linux/kernel/smpboot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common SMP CPU bringup/teardown functions
   4 */
   5#include <linux/cpu.h>
   6#include <linux/err.h>
   7#include <linux/smp.h>
   8#include <linux/delay.h>
   9#include <linux/init.h>
  10#include <linux/list.h>
  11#include <linux/slab.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task.h>
  14#include <linux/export.h>
  15#include <linux/percpu.h>
  16#include <linux/kthread.h>
  17#include <linux/smpboot.h>
  18
  19#include "smpboot.h"
  20
  21#ifdef CONFIG_SMP
  22
  23#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
  24/*
  25 * For the hotplug case we keep the task structs around and reuse
  26 * them.
  27 */
  28static DEFINE_PER_CPU(struct task_struct *, idle_threads);
  29
  30struct task_struct *idle_thread_get(unsigned int cpu)
  31{
  32        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  33
  34        if (!tsk)
  35                return ERR_PTR(-ENOMEM);
  36        return tsk;
  37}
  38
  39void __init idle_thread_set_boot_cpu(void)
  40{
  41        per_cpu(idle_threads, smp_processor_id()) = current;
  42}
  43
  44/**
  45 * idle_init - Initialize the idle thread for a cpu
  46 * @cpu:        The cpu for which the idle thread should be initialized
  47 *
  48 * Creates the thread if it does not exist.
  49 */
  50static __always_inline void idle_init(unsigned int cpu)
  51{
  52        struct task_struct *tsk = per_cpu(idle_threads, cpu);
  53
  54        if (!tsk) {
  55                tsk = fork_idle(cpu);
  56                if (IS_ERR(tsk))
  57                        pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
  58                else
  59                        per_cpu(idle_threads, cpu) = tsk;
  60        }
  61}
  62
  63/**
  64 * idle_threads_init - Initialize idle threads for all cpus
  65 */
  66void __init idle_threads_init(void)
  67{
  68        unsigned int cpu, boot_cpu;
  69
  70        boot_cpu = smp_processor_id();
  71
  72        for_each_possible_cpu(cpu) {
  73                if (cpu != boot_cpu)
  74                        idle_init(cpu);
  75        }
  76}
  77#endif
  78
  79#endif /* #ifdef CONFIG_SMP */
  80
  81static LIST_HEAD(hotplug_threads);
  82static DEFINE_MUTEX(smpboot_threads_lock);
  83
  84struct smpboot_thread_data {
  85        unsigned int                    cpu;
  86        unsigned int                    status;
  87        struct smp_hotplug_thread       *ht;
  88};
  89
  90enum {
  91        HP_THREAD_NONE = 0,
  92        HP_THREAD_ACTIVE,
  93        HP_THREAD_PARKED,
  94};
  95
  96/**
  97 * smpboot_thread_fn - percpu hotplug thread loop function
  98 * @data:       thread data pointer
  99 *
 100 * Checks for thread stop and park conditions. Calls the necessary
 101 * setup, cleanup, park and unpark functions for the registered
 102 * thread.
 103 *
 104 * Returns 1 when the thread should exit, 0 otherwise.
 105 */
 106static int smpboot_thread_fn(void *data)
 107{
 108        struct smpboot_thread_data *td = data;
 109        struct smp_hotplug_thread *ht = td->ht;
 110
 111        while (1) {
 112                set_current_state(TASK_INTERRUPTIBLE);
 113                preempt_disable();
 114                if (kthread_should_stop()) {
 115                        __set_current_state(TASK_RUNNING);
 116                        preempt_enable();
 117                        /* cleanup must mirror setup */
 118                        if (ht->cleanup && td->status != HP_THREAD_NONE)
 119                                ht->cleanup(td->cpu, cpu_online(td->cpu));
 120                        kfree(td);
 121                        return 0;
 122                }
 123
 124                if (kthread_should_park()) {
 125                        __set_current_state(TASK_RUNNING);
 126                        preempt_enable();
 127                        if (ht->park && td->status == HP_THREAD_ACTIVE) {
 128                                BUG_ON(td->cpu != smp_processor_id());
 129                                ht->park(td->cpu);
 130                                td->status = HP_THREAD_PARKED;
 131                        }
 132                        kthread_parkme();
 133                        /* We might have been woken for stop */
 134                        continue;
 135                }
 136
 137                BUG_ON(td->cpu != smp_processor_id());
 138
 139                /* Check for state change setup */
 140                switch (td->status) {
 141                case HP_THREAD_NONE:
 142                        __set_current_state(TASK_RUNNING);
 143                        preempt_enable();
 144                        if (ht->setup)
 145                                ht->setup(td->cpu);
 146                        td->status = HP_THREAD_ACTIVE;
 147                        continue;
 148
 149                case HP_THREAD_PARKED:
 150                        __set_current_state(TASK_RUNNING);
 151                        preempt_enable();
 152                        if (ht->unpark)
 153                                ht->unpark(td->cpu);
 154                        td->status = HP_THREAD_ACTIVE;
 155                        continue;
 156                }
 157
 158                if (!ht->thread_should_run(td->cpu)) {
 159                        preempt_enable_no_resched();
 160                        schedule();
 161                } else {
 162                        __set_current_state(TASK_RUNNING);
 163                        preempt_enable();
 164                        ht->thread_fn(td->cpu);
 165                }
 166        }
 167}
 168
 169static int
 170__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 171{
 172        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 173        struct smpboot_thread_data *td;
 174
 175        if (tsk)
 176                return 0;
 177
 178        td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 179        if (!td)
 180                return -ENOMEM;
 181        td->cpu = cpu;
 182        td->ht = ht;
 183
 184        tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 185                                    ht->thread_comm);
 186        if (IS_ERR(tsk)) {
 187                kfree(td);
 188                return PTR_ERR(tsk);
 189        }
 190        kthread_set_per_cpu(tsk, cpu);
 191        /*
 192         * Park the thread so that it could start right on the CPU
 193         * when it is available.
