linux/kernel/workqueue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002           Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010           SUSE Linux Products GmbH
  16 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53#include <linux/kvm_para.h>
  54
  55#include "workqueue_internal.h"
  56
  57enum {
  58        /*
  59         * worker_pool flags
  60         *
  61         * A bound pool is either associated or disassociated with its CPU.
  62         * While associated (!DISASSOCIATED), all workers are bound to the
  63         * CPU and none has %WORKER_UNBOUND set and concurrency management
  64         * is in effect.
  65         *
  66         * While DISASSOCIATED, the cpu may be offline and all workers have
  67         * %WORKER_UNBOUND set and concurrency management disabled, and may
  68         * be executing on any CPU.  The pool behaves as an unbound one.
  69         *
  70         * Note that DISASSOCIATED should be flipped only while holding
  71         * wq_pool_attach_mutex to avoid changing binding state while
  72         * worker_attach_to_pool() is in progress.
  73         */
  74        POOL_MANAGER_ACTIVE     = 1 << 0,       /* being managed */
  75        POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
  76
  77        /* worker flags */
  78        WORKER_DIE              = 1 << 1,       /* die die die */
  79        WORKER_IDLE             = 1 << 2,       /* is idle */
  80        WORKER_PREP             = 1 << 3,       /* preparing to run works */
  81        WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
  82        WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
  83        WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
  84
  85        WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
  86                                  WORKER_UNBOUND | WORKER_REBOUND,
  87
  88        NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
  89
  90        UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
  91        BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
  92
  93        MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
  94        IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
  95
  96        MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  97                                                /* call for help after 10ms
  98                                                   (min two ticks) */
  99        MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
 100        CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
 101
 102        /*
 103         * Rescue workers are used only on emergencies and shared by
 104         * all cpus.  Give MIN_NICE.
 105         */
 106        RESCUER_NICE_LEVEL      = MIN_NICE,
 107        HIGHPRI_NICE_LEVEL      = MIN_NICE,
 108
 109        WQ_NAME_LEN             = 24,
 110};
 111
 112/*
 113 * Structure fields follow one of the following exclusion rules.
 114 *
 115 * I: Modifiable by initialization/destruction paths and read-only for
 116 *    everyone else.
 117 *
 118 * P: Preemption protected.  Disabling preemption is enough and should
 119 *    only be modified and accessed from the local cpu.
 120 *
 121 * L: pool->lock protected.  Access with pool->lock held.
 122 *
 123 * X: During normal operation, modification requires pool->lock and should
 124 *    be done only from local cpu.  Either disabling preemption on local
 125 *    cpu or grabbing pool->lock is enough for read access.  If
 126 *    POOL_DISASSOCIATED is set, it's identical to L.
 127 *
 128 * A: wq_pool_attach_mutex protected.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 133 *
 134 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 135 *
 136 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 137 *      RCU for reads.
 138 *
 139 * WQ: wq->mutex protected.
 140 *
 141 * WR: wq->mutex protected for writes.  RCU protected for reads.
 142 *
 143 * MD: wq_mayday_lock protected.
 144 */
 145
 146/* struct worker is defined in workqueue_internal.h */
 147
 148struct worker_pool {
 149        raw_spinlock_t          lock;           /* the pool lock */
 150        int                     cpu;            /* I: the associated cpu */
 151        int                     node;           /* I: the associated node ID */
 152        int                     id;             /* I: pool ID */
 153        unsigned int            flags;          /* X: flags */
 154
 155        unsigned long           watchdog_ts;    /* L: watchdog timestamp */
 156
 157        struct list_head        worklist;       /* L: list of pending works */
 158
 159        int                     nr_workers;     /* L: total number of workers */
 160        int                     nr_idle;        /* L: currently idle workers */
 161
 162        struct list_head        idle_list;      /* X: list of idle workers */
 163        struct timer_list       idle_timer;     /* L: worker idle timeout */
 164        struct timer_list       mayday_timer;   /* L: SOS timer for workers */
 165
 166        /* a workers is either on busy_hash or idle_list, or the manager */
 167        DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 168                                                /* L: hash of busy workers */
 169
 170        struct worker           *manager;       /* L: purely informational */
 171        struct list_head        workers;        /* A: attached workers */
 172        struct completion       *detach_completion; /* all workers detached */
 173
 174        struct ida              worker_ida;     /* worker IDs for task name */
 175
 176        struct workqueue_attrs  *attrs;         /* I: worker attributes */
 177        struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
 178        int                     refcnt;         /* PL: refcnt for unbound pools */
 179
 180        /*
 181         * The current concurrency level.  As it's likely to be accessed
 182         * from other CPUs during try_to_wake_up(), put it in a separate
 183         * cacheline.
 184         */
 185        atomic_t                nr_running ____cacheline_aligned_in_smp;
 186
 187        /*
 188         * Destruction of pool is RCU protected to allow dereferences
 189         * from get_work_pool().
 190         */
 191        struct rcu_head         rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201        struct worker_pool      *pool;          /* I: the associated pool */
 202        struct workqueue_struct *wq;            /* I: the owning workqueue */
 203        int                     work_color;     /* L: current color */
 204        int                     flush_color;    /* L: flushing color */
 205        int                     refcnt;         /* L: reference count */
 206        int                     nr_in_flight[WORK_NR_COLORS];
 207                                                /* L: nr of in_flight works */
 208        int                     nr_active;      /* L: nr of active works */
 209        int                     max_active;     /* L: max active works */
 210        struct list_head        delayed_works;  /* L: delayed works */
 211        struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
 212        struct list_head        mayday_node;    /* MD: node on wq->maydays */
 213
 214        /*
 215         * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216         * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217         * itself is also RCU protected so that the first pwq can be
 218         * determined without grabbing wq->mutex.
 219         */
 220        struct work_struct      unbound_release_work;
 221        struct rcu_head         rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228        struct list_head        list;           /* WQ: list of flushers */
 229        int                     flush_color;    /* WQ: flush color waiting for */
 230        struct completion       done;           /* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240        struct list_head        pwqs;           /* WR: all pwqs of this wq */
 241        struct list_head        list;           /* PR: list of all workqueues */
 242
 243        struct mutex            mutex;          /* protects this wq */
 244        int                     work_color;     /* WQ: current work color */
 245        int                     flush_color;    /* WQ: current flush color */
 246        atomic_t                nr_pwqs_to_flush; /* flush in progress */
 247        struct wq_flusher       *first_flusher; /* WQ: first flusher */
 248        struct list_head        flusher_queue;  /* WQ: flush waiters */
 249        struct list_head        flusher_overflow; /* WQ: flush overflow list */
 250
 251        struct list_head        maydays;        /* MD: pwqs requesting rescue */
 252        struct worker           *rescuer;       /* MD: rescue worker */
 253
 254        int                     nr_drainers;    /* WQ: drain in progress */
 255        int                     saved_max_active; /* WQ: saved pwq max_active */
 256
 257        struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
 258        struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261        struct wq_device        *wq_dev;        /* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 264        char                    *lock_name;
 265        struct lock_class_key   key;
 266        struct lockdep_map      lockdep_map;
 267#endif
 268        char                    name[WQ_NAME_LEN]; /* I: workqueue name */
 269
 270        /*
 271         * Destruction of workqueue_struct is RCU protected to allow walking
 272         * the workqueues list without grabbing wq_pool_mutex.
 273         * This is used to dump all workqueues from sysrq.
 274         */
 275        struct rcu_head         rcu;
 276
 277        /* hot fields used during command issue, aligned to cacheline */
 278        unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
 279        struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 280        struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 281};
 282
 283static struct kmem_cache *pwq_cache;
 284
 285static cpumask_var_t *wq_numa_possible_cpumask;
 286                                        /* possible CPUs of each node */
 287
 288static bool wq_disable_numa;
 289module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 290
 291/* see the comment above the definition of WQ_POWER_EFFICIENT */
 292static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 293module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 294
 295static bool wq_online;                  /* can kworkers be created yet? */
 296
 297static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
 298
 299/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 300static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 301
 302static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
 303static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 304static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
 305/* wait for manager to go away */
 306static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 307
 308static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
 309static bool workqueue_freezing;         /* PL: have wqs started freezing? */
 310
 311/* PL: allowable cpus for unbound wqs and work items */
 312static cpumask_var_t wq_unbound_cpumask;
 313
 314/* CPU where unbound work was last round robin scheduled from this CPU */
 315static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 316
 317/*
 318 * Local execution of unbound work items is no longer guaranteed.  The
 319 * following always forces round-robin CPU selection on unbound work items
 320 * to uncover usages which depend on it.
 321 */
 322#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 323static bool wq_debug_force_rr_cpu = true;
 324#else
 325static bool wq_debug_force_rr_cpu = false;
 326#endif
 327module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 328
 329/* the per-cpu worker pools */
 330static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 331
 332static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
 333
 334/* PL: hash of all unbound pools keyed by pool->attrs */
 335static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 336
 337/* I: attributes used when instantiating standard unbound pools on demand */
 338static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 339
 340/* I: attributes used when instantiating ordered pools on demand */
 341static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 342
 343struct workqueue_struct *system_wq __read_mostly;
 344EXPORT_SYMBOL(system_wq);
 345struct workqueue_struct *system_highpri_wq __read_mostly;
 346EXPORT_SYMBOL_GPL(system_highpri_wq);
 347struct workqueue_struct *system_long_wq __read_mostly;
 348EXPORT_SYMBOL_GPL(system_long_wq);
 349struct workqueue_struct *system_unbound_wq __read_mostly;
 350EXPORT_SYMBOL_GPL(system_unbound_wq);
 351struct workqueue_struct *system_freezable_wq __read_mostly;
 352EXPORT_SYMBOL_GPL(system_freezable_wq);
 353struct workqueue_struct *system_power_efficient_wq __read_mostly;
 354EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 355struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 356EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 357
 358static int worker_thread(void *__worker);
 359static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 360static void show_pwq(struct pool_workqueue *pwq);
 361
 362#define CREATE_TRACE_POINTS
 363#include <trace/events/workqueue.h>
 364
 365#define assert_rcu_or_pool_mutex()                                      \
 366        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 367                         !lockdep_is_held(&wq_pool_mutex),              \
 368                         "RCU or wq_pool_mutex should be held")
 369
 370#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
 371        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 372                         !lockdep_is_held(&wq->mutex) &&                \
 373                         !lockdep_is_held(&wq_pool_mutex),              \
 374                         "RCU, wq->mutex or wq_pool_mutex should be held")
 375
 376#define for_each_cpu_worker_pool(pool, cpu)                             \
 377        for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
 378             (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 379             (pool)++)
 380
 381/**
 382 * for_each_pool - iterate through all worker_pools in the system
 383 * @pool: iteration cursor
 384 * @pi: integer used for iteration
 385 *
 386 * This must be called either with wq_pool_mutex held or RCU read
 387 * locked.  If the pool needs to be used beyond the locking in effect, the
 388 * caller is responsible for guaranteeing that the pool stays online.
 389 *
 390 * The if/else clause exists only for the lockdep assertion and can be
 391 * ignored.
 392 */
 393#define for_each_pool(pool, pi)                                         \
 394        idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
 395                if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
 396                else
 397
 398/**
 399 * for_each_pool_worker - iterate through all workers of a worker_pool
 400 * @worker: iteration cursor
 401 * @pool: worker_pool to iterate workers of
 402 *
 403 * This must be called with wq_pool_attach_mutex.
 404 *
 405 * The if/else clause exists only for the lockdep assertion and can be
 406 * ignored.
 407 */
 408#define for_each_pool_worker(worker, pool)                              \
 409        list_for_each_entry((worker), &(pool)->workers, node)           \
 410                if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 411                else
 412
 413/**
 414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 415 * @pwq: iteration cursor
 416 * @wq: the target workqueue
 417 *
 418 * This must be called either with wq->mutex held or RCU read locked.
 419 * If the pwq needs to be used beyond the locking in effect, the caller is
 420 * responsible for guaranteeing that the pwq stays online.
 421 *
 422 * The if/else clause exists only for the lockdep assertion and can be
 423 * ignored.
 424 */
 425#define for_each_pwq(pwq, wq)                                           \
 426        list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,          \
 427                                 lockdep_is_held(&(wq->mutex)))
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static const struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435        return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 439{
 440        struct work_struct *work = addr;
 441
 442        return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451        struct work_struct *work = addr;
 452
 453        switch (state) {
 454        case ODEBUG_STATE_ACTIVE:
 455                cancel_work_sync(work);
 456                debug_object_init(work, &work_debug_descr);
 457                return true;
 458        default:
 459                return false;
 460        }
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469        struct work_struct *work = addr;
 470
 471        switch (state) {
 472        case ODEBUG_STATE_ACTIVE:
 473                cancel_work_sync(work);
 474                debug_object_free(work, &work_debug_descr);
 475                return true;
 476        default:
 477                return false;
 478        }
 479}
 480
 481static const struct debug_obj_descr work_debug_descr = {
 482        .name           = "work_struct",
 483        .debug_hint     = work_debug_hint,
 484        .is_static_object = work_is_static_object,
 485        .fixup_init     = work_fixup_init,
 486        .fixup_free     = work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491        debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496        debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501        if (onstack)
 502                debug_object_init_on_stack(work, &work_debug_descr);
 503        else
 504                debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510        debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516        destroy_timer_on_stack(&work->timer);
 517        debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535        int ret;
 536
 537        lockdep_assert_held(&wq_pool_mutex);
 538
 539        ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540                        GFP_KERNEL);
 541        if (ret >= 0) {
 542                pool->id = ret;
 543                return 0;
 544        }
 545        return ret;
 546}
 547
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561                                                  int node)
 562{
 563        assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565        /*
 566         * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567         * delayed item is pending.  The plan is to keep CPU -> NODE
 568         * mapping valid and stable across CPU on/offlines.  Once that
 569         * happens, this workaround can be removed.
 570         */
 571        if (unlikely(node == NUMA_NO_NODE))
 572                return wq->dfl_pwq;
 573
 574        return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579        return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584        return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585                ((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590        return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614                                 unsigned long flags)
 615{
 616        WARN_ON_ONCE(!work_pending(work));
 617        atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621                         unsigned long extra_flags)
 622{
 623        set_work_data(work, (unsigned long)pwq,
 624                      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628                                           int pool_id)
 629{
 630        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631                      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635                                            int pool_id)
 636{
 637        /*
 638         * The following wmb is paired with the implied mb in
 639         * test_and_set_bit(PENDING) and ensures all updates to @work made
 640         * here are visible to and precede any updates by the next PENDING
 641         * owner.
 642         */
 643        smp_wmb();
 644        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 645        /*
 646         * The following mb guarantees that previous clear of a PENDING bit
 647         * will not be reordered with any speculative LOADS or STORES from
 648         * work->current_func, which is executed afterwards.  This possible
 649         * reordering can lead to a missed execution on attempt to queue
 650         * the same @work.  E.g. consider this case:
 651         *
 652         *   CPU#0                         CPU#1
 653         *   ----------------------------  --------------------------------
 654         *
 655         * 1  STORE event_indicated
 656         * 2  queue_work_on() {
 657         * 3    test_and_set_bit(PENDING)
 658         * 4 }                             set_..._and_clear_pending() {
 659         * 5                                 set_work_data() # clear bit
 660         * 6                                 smp_mb()
 661         * 7                               work->current_func() {
 662         * 8                                  LOAD event_indicated
 663         *                                 }
 664         *
 665         * Without an explicit full barrier speculative LOAD on line 8 can
 666         * be executed before CPU#0 does STORE on line 1.  If that happens,
 667         * CPU#0 observes the PENDING bit is still set and new execution of
 668         * a @work is not queued in a hope, that CPU#1 will eventually
 669         * finish the queued @work.  Meanwhile CPU#1 does not see
 670         * event_indicated is set, because speculative LOAD was executed
 671         * before actual STORE.
 672         */
 673        smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678        smp_wmb();      /* see set_work_pool_and_clear_pending() */
 679        set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684        unsigned long data = atomic_long_read(&work->data);
 685
 686        if (data & WORK_STRUCT_PWQ)
 687                return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688        else
 689                return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709        unsigned long data = atomic_long_read(&work->data);
 710        int pool_id;
 711
 712        assert_rcu_or_pool_mutex();
 713
 714        if (data & WORK_STRUCT_PWQ)
 715                return ((struct pool_workqueue *)
 716                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718        pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719        if (pool_id == WORK_OFFQ_POOL_NONE)
 720                return NULL;
 721
 722        return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734        unsigned long data = atomic_long_read(&work->data);
 735
 736        if (data & WORK_STRUCT_PWQ)
 737                return ((struct pool_workqueue *)
 738                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740        return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745        unsigned long pool_id = get_work_pool_id(work);
 746
 747        pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748        set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753        unsigned long data = atomic_long_read(&work->data);
 754
 755        return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766        return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779        return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785        return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791        return !list_empty(&pool->worklist) &&
 792                atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798        return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804        bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 805        int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806        int nr_busy = pool->nr_workers - nr_idle;
 807
 808        return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818        if (unlikely(list_empty(&pool->idle_list)))
 819                return NULL;
 820
 821        return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * raw_spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835        struct worker *worker = first_idle_worker(pool);
 836
 837        if (likely(worker))
 838                wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_running - a worker is running again
 843 * @task: task waking up
 844 *
 845 * This function is called when a worker returns from schedule()
 846 */
 847void wq_worker_running(struct task_struct *task)
 848{
 849        struct worker *worker = kthread_data(task);
 850
 851        if (!worker->sleeping)
 852                return;
 853        if (!(worker->flags & WORKER_NOT_RUNNING))
 854                atomic_inc(&worker->pool->nr_running);
 855        worker->sleeping = 0;
 856}
 857
 858/**
 859 * wq_worker_sleeping - a worker is going to sleep
 860 * @task: task going to sleep
 861 *
 862 * This function is called from schedule() when a busy worker is
 863 * going to sleep. Preemption needs to be disabled to protect ->sleeping
 864 * assignment.
 865 */
 866void wq_worker_sleeping(struct task_struct *task)
 867{
 868        struct worker *next, *worker = kthread_data(task);
 869        struct worker_pool *pool;
 870
 871        /*
 872         * Rescuers, which may not have all the fields set up like normal
 873         * workers, also reach here, let's not access anything before
 874         * checking NOT_RUNNING.
 875         */
 876        if (worker->flags & WORKER_NOT_RUNNING)
 877                return;
 878
 879        pool = worker->pool;
 880
 881        /* Return if preempted before wq_worker_running() was reached */
 882        if (worker->sleeping)
 883                return;
 884
 885        worker->sleeping = 1;
 886        raw_spin_lock_irq(&pool->lock);
 887
 888        /*
 889         * The counterpart of the following dec_and_test, implied mb,
 890         * worklist not empty test sequence is in insert_work().
 891         * Please read comment there.
 892         *
 893         * NOT_RUNNING is clear.  This means that we're bound to and
 894         * running on the local cpu w/ rq lock held and preemption
 895         * disabled, which in turn means that none else could be
 896         * manipulating idle_list, so dereferencing idle_list without pool
 897         * lock is safe.
 898         */
 899        if (atomic_dec_and_test(&pool->nr_running) &&
 900            !list_empty(&pool->worklist)) {
 901                next = first_idle_worker(pool);
 902                if (next)
 903                        wake_up_process(next->task);
 904        }
 905        raw_spin_unlock_irq(&pool->lock);
 906}
 907
 908/**
 909 * wq_worker_last_func - retrieve worker's last work function
 910 * @task: Task to retrieve last work function of.
 911 *
 912 * Determine the last function a worker executed. This is called from
 913 * the scheduler to get a worker's last known identity.
 914 *
 915 * CONTEXT:
 916 * raw_spin_lock_irq(rq->lock)
 917 *
 918 * This function is called during schedule() when a kworker is going
 919 * to sleep. It's used by psi to identify aggregation workers during
 920 * dequeuing, to allow periodic aggregation to shut-off when that
 921 * worker is the last task in the system or cgroup to go to sleep.
 922 *
 923 * As this function doesn't involve any workqueue-related locking, it
 924 * only returns stable values when called from inside the scheduler's
 925 * queuing and dequeuing paths, when @task, which must be a kworker,
 926 * is guaranteed to not be processing any works.
 927 *
 928 * Return:
 929 * The last work function %current executed as a worker, NULL if it
 930 * hasn't executed any work yet.
 931 */
 932work_func_t wq_worker_last_func(struct task_struct *task)
 933{
 934        struct worker *worker = kthread_data(task);
 935
 936        return worker->last_func;
 937}
 938
 939/**
 940 * worker_set_flags - set worker flags and adjust nr_running accordingly
 941 * @worker: self
 942 * @flags: flags to set
 943 *
 944 * Set @flags in @worker->flags and adjust nr_running accordingly.
 945 *
 946 * CONTEXT:
 947 * raw_spin_lock_irq(pool->lock)
 948 */
 949static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 950{
 951        struct worker_pool *pool = worker->pool;
 952
 953        WARN_ON_ONCE(worker->task != current);
 954
 955        /* If transitioning into NOT_RUNNING, adjust nr_running. */
 956        if ((flags & WORKER_NOT_RUNNING) &&
 957            !(worker->flags & WORKER_NOT_RUNNING)) {
 958                atomic_dec(&pool->nr_running);
 959        }
 960
 961        worker->flags |= flags;
 962}
 963
 964/**
 965 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 966 * @worker: self
 967 * @flags: flags to clear
 968 *
 969 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 970 *
 971 * CONTEXT:
 972 * raw_spin_lock_irq(pool->lock)
 973 */
 974static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 975{
 976        struct worker_pool *pool = worker->pool;
 977        unsigned int oflags = worker->flags;
 978
 979        WARN_ON_ONCE(worker->task != current);
 980
 981        worker->flags &= ~flags;
 982
 983        /*
 984         * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 985         * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 986         * of multiple flags, not a single flag.
 987         */
 988        if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 989                if (!(worker->flags & WORKER_NOT_RUNNING))
 990                        atomic_inc(&pool->nr_running);
 991}
 992
 993/**
 994 * find_worker_executing_work - find worker which is executing a work
 995 * @pool: pool of interest
 996 * @work: work to find worker for
 997 *
 998 * Find a worker which is executing @work on @pool by searching
 999 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1000 * to match, its current execution should match the address of @work and
1001 * its work function.  This is to avoid unwanted dependency between
1002 * unrelated work executions through a work item being recycled while still
1003 * being executed.
1004 *
1005 * This is a bit tricky.  A work item may be freed once its execution
1006 * starts and nothing prevents the freed area from being recycled for
1007 * another work item.  If the same work item address ends up being reused
1008 * before the original execution finishes, workqueue will identify the
1009 * recycled work item as currently executing and make it wait until the
1010 * current execution finishes, introducing an unwanted dependency.
