linux/mm/filemap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem              (truncate_pagecache)
  75 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  76 *      ->swap_lock             (exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_mutex
  80 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  81 *
  82 *  ->mmap_lock
  83 *    ->i_mmap_rwsem
  84 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  85 *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
  86 *
  87 *  ->mmap_lock
  88 *    ->lock_page               (access_process_vm)
  89 *
  90 *  ->i_mutex                   (generic_perform_write)
  91 *    ->mmap_lock               (fault_in_pages_readable->do_page_fault)
  92 *
  93 *  bdi->wb.list_lock
  94 *    sb_lock                   (fs/fs-writeback.c)
  95 *    ->i_pages lock            (__sync_single_inode)
  96 *
  97 *  ->i_mmap_rwsem
  98 *    ->anon_vma.lock           (vma_adjust)
  99 *
 100 *  ->anon_vma.lock
 101 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
 102 *
 103 *  ->page_table_lock or pte_lock
 104 *    ->swap_lock               (try_to_unmap_one)
 105 *    ->private_lock            (try_to_unmap_one)
 106 *    ->i_pages lock            (try_to_unmap_one)
 107 *    ->lruvec->lru_lock        (follow_page->mark_page_accessed)
 108 *    ->lruvec->lru_lock        (check_pte_range->isolate_lru_page)
 109 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 110 *    ->i_pages lock            (page_remove_rmap->set_page_dirty)
 111 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 112 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 113 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 114 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 115 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 116 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 117 *
 118 * ->i_mmap_rwsem
 119 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 120 */
 121
 122static void page_cache_delete(struct address_space *mapping,
 123                                   struct page *page, void *shadow)
 124{
 125        XA_STATE(xas, &mapping->i_pages, page->index);
 126        unsigned int nr = 1;
 127
 128        mapping_set_update(&xas, mapping);
 129
 130        /* hugetlb pages are represented by a single entry in the xarray */
 131        if (!PageHuge(page)) {
 132                xas_set_order(&xas, page->index, compound_order(page));
 133                nr = compound_nr(page);
 134        }
 135
 136        VM_BUG_ON_PAGE(!PageLocked(page), page);
 137        VM_BUG_ON_PAGE(PageTail(page), page);
 138        VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 139
 140        xas_store(&xas, shadow);
 141        xas_init_marks(&xas);
 142
 143        page->mapping = NULL;
 144        /* Leave page->index set: truncation lookup relies upon it */
 145        mapping->nrpages -= nr;
 146}
 147
 148static void unaccount_page_cache_page(struct address_space *mapping,
 149                                      struct page *page)
 150{
 151        int nr;
 152
 153        /*
 154         * if we're uptodate, flush out into the cleancache, otherwise
 155         * invalidate any existing cleancache entries.  We can't leave
 156         * stale data around in the cleancache once our page is gone
 157         */
 158        if (PageUptodate(page) && PageMappedToDisk(page))
 159                cleancache_put_page(page);
 160        else
 161                cleancache_invalidate_page(mapping, page);
 162
 163        VM_BUG_ON_PAGE(PageTail(page), page);
 164        VM_BUG_ON_PAGE(page_mapped(page), page);
 165        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 166                int mapcount;
 167
 168                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 169                         current->comm, page_to_pfn(page));
 170                dump_page(page, "still mapped when deleted");
 171                dump_stack();
 172                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 173
 174                mapcount = page_mapcount(page);
 175                if (mapping_exiting(mapping) &&
 176                    page_count(page) >= mapcount + 2) {
 177                        /*
 178                         * All vmas have already been torn down, so it's
 179                         * a good bet that actually the page is unmapped,
 180                         * and we'd prefer not to leak it: if we're wrong,
 181                         * some other bad page check should catch it later.
 182                         */
 183                        page_mapcount_reset(page);
 184                        page_ref_sub(page, mapcount);
 185                }
 186        }
 187
 188        /* hugetlb pages do not participate in page cache accounting. */
 189        if (PageHuge(page))
 190                return;
 191
 192        nr = thp_nr_pages(page);
 193
 194        __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 195        if (PageSwapBacked(page)) {
 196                __mod_lruvec_page_state(page, NR_SHMEM, -nr);
 197                if (PageTransHuge(page))
 198                        __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
 199        } else if (PageTransHuge(page)) {
 200                __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
 201                filemap_nr_thps_dec(mapping);
 202        }
 203
 204        /*
 205         * At this point page must be either written or cleaned by
 206         * truncate.  Dirty page here signals a bug and loss of
 207         * unwritten data.
 208         *
 209         * This fixes dirty accounting after removing the page entirely
 210         * but leaves PageDirty set: it has no effect for truncated
 211         * page and anyway will be cleared before returning page into
 212         * buddy allocator.
 213         */
 214        if (WARN_ON_ONCE(PageDirty(page)))
 215                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 216}
 217
 218/*
 219 * Delete a page from the page cache and free it. Caller has to make
 220 * sure the page is locked and that nobody else uses it - or that usage
 221 * is safe.  The caller must hold the i_pages lock.
 222 */
 223void __delete_from_page_cache(struct page *page, void *shadow)
 224{
 225        struct address_space *mapping = page->mapping;
 226
 227        trace_mm_filemap_delete_from_page_cache(page);
 228
 229        unaccount_page_cache_page(mapping, page);
 230        page_cache_delete(mapping, page, shadow);
 231}
 232
 233static void page_cache_free_page(struct address_space *mapping,
 234                                struct page *page)
 235{
 236        void (*freepage)(struct page *);
 237
 238        freepage = mapping->a_ops->freepage;
 239        if (freepage)
 240                freepage(page);
 241
 242        if (PageTransHuge(page) && !PageHuge(page)) {
 243                page_ref_sub(page, thp_nr_pages(page));
 244                VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 245        } else {
 246                put_page(page);
 247        }
 248}
 249
 250/**
 251 * delete_from_page_cache - delete page from page cache
 252 * @page: the page which the kernel is trying to remove from page cache
 253 *
 254 * This must be called only on pages that have been verified to be in the page
 255 * cache and locked.  It will never put the page into the free list, the caller
 256 * has a reference on the page.
 257 */
 258void delete_from_page_cache(struct page *page)
 259{
 260        struct address_space *mapping = page_mapping(page);
 261        unsigned long flags;
 262
 263        BUG_ON(!PageLocked(page));
 264        xa_lock_irqsave(&mapping->i_pages, flags);
 265        __delete_from_page_cache(page, NULL);
 266        xa_unlock_irqrestore(&mapping->i_pages, flags);
 267
 268        page_cache_free_page(mapping, page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272/*
 273 * page_cache_delete_batch - delete several pages from page cache
 274 * @mapping: the mapping to which pages belong
 275 * @pvec: pagevec with pages to delete
 276 *
 277 * The function walks over mapping->i_pages and removes pages passed in @pvec
 278 * from the mapping. The function expects @pvec to be sorted by page index
 279 * and is optimised for it to be dense.
 280 * It tolerates holes in @pvec (mapping entries at those indices are not
 281 * modified). The function expects only THP head pages to be present in the
 282 * @pvec.
 283 *
 284 * The function expects the i_pages lock to be held.
 285 */
 286static void page_cache_delete_batch(struct address_space *mapping,
 287                             struct pagevec *pvec)
 288{
 289        XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 290        int total_pages = 0;
 291        int i = 0;
 292        struct page *page;
 293
 294        mapping_set_update(&xas, mapping);
 295        xas_for_each(&xas, page, ULONG_MAX) {
 296                if (i >= pagevec_count(pvec))
 297                        break;
 298
 299                /* A swap/dax/shadow entry got inserted? Skip it. */
 300                if (xa_is_value(page))
 301                        continue;
 302                /*
 303                 * A page got inserted in our range? Skip it. We have our
 304                 * pages locked so they are protected from being removed.
 305                 * If we see a page whose index is higher than ours, it
 306                 * means our page has been removed, which shouldn't be
 307                 * possible because we're holding the PageLock.
 308                 */
 309                if (page != pvec->pages[i]) {
 310                        VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 311                                        page);
 312                        continue;
 313                }
 314
 315                WARN_ON_ONCE(!PageLocked(page));
 316
 317                if (page->index == xas.xa_index)
 318                        page->mapping = NULL;
 319                /* Leave page->index set: truncation lookup relies on it */
 320
 321                /*
 322                 * Move to the next page in the vector if this is a regular
 323                 * page or the index is of the last sub-page of this compound
 324                 * page.
 325                 */
 326                if (page->index + compound_nr(page) - 1 == xas.xa_index)
 327                        i++;
 328                xas_store(&xas, NULL);
 329                total_pages++;
 330        }
 331        mapping->nrpages -= total_pages;
 332}
 333
 334void delete_from_page_cache_batch(struct address_space *mapping,
 335                                  struct pagevec *pvec)
 336{
 337        int i;
 338        unsigned long flags;
 339
 340        if (!pagevec_count(pvec))
 341                return;
 342
 343        xa_lock_irqsave(&mapping->i_pages, flags);
 344        for (i = 0; i < pagevec_count(pvec); i++) {
 345                trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 346
 347                unaccount_page_cache_page(mapping, pvec->pages[i]);
 348        }
 349        page_cache_delete_batch(mapping, pvec);
 350        xa_unlock_irqrestore(&mapping->i_pages, flags);
 351
 352        for (i = 0; i < pagevec_count(pvec); i++)
 353                page_cache_free_page(mapping, pvec->pages[i]);
 354}
 355
 356int filemap_check_errors(struct address_space *mapping)
 357{
 358        int ret = 0;
 359        /* Check for outstanding write errors */
 360        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 361            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 362                ret = -ENOSPC;
 363        if (test_bit(AS_EIO, &mapping->flags) &&
 364            test_and_clear_bit(AS_EIO, &mapping->flags))
 365                ret = -EIO;
 366        return ret;
 367}
 368EXPORT_SYMBOL(filemap_check_errors);
 369
 370static int filemap_check_and_keep_errors(struct address_space *mapping)
 371{
 372        /* Check for outstanding write errors */
 373        if (test_bit(AS_EIO, &mapping->flags))
 374                return -EIO;
 375        if (test_bit(AS_ENOSPC, &mapping->flags))
 376                return -ENOSPC;
 377        return 0;
 378}
 379
 380/**
 381 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 382 * @mapping:    address space structure to write
 383 * @start:      offset in bytes where the range starts
 384 * @end:        offset in bytes where the range ends (inclusive)
 385 * @sync_mode:  enable synchronous operation
 386 *
 387 * Start writeback against all of a mapping's dirty pages that lie
 388 * within the byte offsets <start, end> inclusive.