 194         */
 195        kthread_park(tsk);
 196        get_task_struct(tsk);
 197        *per_cpu_ptr(ht->store, cpu) = tsk;
 198        if (ht->create) {
 199                /*
 200                 * Make sure that the task has actually scheduled out
 201                 * into park position, before calling the create
 202                 * callback. At least the migration thread callback
 203                 * requires that the task is off the runqueue.
 204                 */
 205                if (!wait_task_inactive(tsk, TASK_PARKED))
 206                        WARN_ON(1);
 207                else
 208                        ht->create(cpu);
 209        }
 210        return 0;
 211}
 212
 213int smpboot_create_threads(unsigned int cpu)
 214{
 215        struct smp_hotplug_thread *cur;
 216        int ret = 0;
 217
 218        mutex_lock(&smpboot_threads_lock);
 219        list_for_each_entry(cur, &hotplug_threads, list) {
 220                ret = __smpboot_create_thread(cur, cpu);
 221                if (ret)
 222                        break;
 223        }
 224        mutex_unlock(&smpboot_threads_lock);
 225        return ret;
 226}
 227
 228static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 229{
 230        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 231
 232        if (!ht->selfparking)
 233                kthread_unpark(tsk);
 234}
 235
 236int smpboot_unpark_threads(unsigned int cpu)
 237{
 238        struct smp_hotplug_thread *cur;
 239
 240        mutex_lock(&smpboot_threads_lock);
 241        list_for_each_entry(cur, &hotplug_threads, list)
 242                smpboot_unpark_thread(cur, cpu);
 243        mutex_unlock(&smpboot_threads_lock);
 244        return 0;
 245}
 246
 247static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 248{
 249        struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 250
 251        if (tsk && !ht->selfparking)
 252                kthread_park(tsk);
 253}
 254
 255int smpboot_park_threads(unsigned int cpu)
 256{
 257        struct smp_hotplug_thread *cur;
 258
 259        mutex_lock(&smpboot_threads_lock);
 260        list_for_each_entry_reverse(cur, &hotplug_threads, list)
 261                smpboot_park_thread(cur, cpu);
 262        mutex_unlock(&smpboot_threads_lock);
 263        return 0;
 264}
 265
 266static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 267{
 268        unsigned int cpu;
 269
 270        /* We need to destroy also the parked threads of offline cpus */
 271        for_each_possible_cpu(cpu) {
 272                struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 273
 274                if (tsk) {
 275                        kthread_stop(tsk);
 276                        put_task_struct(tsk);
 277                        *per_cpu_ptr(ht->store, cpu) = NULL;
 278                }
 279        }
 280}
 281
 282/**
 283 * smpboot_register_percpu_thread - Register a per_cpu thread related
 284 *                                          to hotplug
 285 * @plug_thread:        Hotplug thread descriptor
 286 *
 287 * Creates and starts the threads on all online cpus.
 288 */
 289int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
 290{
 291        unsigned int cpu;
 292        int ret = 0;
 293
 294        get_online_cpus();
 295        mutex_lock(&smpboot_threads_lock);
 296        for_each_online_cpu(cpu) {
 297                ret = __smpboot_create_thread(plug_thread, cpu);
 298                if (ret) {
 299                        smpboot_destroy_threads(plug_thread);
 300                        goto out;
 301                }
 302                smpboot_unpark_thread(plug_thread, cpu);
 303        }
 304        list_add(&plug_thread->list, &hotplug_threads);
 305out:
 306        mutex_unlock(&smpboot_threads_lock);
 307        put_online_cpus();
 308        return ret;
 309}
 310EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
 311
 312/**
 313 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 314 * @plug_thread:        Hotplug thread descriptor
 315 *
 316 * Stops all threads on all possible cpus.
