linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *      Based on the original timer wheel code
  17 *
  18 *      Help, testing, suggestions, bugfixes, improvements were
  19 *      provided by:
  20 *
  21 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *      et. al.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
  41#include <linux/timer.h>
  42#include <linux/freezer.h>
  43#include <linux/compat.h>
  44
  45#include <linux/uaccess.h>
  46
  47#include <trace/events/timer.h>
  48
  49#include "tick-internal.h"
  50
  51/*
  52 * Masks for selecting the soft and hard context timers from
  53 * cpu_base->active
  54 */
  55#define MASK_SHIFT              (HRTIMER_BASE_MONOTONIC_SOFT)
  56#define HRTIMER_ACTIVE_HARD     ((1U << MASK_SHIFT) - 1)
  57#define HRTIMER_ACTIVE_SOFT     (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  58#define HRTIMER_ACTIVE_ALL      (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  59
  60/*
  61 * The timer bases:
  62 *
  63 * There are more clockids than hrtimer bases. Thus, we index
  64 * into the timer bases by the hrtimer_base_type enum. When trying
  65 * to reach a base using a clockid, hrtimer_clockid_to_base()
  66 * is used to convert from clockid to the proper hrtimer_base_type.
  67 */
  68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  69{
  70        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93                {
  94                        .index = HRTIMER_BASE_MONOTONIC_SOFT,
  95                        .clockid = CLOCK_MONOTONIC,
  96                        .get_time = &ktime_get,
  97                },
  98                {
  99                        .index = HRTIMER_BASE_REALTIME_SOFT,
 100                        .clockid = CLOCK_REALTIME,
 101                        .get_time = &ktime_get_real,
 102                },
 103                {
 104                        .index = HRTIMER_BASE_BOOTTIME_SOFT,
 105                        .clockid = CLOCK_BOOTTIME,
 106                        .get_time = &ktime_get_boottime,
 107                },
 108                {
 109                        .index = HRTIMER_BASE_TAI_SOFT,
 110                        .clockid = CLOCK_TAI,
 111                        .get_time = &ktime_get_clocktai,
 112                },
 113        }
 114};
 115
 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 117        /* Make sure we catch unsupported clockids */
 118        [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
 119
 120        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 121        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 122        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 123        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 124};
 125
 126/*
 127 * Functions and macros which are different for UP/SMP systems are kept in a
 128 * single place
 129 */
 130#ifdef CONFIG_SMP
 131
 132/*
 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 134 * such that hrtimer_callback_running() can unconditionally dereference
 135 * timer->base->cpu_base
 136 */
 137static struct hrtimer_cpu_base migration_cpu_base = {
 138        .clock_base = { {
 139                .cpu_base = &migration_cpu_base,
 140                .seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
 141                                                     &migration_cpu_base.lock),
 142        }, },
 143};
 144
 145#define migration_base  migration_cpu_base.clock_base[0]
 146
 147static inline bool is_migration_base(struct hrtimer_clock_base *base)
 148{
 149        return base == &migration_base;
 150}
 151
 152/*
 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 154 * means that all timers which are tied to this base via timer->base are
 155 * locked, and the base itself is locked too.
 156 *
 157 * So __run_timers/migrate_timers can safely modify all timers which could
 158 * be found on the lists/queues.
 159 *
 160 * When the timer's base is locked, and the timer removed from list, it is
 161 * possible to set timer->base = &migration_base and drop the lock: the timer
 162 * remains locked.
 163 */
 164static
 165struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 166                                             unsigned long *flags)
 167{
 168        struct hrtimer_clock_base *base;
 169
 170        for (;;) {
 171                base = READ_ONCE(timer->base);
 172                if (likely(base != &migration_base)) {
 173                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 174                        if (likely(base == timer->base))
 175                                return base;
 176                        /* The timer has migrated to another CPU: */
 177                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 178                }
 179                cpu_relax();
 180        }
 181}
 182
 183/*
 184 * We do not migrate the timer when it is expiring before the next
 185 * event on the target cpu. When high resolution is enabled, we cannot
 186 * reprogram the target cpu hardware and we would cause it to fire
 187 * late. To keep it simple, we handle the high resolution enabled and
 188 * disabled case similar.
 189 *
 190 * Called with cpu_base->lock of target cpu held.
 191 */
 192static int
 193hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 194{
 195        ktime_t expires;
 196
 197        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 198        return expires < new_base->cpu_base->expires_next;
 199}
 200
 201static inline
 202struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 203                                         int pinned)
 204{
 205#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 206        if (static_branch_likely(&timers_migration_enabled) && !pinned)
 207                return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 208#endif
 209        return base;
 210}
 211
 212/*
 213 * We switch the timer base to a power-optimized selected CPU target,
 214 * if:
 215 *      - NO_HZ_COMMON is enabled
 216 *      - timer migration is enabled
 217 *      - the timer callback is not running
 218 *      - the timer is not the first expiring timer on the new target
 219 *
 220 * If one of the above requirements is not fulfilled we move the timer
 221 * to the current CPU or leave it on the previously assigned CPU if
 222 * the timer callback is currently running.
 223 */
 224static inline struct hrtimer_clock_base *
 225switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 226                    int pinned)
 227{
 228        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 229        struct hrtimer_clock_base *new_base;
 230        int basenum = base->index;
 231
 232        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 233        new_cpu_base = get_target_base(this_cpu_base, pinned);
 234again:
 235        new_base = &new_cpu_base->clock_base[basenum];
 236
 237        if (base != new_base) {
 238                /*
 239                 * We are trying to move timer to new_base.
 240                 * However we can't change timer's base while it is running,
 241                 * so we keep it on the same CPU. No hassle vs. reprogramming
 242                 * the event source in the high resolution case. The softirq
 243                 * code will take care of this when the timer function has
 244                 * completed. There is no conflict as we hold the lock until
 245                 * the timer is enqueued.