 389 *
 390 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 391 * opposed to a regular memory cleansing writeback.  The difference between
 392 * these two operations is that if a dirty page/buffer is encountered, it must
 393 * be waited upon, and not just skipped over.
 394 *
 395 * Return: %0 on success, negative error code otherwise.
 396 */
 397int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 398                                loff_t end, int sync_mode)
 399{
 400        int ret;
 401        struct writeback_control wbc = {
 402                .sync_mode = sync_mode,
 403                .nr_to_write = LONG_MAX,
 404                .range_start = start,
 405                .range_end = end,
 406        };
 407
 408        if (!mapping_can_writeback(mapping) ||
 409            !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 410                return 0;
 411
 412        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 413        ret = do_writepages(mapping, &wbc);
 414        wbc_detach_inode(&wbc);
 415        return ret;
 416}
 417
 418static inline int __filemap_fdatawrite(struct address_space *mapping,
 419        int sync_mode)
 420{
 421        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 422}
 423
 424int filemap_fdatawrite(struct address_space *mapping)
 425{
 426        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 427}
 428EXPORT_SYMBOL(filemap_fdatawrite);
 429
 430int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431                                loff_t end)
 432{
 433        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 434}
 435EXPORT_SYMBOL(filemap_fdatawrite_range);
 436
 437/**
 438 * filemap_flush - mostly a non-blocking flush
 439 * @mapping:    target address_space
 440 *
 441 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 442 * purposes - I/O may not be started against all dirty pages.
 443 *
 444 * Return: %0 on success, negative error code otherwise.
 445 */
 446int filemap_flush(struct address_space *mapping)
 447{
 448        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 449}
 450EXPORT_SYMBOL(filemap_flush);
 451
 452/**
 453 * filemap_range_has_page - check if a page exists in range.
 454 * @mapping:           address space within which to check
 455 * @start_byte:        offset in bytes where the range starts
 456 * @end_byte:          offset in bytes where the range ends (inclusive)
 457 *
 458 * Find at least one page in the range supplied, usually used to check if
 459 * direct writing in this range will trigger a writeback.
 460 *
 461 * Return: %true if at least one page exists in the specified range,
 462 * %false otherwise.
 463 */
 464bool filemap_range_has_page(struct address_space *mapping,
 465                           loff_t start_byte, loff_t end_byte)
 466{
 467        struct page *page;
 468        XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 469        pgoff_t max = end_byte >> PAGE_SHIFT;
 470
 471        if (end_byte < start_byte)
 472                return false;
 473
 474        rcu_read_lock();
 475        for (;;) {
 476                page = xas_find(&xas, max);
 477                if (xas_retry(&xas, page))
 478                        continue;
 479                /* Shadow entries don't count */
 480                if (xa_is_value(page))
 481                        continue;
 482                /*
 483                 * We don't need to try to pin this page; we're about to
 484                 * release the RCU lock anyway.  It is enough to know that
 485                 * there was a page here recently.
 486                 */
 487                break;
 488        }
 489        rcu_read_unlock();
 490
 491        return page != NULL;
 492}
 493EXPORT_SYMBOL(filemap_range_has_page);
 494
 495static void __filemap_fdatawait_range(struct address_space *mapping,
 496                                     loff_t start_byte, loff_t end_byte)
 497{
 498        pgoff_t index = start_byte >> PAGE_SHIFT;
 499        pgoff_t end = end_byte >> PAGE_SHIFT;
 500        struct pagevec pvec;
 501        int nr_pages;
 502
 503        if (end_byte < start_byte)
 504                return;
 505
 506        pagevec_init(&pvec);
 507        while (index <= end) {
 508                unsigned i;
 509
 510                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 511                                end, PAGECACHE_TAG_WRITEBACK);
 512                if (!nr_pages)
 513                        break;
 514
 515                for (i = 0; i < nr_pages; i++) {
 516                        struct page *page = pvec.pages[i];
 517
 518                        wait_on_page_writeback(page);
 519                        ClearPageError(page);
 520                }
 521                pagevec_release(&pvec);
 522                cond_resched();
 523        }
 524}
 525
 526/**
 527 * filemap_fdatawait_range - wait for writeback to complete
 528 * @mapping:            address space structure to wait for
 529 * @start_byte:         offset in bytes where the range starts
 530 * @end_byte:           offset in bytes where the range ends (inclusive)
 531 *
 532 * Walk the list of under-writeback pages of the given address space
 533 * in the given range and wait for all of them.  Check error status of
 534 * the address space and return it.
 535 *
 536 * Since the error status of the address space is cleared by this function,
 537 * callers are responsible for checking the return value and handling and/or
 538 * reporting the error.
 539 *
 540 * Return: error status of the address space.
 541 */
 542int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 543                            loff_t end_byte)
 544{
 545        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 546        return filemap_check_errors(mapping);
 547}
 548EXPORT_SYMBOL(filemap_fdatawait_range);
 549
 550/**
 551 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 552 * @mapping:            address space structure to wait for
 553 * @start_byte:         offset in bytes where the range starts
 554 * @end_byte:           offset in bytes where the range ends (inclusive)
 555 *
 556 * Walk the list of under-writeback pages of the given address space in the
 557 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 558 * this function does not clear error status of the address space.
 559 *
 560 * Use this function if callers don't handle errors themselves.  Expected
 561 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 562 * fsfreeze(8)
 563 */
 564int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 565                loff_t start_byte, loff_t end_byte)
 566{
 567        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 568        return filemap_check_and_keep_errors(mapping);
 569}
 570EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 571
 572/**
 573 * file_fdatawait_range - wait for writeback to complete
 574 * @file:               file pointing to address space structure to wait for
 575 * @start_byte:         offset in bytes where the range starts
 576 * @end_byte:           offset in bytes where the range ends (inclusive)
 577 *
 578 * Walk the list of under-writeback pages of the address space that file
 579 * refers to, in the given range and wait for all of them.  Check error
 580 * status of the address space vs. the file->f_wb_err cursor and return it.
 581 *
 582 * Since the error status of the file is advanced by this function,
 583 * callers are responsible for checking the return value and handling and/or
 584 * reporting the error.
 585 *
 586 * Return: error status of the address space vs. the file->f_wb_err cursor.
 587 */
 588int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 589{
 590        struct address_space *mapping = file->f_mapping;
 591
 592        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 593        return file_check_and_advance_wb_err(file);
 594}
 595EXPORT_SYMBOL(file_fdatawait_range);
 596
 597/**
 598 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 599 * @mapping: address space structure to wait for
 600 *
 601 * Walk the list of under-writeback pages of the given address space
 602 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 603 * does not clear error status of the address space.
 604 *
 605 * Use this function if callers don't handle errors themselves.  Expected
 606 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 607 * fsfreeze(8)
 608 *
 609 * Return: error status of the address space.
 610 */
 611int filemap_fdatawait_keep_errors(struct address_space *mapping)
 612{
 613        __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 614        return filemap_check_and_keep_errors(mapping);
 615}
 616EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 617
 618/* Returns true if writeback might be needed or already in progress. */
 619static bool mapping_needs_writeback(struct address_space *mapping)
 620{
 621        return mapping->nrpages;
 622}
 623
 624/**
 625 * filemap_range_needs_writeback - check if range potentially needs writeback
 626 * @mapping:           address space within which to check
 627 * @start_byte:        offset in bytes where the range starts
 628 * @end_byte:          offset in bytes where the range ends (inclusive)
 629 *
 630 * Find at least one page in the range supplied, usually used to check if
 631 * direct writing in this range will trigger a writeback. Used by O_DIRECT
 632 * read/write with IOCB_NOWAIT, to see if the caller needs to do
 633 * filemap_write_and_wait_range() before proceeding.
 634 *
 635 * Return: %true if the caller should do filemap_write_and_wait_range() before
 636 * doing O_DIRECT to a page in this range, %false otherwise.
 637 */
 638bool filemap_range_needs_writeback(struct address_space *mapping,
 639                                   loff_t start_byte, loff_t end_byte)
 640{
 641        XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 642        pgoff_t max = end_byte >> PAGE_SHIFT;
 643        struct page *page;
 644
 645        if (!mapping_needs_writeback(mapping))
 646                return false;
 647        if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
 648            !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
 649                return false;
 650        if (end_byte < start_byte)
 651                return false;
 652
 653        rcu_read_lock();
 654        xas_for_each(&xas, page, max) {
 655                if (xas_retry(&xas, page))
 656                        continue;
 657                if (xa_is_value(page))
 658                        continue;
 659                if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
 660                        break;
 661        }
 662        rcu_read_unlock();
 663        return page != NULL;
 664}
 665EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
 666
 667/**
 668 * filemap_write_and_wait_range - write out & wait on a file range
 669 * @mapping:    the address_space for the pages
 670 * @lstart:     offset in bytes where the range starts
 671 * @lend:       offset in bytes where the range ends (inclusive)
 672 *
 673 * Write out and wait upon file offsets lstart->lend, inclusive.