1011 *
1012 * This function checks the work item address and work function to avoid
1013 * false positives.  Note that this isn't complete as one may construct a
1014 * work function which can introduce dependency onto itself through a
1015 * recycled work item.  Well, if somebody wants to shoot oneself in the
1016 * foot that badly, there's only so much we can do, and if such deadlock
1017 * actually occurs, it should be easy to locate the culprit work function.
1018 *
1019 * CONTEXT:
1020 * raw_spin_lock_irq(pool->lock).
1021 *
1022 * Return:
1023 * Pointer to worker which is executing @work if found, %NULL
1024 * otherwise.
1025 */
1026static struct worker *find_worker_executing_work(struct worker_pool *pool,
1027                                                 struct work_struct *work)
1028{
1029        struct worker *worker;
1030
1031        hash_for_each_possible(pool->busy_hash, worker, hentry,
1032                               (unsigned long)work)
1033                if (worker->current_work == work &&
1034                    worker->current_func == work->func)
1035                        return worker;
1036
1037        return NULL;
1038}
1039
1040/**
1041 * move_linked_works - move linked works to a list
1042 * @work: start of series of works to be scheduled
1043 * @head: target list to append @work to
1044 * @nextp: out parameter for nested worklist walking
1045 *
1046 * Schedule linked works starting from @work to @head.  Work series to
1047 * be scheduled starts at @work and includes any consecutive work with
1048 * WORK_STRUCT_LINKED set in its predecessor.
1049 *
1050 * If @nextp is not NULL, it's updated to point to the next work of
1051 * the last scheduled work.  This allows move_linked_works() to be
1052 * nested inside outer list_for_each_entry_safe().
1053 *
1054 * CONTEXT:
1055 * raw_spin_lock_irq(pool->lock).
1056 */
1057static void move_linked_works(struct work_struct *work, struct list_head *head,
1058                              struct work_struct **nextp)
1059{
1060        struct work_struct *n;
1061
1062        /*
1063         * Linked worklist will always end before the end of the list,
1064         * use NULL for list head.
1065         */
1066        list_for_each_entry_safe_from(work, n, NULL, entry) {
1067                list_move_tail(&work->entry, head);
1068                if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1069                        break;
1070        }
1071
1072        /*
1073         * If we're already inside safe list traversal and have moved
1074         * multiple works to the scheduled queue, the next position
1075         * needs to be updated.
1076         */
1077        if (nextp)
1078                *nextp = n;
1079}
1080
1081/**
1082 * get_pwq - get an extra reference on the specified pool_workqueue
1083 * @pwq: pool_workqueue to get
1084 *
1085 * Obtain an extra reference on @pwq.  The caller should guarantee that
1086 * @pwq has positive refcnt and be holding the matching pool->lock.
1087 */
1088static void get_pwq(struct pool_workqueue *pwq)
1089{
1090        lockdep_assert_held(&pwq->pool->lock);
1091        WARN_ON_ONCE(pwq->refcnt <= 0);
1092        pwq->refcnt++;
1093}
1094
1095/**
1096 * put_pwq - put a pool_workqueue reference
1097 * @pwq: pool_workqueue to put
1098 *
1099 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1100 * destruction.  The caller should be holding the matching pool->lock.
1101 */
1102static void put_pwq(struct pool_workqueue *pwq)
1103{
1104        lockdep_assert_held(&pwq->pool->lock);
1105        if (likely(--pwq->refcnt))
1106                return;
1107        if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1108                return;
1109        /*
1110         * @pwq can't be released under pool->lock, bounce to
1111         * pwq_unbound_release_workfn().  This never recurses on the same
1112         * pool->lock as this path is taken only for unbound workqueues and
1113         * the release work item is scheduled on a per-cpu workqueue.  To
1114         * avoid lockdep warning, unbound pool->locks are given lockdep
1115         * subclass of 1 in get_unbound_pool().
1116         */
1117        schedule_work(&pwq->unbound_release_work);
1118}
1119
1120/**
1121 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1122 * @pwq: pool_workqueue to put (can be %NULL)
1123 *
1124 * put_pwq() with locking.  This function also allows %NULL @pwq.
1125 */
1126static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127{
1128        if (pwq) {
1129                /*
1130                 * As both pwqs and pools are RCU protected, the
1131                 * following lock operations are safe.
1132                 */
1133                raw_spin_lock_irq(&pwq->pool->lock);
1134                put_pwq(pwq);
1135                raw_spin_unlock_irq(&pwq->pool->lock);
1136        }
1137}
1138
1139static void pwq_activate_delayed_work(struct work_struct *work)
1140{
1141        struct pool_workqueue *pwq = get_work_pwq(work);
1142
1143        trace_workqueue_activate_work(work);
1144        if (list_empty(&pwq->pool->worklist))
1145                pwq->pool->watchdog_ts = jiffies;
1146        move_linked_works(work, &pwq->pool->worklist, NULL);
1147        __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1148        pwq->nr_active++;
1149}
1150
1151static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152{
1153        struct work_struct *work = list_first_entry(&pwq->delayed_works,
1154                                                    struct work_struct, entry);
1155
1156        pwq_activate_delayed_work(work);
1157}
1158
1159/**
1160 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1161 * @pwq: pwq of interest
1162 * @color: color of work which left the queue
1163 *
1164 * A work either has completed or is removed from pending queue,
1165 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166 *
1167 * CONTEXT:
1168 * raw_spin_lock_irq(pool->lock).
1169 */
1170static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171{
1172        /* uncolored work items don't participate in flushing or nr_active */
1173        if (color == WORK_NO_COLOR)
1174                goto out_put;
1175
1176        pwq->nr_in_flight[color]--;
1177
1178        pwq->nr_active--;
1179        if (!list_empty(&pwq->delayed_works)) {
1180                /* one down, submit a delayed one */
1181                if (pwq->nr_active < pwq->max_active)
1182                        pwq_activate_first_delayed(pwq);
1183        }
1184
1185        /* is flush in progress and are we at the flushing tip? */
1186        if (likely(pwq->flush_color != color))
1187                goto out_put;
1188
1189        /* are there still in-flight works? */
1190        if (pwq->nr_in_flight[color])
1191                goto out_put;
1192
1193        /* this pwq is done, clear flush_color */
1194        pwq->flush_color = -1;
1195
1196        /*
1197         * If this was the last pwq, wake up the first flusher.  It
1198         * will handle the rest.
1199         */
1200        if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1201                complete(&pwq->wq->first_flusher->done);
1202out_put:
1203        put_pwq(pwq);
1204}
1205
1206/**
1207 * try_to_grab_pending - steal work item from worklist and disable irq
1208 * @work: work item to steal
1209 * @is_dwork: @work is a delayed_work
1210 * @flags: place to store irq state
1211 *
1212 * Try to grab PENDING bit of @work.  This function can handle @work in any
1213 * stable state - idle, on timer or on worklist.
1214 *
1215 * Return:
1216 *
1217 *  ========    ================================================================
1218 *  1           if @work was pending and we successfully stole PENDING
1219 *  0           if @work was idle and we claimed PENDING
1220 *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1221 *  -ENOENT     if someone else is canceling @work, this state may persist
1222 *              for arbitrarily long
1223 *  ========    ================================================================
1224 *
1225 * Note:
1226 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1227 * interrupted while holding PENDING and @work off queue, irq must be
1228 * disabled on entry.  This, combined with delayed_work->timer being
1229 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1230 *
1231 * On successful return, >= 0, irq is disabled and the caller is
1232 * responsible for releasing it using local_irq_restore(*@flags).
1233 *
1234 * This function is safe to call from any context including IRQ handler.
1235 */
1236static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1237                               unsigned long *flags)
1238{
1239        struct worker_pool *pool;
1240        struct pool_workqueue *pwq;
1241
1242        local_irq_save(*flags);
1243
1244        /* try to steal the timer if it exists */
1245        if (is_dwork) {
1246                struct delayed_work *dwork = to_delayed_work(work);
1247
1248                /*
1249                 * dwork->timer is irqsafe.  If del_timer() fails, it's
1250                 * guaranteed that the timer is not queued anywhere and not
1251                 * running on the local CPU.
1252                 */
1253                if (likely(del_timer(&dwork->timer)))
1254                        return 1;
1255        }
1256
1257        /* try to claim PENDING the normal way */
1258        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1259                return 0;
1260
1261        rcu_read_lock();
1262        /*
1263         * The queueing is in progress, or it is already queued. Try to
1264         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1265         */
1266        pool = get_work_pool(work);
1267        if (!pool)
1268                goto fail;
1269
1270        raw_spin_lock(&pool->lock);
1271        /*
1272         * work->data is guaranteed to point to pwq only while the work
1273         * item is queued on pwq->wq, and both updating work->data to point
1274         * to pwq on queueing and to pool on dequeueing are done under
1275         * pwq->pool->lock.  This in turn guarantees that, if work->data
1276         * points to pwq which is associated with a locked pool, the work
1277         * item is currently queued on that pool.
1278         */
1279        pwq = get_work_pwq(work);
1280        if (pwq && pwq->pool == pool) {
1281                debug_work_deactivate(work);
1282
1283                /*
1284                 * A delayed work item cannot be grabbed directly because
1285                 * it might have linked NO_COLOR work items which, if left
1286                 * on the delayed_list, will confuse pwq->nr_active
1287                 * management later on and cause stall.  Make sure the work
1288                 * item is activated before grabbing.
1289                 */
1290                if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1291                        pwq_activate_delayed_work(work);
1292
1293                list_del_init(&work->entry);
1294                pwq_dec_nr_in_flight(pwq, get_work_color(work));
1295
1296                /* work->data points to pwq iff queued, point to pool */
1297                set_work_pool_and_keep_pending(work, pool->id);
1298
1299                raw_spin_unlock(&pool->lock);
1300                rcu_read_unlock();
1301                return 1;
1302        }
1303        raw_spin_unlock(&pool->lock);
1304fail:
1305        rcu_read_unlock();
1306        local_irq_restore(*flags);
1307        if (work_is_canceling(work))
1308                return -ENOENT;
1309        cpu_relax();
1310        return -EAGAIN;
1311}
1312
1313/**
1314 * insert_work - insert a work into a pool
1315 * @pwq: pwq @work belongs to
1316 * @work: work to insert
1317 * @head: insertion point
1318 * @extra_flags: extra WORK_STRUCT_* flags to set
1319 *
1320 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1321 * work_struct flags.
1322 *
1323 * CONTEXT:
1324 * raw_spin_lock_irq(pool->lock).
1325 */
1326static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1327                        struct list_head *head, unsigned int extra_flags)
1328{
1329        struct worker_pool *pool = pwq->pool;
1330
1331        /* record the work call stack in order to print it in KASAN reports */
1332        kasan_record_aux_stack(work);
1333
1334        /* we own @work, set data and link */
1335        set_work_pwq(work, pwq, extra_flags);
1336        list_add_tail(&work->entry, head);
1337        get_pwq(pwq);
1338
1339        /*
1340         * Ensure either wq_worker_sleeping() sees the above
1341         * list_add_tail() or we see zero nr_running to avoid workers lying
1342         * around lazily while there are works to be processed.
1343         */
1344        smp_mb();
1345
1346        if (__need_more_worker(pool))
1347                wake_up_worker(pool);
1348}
1349
1350/*
1351 * Test whether @work is being queued from another work executing on the
1352 * same workqueue.
1353 */
1354static bool is_chained_work(struct workqueue_struct *wq)
1355{
1356        struct worker *worker;
1357
1358        worker = current_wq_worker();
1359        /*
1360         * Return %true iff I'm a worker executing a work item on @wq.  If
1361         * I'm @worker, it's safe to dereference it without locking.
1362         */
1363        return worker && worker->current_pwq->wq == wq;
1364}
1365
1366/*
1367 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1368 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1369 * avoid perturbing sensitive tasks.
1370 */
1371static int wq_select_unbound_cpu(int cpu)
1372{
1373        static bool printed_dbg_warning;
1374        int new_cpu;
1375
1376        if (likely(!wq_debug_force_rr_cpu)) {
1377                if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1378                        return cpu;
1379        } else if (!printed_dbg_warning) {
1380                pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1381                printed_dbg_warning = true;
1382        }
1383
1384        if (cpumask_empty(wq_unbound_cpumask))
1385                return cpu;
1386
1387        new_cpu = __this_cpu_read(wq_rr_cpu_last);
1388        new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1389        if (unlikely(new_cpu >= nr_cpu_ids)) {
1390                new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1391                if (unlikely(new_cpu >= nr_cpu_ids))
1392                        return cpu;
1393        }
1394        __this_cpu_write(wq_rr_cpu_last, new_cpu);
1395
1396        return new_cpu;
1397}
1398
1399static void __queue_work(int cpu, struct workqueue_struct *wq,
1400                         struct work_struct *work)
1401{
1402        struct pool_workqueue *pwq;
1403        struct worker_pool *last_pool;
1404        struct list_head *worklist;
1405        unsigned int work_flags;
1406        unsigned int req_cpu = cpu;
1407
1408        /*
1409         * While a work item is PENDING && off queue, a task trying to
1410         * steal the PENDING will busy-loop waiting for it to either get
1411         * queued or lose PENDING.  Grabbing PENDING and queueing should
1412         * happen with IRQ disabled.
1413         */
1414        lockdep_assert_irqs_disabled();
1415
1416
1417        /* if draining, only works from the same workqueue are allowed */
1418        if (unlikely(wq->flags & __WQ_DRAINING) &&
1419            WARN_ON_ONCE(!is_chained_work(wq)))
1420                return;
1421        rcu_read_lock();
1422retry:
1423        /* pwq which will be used unless @work is executing elsewhere */
1424        if (wq->flags & WQ_UNBOUND) {
1425                if (req_cpu == WORK_CPU_UNBOUND)
1426                        cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1427                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1428        } else {
1429                if (req_cpu == WORK_CPU_UNBOUND)
1430                        cpu = raw_smp_processor_id();
1431                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1432        }
1433
1434        /*
1435         * If @work was previously on a different pool, it might still be
1436         * running there, in which case the work needs to be queued on that
1437         * pool to guarantee non-reentrancy.
1438         */
1439        last_pool = get_work_pool(work);
1440        if (last_pool && last_pool != pwq->pool) {
1441                struct worker *worker;
1442
1443                raw_spin_lock(&last_pool->lock);
1444
1445                worker = find_worker_executing_work(last_pool, work);
1446
1447                if (worker && worker->current_pwq->wq == wq) {
1448                        pwq = worker->current_pwq;
1449                } else {
1450                        /* meh... not running there, queue here */
1451                        raw_spin_unlock(&last_pool->lock);
1452                        raw_spin_lock(&pwq->pool->lock);
1453                }
1454        } else {
1455                raw_spin_lock(&pwq->pool->lock);
1456        }
1457
1458        /*
1459         * pwq is determined and locked.  For unbound pools, we could have
1460         * raced with pwq release and it could already be dead.  If its
1461         * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1462         * without another pwq replacing it in the numa_pwq_tbl or while
1463         * work items are executing on it, so the retrying is guaranteed to
1464         * make forward-progress.
1465         */
1466        if (unlikely(!pwq->refcnt)) {
1467                if (wq->flags & WQ_UNBOUND) {
1468                        raw_spin_unlock(&pwq->pool->lock);
1469                        cpu_relax();
1470                        goto retry;
1471                }
1472                /* oops */
1473                WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1474                          wq->name, cpu);
1475        }
1476
1477        /* pwq determined, queue */
1478        trace_workqueue_queue_work(req_cpu, pwq, work);
1479
1480        if (WARN_ON(!list_empty(&work->entry)))
1481                goto out;
1482
1483        pwq->nr_in_flight[pwq->work_color]++;
1484        work_flags = work_color_to_flags(pwq->work_color);
1485
1486        if (likely(pwq->nr_active < pwq->max_active)) {
1487                trace_workqueue_activate_work(work);
1488                pwq->nr_active++;
1489                worklist = &pwq->pool->worklist;
1490                if (list_empty(worklist))
1491                        pwq->pool->watchdog_ts = jiffies;
1492        } else {
1493                work_flags |= WORK_STRUCT_DELAYED;
1494                worklist = &pwq->delayed_works;
1495        }
1496
1497        debug_work_activate(work);
1498        insert_work(pwq, work, worklist, work_flags);
1499
1500out:
1501        raw_spin_unlock(&pwq->pool->lock);
1502        rcu_read_unlock();
1503}
1504
1505/**
1506 * queue_work_on - queue work on specific cpu
1507 * @cpu: CPU number to execute work on
1508 * @wq: workqueue to use
1509 * @work: work to queue
1510 *
1511 * We queue the work to a specific CPU, the caller must ensure it
1512 * can't go away.
1513 *
1514 * Return: %false if @work was already on a queue, %true otherwise.
1515 */
1516bool queue_work_on(int cpu, struct workqueue_struct *wq,
1517                   struct work_struct *work)
1518{
1519        bool ret = false;
1520        unsigned long flags;
1521
1522        local_irq_save(flags);
1523
1524        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1525                __queue_work(cpu, wq, work);
1526                ret = true;
1527        }
1528
1529        local_irq_restore(flags);
1530        return ret;
1531}
1532EXPORT_SYMBOL(queue_work_on);
1533
1534/**
1535 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1536 * @node: NUMA node ID that we want to select a CPU from
1537 *
1538 * This function will attempt to find a "random" cpu available on a given
1539 * node. If there are no CPUs available on the given node it will return
1540 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1541 * available CPU if we need to schedule this work.
1542 */
1543static int workqueue_select_cpu_near(int node)
1544{
1545        int cpu;
1546
1547        /* No point in doing this if NUMA isn't enabled for workqueues */
1548        if (!wq_numa_enabled)
1549                return WORK_CPU_UNBOUND;
1550
1551        /* Delay binding to CPU if node is not valid or online */
1552        if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1553                return WORK_CPU_UNBOUND;
1554
1555        /* Use local node/cpu if we are already there */
1556        cpu = raw_smp_processor_id();
1557        if (node == cpu_to_node(cpu))
1558                return cpu;
1559
1560        /* Use "random" otherwise know as "first" online CPU of node */
1561        cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1562
1563        /* If CPU is valid return that, otherwise just defer */
1564        return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1565}
1566
1567/**
1568 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1569 * @node: NUMA node that we are targeting the work for
1570 * @wq: workqueue to use
1571 * @work: work to queue
1572 *
1573 * We queue the work to a "random" CPU within a given NUMA node. The basic
1574 * idea here is to provide a way to somehow associate work with a given
1575 * NUMA node.
1576 *
1577 * This function will only make a best effort attempt at getting this onto
1578 * the right NUMA node. If no node is requested or the requested node is
1579 * offline then we just fall back to standard queue_work behavior.
1580 *
1581 * Currently the "random" CPU ends up being the first available CPU in the
1582 * intersection of cpu_online_mask and the cpumask of the node, unless we
1583 * are running on the node. In that case we just use the current CPU.
1584 *
1585 * Return: %false if @work was already on a queue, %true otherwise.
1586 */
1587bool queue_work_node(int node, struct workqueue_struct *wq,
1588                     struct work_struct *work)
1589{
1590        unsigned long flags;
1591        bool ret = false;
1592
1593        /*
1594         * This current implementation is specific to unbound workqueues.
1595         * Specifically we only return the first available CPU for a given
1596         * node instead of cycling through individual CPUs within the node.
1597         *
1598         * If this is used with a per-cpu workqueue then the logic in
1599         * workqueue_select_cpu_near would need to be updated to allow for
1600         * some round robin type logic.
1601         */
1602        WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1603
1604        local_irq_save(flags);
1605
1606        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1607                int cpu = workqueue_select_cpu_near(node);
1608
1609                __queue_work(cpu, wq, work);
1610                ret = true;
1611        }
1612
1613        local_irq_restore(flags);
1614        return ret;
1615}
1616EXPORT_SYMBOL_GPL(queue_work_node);
1617
1618void delayed_work_timer_fn(struct timer_list *t)
1619{
1620        struct delayed_work *dwork = from_timer(dwork, t, timer);
1621
1622        /* should have been called from irqsafe timer with irq already off */
1623        __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1624}
1625EXPORT_SYMBOL(delayed_work_timer_fn);
1626
1627static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1628                                struct delayed_work *dwork, unsigned long delay)
1629{
1630        struct timer_list *timer = &dwork->timer;
1631        struct work_struct *work = &dwork->work;
1632
1633        WARN_ON_ONCE(!wq);
1634        WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1635        WARN_ON_ONCE(timer_pending(timer));
1636        WARN_ON_ONCE(!list_empty(&work->entry));
1637
1638        /*
1639         * If @delay is 0, queue @dwork->work immediately.  This is for
1640         * both optimization and correctness.  The earliest @timer can
1641         * expire is on the closest next tick and delayed_work users depend
1642         * on that there's no such delay when @delay is 0.
1643         */
1644        if (!delay) {
1645                __queue_work(cpu, wq, &dwork->work);
1646                return;
1647        }
1648
1649        dwork->wq = wq;
1650        dwork->cpu = cpu;
1651        timer->expires = jiffies + delay;
1652
1653        if (unlikely(cpu != WORK_CPU_UNBOUND))
1654                add_timer_on(timer, cpu);
1655        else
1656                add_timer(timer);
1657}
1658
1659/**
1660 * queue_delayed_work_on - queue work on specific CPU after delay
1661 * @cpu: CPU number to execute work on
1662 * @wq: workqueue to use
1663 * @dwork: work to queue
1664 * @delay: number of jiffies to wait before queueing
1665 *
1666 * Return: %false if @work was already on a queue, %true otherwise.  If
1667 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1668 * execution.
1669 */
1670bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1671                           struct delayed_work *dwork, unsigned long delay)
1672{
1673        struct work_struct *work = &dwork->work;
1674        bool ret = false;
1675        unsigned long flags;
1676
1677        /* read the comment in __queue_work() */
1678        local_irq_save(flags);
1679
1680        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1681                __queue_delayed_work(cpu, wq, dwork, delay);
1682                ret = true;
1683        }
1684
1685        local_irq_restore(flags);
1686        return ret;
1687}
1688EXPORT_SYMBOL(queue_delayed_work_on);
1689
1690/**
1691 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1692 * @cpu: CPU number to execute work on
1693 * @wq: workqueue to use
1694 * @dwork: work to queue
1695 * @delay: number of jiffies to wait before queueing
1696 *
1697 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1698 * modify @dwork's timer so that it expires after @delay.  If @delay is
1699 * zero, @work is guaranteed to be scheduled immediately regardless of its
1700 * current state.
1701 *
1702 * Return: %false if @dwork was idle and queued, %true if @dwork was
1703 * pending and its timer was modified.