 246                 */
 247                if (unlikely(hrtimer_callback_running(timer)))
 248                        return base;
 249
 250                /* See the comment in lock_hrtimer_base() */
 251                WRITE_ONCE(timer->base, &migration_base);
 252                raw_spin_unlock(&base->cpu_base->lock);
 253                raw_spin_lock(&new_base->cpu_base->lock);
 254
 255                if (new_cpu_base != this_cpu_base &&
 256                    hrtimer_check_target(timer, new_base)) {
 257                        raw_spin_unlock(&new_base->cpu_base->lock);
 258                        raw_spin_lock(&base->cpu_base->lock);
 259                        new_cpu_base = this_cpu_base;
 260                        WRITE_ONCE(timer->base, base);
 261                        goto again;
 262                }
 263                WRITE_ONCE(timer->base, new_base);
 264        } else {
 265                if (new_cpu_base != this_cpu_base &&
 266                    hrtimer_check_target(timer, new_base)) {
 267                        new_cpu_base = this_cpu_base;
 268                        goto again;
 269                }
 270        }
 271        return new_base;
 272}
 273
 274#else /* CONFIG_SMP */
 275
 276static inline bool is_migration_base(struct hrtimer_clock_base *base)
 277{
 278        return false;
 279}
 280
 281static inline struct hrtimer_clock_base *
 282lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 283{
 284        struct hrtimer_clock_base *base = timer->base;
 285
 286        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 287
 288        return base;
 289}
 290
 291# define switch_hrtimer_base(t, b, p)   (b)
 292
 293#endif  /* !CONFIG_SMP */
 294
 295/*
 296 * Functions for the union type storage format of ktime_t which are
 297 * too large for inlining:
 298 */
 299#if BITS_PER_LONG < 64
 300/*
 301 * Divide a ktime value by a nanosecond value
 302 */
 303s64 __ktime_divns(const ktime_t kt, s64 div)
 304{
 305        int sft = 0;
 306        s64 dclc;
 307        u64 tmp;
 308
 309        dclc = ktime_to_ns(kt);
 310        tmp = dclc < 0 ? -dclc : dclc;
 311
 312        /* Make sure the divisor is less than 2^32: */
 313        while (div >> 32) {
 314                sft++;
 315                div >>= 1;
 316        }
 317        tmp >>= sft;
 318        do_div(tmp, (u32) div);
 319        return dclc < 0 ? -tmp : tmp;
 320}
 321EXPORT_SYMBOL_GPL(__ktime_divns);
 322#endif /* BITS_PER_LONG >= 64 */
 323
 324/*
 325 * Add two ktime values and do a safety check for overflow:
 326 */
 327ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 328{
 329        ktime_t res = ktime_add_unsafe(lhs, rhs);
 330
 331        /*
 332         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 333         * return to user space in a timespec:
 334         */
 335        if (res < 0 || res < lhs || res < rhs)
 336                res = ktime_set(KTIME_SEC_MAX, 0);
 337
 338        return res;
 339}
 340
 341EXPORT_SYMBOL_GPL(ktime_add_safe);
 342
 343#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 344
 345static const struct debug_obj_descr hrtimer_debug_descr;
 346
 347static void *hrtimer_debug_hint(void *addr)
 348{
 349        return ((struct hrtimer *) addr)->function;
 350}
 351
 352/*
 353 * fixup_init is called when:
 354 * - an active object is initialized
 355 */
 356static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 357{
 358        struct hrtimer *timer = addr;
 359
 360        switch (state) {
 361        case ODEBUG_STATE_ACTIVE:
 362                hrtimer_cancel(timer);
 363                debug_object_init(timer, &hrtimer_debug_descr);
 364                return true;
 365        default:
 366                return false;
 367        }
 368}
 369
 370/*
 371 * fixup_activate is called when:
 372 * - an active object is activated
 373 * - an unknown non-static object is activated
 374 */
 375static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 376{
 377        switch (state) {
 378        case ODEBUG_STATE_ACTIVE:
 379                WARN_ON(1);
 380                fallthrough;
 381        default:
 382                return false;
 383        }
 384}
 385
 386/*
 387 * fixup_free is called when:
 388 * - an active object is freed
 389 */
 390static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 391{
 392        struct hrtimer *timer = addr;
 393
 394        switch (state) {
 395        case ODEBUG_STATE_ACTIVE:
 396                hrtimer_cancel(timer);
 397                debug_object_free(timer, &hrtimer_debug_descr);
 398                return true;
 399        default:
 400                return false;
 401        }
 402}
 403
 404static const struct debug_obj_descr hrtimer_debug_descr = {
 405        .name           = "hrtimer",
 406        .debug_hint     = hrtimer_debug_hint,
 407        .fixup_init     = hrtimer_fixup_init,
 408        .fixup_activate = hrtimer_fixup_activate,
 409        .fixup_free     = hrtimer_fixup_free,
 410};
 411
 412static inline void debug_hrtimer_init(struct hrtimer *timer)
 413{
 414        debug_object_init(timer, &hrtimer_debug_descr);
 415}
 416
 417static inline void debug_hrtimer_activate(struct hrtimer *timer,
 418                                          enum hrtimer_mode mode)
 419{
 420        debug_object_activate(timer, &hrtimer_debug_descr);
 421}
 422
 423static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 424{
 425        debug_object_deactivate(timer, &hrtimer_debug_descr);
 426}
 427
 428static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 429                           enum hrtimer_mode mode);
 430
 431void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 432                           enum hrtimer_mode mode)
 433{
 434        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 435        __hrtimer_init(timer, clock_id, mode);
 436}
 437EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 438
 439static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
 440                                   clockid_t clock_id, enum hrtimer_mode mode);
 441
 442void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
 443                                   clockid_t clock_id, enum hrtimer_mode mode)
 444{
 445        debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
 446        __hrtimer_init_sleeper(sl, clock_id, mode);
 447}
 448EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
 449
 450void destroy_hrtimer_on_stack(struct hrtimer *timer)
 451{
 452        debug_object_free(timer, &hrtimer_debug_descr);
 453}
 454EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 455
 456#else
 457
 458static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 459static inline void debug_hrtimer_activate(struct hrtimer *timer,
 460                                          enum hrtimer_mode mode) { }
 461static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 462#endif
 463
 464static inline void
 465debug_init(struct hrtimer *timer, clockid_t clockid,
 466           enum hrtimer_mode mode)
 467{
 468        debug_hrtimer_init(timer);
 469        trace_hrtimer_init(timer, clockid, mode);
 470}
 471
 472static inline void debug_activate(struct hrtimer *timer,
 473                                  enum hrtimer_mode mode)
 474{
 475        debug_hrtimer_activate(timer, mode);
 476        trace_hrtimer_start(timer, mode);
 477}
 478
 479static inline void debug_deactivate(struct hrtimer *timer)
 480{
 481        debug_hrtimer_deactivate(timer);
 482        trace_hrtimer_cancel(timer);
 483}
 484
 485static struct hrtimer_clock_base *
 486__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 487{
 488        unsigned int idx;
 489
 490        if (!*active)
 491                return NULL;
 492
 493        idx = __ffs(*active);
 494        *active &= ~(1U << idx);
 495
 496        return &cpu_base->clock_base[idx];
 497}
 498
 499#define for_each_active_base(base, cpu_base, active)    \
 500        while ((base = __next_base((cpu_base), &(active))))
 501
 502static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 503                                         const struct hrtimer *exclude,
 504                                         unsigned int active,
 505                                         ktime_t expires_next)
 506{
 507        struct hrtimer_clock_base *base;
 508        ktime_t expires;
 509
 510        for_each_active_base(base, cpu_base, active) {
 511                struct timerqueue_node *next;
 512                struct hrtimer *timer;
 513
 514                next = timerqueue_getnext(&base->active);
 515                timer = container_of(next, struct hrtimer, node);
 516                if (timer == exclude) {
 517                        /* Get to the next timer in the queue. */
 518                        next = timerqueue_iterate_next(next);
 519                        if (!next)
 520                                continue;
 521
 522                        timer = container_of(next, struct hrtimer, node);
 523                }
 524                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 525                if (expires < expires_next) {
 526                        expires_next = expires;
 527
 528                        /* Skip cpu_base update if a timer is being excluded. */
 529                        if (exclude)
 530                                continue;
 531
 532                        if (timer->is_soft)
 533                                cpu_base->softirq_next_timer = timer;
 534                        else
 535                                cpu_base->next_timer = timer;
 536                }
 537        }
 538        /*
 539         * clock_was_set() might have changed base->offset of any of
 540         * the clock bases so the result might be negative. Fix it up
 541         * to prevent a false positive in clockevents_program_event().
 542         */
 543        if (expires_next < 0)
 544                expires_next = 0;
 545        return expires_next;
 546}
 547
 548/*
 549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
 550 * but does not set cpu_base::*expires_next, that is done by
 551 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
 552 * cpu_base::*expires_next right away, reprogramming logic would no longer
 553 * work.
 554 *
 555 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 556 * those timers will get run whenever the softirq gets handled, at the end of
 557 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 558 *
 559 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 560 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 561 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 562 *
 563 * @active_mask must be one of:
 564 *  - HRTIMER_ACTIVE_ALL,
 565 *  - HRTIMER_ACTIVE_SOFT, or
 566 *  - HRTIMER_ACTIVE_HARD.
 567 */
 568static ktime_t
 569__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 570{
 571        unsigned int active;
 572        struct hrtimer *next_timer = NULL;
 573        ktime_t expires_next = KTIME_MAX;
 574
 575        if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 576                active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 577                cpu_base->softirq_next_timer = NULL;
 578                expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 579                                                         active, KTIME_MAX);
 580
 581                next_timer = cpu_base->softirq_next_timer;
 582        }
 583
 584        if (active_mask & HRTIMER_ACTIVE_HARD) {
 585                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 586                cpu_base->next_timer = next_timer;
 587                expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 588                                                         expires_next);
 589        }
 590
 591        return expires_next;
 592}
 593
 594static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
 595{
 596        ktime_t expires_next, soft = KTIME_MAX;
 597
 598        /*
 599         * If the soft interrupt has already been activated, ignore the
 600         * soft bases. They will be handled in the already raised soft
 601         * interrupt.
 602         */
 603        if (!cpu_base->softirq_activated) {
 604                soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
 605                /*
 606                 * Update the soft expiry time. clock_settime() might have
 607                 * affected it.