 674 *
 675 * Note that @lend is inclusive (describes the last byte to be written) so
 676 * that this function can be used to write to the very end-of-file (end = -1).
 677 *
 678 * Return: error status of the address space.
 679 */
 680int filemap_write_and_wait_range(struct address_space *mapping,
 681                                 loff_t lstart, loff_t lend)
 682{
 683        int err = 0;
 684
 685        if (mapping_needs_writeback(mapping)) {
 686                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 687                                                 WB_SYNC_ALL);
 688                /*
 689                 * Even if the above returned error, the pages may be
 690                 * written partially (e.g. -ENOSPC), so we wait for it.
 691                 * But the -EIO is special case, it may indicate the worst
 692                 * thing (e.g. bug) happened, so we avoid waiting for it.
 693                 */
 694                if (err != -EIO) {
 695                        int err2 = filemap_fdatawait_range(mapping,
 696                                                lstart, lend);
 697                        if (!err)
 698                                err = err2;
 699                } else {
 700                        /* Clear any previously stored errors */
 701                        filemap_check_errors(mapping);
 702                }
 703        } else {
 704                err = filemap_check_errors(mapping);
 705        }
 706        return err;
 707}
 708EXPORT_SYMBOL(filemap_write_and_wait_range);
 709
 710void __filemap_set_wb_err(struct address_space *mapping, int err)
 711{
 712        errseq_t eseq = errseq_set(&mapping->wb_err, err);
 713
 714        trace_filemap_set_wb_err(mapping, eseq);
 715}
 716EXPORT_SYMBOL(__filemap_set_wb_err);
 717
 718/**
 719 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 720 *                                 and advance wb_err to current one
 721 * @file: struct file on which the error is being reported
 722 *
 723 * When userland calls fsync (or something like nfsd does the equivalent), we
 724 * want to report any writeback errors that occurred since the last fsync (or
 725 * since the file was opened if there haven't been any).
 726 *
 727 * Grab the wb_err from the mapping. If it matches what we have in the file,
 728 * then just quickly return 0. The file is all caught up.
 729 *
 730 * If it doesn't match, then take the mapping value, set the "seen" flag in
 731 * it and try to swap it into place. If it works, or another task beat us
 732 * to it with the new value, then update the f_wb_err and return the error
 733 * portion. The error at this point must be reported via proper channels
 734 * (a'la fsync, or NFS COMMIT operation, etc.).
 735 *
 736 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 737 * value is protected by the f_lock since we must ensure that it reflects
 738 * the latest value swapped in for this file descriptor.
 739 *
 740 * Return: %0 on success, negative error code otherwise.
 741 */
 742int file_check_and_advance_wb_err(struct file *file)
 743{
 744        int err = 0;
 745        errseq_t old = READ_ONCE(file->f_wb_err);
 746        struct address_space *mapping = file->f_mapping;
 747
 748        /* Locklessly handle the common case where nothing has changed */
 749        if (errseq_check(&mapping->wb_err, old)) {
 750                /* Something changed, must use slow path */
 751                spin_lock(&file->f_lock);
 752                old = file->f_wb_err;
 753                err = errseq_check_and_advance(&mapping->wb_err,
 754                                                &file->f_wb_err);
 755                trace_file_check_and_advance_wb_err(file, old);
 756                spin_unlock(&file->f_lock);
 757        }
 758
 759        /*
 760         * We're mostly using this function as a drop in replacement for
 761         * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 762         * that the legacy code would have had on these flags.
 763         */
 764        clear_bit(AS_EIO, &mapping->flags);
 765        clear_bit(AS_ENOSPC, &mapping->flags);
 766        return err;
 767}
 768EXPORT_SYMBOL(file_check_and_advance_wb_err);
 769
 770/**
 771 * file_write_and_wait_range - write out & wait on a file range
 772 * @file:       file pointing to address_space with pages
 773 * @lstart:     offset in bytes where the range starts
 774 * @lend:       offset in bytes where the range ends (inclusive)
 775 *
 776 * Write out and wait upon file offsets lstart->lend, inclusive.
 777 *
 778 * Note that @lend is inclusive (describes the last byte to be written) so
 779 * that this function can be used to write to the very end-of-file (end = -1).
 780 *
 781 * After writing out and waiting on the data, we check and advance the
 782 * f_wb_err cursor to the latest value, and return any errors detected there.
 783 *
 784 * Return: %0 on success, negative error code otherwise.
 785 */
 786int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 787{
 788        int err = 0, err2;
 789        struct address_space *mapping = file->f_mapping;
 790
 791        if (mapping_needs_writeback(mapping)) {
 792                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 793                                                 WB_SYNC_ALL);
 794                /* See comment of filemap_write_and_wait() */
 795                if (err != -EIO)
 796                        __filemap_fdatawait_range(mapping, lstart, lend);
 797        }
 798        err2 = file_check_and_advance_wb_err(file);
 799        if (!err)
 800                err = err2;
 801        return err;
 802}
 803EXPORT_SYMBOL(file_write_and_wait_range);
 804
 805/**
 806 * replace_page_cache_page - replace a pagecache page with a new one
 807 * @old:        page to be replaced
 808 * @new:        page to replace with
 809 *
 810 * This function replaces a page in the pagecache with a new one.  On
 811 * success it acquires the pagecache reference for the new page and
 812 * drops it for the old page.  Both the old and new pages must be
 813 * locked.  This function does not add the new page to the LRU, the
 814 * caller must do that.
 815 *
 816 * The remove + add is atomic.  This function cannot fail.
 817 */
 818void replace_page_cache_page(struct page *old, struct page *new)
 819{
 820        struct address_space *mapping = old->mapping;
 821        void (*freepage)(struct page *) = mapping->a_ops->freepage;
 822        pgoff_t offset = old->index;
 823        XA_STATE(xas, &mapping->i_pages, offset);
 824        unsigned long flags;
 825
 826        VM_BUG_ON_PAGE(!PageLocked(old), old);
 827        VM_BUG_ON_PAGE(!PageLocked(new), new);
 828        VM_BUG_ON_PAGE(new->mapping, new);
 829
 830        get_page(new);
 831        new->mapping = mapping;
 832        new->index = offset;
 833
 834        mem_cgroup_migrate(old, new);
 835
 836        xas_lock_irqsave(&xas, flags);
 837        xas_store(&xas, new);
 838
 839        old->mapping = NULL;
 840        /* hugetlb pages do not participate in page cache accounting. */
 841        if (!PageHuge(old))
 842                __dec_lruvec_page_state(old, NR_FILE_PAGES);
 843        if (!PageHuge(new))
 844                __inc_lruvec_page_state(new, NR_FILE_PAGES);
 845        if (PageSwapBacked(old))
 846                __dec_lruvec_page_state(old, NR_SHMEM);
 847        if (PageSwapBacked(new))
 848                __inc_lruvec_page_state(new, NR_SHMEM);
 849        xas_unlock_irqrestore(&xas, flags);
 850        if (freepage)
 851                freepage(old);
 852        put_page(old);
 853}
 854EXPORT_SYMBOL_GPL(replace_page_cache_page);
 855
 856noinline int __add_to_page_cache_locked(struct page *page,
 857                                        struct address_space *mapping,
 858                                        pgoff_t offset, gfp_t gfp,
 859                                        void **shadowp)
 860{
 861        XA_STATE(xas, &mapping->i_pages, offset);
 862        int huge = PageHuge(page);
 863        int error;
 864        bool charged = false;
 865
 866        VM_BUG_ON_PAGE(!PageLocked(page), page);
 867        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 868        mapping_set_update(&xas, mapping);
 869
 870        get_page(page);
 871        page->mapping = mapping;
 872        page->index = offset;
 873
 874        if (!huge) {
 875                error = mem_cgroup_charge(page, NULL, gfp);
 876                if (error)
 877                        goto error;
 878                charged = true;
 879        }
 880
 881        gfp &= GFP_RECLAIM_MASK;
 882
 883        do {
 884                unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 885                void *entry, *old = NULL;
 886
 887                if (order > thp_order(page))
 888                        xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 889                                        order, gfp);
 890                xas_lock_irq(&xas);
 891                xas_for_each_conflict(&xas, entry) {
 892                        old = entry;
 893                        if (!xa_is_value(entry)) {
 894                                xas_set_err(&xas, -EEXIST);
 895                                goto unlock;
 896                        }
 897                }
 898
 899                if (old) {
 900                        if (shadowp)
 901                                *shadowp = old;
 902                        /* entry may have been split before we acquired lock */
 903                        order = xa_get_order(xas.xa, xas.xa_index);
 904                        if (order > thp_order(page)) {
 905                                xas_split(&xas, old, order);
 906                                xas_reset(&xas);
 907                        }
 908                }
 909
 910                xas_store(&xas, page);
 911                if (xas_error(&xas))
 912                        goto unlock;
 913
 914                mapping->nrpages++;
 915
 916                /* hugetlb pages do not participate in page cache accounting */
 917                if (!huge)
 918                        __inc_lruvec_page_state(page, NR_FILE_PAGES);
 919unlock:
 920                xas_unlock_irq(&xas);
 921        } while (xas_nomem(&xas, gfp));
 922
 923        if (xas_error(&xas)) {
 924                error = xas_error(&xas);
 925                if (charged)
 926                        mem_cgroup_uncharge(page);
 927                goto error;
 928        }
 929
 930        trace_mm_filemap_add_to_page_cache(page);
 931        return 0;
 932error:
 933        page->mapping = NULL;
 934        /* Leave page->index set: truncation relies upon it */
 935        put_page(page);
 936        return error;
 937}
 938ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 939
 940/**
 941 * add_to_page_cache_locked - add a locked page to the pagecache
 942 * @page:       page to add
 943 * @mapping:    the page's address_space
 944 * @offset:     page index
 945 * @gfp_mask:   page allocation mode
 946 *
 947 * This function is used to add a page to the pagecache. It must be locked.