1704 *
1705 * This function is safe to call from any context including IRQ handler.
1706 * See try_to_grab_pending() for details.
1707 */
1708bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1709                         struct delayed_work *dwork, unsigned long delay)
1710{
1711        unsigned long flags;
1712        int ret;
1713
1714        do {
1715                ret = try_to_grab_pending(&dwork->work, true, &flags);
1716        } while (unlikely(ret == -EAGAIN));
1717
1718        if (likely(ret >= 0)) {
1719                __queue_delayed_work(cpu, wq, dwork, delay);
1720                local_irq_restore(flags);
1721        }
1722
1723        /* -ENOENT from try_to_grab_pending() becomes %true */
1724        return ret;
1725}
1726EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1727
1728static void rcu_work_rcufn(struct rcu_head *rcu)
1729{
1730        struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1731
1732        /* read the comment in __queue_work() */
1733        local_irq_disable();
1734        __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1735        local_irq_enable();
1736}
1737
1738/**
1739 * queue_rcu_work - queue work after a RCU grace period
1740 * @wq: workqueue to use
1741 * @rwork: work to queue
1742 *
1743 * Return: %false if @rwork was already pending, %true otherwise.  Note
1744 * that a full RCU grace period is guaranteed only after a %true return.
1745 * While @rwork is guaranteed to be executed after a %false return, the
1746 * execution may happen before a full RCU grace period has passed.
1747 */
1748bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1749{
1750        struct work_struct *work = &rwork->work;
1751
1752        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1753                rwork->wq = wq;
1754                call_rcu(&rwork->rcu, rcu_work_rcufn);
1755                return true;
1756        }
1757
1758        return false;
1759}
1760EXPORT_SYMBOL(queue_rcu_work);
1761
1762/**
1763 * worker_enter_idle - enter idle state
1764 * @worker: worker which is entering idle state
1765 *
1766 * @worker is entering idle state.  Update stats and idle timer if
1767 * necessary.
1768 *
1769 * LOCKING:
1770 * raw_spin_lock_irq(pool->lock).
1771 */
1772static void worker_enter_idle(struct worker *worker)
1773{
1774        struct worker_pool *pool = worker->pool;
1775
1776        if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1777            WARN_ON_ONCE(!list_empty(&worker->entry) &&
1778                         (worker->hentry.next || worker->hentry.pprev)))
1779                return;
1780
1781        /* can't use worker_set_flags(), also called from create_worker() */
1782        worker->flags |= WORKER_IDLE;
1783        pool->nr_idle++;
1784        worker->last_active = jiffies;
1785
1786        /* idle_list is LIFO */
1787        list_add(&worker->entry, &pool->idle_list);
1788
1789        if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1790                mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1791
1792        /*
1793         * Sanity check nr_running.  Because unbind_workers() releases
1794         * pool->lock between setting %WORKER_UNBOUND and zapping
1795         * nr_running, the warning may trigger spuriously.  Check iff
1796         * unbind is not in progress.
1797         */
1798        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1799                     pool->nr_workers == pool->nr_idle &&
1800                     atomic_read(&pool->nr_running));
1801}
1802
1803/**
1804 * worker_leave_idle - leave idle state
1805 * @worker: worker which is leaving idle state
1806 *
1807 * @worker is leaving idle state.  Update stats.
1808 *
1809 * LOCKING:
1810 * raw_spin_lock_irq(pool->lock).
1811 */
1812static void worker_leave_idle(struct worker *worker)
1813{
1814        struct worker_pool *pool = worker->pool;
1815
1816        if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1817                return;
1818        worker_clr_flags(worker, WORKER_IDLE);
1819        pool->nr_idle--;
1820        list_del_init(&worker->entry);
1821}
1822
1823static struct worker *alloc_worker(int node)
1824{
1825        struct worker *worker;
1826
1827        worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1828        if (worker) {
1829                INIT_LIST_HEAD(&worker->entry);
1830                INIT_LIST_HEAD(&worker->scheduled);
1831                INIT_LIST_HEAD(&worker->node);
1832                /* on creation a worker is in !idle && prep state */
1833                worker->flags = WORKER_PREP;
1834        }
1835        return worker;
1836}
1837
1838/**
1839 * worker_attach_to_pool() - attach a worker to a pool
1840 * @worker: worker to be attached
1841 * @pool: the target pool
1842 *
1843 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1844 * cpu-binding of @worker are kept coordinated with the pool across
1845 * cpu-[un]hotplugs.
1846 */
1847static void worker_attach_to_pool(struct worker *worker,
1848                                   struct worker_pool *pool)
1849{
1850        mutex_lock(&wq_pool_attach_mutex);
1851
1852        /*
1853         * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1854         * stable across this function.  See the comments above the flag
1855         * definition for details.
1856         */
1857        if (pool->flags & POOL_DISASSOCIATED)
1858                worker->flags |= WORKER_UNBOUND;
1859        else
1860                kthread_set_per_cpu(worker->task, pool->cpu);
1861
1862        if (worker->rescue_wq)
1863                set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1864
1865        list_add_tail(&worker->node, &pool->workers);
1866        worker->pool = pool;
1867
1868        mutex_unlock(&wq_pool_attach_mutex);
1869}
1870
1871/**
1872 * worker_detach_from_pool() - detach a worker from its pool
1873 * @worker: worker which is attached to its pool
1874 *
1875 * Undo the attaching which had been done in worker_attach_to_pool().  The
1876 * caller worker shouldn't access to the pool after detached except it has
1877 * other reference to the pool.
1878 */
1879static void worker_detach_from_pool(struct worker *worker)
1880{
1881        struct worker_pool *pool = worker->pool;
1882        struct completion *detach_completion = NULL;
1883
1884        mutex_lock(&wq_pool_attach_mutex);
1885
1886        kthread_set_per_cpu(worker->task, -1);
1887        list_del(&worker->node);
1888        worker->pool = NULL;
1889
1890        if (list_empty(&pool->workers))
1891                detach_completion = pool->detach_completion;
1892        mutex_unlock(&wq_pool_attach_mutex);
1893
1894        /* clear leftover flags without pool->lock after it is detached */
1895        worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1896
1897        if (detach_completion)
1898                complete(detach_completion);
1899}
1900
1901/**
1902 * create_worker - create a new workqueue worker
1903 * @pool: pool the new worker will belong to
1904 *
1905 * Create and start a new worker which is attached to @pool.
1906 *
1907 * CONTEXT:
1908 * Might sleep.  Does GFP_KERNEL allocations.
1909 *
1910 * Return:
1911 * Pointer to the newly created worker.
1912 */
1913static struct worker *create_worker(struct worker_pool *pool)
1914{
1915        struct worker *worker = NULL;
1916        int id = -1;
1917        char id_buf[16];
1918
1919        /* ID is needed to determine kthread name */
1920        id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1921        if (id < 0)
1922                goto fail;
1923
1924        worker = alloc_worker(pool->node);
1925        if (!worker)
1926                goto fail;
1927
1928        worker->id = id;
1929
1930        if (pool->cpu >= 0)
1931                snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1932                         pool->attrs->nice < 0  ? "H" : "");
1933        else
1934                snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1935
1936        worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1937                                              "kworker/%s", id_buf);
1938        if (IS_ERR(worker->task))
1939                goto fail;
1940
1941        set_user_nice(worker->task, pool->attrs->nice);
1942        kthread_bind_mask(worker->task, pool->attrs->cpumask);
1943
1944        /* successful, attach the worker to the pool */
1945        worker_attach_to_pool(worker, pool);
1946
1947        /* start the newly created worker */
1948        raw_spin_lock_irq(&pool->lock);
1949        worker->pool->nr_workers++;
1950        worker_enter_idle(worker);
1951        wake_up_process(worker->task);
1952        raw_spin_unlock_irq(&pool->lock);
1953
1954        return worker;
1955
1956fail:
1957        if (id >= 0)
1958                ida_simple_remove(&pool->worker_ida, id);
1959        kfree(worker);
1960        return NULL;
1961}
1962
1963/**
1964 * destroy_worker - destroy a workqueue worker
1965 * @worker: worker to be destroyed
1966 *
1967 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1968 * be idle.
1969 *
1970 * CONTEXT:
1971 * raw_spin_lock_irq(pool->lock).
1972 */
1973static void destroy_worker(struct worker *worker)
1974{
1975        struct worker_pool *pool = worker->pool;
1976
1977        lockdep_assert_held(&pool->lock);
1978
1979        /* sanity check frenzy */
1980        if (WARN_ON(worker->current_work) ||
1981            WARN_ON(!list_empty(&worker->scheduled)) ||
1982            WARN_ON(!(worker->flags & WORKER_IDLE)))
1983                return;
1984
1985        pool->nr_workers--;
1986        pool->nr_idle--;
1987
1988        list_del_init(&worker->entry);
1989        worker->flags |= WORKER_DIE;
1990        wake_up_process(worker->task);
1991}
1992
1993static void idle_worker_timeout(struct timer_list *t)
1994{
1995        struct worker_pool *pool = from_timer(pool, t, idle_timer);
1996
1997        raw_spin_lock_irq(&pool->lock);
1998
1999        while (too_many_workers(pool)) {
2000                struct worker *worker;
2001                unsigned long expires;
2002
2003                /* idle_list is kept in LIFO order, check the last one */
2004                worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005                expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006
2007                if (time_before(jiffies, expires)) {
2008                        mod_timer(&pool->idle_timer, expires);
2009                        break;
2010                }
2011
2012                destroy_worker(worker);
2013        }
2014
2015        raw_spin_unlock_irq(&pool->lock);
2016}
2017
2018static void send_mayday(struct work_struct *work)
2019{
2020        struct pool_workqueue *pwq = get_work_pwq(work);
2021        struct workqueue_struct *wq = pwq->wq;
2022
2023        lockdep_assert_held(&wq_mayday_lock);
2024
2025        if (!wq->rescuer)
2026                return;
2027
2028        /* mayday mayday mayday */
2029        if (list_empty(&pwq->mayday_node)) {
2030                /*
2031                 * If @pwq is for an unbound wq, its base ref may be put at
2032                 * any time due to an attribute change.  Pin @pwq until the
2033                 * rescuer is done with it.
2034                 */
2035                get_pwq(pwq);
2036                list_add_tail(&pwq->mayday_node, &wq->maydays);
2037                wake_up_process(wq->rescuer->task);
2038        }
2039}
2040
2041static void pool_mayday_timeout(struct timer_list *t)
2042{
2043        struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2044        struct work_struct *work;
2045
2046        raw_spin_lock_irq(&pool->lock);
2047        raw_spin_lock(&wq_mayday_lock);         /* for wq->maydays */
2048
2049        if (need_to_create_worker(pool)) {
2050                /*
2051                 * We've been trying to create a new worker but
2052                 * haven't been successful.  We might be hitting an
2053                 * allocation deadlock.  Send distress signals to
2054                 * rescuers.
2055                 */
2056                list_for_each_entry(work, &pool->worklist, entry)
2057                        send_mayday(work);
2058        }
2059
2060        raw_spin_unlock(&wq_mayday_lock);
2061        raw_spin_unlock_irq(&pool->lock);
2062
2063        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2064}
2065
2066/**
2067 * maybe_create_worker - create a new worker if necessary
2068 * @pool: pool to create a new worker for
2069 *
2070 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2071 * have at least one idle worker on return from this function.  If
2072 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2073 * sent to all rescuers with works scheduled on @pool to resolve
2074 * possible allocation deadlock.
2075 *
2076 * On return, need_to_create_worker() is guaranteed to be %false and
2077 * may_start_working() %true.
2078 *
2079 * LOCKING:
2080 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2081 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2082 * manager.
2083 */
2084static void maybe_create_worker(struct worker_pool *pool)
2085__releases(&pool->lock)
2086__acquires(&pool->lock)
2087{
2088restart:
2089        raw_spin_unlock_irq(&pool->lock);
2090
2091        /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2092        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2093
2094        while (true) {
2095                if (create_worker(pool) || !need_to_create_worker(pool))
2096                        break;
2097
2098                schedule_timeout_interruptible(CREATE_COOLDOWN);
2099
2100                if (!need_to_create_worker(pool))
2101                        break;
2102        }
2103
2104        del_timer_sync(&pool->mayday_timer);
2105        raw_spin_lock_irq(&pool->lock);
2106        /*
2107         * This is necessary even after a new worker was just successfully
2108         * created as @pool->lock was dropped and the new worker might have
2109         * already become busy.
2110         */
2111        if (need_to_create_worker(pool))
2112                goto restart;
2113}
2114
2115/**
2116 * manage_workers - manage worker pool
2117 * @worker: self
2118 *
2119 * Assume the manager role and manage the worker pool @worker belongs
2120 * to.  At any given time, there can be only zero or one manager per
2121 * pool.  The exclusion is handled automatically by this function.
2122 *
2123 * The caller can safely start processing works on false return.  On
2124 * true return, it's guaranteed that need_to_create_worker() is false
2125 * and may_start_working() is true.
2126 *
2127 * CONTEXT:
2128 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2129 * multiple times.  Does GFP_KERNEL allocations.
2130 *
2131 * Return:
2132 * %false if the pool doesn't need management and the caller can safely
2133 * start processing works, %true if management function was performed and
2134 * the conditions that the caller verified before calling the function may
2135 * no longer be true.
2136 */
2137static bool manage_workers(struct worker *worker)
2138{
2139        struct worker_pool *pool = worker->pool;
2140
2141        if (pool->flags & POOL_MANAGER_ACTIVE)
2142                return false;
2143
2144        pool->flags |= POOL_MANAGER_ACTIVE;
2145        pool->manager = worker;
2146
2147        maybe_create_worker(pool);
2148
2149        pool->manager = NULL;
2150        pool->flags &= ~POOL_MANAGER_ACTIVE;
2151        rcuwait_wake_up(&manager_wait);
2152        return true;
2153}
2154
2155/**
2156 * process_one_work - process single work
2157 * @worker: self
2158 * @work: work to process
2159 *
2160 * Process @work.  This function contains all the logics necessary to
2161 * process a single work including synchronization against and
2162 * interaction with other workers on the same cpu, queueing and
2163 * flushing.  As long as context requirement is met, any worker can
2164 * call this function to process a work.
2165 *
2166 * CONTEXT:
2167 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2168 */
2169static void process_one_work(struct worker *worker, struct work_struct *work)
2170__releases(&pool->lock)
2171__acquires(&pool->lock)
2172{
2173        struct pool_workqueue *pwq = get_work_pwq(work);
2174        struct worker_pool *pool = worker->pool;
2175        bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2176        int work_color;
2177        struct worker *collision;
2178#ifdef CONFIG_LOCKDEP
2179        /*
2180         * It is permissible to free the struct work_struct from
2181         * inside the function that is called from it, this we need to
2182         * take into account for lockdep too.  To avoid bogus "held
2183         * lock freed" warnings as well as problems when looking into
2184         * work->lockdep_map, make a copy and use that here.
2185         */
2186        struct lockdep_map lockdep_map;
2187
2188        lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2189#endif
2190        /* ensure we're on the correct CPU */
2191        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2192                     raw_smp_processor_id() != pool->cpu);
2193
2194        /*
2195         * A single work shouldn't be executed concurrently by
2196         * multiple workers on a single cpu.  Check whether anyone is
2197         * already processing the work.  If so, defer the work to the
2198         * currently executing one.
2199         */
2200        collision = find_worker_executing_work(pool, work);
2201        if (unlikely(collision)) {
2202                move_linked_works(work, &collision->scheduled, NULL);
2203                return;
2204        }
2205
2206        /* claim and dequeue */
2207        debug_work_deactivate(work);
2208        hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2209        worker->current_work = work;
2210        worker->current_func = work->func;
2211        worker->current_pwq = pwq;
2212        work_color = get_work_color(work);
2213
2214        /*
2215         * Record wq name for cmdline and debug reporting, may get
2216         * overridden through set_worker_desc().
2217         */
2218        strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2219
2220        list_del_init(&work->entry);
2221
2222        /*
2223         * CPU intensive works don't participate in concurrency management.
2224         * They're the scheduler's responsibility.  This takes @worker out
2225         * of concurrency management and the next code block will chain
2226         * execution of the pending work items.
2227         */
2228        if (unlikely(cpu_intensive))
2229                worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2230
2231        /*
2232         * Wake up another worker if necessary.  The condition is always
2233         * false for normal per-cpu workers since nr_running would always
2234         * be >= 1 at this point.  This is used to chain execution of the
2235         * pending work items for WORKER_NOT_RUNNING workers such as the
2236         * UNBOUND and CPU_INTENSIVE ones.
2237         */
2238        if (need_more_worker(pool))
2239                wake_up_worker(pool);
2240
2241        /*
2242         * Record the last pool and clear PENDING which should be the last
2243         * update to @work.  Also, do this inside @pool->lock so that
2244         * PENDING and queued state changes happen together while IRQ is
2245         * disabled.
2246         */
2247        set_work_pool_and_clear_pending(work, pool->id);
2248
2249        raw_spin_unlock_irq(&pool->lock);
2250
2251        lock_map_acquire(&pwq->wq->lockdep_map);
2252        lock_map_acquire(&lockdep_map);
2253        /*
2254         * Strictly speaking we should mark the invariant state without holding
2255         * any locks, that is, before these two lock_map_acquire()'s.
2256         *
2257         * However, that would result in:
2258         *
2259         *   A(W1)
2260         *   WFC(C)
2261         *              A(W1)
2262         *              C(C)
2263         *
2264         * Which would create W1->C->W1 dependencies, even though there is no
2265         * actual deadlock possible. There are two solutions, using a
2266         * read-recursive acquire on the work(queue) 'locks', but this will then
2267         * hit the lockdep limitation on recursive locks, or simply discard
2268         * these locks.
2269         *
2270         * AFAICT there is no possible deadlock scenario between the
2271         * flush_work() and complete() primitives (except for single-threaded
2272         * workqueues), so hiding them isn't a problem.
2273         */
2274        lockdep_invariant_state(true);
2275        trace_workqueue_execute_start(work);
2276        worker->current_func(work);
2277        /*
2278         * While we must be careful to not use "work" after this, the trace
2279         * point will only record its address.
2280         */
2281        trace_workqueue_execute_end(work, worker->current_func);
2282        lock_map_release(&lockdep_map);
2283        lock_map_release(&pwq->wq->lockdep_map);
2284
2285        if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2286                pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2287                       "     last function: %ps\n",
2288                       current->comm, preempt_count(), task_pid_nr(current),
2289                       worker->current_func);
2290                debug_show_held_locks(current);
2291                dump_stack();
2292        }
2293
2294        /*
2295         * The following prevents a kworker from hogging CPU on !PREEMPTION
2296         * kernels, where a requeueing work item waiting for something to
2297         * happen could deadlock with stop_machine as such work item could
2298         * indefinitely requeue itself while all other CPUs are trapped in
2299         * stop_machine. At the same time, report a quiescent RCU state so
2300         * the same condition doesn't freeze RCU.
2301         */
2302        cond_resched();
2303
2304        raw_spin_lock_irq(&pool->lock);
2305
2306        /* clear cpu intensive status */
2307        if (unlikely(cpu_intensive))
2308                worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2309
2310        /* tag the worker for identification in schedule() */
2311        worker->last_func = worker->current_func;
2312
2313        /* we're done with it, release */
2314        hash_del(&worker->hentry);
2315        worker->current_work = NULL;
2316        worker->current_func = NULL;
2317        worker->current_pwq = NULL;
2318        pwq_dec_nr_in_flight(pwq, work_color);
2319}
2320
2321/**
2322 * process_scheduled_works - process scheduled works
2323 * @worker: self
2324 *
2325 * Process all scheduled works.  Please note that the scheduled list
2326 * may change while processing a work, so this function repeatedly
2327 * fetches a work from the top and executes it.
2328 *
2329 * CONTEXT:
2330 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2331 * multiple times.
2332 */
2333static void process_scheduled_works(struct worker *worker)
2334{
2335        while (!list_empty(&worker->scheduled)) {
2336                struct work_struct *work = list_first_entry(&worker->scheduled,
2337                                                struct work_struct, entry);
2338                process_one_work(worker, work);
2339        }
2340}
2341
2342static void set_pf_worker(bool val)
2343{
2344        mutex_lock(&wq_pool_attach_mutex);
2345        if (val)
2346                current->flags |= PF_WQ_WORKER;
2347        else
2348                current->flags &= ~PF_WQ_WORKER;
2349        mutex_unlock(&wq_pool_attach_mutex);
2350}
2351
2352/**
2353 * worker_thread - the worker thread function
2354 * @__worker: self
2355 *
2356 * The worker thread function.  All workers belong to a worker_pool -
2357 * either a per-cpu one or dynamic unbound one.  These workers process all
2358 * work items regardless of their specific target workqueue.  The only
2359 * exception is work items which belong to workqueues with a rescuer which
2360 * will be explained in rescuer_thread().
2361 *
2362 * Return: 0
2363 */
2364static int worker_thread(void *__worker)
2365{
2366        struct worker *worker = __worker;
2367        struct worker_pool *pool = worker->pool;
2368
2369        /* tell the scheduler that this is a workqueue worker */
2370        set_pf_worker(true);
2371woke_up:
2372        raw_spin_lock_irq(&pool->lock);
2373
2374        /* am I supposed to die? */
2375        if (unlikely(worker->flags & WORKER_DIE)) {
2376                raw_spin_unlock_irq(&pool->lock);
2377                WARN_ON_ONCE(!list_empty(&worker->entry));
2378                set_pf_worker(false);
2379
2380                set_task_comm(worker->task, "kworker/dying");
2381                ida_simple_remove(&pool->worker_ida, worker->id);
2382                worker_detach_from_pool(worker);
2383                kfree(worker);
2384                return 0;
2385        }
2386
2387        worker_leave_idle(worker);
2388recheck:
2389        /* no more worker necessary? */
2390        if (!need_more_worker(pool))
2391                goto sleep;
2392
2393        /* do we need to manage? */
2394        if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2395                goto recheck;
2396
2397        /*
2398         * ->scheduled list can only be filled while a worker is
2399         * preparing to process a work or actually processing it.
2400         * Make sure nobody diddled with it while I was sleeping.
2401         */
2402        WARN_ON_ONCE(!list_empty(&worker->scheduled));
2403
2404        /*
2405         * Finish PREP stage.  We're guaranteed to have at least one idle
2406         * worker or that someone else has already assumed the manager
2407         * role.  This is where @worker starts participating in concurrency
2408         * management if applicable and concurrency management is restored
2409         * after being rebound.  See rebind_workers() for details.