 608                 */
 609                cpu_base->softirq_expires_next = soft;
 610        }
 611
 612        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
 613        /*
 614         * If a softirq timer is expiring first, update cpu_base->next_timer
 615         * and program the hardware with the soft expiry time.
 616         */
 617        if (expires_next > soft) {
 618                cpu_base->next_timer = cpu_base->softirq_next_timer;
 619                expires_next = soft;
 620        }
 621
 622        return expires_next;
 623}
 624
 625static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 626{
 627        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 628        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 629        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 630
 631        ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 632                                            offs_real, offs_boot, offs_tai);
 633
 634        base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 635        base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 636        base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 637
 638        return now;
 639}
 640
 641/*
 642 * Is the high resolution mode active ?
 643 */
 644static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 645{
 646        return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 647                cpu_base->hres_active : 0;
 648}
 649
 650static inline int hrtimer_hres_active(void)
 651{
 652        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 653}
 654
 655/*
 656 * Reprogram the event source with checking both queues for the
 657 * next event
 658 * Called with interrupts disabled and base->lock held
 659 */
 660static void
 661hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 662{
 663        ktime_t expires_next;
 664
 665        expires_next = hrtimer_update_next_event(cpu_base);
 666
 667        if (skip_equal && expires_next == cpu_base->expires_next)
 668                return;
 669
 670        cpu_base->expires_next = expires_next;
 671
 672        /*
 673         * If hres is not active, hardware does not have to be
 674         * reprogrammed yet.
 675         *
 676         * If a hang was detected in the last timer interrupt then we
 677         * leave the hang delay active in the hardware. We want the
 678         * system to make progress. That also prevents the following
 679         * scenario:
 680         * T1 expires 50ms from now
 681         * T2 expires 5s from now
 682         *
 683         * T1 is removed, so this code is called and would reprogram
 684         * the hardware to 5s from now. Any hrtimer_start after that
 685         * will not reprogram the hardware due to hang_detected being
 686         * set. So we'd effectively block all timers until the T2 event
 687         * fires.
 688         */
 689        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 690                return;
 691
 692        tick_program_event(cpu_base->expires_next, 1);
 693}
 694
 695/* High resolution timer related functions */
 696#ifdef CONFIG_HIGH_RES_TIMERS
 697
 698/*
 699 * High resolution timer enabled ?
 700 */
 701static bool hrtimer_hres_enabled __read_mostly  = true;
 702unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 703EXPORT_SYMBOL_GPL(hrtimer_resolution);
 704
 705/*
 706 * Enable / Disable high resolution mode
 707 */
 708static int __init setup_hrtimer_hres(char *str)
 709{
 710        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 711}
 712
 713__setup("highres=", setup_hrtimer_hres);
 714
 715/*
 716 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 717 */
 718static inline int hrtimer_is_hres_enabled(void)
 719{
 720        return hrtimer_hres_enabled;
 721}
 722
 723/*
 724 * Retrigger next event is called after clock was set
 725 *
 726 * Called with interrupts disabled via on_each_cpu()
 727 */
 728static void retrigger_next_event(void *arg)
 729{
 730        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 731
 732        if (!__hrtimer_hres_active(base))
 733                return;
 734
 735        raw_spin_lock(&base->lock);
 736        hrtimer_update_base(base);
 737        hrtimer_force_reprogram(base, 0);
 738        raw_spin_unlock(&base->lock);
 739}
 740
 741/*
 742 * Switch to high resolution mode
 743 */
 744static void hrtimer_switch_to_hres(void)
 745{
 746        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 747
 748        if (tick_init_highres()) {
 749                pr_warn("Could not switch to high resolution mode on CPU %u\n",
 750                        base->cpu);
 751                return;
 752        }
 753        base->hres_active = 1;
 754        hrtimer_resolution = HIGH_RES_NSEC;
 755
 756        tick_setup_sched_timer();
 757        /* "Retrigger" the interrupt to get things going */
 758        retrigger_next_event(NULL);
 759}
 760
 761static void clock_was_set_work(struct work_struct *work)
 762{
 763        clock_was_set();
 764}
 765
 766static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 767
 768/*
 769 * Called from timekeeping and resume code to reprogram the hrtimer
 770 * interrupt device on all cpus.
 771 */
 772void clock_was_set_delayed(void)
 773{
 774        schedule_work(&hrtimer_work);
 775}
 776
 777#else
 778
 779static inline int hrtimer_is_hres_enabled(void) { return 0; }
 780static inline void hrtimer_switch_to_hres(void) { }
 781static inline void retrigger_next_event(void *arg) { }
 782
 783#endif /* CONFIG_HIGH_RES_TIMERS */
 784
 785/*
 786 * When a timer is enqueued and expires earlier than the already enqueued
 787 * timers, we have to check, whether it expires earlier than the timer for
 788 * which the clock event device was armed.
 789 *
 790 * Called with interrupts disabled and base->cpu_base.lock held
 791 */
 792static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 793{
 794        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 795        struct hrtimer_clock_base *base = timer->base;
 796        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 797
 798        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 799
 800        /*
 801         * CLOCK_REALTIME timer might be requested with an absolute
 802         * expiry time which is less than base->offset. Set it to 0.
 803         */
 804        if (expires < 0)
 805                expires = 0;
 806
 807        if (timer->is_soft) {
 808                /*
 809                 * soft hrtimer could be started on a remote CPU. In this
 810                 * case softirq_expires_next needs to be updated on the
 811                 * remote CPU. The soft hrtimer will not expire before the
 812                 * first hard hrtimer on the remote CPU -
 813                 * hrtimer_check_target() prevents this case.
 814                 */
 815                struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 816
 817                if (timer_cpu_base->softirq_activated)
 818                        return;
 819
 820                if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 821                        return;
 822
 823                timer_cpu_base->softirq_next_timer = timer;
 824                timer_cpu_base->softirq_expires_next = expires;
 825
 826                if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 827                    !reprogram)
 828                        return;
 829        }
 830
 831        /*
 832         * If the timer is not on the current cpu, we cannot reprogram
 833         * the other cpus clock event device.
 834         */
 835        if (base->cpu_base != cpu_base)
 836                return;
 837
 838        /*
 839         * If the hrtimer interrupt is running, then it will
 840         * reevaluate the clock bases and reprogram the clock event
 841         * device. The callbacks are always executed in hard interrupt
 842         * context so we don't need an extra check for a running
 843         * callback.
 844         */
 845        if (cpu_base->in_hrtirq)
 846                return;
 847
 848        if (expires >= cpu_base->expires_next)
 849                return;
 850
 851        /* Update the pointer to the next expiring timer */
 852        cpu_base->next_timer = timer;
 853        cpu_base->expires_next = expires;
 854
 855        /*
 856         * If hres is not active, hardware does not have to be
 857         * programmed yet.
 858         *
 859         * If a hang was detected in the last timer interrupt then we
 860         * do not schedule a timer which is earlier than the expiry
 861         * which we enforced in the hang detection. We want the system
 862         * to make progress.
 863         */
 864        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 865                return;
 866
 867        /*
 868         * Program the timer hardware. We enforce the expiry for
 869         * events which are already in the past.
 870         */
 871        tick_program_event(expires, 1);
 872}
 873
 874/*
 875 * Clock realtime was set
 876 *
 877 * Change the offset of the realtime clock vs. the monotonic
 878 * clock.
 879 *
 880 * We might have to reprogram the high resolution timer interrupt. On
 881 * SMP we call the architecture specific code to retrigger _all_ high
 882 * resolution timer interrupts. On UP we just disable interrupts and
 883 * call the high resolution interrupt code.
 884 */
 885void clock_was_set(void)
 886{
 887#ifdef CONFIG_HIGH_RES_TIMERS
 888        /* Retrigger the CPU local events everywhere */
 889        on_each_cpu(retrigger_next_event, NULL, 1);
 890#endif
 891        timerfd_clock_was_set();
 892}
 893
 894/*
 895 * During resume we might have to reprogram the high resolution timer
 896 * interrupt on all online CPUs.  However, all other CPUs will be
 897 * stopped with IRQs interrupts disabled so the clock_was_set() call
 898 * must be deferred.