 948 * This function does not add the page to the LRU.  The caller must do that.
 949 *
 950 * Return: %0 on success, negative error code otherwise.
 951 */
 952int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 953                pgoff_t offset, gfp_t gfp_mask)
 954{
 955        return __add_to_page_cache_locked(page, mapping, offset,
 956                                          gfp_mask, NULL);
 957}
 958EXPORT_SYMBOL(add_to_page_cache_locked);
 959
 960int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 961                                pgoff_t offset, gfp_t gfp_mask)
 962{
 963        void *shadow = NULL;
 964        int ret;
 965
 966        __SetPageLocked(page);
 967        ret = __add_to_page_cache_locked(page, mapping, offset,
 968                                         gfp_mask, &shadow);
 969        if (unlikely(ret))
 970                __ClearPageLocked(page);
 971        else {
 972                /*
 973                 * The page might have been evicted from cache only
 974                 * recently, in which case it should be activated like
 975                 * any other repeatedly accessed page.
 976                 * The exception is pages getting rewritten; evicting other
 977                 * data from the working set, only to cache data that will
 978                 * get overwritten with something else, is a waste of memory.
 979                 */
 980                WARN_ON_ONCE(PageActive(page));
 981                if (!(gfp_mask & __GFP_WRITE) && shadow)
 982                        workingset_refault(page, shadow);
 983                lru_cache_add(page);
 984        }
 985        return ret;
 986}
 987EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 988
 989#ifdef CONFIG_NUMA
 990struct page *__page_cache_alloc(gfp_t gfp)
 991{
 992        int n;
 993        struct page *page;
 994
 995        if (cpuset_do_page_mem_spread()) {
 996                unsigned int cpuset_mems_cookie;
 997                do {
 998                        cpuset_mems_cookie = read_mems_allowed_begin();
 999                        n = cpuset_mem_spread_node();
1000                        page = __alloc_pages_node(n, gfp, 0);
1001                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1002
1003                return page;
1004        }
1005        return alloc_pages(gfp, 0);
1006}
1007EXPORT_SYMBOL(__page_cache_alloc);
1008#endif
1009
1010/*
1011 * In order to wait for pages to become available there must be
1012 * waitqueues associated with pages. By using a hash table of
1013 * waitqueues where the bucket discipline is to maintain all
1014 * waiters on the same queue and wake all when any of the pages
1015 * become available, and for the woken contexts to check to be
1016 * sure the appropriate page became available, this saves space
1017 * at a cost of "thundering herd" phenomena during rare hash
1018 * collisions.
1019 */
1020#define PAGE_WAIT_TABLE_BITS 8
1021#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1022static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1023
1024static wait_queue_head_t *page_waitqueue(struct page *page)
1025{
1026        return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1027}
1028
1029void __init pagecache_init(void)
1030{
1031        int i;
1032
1033        for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1034                init_waitqueue_head(&page_wait_table[i]);
1035
1036        page_writeback_init();
1037}
1038
1039/*
1040 * The page wait code treats the "wait->flags" somewhat unusually, because
1041 * we have multiple different kinds of waits, not just the usual "exclusive"
1042 * one.
1043 *
1044 * We have:
1045 *
1046 *  (a) no special bits set:
1047 *
1048 *      We're just waiting for the bit to be released, and when a waker
1049 *      calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1050 *      and remove it from the wait queue.
1051 *
1052 *      Simple and straightforward.
1053 *
1054 *  (b) WQ_FLAG_EXCLUSIVE:
1055 *
1056 *      The waiter is waiting to get the lock, and only one waiter should
1057 *      be woken up to avoid any thundering herd behavior. We'll set the
1058 *      WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1059 *
1060 *      This is the traditional exclusive wait.
1061 *
1062 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1063 *
1064 *      The waiter is waiting to get the bit, and additionally wants the
1065 *      lock to be transferred to it for fair lock behavior. If the lock
1066 *      cannot be taken, we stop walking the wait queue without waking
1067 *      the waiter.
1068 *
1069 *      This is the "fair lock handoff" case, and in addition to setting
1070 *      WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1071 *      that it now has the lock.
1072 */
1073static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1074{
1075        unsigned int flags;
1076        struct wait_page_key *key = arg;
1077        struct wait_page_queue *wait_page
1078                = container_of(wait, struct wait_page_queue, wait);
1079
1080        if (!wake_page_match(wait_page, key))
1081                return 0;
1082
1083        /*
1084         * If it's a lock handoff wait, we get the bit for it, and
1085         * stop walking (and do not wake it up) if we can't.
1086         */
1087        flags = wait->flags;
1088        if (flags & WQ_FLAG_EXCLUSIVE) {
1089                if (test_bit(key->bit_nr, &key->page->flags))
1090                        return -1;
1091                if (flags & WQ_FLAG_CUSTOM) {
1092                        if (test_and_set_bit(key->bit_nr, &key->page->flags))
1093                                return -1;
1094                        flags |= WQ_FLAG_DONE;
1095                }
1096        }
1097
1098        /*
1099         * We are holding the wait-queue lock, but the waiter that
1100         * is waiting for this will be checking the flags without
1101         * any locking.
1102         *
1103         * So update the flags atomically, and wake up the waiter
1104         * afterwards to avoid any races. This store-release pairs
1105         * with the load-acquire in wait_on_page_bit_common().
1106         */
1107        smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1108        wake_up_state(wait->private, mode);
1109
1110        /*
1111         * Ok, we have successfully done what we're waiting for,
1112         * and we can unconditionally remove the wait entry.
1113         *
1114         * Note that this pairs with the "finish_wait()" in the
1115         * waiter, and has to be the absolute last thing we do.
1116         * After this list_del_init(&wait->entry) the wait entry
1117         * might be de-allocated and the process might even have
1118         * exited.
1119         */
1120        list_del_init_careful(&wait->entry);
1121        return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1122}
1123
1124static void wake_up_page_bit(struct page *page, int bit_nr)
1125{
1126        wait_queue_head_t *q = page_waitqueue(page);
1127        struct wait_page_key key;
1128        unsigned long flags;
1129        wait_queue_entry_t bookmark;
1130
1131        key.page = page;
1132        key.bit_nr = bit_nr;
1133        key.page_match = 0;
1134
1135        bookmark.flags = 0;
1136        bookmark.private = NULL;
1137        bookmark.func = NULL;
1138        INIT_LIST_HEAD(&bookmark.entry);
1139
1140        spin_lock_irqsave(&q->lock, flags);
1141        __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1142
1143        while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1144                /*
1145                 * Take a breather from holding the lock,
1146                 * allow pages that finish wake up asynchronously
1147                 * to acquire the lock and remove themselves
1148                 * from wait queue
1149                 */
1150                spin_unlock_irqrestore(&q->lock, flags);
1151                cpu_relax();
1152                spin_lock_irqsave(&q->lock, flags);
1153                __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154        }
1155
1156        /*
1157         * It is possible for other pages to have collided on the waitqueue
1158         * hash, so in that case check for a page match. That prevents a long-
1159         * term waiter
1160         *
1161         * It is still possible to miss a case here, when we woke page waiters
1162         * and removed them from the waitqueue, but there are still other
1163         * page waiters.
1164         */
1165        if (!waitqueue_active(q) || !key.page_match) {
1166                ClearPageWaiters(page);
1167                /*
1168                 * It's possible to miss clearing Waiters here, when we woke
1169                 * our page waiters, but the hashed waitqueue has waiters for
1170                 * other pages on it.
1171                 *
1172                 * That's okay, it's a rare case. The next waker will clear it.
1173                 */
1174        }
1175        spin_unlock_irqrestore(&q->lock, flags);
1176}
1177
1178static void wake_up_page(struct page *page, int bit)
1179{
1180        if (!PageWaiters(page))
1181                return;
1182        wake_up_page_bit(page, bit);
1183}
1184
1185/*
1186 * A choice of three behaviors for wait_on_page_bit_common():
1187 */
1188enum behavior {
1189        EXCLUSIVE,      /* Hold ref to page and take the bit when woken, like
1190                         * __lock_page() waiting on then setting PG_locked.
1191                         */
1192        SHARED,         /* Hold ref to page and check the bit when woken, like
1193                         * wait_on_page_writeback() waiting on PG_writeback.
1194                         */
1195        DROP,           /* Drop ref to page before wait, no check when woken,
1196                         * like put_and_wait_on_page_locked() on PG_locked.
1197                         */
1198};
1199
1200/*
1201 * Attempt to check (or get) the page bit, and mark us done
1202 * if successful.
1203 */
1204static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1205                                        struct wait_queue_entry *wait)
1206{
1207        if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208                if (test_and_set_bit(bit_nr, &page->flags))
1209                        return false;
1210        } else if (test_bit(bit_nr, &page->flags))
1211                return false;
1212
1213        wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214        return true;
1215}
1216
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
1220static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1221        struct page *page, int bit_nr, int state, enum behavior behavior)
1222{
1223        int unfairness = sysctl_page_lock_unfairness;
1224        struct wait_page_queue wait_page;
1225        wait_queue_entry_t *wait = &wait_page.wait;
1226        bool thrashing = false;
1227        bool delayacct = false;
1228        unsigned long pflags;
1229
1230        if (bit_nr == PG_locked &&
1231            !PageUptodate(page) && PageWorkingset(page)) {
1232                if (!PageSwapBacked(page)) {
1233                        delayacct_thrashing_start();
1234                        delayacct = true;
1235                }
1236                psi_memstall_enter(&pflags);
1237                thrashing = true;
1238        }
1239
1240        init_wait(wait);
1241        wait->func = wake_page_function;
1242        wait_page.page = page;
1243        wait_page.bit_nr = bit_nr;
1244
1245repeat:
1246        wait->flags = 0;
1247        if (behavior == EXCLUSIVE) {
1248                wait->flags = WQ_FLAG_EXCLUSIVE;
1249                if (--unfairness < 0)
1250                        wait->flags |= WQ_FLAG_CUSTOM;
1251        }
1252
1253        /*
1254         * Do one last check whether we can get the
1255         * page bit synchronously.