2410         */
2411        worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2412
2413        do {
2414                struct work_struct *work =
2415                        list_first_entry(&pool->worklist,
2416                                         struct work_struct, entry);
2417
2418                pool->watchdog_ts = jiffies;
2419
2420                if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2421                        /* optimization path, not strictly necessary */
2422                        process_one_work(worker, work);
2423                        if (unlikely(!list_empty(&worker->scheduled)))
2424                                process_scheduled_works(worker);
2425                } else {
2426                        move_linked_works(work, &worker->scheduled, NULL);
2427                        process_scheduled_works(worker);
2428                }
2429        } while (keep_working(pool));
2430
2431        worker_set_flags(worker, WORKER_PREP);
2432sleep:
2433        /*
2434         * pool->lock is held and there's no work to process and no need to
2435         * manage, sleep.  Workers are woken up only while holding
2436         * pool->lock or from local cpu, so setting the current state
2437         * before releasing pool->lock is enough to prevent losing any
2438         * event.
2439         */
2440        worker_enter_idle(worker);
2441        __set_current_state(TASK_IDLE);
2442        raw_spin_unlock_irq(&pool->lock);
2443        schedule();
2444        goto woke_up;
2445}
2446
2447/**
2448 * rescuer_thread - the rescuer thread function
2449 * @__rescuer: self
2450 *
2451 * Workqueue rescuer thread function.  There's one rescuer for each
2452 * workqueue which has WQ_MEM_RECLAIM set.
2453 *
2454 * Regular work processing on a pool may block trying to create a new
2455 * worker which uses GFP_KERNEL allocation which has slight chance of
2456 * developing into deadlock if some works currently on the same queue
2457 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2458 * the problem rescuer solves.
2459 *
2460 * When such condition is possible, the pool summons rescuers of all
2461 * workqueues which have works queued on the pool and let them process
2462 * those works so that forward progress can be guaranteed.
2463 *
2464 * This should happen rarely.
2465 *
2466 * Return: 0
2467 */
2468static int rescuer_thread(void *__rescuer)
2469{
2470        struct worker *rescuer = __rescuer;
2471        struct workqueue_struct *wq = rescuer->rescue_wq;
2472        struct list_head *scheduled = &rescuer->scheduled;
2473        bool should_stop;
2474
2475        set_user_nice(current, RESCUER_NICE_LEVEL);
2476
2477        /*
2478         * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2479         * doesn't participate in concurrency management.
2480         */
2481        set_pf_worker(true);
2482repeat:
2483        set_current_state(TASK_IDLE);
2484
2485        /*
2486         * By the time the rescuer is requested to stop, the workqueue
2487         * shouldn't have any work pending, but @wq->maydays may still have
2488         * pwq(s) queued.  This can happen by non-rescuer workers consuming
2489         * all the work items before the rescuer got to them.  Go through
2490         * @wq->maydays processing before acting on should_stop so that the
2491         * list is always empty on exit.
2492         */
2493        should_stop = kthread_should_stop();
2494
2495        /* see whether any pwq is asking for help */
2496        raw_spin_lock_irq(&wq_mayday_lock);
2497
2498        while (!list_empty(&wq->maydays)) {
2499                struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2500                                        struct pool_workqueue, mayday_node);
2501                struct worker_pool *pool = pwq->pool;
2502                struct work_struct *work, *n;
2503                bool first = true;
2504
2505                __set_current_state(TASK_RUNNING);
2506                list_del_init(&pwq->mayday_node);
2507
2508                raw_spin_unlock_irq(&wq_mayday_lock);
2509
2510                worker_attach_to_pool(rescuer, pool);
2511
2512                raw_spin_lock_irq(&pool->lock);
2513
2514                /*
2515                 * Slurp in all works issued via this workqueue and
2516                 * process'em.
2517                 */
2518                WARN_ON_ONCE(!list_empty(scheduled));
2519                list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2520                        if (get_work_pwq(work) == pwq) {
2521                                if (first)
2522                                        pool->watchdog_ts = jiffies;
2523                                move_linked_works(work, scheduled, &n);
2524                        }
2525                        first = false;
2526                }
2527
2528                if (!list_empty(scheduled)) {
2529                        process_scheduled_works(rescuer);
2530
2531                        /*
2532                         * The above execution of rescued work items could
2533                         * have created more to rescue through
2534                         * pwq_activate_first_delayed() or chained
2535                         * queueing.  Let's put @pwq back on mayday list so
2536                         * that such back-to-back work items, which may be
2537                         * being used to relieve memory pressure, don't
2538                         * incur MAYDAY_INTERVAL delay inbetween.
2539                         */
2540                        if (pwq->nr_active && need_to_create_worker(pool)) {
2541                                raw_spin_lock(&wq_mayday_lock);
2542                                /*
2543                                 * Queue iff we aren't racing destruction
2544                                 * and somebody else hasn't queued it already.
2545                                 */
2546                                if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2547                                        get_pwq(pwq);
2548                                        list_add_tail(&pwq->mayday_node, &wq->maydays);
2549                                }
2550                                raw_spin_unlock(&wq_mayday_lock);
2551                        }
2552                }
2553
2554                /*
2555                 * Put the reference grabbed by send_mayday().  @pool won't
2556                 * go away while we're still attached to it.
2557                 */
2558                put_pwq(pwq);
2559
2560                /*
2561                 * Leave this pool.  If need_more_worker() is %true, notify a
2562                 * regular worker; otherwise, we end up with 0 concurrency
2563                 * and stalling the execution.
2564                 */
2565                if (need_more_worker(pool))
2566                        wake_up_worker(pool);
2567
2568                raw_spin_unlock_irq(&pool->lock);
2569
2570                worker_detach_from_pool(rescuer);
2571
2572                raw_spin_lock_irq(&wq_mayday_lock);
2573        }
2574
2575        raw_spin_unlock_irq(&wq_mayday_lock);
2576
2577        if (should_stop) {
2578                __set_current_state(TASK_RUNNING);
2579                set_pf_worker(false);
2580                return 0;
2581        }
2582
2583        /* rescuers should never participate in concurrency management */
2584        WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2585        schedule();
2586        goto repeat;
2587}
2588
2589/**
2590 * check_flush_dependency - check for flush dependency sanity
2591 * @target_wq: workqueue being flushed
2592 * @target_work: work item being flushed (NULL for workqueue flushes)
2593 *
2594 * %current is trying to flush the whole @target_wq or @target_work on it.
2595 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2596 * reclaiming memory or running on a workqueue which doesn't have
2597 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2598 * a deadlock.
2599 */
2600static void check_flush_dependency(struct workqueue_struct *target_wq,
2601                                   struct work_struct *target_work)
2602{
2603        work_func_t target_func = target_work ? target_work->func : NULL;
2604        struct worker *worker;
2605
2606        if (target_wq->flags & WQ_MEM_RECLAIM)
2607                return;
2608
2609        worker = current_wq_worker();
2610
2611        WARN_ONCE(current->flags & PF_MEMALLOC,
2612                  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2613                  current->pid, current->comm, target_wq->name, target_func);
2614        WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2615                              (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2616                  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2617                  worker->current_pwq->wq->name, worker->current_func,
2618                  target_wq->name, target_func);
2619}
2620
2621struct wq_barrier {
2622        struct work_struct      work;
2623        struct completion       done;
2624        struct task_struct      *task;  /* purely informational */
2625};
2626
2627static void wq_barrier_func(struct work_struct *work)
2628{
2629        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2630        complete(&barr->done);
2631}
2632
2633/**
2634 * insert_wq_barrier - insert a barrier work
2635 * @pwq: pwq to insert barrier into
2636 * @barr: wq_barrier to insert
2637 * @target: target work to attach @barr to
2638 * @worker: worker currently executing @target, NULL if @target is not executing
2639 *
2640 * @barr is linked to @target such that @barr is completed only after
2641 * @target finishes execution.  Please note that the ordering
2642 * guarantee is observed only with respect to @target and on the local
2643 * cpu.
2644 *
2645 * Currently, a queued barrier can't be canceled.  This is because
2646 * try_to_grab_pending() can't determine whether the work to be
2647 * grabbed is at the head of the queue and thus can't clear LINKED
2648 * flag of the previous work while there must be a valid next work
2649 * after a work with LINKED flag set.
2650 *
2651 * Note that when @worker is non-NULL, @target may be modified
2652 * underneath us, so we can't reliably determine pwq from @target.
2653 *
2654 * CONTEXT:
2655 * raw_spin_lock_irq(pool->lock).
2656 */
2657static void insert_wq_barrier(struct pool_workqueue *pwq,
2658                              struct wq_barrier *barr,
2659                              struct work_struct *target, struct worker *worker)
2660{
2661        struct list_head *head;
2662        unsigned int linked = 0;
2663
2664        /*
2665         * debugobject calls are safe here even with pool->lock locked
2666         * as we know for sure that this will not trigger any of the
2667         * checks and call back into the fixup functions where we
2668         * might deadlock.
2669         */
2670        INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2671        __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2672
2673        init_completion_map(&barr->done, &target->lockdep_map);
2674
2675        barr->task = current;
2676
2677        /*
2678         * If @target is currently being executed, schedule the
2679         * barrier to the worker; otherwise, put it after @target.
2680         */
2681        if (worker)
2682                head = worker->scheduled.next;
2683        else {
2684                unsigned long *bits = work_data_bits(target);
2685
2686                head = target->entry.next;
2687                /* there can already be other linked works, inherit and set */
2688                linked = *bits & WORK_STRUCT_LINKED;
2689                __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2690        }
2691
2692        debug_work_activate(&barr->work);
2693        insert_work(pwq, &barr->work, head,
2694                    work_color_to_flags(WORK_NO_COLOR) | linked);
2695}
2696
2697/**
2698 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2699 * @wq: workqueue being flushed
2700 * @flush_color: new flush color, < 0 for no-op
2701 * @work_color: new work color, < 0 for no-op
2702 *
2703 * Prepare pwqs for workqueue flushing.
2704 *
2705 * If @flush_color is non-negative, flush_color on all pwqs should be
2706 * -1.  If no pwq has in-flight commands at the specified color, all
2707 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2708 * has in flight commands, its pwq->flush_color is set to
2709 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2710 * wakeup logic is armed and %true is returned.
2711 *
2712 * The caller should have initialized @wq->first_flusher prior to
2713 * calling this function with non-negative @flush_color.  If
2714 * @flush_color is negative, no flush color update is done and %false
2715 * is returned.
2716 *
2717 * If @work_color is non-negative, all pwqs should have the same
2718 * work_color which is previous to @work_color and all will be
2719 * advanced to @work_color.
2720 *
2721 * CONTEXT:
2722 * mutex_lock(wq->mutex).
2723 *
2724 * Return:
2725 * %true if @flush_color >= 0 and there's something to flush.  %false
2726 * otherwise.
2727 */
2728static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2729                                      int flush_color, int work_color)
2730{
2731        bool wait = false;
2732        struct pool_workqueue *pwq;
2733
2734        if (flush_color >= 0) {
2735                WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2736                atomic_set(&wq->nr_pwqs_to_flush, 1);
2737        }
2738
2739        for_each_pwq(pwq, wq) {
2740                struct worker_pool *pool = pwq->pool;
2741
2742                raw_spin_lock_irq(&pool->lock);
2743
2744                if (flush_color >= 0) {
2745                        WARN_ON_ONCE(pwq->flush_color != -1);
2746
2747                        if (pwq->nr_in_flight[flush_color]) {
2748                                pwq->flush_color = flush_color;
2749                                atomic_inc(&wq->nr_pwqs_to_flush);
2750                                wait = true;
2751                        }
2752                }
2753
2754                if (work_color >= 0) {
2755                        WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2756                        pwq->work_color = work_color;
2757                }
2758
2759                raw_spin_unlock_irq(&pool->lock);
2760        }
2761
2762        if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2763                complete(&wq->first_flusher->done);
2764
2765        return wait;
2766}
2767
2768/**
2769 * flush_workqueue - ensure that any scheduled work has run to completion.
2770 * @wq: workqueue to flush
2771 *
2772 * This function sleeps until all work items which were queued on entry
2773 * have finished execution, but it is not livelocked by new incoming ones.
2774 */
2775void flush_workqueue(struct workqueue_struct *wq)
2776{
2777        struct wq_flusher this_flusher = {
2778                .list = LIST_HEAD_INIT(this_flusher.list),
2779                .flush_color = -1,
2780                .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2781        };
2782        int next_color;
2783
2784        if (WARN_ON(!wq_online))
2785                return;
2786
2787        lock_map_acquire(&wq->lockdep_map);
2788        lock_map_release(&wq->lockdep_map);
2789
2790        mutex_lock(&wq->mutex);
2791
2792        /*
2793         * Start-to-wait phase
2794         */
2795        next_color = work_next_color(wq->work_color);
2796
2797        if (next_color != wq->flush_color) {
2798                /*
2799                 * Color space is not full.  The current work_color
2800                 * becomes our flush_color and work_color is advanced
2801                 * by one.
2802                 */
2803                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2804                this_flusher.flush_color = wq->work_color;
2805                wq->work_color = next_color;
2806
2807                if (!wq->first_flusher) {
2808                        /* no flush in progress, become the first flusher */
2809                        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2810
2811                        wq->first_flusher = &this_flusher;
2812
2813                        if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2814                                                       wq->work_color)) {
2815                                /* nothing to flush, done */
2816                                wq->flush_color = next_color;
2817                                wq->first_flusher = NULL;
2818                                goto out_unlock;
2819                        }
2820                } else {
2821                        /* wait in queue */
2822                        WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2823                        list_add_tail(&this_flusher.list, &wq->flusher_queue);
2824                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2825                }
2826        } else {
2827                /*
2828                 * Oops, color space is full, wait on overflow queue.
2829                 * The next flush completion will assign us
2830                 * flush_color and transfer to flusher_queue.
2831                 */
2832                list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2833        }
2834
2835        check_flush_dependency(wq, NULL);
2836
2837        mutex_unlock(&wq->mutex);
2838
2839        wait_for_completion(&this_flusher.done);
2840
2841        /*
2842         * Wake-up-and-cascade phase
2843         *
2844         * First flushers are responsible for cascading flushes and
2845         * handling overflow.  Non-first flushers can simply return.
2846         */
2847        if (READ_ONCE(wq->first_flusher) != &this_flusher)
2848                return;
2849
2850        mutex_lock(&wq->mutex);
2851
2852        /* we might have raced, check again with mutex held */
2853        if (wq->first_flusher != &this_flusher)
2854                goto out_unlock;
2855
2856        WRITE_ONCE(wq->first_flusher, NULL);
2857
2858        WARN_ON_ONCE(!list_empty(&this_flusher.list));
2859        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2860
2861        while (true) {
2862                struct wq_flusher *next, *tmp;
2863
2864                /* complete all the flushers sharing the current flush color */
2865                list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2866                        if (next->flush_color != wq->flush_color)
2867                                break;
2868                        list_del_init(&next->list);
2869                        complete(&next->done);
2870                }
2871
2872                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2873                             wq->flush_color != work_next_color(wq->work_color));
2874
2875                /* this flush_color is finished, advance by one */
2876                wq->flush_color = work_next_color(wq->flush_color);
2877
2878                /* one color has been freed, handle overflow queue */
2879                if (!list_empty(&wq->flusher_overflow)) {
2880                        /*
2881                         * Assign the same color to all overflowed
2882                         * flushers, advance work_color and append to
2883                         * flusher_queue.  This is the start-to-wait
2884                         * phase for these overflowed flushers.
2885                         */
2886                        list_for_each_entry(tmp, &wq->flusher_overflow, list)
2887                                tmp->flush_color = wq->work_color;
2888
2889                        wq->work_color = work_next_color(wq->work_color);
2890
2891                        list_splice_tail_init(&wq->flusher_overflow,
2892                                              &wq->flusher_queue);
2893                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2894                }
2895
2896                if (list_empty(&wq->flusher_queue)) {
2897                        WARN_ON_ONCE(wq->flush_color != wq->work_color);
2898                        break;
2899                }
2900
2901                /*
2902                 * Need to flush more colors.  Make the next flusher
2903                 * the new first flusher and arm pwqs.
2904                 */
2905                WARN_ON_ONCE(wq->flush_color == wq->work_color);
2906                WARN_ON_ONCE(wq->flush_color != next->flush_color);
2907
2908                list_del_init(&next->list);
2909                wq->first_flusher = next;
2910
2911                if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2912                        break;
2913
2914                /*
2915                 * Meh... this color is already done, clear first
2916                 * flusher and repeat cascading.
2917                 */
2918                wq->first_flusher = NULL;
2919        }
2920
2921out_unlock:
2922        mutex_unlock(&wq->mutex);
2923}
2924EXPORT_SYMBOL(flush_workqueue);
2925
2926/**
2927 * drain_workqueue - drain a workqueue
2928 * @wq: workqueue to drain
2929 *
2930 * Wait until the workqueue becomes empty.  While draining is in progress,
2931 * only chain queueing is allowed.  IOW, only currently pending or running
2932 * work items on @wq can queue further work items on it.  @wq is flushed
2933 * repeatedly until it becomes empty.  The number of flushing is determined
2934 * by the depth of chaining and should be relatively short.  Whine if it
2935 * takes too long.
2936 */
2937void drain_workqueue(struct workqueue_struct *wq)
2938{
2939        unsigned int flush_cnt = 0;
2940        struct pool_workqueue *pwq;
2941
2942        /*
2943         * __queue_work() needs to test whether there are drainers, is much
2944         * hotter than drain_workqueue() and already looks at @wq->flags.
2945         * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2946         */
2947        mutex_lock(&wq->mutex);
2948        if (!wq->nr_drainers++)
2949                wq->flags |= __WQ_DRAINING;
2950        mutex_unlock(&wq->mutex);
2951reflush:
2952        flush_workqueue(wq);
2953
2954        mutex_lock(&wq->mutex);
2955
2956        for_each_pwq(pwq, wq) {
2957                bool drained;
2958
2959                raw_spin_lock_irq(&pwq->pool->lock);
2960                drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2961                raw_spin_unlock_irq(&pwq->pool->lock);
2962
2963                if (drained)
2964                        continue;
2965
2966                if (++flush_cnt == 10 ||
2967                    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2968                        pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2969                                wq->name, __func__, flush_cnt);
2970
2971                mutex_unlock(&wq->mutex);
2972                goto reflush;
2973        }
2974
2975        if (!--wq->nr_drainers)
2976                wq->flags &= ~__WQ_DRAINING;
2977        mutex_unlock(&wq->mutex);
2978}
2979EXPORT_SYMBOL_GPL(drain_workqueue);
2980
2981static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2982                             bool from_cancel)
2983{
2984        struct worker *worker = NULL;
2985        struct worker_pool *pool;
2986        struct pool_workqueue *pwq;
2987
2988        might_sleep();
2989
2990        rcu_read_lock();
2991        pool = get_work_pool(work);
2992        if (!pool) {
2993                rcu_read_unlock();
2994                return false;
2995        }
2996
2997        raw_spin_lock_irq(&pool->lock);
2998        /* see the comment in try_to_grab_pending() with the same code */
2999        pwq = get_work_pwq(work);
3000        if (pwq) {
3001                if (unlikely(pwq->pool != pool))
3002                        goto already_gone;
3003        } else {
3004                worker = find_worker_executing_work(pool, work);
3005                if (!worker)
3006                        goto already_gone;
3007                pwq = worker->current_pwq;
3008        }
3009
3010        check_flush_dependency(pwq->wq, work);
3011
3012        insert_wq_barrier(pwq, barr, work, worker);
3013        raw_spin_unlock_irq(&pool->lock);
3014
3015        /*
3016         * Force a lock recursion deadlock when using flush_work() inside a
3017         * single-threaded or rescuer equipped workqueue.
3018         *
3019         * For single threaded workqueues the deadlock happens when the work
3020         * is after the work issuing the flush_work(). For rescuer equipped
3021         * workqueues the deadlock happens when the rescuer stalls, blocking
3022         * forward progress.
3023         */
3024        if (!from_cancel &&
3025            (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3026                lock_map_acquire(&pwq->wq->lockdep_map);
3027                lock_map_release(&pwq->wq->lockdep_map);
3028        }
3029        rcu_read_unlock();
3030        return true;
3031already_gone:
3032        raw_spin_unlock_irq(&pool->lock);
3033        rcu_read_unlock();
3034        return false;
3035}
3036
3037static bool __flush_work(struct work_struct *work, bool from_cancel)
3038{
3039        struct wq_barrier barr;
3040
3041        if (WARN_ON(!wq_online))
3042                return false;
3043
3044        if (WARN_ON(!work->func))
3045                return false;
3046
3047        if (!from_cancel) {
3048                lock_map_acquire(&work->lockdep_map);
3049                lock_map_release(&work->lockdep_map);
3050        }
3051
3052        if (start_flush_work(work, &barr, from_cancel)) {
3053                wait_for_completion(&barr.done);
3054                destroy_work_on_stack(&barr.work);
3055                return true;
3056        } else {
3057                return false;
3058        }
3059}
3060
3061/**
3062 * flush_work - wait for a work to finish executing the last queueing instance
3063 * @work: the work to flush
3064 *
3065 * Wait until @work has finished execution.  @work is guaranteed to be idle
3066 * on return if it hasn't been requeued since flush started.
3067 *
3068 * Return:
3069 * %true if flush_work() waited for the work to finish execution,
3070 * %false if it was already idle.
3071 */
3072bool flush_work(struct work_struct *work)
3073{
3074        return __flush_work(work, false);
3075}
3076EXPORT_SYMBOL_GPL(flush_work);
3077
3078struct cwt_wait {
3079        wait_queue_entry_t              wait;
3080        struct work_struct      *work;
3081};
3082
3083static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3084{
3085        struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3086
3087        if (cwait->work != key)
3088                return 0;
3089        return autoremove_wake_function(wait, mode, sync, key);
3090}
3091
3092static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3093{
3094        static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3095        unsigned long flags;
3096        int ret;
3097
3098        do {
3099                ret = try_to_grab_pending(work, is_dwork, &flags);
3100                /*
3101                 * If someone else is already canceling, wait for it to
3102                 * finish.  flush_work() doesn't work for PREEMPT_NONE
3103                 * because we may get scheduled between @work's completion
3104                 * and the other canceling task resuming and clearing
3105                 * CANCELING - flush_work() will return false immediately
3106                 * as @work is no longer busy, try_to_grab_pending() will
3107                 * return -ENOENT as @work is still being canceled and the
3108                 * other canceling task won't be able to clear CANCELING as
3109                 * we're hogging the CPU.
3110                 *
3111                 * Let's wait for completion using a waitqueue.  As this
3112                 * may lead to the thundering herd problem, use a custom
3113                 * wake function which matches @work along with exclusive
3114                 * wait and wakeup.