 899 */
 900void hrtimers_resume(void)
 901{
 902        lockdep_assert_irqs_disabled();
 903        /* Retrigger on the local CPU */
 904        retrigger_next_event(NULL);
 905        /* And schedule a retrigger for all others */
 906        clock_was_set_delayed();
 907}
 908
 909/*
 910 * Counterpart to lock_hrtimer_base above:
 911 */
 912static inline
 913void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 914{
 915        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 916}
 917
 918/**
 919 * hrtimer_forward - forward the timer expiry
 920 * @timer:      hrtimer to forward
 921 * @now:        forward past this time
 922 * @interval:   the interval to forward
 923 *
 924 * Forward the timer expiry so it will expire in the future.
 925 * Returns the number of overruns.
 926 *
 927 * Can be safely called from the callback function of @timer. If
 928 * called from other contexts @timer must neither be enqueued nor
 929 * running the callback and the caller needs to take care of
 930 * serialization.
 931 *
 932 * Note: This only updates the timer expiry value and does not requeue
 933 * the timer.
 934 */
 935u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 936{
 937        u64 orun = 1;
 938        ktime_t delta;
 939
 940        delta = ktime_sub(now, hrtimer_get_expires(timer));
 941
 942        if (delta < 0)
 943                return 0;
 944
 945        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 946                return 0;
 947
 948        if (interval < hrtimer_resolution)
 949                interval = hrtimer_resolution;
 950
 951        if (unlikely(delta >= interval)) {
 952                s64 incr = ktime_to_ns(interval);
 953
 954                orun = ktime_divns(delta, incr);
 955                hrtimer_add_expires_ns(timer, incr * orun);
 956                if (hrtimer_get_expires_tv64(timer) > now)
 957                        return orun;
 958                /*
 959                 * This (and the ktime_add() below) is the
 960                 * correction for exact:
 961                 */
 962                orun++;
 963        }
 964        hrtimer_add_expires(timer, interval);
 965
 966        return orun;
 967}
 968EXPORT_SYMBOL_GPL(hrtimer_forward);
 969
 970/*
 971 * enqueue_hrtimer - internal function to (re)start a timer
 972 *
 973 * The timer is inserted in expiry order. Insertion into the
 974 * red black tree is O(log(n)). Must hold the base lock.
 975 *
 976 * Returns 1 when the new timer is the leftmost timer in the tree.
 977 */
 978static int enqueue_hrtimer(struct hrtimer *timer,
 979                           struct hrtimer_clock_base *base,
 980                           enum hrtimer_mode mode)
 981{
 982        debug_activate(timer, mode);
 983
 984        base->cpu_base->active_bases |= 1 << base->index;
 985
 986        /* Pairs with the lockless read in hrtimer_is_queued() */
 987        WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
 988
 989        return timerqueue_add(&base->active, &timer->node);
 990}
 991
 992/*
 993 * __remove_hrtimer - internal function to remove a timer
 994 *
 995 * Caller must hold the base lock.
 996 *
 997 * High resolution timer mode reprograms the clock event device when the
 998 * timer is the one which expires next. The caller can disable this by setting
 999 * reprogram to zero. This is useful, when the context does a reprogramming
1000 * anyway (e.g. timer interrupt)
1001 */
1002static void __remove_hrtimer(struct hrtimer *timer,
1003                             struct hrtimer_clock_base *base,
1004                             u8 newstate, int reprogram)
1005{
1006        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1007        u8 state = timer->state;
1008
1009        /* Pairs with the lockless read in hrtimer_is_queued() */
1010        WRITE_ONCE(timer->state, newstate);
1011        if (!(state & HRTIMER_STATE_ENQUEUED))
1012                return;
1013
1014        if (!timerqueue_del(&base->active, &timer->node))
1015                cpu_base->active_bases &= ~(1 << base->index);
1016
1017        /*
1018         * Note: If reprogram is false we do not update
1019         * cpu_base->next_timer. This happens when we remove the first
1020         * timer on a remote cpu. No harm as we never dereference
1021         * cpu_base->next_timer. So the worst thing what can happen is
1022         * an superfluous call to hrtimer_force_reprogram() on the
1023         * remote cpu later on if the same timer gets enqueued again.
1024         */
1025        if (reprogram && timer == cpu_base->next_timer)
1026                hrtimer_force_reprogram(cpu_base, 1);
1027}
1028
1029/*
1030 * remove hrtimer, called with base lock held
1031 */
1032static inline int
1033remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1034{
1035        u8 state = timer->state;
1036
1037        if (state & HRTIMER_STATE_ENQUEUED) {
1038                int reprogram;
1039
1040                /*
1041                 * Remove the timer and force reprogramming when high
1042                 * resolution mode is active and the timer is on the current
1043                 * CPU. If we remove a timer on another CPU, reprogramming is
1044                 * skipped. The interrupt event on this CPU is fired and
1045                 * reprogramming happens in the interrupt handler. This is a
1046                 * rare case and less expensive than a smp call.
1047                 */
1048                debug_deactivate(timer);
1049                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1050
1051                if (!restart)
1052                        state = HRTIMER_STATE_INACTIVE;
1053
1054                __remove_hrtimer(timer, base, state, reprogram);
1055                return 1;
1056        }
1057        return 0;
1058}
1059
1060static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1061                                            const enum hrtimer_mode mode)
1062{
1063#ifdef CONFIG_TIME_LOW_RES
1064        /*
1065         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1066         * granular time values. For relative timers we add hrtimer_resolution
1067         * (i.e. one jiffie) to prevent short timeouts.
1068         */
1069        timer->is_rel = mode & HRTIMER_MODE_REL;
1070        if (timer->is_rel)
1071                tim = ktime_add_safe(tim, hrtimer_resolution);
1072#endif
1073        return tim;
1074}
1075
1076static void
1077hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1078{
1079        ktime_t expires;
1080
1081        /*
1082         * Find the next SOFT expiration.
1083         */
1084        expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1085
1086        /*
1087         * reprogramming needs to be triggered, even if the next soft
1088         * hrtimer expires at the same time than the next hard
1089         * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1090         */
1091        if (expires == KTIME_MAX)
1092                return;
1093
1094        /*
1095         * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1096         * cpu_base->*expires_next is only set by hrtimer_reprogram()
1097         */
1098        hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1099}
1100
1101static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1102                                    u64 delta_ns, const enum hrtimer_mode mode,
1103                                    struct hrtimer_clock_base *base)
1104{
1105        struct hrtimer_clock_base *new_base;
1106
1107        /* Remove an active timer from the queue: */
1108        remove_hrtimer(timer, base, true);
1109
1110        if (mode & HRTIMER_MODE_REL)
1111                tim = ktime_add_safe(tim, base->get_time());
1112
1113        tim = hrtimer_update_lowres(timer, tim, mode);
1114
1115        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1116
1117        /* Switch the timer base, if necessary: */
1118        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1119
1120        return enqueue_hrtimer(timer, new_base, mode);
1121}
1122
1123/**
1124 * hrtimer_start_range_ns - (re)start an hrtimer
1125 * @timer:      the timer to be added
1126 * @tim:        expiry time
1127 * @delta_ns:   "slack" range for the timer
1128 * @mode:       timer mode: absolute (HRTIMER_MODE_ABS) or
1129 *              relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1130 *              softirq based mode is considered for debug purpose only!
1131 */
1132void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1133                            u64 delta_ns, const enum hrtimer_mode mode)
1134{
1135        struct hrtimer_clock_base *base;
1136        unsigned long flags;
1137
1138        /*
1139         * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1140         * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1141         * expiry mode because unmarked timers are moved to softirq expiry.
1142         */
1143        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1144                WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1145        else
1146                WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1147
1148        base = lock_hrtimer_base(timer, &flags);
1149
1150        if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1151                hrtimer_reprogram(timer, true);
1152
1153        unlock_hrtimer_base(timer, &flags);
1154}
1155EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1156
1157/**
1158 * hrtimer_try_to_cancel - try to deactivate a timer
1159 * @timer:      hrtimer to stop
1160 *
1161 * Returns:
1162 *
1163 *  *  0 when the timer was not active
1164 *  *  1 when the timer was active
1165 *  * -1 when the timer is currently executing the callback function and
1166 *    cannot be stopped
1167 */
1168int hrtimer_try_to_cancel(struct hrtimer *timer)
1169{
1170        struct hrtimer_clock_base *base;
1171        unsigned long flags;
1172        int ret = -1;
1173
1174        /*
1175         * Check lockless first. If the timer is not active (neither
1176         * enqueued nor running the callback, nothing to do here.  The
1177         * base lock does not serialize against a concurrent enqueue,
1178         * so we can avoid taking it.