1256         *
1257         * Do the SetPageWaiters() marking before that
1258         * to let any waker we _just_ missed know they
1259         * need to wake us up (otherwise they'll never
1260         * even go to the slow case that looks at the
1261         * page queue), and add ourselves to the wait
1262         * queue if we need to sleep.
1263         *
1264         * This part needs to be done under the queue
1265         * lock to avoid races.
1266         */
1267        spin_lock_irq(&q->lock);
1268        SetPageWaiters(page);
1269        if (!trylock_page_bit_common(page, bit_nr, wait))
1270                __add_wait_queue_entry_tail(q, wait);
1271        spin_unlock_irq(&q->lock);
1272
1273        /*
1274         * From now on, all the logic will be based on
1275         * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276         * see whether the page bit testing has already
1277         * been done by the wake function.
1278         *
1279         * We can drop our reference to the page.
1280         */
1281        if (behavior == DROP)
1282                put_page(page);
1283
1284        /*
1285         * Note that until the "finish_wait()", or until
1286         * we see the WQ_FLAG_WOKEN flag, we need to
1287         * be very careful with the 'wait->flags', because
1288         * we may race with a waker that sets them.
1289         */
1290        for (;;) {
1291                unsigned int flags;
1292
1293                set_current_state(state);
1294
1295                /* Loop until we've been woken or interrupted */
1296                flags = smp_load_acquire(&wait->flags);
1297                if (!(flags & WQ_FLAG_WOKEN)) {
1298                        if (signal_pending_state(state, current))
1299                                break;
1300
1301                        io_schedule();
1302                        continue;
1303                }
1304
1305                /* If we were non-exclusive, we're done */
1306                if (behavior != EXCLUSIVE)
1307                        break;
1308
1309                /* If the waker got the lock for us, we're done */
1310                if (flags & WQ_FLAG_DONE)
1311                        break;
1312
1313                /*
1314                 * Otherwise, if we're getting the lock, we need to
1315                 * try to get it ourselves.
1316                 *
1317                 * And if that fails, we'll have to retry this all.
1318                 */
1319                if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1320                        goto repeat;
1321
1322                wait->flags |= WQ_FLAG_DONE;
1323                break;
1324        }
1325
1326        /*
1327         * If a signal happened, this 'finish_wait()' may remove the last
1328         * waiter from the wait-queues, but the PageWaiters bit will remain
1329         * set. That's ok. The next wakeup will take care of it, and trying
1330         * to do it here would be difficult and prone to races.
1331         */
1332        finish_wait(q, wait);
1333
1334        if (thrashing) {
1335                if (delayacct)
1336                        delayacct_thrashing_end();
1337                psi_memstall_leave(&pflags);
1338        }
1339
1340        /*
1341         * NOTE! The wait->flags weren't stable until we've done the
1342         * 'finish_wait()', and we could have exited the loop above due
1343         * to a signal, and had a wakeup event happen after the signal
1344         * test but before the 'finish_wait()'.
1345         *
1346         * So only after the finish_wait() can we reliably determine
1347         * if we got woken up or not, so we can now figure out the final
1348         * return value based on that state without races.
1349         *
1350         * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1351         * waiter, but an exclusive one requires WQ_FLAG_DONE.
1352         */
1353        if (behavior == EXCLUSIVE)
1354                return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1355
1356        return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1357}
1358
1359void wait_on_page_bit(struct page *page, int bit_nr)
1360{
1361        wait_queue_head_t *q = page_waitqueue(page);
1362        wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1363}
1364EXPORT_SYMBOL(wait_on_page_bit);
1365
1366int wait_on_page_bit_killable(struct page *page, int bit_nr)
1367{
1368        wait_queue_head_t *q = page_waitqueue(page);
1369        return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1370}
1371EXPORT_SYMBOL(wait_on_page_bit_killable);
1372
1373/**
1374 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1375 * @page: The page to wait for.
1376 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1377 *
1378 * The caller should hold a reference on @page.  They expect the page to
1379 * become unlocked relatively soon, but do not wish to hold up migration
1380 * (for example) by holding the reference while waiting for the page to
1381 * come unlocked.  After this function returns, the caller should not
1382 * dereference @page.
1383 *
1384 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1385 */
1386int put_and_wait_on_page_locked(struct page *page, int state)
1387{
1388        wait_queue_head_t *q;
1389
1390        page = compound_head(page);
1391        q = page_waitqueue(page);
1392        return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1393}
1394
1395/**
1396 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1397 * @page: Page defining the wait queue of interest
1398 * @waiter: Waiter to add to the queue
1399 *
1400 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1401 */
1402void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1403{
1404        wait_queue_head_t *q = page_waitqueue(page);
1405        unsigned long flags;
1406
1407        spin_lock_irqsave(&q->lock, flags);
1408        __add_wait_queue_entry_tail(q, waiter);
1409        SetPageWaiters(page);
1410        spin_unlock_irqrestore(&q->lock, flags);
1411}
1412EXPORT_SYMBOL_GPL(add_page_wait_queue);
1413
1414#ifndef clear_bit_unlock_is_negative_byte
1415
1416/*
1417 * PG_waiters is the high bit in the same byte as PG_lock.
1418 *
1419 * On x86 (and on many other architectures), we can clear PG_lock and
1420 * test the sign bit at the same time. But if the architecture does
1421 * not support that special operation, we just do this all by hand
1422 * instead.
1423 *
1424 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1425 * being cleared, but a memory barrier should be unnecessary since it is
1426 * in the same byte as PG_locked.
1427 */
1428static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1429{
1430        clear_bit_unlock(nr, mem);
1431        /* smp_mb__after_atomic(); */
1432        return test_bit(PG_waiters, mem);
1433}
1434
1435#endif
1436
1437/**
1438 * unlock_page - unlock a locked page
1439 * @page: the page
1440 *
1441 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1442 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1443 * mechanism between PageLocked pages and PageWriteback pages is shared.
1444 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1445 *
1446 * Note that this depends on PG_waiters being the sign bit in the byte
1447 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1448 * clear the PG_locked bit and test PG_waiters at the same time fairly
1449 * portably (architectures that do LL/SC can test any bit, while x86 can
1450 * test the sign bit).
1451 */
1452void unlock_page(struct page *page)
1453{
1454        BUILD_BUG_ON(PG_waiters != 7);
1455        page = compound_head(page);
1456        VM_BUG_ON_PAGE(!PageLocked(page), page);
1457        if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1458                wake_up_page_bit(page, PG_locked);
1459}
1460EXPORT_SYMBOL(unlock_page);
1461
1462/**
1463 * end_page_private_2 - Clear PG_private_2 and release any waiters
1464 * @page: The page
1465 *
1466 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1467 * this.  The page ref held for PG_private_2 being set is released.
1468 *
1469 * This is, for example, used when a netfs page is being written to a local
1470 * disk cache, thereby allowing writes to the cache for the same page to be
1471 * serialised.
1472 */
1473void end_page_private_2(struct page *page)
1474{
1475        page = compound_head(page);
1476        VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1477        clear_bit_unlock(PG_private_2, &page->flags);
1478        wake_up_page_bit(page, PG_private_2);
1479        put_page(page);
1480}
1481EXPORT_SYMBOL(end_page_private_2);
1482
1483/**
1484 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1485 * @page: The page to wait on
1486 *
1487 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1488 */
1489void wait_on_page_private_2(struct page *page)
1490{
1491        page = compound_head(page);
1492        while (PagePrivate2(page))
1493                wait_on_page_bit(page, PG_private_2);
1494}
1495EXPORT_SYMBOL(wait_on_page_private_2);
1496
1497/**
1498 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1499 * @page: The page to wait on
1500 *
1501 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1502 * fatal signal is received by the calling task.
1503 *
1504 * Return:
1505 * - 0 if successful.
1506 * - -EINTR if a fatal signal was encountered.
1507 */
1508int wait_on_page_private_2_killable(struct page *page)
1509{
1510        int ret = 0;
1511
1512        page = compound_head(page);
1513        while (PagePrivate2(page)) {
1514                ret = wait_on_page_bit_killable(page, PG_private_2);
1515                if (ret < 0)
1516                        break;
1517        }
1518
1519        return ret;
1520}
1521EXPORT_SYMBOL(wait_on_page_private_2_killable);
1522
1523/**
1524 * end_page_writeback - end writeback against a page
1525 * @page: the page
1526 */
1527void end_page_writeback(struct page *page)
1528{
1529        /*
1530         * TestClearPageReclaim could be used here but it is an atomic
1531         * operation and overkill in this particular case. Failing to
1532         * shuffle a page marked for immediate reclaim is too mild to
1533         * justify taking an atomic operation penalty at the end of
1534         * ever page writeback.
1535         */
1536        if (PageReclaim(page)) {
1537                ClearPageReclaim(page);
1538                rotate_reclaimable_page(page);
1539        }
1540
1541        /*
1542         * Writeback does not hold a page reference of its own, relying
1543         * on truncation to wait for the clearing of PG_writeback.