3115                 */
3116                if (unlikely(ret == -ENOENT)) {
3117                        struct cwt_wait cwait;
3118
3119                        init_wait(&cwait.wait);
3120                        cwait.wait.func = cwt_wakefn;
3121                        cwait.work = work;
3122
3123                        prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3124                                                  TASK_UNINTERRUPTIBLE);
3125                        if (work_is_canceling(work))
3126                                schedule();
3127                        finish_wait(&cancel_waitq, &cwait.wait);
3128                }
3129        } while (unlikely(ret < 0));
3130
3131        /* tell other tasks trying to grab @work to back off */
3132        mark_work_canceling(work);
3133        local_irq_restore(flags);
3134
3135        /*
3136         * This allows canceling during early boot.  We know that @work
3137         * isn't executing.
3138         */
3139        if (wq_online)
3140                __flush_work(work, true);
3141
3142        clear_work_data(work);
3143
3144        /*
3145         * Paired with prepare_to_wait() above so that either
3146         * waitqueue_active() is visible here or !work_is_canceling() is
3147         * visible there.
3148         */
3149        smp_mb();
3150        if (waitqueue_active(&cancel_waitq))
3151                __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3152
3153        return ret;
3154}
3155
3156/**
3157 * cancel_work_sync - cancel a work and wait for it to finish
3158 * @work: the work to cancel
3159 *
3160 * Cancel @work and wait for its execution to finish.  This function
3161 * can be used even if the work re-queues itself or migrates to
3162 * another workqueue.  On return from this function, @work is
3163 * guaranteed to be not pending or executing on any CPU.
3164 *
3165 * cancel_work_sync(&delayed_work->work) must not be used for
3166 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3167 *
3168 * The caller must ensure that the workqueue on which @work was last
3169 * queued can't be destroyed before this function returns.
3170 *
3171 * Return:
3172 * %true if @work was pending, %false otherwise.
3173 */
3174bool cancel_work_sync(struct work_struct *work)
3175{
3176        return __cancel_work_timer(work, false);
3177}
3178EXPORT_SYMBOL_GPL(cancel_work_sync);
3179
3180/**
3181 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3182 * @dwork: the delayed work to flush
3183 *
3184 * Delayed timer is cancelled and the pending work is queued for
3185 * immediate execution.  Like flush_work(), this function only
3186 * considers the last queueing instance of @dwork.
3187 *
3188 * Return:
3189 * %true if flush_work() waited for the work to finish execution,
3190 * %false if it was already idle.
3191 */
3192bool flush_delayed_work(struct delayed_work *dwork)
3193{
3194        local_irq_disable();
3195        if (del_timer_sync(&dwork->timer))
3196                __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3197        local_irq_enable();
3198        return flush_work(&dwork->work);
3199}
3200EXPORT_SYMBOL(flush_delayed_work);
3201
3202/**
3203 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3204 * @rwork: the rcu work to flush
3205 *
3206 * Return:
3207 * %true if flush_rcu_work() waited for the work to finish execution,
3208 * %false if it was already idle.
3209 */
3210bool flush_rcu_work(struct rcu_work *rwork)
3211{
3212        if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3213                rcu_barrier();
3214                flush_work(&rwork->work);
3215                return true;
3216        } else {
3217                return flush_work(&rwork->work);
3218        }
3219}
3220EXPORT_SYMBOL(flush_rcu_work);
3221
3222static bool __cancel_work(struct work_struct *work, bool is_dwork)
3223{
3224        unsigned long flags;
3225        int ret;
3226
3227        do {
3228                ret = try_to_grab_pending(work, is_dwork, &flags);
3229        } while (unlikely(ret == -EAGAIN));
3230
3231        if (unlikely(ret < 0))
3232                return false;
3233
3234        set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3235        local_irq_restore(flags);
3236        return ret;
3237}
3238
3239/**
3240 * cancel_delayed_work - cancel a delayed work
3241 * @dwork: delayed_work to cancel
3242 *
3243 * Kill off a pending delayed_work.
3244 *
3245 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3246 * pending.
3247 *
3248 * Note:
3249 * The work callback function may still be running on return, unless
3250 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3251 * use cancel_delayed_work_sync() to wait on it.
3252 *
3253 * This function is safe to call from any context including IRQ handler.
3254 */
3255bool cancel_delayed_work(struct delayed_work *dwork)
3256{
3257        return __cancel_work(&dwork->work, true);
3258}
3259EXPORT_SYMBOL(cancel_delayed_work);
3260
3261/**
3262 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3263 * @dwork: the delayed work cancel
3264 *
3265 * This is cancel_work_sync() for delayed works.
3266 *
3267 * Return:
3268 * %true if @dwork was pending, %false otherwise.
3269 */
3270bool cancel_delayed_work_sync(struct delayed_work *dwork)
3271{
3272        return __cancel_work_timer(&dwork->work, true);
3273}
3274EXPORT_SYMBOL(cancel_delayed_work_sync);
3275
3276/**
3277 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3278 * @func: the function to call
3279 *
3280 * schedule_on_each_cpu() executes @func on each online CPU using the
3281 * system workqueue and blocks until all CPUs have completed.
3282 * schedule_on_each_cpu() is very slow.
3283 *
3284 * Return:
3285 * 0 on success, -errno on failure.
3286 */
3287int schedule_on_each_cpu(work_func_t func)
3288{
3289        int cpu;
3290        struct work_struct __percpu *works;
3291
3292        works = alloc_percpu(struct work_struct);
3293        if (!works)
3294                return -ENOMEM;
3295
3296        get_online_cpus();
3297
3298        for_each_online_cpu(cpu) {
3299                struct work_struct *work = per_cpu_ptr(works, cpu);
3300
3301                INIT_WORK(work, func);
3302                schedule_work_on(cpu, work);
3303        }
3304
3305        for_each_online_cpu(cpu)
3306                flush_work(per_cpu_ptr(works, cpu));
3307
3308        put_online_cpus();
3309        free_percpu(works);
3310        return 0;
3311}
3312
3313/**
3314 * execute_in_process_context - reliably execute the routine with user context
3315 * @fn:         the function to execute
3316 * @ew:         guaranteed storage for the execute work structure (must
3317 *              be available when the work executes)
3318 *
3319 * Executes the function immediately if process context is available,
3320 * otherwise schedules the function for delayed execution.
3321 *
3322 * Return:      0 - function was executed
3323 *              1 - function was scheduled for execution
3324 */
3325int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3326{
3327        if (!in_interrupt()) {
3328                fn(&ew->work);
3329                return 0;
3330        }
3331
3332        INIT_WORK(&ew->work, fn);
3333        schedule_work(&ew->work);
3334
3335        return 1;
3336}
3337EXPORT_SYMBOL_GPL(execute_in_process_context);
3338
3339/**
3340 * free_workqueue_attrs - free a workqueue_attrs
3341 * @attrs: workqueue_attrs to free
3342 *
3343 * Undo alloc_workqueue_attrs().
3344 */
3345void free_workqueue_attrs(struct workqueue_attrs *attrs)
3346{
3347        if (attrs) {
3348                free_cpumask_var(attrs->cpumask);
3349                kfree(attrs);
3350        }
3351}
3352
3353/**
3354 * alloc_workqueue_attrs - allocate a workqueue_attrs
3355 *
3356 * Allocate a new workqueue_attrs, initialize with default settings and
3357 * return it.
3358 *
3359 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3360 */
3361struct workqueue_attrs *alloc_workqueue_attrs(void)
3362{
3363        struct workqueue_attrs *attrs;
3364
3365        attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3366        if (!attrs)
3367                goto fail;
3368        if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3369                goto fail;
3370
3371        cpumask_copy(attrs->cpumask, cpu_possible_mask);
3372        return attrs;
3373fail:
3374        free_workqueue_attrs(attrs);
3375        return NULL;
3376}
3377
3378static void copy_workqueue_attrs(struct workqueue_attrs *to,
3379                                 const struct workqueue_attrs *from)
3380{
3381        to->nice = from->nice;
3382        cpumask_copy(to->cpumask, from->cpumask);
3383        /*
3384         * Unlike hash and equality test, this function doesn't ignore
3385         * ->no_numa as it is used for both pool and wq attrs.  Instead,
3386         * get_unbound_pool() explicitly clears ->no_numa after copying.
3387         */
3388        to->no_numa = from->no_numa;
3389}
3390
3391/* hash value of the content of @attr */
3392static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3393{
3394        u32 hash = 0;
3395
3396        hash = jhash_1word(attrs->nice, hash);
3397        hash = jhash(cpumask_bits(attrs->cpumask),
3398                     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3399        return hash;
3400}
3401
3402/* content equality test */
3403static bool wqattrs_equal(const struct workqueue_attrs *a,
3404                          const struct workqueue_attrs *b)
3405{
3406        if (a->nice != b->nice)
3407                return false;
3408        if (!cpumask_equal(a->cpumask, b->cpumask))
3409                return false;
3410        return true;
3411}
3412
3413/**
3414 * init_worker_pool - initialize a newly zalloc'd worker_pool
3415 * @pool: worker_pool to initialize
3416 *
3417 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3418 *
3419 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3420 * inside @pool proper are initialized and put_unbound_pool() can be called
3421 * on @pool safely to release it.
3422 */
3423static int init_worker_pool(struct worker_pool *pool)
3424{
3425        raw_spin_lock_init(&pool->lock);
3426        pool->id = -1;
3427        pool->cpu = -1;
3428        pool->node = NUMA_NO_NODE;
3429        pool->flags |= POOL_DISASSOCIATED;
3430        pool->watchdog_ts = jiffies;
3431        INIT_LIST_HEAD(&pool->worklist);
3432        INIT_LIST_HEAD(&pool->idle_list);
3433        hash_init(pool->busy_hash);
3434
3435        timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3436
3437        timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3438
3439        INIT_LIST_HEAD(&pool->workers);
3440
3441        ida_init(&pool->worker_ida);
3442        INIT_HLIST_NODE(&pool->hash_node);
3443        pool->refcnt = 1;
3444
3445        /* shouldn't fail above this point */
3446        pool->attrs = alloc_workqueue_attrs();
3447        if (!pool->attrs)
3448                return -ENOMEM;
3449        return 0;
3450}
3451
3452#ifdef CONFIG_LOCKDEP
3453static void wq_init_lockdep(struct workqueue_struct *wq)
3454{
3455        char *lock_name;
3456
3457        lockdep_register_key(&wq->key);
3458        lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3459        if (!lock_name)
3460                lock_name = wq->name;
3461
3462        wq->lock_name = lock_name;
3463        lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3464}
3465
3466static void wq_unregister_lockdep(struct workqueue_struct *wq)
3467{
3468        lockdep_unregister_key(&wq->key);
3469}
3470
3471static void wq_free_lockdep(struct workqueue_struct *wq)
3472{
3473        if (wq->lock_name != wq->name)
3474                kfree(wq->lock_name);
3475}
3476#else
3477static void wq_init_lockdep(struct workqueue_struct *wq)
3478{
3479}
3480
3481static void wq_unregister_lockdep(struct workqueue_struct *wq)
3482{
3483}
3484
3485static void wq_free_lockdep(struct workqueue_struct *wq)
3486{
3487}
3488#endif
3489
3490static void rcu_free_wq(struct rcu_head *rcu)
3491{
3492        struct workqueue_struct *wq =
3493                container_of(rcu, struct workqueue_struct, rcu);
3494
3495        wq_free_lockdep(wq);
3496
3497        if (!(wq->flags & WQ_UNBOUND))
3498                free_percpu(wq->cpu_pwqs);
3499        else
3500                free_workqueue_attrs(wq->unbound_attrs);
3501
3502        kfree(wq);
3503}
3504
3505static void rcu_free_pool(struct rcu_head *rcu)
3506{
3507        struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3508
3509        ida_destroy(&pool->worker_ida);
3510        free_workqueue_attrs(pool->attrs);
3511        kfree(pool);
3512}
3513
3514/* This returns with the lock held on success (pool manager is inactive). */
3515static bool wq_manager_inactive(struct worker_pool *pool)
3516{
3517        raw_spin_lock_irq(&pool->lock);
3518
3519        if (pool->flags & POOL_MANAGER_ACTIVE) {
3520                raw_spin_unlock_irq(&pool->lock);
3521                return false;
3522        }
3523        return true;
3524}
3525
3526/**
3527 * put_unbound_pool - put a worker_pool
3528 * @pool: worker_pool to put
3529 *
3530 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3531 * safe manner.  get_unbound_pool() calls this function on its failure path
3532 * and this function should be able to release pools which went through,
3533 * successfully or not, init_worker_pool().
3534 *
3535 * Should be called with wq_pool_mutex held.
3536 */
3537static void put_unbound_pool(struct worker_pool *pool)
3538{
3539        DECLARE_COMPLETION_ONSTACK(detach_completion);
3540        struct worker *worker;
3541
3542        lockdep_assert_held(&wq_pool_mutex);
3543
3544        if (--pool->refcnt)
3545                return;
3546
3547        /* sanity checks */
3548        if (WARN_ON(!(pool->cpu < 0)) ||
3549            WARN_ON(!list_empty(&pool->worklist)))
3550                return;
3551
3552        /* release id and unhash */
3553        if (pool->id >= 0)
3554                idr_remove(&worker_pool_idr, pool->id);
3555        hash_del(&pool->hash_node);
3556
3557        /*
3558         * Become the manager and destroy all workers.  This prevents
3559         * @pool's workers from blocking on attach_mutex.  We're the last
3560         * manager and @pool gets freed with the flag set.
3561         * Because of how wq_manager_inactive() works, we will hold the
3562         * spinlock after a successful wait.
3563         */
3564        rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3565                           TASK_UNINTERRUPTIBLE);
3566        pool->flags |= POOL_MANAGER_ACTIVE;
3567
3568        while ((worker = first_idle_worker(pool)))
3569                destroy_worker(worker);
3570        WARN_ON(pool->nr_workers || pool->nr_idle);
3571        raw_spin_unlock_irq(&pool->lock);
3572
3573        mutex_lock(&wq_pool_attach_mutex);
3574        if (!list_empty(&pool->workers))
3575                pool->detach_completion = &detach_completion;
3576        mutex_unlock(&wq_pool_attach_mutex);
3577
3578        if (pool->detach_completion)
3579                wait_for_completion(pool->detach_completion);
3580
3581        /* shut down the timers */
3582        del_timer_sync(&pool->idle_timer);
3583        del_timer_sync(&pool->mayday_timer);
3584
3585        /* RCU protected to allow dereferences from get_work_pool() */
3586        call_rcu(&pool->rcu, rcu_free_pool);
3587}
3588
3589/**
3590 * get_unbound_pool - get a worker_pool with the specified attributes
3591 * @attrs: the attributes of the worker_pool to get
3592 *
3593 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3594 * reference count and return it.  If there already is a matching
3595 * worker_pool, it will be used; otherwise, this function attempts to
3596 * create a new one.
3597 *
3598 * Should be called with wq_pool_mutex held.
3599 *
3600 * Return: On success, a worker_pool with the same attributes as @attrs.
3601 * On failure, %NULL.
3602 */
3603static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3604{
3605        u32 hash = wqattrs_hash(attrs);
3606        struct worker_pool *pool;
3607        int node;
3608        int target_node = NUMA_NO_NODE;
3609
3610        lockdep_assert_held(&wq_pool_mutex);
3611
3612        /* do we already have a matching pool? */
3613        hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3614                if (wqattrs_equal(pool->attrs, attrs)) {
3615                        pool->refcnt++;
3616                        return pool;
3617                }
3618        }
3619
3620        /* if cpumask is contained inside a NUMA node, we belong to that node */
3621        if (wq_numa_enabled) {
3622                for_each_node(node) {
3623                        if (cpumask_subset(attrs->cpumask,
3624                                           wq_numa_possible_cpumask[node])) {
3625                                target_node = node;
3626                                break;
3627                        }
3628                }
3629        }
3630
3631        /* nope, create a new one */
3632        pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3633        if (!pool || init_worker_pool(pool) < 0)
3634                goto fail;
3635
3636        lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3637        copy_workqueue_attrs(pool->attrs, attrs);
3638        pool->node = target_node;
3639
3640        /*
3641         * no_numa isn't a worker_pool attribute, always clear it.  See
3642         * 'struct workqueue_attrs' comments for detail.
3643         */
3644        pool->attrs->no_numa = false;
3645
3646        if (worker_pool_assign_id(pool) < 0)
3647                goto fail;
3648
3649        /* create and start the initial worker */
3650        if (wq_online && !create_worker(pool))
3651                goto fail;
3652
3653        /* install */
3654        hash_add(unbound_pool_hash, &pool->hash_node, hash);
3655
3656        return pool;
3657fail:
3658        if (pool)
3659                put_unbound_pool(pool);
3660        return NULL;
3661}
3662
3663static void rcu_free_pwq(struct rcu_head *rcu)
3664{
3665        kmem_cache_free(pwq_cache,
3666                        container_of(rcu, struct pool_workqueue, rcu));
3667}
3668
3669/*
3670 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3671 * and needs to be destroyed.
3672 */
3673static void pwq_unbound_release_workfn(struct work_struct *work)
3674{
3675        struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3676                                                  unbound_release_work);
3677        struct workqueue_struct *wq = pwq->wq;
3678        struct worker_pool *pool = pwq->pool;
3679        bool is_last = false;
3680
3681        /*
3682         * when @pwq is not linked, it doesn't hold any reference to the
3683         * @wq, and @wq is invalid to access.
3684         */
3685        if (!list_empty(&pwq->pwqs_node)) {
3686                if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3687                        return;
3688
3689                mutex_lock(&wq->mutex);
3690                list_del_rcu(&pwq->pwqs_node);
3691                is_last = list_empty(&wq->pwqs);
3692                mutex_unlock(&wq->mutex);
3693        }
3694
3695        mutex_lock(&wq_pool_mutex);
3696        put_unbound_pool(pool);
3697        mutex_unlock(&wq_pool_mutex);
3698
3699        call_rcu(&pwq->rcu, rcu_free_pwq);
3700
3701        /*
3702         * If we're the last pwq going away, @wq is already dead and no one
3703         * is gonna access it anymore.  Schedule RCU free.
3704         */
3705        if (is_last) {
3706                wq_unregister_lockdep(wq);
3707                call_rcu(&wq->rcu, rcu_free_wq);
3708        }
3709}
3710
3711/**
3712 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3713 * @pwq: target pool_workqueue
3714 *
3715 * If @pwq isn't freezing, set @pwq->max_active to the associated
3716 * workqueue's saved_max_active and activate delayed work items
3717 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3718 */
3719static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3720{
3721        struct workqueue_struct *wq = pwq->wq;
3722        bool freezable = wq->flags & WQ_FREEZABLE;
3723        unsigned long flags;
3724
3725        /* for @wq->saved_max_active */
3726        lockdep_assert_held(&wq->mutex);
3727
3728        /* fast exit for non-freezable wqs */
3729        if (!freezable && pwq->max_active == wq->saved_max_active)
3730                return;
3731
3732        /* this function can be called during early boot w/ irq disabled */
3733        raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3734
3735        /*
3736         * During [un]freezing, the caller is responsible for ensuring that
3737         * this function is called at least once after @workqueue_freezing
3738         * is updated and visible.
3739         */
3740        if (!freezable || !workqueue_freezing) {
3741                bool kick = false;
3742
3743                pwq->max_active = wq->saved_max_active;
3744
3745                while (!list_empty(&pwq->delayed_works) &&
3746                       pwq->nr_active < pwq->max_active) {
3747                        pwq_activate_first_delayed(pwq);
3748                        kick = true;
3749                }
3750
3751                /*
3752                 * Need to kick a worker after thawed or an unbound wq's
3753                 * max_active is bumped. In realtime scenarios, always kicking a
3754                 * worker will cause interference on the isolated cpu cores, so
3755                 * let's kick iff work items were activated.
3756                 */
3757                if (kick)
3758                        wake_up_worker(pwq->pool);
3759        } else {
3760                pwq->max_active = 0;
3761        }
3762
3763        raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3764}
3765
3766/* initialize newly alloced @pwq which is associated with @wq and @pool */
3767static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3768                     struct worker_pool *pool)
3769{
3770        BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3771
3772        memset(pwq, 0, sizeof(*pwq));
3773
3774        pwq->pool = pool;
3775        pwq->wq = wq;
3776        pwq->flush_color = -1;
3777        pwq->refcnt = 1;
3778        INIT_LIST_HEAD(&pwq->delayed_works);
3779        INIT_LIST_HEAD(&pwq->pwqs_node);
3780        INIT_LIST_HEAD(&pwq->mayday_node);
3781        INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3782}
3783
3784/* sync @pwq with the current state of its associated wq and link it */
3785static void link_pwq(struct pool_workqueue *pwq)
3786{
3787        struct workqueue_struct *wq = pwq->wq;
3788
3789        lockdep_assert_held(&wq->mutex);
3790
3791        /* may be called multiple times, ignore if already linked */
3792        if (!list_empty(&pwq->pwqs_node))
3793                return;
3794
3795        /* set the matching work_color */
3796        pwq->work_color = wq->work_color;
3797
3798        /* sync max_active to the current setting */
3799        pwq_adjust_max_active(pwq);
3800
3801        /* link in @pwq */
3802        list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3803}
3804
3805/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3806static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3807                                        const struct workqueue_attrs *attrs)
3808{
3809        struct worker_pool *pool;
3810        struct pool_workqueue *pwq;
3811
3812        lockdep_assert_held(&wq_pool_mutex);
3813
3814        pool = get_unbound_pool(attrs);
3815        if (!pool)
3816                return NULL;
3817
3818        pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3819        if (!pwq) {
3820                put_unbound_pool(pool);
3821                return NULL;
3822        }
3823
3824        init_pwq(pwq, wq, pool);
3825        return pwq;
3826}
3827
3828/**
3829 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3830 * @attrs: the wq_attrs of the default pwq of the target workqueue
3831 * @node: the target NUMA node
3832 * @cpu_going_down: if >= 0, the CPU to consider as offline
3833 * @cpumask: outarg, the resulting cpumask
3834 *
3835 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3836 * @cpu_going_down is >= 0, that cpu is considered offline during
3837 * calculation.  The result is stored in @cpumask.
3838 *
3839 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3840 * enabled and @node has online CPUs requested by @attrs, the returned
3841 * cpumask is the intersection of the possible CPUs of @node and
3842 * @attrs->cpumask.
3843 *
3844 * The caller is responsible for ensuring that the cpumask of @node stays
3845 * stable.
3846 *
3847 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3848 * %false if equal.