1179         */
1180        if (!hrtimer_active(timer))
1181                return 0;
1182
1183        base = lock_hrtimer_base(timer, &flags);
1184
1185        if (!hrtimer_callback_running(timer))
1186                ret = remove_hrtimer(timer, base, false);
1187
1188        unlock_hrtimer_base(timer, &flags);
1189
1190        return ret;
1191
1192}
1193EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1194
1195#ifdef CONFIG_PREEMPT_RT
1196static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1197{
1198        spin_lock_init(&base->softirq_expiry_lock);
1199}
1200
1201static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1202{
1203        spin_lock(&base->softirq_expiry_lock);
1204}
1205
1206static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1207{
1208        spin_unlock(&base->softirq_expiry_lock);
1209}
1210
1211/*
1212 * The counterpart to hrtimer_cancel_wait_running().
1213 *
1214 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1215 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1216 * allows the waiter to acquire the lock and make progress.
1217 */
1218static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1219                                      unsigned long flags)
1220{
1221        if (atomic_read(&cpu_base->timer_waiters)) {
1222                raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1223                spin_unlock(&cpu_base->softirq_expiry_lock);
1224                spin_lock(&cpu_base->softirq_expiry_lock);
1225                raw_spin_lock_irq(&cpu_base->lock);
1226        }
1227}
1228
1229/*
1230 * This function is called on PREEMPT_RT kernels when the fast path
1231 * deletion of a timer failed because the timer callback function was
1232 * running.
1233 *
1234 * This prevents priority inversion: if the soft irq thread is preempted
1235 * in the middle of a timer callback, then calling del_timer_sync() can
1236 * lead to two issues:
1237 *
1238 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1239 *    handler to complete. This can result in unbound priority inversion.
1240 *
1241 *  - If the caller originates from the task which preempted the timer
1242 *    handler on the same CPU, then spin waiting for the timer handler to
1243 *    complete is never going to end.
1244 */
1245void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1246{
1247        /* Lockless read. Prevent the compiler from reloading it below */
1248        struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1249
1250        /*
1251         * Just relax if the timer expires in hard interrupt context or if
1252         * it is currently on the migration base.
1253         */
1254        if (!timer->is_soft || is_migration_base(base)) {
1255                cpu_relax();
1256                return;
1257        }
1258
1259        /*
1260         * Mark the base as contended and grab the expiry lock, which is
1261         * held by the softirq across the timer callback. Drop the lock
1262         * immediately so the softirq can expire the next timer. In theory
1263         * the timer could already be running again, but that's more than
1264         * unlikely and just causes another wait loop.
1265         */
1266        atomic_inc(&base->cpu_base->timer_waiters);
1267        spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1268        atomic_dec(&base->cpu_base->timer_waiters);
1269        spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1270}
1271#else
1272static inline void
1273hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1274static inline void
1275hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1276static inline void
1277hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1278static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1279                                             unsigned long flags) { }
1280#endif
1281
1282/**
1283 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1284 * @timer:      the timer to be cancelled
1285 *
1286 * Returns:
1287 *  0 when the timer was not active
1288 *  1 when the timer was active
1289 */
1290int hrtimer_cancel(struct hrtimer *timer)
1291{
1292        int ret;
1293
1294        do {
1295                ret = hrtimer_try_to_cancel(timer);
1296
1297                if (ret < 0)
1298                        hrtimer_cancel_wait_running(timer);
1299        } while (ret < 0);
1300        return ret;
1301}
1302EXPORT_SYMBOL_GPL(hrtimer_cancel);
1303
1304/**
1305 * __hrtimer_get_remaining - get remaining time for the timer
1306 * @timer:      the timer to read
1307 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1308 */
1309ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1310{
1311        unsigned long flags;
1312        ktime_t rem;
1313
1314        lock_hrtimer_base(timer, &flags);
1315        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1316                rem = hrtimer_expires_remaining_adjusted(timer);
1317        else
1318                rem = hrtimer_expires_remaining(timer);
1319        unlock_hrtimer_base(timer, &flags);
1320
1321        return rem;
1322}
1323EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1324
1325#ifdef CONFIG_NO_HZ_COMMON
1326/**
1327 * hrtimer_get_next_event - get the time until next expiry event
1328 *
1329 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1330 */
1331u64 hrtimer_get_next_event(void)
1332{
1333        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1334        u64 expires = KTIME_MAX;
1335        unsigned long flags;
1336
1337        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1338
1339        if (!__hrtimer_hres_active(cpu_base))
1340                expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1341
1342        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1343
1344        return expires;
1345}
1346
1347/**
1348 * hrtimer_next_event_without - time until next expiry event w/o one timer
1349 * @exclude:    timer to exclude
1350 *
1351 * Returns the next expiry time over all timers except for the @exclude one or
1352 * KTIME_MAX if none of them is pending.
1353 */
1354u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1355{
1356        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1357        u64 expires = KTIME_MAX;
1358        unsigned long flags;
1359
1360        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1361
1362        if (__hrtimer_hres_active(cpu_base)) {
1363                unsigned int active;
1364
1365                if (!cpu_base->softirq_activated) {
1366                        active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1367                        expires = __hrtimer_next_event_base(cpu_base, exclude,
1368                                                            active, KTIME_MAX);
1369                }
1370                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1371                expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1372                                                    expires);
1373        }
1374
1375        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1376
1377        return expires;
1378}
1379#endif
1380
1381static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1382{
1383        if (likely(clock_id < MAX_CLOCKS)) {
1384                int base = hrtimer_clock_to_base_table[clock_id];
1385
1386                if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1387                        return base;
1388        }
1389        WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1390        return HRTIMER_BASE_MONOTONIC;
1391}
1392
1393static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1394                           enum hrtimer_mode mode)
1395{
1396        bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1397        struct hrtimer_cpu_base *cpu_base;
1398        int base;
1399
1400        /*
1401         * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1402         * marked for hard interrupt expiry mode are moved into soft
1403         * interrupt context for latency reasons and because the callbacks
1404         * can invoke functions which might sleep on RT, e.g. spin_lock().
1405         */
1406        if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1407                softtimer = true;
1408
1409        memset(timer, 0, sizeof(struct hrtimer));
1410
1411        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1412
1413        /*
1414         * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1415         * clock modifications, so they needs to become CLOCK_MONOTONIC to
1416         * ensure POSIX compliance.
1417         */
1418        if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1419                clock_id = CLOCK_MONOTONIC;
1420
1421        base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1422        base += hrtimer_clockid_to_base(clock_id);
1423        timer->is_soft = softtimer;
1424        timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1425        timer->base = &cpu_base->clock_base[base];
1426        timerqueue_init(&timer->node);
1427}
1428
1429/**
1430 * hrtimer_init - initialize a timer to the given clock
1431 * @timer:      the timer to be initialized
1432 * @clock_id:   the clock to be used
1433 * @mode:       The modes which are relevant for initialization:
1434 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1435 *              HRTIMER_MODE_REL_SOFT
1436 *
1437 *              The PINNED variants of the above can be handed in,
1438 *              but the PINNED bit is ignored as pinning happens
1439 *              when the hrtimer is started
1440 */
1441void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1442                  enum hrtimer_mode mode)
1443{
1444        debug_init(timer, clock_id, mode);
1445        __hrtimer_init(timer, clock_id, mode);
1446}
1447EXPORT_SYMBOL_GPL(hrtimer_init);
1448
1449/*
1450 * A timer is active, when it is enqueued into the rbtree or the
1451 * callback function is running or it's in the state of being migrated
1452 * to another cpu.
1453 *
1454 * It is important for this function to not return a false negative.