 317 */
 318void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 319{
 320        get_online_cpus();
 321        mutex_lock(&smpboot_threads_lock);
 322        list_del(&plug_thread->list);
 323        smpboot_destroy_threads(plug_thread);
 324        mutex_unlock(&smpboot_threads_lock);
 325        put_online_cpus();
 326}
 327EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 328
 329static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 330
 331/*
 332 * Called to poll specified CPU's state, for example, when waiting for
 333 * a CPU to come online.
 334 */
 335int cpu_report_state(int cpu)
 336{
 337        return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 338}
 339
 340/*
 341 * If CPU has died properly, set its state to CPU_UP_PREPARE and
 342 * return success.  Otherwise, return -EBUSY if the CPU died after
 343 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 344 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 345 * to dying.  In the latter two cases, the CPU might not be set up
 346 * properly, but it is up to the arch-specific code to decide.
 347 * Finally, -EIO indicates an unanticipated problem.
 348 *
 349 * Note that it is permissible to omit this call entirely, as is
 350 * done in architectures that do no CPU-hotplug error checking.
 351 */
 352int cpu_check_up_prepare(int cpu)
 353{
 354        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 355                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 356                return 0;
 357        }
 358
 359        switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 360
 361        case CPU_POST_DEAD:
 362
 363                /* The CPU died properly, so just start it up again. */
 364                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 365                return 0;
 366
 367        case CPU_DEAD_FROZEN:
 368
 369                /*
 370                 * Timeout during CPU death, so let caller know.
 371                 * The outgoing CPU completed its processing, but after
 372                 * cpu_wait_death() timed out and reported the error. The
 373                 * caller is free to proceed, in which case the state
 374                 * will be reset properly by cpu_set_state_online().
 375                 * Proceeding despite this -EBUSY return makes sense
 376                 * for systems where the outgoing CPUs take themselves
 377                 * offline, with no post-death manipulation required from
 378                 * a surviving CPU.
 379                 */
 380                return -EBUSY;
 381
 382        case CPU_BROKEN:
 383
 384                /*
 385                 * The most likely reason we got here is that there was
 386                 * a timeout during CPU death, and the outgoing CPU never
 387                 * did complete its processing.  This could happen on
 388                 * a virtualized system if the outgoing VCPU gets preempted
 389                 * for more than five seconds, and the user attempts to
 390                 * immediately online that same CPU.  Trying again later
 391                 * might return -EBUSY above, hence -EAGAIN.
 392                 */
 393                return -EAGAIN;
 394
 395        default:
 396
 397                /* Should not happen.  Famous last words. */
 398                return -EIO;
 399        }
 400}
 401
 402/*
 403 * Mark the specified CPU online.
 404 *
 405 * Note that it is permissible to omit this call entirely, as is
 406 * done in architectures that do no CPU-hotplug error checking.
 407 */
 408void cpu_set_state_online(int cpu)
 409{
 410        (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 411}
 412
 413#ifdef CONFIG_HOTPLUG_CPU
 414
 415/*
 416 * Wait for the specified CPU to exit the idle loop and die.
 417 */
 418bool cpu_wait_death(unsigned int cpu, int seconds)
 419{
 420        int jf_left = seconds * HZ;
 421        int oldstate;
 422        bool ret = true;
 423        int sleep_jf = 1;
 424
 425        might_sleep();
 426
 427        /* The outgoing CPU will normally get done quite quickly. */
 428        if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 429                goto update_state;
 430        udelay(5);
 431
 432        /* But if the outgoing CPU dawdles, wait increasingly long times. */
 433        while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 434                schedule_timeout_uninterruptible(sleep_jf);
 435                jf_left -= sleep_jf;
 436                if (jf_left <= 0)
 437                        break;
 438                sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 439        }
 440update_state:
 441        oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 442        if (oldstate == CPU_DEAD) {
 443                /* Outgoing CPU died normally, update state. */
 444                smp_mb(); /* atomic_read() before update. */
 445                atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 446        } else {
 447                /* Outgoing CPU still hasn't died, set state accordingly. */
 448                if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 449                                   oldstate, CPU_BROKEN) != oldstate)
 450                        goto update_state;
 451                ret = false;
 452        }
 453        return ret;
 454}
 455
 456/*
 457 * Called by the outgoing CPU to report its successful death.  Return
 458 * false if this report follows the surviving CPU's timing out.
 459 *
 460 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 461 * timed out.  This approach allows architectures to omit calls to
 462 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 463 * the next cpu_wait_death()'s polling loop.
 464 */
 465bool cpu_report_death(void)
 466{
 467        int oldstate;
 468        int newstate;
 469        int cpu = smp_processor_id();
 470
 471        do {
 472                oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 473                if (oldstate != CPU_BROKEN)
 474                        newstate = CPU_DEAD;
 475                else
 476                        newstate = CPU_DEAD_FROZEN;
 477        } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 478                                oldstate, newstate) != oldstate);
 479        return newstate == CPU_DEAD;
 480}
 481
 482#endif /* #ifdef CONFIG_HOTPLUG_CPU */
 483