3849 */
3850static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3851                                 int cpu_going_down, cpumask_t *cpumask)
3852{
3853        if (!wq_numa_enabled || attrs->no_numa)
3854                goto use_dfl;
3855
3856        /* does @node have any online CPUs @attrs wants? */
3857        cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3858        if (cpu_going_down >= 0)
3859                cpumask_clear_cpu(cpu_going_down, cpumask);
3860
3861        if (cpumask_empty(cpumask))
3862                goto use_dfl;
3863
3864        /* yeap, return possible CPUs in @node that @attrs wants */
3865        cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3866
3867        if (cpumask_empty(cpumask)) {
3868                pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3869                                "possible intersect\n");
3870                return false;
3871        }
3872
3873        return !cpumask_equal(cpumask, attrs->cpumask);
3874
3875use_dfl:
3876        cpumask_copy(cpumask, attrs->cpumask);
3877        return false;
3878}
3879
3880/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3881static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3882                                                   int node,
3883                                                   struct pool_workqueue *pwq)
3884{
3885        struct pool_workqueue *old_pwq;
3886
3887        lockdep_assert_held(&wq_pool_mutex);
3888        lockdep_assert_held(&wq->mutex);
3889
3890        /* link_pwq() can handle duplicate calls */
3891        link_pwq(pwq);
3892
3893        old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3894        rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3895        return old_pwq;
3896}
3897
3898/* context to store the prepared attrs & pwqs before applying */
3899struct apply_wqattrs_ctx {
3900        struct workqueue_struct *wq;            /* target workqueue */
3901        struct workqueue_attrs  *attrs;         /* attrs to apply */
3902        struct list_head        list;           /* queued for batching commit */
3903        struct pool_workqueue   *dfl_pwq;
3904        struct pool_workqueue   *pwq_tbl[];
3905};
3906
3907/* free the resources after success or abort */
3908static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3909{
3910        if (ctx) {
3911                int node;
3912
3913                for_each_node(node)
3914                        put_pwq_unlocked(ctx->pwq_tbl[node]);
3915                put_pwq_unlocked(ctx->dfl_pwq);
3916
3917                free_workqueue_attrs(ctx->attrs);
3918
3919                kfree(ctx);
3920        }
3921}
3922
3923/* allocate the attrs and pwqs for later installation */
3924static struct apply_wqattrs_ctx *
3925apply_wqattrs_prepare(struct workqueue_struct *wq,
3926                      const struct workqueue_attrs *attrs)
3927{
3928        struct apply_wqattrs_ctx *ctx;
3929        struct workqueue_attrs *new_attrs, *tmp_attrs;
3930        int node;
3931
3932        lockdep_assert_held(&wq_pool_mutex);
3933
3934        ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3935
3936        new_attrs = alloc_workqueue_attrs();
3937        tmp_attrs = alloc_workqueue_attrs();
3938        if (!ctx || !new_attrs || !tmp_attrs)
3939                goto out_free;
3940
3941        /*
3942         * Calculate the attrs of the default pwq.
3943         * If the user configured cpumask doesn't overlap with the
3944         * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3945         */
3946        copy_workqueue_attrs(new_attrs, attrs);
3947        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3948        if (unlikely(cpumask_empty(new_attrs->cpumask)))
3949                cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3950
3951        /*
3952         * We may create multiple pwqs with differing cpumasks.  Make a
3953         * copy of @new_attrs which will be modified and used to obtain
3954         * pools.
3955         */
3956        copy_workqueue_attrs(tmp_attrs, new_attrs);
3957
3958        /*
3959         * If something goes wrong during CPU up/down, we'll fall back to
3960         * the default pwq covering whole @attrs->cpumask.  Always create
3961         * it even if we don't use it immediately.
3962         */
3963        ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3964        if (!ctx->dfl_pwq)
3965                goto out_free;
3966
3967        for_each_node(node) {
3968                if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3969                        ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3970                        if (!ctx->pwq_tbl[node])
3971                                goto out_free;
3972                } else {
3973                        ctx->dfl_pwq->refcnt++;
3974                        ctx->pwq_tbl[node] = ctx->dfl_pwq;
3975                }
3976        }
3977
3978        /* save the user configured attrs and sanitize it. */
3979        copy_workqueue_attrs(new_attrs, attrs);
3980        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3981        ctx->attrs = new_attrs;
3982
3983        ctx->wq = wq;
3984        free_workqueue_attrs(tmp_attrs);
3985        return ctx;
3986
3987out_free:
3988        free_workqueue_attrs(tmp_attrs);
3989        free_workqueue_attrs(new_attrs);
3990        apply_wqattrs_cleanup(ctx);
3991        return NULL;
3992}
3993
3994/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3995static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3996{
3997        int node;
3998
3999        /* all pwqs have been created successfully, let's install'em */
4000        mutex_lock(&ctx->wq->mutex);
4001
4002        copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4003
4004        /* save the previous pwq and install the new one */
4005        for_each_node(node)
4006                ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4007                                                          ctx->pwq_tbl[node]);
4008
4009        /* @dfl_pwq might not have been used, ensure it's linked */
4010        link_pwq(ctx->dfl_pwq);
4011        swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4012
4013        mutex_unlock(&ctx->wq->mutex);
4014}
4015
4016static void apply_wqattrs_lock(void)
4017{
4018        /* CPUs should stay stable across pwq creations and installations */
4019        get_online_cpus();
4020        mutex_lock(&wq_pool_mutex);
4021}
4022
4023static void apply_wqattrs_unlock(void)
4024{
4025        mutex_unlock(&wq_pool_mutex);
4026        put_online_cpus();
4027}
4028
4029static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4030                                        const struct workqueue_attrs *attrs)
4031{
4032        struct apply_wqattrs_ctx *ctx;
4033
4034        /* only unbound workqueues can change attributes */
4035        if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4036                return -EINVAL;
4037
4038        /* creating multiple pwqs breaks ordering guarantee */
4039        if (!list_empty(&wq->pwqs)) {
4040                if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4041                        return -EINVAL;
4042
4043                wq->flags &= ~__WQ_ORDERED;
4044        }
4045
4046        ctx = apply_wqattrs_prepare(wq, attrs);
4047        if (!ctx)
4048                return -ENOMEM;
4049
4050        /* the ctx has been prepared successfully, let's commit it */
4051        apply_wqattrs_commit(ctx);
4052        apply_wqattrs_cleanup(ctx);
4053
4054        return 0;
4055}
4056
4057/**
4058 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4059 * @wq: the target workqueue
4060 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4061 *
4062 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4063 * machines, this function maps a separate pwq to each NUMA node with
4064 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4065 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4066 * items finish.  Note that a work item which repeatedly requeues itself
4067 * back-to-back will stay on its current pwq.
4068 *
4069 * Performs GFP_KERNEL allocations.
4070 *
4071 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4072 *
4073 * Return: 0 on success and -errno on failure.
4074 */
4075int apply_workqueue_attrs(struct workqueue_struct *wq,
4076                          const struct workqueue_attrs *attrs)
4077{
4078        int ret;
4079
4080        lockdep_assert_cpus_held();
4081
4082        mutex_lock(&wq_pool_mutex);
4083        ret = apply_workqueue_attrs_locked(wq, attrs);
4084        mutex_unlock(&wq_pool_mutex);
4085
4086        return ret;
4087}
4088
4089/**
4090 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4091 * @wq: the target workqueue
4092 * @cpu: the CPU coming up or going down
4093 * @online: whether @cpu is coming up or going down
4094 *
4095 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4096 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4097 * @wq accordingly.
4098 *
4099 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4100 * falls back to @wq->dfl_pwq which may not be optimal but is always
4101 * correct.
4102 *
4103 * Note that when the last allowed CPU of a NUMA node goes offline for a
4104 * workqueue with a cpumask spanning multiple nodes, the workers which were
4105 * already executing the work items for the workqueue will lose their CPU
4106 * affinity and may execute on any CPU.  This is similar to how per-cpu
4107 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4108 * affinity, it's the user's responsibility to flush the work item from
4109 * CPU_DOWN_PREPARE.
4110 */
4111static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4112                                   bool online)
4113{
4114        int node = cpu_to_node(cpu);
4115        int cpu_off = online ? -1 : cpu;
4116        struct pool_workqueue *old_pwq = NULL, *pwq;
4117        struct workqueue_attrs *target_attrs;
4118        cpumask_t *cpumask;
4119
4120        lockdep_assert_held(&wq_pool_mutex);
4121
4122        if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4123            wq->unbound_attrs->no_numa)
4124                return;
4125
4126        /*
4127         * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4128         * Let's use a preallocated one.  The following buf is protected by
4129         * CPU hotplug exclusion.
4130         */
4131        target_attrs = wq_update_unbound_numa_attrs_buf;
4132        cpumask = target_attrs->cpumask;
4133
4134        copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4135        pwq = unbound_pwq_by_node(wq, node);
4136
4137        /*
4138         * Let's determine what needs to be done.  If the target cpumask is
4139         * different from the default pwq's, we need to compare it to @pwq's
4140         * and create a new one if they don't match.  If the target cpumask
4141         * equals the default pwq's, the default pwq should be used.
4142         */
4143        if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4144                if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4145                        return;
4146        } else {
4147                goto use_dfl_pwq;
4148        }
4149
4150        /* create a new pwq */
4151        pwq = alloc_unbound_pwq(wq, target_attrs);
4152        if (!pwq) {
4153                pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4154                        wq->name);
4155                goto use_dfl_pwq;
4156        }
4157
4158        /* Install the new pwq. */
4159        mutex_lock(&wq->mutex);
4160        old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4161        goto out_unlock;
4162
4163use_dfl_pwq:
4164        mutex_lock(&wq->mutex);
4165        raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4166        get_pwq(wq->dfl_pwq);
4167        raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4168        old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4169out_unlock:
4170        mutex_unlock(&wq->mutex);
4171        put_pwq_unlocked(old_pwq);
4172}
4173
4174static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4175{
4176        bool highpri = wq->flags & WQ_HIGHPRI;
4177        int cpu, ret;
4178
4179        if (!(wq->flags & WQ_UNBOUND)) {
4180                wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4181                if (!wq->cpu_pwqs)
4182                        return -ENOMEM;
4183
4184                for_each_possible_cpu(cpu) {
4185                        struct pool_workqueue *pwq =
4186                                per_cpu_ptr(wq->cpu_pwqs, cpu);
4187                        struct worker_pool *cpu_pools =
4188                                per_cpu(cpu_worker_pools, cpu);
4189
4190                        init_pwq(pwq, wq, &cpu_pools[highpri]);
4191
4192                        mutex_lock(&wq->mutex);
4193                        link_pwq(pwq);
4194                        mutex_unlock(&wq->mutex);
4195                }
4196                return 0;
4197        }
4198
4199        get_online_cpus();
4200        if (wq->flags & __WQ_ORDERED) {
4201                ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4202                /* there should only be single pwq for ordering guarantee */
4203                WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4204                              wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4205                     "ordering guarantee broken for workqueue %s\n", wq->name);
4206        } else {
4207                ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4208        }
4209        put_online_cpus();
4210
4211        return ret;
4212}
4213
4214static int wq_clamp_max_active(int max_active, unsigned int flags,
4215                               const char *name)
4216{
4217        int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4218
4219        if (max_active < 1 || max_active > lim)
4220                pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4221                        max_active, name, 1, lim);
4222
4223        return clamp_val(max_active, 1, lim);
4224}
4225
4226/*
4227 * Workqueues which may be used during memory reclaim should have a rescuer
4228 * to guarantee forward progress.
4229 */
4230static int init_rescuer(struct workqueue_struct *wq)
4231{
4232        struct worker *rescuer;
4233        int ret;
4234
4235        if (!(wq->flags & WQ_MEM_RECLAIM))
4236                return 0;
4237
4238        rescuer = alloc_worker(NUMA_NO_NODE);
4239        if (!rescuer)
4240                return -ENOMEM;
4241
4242        rescuer->rescue_wq = wq;
4243        rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4244        if (IS_ERR(rescuer->task)) {
4245                ret = PTR_ERR(rescuer->task);
4246                kfree(rescuer);
4247                return ret;
4248        }
4249
4250        wq->rescuer = rescuer;
4251        kthread_bind_mask(rescuer->task, cpu_possible_mask);
4252        wake_up_process(rescuer->task);
4253
4254        return 0;
4255}
4256
4257__printf(1, 4)
4258struct workqueue_struct *alloc_workqueue(const char *fmt,
4259                                         unsigned int flags,
4260                                         int max_active, ...)
4261{
4262        size_t tbl_size = 0;
4263        va_list args;
4264        struct workqueue_struct *wq;
4265        struct pool_workqueue *pwq;
4266
4267        /*
4268         * Unbound && max_active == 1 used to imply ordered, which is no
4269         * longer the case on NUMA machines due to per-node pools.  While
4270         * alloc_ordered_workqueue() is the right way to create an ordered
4271         * workqueue, keep the previous behavior to avoid subtle breakages
4272         * on NUMA.
4273         */
4274        if ((flags & WQ_UNBOUND) && max_active == 1)
4275                flags |= __WQ_ORDERED;
4276
4277        /* see the comment above the definition of WQ_POWER_EFFICIENT */
4278        if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4279                flags |= WQ_UNBOUND;
4280
4281        /* allocate wq and format name */
4282        if (flags & WQ_UNBOUND)
4283                tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4284
4285        wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4286        if (!wq)
4287                return NULL;
4288
4289        if (flags & WQ_UNBOUND) {
4290                wq->unbound_attrs = alloc_workqueue_attrs();
4291                if (!wq->unbound_attrs)
4292                        goto err_free_wq;
4293        }
4294
4295        va_start(args, max_active);
4296        vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4297        va_end(args);
4298
4299        max_active = max_active ?: WQ_DFL_ACTIVE;
4300        max_active = wq_clamp_max_active(max_active, flags, wq->name);
4301
4302        /* init wq */
4303        wq->flags = flags;
4304        wq->saved_max_active = max_active;
4305        mutex_init(&wq->mutex);
4306        atomic_set(&wq->nr_pwqs_to_flush, 0);
4307        INIT_LIST_HEAD(&wq->pwqs);
4308        INIT_LIST_HEAD(&wq->flusher_queue);
4309        INIT_LIST_HEAD(&wq->flusher_overflow);
4310        INIT_LIST_HEAD(&wq->maydays);
4311
4312        wq_init_lockdep(wq);
4313        INIT_LIST_HEAD(&wq->list);
4314
4315        if (alloc_and_link_pwqs(wq) < 0)
4316                goto err_unreg_lockdep;
4317
4318        if (wq_online && init_rescuer(wq) < 0)
4319                goto err_destroy;
4320
4321        if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4322                goto err_destroy;
4323
4324        /*
4325         * wq_pool_mutex protects global freeze state and workqueues list.
4326         * Grab it, adjust max_active and add the new @wq to workqueues
4327         * list.
4328         */
4329        mutex_lock(&wq_pool_mutex);
4330
4331        mutex_lock(&wq->mutex);
4332        for_each_pwq(pwq, wq)
4333                pwq_adjust_max_active(pwq);
4334        mutex_unlock(&wq->mutex);
4335
4336        list_add_tail_rcu(&wq->list, &workqueues);
4337
4338        mutex_unlock(&wq_pool_mutex);
4339
4340        return wq;
4341
4342err_unreg_lockdep:
4343        wq_unregister_lockdep(wq);
4344        wq_free_lockdep(wq);
4345err_free_wq:
4346        free_workqueue_attrs(wq->unbound_attrs);
4347        kfree(wq);
4348        return NULL;
4349err_destroy:
4350        destroy_workqueue(wq);
4351        return NULL;
4352}
4353EXPORT_SYMBOL_GPL(alloc_workqueue);
4354
4355static bool pwq_busy(struct pool_workqueue *pwq)
4356{
4357        int i;
4358
4359        for (i = 0; i < WORK_NR_COLORS; i++)
4360                if (pwq->nr_in_flight[i])
4361                        return true;
4362
4363        if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4364                return true;
4365        if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4366                return true;
4367
4368        return false;
4369}
4370
4371/**
4372 * destroy_workqueue - safely terminate a workqueue
4373 * @wq: target workqueue
4374 *
4375 * Safely destroy a workqueue. All work currently pending will be done first.
4376 */
4377void destroy_workqueue(struct workqueue_struct *wq)
4378{
4379        struct pool_workqueue *pwq;
4380        int node;
4381
4382        /*
4383         * Remove it from sysfs first so that sanity check failure doesn't
4384         * lead to sysfs name conflicts.
4385         */
4386        workqueue_sysfs_unregister(wq);
4387
4388        /* drain it before proceeding with destruction */
4389        drain_workqueue(wq);
4390
4391        /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4392        if (wq->rescuer) {
4393                struct worker *rescuer = wq->rescuer;
4394
4395                /* this prevents new queueing */
4396                raw_spin_lock_irq(&wq_mayday_lock);
4397                wq->rescuer = NULL;
4398                raw_spin_unlock_irq(&wq_mayday_lock);
4399
4400                /* rescuer will empty maydays list before exiting */
4401                kthread_stop(rescuer->task);
4402                kfree(rescuer);
4403        }
4404
4405        /*
4406         * Sanity checks - grab all the locks so that we wait for all
4407         * in-flight operations which may do put_pwq().
4408         */
4409        mutex_lock(&wq_pool_mutex);
4410        mutex_lock(&wq->mutex);
4411        for_each_pwq(pwq, wq) {
4412                raw_spin_lock_irq(&pwq->pool->lock);
4413                if (WARN_ON(pwq_busy(pwq))) {
4414                        pr_warn("%s: %s has the following busy pwq\n",
4415                                __func__, wq->name);
4416                        show_pwq(pwq);
4417                        raw_spin_unlock_irq(&pwq->pool->lock);
4418                        mutex_unlock(&wq->mutex);
4419                        mutex_unlock(&wq_pool_mutex);
4420                        show_workqueue_state();
4421                        return;
4422                }
4423                raw_spin_unlock_irq(&pwq->pool->lock);
4424        }
4425        mutex_unlock(&wq->mutex);
4426
4427        /*
4428         * wq list is used to freeze wq, remove from list after
4429         * flushing is complete in case freeze races us.
4430         */
4431        list_del_rcu(&wq->list);
4432        mutex_unlock(&wq_pool_mutex);
4433
4434        if (!(wq->flags & WQ_UNBOUND)) {
4435                wq_unregister_lockdep(wq);
4436                /*
4437                 * The base ref is never dropped on per-cpu pwqs.  Directly
4438                 * schedule RCU free.
4439                 */
4440                call_rcu(&wq->rcu, rcu_free_wq);
4441        } else {
4442                /*
4443                 * We're the sole accessor of @wq at this point.  Directly
4444                 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4445                 * @wq will be freed when the last pwq is released.
4446                 */
4447                for_each_node(node) {
4448                        pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4449                        RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4450                        put_pwq_unlocked(pwq);
4451                }
4452
4453                /*
4454                 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4455                 * put.  Don't access it afterwards.
4456                 */
4457                pwq = wq->dfl_pwq;
4458                wq->dfl_pwq = NULL;
4459                put_pwq_unlocked(pwq);
4460        }
4461}
4462EXPORT_SYMBOL_GPL(destroy_workqueue);
4463
4464/**
4465 * workqueue_set_max_active - adjust max_active of a workqueue
4466 * @wq: target workqueue
4467 * @max_active: new max_active value.
4468 *
4469 * Set max_active of @wq to @max_active.
4470 *
4471 * CONTEXT:
4472 * Don't call from IRQ context.
4473 */
4474void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4475{
4476        struct pool_workqueue *pwq;
4477
4478        /* disallow meddling with max_active for ordered workqueues */
4479        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4480                return;
4481
4482        max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4483
4484        mutex_lock(&wq->mutex);
4485
4486        wq->flags &= ~__WQ_ORDERED;
4487        wq->saved_max_active = max_active;
4488
4489        for_each_pwq(pwq, wq)
4490                pwq_adjust_max_active(pwq);
4491
4492        mutex_unlock(&wq->mutex);
4493}
4494EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4495
4496/**
4497 * current_work - retrieve %current task's work struct
4498 *
4499 * Determine if %current task is a workqueue worker and what it's working on.
4500 * Useful to find out the context that the %current task is running in.
4501 *
4502 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4503 */
4504struct work_struct *current_work(void)
4505{
4506        struct worker *worker = current_wq_worker();
4507
4508        return worker ? worker->current_work : NULL;
4509}
4510EXPORT_SYMBOL(current_work);
4511
4512/**
4513 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4514 *
4515 * Determine whether %current is a workqueue rescuer.  Can be used from
4516 * work functions to determine whether it's being run off the rescuer task.
4517 *
4518 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4519 */
4520bool current_is_workqueue_rescuer(void)
4521{
4522        struct worker *worker = current_wq_worker();
4523
4524        return worker && worker->rescue_wq;
4525}
4526
4527/**
4528 * workqueue_congested - test whether a workqueue is congested
4529 * @cpu: CPU in question
4530 * @wq: target workqueue
4531 *
4532 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4533 * no synchronization around this function and the test result is
4534 * unreliable and only useful as advisory hints or for debugging.
4535 *
4536 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4537 * Note that both per-cpu and unbound workqueues may be associated with
4538 * multiple pool_workqueues which have separate congested states.  A
4539 * workqueue being congested on one CPU doesn't mean the workqueue is also
4540 * contested on other CPUs / NUMA nodes.
4541 *
4542 * Return:
4543 * %true if congested, %false otherwise.
4544 */
4545bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4546{
4547        struct pool_workqueue *pwq;
4548        bool ret;
4549
4550        rcu_read_lock();
4551        preempt_disable();
4552
4553        if (cpu == WORK_CPU_UNBOUND)
4554                cpu = smp_processor_id();
4555
4556        if (!(wq->flags & WQ_UNBOUND))
4557                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4558        else
4559                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4560
4561        ret = !list_empty(&pwq->delayed_works);
4562        preempt_enable();
4563        rcu_read_unlock();
4564
4565        return ret;
4566}
4567EXPORT_SYMBOL_GPL(workqueue_congested);
4568
4569/**
4570 * work_busy - test whether a work is currently pending or running
4571 * @work: the work to be tested
4572 *
4573 * Test whether @work is currently pending or running.  There is no
4574 * synchronization around this function and the test result is
4575 * unreliable and only useful as advisory hints or for debugging.
4576 *
4577 * Return:
4578 * OR'd bitmask of WORK_BUSY_* bits.
4579 */
4580unsigned int work_busy(struct work_struct *work)
4581{
4582        struct worker_pool *pool;
4583        unsigned long flags;
4584        unsigned int ret = 0;
4585
4586        if (work_pending(work))
4587                ret |= WORK_BUSY_PENDING;
4588
4589        rcu_read_lock();
4590        pool = get_work_pool(work);
4591        if (pool) {
4592                raw_spin_lock_irqsave(&pool->lock, flags);
4593                if (find_worker_executing_work(pool, work))
4594                        ret |= WORK_BUSY_RUNNING;
4595                raw_spin_unlock_irqrestore(&pool->lock, flags);
4596        }
4597        rcu_read_unlock();
4598
4599        return ret;
4600}
4601EXPORT_SYMBOL_GPL(work_busy);
4602
4603/**
4604 * set_worker_desc - set description for the current work item
4605 * @fmt: printf-style format string
4606 * @...: arguments for the format string
4607 *
4608 * This function can be called by a running work function to describe what
4609 * the work item is about.  If the worker task gets dumped, this
4610 * information will be printed out together to help debugging.  The
4611 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4612 */
4613void set_worker_desc(const char *fmt, ...)