1455 */
1456bool hrtimer_active(const struct hrtimer *timer)
1457{
1458        struct hrtimer_clock_base *base;
1459        unsigned int seq;
1460
1461        do {
1462                base = READ_ONCE(timer->base);
1463                seq = raw_read_seqcount_begin(&base->seq);
1464
1465                if (timer->state != HRTIMER_STATE_INACTIVE ||
1466                    base->running == timer)
1467                        return true;
1468
1469        } while (read_seqcount_retry(&base->seq, seq) ||
1470                 base != READ_ONCE(timer->base));
1471
1472        return false;
1473}
1474EXPORT_SYMBOL_GPL(hrtimer_active);
1475
1476/*
1477 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1478 * distinct sections:
1479 *
1480 *  - queued:   the timer is queued
1481 *  - callback: the timer is being ran
1482 *  - post:     the timer is inactive or (re)queued
1483 *
1484 * On the read side we ensure we observe timer->state and cpu_base->running
1485 * from the same section, if anything changed while we looked at it, we retry.
1486 * This includes timer->base changing because sequence numbers alone are
1487 * insufficient for that.
1488 *
1489 * The sequence numbers are required because otherwise we could still observe
1490 * a false negative if the read side got smeared over multiple consecutive
1491 * __run_hrtimer() invocations.
1492 */
1493
1494static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1495                          struct hrtimer_clock_base *base,
1496                          struct hrtimer *timer, ktime_t *now,
1497                          unsigned long flags) __must_hold(&cpu_base->lock)
1498{
1499        enum hrtimer_restart (*fn)(struct hrtimer *);
1500        bool expires_in_hardirq;
1501        int restart;
1502
1503        lockdep_assert_held(&cpu_base->lock);
1504
1505        debug_deactivate(timer);
1506        base->running = timer;
1507
1508        /*
1509         * Separate the ->running assignment from the ->state assignment.
1510         *
1511         * As with a regular write barrier, this ensures the read side in
1512         * hrtimer_active() cannot observe base->running == NULL &&
1513         * timer->state == INACTIVE.
1514         */
1515        raw_write_seqcount_barrier(&base->seq);
1516
1517        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1518        fn = timer->function;
1519
1520        /*
1521         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1522         * timer is restarted with a period then it becomes an absolute
1523         * timer. If its not restarted it does not matter.
1524         */
1525        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1526                timer->is_rel = false;
1527
1528        /*
1529         * The timer is marked as running in the CPU base, so it is
1530         * protected against migration to a different CPU even if the lock
1531         * is dropped.
1532         */
1533        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1534        trace_hrtimer_expire_entry(timer, now);
1535        expires_in_hardirq = lockdep_hrtimer_enter(timer);
1536
1537        restart = fn(timer);
1538
1539        lockdep_hrtimer_exit(expires_in_hardirq);
1540        trace_hrtimer_expire_exit(timer);
1541        raw_spin_lock_irq(&cpu_base->lock);
1542
1543        /*
1544         * Note: We clear the running state after enqueue_hrtimer and
1545         * we do not reprogram the event hardware. Happens either in
1546         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1547         *
1548         * Note: Because we dropped the cpu_base->lock above,
1549         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1550         * for us already.
1551         */
1552        if (restart != HRTIMER_NORESTART &&
1553            !(timer->state & HRTIMER_STATE_ENQUEUED))
1554                enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1555
1556        /*
1557         * Separate the ->running assignment from the ->state assignment.
1558         *
1559         * As with a regular write barrier, this ensures the read side in
1560         * hrtimer_active() cannot observe base->running.timer == NULL &&
1561         * timer->state == INACTIVE.
1562         */
1563        raw_write_seqcount_barrier(&base->seq);
1564
1565        WARN_ON_ONCE(base->running != timer);
1566        base->running = NULL;
1567}
1568
1569static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1570                                 unsigned long flags, unsigned int active_mask)
1571{
1572        struct hrtimer_clock_base *base;
1573        unsigned int active = cpu_base->active_bases & active_mask;
1574
1575        for_each_active_base(base, cpu_base, active) {
1576                struct timerqueue_node *node;
1577                ktime_t basenow;
1578
1579                basenow = ktime_add(now, base->offset);
1580
1581                while ((node = timerqueue_getnext(&base->active))) {
1582                        struct hrtimer *timer;
1583
1584                        timer = container_of(node, struct hrtimer, node);
1585
1586                        /*
1587                         * The immediate goal for using the softexpires is
1588                         * minimizing wakeups, not running timers at the
1589                         * earliest interrupt after their soft expiration.
1590                         * This allows us to avoid using a Priority Search
1591                         * Tree, which can answer a stabbing query for
1592                         * overlapping intervals and instead use the simple
1593                         * BST we already have.
1594                         * We don't add extra wakeups by delaying timers that
1595                         * are right-of a not yet expired timer, because that
1596                         * timer will have to trigger a wakeup anyway.
1597                         */
1598                        if (basenow < hrtimer_get_softexpires_tv64(timer))
1599                                break;
1600
1601                        __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1602                        if (active_mask == HRTIMER_ACTIVE_SOFT)
1603                                hrtimer_sync_wait_running(cpu_base, flags);
1604                }
1605        }
1606}
1607
1608static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1609{
1610        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611        unsigned long flags;
1612        ktime_t now;
1613
1614        hrtimer_cpu_base_lock_expiry(cpu_base);
1615        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1616
1617        now = hrtimer_update_base(cpu_base);
1618        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1619
1620        cpu_base->softirq_activated = 0;
1621        hrtimer_update_softirq_timer(cpu_base, true);
1622
1623        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1624        hrtimer_cpu_base_unlock_expiry(cpu_base);
1625}
1626
1627#ifdef CONFIG_HIGH_RES_TIMERS
1628
1629/*
1630 * High resolution timer interrupt
1631 * Called with interrupts disabled
1632 */
1633void hrtimer_interrupt(struct clock_event_device *dev)
1634{
1635        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1636        ktime_t expires_next, now, entry_time, delta;
1637        unsigned long flags;
1638        int retries = 0;
1639
1640        BUG_ON(!cpu_base->hres_active);
1641        cpu_base->nr_events++;
1642        dev->next_event = KTIME_MAX;
1643
1644        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1645        entry_time = now = hrtimer_update_base(cpu_base);
1646retry:
1647        cpu_base->in_hrtirq = 1;
1648        /*
1649         * We set expires_next to KTIME_MAX here with cpu_base->lock
1650         * held to prevent that a timer is enqueued in our queue via
1651         * the migration code. This does not affect enqueueing of
1652         * timers which run their callback and need to be requeued on
1653         * this CPU.
1654         */
1655        cpu_base->expires_next = KTIME_MAX;
1656
1657        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1658                cpu_base->softirq_expires_next = KTIME_MAX;
1659                cpu_base->softirq_activated = 1;
1660                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1661        }
1662
1663        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1664
1665        /* Reevaluate the clock bases for the [soft] next expiry */
1666        expires_next = hrtimer_update_next_event(cpu_base);
1667        /*
1668         * Store the new expiry value so the migration code can verify
1669         * against it.
1670         */
1671        cpu_base->expires_next = expires_next;
1672        cpu_base->in_hrtirq = 0;
1673        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1674
1675        /* Reprogramming necessary ? */
1676        if (!tick_program_event(expires_next, 0)) {
1677                cpu_base->hang_detected = 0;
1678                return;
1679        }
1680
1681        /*
1682         * The next timer was already expired due to:
1683         * - tracing
1684         * - long lasting callbacks
1685         * - being scheduled away when running in a VM
1686         *
1687         * We need to prevent that we loop forever in the hrtimer
1688         * interrupt routine. We give it 3 attempts to avoid
1689         * overreacting on some spurious event.
1690         *
1691         * Acquire base lock for updating the offsets and retrieving
1692         * the current time.
1693         */
1694        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1695        now = hrtimer_update_base(cpu_base);
1696        cpu_base->nr_retries++;
1697        if (++retries < 3)
1698                goto retry;
1699        /*
1700         * Give the system a chance to do something else than looping
1701         * here. We stored the entry time, so we know exactly how long
1702         * we spent here. We schedule the next event this amount of
1703         * time away.
