437 * - the caller must hold at least a readlock on tasklist_lock
1438 */
1439int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1440{
1441        struct task_struct *p = NULL;
1442        int retval, success;
1443
1444        success = 0;
1445        retval = -ESRCH;
1446        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1447                int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1448                success |= !err;
1449                retval = err;
1450        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1451        return success ? 0 : retval;
1452}
1453
1454int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1455{
1456        int error = -ESRCH;
1457        struct task_struct *p;
1458
1459        for (;;) {
1460                rcu_read_lock();
1461                p = pid_task(pid, PIDTYPE_PID);
1462                if (p)
1463                        error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1464                rcu_read_unlock();
1465                if (likely(!p || error != -ESRCH))
1466                        return error;
1467
1468                /*
1469                 * The task was unhashed in between, try again.  If it
1470                 * is dead, pid_task() will return NULL, if we race with
1471                 * de_thread() it will find the new leader.
1472                 */
1473        }
1474}
1475
1476static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1477{
1478        int error;
1479        rcu_read_lock();
1480        error = kill_pid_info(sig, info, find_vpid(pid));
1481        rcu_read_unlock();
1482        return error;
1483}
1484
1485static inline bool kill_as_cred_perm(const struct cred *cred,
1486                                     struct task_struct *target)
1487{
1488        const struct cred *pcred = __task_cred(target);
1489
1490        return uid_eq(cred->euid, pcred->suid) ||
1491               uid_eq(cred->euid, pcred->uid) ||
1492               uid_eq(cred->uid, pcred->suid) ||
1493               uid_eq(cred->uid, pcred->uid);
1494}
1495
1496/*
1497 * The usb asyncio usage of siginfo is wrong.  The glibc support
1498 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1499 * AKA after the generic fields:
1500 *      kernel_pid_t    si_pid;
1501 *      kernel_uid32_t  si_uid;
1502 *      sigval_t        si_value;
1503 *
1504 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1505 * after the generic fields is:
1506 *      void __user     *si_addr;
1507 *
1508 * This is a practical problem when there is a 64bit big endian kernel
1509 * and a 32bit userspace.  As the 32bit address will encoded in the low
1510 * 32bits of the pointer.  Those low 32bits will be stored at higher
1511 * address than appear in a 32 bit pointer.  So userspace will not
1512 * see the address it was expecting for it's completions.
1513 *
1514 * There is nothing in the encoding that can allow
1515 * copy_siginfo_to_user32 to detect this confusion of formats, so
1516 * handle this by requiring the caller of kill_pid_usb_asyncio to
1517 * notice when this situration takes place and to store the 32bit
1518 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1519 * parameter.
1520 */
1521int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1522                         struct pid *pid, const struct cred *cred)
1523{
1524        struct kernel_siginfo info;
1525        struct task_struct *p;
1526        unsigned long flags;
1527        int ret = -EINVAL;
1528
1529        if (!valid_signal(sig))
1530                return ret;
1531
1532        clear_siginfo(&info);
1533        info.si_signo = sig;
1534        info.si_errno = errno;
1535        info.si_code = SI_ASYNCIO;
1536        *((sigval_t *)&info.si_pid) = addr;
1537
1538        rcu_read_lock();
1539        p = pid_task(pid, PIDTYPE_PID);
1540        if (!p) {
1541                ret = -ESRCH;
1542                goto out_unlock;
1543        }
1544        if (!kill_as_cred_perm(cred, p)) {
1545                ret = -EPERM;
1546                goto out_unlock;
1547        }
1548        ret = security_task_kill(p, &info, sig, cred);
1549        if (ret)
1550                goto out_unlock;
1551
1552        if (sig) {
1553                if (lock_task_sighand(p, &flags)) {
1554                        ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1555                        unlock_task_sighand(p, &flags);
1556                } else
1557                        ret = -ESRCH;
1558        }
1559out_unlock:
1560        rcu_read_unlock();
1561        return ret;
1562}
1563EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1564
1565/*
1566 * kill_something_info() interprets pid in interesting ways just like kill(2).
1567 *
1568 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1569 * is probably wrong.  Should make it like BSD or SYSV.
1570 */
1571
1572static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1573{
1574        int ret;
1575
1576        if (pid > 0)
1577                return kill_proc_info(sig, info, pid);
1578
1579        /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1580        if (pid == INT_MIN)
1581                return -ESRCH;
1582
1583        read_lock(&tasklist_lock);
1584        if (pid != -1) {
1585                ret = __kill_pgrp_info(sig, info,
1586                                pid ? find_vpid(-pid) : task_pgrp(current));
1587        } else {
1588                int retval = 0, count = 0;
1589                struct task_struct * p;
1590
1591                for_each_process(p) {
1592                        if (task_pid_vnr(p) > 1 &&
1593                                        !same_thread_group(p, current)) {
1594                                int err = group_send_sig_info(sig, info, p,
1595                                                              PIDTYPE_MAX);
1596                                ++count;
1597                                if (err != -EPERM)
1598                                        retval = err;
1599                        }
1600                }
1601                ret = count ? retval : -ESRCH;
1602        }
1603        read_unlock(&tasklist_lock);
1604
1605        return ret;
1606}
1607
1608/*
1609 * These are for backward compatibility with the rest of the kernel source.
1610 */
1611
1612int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1613{
1614        /*
1615         * Make sure legacy kernel users don't send in bad values
1616         * (normal paths check this in check_kill_permission).
1617         */
1618        if (!valid_signal(sig))
1619                return -EINVAL;
1620
1621        return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1622}
1623EXPORT_SYMBOL(send_sig_info);
1624
1625#define __si_special(priv) \
1626        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1627
1628int
1629send_sig(int sig, struct task_struct *p, int priv)
1630{
1631        return send_sig_info(sig, __si_special(priv), p);
1632}
1633EXPORT_SYMBOL(send_sig);
1634
1635void force_sig(int sig)
1636{
1637        struct kernel_siginfo info;
1638
1639        clear_siginfo(&info);
1640        info.si_signo = sig;
1641        info.si_errno = 0;
1642        info.si_code = SI_KERNEL;
1643        info.si_pid = 0;
1644        info.si_uid = 0;
1645        force_sig_info(&info);
1646}
1647EXPORT_SYMBOL(force_sig);
1648
1649/*
1650 * When things go south during signal handling, we
1651 * will force a SIGSEGV. And if the signal that caused
1652 * the problem was already a SIGSEGV, we'll want to
1653 * make sure we don't even try to deliver the signal..
1654 */
1655void force_sigsegv(int sig)
1656{
1657        struct task_struct *p = current;
1658
1659        if (sig == SIGSEGV) {
1660                unsigned long flags;
1661                spin_lock_irqsave(&p->sighand->siglock, flags);
1662                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1663                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1664        }
1665        force_sig(SIGSEGV);
1666}
1667
1668int force_sig_fault_to_task(int sig, int code, void __user *addr
1669        ___ARCH_SI_TRAPNO(int trapno)
1670        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1671        , struct task_struct *t)
1672{
1673        struct kernel_siginfo info;
1674
1675        clear_siginfo(&info);
1676        info.si_signo = sig;
1677        info.si_errno = 0;
1678        info.si_code  = code;
1679        info.si_addr  = addr;
1680#ifdef __ARCH_SI_TRAPNO
1681        info.si_trapno = trapno;
1682#endif
1683#ifdef __ia64__
1684        info.si_imm = imm;
1685        info.si_flags = flags;
1686        info.si_isr = isr;
1687#endif
1688        return force_sig_info_to_task(&info, t);
1689}
1690
1691int force_sig_fault(int sig, int code, void __user *addr
1692        ___ARCH_SI_TRAPNO(int trapno)
1693        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1694{
1695        return force_sig_fault_to_task(sig, code, addr
1696                                       ___ARCH_SI_TRAPNO(trapno)
1697                                       ___ARCH_SI_IA64(imm, flags, isr), current);
1698}
1699
1700int send_sig_fault(int sig, int code, void __user *addr
1701        ___ARCH_SI_TRAPNO(int trapno)
1702        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1703        , struct task_struct *t)
1704{
1705        struct kernel_siginfo info;
1706
1707        clear_siginfo(&info);
1708        info.si_signo = sig;
1709        info.si_errno = 0;
1710        info.si_code  = code;
1711        info.si_addr  = addr;
1712#ifdef __ARCH_SI_TRAPNO
1713        info.si_trapno = trapno;
1714#endif
1715#ifdef __ia64__
1716        info.si_imm = imm;
1717        info.si_flags = flags;
1718        info.si_isr = isr;
1719#endif
1720        return send_sig_info(info.si_signo, &info, t);
1721}
1722
1723int force_sig_mceerr(int code, void __user *addr, short lsb)
1724{
1725        struct kernel_siginfo info;
1726
1727        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1728        clear_siginfo(&info);
1729        info.si_signo = SIGBUS;
1730        info.si_errno = 0;
1731        info.si_code = code;
1732        info.si_addr = addr;
1733        info.si_addr_lsb = lsb;
1734        return force_sig_info(&info);
1735}
1736
1737int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1738{
1739        struct kernel_siginfo info;
1740
1741        WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1742        clear_siginfo(&info);
1743        info.si_signo = SIGBUS;
1744        info.si_errno = 0;
1745        info.si_code = code;
1746        info.si_addr = addr;
1747        info.si_addr_lsb = lsb;
1748        return send_sig_info(info.si_signo, &info, t);
1749}
1750EXPORT_SYMBOL(send_sig_mceerr);
1751
1752int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1753{
1754        struct kernel_siginfo info;
1755
1756        clear_siginfo(&info);
1757        info.si_signo = SIGSEGV;
1758        info.si_errno = 0;
1759        info.si_code  = SEGV_BNDERR;
1760        info.si_addr  = addr;
1761        info.si_lower = lower;
1762        info.si_upper = upper;
1763        return force_sig_info(&info);
1764}
1765
1766#ifdef SEGV_PKUERR
1767int force_sig_pkuerr(void __user *addr, u32 pkey)
1768{
1769        struct kernel_siginfo info;
1770
1771        clear_siginfo(&info);
1772        info.si_signo = SIGSEGV;
1773        info.si_errno = 0;
1774        info.si_code  = SEGV_PKUERR;
1775        info.si_addr  = addr;
1776        info.si_pkey  = pkey;
1777        return force_sig_info(&info);
1778}
1779#endif
1780
1781int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1782{
1783        struct kernel_siginfo info;
1784
1785        clear_siginfo(&info);
1786        info.si_signo     = SIGTRAP;
1787        info.si_errno     = 0;
1788        info.si_code      = TRAP_PERF;
1789        info.si_addr      = addr;
1790        info.si_perf_data = sig_data;
1791        info.si_perf_type = type;
1792
1793        return force_sig_info(&info);
1794}
1795
1796/* For the crazy architectures that include trap information in
1797 * the errno field, instead of an actual errno value.
1798 */
1799int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1800{
1801        struct kernel_siginfo info;
1802
1803        clear_siginfo(&info);
1804        info.si_signo = SIGTRAP;
1805        info.si_errno = errno;
1806        info.si_code  = TRAP_HWBKPT;
1807        info.si_addr  = addr;
1808        return force_sig_info(&info);
1809}
1810
1811int kill_pgrp(struct pid *pid, int sig, int priv)
1812{
1813        int ret;
1814
1815        read_lock(&tasklist_lock);
1816        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1817        read_unlock(&tasklist_lock);
1818
1819        return ret;
1820}
1821EXPORT_SYMBOL(kill_pgrp);
1822
1823int kill_pid(struct pid *pid, int sig, int priv)
1824{
1825        return kill_pid_info(sig, __si_special(priv), pid);
1826}
1827EXPORT_SYMBOL(kill_pid);
1828
1829/*
1830 * These functions support sending signals using preallocated sigqueue
1831 * structures.  This is needed "because realtime applications cannot
1832 * afford to lose notifications of asynchronous events, like timer
1833 * expirations or I/O completions".  In the case of POSIX Timers
1834 * we allocate the sigqueue structure from the timer_create.  If this
1835 * allocation fails we are able to report the failure to the application
1836 * with an EAGAIN error.
1837 */
1838struct sigqueue *sigqueue_alloc(void)
1839{
1840        return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1841}
1842
1843void sigqueue_free(struct sigqueue *q)
1844{
1845        unsigned long flags;
1846        spinlock_t *lock = &current->sighand->siglock;
1847
1848        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1849        /*
1850         * We must hold ->siglock while testing q->list
1851         * to serialize with collect_signal() or with
1852         * __exit_signal()->flush_sigqueue().