1544         * But here we must make sure that the page is not freed and
1545         * reused before the wake_up_page().
1546         */
1547        get_page(page);
1548        if (!test_clear_page_writeback(page))
1549                BUG();
1550
1551        smp_mb__after_atomic();
1552        wake_up_page(page, PG_writeback);
1553        put_page(page);
1554}
1555EXPORT_SYMBOL(end_page_writeback);
1556
1557/*
1558 * After completing I/O on a page, call this routine to update the page
1559 * flags appropriately
1560 */
1561void page_endio(struct page *page, bool is_write, int err)
1562{
1563        if (!is_write) {
1564                if (!err) {
1565                        SetPageUptodate(page);
1566                } else {
1567                        ClearPageUptodate(page);
1568                        SetPageError(page);
1569                }
1570                unlock_page(page);
1571        } else {
1572                if (err) {
1573                        struct address_space *mapping;
1574
1575                        SetPageError(page);
1576                        mapping = page_mapping(page);
1577                        if (mapping)
1578                                mapping_set_error(mapping, err);
1579                }
1580                end_page_writeback(page);
1581        }
1582}
1583EXPORT_SYMBOL_GPL(page_endio);
1584
1585/**
1586 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1587 * @__page: the page to lock
1588 */
1589void __lock_page(struct page *__page)
1590{
1591        struct page *page = compound_head(__page);
1592        wait_queue_head_t *q = page_waitqueue(page);
1593        wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1594                                EXCLUSIVE);
1595}
1596EXPORT_SYMBOL(__lock_page);
1597
1598int __lock_page_killable(struct page *__page)
1599{
1600        struct page *page = compound_head(__page);
1601        wait_queue_head_t *q = page_waitqueue(page);
1602        return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1603                                        EXCLUSIVE);
1604}
1605EXPORT_SYMBOL_GPL(__lock_page_killable);
1606
1607int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1608{
1609        struct wait_queue_head *q = page_waitqueue(page);
1610        int ret = 0;
1611
1612        wait->page = page;
1613        wait->bit_nr = PG_locked;
1614
1615        spin_lock_irq(&q->lock);
1616        __add_wait_queue_entry_tail(q, &wait->wait);
1617        SetPageWaiters(page);
1618        ret = !trylock_page(page);
1619        /*
1620         * If we were successful now, we know we're still on the
1621         * waitqueue as we're still under the lock. This means it's
1622         * safe to remove and return success, we know the callback
1623         * isn't going to trigger.
1624         */
1625        if (!ret)
1626                __remove_wait_queue(q, &wait->wait);
1627        else
1628                ret = -EIOCBQUEUED;
1629        spin_unlock_irq(&q->lock);
1630        return ret;
1631}
1632
1633/*
1634 * Return values:
1635 * 1 - page is locked; mmap_lock is still held.
1636 * 0 - page is not locked.
1637 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1638 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1639 *     which case mmap_lock is still held.
1640 *
1641 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1642 * with the page locked and the mmap_lock unperturbed.
1643 */
1644int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1645                         unsigned int flags)
1646{
1647        if (fault_flag_allow_retry_first(flags)) {
1648                /*
1649                 * CAUTION! In this case, mmap_lock is not released
1650                 * even though return 0.
1651                 */
1652                if (flags & FAULT_FLAG_RETRY_NOWAIT)
1653                        return 0;
1654
1655                mmap_read_unlock(mm);
1656                if (flags & FAULT_FLAG_KILLABLE)
1657                        wait_on_page_locked_killable(page);
1658                else
1659                        wait_on_page_locked(page);
1660                return 0;
1661        }
1662        if (flags & FAULT_FLAG_KILLABLE) {
1663                int ret;
1664
1665                ret = __lock_page_killable(page);
1666                if (ret) {
1667                        mmap_read_unlock(mm);
1668                        return 0;
1669                }
1670        } else {
1671                __lock_page(page);
1672        }
1673        return 1;
1674
1675}
1676
1677/**
1678 * page_cache_next_miss() - Find the next gap in the page cache.
1679 * @mapping: Mapping.
1680 * @index: Index.
1681 * @max_scan: Maximum range to search.
1682 *
1683 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1684 * gap with the lowest index.
1685 *
1686 * This function may be called under the rcu_read_lock.  However, this will
1687 * not atomically search a snapshot of the cache at a single point in time.
1688 * For example, if a gap is created at index 5, then subsequently a gap is
1689 * created at index 10, page_cache_next_miss covering both indices may
1690 * return 10 if called under the rcu_read_lock.
1691 *
1692 * Return: The index of the gap if found, otherwise an index outside the
1693 * range specified (in which case 'return - index >= max_scan' will be true).
1694 * In the rare case of index wrap-around, 0 will be returned.
1695 */
1696pgoff_t page_cache_next_miss(struct address_space *mapping,
1697                             pgoff_t index, unsigned long max_scan)
1698{
1699        XA_STATE(xas, &mapping->i_pages, index);
1700
1701        while (max_scan--) {
1702                void *entry = xas_next(&xas);
1703                if (!entry || xa_is_value(entry))
1704                        break;
1705                if (xas.xa_index == 0)
1706                        break;
1707        }
1708
1709        return xas.xa_index;
1710}
1711EXPORT_SYMBOL(page_cache_next_miss);
1712
1713/**
1714 * page_cache_prev_miss() - Find the previous gap in the page cache.
1715 * @mapping: Mapping.
1716 * @index: Index.
1717 * @max_scan: Maximum range to search.
1718 *
1719 * Search the range [max(index - max_scan + 1, 0), index] for the
1720 * gap with the highest index.
1721 *
1722 * This function may be called under the rcu_read_lock.  However, this will
1723 * not atomically search a snapshot of the cache at a single point in time.
1724 * For example, if a gap is created at index 10, then subsequently a gap is
1725 * created at index 5, page_cache_prev_miss() covering both indices may
1726 * return 5 if called under the rcu_read_lock.
1727 *
1728 * Return: The index of the gap if found, otherwise an index outside the
1729 * range specified (in which case 'index - return >= max_scan' will be true).
1730 * In the rare case of wrap-around, ULONG_MAX will be returned.
1731 */
1732pgoff_t page_cache_prev_miss(struct address_space *mapping,
1733                             pgoff_t index, unsigned long max_scan)
1734{
1735        XA_STATE(xas, &mapping->i_pages, index);
1736
1737        while (max_scan--) {
1738                void *entry = xas_prev(&xas);
1739                if (!entry || xa_is_value(entry))
1740                        break;
1741                if (xas.xa_index == ULONG_MAX)
1742                        break;
1743        }
1744
1745        return xas.xa_index;
1746}
1747EXPORT_SYMBOL(page_cache_prev_miss);
1748
1749/*
1750 * mapping_get_entry - Get a page cache entry.
1751 * @mapping: the address_space to search
1752 * @index: The page cache index.
1753 *
1754 * Looks up the page cache slot at @mapping & @index.  If there is a
1755 * page cache page, the head page is returned with an increased refcount.
1756 *
1757 * If the slot holds a shadow entry of a previously evicted page, or a
1758 * swap entry from shmem/tmpfs, it is returned.
1759 *
1760 * Return: The head page or shadow entry, %NULL if nothing is found.
1761 */
1762static struct page *mapping_get_entry(struct address_space *mapping,
1763                pgoff_t index)
1764{
1765        XA_STATE(xas, &mapping->i_pages, index);
1766        struct page *page;
1767
1768        rcu_read_lock();
1769repeat:
1770        xas_reset(&xas);
1771        page = xas_load(&xas);
1772        if (xas_retry(&xas, page))
1773                goto repeat;
1774        /*
1775         * A shadow entry of a recently evicted page, or a swap entry from
1776         * shmem/tmpfs.  Return it without attempting to raise page count.
1777         */
1778        if (!page || xa_is_value(page))
1779                goto out;
1780
1781        if (!page_cache_get_speculative(page))
1782                goto repeat;
1783
1784        /*
1785         * Has the page moved or been split?
1786         * This is part of the lockless pagecache protocol. See
1787         * include/linux/pagemap.h for details.
1788         */
1789        if (unlikely(page != xas_reload(&xas))) {
1790                put_page(page);
1791                goto repeat;
1792        }
1793out:
1794        rcu_read_unlock();
1795
1796        return page;
1797}
1798
1799/**
1800 * pagecache_get_page - Find and get a reference to a page.
1801 * @mapping: The address_space to search.
1802 * @index: The page index.
1803 * @fgp_flags: %FGP flags modify how the page is returned.
1804 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1805 *
1806 * Looks up the page cache entry at @mapping & @index.
1807 *
1808 * @fgp_flags can be zero or more of these flags:
1809 *
1810 * * %FGP_ACCESSED - The page will be marked accessed.
1811 * * %FGP_LOCK - The page is returned locked.
1812 * * %FGP_HEAD - If the page is present and a THP, return the head page
1813 *   rather than the exact page specified by the index.
1814 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1815 *   instead of allocating a new page to replace it.
1816 * * %FGP_CREAT - If no page is present then a new page is allocated using
1817 *   @gfp_mask and added to the page cache and the VM's LRU list.
1818 *   The page is returned locked and with an increased refcount.
1819 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1820 *   page is already in cache.  If the page was allocated, unlock it before
1821 *   returning so the caller can do the same dance.
1822 * * %FGP_WRITE - The page will be written
1823 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1824 * * %FGP_NOWAIT - Don't get blocked by page lock
1825 *
1826 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1827 * if the %GFP flags specified for %FGP_CREAT are atomic.
1828 *
1829 * If there is a page cache page, it is returned with an increased refcount.
1830 *
1831 * Return: The found page or %NULL otherwise.