4614{
4615        struct worker *worker = current_wq_worker();
4616        va_list args;
4617
4618        if (worker) {
4619                va_start(args, fmt);
4620                vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4621                va_end(args);
4622        }
4623}
4624EXPORT_SYMBOL_GPL(set_worker_desc);
4625
4626/**
4627 * print_worker_info - print out worker information and description
4628 * @log_lvl: the log level to use when printing
4629 * @task: target task
4630 *
4631 * If @task is a worker and currently executing a work item, print out the
4632 * name of the workqueue being serviced and worker description set with
4633 * set_worker_desc() by the currently executing work item.
4634 *
4635 * This function can be safely called on any task as long as the
4636 * task_struct itself is accessible.  While safe, this function isn't
4637 * synchronized and may print out mixups or garbages of limited length.
4638 */
4639void print_worker_info(const char *log_lvl, struct task_struct *task)
4640{
4641        work_func_t *fn = NULL;
4642        char name[WQ_NAME_LEN] = { };
4643        char desc[WORKER_DESC_LEN] = { };
4644        struct pool_workqueue *pwq = NULL;
4645        struct workqueue_struct *wq = NULL;
4646        struct worker *worker;
4647
4648        if (!(task->flags & PF_WQ_WORKER))
4649                return;
4650
4651        /*
4652         * This function is called without any synchronization and @task
4653         * could be in any state.  Be careful with dereferences.
4654         */
4655        worker = kthread_probe_data(task);
4656
4657        /*
4658         * Carefully copy the associated workqueue's workfn, name and desc.
4659         * Keep the original last '\0' in case the original is garbage.
4660         */
4661        copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4662        copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4663        copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4664        copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4665        copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4666
4667        if (fn || name[0] || desc[0]) {
4668                printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4669                if (strcmp(name, desc))
4670                        pr_cont(" (%s)", desc);
4671                pr_cont("\n");
4672        }
4673}
4674
4675static void pr_cont_pool_info(struct worker_pool *pool)
4676{
4677        pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4678        if (pool->node != NUMA_NO_NODE)
4679                pr_cont(" node=%d", pool->node);
4680        pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4681}
4682
4683static void pr_cont_work(bool comma, struct work_struct *work)
4684{
4685        if (work->func == wq_barrier_func) {
4686                struct wq_barrier *barr;
4687
4688                barr = container_of(work, struct wq_barrier, work);
4689
4690                pr_cont("%s BAR(%d)", comma ? "," : "",
4691                        task_pid_nr(barr->task));
4692        } else {
4693                pr_cont("%s %ps", comma ? "," : "", work->func);
4694        }
4695}
4696
4697static void show_pwq(struct pool_workqueue *pwq)
4698{
4699        struct worker_pool *pool = pwq->pool;
4700        struct work_struct *work;
4701        struct worker *worker;
4702        bool has_in_flight = false, has_pending = false;
4703        int bkt;
4704
4705        pr_info("  pwq %d:", pool->id);
4706        pr_cont_pool_info(pool);
4707
4708        pr_cont(" active=%d/%d refcnt=%d%s\n",
4709                pwq->nr_active, pwq->max_active, pwq->refcnt,
4710                !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4711
4712        hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4713                if (worker->current_pwq == pwq) {
4714                        has_in_flight = true;
4715                        break;
4716                }
4717        }
4718        if (has_in_flight) {
4719                bool comma = false;
4720
4721                pr_info("    in-flight:");
4722                hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4723                        if (worker->current_pwq != pwq)
4724                                continue;
4725
4726                        pr_cont("%s %d%s:%ps", comma ? "," : "",
4727                                task_pid_nr(worker->task),
4728                                worker->rescue_wq ? "(RESCUER)" : "",
4729                                worker->current_func);
4730                        list_for_each_entry(work, &worker->scheduled, entry)
4731                                pr_cont_work(false, work);
4732                        comma = true;
4733                }
4734                pr_cont("\n");
4735        }
4736
4737        list_for_each_entry(work, &pool->worklist, entry) {
4738                if (get_work_pwq(work) == pwq) {
4739                        has_pending = true;
4740                        break;
4741                }
4742        }
4743        if (has_pending) {
4744                bool comma = false;
4745
4746                pr_info("    pending:");
4747                list_for_each_entry(work, &pool->worklist, entry) {
4748                        if (get_work_pwq(work) != pwq)
4749                                continue;
4750
4751                        pr_cont_work(comma, work);
4752                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4753                }
4754                pr_cont("\n");
4755        }
4756
4757        if (!list_empty(&pwq->delayed_works)) {
4758                bool comma = false;
4759
4760                pr_info("    delayed:");
4761                list_for_each_entry(work, &pwq->delayed_works, entry) {
4762                        pr_cont_work(comma, work);
4763                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4764                }
4765                pr_cont("\n");
4766        }
4767}
4768
4769/**
4770 * show_workqueue_state - dump workqueue state
4771 *
4772 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4773 * all busy workqueues and pools.
4774 */
4775void show_workqueue_state(void)
4776{
4777        struct workqueue_struct *wq;
4778        struct worker_pool *pool;
4779        unsigned long flags;
4780        int pi;
4781
4782        rcu_read_lock();
4783
4784        pr_info("Showing busy workqueues and worker pools:\n");
4785
4786        list_for_each_entry_rcu(wq, &workqueues, list) {
4787                struct pool_workqueue *pwq;
4788                bool idle = true;
4789
4790                for_each_pwq(pwq, wq) {
4791                        if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4792                                idle = false;
4793                                break;
4794                        }
4795                }
4796                if (idle)
4797                        continue;
4798
4799                pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4800
4801                for_each_pwq(pwq, wq) {
4802                        raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4803                        if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4804                                show_pwq(pwq);
4805                        raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4806                        /*
4807                         * We could be printing a lot from atomic context, e.g.
4808                         * sysrq-t -> show_workqueue_state(). Avoid triggering
4809                         * hard lockup.
4810                         */
4811                        touch_nmi_watchdog();
4812                }
4813        }
4814
4815        for_each_pool(pool, pi) {
4816                struct worker *worker;
4817                bool first = true;
4818
4819                raw_spin_lock_irqsave(&pool->lock, flags);
4820                if (pool->nr_workers == pool->nr_idle)
4821                        goto next_pool;
4822
4823                pr_info("pool %d:", pool->id);
4824                pr_cont_pool_info(pool);
4825                pr_cont(" hung=%us workers=%d",
4826                        jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4827                        pool->nr_workers);
4828                if (pool->manager)
4829                        pr_cont(" manager: %d",
4830                                task_pid_nr(pool->manager->task));
4831                list_for_each_entry(worker, &pool->idle_list, entry) {
4832                        pr_cont(" %s%d", first ? "idle: " : "",
4833                                task_pid_nr(worker->task));
4834                        first = false;
4835                }
4836                pr_cont("\n");
4837        next_pool:
4838                raw_spin_unlock_irqrestore(&pool->lock, flags);
4839                /*
4840                 * We could be printing a lot from atomic context, e.g.
4841                 * sysrq-t -> show_workqueue_state(). Avoid triggering
4842                 * hard lockup.
4843                 */
4844                touch_nmi_watchdog();
4845        }
4846
4847        rcu_read_unlock();
4848}
4849
4850/* used to show worker information through /proc/PID/{comm,stat,status} */
4851void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4852{
4853        int off;
4854
4855        /* always show the actual comm */
4856        off = strscpy(buf, task->comm, size);
4857        if (off < 0)
4858                return;
4859
4860        /* stabilize PF_WQ_WORKER and worker pool association */
4861        mutex_lock(&wq_pool_attach_mutex);
4862
4863        if (task->flags & PF_WQ_WORKER) {
4864                struct worker *worker = kthread_data(task);
4865                struct worker_pool *pool = worker->pool;
4866
4867                if (pool) {
4868                        raw_spin_lock_irq(&pool->lock);
4869                        /*
4870                         * ->desc tracks information (wq name or
4871                         * set_worker_desc()) for the latest execution.  If
4872                         * current, prepend '+', otherwise '-'.
4873                         */
4874                        if (worker->desc[0] != '\0') {
4875                                if (worker->current_work)
4876                                        scnprintf(buf + off, size - off, "+%s",
4877                                                  worker->desc);
4878                                else
4879                                        scnprintf(buf + off, size - off, "-%s",
4880                                                  worker->desc);
4881                        }
4882                        raw_spin_unlock_irq(&pool->lock);
4883                }
4884        }
4885
4886        mutex_unlock(&wq_pool_attach_mutex);
4887}
4888
4889#ifdef CONFIG_SMP
4890
4891/*
4892 * CPU hotplug.
4893 *
4894 * There are two challenges in supporting CPU hotplug.  Firstly, there
4895 * are a lot of assumptions on strong associations among work, pwq and
4896 * pool which make migrating pending and scheduled works very
4897 * difficult to implement without impacting hot paths.  Secondly,
4898 * worker pools serve mix of short, long and very long running works making
4899 * blocked draining impractical.
4900 *
4901 * This is solved by allowing the pools to be disassociated from the CPU
4902 * running as an unbound one and allowing it to be reattached later if the
4903 * cpu comes back online.
4904 */
4905
4906static void unbind_workers(int cpu)
4907{
4908        struct worker_pool *pool;
4909        struct worker *worker;
4910
4911        for_each_cpu_worker_pool(pool, cpu) {
4912                mutex_lock(&wq_pool_attach_mutex);
4913                raw_spin_lock_irq(&pool->lock);
4914
4915                /*
4916                 * We've blocked all attach/detach operations. Make all workers
4917                 * unbound and set DISASSOCIATED.  Before this, all workers
4918                 * except for the ones which are still executing works from
4919                 * before the last CPU down must be on the cpu.  After
4920                 * this, they may become diasporas.
4921                 */
4922                for_each_pool_worker(worker, pool)
4923                        worker->flags |= WORKER_UNBOUND;
4924
4925                pool->flags |= POOL_DISASSOCIATED;
4926
4927                raw_spin_unlock_irq(&pool->lock);
4928
4929                for_each_pool_worker(worker, pool) {
4930                        kthread_set_per_cpu(worker->task, -1);
4931                        WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4932                }
4933
4934                mutex_unlock(&wq_pool_attach_mutex);
4935
4936                /*
4937                 * Call schedule() so that we cross rq->lock and thus can
4938                 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4939                 * This is necessary as scheduler callbacks may be invoked
4940                 * from other cpus.
4941                 */
4942                schedule();
4943
4944                /*
4945                 * Sched callbacks are disabled now.  Zap nr_running.
4946                 * After this, nr_running stays zero and need_more_worker()
4947                 * and keep_working() are always true as long as the
4948                 * worklist is not empty.  This pool now behaves as an
4949                 * unbound (in terms of concurrency management) pool which
4950                 * are served by workers tied to the pool.
4951                 */
4952                atomic_set(&pool->nr_running, 0);
4953
4954                /*
4955                 * With concurrency management just turned off, a busy
4956                 * worker blocking could lead to lengthy stalls.  Kick off
4957                 * unbound chain execution of currently pending work items.
4958                 */
4959                raw_spin_lock_irq(&pool->lock);
4960                wake_up_worker(pool);
4961                raw_spin_unlock_irq(&pool->lock);
4962        }
4963}
4964
4965/**
4966 * rebind_workers - rebind all workers of a pool to the associated CPU
4967 * @pool: pool of interest
4968 *
4969 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4970 */
4971static void rebind_workers(struct worker_pool *pool)
4972{
4973        struct worker *worker;
4974
4975        lockdep_assert_held(&wq_pool_attach_mutex);
4976
4977        /*
4978         * Restore CPU affinity of all workers.  As all idle workers should
4979         * be on the run-queue of the associated CPU before any local
4980         * wake-ups for concurrency management happen, restore CPU affinity
4981         * of all workers first and then clear UNBOUND.  As we're called
4982         * from CPU_ONLINE, the following shouldn't fail.
4983         */
4984        for_each_pool_worker(worker, pool) {
4985                kthread_set_per_cpu(worker->task, pool->cpu);
4986                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4987                                                  pool->attrs->cpumask) < 0);
4988        }
4989
4990        raw_spin_lock_irq(&pool->lock);
4991
4992        pool->flags &= ~POOL_DISASSOCIATED;
4993
4994        for_each_pool_worker(worker, pool) {
4995                unsigned int worker_flags = worker->flags;
4996
4997                /*
4998                 * A bound idle worker should actually be on the runqueue
4999                 * of the associated CPU for local wake-ups targeting it to
5000                 * work.  Kick all idle workers so that they migrate to the
5001                 * associated CPU.  Doing this in the same loop as
5002                 * replacing UNBOUND with REBOUND is safe as no worker will
5003                 * be bound before @pool->lock is released.
5004                 */
5005                if (worker_flags & WORKER_IDLE)
5006                        wake_up_process(worker->task);
5007
5008                /*
5009                 * We want to clear UNBOUND but can't directly call
5010                 * worker_clr_flags() or adjust nr_running.  Atomically
5011                 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5012                 * @worker will clear REBOUND using worker_clr_flags() when
5013                 * it initiates the next execution cycle thus restoring
5014                 * concurrency management.  Note that when or whether
5015                 * @worker clears REBOUND doesn't affect correctness.
5016                 *
5017                 * WRITE_ONCE() is necessary because @worker->flags may be
5018                 * tested without holding any lock in
5019                 * wq_worker_running().  Without it, NOT_RUNNING test may
5020                 * fail incorrectly leading to premature concurrency
5021                 * management operations.
5022                 */
5023                WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5024                worker_flags |= WORKER_REBOUND;
5025                worker_flags &= ~WORKER_UNBOUND;
5026                WRITE_ONCE(worker->flags, worker_flags);
5027        }
5028
5029        raw_spin_unlock_irq(&pool->lock);
5030}
5031
5032/**
5033 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5034 * @pool: unbound pool of interest
5035 * @cpu: the CPU which is coming up
5036 *
5037 * An unbound pool may end up with a cpumask which doesn't have any online
5038 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5039 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5040 * online CPU before, cpus_allowed of all its workers should be restored.
5041 */
5042static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5043{
5044        static cpumask_t cpumask;
5045        struct worker *worker;
5046
5047        lockdep_assert_held(&wq_pool_attach_mutex);
5048
5049        /* is @cpu allowed for @pool? */
5050        if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5051                return;
5052
5053        cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5054
5055        /* as we're called from CPU_ONLINE, the following shouldn't fail */
5056        for_each_pool_worker(worker, pool)
5057                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5058}
5059
5060int workqueue_prepare_cpu(unsigned int cpu)
5061{
5062        struct worker_pool *pool;
5063
5064        for_each_cpu_worker_pool(pool, cpu) {
5065                if (pool->nr_workers)
5066                        continue;
5067                if (!create_worker(pool))
5068                        return -ENOMEM;
5069        }
5070        return 0;
5071}
5072
5073int workqueue_online_cpu(unsigned int cpu)
5074{
5075        struct worker_pool *pool;
5076        struct workqueue_struct *wq;
5077        int pi;
5078
5079        mutex_lock(&wq_pool_mutex);
5080
5081        for_each_pool(pool, pi) {
5082                mutex_lock(&wq_pool_attach_mutex);
5083
5084                if (pool->cpu == cpu)
5085                        rebind_workers(pool);
5086                else if (pool->cpu < 0)
5087                        restore_unbound_workers_cpumask(pool, cpu);
5088
5089                mutex_unlock(&wq_pool_attach_mutex);
5090        }
5091
5092        /* update NUMA affinity of unbound workqueues */
5093        list_for_each_entry(wq, &workqueues, list)
5094                wq_update_unbound_numa(wq, cpu, true);
5095
5096        mutex_unlock(&wq_pool_mutex);
5097        return 0;
5098}
5099
5100int workqueue_offline_cpu(unsigned int cpu)
5101{
5102        struct workqueue_struct *wq;
5103
5104        /* unbinding per-cpu workers should happen on the local CPU */
5105        if (WARN_ON(cpu != smp_processor_id()))
5106                return -1;
5107
5108        unbind_workers(cpu);
5109
5110        /* update NUMA affinity of unbound workqueues */
5111        mutex_lock(&wq_pool_mutex);
5112        list_for_each_entry(wq, &workqueues, list)
5113                wq_update_unbound_numa(wq, cpu, false);
5114        mutex_unlock(&wq_pool_mutex);
5115
5116        return 0;
5117}
5118
5119struct work_for_cpu {
5120        struct work_struct work;
5121        long (*fn)(void *);
5122        void *arg;
5123        long ret;
5124};
5125
5126static void work_for_cpu_fn(struct work_struct *work)
5127{
5128        struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5129
5130        wfc->ret = wfc->fn(wfc->arg);
5131}
5132
5133/**
5134 * work_on_cpu - run a function in thread context on a particular cpu
5135 * @cpu: the cpu to run on
5136 * @fn: the function to run
5137 * @arg: the function arg
5138 *
5139 * It is up to the caller to ensure that the cpu doesn't go offline.
5140 * The caller must not hold any locks which would prevent @fn from completing.
5141 *
5142 * Return: The value @fn returns.
5143 */
5144long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5145{
5146        struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5147
5148        INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5149        schedule_work_on(cpu, &wfc.work);
5150        flush_work(&wfc.work);
5151        destroy_work_on_stack(&wfc.work);
5152        return wfc.ret;
5153}
5154EXPORT_SYMBOL_GPL(work_on_cpu);
5155
5156/**
5157 * work_on_cpu_safe - run a function in thread context on a particular cpu
5158 * @cpu: the cpu to run on
5159 * @fn:  the function to run
5160 * @arg: the function argument
5161 *
5162 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5163 * any locks which would prevent @fn from completing.
5164 *
5165 * Return: The value @fn returns.
5166 */
5167long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5168{
5169        long ret = -ENODEV;
5170
5171        get_online_cpus();
5172        if (cpu_online(cpu))
5173                ret = work_on_cpu(cpu, fn, arg);
5174        put_online_cpus();
5175        return ret;
5176}
5177EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5178#endif /* CONFIG_SMP */
5179
5180#ifdef CONFIG_FREEZER
5181
5182/**
5183 * freeze_workqueues_begin - begin freezing workqueues
5184 *
5185 * Start freezing workqueues.  After this function returns, all freezable
5186 * workqueues will queue new works to their delayed_works list instead of
5187 * pool->worklist.
5188 *
5189 * CONTEXT:
5190 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5191 */
5192void freeze_workqueues_begin(void)
5193{
5194        struct workqueue_struct *wq;
5195        struct pool_workqueue *pwq;
5196
5197        mutex_lock(&wq_pool_mutex);
5198
5199        WARN_ON_ONCE(workqueue_freezing);
5200        workqueue_freezing = true;
5201
5202        list_for_each_entry(wq, &workqueues, list) {
5203                mutex_lock(&wq->mutex);
5204                for_each_pwq(pwq, wq)
5205                        pwq_adjust_max_active(pwq);
5206                mutex_unlock(&wq->mutex);
5207        }
5208
5209        mutex_unlock(&wq_pool_mutex);
5210}
5211
5212/**
5213 * freeze_workqueues_busy - are freezable workqueues still busy?
5214 *
5215 * Check whether freezing is complete.  This function must be called
5216 * between freeze_workqueues_begin() and thaw_workqueues().
5217 *
5218 * CONTEXT:
5219 * Grabs and releases wq_pool_mutex.
5220 *
5221 * Return:
5222 * %true if some freezable workqueues are still busy.  %false if freezing
5223 * is complete.
5224 */
5225bool freeze_workqueues_busy(void)
5226{
5227        bool busy = false;
5228        struct workqueue_struct *wq;
5229        struct pool_workqueue *pwq;
5230
5231        mutex_lock(&wq_pool_mutex);
5232
5233        WARN_ON_ONCE(!workqueue_freezing);
5234
5235        list_for_each_entry(wq, &workqueues, list) {
5236                if (!(wq->flags & WQ_FREEZABLE))
5237                        continue;
5238                /*
5239                 * nr_active is monotonically decreasing.  It's safe
5240                 * to peek without lock.
5241                 */
5242                rcu_read_lock();
5243                for_each_pwq(pwq, wq) {
5244                        WARN_ON_ONCE(pwq->nr_active < 0);
5245                        if (pwq->nr_active) {
5246                                busy = true;
5247                                rcu_read_unlock();
5248                                goto out_unlock;
5249                        }
5250                }
5251                rcu_read_unlock();
5252        }
5253out_unlock:
5254        mutex_unlock(&wq_pool_mutex);
5255        return busy;
5256}
5257
5258/**
5259 * thaw_workqueues - thaw workqueues
5260 *
5261 * Thaw workqueues.  Normal queueing is restored and all collected
5262 * frozen works are transferred to their respective pool worklists.
5263 *
5264 * CONTEXT:
5265 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5266 */
5267void thaw_workqueues(void)
5268{
5269        struct workqueue_struct *wq;
5270        struct pool_workqueue *pwq;
5271
5272        mutex_lock(&wq_pool_mutex);
5273
5274        if (!workqueue_freezing)
5275                goto out_unlock;
5276
5277        workqueue_freezing = false;
5278
5279        /* restore max_active and repopulate worklist */
5280        list_for_each_entry(wq, &workqueues, list) {
5281                mutex_lock(&wq->mutex);
5282                for_each_pwq(pwq, wq)
5283                        pwq_adjust_max_active(pwq);
5284                mutex_unlock(&wq->mutex);
5285        }
5286
5287out_unlock:
5288        mutex_unlock(&wq_pool_mutex);
5289}
5290#endif /* CONFIG_FREEZER */
5291
5292static int workqueue_apply_unbound_cpumask(void)
5293{
5294        LIST_HEAD(ctxs);
5295        int ret = 0;
5296        struct workqueue_struct *wq;
5297        struct apply_wqattrs_ctx *ctx, *n;
5298
5299        lockdep_assert_held(&wq_pool_mutex);
5300
5301        list_for_each_entry(wq, &workqueues, list) {
5302                if (!(wq->flags & WQ_UNBOUND))
5303                        continue;
5304                /* creating multiple pwqs breaks ordering guarantee */
5305                if (wq->flags & __WQ_ORDERED)
5306                        continue;
5307
5308                ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5309                if (!ctx) {
5310                        ret = -ENOMEM;
5311                        break;
5312                }
5313
5314                list_add_tail(&ctx->list, &ctxs);
5315        }
5316
5317        list_for_each_entry_safe(ctx, n, &ctxs, list) {
5318                if (!ret)
5319                        apply_wqattrs_commit(ctx);
5320                apply_wqattrs_cleanup(ctx);
5321        }
5322
5323        return ret;
5324}
5325
5326/**
5327 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5328 *  @cpumask: the cpumask to set
5329 *
5330 *  The low-level workqueues cpumask is a global cpumask that limits
5331 *  the affinity of all unbound workqueues.  This function check the @cpumask
5332 *  and apply it to all unbound workqueues and updates all pwqs of them.