1853         */
1854        spin_lock_irqsave(lock, flags);
1855        q->flags &= ~SIGQUEUE_PREALLOC;
1856        /*
1857         * If it is queued it will be freed when dequeued,
1858         * like the "regular" sigqueue.
1859         */
1860        if (!list_empty(&q->list))
1861                q = NULL;
1862        spin_unlock_irqrestore(lock, flags);
1863
1864        if (q)
1865                __sigqueue_free(q);
1866}
1867
1868int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1869{
1870        int sig = q->info.si_signo;
1871        struct sigpending *pending;
1872        struct task_struct *t;
1873        unsigned long flags;
1874        int ret, result;
1875
1876        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1877
1878        ret = -1;
1879        rcu_read_lock();
1880        t = pid_task(pid, type);
1881        if (!t || !likely(lock_task_sighand(t, &flags)))
1882                goto ret;
1883
1884        ret = 1; /* the signal is ignored */
1885        result = TRACE_SIGNAL_IGNORED;
1886        if (!prepare_signal(sig, t, false))
1887                goto out;
1888
1889        ret = 0;
1890        if (unlikely(!list_empty(&q->list))) {
1891                /*
1892                 * If an SI_TIMER entry is already queue just increment
1893                 * the overrun count.
1894                 */
1895                BUG_ON(q->info.si_code != SI_TIMER);
1896                q->info.si_overrun++;
1897                result = TRACE_SIGNAL_ALREADY_PENDING;
1898                goto out;
1899        }
1900        q->info.si_overrun = 0;
1901
1902        signalfd_notify(t, sig);
1903        pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1904        list_add_tail(&q->list, &pending->list);
1905        sigaddset(&pending->signal, sig);
1906        complete_signal(sig, t, type);
1907        result = TRACE_SIGNAL_DELIVERED;
1908out:
1909        trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1910        unlock_task_sighand(t, &flags);
1911ret:
1912        rcu_read_unlock();
1913        return ret;
1914}
1915
1916static void do_notify_pidfd(struct task_struct *task)
1917{
1918        struct pid *pid;
1919
1920        WARN_ON(task->exit_state == 0);
1921        pid = task_pid(task);
1922        wake_up_all(&pid->wait_pidfd);
1923}
1924
1925/*
1926 * Let a parent know about the death of a child.
1927 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1928 *
1929 * Returns true if our parent ignored us and so we've switched to
1930 * self-reaping.
1931 */
1932bool do_notify_parent(struct task_struct *tsk, int sig)
1933{
1934        struct kernel_siginfo info;
1935        unsigned long flags;
1936        struct sighand_struct *psig;
1937        bool autoreap = false;
1938        u64 utime, stime;
1939
1940        BUG_ON(sig == -1);
1941
1942        /* do_notify_parent_cldstop should have been called instead.  */
1943        BUG_ON(task_is_stopped_or_traced(tsk));
1944
1945        BUG_ON(!tsk->ptrace &&
1946               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1947
1948        /* Wake up all pidfd waiters */
1949        do_notify_pidfd(tsk);
1950
1951        if (sig != SIGCHLD) {
1952                /*
1953                 * This is only possible if parent == real_parent.
1954                 * Check if it has changed security domain.
1955                 */
1956                if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1957                        sig = SIGCHLD;
1958        }
1959
1960        clear_siginfo(&info);
1961        info.si_signo = sig;
1962        info.si_errno = 0;
1963        /*
1964         * We are under tasklist_lock here so our parent is tied to
1965         * us and cannot change.
1966         *
1967         * task_active_pid_ns will always return the same pid namespace
1968         * until a task passes through release_task.
1969         *
1970         * write_lock() currently calls preempt_disable() which is the
1971         * same as rcu_read_lock(), but according to Oleg, this is not
1972         * correct to rely on this
1973         */
1974        rcu_read_lock();
1975        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1976        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1977                                       task_uid(tsk));
1978        rcu_read_unlock();
1979
1980        task_cputime(tsk, &utime, &stime);
1981        info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1982        info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1983
1984        info.si_status = tsk->exit_code & 0x7f;
1985        if (tsk->exit_code & 0x80)
1986                info.si_code = CLD_DUMPED;
1987        else if (tsk->exit_code & 0x7f)
1988                info.si_code = CLD_KILLED;
1989        else {
1990                info.si_code = CLD_EXITED;
1991                info.si_status = tsk->exit_code >> 8;
1992        }
1993
1994        psig = tsk->parent->sighand;
1995        spin_lock_irqsave(&psig->siglock, flags);
1996        if (!tsk->ptrace && sig == SIGCHLD &&
1997            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1998             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1999                /*
2000                 * We are exiting and our parent doesn't care.  POSIX.1
2001                 * defines special semantics for setting SIGCHLD to SIG_IGN
2002                 * or setting the SA_NOCLDWAIT flag: we should be reaped
2003                 * automatically and not left for our parent's wait4 call.
2004                 * Rather than having the parent do it as a magic kind of
2005                 * signal handler, we just set this to tell do_exit that we
2006                 * can be cleaned up without becoming a zombie.  Note that
2007                 * we still call __wake_up_parent in this case, because a
2008                 * blocked sys_wait4 might now return -ECHILD.
2009                 *
2010                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2011                 * is implementation-defined: we do (if you don't want
2012                 * it, just use SIG_IGN instead).
2013                 */
2014                autoreap = true;
2015                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2016                        sig = 0;
2017        }
2018        /*
2019         * Send with __send_signal as si_pid and si_uid are in the
2020         * parent's namespaces.
2021         */
2022        if (valid_signal(sig) && sig)
2023                __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2024        __wake_up_parent(tsk, tsk->parent);
2025        spin_unlock_irqrestore(&psig->siglock, flags);
2026
2027        return autoreap;
2028}
2029
2030/**
2031 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2032 * @tsk: task reporting the state change
2033 * @for_ptracer: the notification is for ptracer
2034 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2035 *
2036 * Notify @tsk's parent that the stopped/continued state has changed.  If
2037 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2038 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2039 *
2040 * CONTEXT:
2041 * Must be called with tasklist_lock at least read locked.
2042 */
2043static void do_notify_parent_cldstop(struct task_struct *tsk,
2044                                     bool for_ptracer, int why)
2045{
2046        struct kernel_siginfo info;
2047        unsigned long flags;
2048        struct task_struct *parent;
2049        struct sighand_struct *sighand;
2050        u64 utime, stime;
2051
2052        if (for_ptracer) {
2053                parent = tsk->parent;
2054        } else {
2055                tsk = tsk->group_leader;
2056                parent = tsk->real_parent;
2057        }
2058
2059        clear_siginfo(&info);
2060        info.si_signo = SIGCHLD;
2061        info.si_errno = 0;
2062        /*
2063         * see comment in do_notify_parent() about the following 4 lines
2064         */
2065        rcu_read_lock();
2066        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2067        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2068        rcu_read_unlock();
2069
2070        task_cputime(tsk, &utime, &stime);
2071        info.si_utime = nsec_to_clock_t(utime);
2072        info.si_stime = nsec_to_clock_t(stime);
2073
2074        info.si_code = why;
2075        switch (why) {
2076        case CLD_CONTINUED:
2077                info.si_status = SIGCONT;
2078                break;
2079        case CLD_STOPPED:
2080                info.si_status = tsk->signal->group_exit_code & 0x7f;
2081                break;
2082        case CLD_TRAPPED:
2083                info.si_status = tsk->exit_code & 0x7f;
2084                break;
2085        default:
2086                BUG();
2087        }
2088
2089        sighand = parent->sighand;
2090        spin_lock_irqsave(&sighand->siglock, flags);
2091        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2092            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2093                __group_send_sig_info(SIGCHLD, &info, parent);
2094        /*
2095         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2096         */
2097        __wake_up_parent(tsk, parent);
2098        spin_unlock_irqrestore(&sighand->siglock, flags);
2099}
2100
2101static inline bool may_ptrace_stop(void)
2102{
2103        if (!likely(current->ptrace))
2104                return false;
2105        /*
2106         * Are we in the middle of do_coredump?
2107         * If so and our tracer is also part of the coredump stopping
2108         * is a deadlock situation, and pointless because our tracer
2109         * is dead so don't allow us to stop.
2110         * If SIGKILL was already sent before the caller unlocked
2111         * ->siglock we must see ->core_state != NULL. Otherwise it
2112         * is safe to enter schedule().
2113         *
2114         * This is almost outdated, a task with the pending SIGKILL can't
2115         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2116         * after SIGKILL was already dequeued.
2117         */
2118        if (unlikely(current->mm->core_state) &&
2119            unlikely(current->mm == current->parent->mm))
2120                return false;
2121
2122        return true;
2123}
2124
2125/*
2126 * Return non-zero if there is a SIGKILL that should be waking us up.
2127 * Called with the siglock held.
2128 */
2129static bool sigkill_pending(struct task_struct *tsk)
2130{
2131        return sigismember(&tsk->pending.signal, SIGKILL) ||
2132               sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2133}
2134
2135/*
2136 * This must be called with current->sighand->siglock held.
2137 *
2138 * This should be the path for all ptrace stops.
2139 * We always set current->last_siginfo while stopped here.
2140 * That makes it a way to test a stopped process for
2141 * being ptrace-stopped vs being job-control-stopped.
2142 *
2143 * If we actually decide not to stop at all because the tracer
2144 * is gone, we keep current->exit_code unless clear_code.
2145 */
2146static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2147        __releases(&current->sighand->siglock)
2148        __acquires(&current->sighand->siglock)
2149{
2150        bool gstop_done = false;
2151
2152        if (arch_ptrace_stop_needed(exit_code, info)) {
2153                /*
2154                 * The arch code has something special to do before a
2155                 * ptrace stop.  This is allowed to block, e.g. for faults
2156                 * on user stack pages.  We can't keep the siglock while
2157                 * calling arch_ptrace_stop, so we must release it now.
2158                 * To preserve proper semantics, we must do this before
2159                 * any signal bookkeeping like checking group_stop_count.
2160                 * Meanwhile, a SIGKILL could come in before we retake the
2161                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2162                 * So after regaining the lock, we must check for SIGKILL.
2163                 */
2164                spin_unlock_irq(&current->sighand->siglock);
2165                arch_ptrace_stop(exit_code, info);
2166                spin_lock_irq(&current->sighand->siglock);
2167                if (sigkill_pending(current))
2168                        return;
2169        }
2170
2171        set_special_state(TASK_TRACED);
2172
2173        /*
2174         * We're committing to trapping.  TRACED should be visible before
2175         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2176         * Also, transition to TRACED and updates to ->jobctl should be
2177         * atomic with respect to siglock and should be done after the arch
2178         * hook as siglock is released and regrabbed across it.
2179         *
2180         *     TRACER                               TRACEE
2181         *
2182         *     ptrace_attach()
2183         * [L]   wait_on_bit(JOBCTL_TRAPPING)   [S] set_special_state(TRACED)
2184         *     do_wait()
2185         *       set_current_state()                smp_wmb();
2186         *       ptrace_do_wait()
2187         *         wait_task_stopped()
2188         *           task_stopped_code()
2189         * [L]         task_is_traced()         [S] task_clear_jobctl_trapping();
2190         */
2191        smp_wmb();
2192
2193        current->last_siginfo = info;
2194        current->exit_code = exit_code;
2195
2196        /*
2197         * If @why is CLD_STOPPED, we're trapping to participate in a group
2198         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2199         * across siglock relocks since INTERRUPT was scheduled, PENDING
2200         * could be clear now.  We act as if SIGCONT is received after
2201         * TASK_TRACED is entered - ignore it.
2202         */
2203        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2204                gstop_done = task_participate_group_stop(current);
2205
2206        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2207        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2208        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2209                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2210
2211        /* entering a trap, clear TRAPPING */
2212        task_clear_jobctl_trapping(current);
2213
2214        spin_unlock_irq(&current->sighand->siglock);
2215        read_lock(&tasklist_lock);
2216        if (may_ptrace_stop()) {
2217                /*
2218                 * Notify parents of the stop.
2219                 *
2220                 * While ptraced, there are two parents - the ptracer and
2221                 * the real_parent of the group_leader.  The ptracer should
2222                 * know about every stop while the real parent is only
2223                 * interested in the completion of group stop.  The states
2224                 * for the two don't interact with each other.  Notify
2225                 * separately unless they're gonna be duplicates.
2226                 */
2227                do_notify_parent_cldstop(current, true, why);
2228                if (gstop_done && ptrace_reparented(current))
2229                        do_notify_parent_cldstop(current, false, why);
2230
2231                /*
2232                 * Don't want to allow preemption here, because
2233                 * sys_ptrace() needs this task to be inactive.