1704         */
1705        cpu_base->nr_hangs++;
1706        cpu_base->hang_detected = 1;
1707        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1708
1709        delta = ktime_sub(now, entry_time);
1710        if ((unsigned int)delta > cpu_base->max_hang_time)
1711                cpu_base->max_hang_time = (unsigned int) delta;
1712        /*
1713         * Limit it to a sensible value as we enforce a longer
1714         * delay. Give the CPU at least 100ms to catch up.
1715         */
1716        if (delta > 100 * NSEC_PER_MSEC)
1717                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1718        else
1719                expires_next = ktime_add(now, delta);
1720        tick_program_event(expires_next, 1);
1721        pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1722}
1723
1724/* called with interrupts disabled */
1725static inline void __hrtimer_peek_ahead_timers(void)
1726{
1727        struct tick_device *td;
1728
1729        if (!hrtimer_hres_active())
1730                return;
1731
1732        td = this_cpu_ptr(&tick_cpu_device);
1733        if (td && td->evtdev)
1734                hrtimer_interrupt(td->evtdev);
1735}
1736
1737#else /* CONFIG_HIGH_RES_TIMERS */
1738
1739static inline void __hrtimer_peek_ahead_timers(void) { }
1740
1741#endif  /* !CONFIG_HIGH_RES_TIMERS */
1742
1743/*
1744 * Called from run_local_timers in hardirq context every jiffy
1745 */
1746void hrtimer_run_queues(void)
1747{
1748        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1749        unsigned long flags;
1750        ktime_t now;
1751
1752        if (__hrtimer_hres_active(cpu_base))
1753                return;
1754
1755        /*
1756         * This _is_ ugly: We have to check periodically, whether we
1757         * can switch to highres and / or nohz mode. The clocksource
1758         * switch happens with xtime_lock held. Notification from
1759         * there only sets the check bit in the tick_oneshot code,
1760         * otherwise we might deadlock vs. xtime_lock.
1761         */
1762        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1763                hrtimer_switch_to_hres();
1764                return;
1765        }
1766
1767        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768        now = hrtimer_update_base(cpu_base);
1769
1770        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1771                cpu_base->softirq_expires_next = KTIME_MAX;
1772                cpu_base->softirq_activated = 1;
1773                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1774        }
1775
1776        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1777        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1778}
1779
1780/*
1781 * Sleep related functions:
1782 */
1783static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1784{
1785        struct hrtimer_sleeper *t =
1786                container_of(timer, struct hrtimer_sleeper, timer);
1787        struct task_struct *task = t->task;
1788
1789        t->task = NULL;
1790        if (task)
1791                wake_up_process(task);
1792
1793        return HRTIMER_NORESTART;
1794}
1795
1796/**
1797 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1798 * @sl:         sleeper to be started
1799 * @mode:       timer mode abs/rel
1800 *
1801 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1802 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1803 */
1804void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1805                                   enum hrtimer_mode mode)
1806{
1807        /*
1808         * Make the enqueue delivery mode check work on RT. If the sleeper
1809         * was initialized for hard interrupt delivery, force the mode bit.
1810         * This is a special case for hrtimer_sleepers because
1811         * hrtimer_init_sleeper() determines the delivery mode on RT so the
1812         * fiddling with this decision is avoided at the call sites.
1813         */
1814        if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1815                mode |= HRTIMER_MODE_HARD;
1816
1817        hrtimer_start_expires(&sl->timer, mode);
1818}
1819EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1820
1821static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1822                                   clockid_t clock_id, enum hrtimer_mode mode)
1823{
1824        /*
1825         * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1826         * marked for hard interrupt expiry mode are moved into soft
1827         * interrupt context either for latency reasons or because the
1828         * hrtimer callback takes regular spinlocks or invokes other
1829         * functions which are not suitable for hard interrupt context on
1830         * PREEMPT_RT.
1831         *
1832         * The hrtimer_sleeper callback is RT compatible in hard interrupt
1833         * context, but there is a latency concern: Untrusted userspace can
1834         * spawn many threads which arm timers for the same expiry time on
1835         * the same CPU. That causes a latency spike due to the wakeup of
1836         * a gazillion threads.
1837         *
1838         * OTOH, privileged real-time user space applications rely on the
1839         * low latency of hard interrupt wakeups. If the current task is in
1840         * a real-time scheduling class, mark the mode for hard interrupt
1841         * expiry.
1842         */
1843        if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1844                if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1845                        mode |= HRTIMER_MODE_HARD;
1846        }
1847
1848        __hrtimer_init(&sl->timer, clock_id, mode);
1849        sl->timer.function = hrtimer_wakeup;
1850        sl->task = current;
1851}
1852
1853/**
1854 * hrtimer_init_sleeper - initialize sleeper to the given clock
1855 * @sl:         sleeper to be initialized
1856 * @clock_id:   the clock to be used
1857 * @mode:       timer mode abs/rel
1858 */
1859void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1860                          enum hrtimer_mode mode)
1861{
1862        debug_init(&sl->timer, clock_id, mode);
1863        __hrtimer_init_sleeper(sl, clock_id, mode);
1864
1865}
1866EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1867
1868int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1869{
1870        switch(restart->nanosleep.type) {
1871#ifdef CONFIG_COMPAT_32BIT_TIME
1872        case TT_COMPAT:
1873                if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1874                        return -EFAULT;
1875                break;
1876#endif
1877        case TT_NATIVE:
1878                if (put_timespec64(ts, restart->nanosleep.rmtp))
1879                        return -EFAULT;
1880                break;
1881        default:
1882                BUG();
1883        }
1884        return -ERESTART_RESTARTBLOCK;
1885}
1886
1887static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1888{
1889        struct restart_block *restart;
1890
1891        do {
1892                set_current_state(TASK_INTERRUPTIBLE);
1893                hrtimer_sleeper_start_expires(t, mode);
1894
1895                if (likely(t->task))
1896                        freezable_schedule();
1897
1898                hrtimer_cancel(&t->timer);
1899                mode = HRTIMER_MODE_ABS;
1900
1901        } while (t->task && !signal_pending(current));
1902
1903        __set_current_state(TASK_RUNNING);
1904
1905        if (!t->task)
1906                return 0;
1907
1908        restart = &current->restart_block;
1909        if (restart->nanosleep.type != TT_NONE) {
1910                ktime_t rem = hrtimer_expires_remaining(&t->timer);
1911                struct timespec64 rmt;
1912
1913                if (rem <= 0)
1914                        return 0;
1915                rmt = ktime_to_timespec64(rem);
1916
1917                return nanosleep_copyout(restart, &rmt);
1918        }
1919        return -ERESTART_RESTARTBLOCK;
1920}
1921
1922static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1923{
1924        struct hrtimer_sleeper t;
1925        int ret;
1926
1927        hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1928                                      HRTIMER_MODE_ABS);
1929        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1930        ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1931        destroy_hrtimer_on_stack(&t.timer);
1932        return ret;
1933}
1934
1935long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1936                       const clockid_t clockid)
1937{
1938        struct restart_block *restart;
1939        struct hrtimer_sleeper t;
1940        int ret = 0;
1941        u64 slack;
1942
1943        slack = current->timer_slack_ns;
1944        if (dl_task(current) || rt_task(current))
1945                slack = 0;
1946
1947        hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1948        hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1949        ret = do_nanosleep(&t, mode);
1950        if (ret != -ERESTART_RESTARTBLOCK)
1951                goto out;
1952
1953        /* Absolute timers do not update the rmtp value and restart: */
1954        if (mode == HRTIMER_MODE_ABS) {
1955                ret = -ERESTARTNOHAND;
1956                goto out;
1957        }
1958
1959        restart = &current->restart_block;
1960        restart->nanosleep.clockid = t.timer.base->clockid;
1961        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1962        set_restart_fn(restart, hrtimer_nanosleep_restart);
1963out:
1964        destroy_hrtimer_on_stack(&t.timer);
1965        return ret;
1966}
1967
1968#ifdef CONFIG_64BIT
1969
1970SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1971                struct __kernel_timespec __user *, rmtp)