5333 *
5334 *  Retun:      0       - Success
5335 *              -EINVAL - Invalid @cpumask
5336 *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
5337 */
5338int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5339{
5340        int ret = -EINVAL;
5341        cpumask_var_t saved_cpumask;
5342
5343        if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5344                return -ENOMEM;
5345
5346        /*
5347         * Not excluding isolated cpus on purpose.
5348         * If the user wishes to include them, we allow that.
5349         */
5350        cpumask_and(cpumask, cpumask, cpu_possible_mask);
5351        if (!cpumask_empty(cpumask)) {
5352                apply_wqattrs_lock();
5353
5354                /* save the old wq_unbound_cpumask. */
5355                cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5356
5357                /* update wq_unbound_cpumask at first and apply it to wqs. */
5358                cpumask_copy(wq_unbound_cpumask, cpumask);
5359                ret = workqueue_apply_unbound_cpumask();
5360
5361                /* restore the wq_unbound_cpumask when failed. */
5362                if (ret < 0)
5363                        cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5364
5365                apply_wqattrs_unlock();
5366        }
5367
5368        free_cpumask_var(saved_cpumask);
5369        return ret;
5370}
5371
5372#ifdef CONFIG_SYSFS
5373/*
5374 * Workqueues with WQ_SYSFS flag set is visible to userland via
5375 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5376 * following attributes.
5377 *
5378 *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
5379 *  max_active  RW int  : maximum number of in-flight work items
5380 *
5381 * Unbound workqueues have the following extra attributes.
5382 *
5383 *  pool_ids    RO int  : the associated pool IDs for each node
5384 *  nice        RW int  : nice value of the workers
5385 *  cpumask     RW mask : bitmask of allowed CPUs for the workers
5386 *  numa        RW bool : whether enable NUMA affinity
5387 */
5388struct wq_device {
5389        struct workqueue_struct         *wq;
5390        struct device                   dev;
5391};
5392
5393static struct workqueue_struct *dev_to_wq(struct device *dev)
5394{
5395        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5396
5397        return wq_dev->wq;
5398}
5399
5400static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5401                            char *buf)
5402{
5403        struct workqueue_struct *wq = dev_to_wq(dev);
5404
5405        return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5406}
5407static DEVICE_ATTR_RO(per_cpu);
5408
5409static ssize_t max_active_show(struct device *dev,
5410                               struct device_attribute *attr, char *buf)
5411{
5412        struct workqueue_struct *wq = dev_to_wq(dev);
5413
5414        return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5415}
5416
5417static ssize_t max_active_store(struct device *dev,
5418                                struct device_attribute *attr, const char *buf,
5419                                size_t count)
5420{
5421        struct workqueue_struct *wq = dev_to_wq(dev);
5422        int val;
5423
5424        if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5425                return -EINVAL;
5426
5427        workqueue_set_max_active(wq, val);
5428        return count;
5429}
5430static DEVICE_ATTR_RW(max_active);
5431
5432static struct attribute *wq_sysfs_attrs[] = {
5433        &dev_attr_per_cpu.attr,
5434        &dev_attr_max_active.attr,
5435        NULL,
5436};
5437ATTRIBUTE_GROUPS(wq_sysfs);
5438
5439static ssize_t wq_pool_ids_show(struct device *dev,
5440                                struct device_attribute *attr, char *buf)
5441{
5442        struct workqueue_struct *wq = dev_to_wq(dev);
5443        const char *delim = "";
5444        int node, written = 0;
5445
5446        get_online_cpus();
5447        rcu_read_lock();
5448        for_each_node(node) {
5449                written += scnprintf(buf + written, PAGE_SIZE - written,
5450                                     "%s%d:%d", delim, node,
5451                                     unbound_pwq_by_node(wq, node)->pool->id);
5452                delim = " ";
5453        }
5454        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5455        rcu_read_unlock();
5456        put_online_cpus();
5457
5458        return written;
5459}
5460
5461static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5462                            char *buf)
5463{
5464        struct workqueue_struct *wq = dev_to_wq(dev);
5465        int written;
5466
5467        mutex_lock(&wq->mutex);
5468        written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5469        mutex_unlock(&wq->mutex);
5470
5471        return written;
5472}
5473
5474/* prepare workqueue_attrs for sysfs store operations */
5475static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5476{
5477        struct workqueue_attrs *attrs;
5478
5479        lockdep_assert_held(&wq_pool_mutex);
5480
5481        attrs = alloc_workqueue_attrs();
5482        if (!attrs)
5483                return NULL;
5484
5485        copy_workqueue_attrs(attrs, wq->unbound_attrs);
5486        return attrs;
5487}
5488
5489static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5490                             const char *buf, size_t count)
5491{
5492        struct workqueue_struct *wq = dev_to_wq(dev);
5493        struct workqueue_attrs *attrs;
5494        int ret = -ENOMEM;
5495
5496        apply_wqattrs_lock();
5497
5498        attrs = wq_sysfs_prep_attrs(wq);
5499        if (!attrs)
5500                goto out_unlock;
5501
5502        if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5503            attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5504                ret = apply_workqueue_attrs_locked(wq, attrs);
5505        else
5506                ret = -EINVAL;
5507
5508out_unlock:
5509        apply_wqattrs_unlock();
5510        free_workqueue_attrs(attrs);
5511        return ret ?: count;
5512}
5513
5514static ssize_t wq_cpumask_show(struct device *dev,
5515                               struct device_attribute *attr, char *buf)
5516{
5517        struct workqueue_struct *wq = dev_to_wq(dev);
5518        int written;
5519
5520        mutex_lock(&wq->mutex);
5521        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5522                            cpumask_pr_args(wq->unbound_attrs->cpumask));
5523        mutex_unlock(&wq->mutex);
5524        return written;
5525}
5526
5527static ssize_t wq_cpumask_store(struct device *dev,
5528                                struct device_attribute *attr,
5529                                const char *buf, size_t count)
5530{
5531        struct workqueue_struct *wq = dev_to_wq(dev);
5532        struct workqueue_attrs *attrs;
5533        int ret = -ENOMEM;
5534
5535        apply_wqattrs_lock();
5536
5537        attrs = wq_sysfs_prep_attrs(wq);
5538        if (!attrs)
5539                goto out_unlock;
5540
5541        ret = cpumask_parse(buf, attrs->cpumask);
5542        if (!ret)
5543                ret = apply_workqueue_attrs_locked(wq, attrs);
5544
5545out_unlock:
5546        apply_wqattrs_unlock();
5547        free_workqueue_attrs(attrs);
5548        return ret ?: count;
5549}
5550
5551static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5552                            char *buf)
5553{
5554        struct workqueue_struct *wq = dev_to_wq(dev);
5555        int written;
5556
5557        mutex_lock(&wq->mutex);
5558        written = scnprintf(buf, PAGE_SIZE, "%d\n",
5559                            !wq->unbound_attrs->no_numa);
5560        mutex_unlock(&wq->mutex);
5561
5562        return written;
5563}
5564
5565static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5566                             const char *buf, size_t count)
5567{
5568        struct workqueue_struct *wq = dev_to_wq(dev);
5569        struct workqueue_attrs *attrs;
5570        int v, ret = -ENOMEM;
5571
5572        apply_wqattrs_lock();
5573
5574        attrs = wq_sysfs_prep_attrs(wq);
5575        if (!attrs)
5576                goto out_unlock;
5577
5578        ret = -EINVAL;
5579        if (sscanf(buf, "%d", &v) == 1) {
5580                attrs->no_numa = !v;
5581                ret = apply_workqueue_attrs_locked(wq, attrs);
5582        }
5583
5584out_unlock:
5585        apply_wqattrs_unlock();
5586        free_workqueue_attrs(attrs);
5587        return ret ?: count;
5588}
5589
5590static struct device_attribute wq_sysfs_unbound_attrs[] = {
5591        __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5592        __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5593        __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5594        __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5595        __ATTR_NULL,
5596};
5597
5598static struct bus_type wq_subsys = {
5599        .name                           = "workqueue",
5600        .dev_groups                     = wq_sysfs_groups,
5601};
5602
5603static ssize_t wq_unbound_cpumask_show(struct device *dev,
5604                struct device_attribute *attr, char *buf)
5605{
5606        int written;
5607
5608        mutex_lock(&wq_pool_mutex);
5609        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5610                            cpumask_pr_args(wq_unbound_cpumask));
5611        mutex_unlock(&wq_pool_mutex);
5612
5613        return written;
5614}
5615
5616static ssize_t wq_unbound_cpumask_store(struct device *dev,
5617                struct device_attribute *attr, const char *buf, size_t count)
5618{
5619        cpumask_var_t cpumask;
5620        int ret;
5621
5622        if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5623                return -ENOMEM;
5624
5625        ret = cpumask_parse(buf, cpumask);
5626        if (!ret)
5627                ret = workqueue_set_unbound_cpumask(cpumask);
5628
5629        free_cpumask_var(cpumask);
5630        return ret ? ret : count;
5631}
5632
5633static struct device_attribute wq_sysfs_cpumask_attr =
5634        __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5635               wq_unbound_cpumask_store);
5636
5637static int __init wq_sysfs_init(void)
5638{
5639        int err;
5640
5641        err = subsys_virtual_register(&wq_subsys, NULL);
5642        if (err)
5643                return err;
5644
5645        return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5646}
5647core_initcall(wq_sysfs_init);
5648
5649static void wq_device_release(struct device *dev)
5650{
5651        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5652
5653        kfree(wq_dev);
5654}
5655
5656/**
5657 * workqueue_sysfs_register - make a workqueue visible in sysfs
5658 * @wq: the workqueue to register
5659 *
5660 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5661 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5662 * which is the preferred method.
5663 *
5664 * Workqueue user should use this function directly iff it wants to apply
5665 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5666 * apply_workqueue_attrs() may race against userland updating the
5667 * attributes.
5668 *
5669 * Return: 0 on success, -errno on failure.
5670 */
5671int workqueue_sysfs_register(struct workqueue_struct *wq)
5672{
5673        struct wq_device *wq_dev;
5674        int ret;
5675
5676        /*
5677         * Adjusting max_active or creating new pwqs by applying
5678         * attributes breaks ordering guarantee.  Disallow exposing ordered
5679         * workqueues.
5680         */
5681        if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5682                return -EINVAL;
5683
5684        wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5685        if (!wq_dev)
5686                return -ENOMEM;
5687
5688        wq_dev->wq = wq;
5689        wq_dev->dev.bus = &wq_subsys;
5690        wq_dev->dev.release = wq_device_release;
5691        dev_set_name(&wq_dev->dev, "%s", wq->name);
5692
5693        /*
5694         * unbound_attrs are created separately.  Suppress uevent until
5695         * everything is ready.
5696         */
5697        dev_set_uevent_suppress(&wq_dev->dev, true);
5698
5699        ret = device_register(&wq_dev->dev);
5700        if (ret) {
5701                put_device(&wq_dev->dev);
5702                wq->wq_dev = NULL;
5703                return ret;
5704        }
5705
5706        if (wq->flags & WQ_UNBOUND) {
5707                struct device_attribute *attr;
5708
5709                for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5710                        ret = device_create_file(&wq_dev->dev, attr);
5711                        if (ret) {
5712                                device_unregister(&wq_dev->dev);
5713                                wq->wq_dev = NULL;
5714                                return ret;
5715                        }
5716                }
5717        }
5718
5719        dev_set_uevent_suppress(&wq_dev->dev, false);
5720        kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5721        return 0;
5722}
5723
5724/**
5725 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5726 * @wq: the workqueue to unregister
5727 *
5728 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5729 */
5730static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5731{
5732        struct wq_device *wq_dev = wq->wq_dev;
5733
5734        if (!wq->wq_dev)
5735                return;
5736
5737        wq->wq_dev = NULL;
5738        device_unregister(&wq_dev->dev);
5739}
5740#else   /* CONFIG_SYSFS */
5741static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
5742#endif  /* CONFIG_SYSFS */
5743
5744/*
5745 * Workqueue watchdog.
5746 *
5747 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5748 * flush dependency, a concurrency managed work item which stays RUNNING
5749 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5750 * usual warning mechanisms don't trigger and internal workqueue state is
5751 * largely opaque.
5752 *
5753 * Workqueue watchdog monitors all worker pools periodically and dumps
5754 * state if some pools failed to make forward progress for a while where
5755 * forward progress is defined as the first item on ->worklist changing.
5756 *
5757 * This mechanism is controlled through the kernel parameter
5758 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5759 * corresponding sysfs parameter file.
5760 */
5761#ifdef CONFIG_WQ_WATCHDOG
5762
5763static unsigned long wq_watchdog_thresh = 30;
5764static struct timer_list wq_watchdog_timer;
5765
5766static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5767static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5768
5769static void wq_watchdog_reset_touched(void)
5770{
5771        int cpu;
5772
5773        wq_watchdog_touched = jiffies;
5774        for_each_possible_cpu(cpu)
5775                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5776}
5777
5778static void wq_watchdog_timer_fn(struct timer_list *unused)
5779{
5780        unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5781        bool lockup_detected = false;
5782        unsigned long now = jiffies;
5783        struct worker_pool *pool;
5784        int pi;
5785
5786        if (!thresh)
5787                return;
5788
5789        rcu_read_lock();
5790
5791        for_each_pool(pool, pi) {
5792                unsigned long pool_ts, touched, ts;
5793
5794                if (list_empty(&pool->worklist))
5795                        continue;
5796
5797                /*
5798                 * If a virtual machine is stopped by the host it can look to
5799                 * the watchdog like a stall.
5800                 */
5801                kvm_check_and_clear_guest_paused();
5802
5803                /* get the latest of pool and touched timestamps */
5804                if (pool->cpu >= 0)
5805                        touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5806                else
5807                        touched = READ_ONCE(wq_watchdog_touched);
5808                pool_ts = READ_ONCE(pool->watchdog_ts);
5809
5810                if (time_after(pool_ts, touched))
5811                        ts = pool_ts;
5812                else
5813                        ts = touched;
5814
5815                /* did we stall? */
5816                if (time_after(now, ts + thresh)) {
5817                        lockup_detected = true;
5818                        pr_emerg("BUG: workqueue lockup - pool");
5819                        pr_cont_pool_info(pool);
5820                        pr_cont(" stuck for %us!\n",
5821                                jiffies_to_msecs(now - pool_ts) / 1000);
5822                }
5823        }
5824
5825        rcu_read_unlock();
5826
5827        if (lockup_detected)
5828                show_workqueue_state();
5829
5830        wq_watchdog_reset_touched();
5831        mod_timer(&wq_watchdog_timer, jiffies + thresh);
5832}
5833
5834notrace void wq_watchdog_touch(int cpu)
5835{
5836        if (cpu >= 0)
5837                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5838
5839        wq_watchdog_touched = jiffies;
5840}
5841
5842static void wq_watchdog_set_thresh(unsigned long thresh)
5843{
5844        wq_watchdog_thresh = 0;
5845        del_timer_sync(&wq_watchdog_timer);
5846
5847        if (thresh) {
5848                wq_watchdog_thresh = thresh;
5849                wq_watchdog_reset_touched();
5850                mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5851        }
5852}
5853
5854static int wq_watchdog_param_set_thresh(const char *val,
5855                                        const struct kernel_param *kp)
5856{
5857        unsigned long thresh;
5858        int ret;
5859
5860        ret = kstrtoul(val, 0, &thresh);
5861        if (ret)
5862                return ret;
5863
5864        if (system_wq)
5865                wq_watchdog_set_thresh(thresh);
5866        else
5867                wq_watchdog_thresh = thresh;
5868
5869        return 0;
5870}
5871
5872static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5873        .set    = wq_watchdog_param_set_thresh,
5874        .get    = param_get_ulong,
5875};
5876
5877module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5878                0644);
5879
5880static void wq_watchdog_init(void)
5881{
5882        timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5883        wq_watchdog_set_thresh(wq_watchdog_thresh);
5884}
5885
5886#else   /* CONFIG_WQ_WATCHDOG */
5887
5888static inline void wq_watchdog_init(void) { }
5889
5890#endif  /* CONFIG_WQ_WATCHDOG */
5891
5892static void __init wq_numa_init(void)
5893{
5894        cpumask_var_t *tbl;
5895        int node, cpu;
5896
5897        if (num_possible_nodes() <= 1)
5898                return;
5899
5900        if (wq_disable_numa) {
5901                pr_info("workqueue: NUMA affinity support disabled\n");
5902                return;
5903        }
5904
5905        wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5906        BUG_ON(!wq_update_unbound_numa_attrs_buf);
5907
5908        /*
5909         * We want masks of possible CPUs of each node which isn't readily
5910         * available.  Build one from cpu_to_node() which should have been
5911         * fully initialized by now.
5912         */
5913        tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5914        BUG_ON(!tbl);
5915
5916        for_each_node(node)
5917                BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5918                                node_online(node) ? node : NUMA_NO_NODE));
5919
5920        for_each_possible_cpu(cpu) {
5921                node = cpu_to_node(cpu);
5922                if (WARN_ON(node == NUMA_NO_NODE)) {
5923                        pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5924                        /* happens iff arch is bonkers, let's just proceed */
5925                        return;
5926                }
5927                cpumask_set_cpu(cpu, tbl[node]);
5928        }
5929
5930        wq_numa_possible_cpumask = tbl;
5931        wq_numa_enabled = true;
5932}
5933
5934/**
5935 * workqueue_init_early - early init for workqueue subsystem
5936 *
5937 * This is the first half of two-staged workqueue subsystem initialization
5938 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5939 * idr are up.  It sets up all the data structures and system workqueues
5940 * and allows early boot code to create workqueues and queue/cancel work
5941 * items.  Actual work item execution starts only after kthreads can be
5942 * created and scheduled right before early initcalls.
5943 */
5944void __init workqueue_init_early(void)
5945{
5946        int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5947        int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5948        int i, cpu;
5949
5950        BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5951
5952        BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5953        cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5954
5955        pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5956
5957        /* initialize CPU pools */
5958        for_each_possible_cpu(cpu) {
5959                struct worker_pool *pool;
5960
5961                i = 0;
5962                for_each_cpu_worker_pool(pool, cpu) {
5963                        BUG_ON(init_worker_pool(pool));
5964                        pool->cpu = cpu;
5965                        cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5966                        pool->attrs->nice = std_nice[i++];
5967                        pool->node = cpu_to_node(cpu);
5968
5969                        /* alloc pool ID */
5970                        mutex_lock(&wq_pool_mutex);
5971                        BUG_ON(worker_pool_assign_id(pool));
5972                        mutex_unlock(&wq_pool_mutex);
5973                }
5974        }
5975
5976        /* create default unbound and ordered wq attrs */
5977        for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5978                struct workqueue_attrs *attrs;
5979
5980                BUG_ON(!(attrs = alloc_workqueue_attrs()));
5981                attrs->nice = std_nice[i];
5982                unbound_std_wq_attrs[i] = attrs;
5983
5984                /*
5985                 * An ordered wq should have only one pwq as ordering is
5986                 * guaranteed by max_active which is enforced by pwqs.
5987                 * Turn off NUMA so that dfl_pwq is used for all nodes.
5988                 */
5989                BUG_ON(!(attrs = alloc_workqueue_attrs()));
5990                attrs->nice = std_nice[i];
5991                attrs->no_numa = true;
5992                ordered_wq_attrs[i] = attrs;
5993        }
5994
5995        system_wq = alloc_workqueue("events", 0, 0);
5996        system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5997        system_long_wq = alloc_workqueue("events_long", 0, 0);
5998        system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5999                                            WQ_UNBOUND_MAX_ACTIVE);
6000        system_freezable_wq = alloc_workqueue("events_freezable",
6001                                              WQ_FREEZABLE, 0);
6002        system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6003                                              WQ_POWER_EFFICIENT, 0);
6004        system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6005                                              WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6006                                              0);
6007        BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6008               !system_unbound_wq || !system_freezable_wq ||
6009               !system_power_efficient_wq ||
6010               !system_freezable_power_efficient_wq);
6011}
6012
6013/**
6014 * workqueue_init - bring workqueue subsystem fully online
6015 *
6016 * This is the latter half of two-staged workqueue subsystem initialization
6017 * and invoked as soon as kthreads can be created and scheduled.
6018 * Workqueues have been created and work items queued on them, but there
6019 * are no kworkers executing the work items yet.  Populate the worker pools
6020 * with the initial workers and enable future kworker creations.
6021 */
6022void __init workqueue_init(void)
6023{
6024        struct workqueue_struct *wq;
6025        struct worker_pool *pool;
6026        int cpu, bkt;
6027
6028        /*
6029         * It'd be simpler to initialize NUMA in workqueue_init_early() but
6030         * CPU to node mapping may not be available that early on some
6031         * archs such as power and arm64.  As per-cpu pools created
6032         * previously could be missing node hint and unbound pools NUMA
6033         * affinity, fix them up.
6034         *
6035         * Also, while iterating workqueues, create rescuers if requested.
6036         */
6037        wq_numa_init();
6038
6039        mutex_lock(&wq_pool_mutex);
6040
6041        for_each_possible_cpu(cpu) {
6042                for_each_cpu_worker_pool(pool, cpu) {
6043                        pool->node = cpu_to_node(cpu);
6044                }
6045        }
6046
6047        list_for_each_entry(wq, &workqueues, list) {
6048                wq_update_unbound_numa(wq, smp_processor_id(), true);
6049                WARN(init_rescuer(wq),
6050                     "workqueue: failed to create early rescuer for %s",
6051                     wq->name);
6052        }
6053
6054        mutex_unlock(&wq_pool_mutex);
6055
6056        /* create the initial workers */
6057        for_each_online_cpu(cpu) {
6058                for_each_cpu_worker_pool(pool, cpu) {
6059                        pool->flags &= ~POOL_DISASSOCIATED;
6060                        BUG_ON(!create_worker(pool));
6061                }
6062        }
6063
6064        hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6065                BUG_ON(!create_worker(pool));
6066
6067        wq_online = true;
6068        wq_watchdog_init();
6069}
6070