2234                 *
2235                 * XXX: implement read_unlock_no_resched().
2236                 */
2237                preempt_disable();
2238                read_unlock(&tasklist_lock);
2239                cgroup_enter_frozen();
2240                preempt_enable_no_resched();
2241                freezable_schedule();
2242                cgroup_leave_frozen(true);
2243        } else {
2244                /*
2245                 * By the time we got the lock, our tracer went away.
2246                 * Don't drop the lock yet, another tracer may come.
2247                 *
2248                 * If @gstop_done, the ptracer went away between group stop
2249                 * completion and here.  During detach, it would have set
2250                 * JOBCTL_STOP_PENDING on us and we'll re-enter
2251                 * TASK_STOPPED in do_signal_stop() on return, so notifying
2252                 * the real parent of the group stop completion is enough.
2253                 */
2254                if (gstop_done)
2255                        do_notify_parent_cldstop(current, false, why);
2256
2257                /* tasklist protects us from ptrace_freeze_traced() */
2258                __set_current_state(TASK_RUNNING);
2259                if (clear_code)
2260                        current->exit_code = 0;
2261                read_unlock(&tasklist_lock);
2262        }
2263
2264        /*
2265         * We are back.  Now reacquire the siglock before touching
2266         * last_siginfo, so that we are sure to have synchronized with
2267         * any signal-sending on another CPU that wants to examine it.
2268         */
2269        spin_lock_irq(&current->sighand->siglock);
2270        current->last_siginfo = NULL;
2271
2272        /* LISTENING can be set only during STOP traps, clear it */
2273        current->jobctl &= ~JOBCTL_LISTENING;
2274
2275        /*
2276         * Queued signals ignored us while we were stopped for tracing.
2277         * So check for any that we should take before resuming user mode.
2278         * This sets TIF_SIGPENDING, but never clears it.
2279         */
2280        recalc_sigpending_tsk(current);
2281}
2282
2283static void ptrace_do_notify(int signr, int exit_code, int why)
2284{
2285        kernel_siginfo_t info;
2286
2287        clear_siginfo(&info);
2288        info.si_signo = signr;
2289        info.si_code = exit_code;
2290        info.si_pid = task_pid_vnr(current);
2291        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2292
2293        /* Let the debugger run.  */
2294        ptrace_stop(exit_code, why, 1, &info);
2295}
2296
2297void ptrace_notify(int exit_code)
2298{
2299        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2300        if (unlikely(current->task_works))
2301                task_work_run();
2302
2303        spin_lock_irq(&current->sighand->siglock);
2304        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2305        spin_unlock_irq(&current->sighand->siglock);
2306}
2307
2308/**
2309 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2310 * @signr: signr causing group stop if initiating
2311 *
2312 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2313 * and participate in it.  If already set, participate in the existing
2314 * group stop.  If participated in a group stop (and thus slept), %true is
2315 * returned with siglock released.
2316 *
2317 * If ptraced, this function doesn't handle stop itself.  Instead,
2318 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2319 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2320 * places afterwards.
2321 *
2322 * CONTEXT:
2323 * Must be called with @current->sighand->siglock held, which is released
2324 * on %true return.
2325 *
2326 * RETURNS:
2327 * %false if group stop is already cancelled or ptrace trap is scheduled.
2328 * %true if participated in group stop.
2329 */
2330static bool do_signal_stop(int signr)
2331        __releases(&current->sighand->siglock)
2332{
2333        struct signal_struct *sig = current->signal;
2334
2335        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2336                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2337                struct task_struct *t;
2338
2339                /* signr will be recorded in task->jobctl for retries */
2340                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2341
2342                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2343                    unlikely(signal_group_exit(sig)))
2344                        return false;
2345                /*
2346                 * There is no group stop already in progress.  We must
2347                 * initiate one now.
2348                 *
2349                 * While ptraced, a task may be resumed while group stop is
2350                 * still in effect and then receive a stop signal and
2351                 * initiate another group stop.  This deviates from the
2352                 * usual behavior as two consecutive stop signals can't
2353                 * cause two group stops when !ptraced.  That is why we
2354                 * also check !task_is_stopped(t) below.
2355                 *
2356                 * The condition can be distinguished by testing whether
2357                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2358                 * group_exit_code in such case.
2359                 *
2360                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2361                 * an intervening stop signal is required to cause two
2362                 * continued events regardless of ptrace.
2363                 */
2364                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2365                        sig->group_exit_code = signr;
2366
2367                sig->group_stop_count = 0;
2368
2369                if (task_set_jobctl_pending(current, signr | gstop))
2370                        sig->group_stop_count++;
2371
2372                t = current;
2373                while_each_thread(current, t) {
2374                        /*
2375                         * Setting state to TASK_STOPPED for a group
2376                         * stop is always done with the siglock held,
2377                         * so this check has no races.
2378                         */
2379                        if (!task_is_stopped(t) &&
2380                            task_set_jobctl_pending(t, signr | gstop)) {
2381                                sig->group_stop_count++;
2382                                if (likely(!(t->ptrace & PT_SEIZED)))
2383                                        signal_wake_up(t, 0);
2384                                else
2385                                        ptrace_trap_notify(t);
2386                        }
2387                }
2388        }
2389
2390        if (likely(!current->ptrace)) {
2391                int notify = 0;
2392
2393                /*
2394                 * If there are no other threads in the group, or if there
2395                 * is a group stop in progress and we are the last to stop,
2396                 * report to the parent.
2397                 */
2398                if (task_participate_group_stop(current))
2399                        notify = CLD_STOPPED;
2400
2401                set_special_state(TASK_STOPPED);
2402                spin_unlock_irq(&current->sighand->siglock);
2403
2404                /*
2405                 * Notify the parent of the group stop completion.  Because
2406                 * we're not holding either the siglock or tasklist_lock
2407                 * here, ptracer may attach inbetween; however, this is for
2408                 * group stop and should always be delivered to the real
2409                 * parent of the group leader.  The new ptracer will get
2410                 * its notification when this task transitions into
2411                 * TASK_TRACED.
2412                 */
2413                if (notify) {
2414                        read_lock(&tasklist_lock);
2415                        do_notify_parent_cldstop(current, false, notify);
2416                        read_unlock(&tasklist_lock);
2417                }
2418
2419                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2420                cgroup_enter_frozen();
2421                freezable_schedule();
2422                return true;
2423        } else {
2424                /*
2425                 * While ptraced, group stop is handled by STOP trap.
2426                 * Schedule it and let the caller deal with it.
2427                 */
2428                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2429                return false;
2430        }
2431}
2432
2433/**
2434 * do_jobctl_trap - take care of ptrace jobctl traps
2435 *
2436 * When PT_SEIZED, it's used for both group stop and explicit
2437 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2438 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2439 * the stop signal; otherwise, %SIGTRAP.
2440 *
2441 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2442 * number as exit_code and no siginfo.
2443 *
2444 * CONTEXT:
2445 * Must be called with @current->sighand->siglock held, which may be
2446 * released and re-acquired before returning with intervening sleep.
2447 */
2448static void do_jobctl_trap(void)
2449{
2450        struct signal_struct *signal = current->signal;
2451        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2452
2453        if (current->ptrace & PT_SEIZED) {
2454                if (!signal->group_stop_count &&
2455                    !(signal->flags & SIGNAL_STOP_STOPPED))
2456                        signr = SIGTRAP;
2457                WARN_ON_ONCE(!signr);
2458                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2459                                 CLD_STOPPED);
2460        } else {
2461                WARN_ON_ONCE(!signr);
2462                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2463                current->exit_code = 0;
2464        }
2465}
2466
2467/**
2468 * do_freezer_trap - handle the freezer jobctl trap
2469 *
2470 * Puts the task into frozen state, if only the task is not about to quit.
2471 * In this case it drops JOBCTL_TRAP_FREEZE.
2472 *
2473 * CONTEXT:
2474 * Must be called with @current->sighand->siglock held,
2475 * which is always released before returning.
2476 */
2477static void do_freezer_trap(void)
2478        __releases(&current->sighand->siglock)
2479{
2480        /*
2481         * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2482         * let's make another loop to give it a chance to be handled.
2483         * In any case, we'll return back.
2484         */
2485        if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2486             JOBCTL_TRAP_FREEZE) {
2487                spin_unlock_irq(&current->sighand->siglock);
2488                return;
2489        }
2490
2491        /*
2492         * Now we're sure that there is no pending fatal signal and no
2493         * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2494         * immediately (if there is a non-fatal signal pending), and
2495         * put the task into sleep.
2496         */
2497        __set_current_state(TASK_INTERRUPTIBLE);
2498        clear_thread_flag(TIF_SIGPENDING);
2499        spin_unlock_irq(&current->sighand->siglock);
2500        cgroup_enter_frozen();
2501        freezable_schedule();
2502}
2503
2504static int ptrace_signal(int signr, kernel_siginfo_t *info)
2505{
2506        /*
2507         * We do not check sig_kernel_stop(signr) but set this marker
2508         * unconditionally because we do not know whether debugger will
2509         * change signr. This flag has no meaning unless we are going
2510         * to stop after return from ptrace_stop(). In this case it will
2511         * be checked in do_signal_stop(), we should only stop if it was
2512         * not cleared by SIGCONT while we were sleeping. See also the
2513         * comment in dequeue_signal().
2514         */
2515        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2516        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2517
2518        /* We're back.  Did the debugger cancel the sig?  */
2519        signr = current->exit_code;
2520        if (signr == 0)
2521                return signr;
2522
2523        current->exit_code = 0;
2524
2525        /*
2526         * Update the siginfo structure if the signal has
2527         * changed.  If the debugger wanted something
2528         * specific in the siginfo structure then it should
2529         * have updated *info via PTRACE_SETSIGINFO.
2530         */
2531        if (signr != info->si_signo) {
2532                clear_siginfo(info);
2533                info->si_signo = signr;
2534                info->si_errno = 0;
2535                info->si_code = SI_USER;
2536                rcu_read_lock();
2537                info->si_pid = task_pid_vnr(current->parent);
2538                info->si_uid = from_kuid_munged(current_user_ns(),
2539                                                task_uid(current->parent));
2540                rcu_read_unlock();
2541        }
2542
2543        /* If the (new) signal is now blocked, requeue it.  */
2544        if (sigismember(&current->blocked, signr)) {
2545                send_signal(signr, info, current, PIDTYPE_PID);
2546                signr = 0;
2547        }
2548
2549        return signr;
2550}
2551
2552static void hide_si_addr_tag_bits(struct ksignal *ksig)
2553{
2554        switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2555        case SIL_FAULT:
2556        case SIL_FAULT_TRAPNO:
2557        case SIL_FAULT_MCEERR:
2558        case SIL_FAULT_BNDERR:
2559        case SIL_FAULT_PKUERR:
2560        case SIL_PERF_EVENT:
2561                ksig->info.si_addr = arch_untagged_si_addr(
2562                        ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2563                break;
2564        case SIL_KILL:
2565        case SIL_TIMER:
2566        case SIL_POLL:
2567        case SIL_CHLD:
2568        case SIL_RT:
2569        case SIL_SYS:
2570                break;
2571        }
2572}
2573
2574bool get_signal(struct ksignal *ksig)
2575{
2576        struct sighand_struct *sighand = current->sighand;
2577        struct signal_struct *signal = current->signal;
2578        int signr;
2579
2580        if (unlikely(current->task_works))
2581                task_work_run();
2582
2583        /*
2584         * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2585         * that the arch handlers don't all have to do it. If we get here
2586         * without TIF_SIGPENDING, just exit after running signal work.
2587         */
2588        if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2589                if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2590                        tracehook_notify_signal();
2591                if (!task_sigpending(current))
2592                        return false;
2593        }
2594
2595        if (unlikely(uprobe_deny_signal()))
2596                return false;
2597
2598        /*
2599         * Do this once, we can't return to user-mode if freezing() == T.
2600         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2601         * thus do not need another check after return.
2602         */
2603        try_to_freeze();
2604
2605relock:
2606        spin_lock_irq(&sighand->siglock);
2607
2608        /*
2609         * Every stopped thread goes here after wakeup. Check to see if
2610         * we should notify the parent, prepare_signal(SIGCONT) encodes
2611         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2612         */
2613        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2614                int why;
2615
2616                if (signal->flags & SIGNAL_CLD_CONTINUED)
2617                        why = CLD_CONTINUED;
2618                else
2619                        why = CLD_STOPPED;
2620
2621                signal->flags &= ~SIGNAL_CLD_MASK;
2622
2623                spin_unlock_irq(&sighand->siglock);
2624
2625                /*
2626                 * Notify the parent that we're continuing.  This event is
2627                 * always per-process and doesn't make whole lot of sense
2628                 * for ptracers, who shouldn't consume the state via
2629                 * wait(2) either, but, for backward compatibility, notify
2630                 * the ptracer of the group leader too unless it's gonna be
2631                 * a duplicate.