1972{
1973        struct timespec64 tu;
1974
1975        if (get_timespec64(&tu, rqtp))
1976                return -EFAULT;
1977
1978        if (!timespec64_valid(&tu))
1979                return -EINVAL;
1980
1981        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1982        current->restart_block.nanosleep.rmtp = rmtp;
1983        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1984                                 CLOCK_MONOTONIC);
1985}
1986
1987#endif
1988
1989#ifdef CONFIG_COMPAT_32BIT_TIME
1990
1991SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1992                       struct old_timespec32 __user *, rmtp)
1993{
1994        struct timespec64 tu;
1995
1996        if (get_old_timespec32(&tu, rqtp))
1997                return -EFAULT;
1998
1999        if (!timespec64_valid(&tu))
2000                return -EINVAL;
2001
2002        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2003        current->restart_block.nanosleep.compat_rmtp = rmtp;
2004        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2005                                 CLOCK_MONOTONIC);
2006}
2007#endif
2008
2009/*
2010 * Functions related to boot-time initialization:
2011 */
2012int hrtimers_prepare_cpu(unsigned int cpu)
2013{
2014        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2015        int i;
2016
2017        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2018                struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2019
2020                clock_b->cpu_base = cpu_base;
2021                seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2022                timerqueue_init_head(&clock_b->active);
2023        }
2024
2025        cpu_base->cpu = cpu;
2026        cpu_base->active_bases = 0;
2027        cpu_base->hres_active = 0;
2028        cpu_base->hang_detected = 0;
2029        cpu_base->next_timer = NULL;
2030        cpu_base->softirq_next_timer = NULL;
2031        cpu_base->expires_next = KTIME_MAX;
2032        cpu_base->softirq_expires_next = KTIME_MAX;
2033        hrtimer_cpu_base_init_expiry_lock(cpu_base);
2034        return 0;
2035}
2036
2037#ifdef CONFIG_HOTPLUG_CPU
2038
2039static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2040                                struct hrtimer_clock_base *new_base)
2041{
2042        struct hrtimer *timer;
2043        struct timerqueue_node *node;
2044
2045        while ((node = timerqueue_getnext(&old_base->active))) {
2046                timer = container_of(node, struct hrtimer, node);
2047                BUG_ON(hrtimer_callback_running(timer));
2048                debug_deactivate(timer);
2049
2050                /*
2051                 * Mark it as ENQUEUED not INACTIVE otherwise the
2052                 * timer could be seen as !active and just vanish away
2053                 * under us on another CPU
2054                 */
2055                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2056                timer->base = new_base;
2057                /*
2058                 * Enqueue the timers on the new cpu. This does not
2059                 * reprogram the event device in case the timer
2060                 * expires before the earliest on this CPU, but we run
2061                 * hrtimer_interrupt after we migrated everything to
2062                 * sort out already expired timers and reprogram the
2063                 * event device.
2064                 */
2065                enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2066        }
2067}
2068
2069int hrtimers_dead_cpu(unsigned int scpu)
2070{
2071        struct hrtimer_cpu_base *old_base, *new_base;
2072        int i;
2073
2074        BUG_ON(cpu_online(scpu));
2075        tick_cancel_sched_timer(scpu);
2076
2077        /*
2078         * this BH disable ensures that raise_softirq_irqoff() does
2079         * not wakeup ksoftirqd (and acquire the pi-lock) while
2080         * holding the cpu_base lock
2081         */
2082        local_bh_disable();
2083        local_irq_disable();
2084        old_base = &per_cpu(hrtimer_bases, scpu);
2085        new_base = this_cpu_ptr(&hrtimer_bases);
2086        /*
2087         * The caller is globally serialized and nobody else
2088         * takes two locks at once, deadlock is not possible.
2089         */
2090        raw_spin_lock(&new_base->lock);
2091        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2092
2093        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2094                migrate_hrtimer_list(&old_base->clock_base[i],
2095                                     &new_base->clock_base[i]);
2096        }
2097
2098        /*
2099         * The migration might have changed the first expiring softirq
2100         * timer on this CPU. Update it.
2101         */
2102        hrtimer_update_softirq_timer(new_base, false);
2103
2104        raw_spin_unlock(&old_base->lock);
2105        raw_spin_unlock(&new_base->lock);
2106
2107        /* Check, if we got expired work to do */
2108        __hrtimer_peek_ahead_timers();
2109        local_irq_enable();
2110        local_bh_enable();
2111        return 0;
2112}
2113
2114#endif /* CONFIG_HOTPLUG_CPU */
2115
2116void __init hrtimers_init(void)
2117{
2118        hrtimers_prepare_cpu(smp_processor_id());
2119        open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2120}
2121
2122/**
2123 * schedule_hrtimeout_range_clock - sleep until timeout
2124 * @expires:    timeout value (ktime_t)
2125 * @delta:      slack in expires timeout (ktime_t)
2126 * @mode:       timer mode
2127 * @clock_id:   timer clock to be used
2128 */
2129int __sched
2130schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2131                               const enum hrtimer_mode mode, clockid_t clock_id)
2132{
2133        struct hrtimer_sleeper t;
2134
2135        /*
2136         * Optimize when a zero timeout value is given. It does not
2137         * matter whether this is an absolute or a relative time.
2138         */
2139        if (expires && *expires == 0) {
2140                __set_current_state(TASK_RUNNING);
2141                return 0;
2142        }
2143
2144        /*
2145         * A NULL parameter means "infinite"
2146         */
2147        if (!expires) {
2148                schedule();
2149                return -EINTR;
2150        }
2151
2152        hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2153        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2154        hrtimer_sleeper_start_expires(&t, mode);
2155
2156        if (likely(t.task))
2157                schedule();
2158
2159        hrtimer_cancel(&t.timer);
2160        destroy_hrtimer_on_stack(&t.timer);
2161
2162        __set_current_state(TASK_RUNNING);
2163
2164        return !t.task ? 0 : -EINTR;
2165}
2166
2167/**
2168 * schedule_hrtimeout_range - sleep until timeout
2169 * @expires:    timeout value (ktime_t)
2170 * @delta:      slack in expires timeout (ktime_t)
2171 * @mode:       timer mode
2172 *
2173 * Make the current task sleep until the given expiry time has
2174 * elapsed. The routine will return immediately unless
2175 * the current task state has been set (see set_current_state()).
2176 *
2177 * The @delta argument gives the kernel the freedom to schedule the
2178 * actual wakeup to a time that is both power and performance friendly.
2179 * The kernel give the normal best effort behavior for "@expires+@delta",
2180 * but may decide to fire the timer earlier, but no earlier than @expires.
2181 *
2182 * You can set the task state as follows -
2183 *
2184 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2185 * pass before the routine returns unless the current task is explicitly
2186 * woken up, (e.g. by wake_up_process()).
2187 *
2188 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2189 * delivered to the current task or the current task is explicitly woken
2190 * up.
2191 *
2192 * The current task state is guaranteed to be TASK_RUNNING when this
2193 * routine returns.
2194 *
2195 * Returns 0 when the timer has expired. If the task was woken before the
2196 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2197 * by an explicit wakeup, it returns -EINTR.
2198 */
2199int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2200                                     const enum hrtimer_mode mode)
2201{
2202        return schedule_hrtimeout_range_clock(expires, delta, mode,
2203                                              CLOCK_MONOTONIC);
2204}
2205EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2206
2207/**
2208 * schedule_hrtimeout - sleep until timeout
2209 * @expires:    timeout value (ktime_t)
2210 * @mode:       timer mode
2211 *
2212 * Make the current task sleep until the given expiry time has
2213 * elapsed. The routine will return immediately unless
2214 * the current task state has been set (see set_current_state()).
2215 *
2216 * You can set the task state as follows -
2217 *
2218 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2219 * pass before the routine returns unless the current task is explicitly
2220 * woken up, (e.g. by wake_up_process()).
2221 *
2222 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2223 * delivered to the current task or the current task is explicitly woken
2224 * up.
2225 *
2226 * The current task state is guaranteed to be TASK_RUNNING when this
2227 * routine returns.
2228 *
2229 * Returns 0 when the timer has expired. If the task was woken before the
2230 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2231 * by an explicit wakeup, it returns -EINTR.
2232 */
2233int __sched schedule_hrtimeout(ktime_t *expires,
2234                               const enum hrtimer_mode mode)
2235{
2236        return schedule_hrtimeout_range(expires, 0, mode);
2237}
2238EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2239