1832 */
1833struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1834                int fgp_flags, gfp_t gfp_mask)
1835{
1836        struct page *page;
1837
1838repeat:
1839        page = mapping_get_entry(mapping, index);
1840        if (xa_is_value(page)) {
1841                if (fgp_flags & FGP_ENTRY)
1842                        return page;
1843                page = NULL;
1844        }
1845        if (!page)
1846                goto no_page;
1847
1848        if (fgp_flags & FGP_LOCK) {
1849                if (fgp_flags & FGP_NOWAIT) {
1850                        if (!trylock_page(page)) {
1851                                put_page(page);
1852                                return NULL;
1853                        }
1854                } else {
1855                        lock_page(page);
1856                }
1857
1858                /* Has the page been truncated? */
1859                if (unlikely(page->mapping != mapping)) {
1860                        unlock_page(page);
1861                        put_page(page);
1862                        goto repeat;
1863                }
1864                VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1865        }
1866
1867        if (fgp_flags & FGP_ACCESSED)
1868                mark_page_accessed(page);
1869        else if (fgp_flags & FGP_WRITE) {
1870                /* Clear idle flag for buffer write */
1871                if (page_is_idle(page))
1872                        clear_page_idle(page);
1873        }
1874        if (!(fgp_flags & FGP_HEAD))
1875                page = find_subpage(page, index);
1876
1877no_page:
1878        if (!page && (fgp_flags & FGP_CREAT)) {
1879                int err;
1880                if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1881                        gfp_mask |= __GFP_WRITE;
1882                if (fgp_flags & FGP_NOFS)
1883                        gfp_mask &= ~__GFP_FS;
1884
1885                page = __page_cache_alloc(gfp_mask);
1886                if (!page)
1887                        return NULL;
1888
1889                if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1890                        fgp_flags |= FGP_LOCK;
1891
1892                /* Init accessed so avoid atomic mark_page_accessed later */
1893                if (fgp_flags & FGP_ACCESSED)
1894                        __SetPageReferenced(page);
1895
1896                err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1897                if (unlikely(err)) {
1898                        put_page(page);
1899                        page = NULL;
1900                        if (err == -EEXIST)
1901                                goto repeat;
1902                }
1903
1904                /*
1905                 * add_to_page_cache_lru locks the page, and for mmap we expect
1906                 * an unlocked page.
1907                 */
1908                if (page && (fgp_flags & FGP_FOR_MMAP))
1909                        unlock_page(page);
1910        }
1911
1912        return page;
1913}
1914EXPORT_SYMBOL(pagecache_get_page);
1915
1916static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1917                xa_mark_t mark)
1918{
1919        struct page *page;
1920
1921retry:
1922        if (mark == XA_PRESENT)
1923                page = xas_find(xas, max);
1924        else
1925                page = xas_find_marked(xas, max, mark);
1926
1927        if (xas_retry(xas, page))
1928                goto retry;
1929        /*
1930         * A shadow entry of a recently evicted page, a swap
1931         * entry from shmem/tmpfs or a DAX entry.  Return it
1932         * without attempting to raise page count.
1933         */
1934        if (!page || xa_is_value(page))
1935                return page;
1936
1937        if (!page_cache_get_speculative(page))
1938                goto reset;
1939
1940        /* Has the page moved or been split? */
1941        if (unlikely(page != xas_reload(xas))) {
1942                put_page(page);
1943                goto reset;
1944        }
1945
1946        return page;
1947reset:
1948        xas_reset(xas);
1949        goto retry;
1950}
1951
1952/**
1953 * find_get_entries - gang pagecache lookup
1954 * @mapping:    The address_space to search
1955 * @start:      The starting page cache index
1956 * @end:        The final page index (inclusive).
1957 * @pvec:       Where the resulting entries are placed.
1958 * @indices:    The cache indices corresponding to the entries in @entries
1959 *
1960 * find_get_entries() will search for and return a batch of entries in
1961 * the mapping.  The entries are placed in @pvec.  find_get_entries()
1962 * takes a reference on any actual pages it returns.
1963 *
1964 * The search returns a group of mapping-contiguous page cache entries
1965 * with ascending indexes.  There may be holes in the indices due to
1966 * not-present pages.
1967 *
1968 * Any shadow entries of evicted pages, or swap entries from
1969 * shmem/tmpfs, are included in the returned array.
1970 *
1971 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1972 * stops at that page: the caller is likely to have a better way to handle
1973 * the compound page as a whole, and then skip its extent, than repeatedly
1974 * calling find_get_entries() to return all its tails.
1975 *
1976 * Return: the number of pages and shadow entries which were found.
1977 */
1978unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1979                pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1980{
1981        XA_STATE(xas, &mapping->i_pages, start);
1982        struct page *page;
1983        unsigned int ret = 0;
1984        unsigned nr_entries = PAGEVEC_SIZE;
1985
1986        rcu_read_lock();
1987        while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1988                /*
1989                 * Terminate early on finding a THP, to allow the caller to
1990                 * handle it all at once; but continue if this is hugetlbfs.
1991                 */
1992                if (!xa_is_value(page) && PageTransHuge(page) &&
1993                                !PageHuge(page)) {
1994                        page = find_subpage(page, xas.xa_index);
1995                        nr_entries = ret + 1;
1996                }
1997
1998                indices[ret] = xas.xa_index;
1999                pvec->pages[ret] = page;
2000                if (++ret == nr_entries)
2001                        break;
2002        }
2003        rcu_read_unlock();
2004
2005        pvec->nr = ret;
2006        return ret;
2007}
2008
2009/**
2010 * find_lock_entries - Find a batch of pagecache entries.
2011 * @mapping:    The address_space to search.
2012 * @start:      The starting page cache index.
2013 * @end:        The final page index (inclusive).
2014 * @pvec:       Where the resulting entries are placed.
2015 * @indices:    The cache indices of the entries in @pvec.
2016 *
2017 * find_lock_entries() will return a batch of entries from @mapping.
2018 * Swap, shadow and DAX entries are included.  Pages are returned
2019 * locked and with an incremented refcount.  Pages which are locked by
2020 * somebody else or under writeback are skipped.  Only the head page of
2021 * a THP is returned.  Pages which are partially outside the range are
2022 * not returned.
2023 *
2024 * The entries have ascending indexes.  The indices may not be consecutive
2025 * due to not-present entries, THP pages, pages which could not be locked
2026 * or pages under writeback.
2027 *
2028 * Return: The number of entries which were found.
2029 */
2030unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2031                pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2032{
2033        XA_STATE(xas, &mapping->i_pages, start);
2034        struct page *page;
2035
2036        rcu_read_lock();
2037        while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2038                if (!xa_is_value(page)) {
2039                        if (page->index < start)
2040                                goto put;
2041                        VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2042                        if (page->index + thp_nr_pages(page) - 1 > end)
2043                                goto put;
2044                        if (!trylock_page(page))
2045                                goto put;
2046                        if (page->mapping != mapping || PageWriteback(page))
2047                                goto unlock;
2048                        VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2049                                        page);
2050                }
2051                indices[pvec->nr] = xas.xa_index;
2052                if (!pagevec_add(pvec, page))
2053                        break;
2054                goto next;
2055unlock:
2056                unlock_page(page);
2057put:
2058                put_page(page);
2059next:
2060                if (!xa_is_value(page) && PageTransHuge(page)) {
2061                        unsigned int nr_pages = thp_nr_pages(page);
2062
2063                        /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2064                        xas_set(&xas, page->index + nr_pages);
2065                        if (xas.xa_index < nr_pages)
2066                                break;
2067                }
2068        }
2069        rcu_read_unlock();
2070
2071        return pagevec_count(pvec);
2072}
2073
2074/**
2075 * find_get_pages_range - gang pagecache lookup
2076 * @mapping:    The address_space to search
2077 * @start:      The starting page index
2078 * @end:        The final page index (inclusive)
2079 * @nr_pages:   The maximum number of pages
2080 * @pages:      Where the resulting pages are placed
2081 *
2082 * find_get_pages_range() will search for and return a group of up to @nr_pages
2083 * pages in the mapping starting at index @start and up to index @end
2084 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2085 * a reference against the returned pages.
2086 *
2087 * The search returns a group of mapping-contiguous pages with ascending
2088 * indexes.  There may be holes in the indices due to not-present pages.
2089 * We also update @start to index the next page for the traversal.
2090 *
2091 * Return: the number of pages which were found. If this number is
2092 * smaller than @nr_pages, the end of specified range has been
2093 * reached.
2094 */
2095unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2096                              pgoff_t end, unsigned int nr_pages,
2097                              struct page **pages)
2098{
2099        XA_STATE(xas, &mapping->i_pages, *start);
2100        struct page *page;
2101        unsigned ret = 0;
2102
2103        if (unlikely(!nr_pages))
2104                return 0;
2105
2106        rcu_read_lock();
2107        while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2108                /* Skip over shadow, swap and DAX entries */
2109                if (xa_is_value(page))
2110                        continue;
2111
2112                pages[ret] = find_subpage(page, xas.xa_index);
2113                if (++ret == nr_pages) {
2114                        *start = xas.xa_index + 1;
2115                        goto out;
2116                }
2117        }
2118
2119        /*
2120         * We come here when there is no page beyond @end. We take care to not
2121         * overflow the index @start as it confuses some of the callers. This
2122         * breaks the iteration when there is a page at index -1 but that is
2123         * already broken anyway.
2124         */
2125        if (end == (pgoff_t)-1)
2126                *start = (pgoff_t)-1;
2127        else
2128                *start = end + 1;
2129out:
2130        rcu_read_unlock();
2131
2132        return ret;
2133}
2134
2135/**
2136 * find_get_pages_contig - gang contiguous pagecache lookup
2137 * @mapping:    The address_space to search
2138 * @index:      The starting page index
2139 * @nr_pages:   The maximum number of pages
2140 * @pages:      Where the resulting pages are placed
2141 *
2142 * find_get_pages_contig() works exactly like find_get_pages(), except
2143 * that the returned number of pages are guaranteed to be contiguous.