2632                 */
2633                read_lock(&tasklist_lock);
2634                do_notify_parent_cldstop(current, false, why);
2635
2636                if (ptrace_reparented(current->group_leader))
2637                        do_notify_parent_cldstop(current->group_leader,
2638                                                true, why);
2639                read_unlock(&tasklist_lock);
2640
2641                goto relock;
2642        }
2643
2644        /* Has this task already been marked for death? */
2645        if (signal_group_exit(signal)) {
2646                ksig->info.si_signo = signr = SIGKILL;
2647                sigdelset(&current->pending.signal, SIGKILL);
2648                trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2649                                &sighand->action[SIGKILL - 1]);
2650                recalc_sigpending();
2651                goto fatal;
2652        }
2653
2654        for (;;) {
2655                struct k_sigaction *ka;
2656
2657                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2658                    do_signal_stop(0))
2659                        goto relock;
2660
2661                if (unlikely(current->jobctl &
2662                             (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2663                        if (current->jobctl & JOBCTL_TRAP_MASK) {
2664                                do_jobctl_trap();
2665                                spin_unlock_irq(&sighand->siglock);
2666                        } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2667                                do_freezer_trap();
2668
2669                        goto relock;
2670                }
2671
2672                /*
2673                 * If the task is leaving the frozen state, let's update
2674                 * cgroup counters and reset the frozen bit.
2675                 */
2676                if (unlikely(cgroup_task_frozen(current))) {
2677                        spin_unlock_irq(&sighand->siglock);
2678                        cgroup_leave_frozen(false);
2679                        goto relock;
2680                }
2681
2682                /*
2683                 * Signals generated by the execution of an instruction
2684                 * need to be delivered before any other pending signals
2685                 * so that the instruction pointer in the signal stack
2686                 * frame points to the faulting instruction.
2687                 */
2688                signr = dequeue_synchronous_signal(&ksig->info);
2689                if (!signr)
2690                        signr = dequeue_signal(current, &current->blocked, &ksig->info);
2691
2692                if (!signr)
2693                        break; /* will return 0 */
2694
2695                if (unlikely(current->ptrace) && signr != SIGKILL) {
2696                        signr = ptrace_signal(signr, &ksig->info);
2697                        if (!signr)
2698                                continue;
2699                }
2700
2701                ka = &sighand->action[signr-1];
2702
2703                /* Trace actually delivered signals. */
2704                trace_signal_deliver(signr, &ksig->info, ka);
2705
2706                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2707                        continue;
2708                if (ka->sa.sa_handler != SIG_DFL) {
2709                        /* Run the handler.  */
2710                        ksig->ka = *ka;
2711
2712                        if (ka->sa.sa_flags & SA_ONESHOT)
2713                                ka->sa.sa_handler = SIG_DFL;
2714
2715                        break; /* will return non-zero "signr" value */
2716                }
2717
2718                /*
2719                 * Now we are doing the default action for this signal.
2720                 */
2721                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2722                        continue;
2723
2724                /*
2725                 * Global init gets no signals it doesn't want.
2726                 * Container-init gets no signals it doesn't want from same
2727                 * container.
2728                 *
2729                 * Note that if global/container-init sees a sig_kernel_only()
2730                 * signal here, the signal must have been generated internally
2731                 * or must have come from an ancestor namespace. In either
2732                 * case, the signal cannot be dropped.
2733                 */
2734                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2735                                !sig_kernel_only(signr))
2736                        continue;
2737
2738                if (sig_kernel_stop(signr)) {
2739                        /*
2740                         * The default action is to stop all threads in
2741                         * the thread group.  The job control signals
2742                         * do nothing in an orphaned pgrp, but SIGSTOP
2743                         * always works.  Note that siglock needs to be
2744                         * dropped during the call to is_orphaned_pgrp()
2745                         * because of lock ordering with tasklist_lock.
2746                         * This allows an intervening SIGCONT to be posted.
2747                         * We need to check for that and bail out if necessary.
2748                         */
2749                        if (signr != SIGSTOP) {
2750                                spin_unlock_irq(&sighand->siglock);
2751
2752                                /* signals can be posted during this window */
2753
2754                                if (is_current_pgrp_orphaned())
2755                                        goto relock;
2756
2757                                spin_lock_irq(&sighand->siglock);
2758                        }
2759
2760                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2761                                /* It released the siglock.  */
2762                                goto relock;
2763                        }
2764
2765                        /*
2766                         * We didn't actually stop, due to a race
2767                         * with SIGCONT or something like that.
2768                         */
2769                        continue;
2770                }
2771
2772        fatal:
2773                spin_unlock_irq(&sighand->siglock);
2774                if (unlikely(cgroup_task_frozen(current)))
2775                        cgroup_leave_frozen(true);
2776
2777                /*
2778                 * Anything else is fatal, maybe with a core dump.
2779                 */
2780                current->flags |= PF_SIGNALED;
2781
2782                if (sig_kernel_coredump(signr)) {
2783                        if (print_fatal_signals)
2784                                print_fatal_signal(ksig->info.si_signo);
2785                        proc_coredump_connector(current);
2786                        /*
2787                         * If it was able to dump core, this kills all
2788                         * other threads in the group and synchronizes with
2789                         * their demise.  If we lost the race with another
2790                         * thread getting here, it set group_exit_code
2791                         * first and our do_group_exit call below will use
2792                         * that value and ignore the one we pass it.
2793                         */
2794                        do_coredump(&ksig->info);
2795                }
2796
2797                /*
2798                 * PF_IO_WORKER threads will catch and exit on fatal signals
2799                 * themselves. They have cleanup that must be performed, so
2800                 * we cannot call do_exit() on their behalf.
2801                 */
2802                if (current->flags & PF_IO_WORKER)
2803                        goto out;
2804
2805                /*
2806                 * Death signals, no core dump.
2807                 */
2808                do_group_exit(ksig->info.si_signo);
2809                /* NOTREACHED */
2810        }
2811        spin_unlock_irq(&sighand->siglock);
2812out:
2813        ksig->sig = signr;
2814
2815        if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2816                hide_si_addr_tag_bits(ksig);
2817
2818        return ksig->sig > 0;
2819}
2820
2821/**
2822 * signal_delivered - 
2823 * @ksig:               kernel signal struct
2824 * @stepping:           nonzero if debugger single-step or block-step in use
2825 *
2826 * This function should be called when a signal has successfully been
2827 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2828 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2829 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2830 */
2831static void signal_delivered(struct ksignal *ksig, int stepping)
2832{
2833        sigset_t blocked;
2834
2835        /* A signal was successfully delivered, and the
2836           saved sigmask was stored on the signal frame,
2837           and will be restored by sigreturn.  So we can
2838           simply clear the restore sigmask flag.  */
2839        clear_restore_sigmask();
2840
2841        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2842        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2843                sigaddset(&blocked, ksig->sig);
2844        set_current_blocked(&blocked);
2845        if (current->sas_ss_flags & SS_AUTODISARM)
2846                sas_ss_reset(current);
2847        tracehook_signal_handler(stepping);
2848}
2849
2850void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2851{
2852        if (failed)
2853                force_sigsegv(ksig->sig);
2854        else
2855                signal_delivered(ksig, stepping);
2856}
2857
2858/*
2859 * It could be that complete_signal() picked us to notify about the
2860 * group-wide signal. Other threads should be notified now to take
2861 * the shared signals in @which since we will not.
2862 */
2863static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2864{
2865        sigset_t retarget;
2866        struct task_struct *t;
2867
2868        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2869        if (sigisemptyset(&retarget))
2870                return;
2871
2872        t = tsk;
2873        while_each_thread(tsk, t) {
2874                if (t->flags & PF_EXITING)
2875                        continue;
2876
2877                if (!has_pending_signals(&retarget, &t->blocked))
2878                        continue;
2879                /* Remove the signals this thread can handle. */
2880                sigandsets(&retarget, &retarget, &t->blocked);
2881
2882                if (!task_sigpending(t))
2883                        signal_wake_up(t, 0);
2884
2885                if (sigisemptyset(&retarget))
2886                        break;
2887        }
2888}
2889
2890void exit_signals(struct task_struct *tsk)
2891{
2892        int group_stop = 0;
2893        sigset_t unblocked;
2894
2895        /*
2896         * @tsk is about to have PF_EXITING set - lock out users which
2897         * expect stable threadgroup.
2898         */
2899        cgroup_threadgroup_change_begin(tsk);
2900
2901        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2902                tsk->flags |= PF_EXITING;
2903                cgroup_threadgroup_change_end(tsk);
2904                return;
2905        }
2906
2907        spin_lock_irq(&tsk->sighand->siglock);
2908        /*
2909         * From now this task is not visible for group-wide signals,
2910         * see wants_signal(), do_signal_stop().
2911         */
2912        tsk->flags |= PF_EXITING;
2913
2914        cgroup_threadgroup_change_end(tsk);
2915
2916        if (!task_sigpending(tsk))
2917                goto out;
2918
2919        unblocked = tsk->blocked;
2920        signotset(&unblocked);
2921        retarget_shared_pending(tsk, &unblocked);
2922
2923        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2924            task_participate_group_stop(tsk))
2925                group_stop = CLD_STOPPED;
2926out:
2927        spin_unlock_irq(&tsk->sighand->siglock);
2928
2929        /*
2930         * If group stop has completed, deliver the notification.  This
2931         * should always go to the real parent of the group leader.
2932         */
2933        if (unlikely(group_stop)) {
2934                read_lock(&tasklist_lock);
2935                do_notify_parent_cldstop(tsk, false, group_stop);
2936                read_unlock(&tasklist_lock);
2937        }
2938}
2939
2940/*
2941 * System call entry points.
2942 */
2943
2944/**
2945 *  sys_restart_syscall - restart a system call
2946 */
2947SYSCALL_DEFINE0(restart_syscall)
2948{
2949        struct restart_block *restart = &current->restart_block;
2950        return restart->fn(restart);
2951}
2952
2953long do_no_restart_syscall(struct restart_block *param)
2954{
2955        return -EINTR;
2956}
2957
2958static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2959{
2960        if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2961                sigset_t newblocked;
2962                /* A set of now blocked but previously unblocked signals. */
2963                sigandnsets(&newblocked, newset, &current->blocked);
2964                retarget_shared_pending(tsk, &newblocked);
2965        }
2966        tsk->blocked = *newset;
2967        recalc_sigpending();
2968}
2969
2970/**
2971 * set_current_blocked - change current->blocked mask
2972 * @newset: new mask
2973 *
2974 * It is wrong to change ->blocked directly, this helper should be used
2975 * to ensure the process can't miss a shared signal we are going to block.
2976 */
2977void set_current_blocked(sigset_t *newset)
2978{
2979        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2980        __set_current_blocked(newset);
2981}
2982
2983void __set_current_blocked(const sigset_t *newset)
2984{
2985        struct task_struct *tsk = current;
2986
2987        /*
2988         * In case the signal mask hasn't changed, there is nothing we need
2989         * to do. The current->blocked shouldn't be modified by other task.
2990         */
2991        if (sigequalsets(&tsk->blocked, newset))
2992                return;
2993
2994        spin_lock_irq(&tsk->sighand->siglock);
2995        __set_task_blocked(tsk, newset);
2996        spin_unlock_irq(&tsk->sighand->siglock);
2997}
2998
2999/*
3000 * This is also useful for kernel threads that want to temporarily
3001 * (or permanently) block certain signals.
3002 *
3003 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3004 * interface happily blocks "unblockable" signals like SIGKILL
3005 * and friends.
3006 */
3007int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3008{
3009        struct task_struct *tsk = current;
3010        sigset_t newset;
3011
3012        /* Lockless, only current can change ->blocked, never from irq */
3013        if (oldset)
3014                *oldset = tsk->blocked;
3015
3016        switch (how) {
3017        case SIG_BLOCK:
3018                sigorsets(&newset, &tsk->blocked, set);
3019                break;
3020        case SIG_UNBLOCK:
3021                sigandnsets(&newset, &tsk->blocked, set);
3022                break;
3023        case SIG_SETMASK:
3024                newset = *set;
3025                break;
3026        default:
3027                return -EINVAL;
3028        }
3029
3030        __set_current_blocked(&newset);
3031        return 0;
3032}
3033EXPORT_SYMBOL(sigprocmask);
3034
3035/*
3036 * The api helps set app-provided sigmasks.
3037 *
3038 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3039 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3040 *
3041 * Note that it does set_restore_sigmask() in advance, so it must be always
3042 * paired with restore_saved_sigmask_unless() before return from syscall.
3043 */
3044int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3045{
3046        sigset_t kmask;
3047
3048        if (!umask)
3049                return 0;
3050        if (sigsetsize != sizeof(sigset_t))
3051                return -EINVAL;
3052        if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3053                return -EFAULT;
3054
3055        set_restore_sigmask();
3056        current->saved_sigmask = current->blocked;
3057        set_current_blocked(&kmask);
3058
3059        return 0;
3060}
3061
3062#ifdef CONFIG_COMPAT
3063int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3064                            size_t sigsetsize)
3065{
3066        sigset_t kmask;
3067
3068        if (!umask)
3069                return 0;
3070        if (sigsetsize != sizeof(compat_sigset_t))
3071                return -EINVAL;
3072        if (get_compat_sigset(&kmask, umask))
3073                return -EFAULT;
3074
3075        set_restore_sigmask();
3076        current->saved_sigmask = current->blocked;
3077        set_current_blocked(&kmask);
3078
3079        return 0;
3080}
3081#endif
3082
3083/**
3084 *  sys_rt_sigprocmask - change the list of currently blocked signals
3085 *  @how: whether to add, remove, or set signals
3086 *  @nset: stores pending signals
3087 *  @oset: previous value of signal mask if non-null
3088 *  @sigsetsize: size of sigset_t type
3089 */
3090SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3091                sigset_t __user *, oset, size_t, sigsetsize)
3092{
3093        sigset_t old_set, new_set;
3094        int error;
3095
3096        /* XXX: Don't preclude handling different sized sigset_t's.  */
3097        if (sigsetsize != sizeof(sigset_t))
3098                return -EINVAL;
3099
3100        old_set = current->blocked;
3101
3102        if (nset) {
3103                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3104                        return -EFAULT;
3105                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3106
3107                error = sigprocmask(how, &new_set, NULL);
3108                if (error)
3109                        return error;
3110        }
3111
3112        if (oset) {
3113                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3114                        return -EFAULT;
3115        }
3116
3117        return 0;
3118}
3119
3120#ifdef CONFIG_COMPAT
3121COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3122                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3123{
3124        sigset_t old_set = current->blocked;
3125
3126        /* XXX: Don't preclude handling different sized sigset_t's.  */
3127        if (sigsetsize != sizeof(sigset_t))
3128                return -EINVAL;
3129
3130        if (nset) {
3131                sigset_t new_set;
3132                int error;
3133                if (get_compat_sigset(&new_set, nset))
3134                        return -EFAULT;
3135                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3136
3137                error = sigprocmask(how, &new_set, NULL);
3138                if (error)
3139                        return error;
3140        }
3141        return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3142}
3143#endif
3144
3145static void do_sigpending(sigset_t *set)
3146{
3147        spin_lock_irq(&current->sighand->siglock);
3148        sigorsets(set, &current->pending.signal,
3149                  &current->signal->shared_pending.signal);
3150        spin_unlock_irq(&current->sighand->siglock);
3151
3152        /* Outside the lock because only this thread touches it.  */
3153        sigandsets(set, &current->blocked, set);
3154}
3155
3156/**
3157 *  sys_rt_sigpending - examine a pending signal that has been raised
3158 *                      while blocked
3159 *  @uset: stores pending signals
3160 *  @sigsetsize: size of sigset_t type or larger
3161 */
3162SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3163{
3164        sigset_t set;
3165
3166        if (sigsetsize > sizeof(*uset))
3167                return -EINVAL;
3168
3169        do_sigpending(&set);
3170
3171        if (copy_to_user(uset, &set, sigsetsize))
3172                return -EFAULT;
3173
3174        return 0;
3175}
3176
3177#ifdef CONFIG_COMPAT
3178COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3179                compat_size_t, sigsetsize)
3180{
3181        sigset_t set;
3182
3183        if (sigsetsize > sizeof(*uset))
3184                return -EINVAL;
3185
3186        do_sigpending(&set);
3187
3188        return put_compat_sigset(uset, &set, sigsetsize);
3189}
3190#endif
3191
3192static const struct {
3193        unsigned char limit, layout;
3194} sig_sicodes[] = {
3195        [SIGILL]  = { NSIGILL,  SIL_FAULT },
3196        [SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3197        [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3198        [SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3199        [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3200#if defined(SIGEMT)
3201        [SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3202#endif
3203        [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3204        [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3205        [SIGSYS]  = { NSIGSYS,  SIL_SYS },
3206};
3207
3208static bool known_siginfo_layout(unsigned sig, int si_code)
3209{
3210        if (si_code == SI_KERNEL)
3211                return true;
3212        else if ((si_code > SI_USER)) {
3213                if (sig_specific_sicodes(sig)) {
3214                        if (si_code <= sig_sicodes[sig].limit)
3215                                return true;
3216                }
3217                else if (si_code <= NSIGPOLL)
3218                        return true;
3219        }
3220        else if (si_code >= SI_DETHREAD)
3221                return true;
3222        else if (si_code == SI_ASYNCNL)
3223                return true;
3224        return false;
3225}
3226
3227enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3228{
3229        enum siginfo_layout layout = SIL_KILL;
3230        if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3231                if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3232                    (si_code <= sig_sicodes[sig].limit)) {
3233                        layout = sig_sicodes[sig].layout;
3234                        /* Handle the exceptions */
3235                        if ((sig == SIGBUS) &&
3236                            (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3237                                layout = SIL_FAULT_MCEERR;
3238                        else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3239                                layout = SIL_FAULT_BNDERR;
3240#ifdef SEGV_PKUERR
3241                        else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3242                                layout = SIL_FAULT_PKUERR;
3243#endif
3244                        else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3245                                layout = SIL_PERF_EVENT;
3246#ifdef __ARCH_SI_TRAPNO
3247                        else if (layout == SIL_FAULT)
3248                                layout = SIL_FAULT_TRAPNO;
3249#endif
3250                }
3251                else if (si_code <= NSIGPOLL)
3252                        layout = SIL_POLL;
3253        } else {
3254                if (si_code == SI_TIMER)
3255                        layout = SIL_TIMER;
3256                else if (si_code == SI_SIGIO)
3257                        layout = SIL_POLL;
3258                else if (si_code < 0)
3259                        layout = SIL_RT;
3260        }
3261        return layout;
3262}
3263
3264static inline char __user *si_expansion(const siginfo_t __user *info)
3265{
3266        return ((char __user *)info) + sizeof(struct kernel_siginfo);
3267}
3268
3269int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3270{
3271        char __user *expansion = si_expansion(to);
3272        if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3273                return -EFAULT;
3274        if (clear_user(expansion, SI_EXPANSION_SIZE))
3275                return -EFAULT;
3276        return 0;
3277}
3278
3279static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3280                                       const siginfo_t __user *from)
3281{
3282        if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3283                char __user *expansion = si_expansion(from);
3284                char buf[SI_EXPANSION_SIZE];
3285                int i;
3286                /*
3287                 * An unknown si_code might need more than
3288                 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3289                 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3290                 * will return this data to userspace exactly.
3291                 */
3292                if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3293                        return -EFAULT;
3294                for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3295                        if (buf[i] != 0)
3296                                return -E2BIG;
3297                }
3298        }
3299        return 0;
3300}
3301
3302static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3303                                    const siginfo_t __user *from)
3304{
3305        if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3306                return -EFAULT;
3307        to->si_signo = signo;
3308        return post_copy_siginfo_from_user(to, from);
3309}
3310
3311int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3312{
3313        if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3314                return -EFAULT;
3315        return post_copy_siginfo_from_user(to, from);
3316}
3317
3318#ifdef CONFIG_COMPAT
3319/**
3320 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3321 * @to: compat siginfo destination
3322 * @from: kernel siginfo source
3323 *
3324 * Note: This function does not work properly for the SIGCHLD on x32, but
3325 * fortunately it doesn't have to.  The only valid callers for this function are
3326 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3327 * The latter does not care because SIGCHLD will never cause a coredump.
3328 */
3329void copy_siginfo_to_external32(struct compat_siginfo *to,
3330                const struct kernel_siginfo *from)
3331{
3332        memset(to, 0, sizeof(*to));
3333
3334        to->si_signo = from->si_signo;
3335        to->si_errno = from->si_errno;
3336        to->si_code  = from->si_code;
3337        switch(siginfo_layout(from->si_signo, from->si_code)) {
3338        case SIL_KILL:
3339                to->si_pid = from->si_pid;
3340                to->si_uid = from->si_uid;
3341                break;
3342        case SIL_TIMER:
3343                to->si_tid     = from->si_tid;
3344                to->si_overrun = from->si_overrun;
3345                to->si_int     = from->si_int;
3346                break;
3347        case SIL_POLL:
3348                to->si_band = from->si_band;
3349                to->si_fd   = from->si_fd;
3350                break;
3351        case SIL_FAULT:
3352                to->si_addr = ptr_to_compat(from->si_addr);
3353                break;
3354        case SIL_FAULT_TRAPNO:
3355                to->si_addr = ptr_to_compat(from->si_addr);
3356                to->si_trapno = from->si_trapno;
3357                break;
3358        case SIL_FAULT_MCEERR:
3359                to->si_addr = ptr_to_compat(from->si_addr);
3360                to->si_addr_lsb = from->si_addr_lsb;
3361                break;
3362        case SIL_FAULT_BNDERR:
3363                to->si_addr = ptr_to_compat(from->si_addr);
3364                to->si_lower = ptr_to_compat(from->si_lower);
3365                to->si_upper = ptr_to_compat(from->si_upper);
3366                break;
3367        case SIL_FAULT_PKUERR:
3368                to->si_addr = ptr_to_compat(from->si_addr);
3369                to->si_pkey = from->si_pkey;
3370                break;
3371        case SIL_PERF_EVENT:
3372                to->si_addr = ptr_to_compat(from->si_addr);
3373                to->si_perf_data = from->si_perf_data;
3374                to->si_perf_type = from->si_perf_type;
3375                break;
3376        case SIL_CHLD:
3377                to->si_pid = from->si_pid;
3378                to->si_uid = from->si_uid;
3379                to->si_status = from->si_status;
3380                to->si_utime = from->si_utime;
3381                to->si_stime = from->si_stime;
3382                break;
3383        case SIL_RT:
3384                to->si_pid = from->si_pid;
3385                to->si_uid = from->si_uid;
3386                to->si_int = from->si_int;
3387                break;
3388        case SIL_SYS:
3389                to->si_call_addr = ptr_to_compat(from->si_call_addr);
3390                to->si_syscall   = from->si_syscall;
3391                to->si_arch      = from->si_arch;
3392                break;
3393        }
3394}
3395
3396int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3397                           const struct kernel_siginfo *from)
3398{
3399        struct compat_siginfo new;
3400
3401        copy_siginfo_to_external32(&new, from);
3402        if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3403                return -EFAULT;
3404        return 0;
3405}
3406
3407static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3408                                         const struct compat_siginfo *from)
3409{
3410        clear_siginfo(to);
3411        to->si_signo = from->si_signo;
3412        to->si_errno = from->si_errno;
3413        to->si_code  = from->si_code;
3414        switch(siginfo_layout(from->si_signo, from->si_code)) {
3415        case SIL_KILL:
3416                to->si_pid = from->si_pid;
3417                to->si_uid = from->si_uid;
3418                break;
3419        case SIL_TIMER:
3420                to->si_tid     = from->si_tid;
3421                to->si_overrun = from->si_overrun;
3422                to->si_int     = from->si_int;
3423                break;
3424        case SIL_POLL:
3425                to->si_band = from->si_band;
3426                to->si_fd   = from->si_fd;
3427                break;
3428        case SIL_FAULT:
3429                to->si_addr = compat_ptr(from->si_addr);
3430                break;
3431        case SIL_FAULT_TRAPNO:
3432                to->si_addr = compat_ptr(from->si_addr);
3433                to->si_trapno = from->si_trapno;
3434                break;
3435        case SIL_FAULT_MCEERR:
3436                to->si_addr = compat_ptr(from->si_addr);
3437                to->si_addr_lsb = from->si_addr_lsb;
3438                break;
3439        case SIL_FAULT_BNDERR:
3440                to->si_addr = compat_ptr(from->si_addr);
3441                to->si_lower = compat_ptr(from->si_lower);
3442                to->si_upper = compat_ptr(from->si_upper);
3443                break;
3444        case SIL_FAULT_PKUERR:
3445                to->si_addr = compat_ptr(from->si_addr);
3446                to->si_pkey = from->si_pkey;
3447                break;
3448        case SIL_PERF_EVENT:
3449                to->si_addr = compat_ptr(from->si_addr);
3450                to->si_perf_data = from->si_perf_data;
3451                to->si_perf_type = from->si_perf_type;
3452                break;
3453        case SIL_CHLD:
3454                to->si_pid    = from->si_pid;
3455                to->si_uid    = from->si_uid;
3456                to->si_status = from->si_status;
3457#ifdef CONFIG_X86_X32_ABI
3458                if (in_x32_syscall()) {
3459                        to->si_utime = from->_sifields._sigchld_x32._utime;
3460                        to->si_stime = from->_sifields._sigchld_x32._stime;
3461                } else
3462#endif
3463                {
3464                        to->si_utime = from->si_utime;
3465                        to->si_stime = from->si_stime;
3466                }
3467                break;
3468        case SIL_RT:
3469                to->si_pid = from->si_pid;
3470                to->si_uid = from->si_uid;
3471                to->si_int = from->si_int;
3472                break;
3473        case SIL_SYS:
3474                to->si_call_addr = compat_ptr(from->si_call_addr);
3475                to->si_syscall   = from->si_syscall;
3476                to->si_arch      = from->si_arch;
3477                break;
3478        }
3479        return 0;
3480}
3481
3482static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3483                                      const struct compat_siginfo __user *ufrom)
3484{
3485        struct compat_siginfo from;
3486
3487        if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3488                return -EFAULT;
3489
3490        from.si_signo = signo;
3491        return post_copy_siginfo_from_user32(to, &from);
3492}
3493
3494int copy_siginfo_from_user32(struct kernel_siginfo *to,
3495                             const struct compat_siginfo __user *ufrom)
3496{
3497        struct compat_siginfo from;
3498
3499        if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3500                return -EFAULT;
3501
3502        return post_copy_siginfo_from_user32(to, &from);
3503}
3504#endif /* CONFIG_COMPAT */
3505
3506/**
3507 *  do_sigtimedwait - wait for queued signals specified in @which
3508 *  @which: queued signals to wait for
3509 *  @info: if non-null, the signal's siginfo is returned here
3510 *  @ts: upper bound on process time suspension
3511 */
3512static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3513                    const struct timespec64 *ts)
3514{
3515        ktime_t *to = NULL, timeout = KTIME_MAX;
3516        struct task_struct *tsk = current;
3517        sigset_t mask = *which;
3518        int sig, ret = 0;
3519
3520        if (ts) {
3521                if (!timespec64_valid(ts))
3522                        return -EINVAL;
3523                timeout = timespec64_to_ktime(*ts);
3524                to = &timeout;
3525        }
3526
3527        /*
3528         * Invert the set of allowed signals to get those we want to block.
3529         */
3530        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3531        signotset(&mask);
3532
3533        spin_lock_irq(&tsk->sighand->siglock);
3534        sig = dequeue_signal(tsk, &mask, info);
3535        if (!sig && timeout) {
3536                /*
3537                 * None ready, temporarily unblock those we're interested
3538                 * while we are sleeping in so that we'll be awakened when
3539                 * they arrive. Unblocking is always fine, we can avoid
3540                 * set_current_blocked().
3541                 */
3542                tsk->real_blocked = tsk->blocked;
3543                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3544                recalc_sigpending();
3545                spin_unlock_irq(&tsk->sighand->siglock);
3546
3547                __set_current_state(TASK_INTERRUPTIBLE);
3548                ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3549                                                         HRTIMER_MODE_REL);
3550                spin_lock_irq(&tsk->sighand->siglock);
3551                __set_task_blocked(tsk, &tsk->real_blocked);
3552                sigemptyset(&tsk->real_blocked);
3553                sig = dequeue_signal(tsk, &mask, info);
3554        }
3555        spin_unlock_irq(&tsk->sighand->siglock);
3556
3557        if (sig)
3558                return sig;
3559        return ret ? -EINTR : -EAGAIN;
3560}
3561
3562/**
3563 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3564 *                      in @uthese
3565 *  @uthese: queued signals to wait for
3566 *  @uinfo: if non-null, the signal's siginfo is returned here
3567 *  @uts: upper bound on process time suspension
3568 *  @sigsetsize: size of sigset_t type
3569 */
3570SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3571                siginfo_t __user *, uinfo,
3572                const struct __kernel_timespec __user *, uts,
3573                size_t, sigsetsize)
3574{
3575        sigset_t these;
3576        struct timespec64 ts;
3577        kernel_siginfo_t info;
3578        int ret;
3579
3580        /* XXX: Don't preclude handling different sized sigset_t's.  */
3581        if (sigsetsize != sizeof(sigset_t))
3582                return -EINVAL;
3583
3584        if (copy_from_user(&these, uthese, sizeof(these)))
3585                return -EFAULT;
3586
3587        if (uts) {
3588                if (get_timespec64(&ts, uts))
3589                        return -EFAULT;
3590        }
3591
3592        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3593
3594        if (ret > 0 && uinfo) {
3595                if (copy_siginfo_to_user(uinfo, &info))
3596                        ret = -EFAULT;
3597        }
3598
3599        return ret;
3600}
3601
3602#ifdef CONFIG_COMPAT_32BIT_TIME
3603SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3604                siginfo_t __user *, uinfo,
3605                const struct old_timespec32 __user *, uts,
3606                size_t, sigsetsize)
3607{
3608        sigset_t these;
3609        struct timespec64 ts;
3610        kernel_siginfo_t info;
3611        int ret;
3612
3613        if (sigsetsize != sizeof(sigset_t))
3614                return -EINVAL;
3615
3616        if (copy_from_user(&these, uthese, sizeof(these)))
3617                return -EFAULT;
3618
3619        if (uts) {
3620                if (get_old_timespec32(&ts, uts))
3621                        return -EFAULT;
3622        }
3623
3624        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3625
3626        if (ret > 0 && uinfo) {
3627                if (copy_siginfo_to_user(uinfo, &info))
3628                        ret = -EFAULT;
3629        }
3630
3631        return ret;
3632}
3633#endif
3634
3635#ifdef CONFIG_COMPAT
3636COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3637                struct compat_siginfo __user *, uinfo,
3638                struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3639{
3640        sigset_t s;
3641        struct timespec64 t;
3642        kernel_siginfo_t info;
3643        long ret;
3644
3645        if (sigsetsize != sizeof(sigset_t))
3646                return -EINVAL;
3647
3648        if (get_compat_sigset(&s, uthese))
3649                return -EFAULT;
3650
3651        if (uts) {
3652                if (get_timespec64(&t, uts))
3653                        return -EFAULT;
3654        }
3655
3656        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3657
3658        if (ret > 0 && uinfo) {
3659                if (copy_siginfo_to_user32(uinfo, &info))
3660                        ret = -EFAULT;
3661        }
3662
3663        return ret;
3664}
3665
3666#ifdef CONFIG_COMPAT_32BIT_TIME
3667COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3668                struct compat_siginfo __user *, uinfo,
3669                struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3670{
3671        sigset_t s;
3672        struct timespec64 t;
3673        kernel_siginfo_t info;
3674        long ret;
3675
3676        if (sigsetsize != sizeof(sigset_t))
3677                return -EINVAL;
3678
3679        if (get_compat_sigset(&s, uthese))
3680                return -EFAULT;
3681
3682        if (uts) {
3683                if (get_old_timespec32(&t, uts))
3684                        return -EFAULT;
3685        }
3686
3687        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3688
3689        if (ret > 0 && uinfo) {
3690                if (copy_siginfo_to_user32(uinfo, &info))
3691                        ret = -EFAULT;
3692        }
3693
3694        return ret;
3695}
3696#endif
3697#endif
3698
3699static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3700{
3701        clear_siginfo(info);
3702        info->si_signo = sig;
3703        info->si_errno = 0;
3704        info->si_code = SI_USER;
3705        info->si_pid = task_tgid_vnr(current);
3706        info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3707}
3708
3709/**
3710 *  sys_kill - send a signal to a process
3711 *  @pid: the PID of the process
3712 *  @sig: signal to be sent
3713 */
3714SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3715{
3716        struct kernel_siginfo info;
3717
3718        prepare_kill_siginfo(sig, &info);
3719
3720        return kill_something_info(sig, &info, pid);
3721}
3722
3723/*
3724 * Verify that the signaler and signalee either are in the same pid namespace
3725 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3726 * namespace.
3727 */
3728static bool access_pidfd_pidns(struct pid *pid)
3729{
3730        struct pid_namespace *active = task_active_pid_ns(current);
3731        struct pid_namespace *p = ns_of_pid(pid);
3732
3733        for (;;) {
3734                if (!p)
3735                        return false;
3736                if (p == active)
3737                        break;
3738                p = p->parent;
3739        }
3740
3741        return true;
3742}
3743
3744static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3745                siginfo_t __user *info)
3746{
3747#ifdef CONFIG_COMPAT
3748        /*
3749         * Avoid hooking up compat syscalls and instead handle necessary
3750         * conversions here. Note, this is a stop-gap measure and should not be
3751         * considered a generic solution.
3752         */
3753        if (in_compat_syscall())
3754                return copy_siginfo_from_user32(
3755                        kinfo, (struct compat_siginfo __user *)info);
3756#endif
3757        return copy_siginfo_from_user(kinfo, info);
3758}
3759
3760static struct pid *pidfd_to_pid(const struct file *file)
3761{
3762        struct pid *pid;
3763
3764        pid = pidfd_pid(file);
3765        if (!IS_ERR(pid))
3766                return pid;
3767
3768        return tgid_pidfd_to_pid(file);
3769}
3770
3771/**
3772 * sys_pidfd_send_signal - Signal a process through a pidfd
3773 * @pidfd:  file descriptor of the process
3774 * @sig:    signal to send
3775 * @info:   signal info
3776 * @flags:  future flags
3777 *
3778 * The syscall currently only signals via PIDTYPE_PID which covers
3779 * kill(<positive-pid>, <signal>. It does not signal threads or process
3780 * groups.
3781 * In order to extend the syscall to threads and process groups the @flags
3782 * argument should be used. In essence, the @flags argument will determine
3783 * what is signaled and not the file descriptor itself. Put in other words,
3784 * grouping is a property of the flags argument not a property of the file
3785 * descriptor.
3786 *
3787 * Return: 0 on success, negative errno on failure
3788 */
3789SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3790                siginfo_t __user *, info, unsigned int, flags)
3791{
3792        int ret;
3793        struct fd f;
3794        struct pid *pid;
3795        kernel_siginfo_t kinfo;
3796
3797        /* Enforce flags be set to 0 until we add an extension. */
3798        if (flags)
3799                return -EINVAL;
3800
3801        f = fdget(pidfd);
3802        if (!f.file)
3803                return -EBADF;
3804
3805        /* Is this a pidfd? */
3806        pid = pidfd_to_pid(f.file);
3807        if (IS_ERR(pid)) {
3808                ret = PTR_ERR(pid);
3809                goto err;
3810        }
3811
3812        ret = -EINVAL;
3813        if (!access_pidfd_pidns(pid))
3814                goto err;
3815
3816        if (info) {
3817                ret = copy_siginfo_from_user_any(&kinfo, info);
3818                if (unlikely(ret))
3819                        goto err;
3820
3821                ret = -EINVAL;
3822                if (unlikely(sig != kinfo.si_signo))
3823                        goto err;
3824
3825                /* Only allow sending arbitrary signals to yourself. */
3826                ret = -EPERM;
3827                if ((task_pid(current) != pid) &&
3828                    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3829                        goto err;
3830        } else {
3831                prepare_kill_siginfo(sig, &kinfo);
3832        }
3833
3834        ret = kill_pid_info(sig, &kinfo, pid);
3835
3836err:
3837        fdput(f);
3838        return ret;
3839}
3840
3841static int
3842do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3843{
3844        struct task_struct *p;
3845        int error = -ESRCH;
3846
3847        rcu_read_lock();
3848        p = find_task_by_vpid(pid);
3849        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3850                error = check_kill_permission(sig, info, p);
3851                /*
3852                 * The null signal is a permissions and process existence
3853                 * probe.  No signal is actually delivered.
3854                 */
3855                if (!error && sig) {
3856                        error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3857                        /*
3858                         * If lock_task_sighand() failed we pretend the task
3859                         * dies after receiving the signal. The window is tiny,
3860                         * and the signal is private anyway.
3861                         */
3862                        if (unlikely(error == -ESRCH))
3863                                error = 0;
3864                }
3865        }
3866        rcu_read_unlock();
3867
3868        return error;
3869}
3870
3871static int do_tkill(pid_t tgid, pid_t pid, int sig)
3872{
3873        struct kernel_siginfo info;
3874
3875        clear_siginfo(&info);
3876        info.si_signo = sig;
3877        info.si_errno = 0;
3878        info.si_code = SI_TKILL;
3879        info.si_pid = task_tgid_vnr(current);
3880        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3881
3882        return do_send_specific(tgid, pid, sig, &info);
3883}
3884
3885/**
3886 *  sys_tgkill - send signal to one specific thread
3887 *  @tgid: the thread group ID of the thread
3888 *  @pid: the PID of the thread
3889 *  @sig: signal to be sent
3890 *
3891 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3892 *  exists but it's not belonging to the target process anymore. This
3893 *  method solves the problem of threads exiting and PIDs getting reused.
3894 */
3895SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3896{
3897        /* This is only valid for single tasks */
3898        if (pid <= 0 || tgid <= 0)
3899                return -EINVAL;
3900
3901        return do_tkill(tgid, pid, sig);
3902}
3903
3904/**
3905 *  sys_tkill - send signal to one specific task
3906 *  @pid: the PID of the task
3907 *  @sig: signal to be sent
3908 *
3909 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3910 */
3911SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3912{
3913        /* This is only valid for single tasks */
3914        if (pid <= 0)
3915                return -EINVAL;
3916
3917        return do_tkill(0, pid, sig);
3918}
3919
3920static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3921{
3922        /* Not even root can pretend to send signals from the kernel.
3923         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3924         */
3925        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3926            (task_pid_vnr(current) != pid))
3927                return -EPERM;
3928
3929        /* POSIX.1b doesn't mention process groups.  */
3930        return kill_proc_info(sig, info, pid);
3931}
3932
3933/**
3934 *  sys_rt_sigqueueinfo - send signal information to a signal
3935 *  @pid: the PID of the thread
3936 *  @sig: signal to be sent
3937 *  @uinfo: signal info to be sent
3938 */
3939SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3940                siginfo_t __user *, uinfo)
3941{
3942        kernel_siginfo_t info;
3943        int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3944        if (unlikely(ret))
3945                return ret;
3946        return do_rt_sigqueueinfo(pid, sig, &info);
3947}
3948
3949#ifdef CONFIG_COMPAT
3950COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3951                        compat_pid_t, pid,
3952                        int, sig,
3953                        struct compat_siginfo __user *, uinfo)
3954{
3955        kernel_siginfo_t info;
3956        int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3957        if (unlikely(ret))
3958                return ret;
3959        return do_rt_sigqueueinfo(pid, sig, &info);
3960}
3961#endif
3962
3963static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3964{
3965        /* This is only valid for single tasks */
3966        if (pid <= 0 || tgid <= 0)
3967                return -EINVAL;
3968
3969        /* Not even root can pretend to send signals from the kernel.
3970         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3971         */
3972        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3973            (task_pid_vnr(current) != pid))
3974                return -EPERM;
3975
3976        return do_send_specific(tgid, pid, sig, info);
3977}
3978
3979SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3980                siginfo_t __user *, uinfo)
3981{
3982        kernel_siginfo_t info;
3983        int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3984        if (unlikely(ret))
3985                return ret;
3986        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3987}
3988
3989#ifdef CONFIG_COMPAT
3990COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3991                        compat_pid_t, tgid,
3992                        compat_pid_t, pid,
3993                        int, sig,
3994                        struct compat_siginfo __user *, uinfo)
3995{
3996        kernel_siginfo_t info;
3997        int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3998        if (unlikely(ret))
3999                return ret;
4000        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4001}
4002#endif
4003
4004/*
4005 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4006 */
4007void kernel_sigaction(int sig, __sighandler_t action)
4008{
4009        spin_lock_irq(&current->sighand->siglock);
4010        current->sighand->action[sig - 1].sa.sa_handler = action;
4011        if (action == SIG_IGN) {
4012                sigset_t mask;
4013
4014                sigemptyset(&mask);
4015                sigaddset(&mask, sig);
4016
4017                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4018                flush_sigqueue_mask(&mask, &current->pending);
4019                recalc_sigpending();
4020        }
4021        spin_unlock_irq(&current->sighand->siglock);
4022}
4023EXPORT_SYMBOL(kernel_sigaction);
4024
4025void __weak sigaction_compat_abi(struct k_sigaction *act,
4026                struct k_sigaction *oact)
4027{
4028}
4029
4030int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4031{
4032        struct task_struct *p = current, *t;
4033        struct k_sigaction *k;
4034        sigset_t mask;
4035
4036        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4037                return -EINVAL;
4038
4039        k = &p->sighand->action[sig-1];
4040
4041        spin_lock_irq(&p->sighand->siglock);
4042        if (oact)
4043                *oact = *k;
4044
4045        /*
4046         * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4047         * e.g. by having an architecture use the bit in their uapi.
4048         */
4049        BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4050
4051        /*
4052         * Clear unknown flag bits in order to allow userspace to detect missing
4053         * support for flag bits and to allow the kernel to use non-uapi bits
4054         * internally.
4055         */
4056        if (act)
4057                act->sa.sa_flags &= UAPI_SA_FLAGS;
4058        if (oact)
4059                oact->sa.sa_flags &= UAPI_SA_FLAGS;
4060
4061        sigaction_compat_abi(act, oact);
4062
4063        if (act) {
4064                sigdelsetmask(&act->sa.sa_mask,
4065                              sigmask(SIGKILL) | sigmask(SIGSTOP));
4066                *k = *act;
4067                /*
4068                 * POSIX 3.3.1.3:
4069                 *  "Setting a signal action to SIG_IGN for a signal that is
4070                 *   pending shall cause the pending signal to be discarded,
4071                 *   whether or not it is blocked."
4072                 *
4073                 *  "Setting a signal action to SIG_DFL for a signal that is
4074                 *   pending and whose default action is to ignore the signal
4075                 *   (for example, SIGCHLD), shall cause the pending signal to
4076                 *   be discarded, whether or not it is blocked"
4077                 */
4078                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4079                        sigemptyset(&mask);
4080                        sigaddset(&mask, sig);
4081                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4082                        for_each_thread(p, t)
4083                                flush_sigqueue_mask(&mask, &t->pending);
4084                }
4085        }
4086
4087        spin_unlock_irq(&p->sighand->siglock);
4088        return 0;
4089}
4090
4091static int
4092do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4093                size_t min_ss_size)
4094{
4095        struct task_struct *t = current;
4096
4097        if (oss) {
4098                memset(oss, 0, sizeof(stack_t));
4099                oss->ss_sp = (void __user *) t->sas_ss_sp;
4100                oss->ss_size = t->sas_ss_size;
4101                oss->ss_flags = sas_ss_flags(sp) |
4102                        (current->sas_ss_flags & SS_FLAG_BITS);
4103        }
4104
4105        if (ss) {
4106                void __user *ss_sp = ss->ss_sp;
4107                size_t ss_size = ss->ss_size;
4108                unsigned ss_flags = ss->ss_flags;
4109                int ss_mode;
4110
4111                if (unlikely(on_sig_stack(sp)))
4112                        return -EPERM;
4113
4114                ss_mode = ss_flags & ~SS_FLAG_BITS;
4115                if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4116                                ss_mode != 0))
4117                        return -EINVAL;
4118
4119                if (ss_mode == SS_DISABLE) {
4120                        ss_size = 0;
4121                        ss_sp = NULL;
4122                } else {
4123                        if (unlikely(ss_size < min_ss_size))
4124                                return -ENOMEM;
4125                }
4126
4127                t->sas_ss_sp = (unsigned long) ss_sp;
4128                t->sas_ss_size = ss_size;
4129                t->sas_ss_flags = ss_flags;
4130        }
4131        return 0;
4132}
4133
4134SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4135{
4136        stack_t new, old;
4137        int err;
4138        if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4139                return -EFAULT;
4140        err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4141                              current_user_stack_pointer(),
4142                              MINSIGSTKSZ);
4143        if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4144                err = -EFAULT;
4145        return err;
4146}
4147
4148int restore_altstack(const stack_t __user *uss)
4149{
4150        stack_t new;
4151        if (copy_from_user(&new, uss, sizeof(stack_t)))
4152                return -EFAULT;
4153        (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4154                             MINSIGSTKSZ);
4155        /* squash all but EFAULT for now */
4156        return 0;
4157}
4158
4159int __save_altstack(stack_t __user *uss, unsigned long sp)
4160{
4161        struct task_struct *t = current;
4162        int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4163                __put_user(t->sas_ss_flags, &uss->ss_flags) |
4164                __put_user(t->sas_ss_size, &uss->ss_size);
4165        return err;
4166}
4167
4168#ifdef CONFIG_COMPAT
4169static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4170                                 compat_stack_t __user *uoss_ptr)
4171{
4172        stack_t uss, uoss;
4173        int ret;
4174
4175        if (uss_ptr) {
4176                compat_stack_t uss32;
4177                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4178                        return -EFAULT;
4179                uss.ss_sp = compat_ptr(uss32.ss_sp);
4180                uss.ss_flags = uss32.ss_flags;
4181                uss.ss_size = uss32.ss_size;
4182        }
4183        ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4184                             compat_user_stack_pointer(),
4185                             COMPAT_MINSIGSTKSZ);
4186        if (ret >= 0 && uoss_ptr)  {
4187                compat_stack_t old;
4188                memset(&old, 0, sizeof(old));
4189                old.ss_sp = ptr_to_compat(uoss.ss_sp);
4190                old.ss_flags = uoss.ss_flags;
4191                old.ss_size = uoss.ss_size;
4192                if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4193                        ret = -EFAULT;
4194        }
4195        return ret;
4196}
4197
4198COMPAT_SYSCALL_DEFINE2(sigaltstack,
4199                        const compat_stack_t __user *, uss_ptr,
4200                        compat_stack_t __user *, uoss_ptr)
4201{
4202        return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4203}
4204
4205int compat_restore_altstack(const compat_stack_t __user *uss)
4206{
4207        int err = do_compat_sigaltstack(uss, NULL);
4208        /* squash all but -EFAULT for now */
4209        return err == -EFAULT ? err : 0;
4210}
4211
4212int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4213{
4214        int err;
4215        struct task_struct *t = current;
4216        err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4217                         &uss->ss_sp) |
4218                __put_user(t->sas_ss_flags, &uss->ss_flags) |
4219                __put_user(t->sas_ss_size, &uss->ss_size);
4220        return err;
4221}
4222#endif
4223
4224#ifdef __ARCH_WANT_SYS_SIGPENDING
4225
4226/**
4227 *  sys_sigpending - examine pending signals
4228 *  @uset: where mask of pending signal is returned
4229 */
4230SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4231{
4232        sigset_t set;
4233
4234        if (sizeof(old_sigset_t) > sizeof(*uset))
4235                return -EINVAL;
4236
4237        do_sigpending(&set);
4238
4239        if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4240                return -EFAULT;
4241
4242        return 0;
4243}
4244
4245#ifdef CONFIG_COMPAT
4246COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4247{
4248        sigset_t set;
4249
4250        do_sigpending(&set);
4251
4252        return put_user(set.sig[0], set32);
4253}
4254#endif
4255
4256#endif
4257
4258#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4259/**
4260 *  sys_sigprocmask - examine and change blocked signals
4261 *  @how: whether to add, remove, or set signals
4262 *  @nset: signals to add or remove (if non-null)
4263 *  @oset: previous value of signal mask if non-null
4264 *
4265 * Some platforms have their own version with special arguments;
4266 * others support only sys_rt_sigprocmask.
4267 */
4268
4269SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4270                old_sigset_t __user *, oset)
4271{
4272        old_sigset_t old_set, new_set;
4273        sigset_t new_blocked;
4274
4275        old_set = current->blocked.sig[0];
4276
4277        if (nset) {
4278                if (copy_from_user(&new_set, nset, sizeof(*nset)))
4279                        return -EFAULT;
4280
4281                new_blocked = current->blocked;
4282
4283                switch (how) {
4284                case SIG_BLOCK:
4285                        sigaddsetmask(&new_blocked, new_set);
4286                        break;
4287                case SIG_UNBLOCK:
4288                        sigdelsetmask(&new_blocked, new_set);
4289                        break;
4290                case SIG_SETMASK:
4291                        new_blocked.sig[0] = new_set;
4292                        break;
4293                default:
4294                        return -EINVAL;
4295                }
4296
4297                set_current_blocked(&new_blocked);
4298        }
4299
4300        if (oset) {
4301                if (copy_to_user(oset, &old_set, sizeof(*oset)))
4302                        return -EFAULT;
4303        }
4304
4305        return 0;
4306}
4307#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4308
4309#ifndef CONFIG_ODD_RT_SIGACTION
4310/**
4311 *  sys_rt_sigaction - alter an action taken by a process
4312 *  @sig: signal to be sent
4313 *  @act: new sigaction
4314 *  @oact: used to save the previous sigaction
4315 *  @sigsetsize: size of sigset_t type
4316 */
4317SYSCALL_DEFINE4(rt_sigaction, int, sig,
4318                const struct sigaction __user *, act,
4319                struct sigaction __user *, oact,
4320                size_t, sigsetsize)
4321{
4322        struct k_sigaction new_sa, old_sa;
4323        int ret;
4324
4325        /* XXX: Don't preclude handling different sized sigset_t's.  */
4326        if (sigsetsize != sizeof(sigset_t))
4327                return -EINVAL;
4328
4329        if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4330                return -EFAULT;
4331
4332        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4333        if (ret)
4334                return ret;
4335
4336        if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4337                return -EFAULT;
4338
4339        return 0;
4340}
4341#ifdef CONFIG_COMPAT
4342COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4343                const struct compat_sigaction __user *, act,
4344                struct compat_sigaction __user *, oact,
4345                compat_size_t, sigsetsize)
4346{
4347        struct k_sigaction new_ka, old_ka;
4348#ifdef __ARCH_HAS_SA_RESTORER
4349        compat_uptr_t restorer;
4350#endif
4351        int ret;
4352
4353        /* XXX: Don't preclude handling different sized sigset_t's.  */
4354        if (sigsetsize != sizeof(compat_sigset_t))
4355                return -EINVAL;
4356
4357        if (act) {
4358                compat_uptr_t handler;
4359                ret = get_user(handler, &act->sa_handler);
4360                new_ka.sa.sa_handler = compat_ptr(handler);
4361#ifdef __ARCH_HAS_SA_RESTORER
4362                ret |= get_user(restorer, &act->sa_restorer);
4363                new_ka.sa.sa_restorer = compat_ptr(restorer);
4364#endif
4365                ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4366                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4367                if (ret)
4368                        return -EFAULT;
4369        }
4370
4371        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4372        if (!ret && oact) {
4373                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4374                               &oact->sa_handler);
4375                ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4376                                         sizeof(oact->sa_mask));
4377                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4378#ifdef __ARCH_HAS_SA_RESTORER
4379                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4380                                &oact->sa_restorer);
4381#endif
4382        }
4383        return ret;
4384}
4385#endif
4386#endif /* !CONFIG_ODD_RT_SIGACTION */
4387
4388#ifdef CONFIG_OLD_SIGACTION
4389SYSCALL_DEFINE3(sigaction, int, sig,
4390                const struct old_sigaction __user *, act,
4391                struct old_sigaction __user *, oact)
4392{
4393        struct k_sigaction new_ka, old_ka;
4394        int ret;
4395
4396        if (act) {
4397                old_sigset_t mask;
4398                if (!access_ok(act, sizeof(*act)) ||
4399                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4400                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4401                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4402                    __get_user(mask, &act->sa_mask))
4403                        return -EFAULT;
4404#ifdef __ARCH_HAS_KA_RESTORER
4405                new_ka.ka_restorer = NULL;
4406#endif
4407                siginitset(&new_ka.sa.sa_mask, mask);
4408        }
4409
4410        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4411
4412        if (!ret && oact) {
4413                if (!access_ok(oact, sizeof(*oact)) ||
4414                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4415                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4416                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4417                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4418                        return -EFAULT;
4419        }
4420
4421        return ret;
4422}
4423#endif
4424#ifdef CONFIG_COMPAT_OLD_SIGACTION
4425COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4426                const struct compat_old_sigaction __user *, act,
4427                struct compat_old_sigaction __user *, oact)
4428{
4429        struct k_sigaction new_ka, old_ka;
4430        int ret;
4431        compat_old_sigset_t mask;
4432        compat_uptr_t handler, restorer;
4433
4434        if (act) {
4435                if (!access_ok(act, sizeof(*act)) ||
4436                    __get_user(handler, &act->sa_handler) ||
4437                    __get_user(restorer, &act->sa_restorer) ||
4438                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4439                    __get_user(mask, &act->sa_mask))
4440                        return -EFAULT;
4441
4442#ifdef __ARCH_HAS_KA_RESTORER
4443                new_ka.ka_restorer = NULL;
4444#endif
4445                new_ka.sa.sa_handler = compat_ptr(handler);
4446                new_ka.sa.sa_restorer = compat_ptr(restorer);
4447                siginitset(&new_ka.sa.sa_mask, mask);
4448        }
4449
4450        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4451
4452        if (!ret && oact) {
4453                if (!access_ok(oact, sizeof(*oact)) ||
4454                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4455                               &oact->sa_handler) ||
4456                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4457                               &oact->sa_restorer) ||
4458                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4459                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4460                        return -EFAULT;
4461        }
4462        return ret;
4463}
4464#endif
4465
4466#ifdef CONFIG_SGETMASK_SYSCALL
4467
4468/*
4469 * For backwards compatibility.  Functionality superseded by sigprocmask.
4470 */
4471SYSCALL_DEFINE0(sgetmask)
4472{
4473        /* SMP safe */
4474        return current->blocked.sig[0];
4475}
4476
4477SYSCALL_DEFINE1(ssetmask, int, newmask)
4478{
4479        int old = current->blocked.sig[0];
4480        sigset_t newset;
4481
4482        siginitset(&newset, newmask);
4483        set_current_blocked(&newset);
4484
4485        return old;
4486}
4487#endif /* CONFIG_SGETMASK_SYSCALL */
4488
4489#ifdef __ARCH_WANT_SYS_SIGNAL
4490/*
4491 * For backwards compatibility.  Functionality superseded by sigaction.
4492 */
4493SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4494{
4495        struct k_sigaction new_sa, old_sa;
4496        int ret;
4497
4498        new_sa.sa.sa_handler = handler;
4499        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4500        sigemptyset(&new_sa.sa.sa_mask);
4501
4502        ret = do_sigaction(sig, &new_sa, &old_sa);
4503
4504        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4505}
4506#endif /* __ARCH_WANT_SYS_SIGNAL */
4507
4508#ifdef __ARCH_WANT_SYS_PAUSE
4509
4510SYSCALL_DEFINE0(pause)
4511{
4512        while (!signal_pending(current)) {
4513                __set_current_state(TASK_INTERRUPTIBLE);
4514                schedule();
4515        }
4516        return -ERESTARTNOHAND;
4517}
4518
4519#endif
4520
4521static int sigsuspend(sigset_t *set)
4522{
4523        current->saved_sigmask = current->blocked;
4524        set_current_blocked(set);
4525
4526        while (!signal_pending(current)) {
4527                __set_current_state(TASK_INTERRUPTIBLE);
4528                schedule();
4529        }
4530        set_restore_sigmask();
4531        return -ERESTARTNOHAND;
4532}
4533
4534/**
4535 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4536 *      @unewset value until a signal is received
4537 *  @unewset: new signal mask value
4538 *  @sigsetsize: size of sigset_t type
4539 */
4540SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4541{
4542        sigset_t newset;
4543
4544        /* XXX: Don't preclude handling different sized sigset_t's.  */
4545        if (sigsetsize != sizeof(sigset_t))
4546                return -EINVAL;
4547
4548        if (copy_from_user(&newset, unewset, sizeof(newset)))
4549                return -EFAULT;
4550        return sigsuspend(&newset);
4551}
4552 
4553#ifdef CONFIG_COMPAT
4554COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4555{
4556        sigset_t newset;
4557
4558        /* XXX: Don't preclude handling different sized sigset_t's.  */
4559        if (sigsetsize != sizeof(sigset_t))
4560                return -EINVAL;
4561
4562        if (get_compat_sigset(&newset, unewset))
4563                return -EFAULT;
4564        return sigsuspend(&newset);
4565}
4566#endif
4567
4568#ifdef CONFIG_OLD_SIGSUSPEND
4569SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4570{
4571        sigset_t blocked;
4572        siginitset(&blocked, mask);
4573        return sigsuspend(&blocked);
4574}
4575#endif
4576#ifdef CONFIG_OLD_SIGSUSPEND3
4577SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4578{
4579        sigset_t blocked;
4580        siginitset(&blocked, mask);
4581        return sigsuspend(&blocked);
4582}
4583#endif
4584
4585__weak const char *arch_vma_name(struct vm_area_struct *vma)
4586{
4587        return NULL;
4588}
4589
4590static inline void siginfo_buildtime_checks(void)
4591{
4592        BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4593
4594        /* Verify the offsets in the two siginfos match */
4595#define CHECK_OFFSET(field) \
4596        BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4597
4598        /* kill */
4599        CHECK_OFFSET(si_pid);
4600        CHECK_OFFSET(si_uid);
4601
4602        /* timer */
4603        CHECK_OFFSET(si_tid);
4604        CHECK_OFFSET(si_overrun);
4605        CHECK_OFFSET(si_value);
4606
4607        /* rt */
4608        CHECK_OFFSET(si_pid);
4609        CHECK_OFFSET(si_uid);
4610        CHECK_OFFSET(si_value);
4611
4612        /* sigchld */
4613        CHECK_OFFSET(si_pid);
4614        CHECK_OFFSET(si_uid);
4615        CHECK_OFFSET(si_status);
4616        CHECK_OFFSET(si_utime);
4617        CHECK_OFFSET(si_stime);
4618
4619        /* sigfault */
4620        CHECK_OFFSET(si_addr);
4621        CHECK_OFFSET(si_trapno);
4622        CHECK_OFFSET(si_addr_lsb);
4623        CHECK_OFFSET(si_lower);
4624        CHECK_OFFSET(si_upper);
4625        CHECK_OFFSET(si_pkey);
4626        CHECK_OFFSET(si_perf_data);
4627        CHECK_OFFSET(si_perf_type);
4628
4629        /* sigpoll */
4630        CHECK_OFFSET(si_band);
4631        CHECK_OFFSET(si_fd);
4632
4633        /* sigsys */
4634        CHECK_OFFSET(si_call_addr);
4635        CHECK_OFFSET(si_syscall);
4636        CHECK_OFFSET(si_arch);
4637#undef CHECK_OFFSET
4638
4639        /* usb asyncio */
4640        BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4641                     offsetof(struct siginfo, si_addr));
4642        if (sizeof(int) == sizeof(void __user *)) {
4643                BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4644                             sizeof(void __user *));
4645        } else {
4646                BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4647                              sizeof_field(struct siginfo, si_uid)) !=
4648                             sizeof(void __user *));
4649                BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4650                             offsetof(struct siginfo, si_uid));
4651        }
4652#ifdef CONFIG_COMPAT
4653        BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4654                     offsetof(struct compat_siginfo, si_addr));
4655        BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4656                     sizeof(compat_uptr_t));
4657        BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4658                     sizeof_field(struct siginfo, si_pid));
4659#endif
4660}
4661
4662void __init signals_init(void)
4663{
4664        siginfo_buildtime_checks();
4665
4666        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4667}
4668
4669#ifdef CONFIG_KGDB_KDB
4670#include <linux/kdb.h>
4671/*
4672 * kdb_send_sig - Allows kdb to send signals without exposing
4673 * signal internals.  This function checks if the required locks are
4674 * available before calling the main signal code, to avoid kdb
4675 * deadlocks.
4676 */
4677void kdb_send_sig(struct task_struct *t, int sig)
4678{
4679        static struct task_struct *kdb_prev_t;
4680        int new_t, ret;
4681        if (!spin_trylock(&t->sighand->siglock)) {
4682                kdb_printf("Can't do kill command now.\n"
4683                           "The sigmask lock is held somewhere else in "
4684                           "kernel, try again later\n");
4685                return;
4686        }
4687        new_t = kdb_prev_t != t;
4688        kdb_prev_t = t;
4689        if (!task_is_running(t) && new_t) {
4690                spin_unlock(&t->sighand->siglock);
4691                kdb_printf("Process is not RUNNING, sending a signal from "
4692                           "kdb risks deadlock\n"
4693                           "on the run queue locks. "
4694                           "The signal has _not_ been sent.\n"
4695                           "Reissue the kill command if you want to risk "
4696                           "the deadlock.\n");
4697                return;
4698        }
4699        ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4700        spin_unlock(&t->sighand->siglock);
4701        if (ret)
4702                kdb_printf("Fail to deliver Signal %d to process %d.\n",
4703                           sig, t->pid);
4704        else
4705                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4706}
4707#endif  /* CONFIG_KGDB_KDB */
4708