2144 *
2145 * Return: the number of pages which were found.
2146 */
2147unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2148                               unsigned int nr_pages, struct page **pages)
2149{
2150        XA_STATE(xas, &mapping->i_pages, index);
2151        struct page *page;
2152        unsigned int ret = 0;
2153
2154        if (unlikely(!nr_pages))
2155                return 0;
2156
2157        rcu_read_lock();
2158        for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2159                if (xas_retry(&xas, page))
2160                        continue;
2161                /*
2162                 * If the entry has been swapped out, we can stop looking.
2163                 * No current caller is looking for DAX entries.
2164                 */
2165                if (xa_is_value(page))
2166                        break;
2167
2168                if (!page_cache_get_speculative(page))
2169                        goto retry;
2170
2171                /* Has the page moved or been split? */
2172                if (unlikely(page != xas_reload(&xas)))
2173                        goto put_page;
2174
2175                pages[ret] = find_subpage(page, xas.xa_index);
2176                if (++ret == nr_pages)
2177                        break;
2178                continue;
2179put_page:
2180                put_page(page);
2181retry:
2182                xas_reset(&xas);
2183        }
2184        rcu_read_unlock();
2185        return ret;
2186}
2187EXPORT_SYMBOL(find_get_pages_contig);
2188
2189/**
2190 * find_get_pages_range_tag - Find and return head pages matching @tag.
2191 * @mapping:    the address_space to search
2192 * @index:      the starting page index
2193 * @end:        The final page index (inclusive)
2194 * @tag:        the tag index
2195 * @nr_pages:   the maximum number of pages
2196 * @pages:      where the resulting pages are placed
2197 *
2198 * Like find_get_pages(), except we only return head pages which are tagged
2199 * with @tag.  @index is updated to the index immediately after the last
2200 * page we return, ready for the next iteration.
2201 *
2202 * Return: the number of pages which were found.
2203 */
2204unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2205                        pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2206                        struct page **pages)
2207{
2208        XA_STATE(xas, &mapping->i_pages, *index);
2209        struct page *page;
2210        unsigned ret = 0;
2211
2212        if (unlikely(!nr_pages))
2213                return 0;
2214
2215        rcu_read_lock();
2216        while ((page = find_get_entry(&xas, end, tag))) {
2217                /*
2218                 * Shadow entries should never be tagged, but this iteration
2219                 * is lockless so there is a window for page reclaim to evict
2220                 * a page we saw tagged.  Skip over it.
2221                 */
2222                if (xa_is_value(page))
2223                        continue;
2224
2225                pages[ret] = page;
2226                if (++ret == nr_pages) {
2227                        *index = page->index + thp_nr_pages(page);
2228                        goto out;
2229                }
2230        }
2231
2232        /*
2233         * We come here when we got to @end. We take care to not overflow the
2234         * index @index as it confuses some of the callers. This breaks the
2235         * iteration when there is a page at index -1 but that is already
2236         * broken anyway.
2237         */
2238        if (end == (pgoff_t)-1)
2239                *index = (pgoff_t)-1;
2240        else
2241                *index = end + 1;
2242out:
2243        rcu_read_unlock();
2244
2245        return ret;
2246}
2247EXPORT_SYMBOL(find_get_pages_range_tag);
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 *      ---R__________________________________________B__________
2254 *         ^ reading here                             ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
2265{
2266        ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of pages for read
2271 *
2272 * Get a batch of pages which represent a contiguous range of bytes
2273 * in the file.  No tail pages will be returned.  If @index is in the
2274 * middle of a THP, the entire THP will be returned.  The last page in
2275 * the batch may have Readahead set or be not Uptodate so that the
2276 * caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279                pgoff_t index, pgoff_t max, struct pagevec *pvec)
2280{
2281        XA_STATE(xas, &mapping->i_pages, index);
2282        struct page *head;
2283
2284        rcu_read_lock();
2285        for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2286                if (xas_retry(&xas, head))
2287                        continue;
2288                if (xas.xa_index > max || xa_is_value(head))
2289                        break;
2290                if (!page_cache_get_speculative(head))
2291                        goto retry;
2292
2293                /* Has the page moved or been split? */
2294                if (unlikely(head != xas_reload(&xas)))
2295                        goto put_page;
2296
2297                if (!pagevec_add(pvec, head))
2298                        break;
2299                if (!PageUptodate(head))
2300                        break;
2301                if (PageReadahead(head))
2302                        break;
2303                xas.xa_index = head->index + thp_nr_pages(head) - 1;
2304                xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2305                continue;
2306put_page:
2307                put_page(head);
2308retry:
2309                xas_reset(&xas);
2310        }
2311        rcu_read_unlock();
2312}
2313
2314static int filemap_read_page(struct file *file, struct address_space *mapping,
2315                struct page *page)
2316{
2317        int error;
2318
2319        /*
2320         * A previous I/O error may have been due to temporary failures,
2321         * eg. multipath errors.  PG_error will be set again if readpage
2322         * fails.
2323         */
2324        ClearPageError(page);
2325        /* Start the actual read. The read will unlock the page. */
2326        error = mapping->a_ops->readpage(file, page);
2327        if (error)
2328                return error;
2329
2330        error = wait_on_page_locked_killable(page);
2331        if (error)
2332                return error;
2333        if (PageUptodate(page))
2334                return 0;
2335        shrink_readahead_size_eio(&file->f_ra);
2336        return -EIO;
2337}
2338
2339static bool filemap_range_uptodate(struct address_space *mapping,
2340                loff_t pos, struct iov_iter *iter, struct page *page)
2341{
2342        int count;
2343
2344        if (PageUptodate(page))
2345                return true;
2346        /* pipes can't handle partially uptodate pages */
2347        if (iov_iter_is_pipe(iter))
2348                return false;
2349        if (!mapping->a_ops->is_partially_uptodate)
2350                return false;
2351        if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2352                return false;
2353
2354        count = iter->count;
2355        if (page_offset(page) > pos) {
2356                count -= page_offset(page) - pos;
2357                pos = 0;
2358        } else {
2359                pos -= page_offset(page);
2360        }
2361
2362        return mapping->a_ops->is_partially_uptodate(page, pos, count);
2363}
2364
2365static int filemap_update_page(struct kiocb *iocb,
2366                struct address_space *mapping, struct iov_iter *iter,
2367                struct page *page)
2368{
2369        int error;
2370
2371        if (!trylock_page(page)) {
2372                if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2373                        return -EAGAIN;
2374                if (!(iocb->ki_flags & IOCB_WAITQ)) {
2375                        put_and_wait_on_page_locked(page, TASK_KILLABLE);
2376                        return AOP_TRUNCATED_PAGE;
2377                }
2378                error = __lock_page_async(page, iocb->ki_waitq);
2379                if (error)
2380                        return error;
2381        }
2382
2383        if (!page->mapping)
2384                goto truncated;
2385
2386        error = 0;
2387        if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2388                goto unlock;
2389
2390        error = -EAGAIN;
2391        if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2392                goto unlock;
2393
2394        error = filemap_read_page(iocb->ki_filp, mapping, page);
2395        if (error == AOP_TRUNCATED_PAGE)
2396                put_page(page);
2397        return error;
2398truncated:
2399        unlock_page(page);
2400        put_page(page);
2401        return AOP_TRUNCATED_PAGE;
2402unlock:
2403        unlock_page(page);
2404        return error;
2405}
2406
2407static int filemap_create_page(struct file *file,
2408                struct address_space *mapping, pgoff_t index,
2409                struct pagevec *pvec)
2410{
2411        struct page *page;
2412        int error;
2413
2414        page = page_cache_alloc(mapping);
2415        if (!page)
2416                return -ENOMEM;
2417
2418        error = add_to_page_cache_lru(page, mapping, index,
2419                        mapping_gfp_constraint(mapping, GFP_KERNEL));
2420        if (error == -EEXIST)
2421                error = AOP_TRUNCATED_PAGE;
2422        if (error)
2423                goto error;
2424
2425        error = filemap_read_page(file, mapping, page);
2426        if (error)
2427                goto error;
2428
2429        pagevec_add(pvec, page);
2430        return 0;
2431error:
2432        put_page(page);
2433        return error;
2434}
2435
2436static int filemap_readahead(struct kiocb *iocb, struct file *file,
2437                struct address_space *mapping, struct page *page,
2438                pgoff_t last_index)
2439{
2440        if (iocb->ki_flags & IOCB_NOIO)
2441                return -EAGAIN;
2442        page_cache_async_readahead(mapping, &file->f_ra, file, page,
2443                        page->index, last_index - page->index);
2444        return 0;
2445}
2446
2447static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2448                struct pagevec *pvec)
2449{
2450        struct file *filp = iocb->ki_filp;
2451        struct address_space *mapping = filp->f_mapping;
2452        struct file_ra_state *ra = &filp->f_ra;
2453        pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2454        pgoff_t last_index;
2455        struct page *page;
2456        int err = 0;
2457
2458        last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2459retry:
2460        if (fatal_signal_pending(current))
2461                return -EINTR;
2462
2463        filemap_get_read_batch(mapping, index, last_index, pvec);
2464        if (!pagevec_count(pvec)) {
2465                if (iocb->ki_flags & IOCB_NOIO)
2466                        return -EAGAIN;
2467                page_cache_sync_readahead(mapping, ra, filp, index,
2468                                last_index - index);
2469                filemap_get_read_batch(mapping, index, last_index, pvec);
2470        }
2471        if (!pagevec_count(pvec)) {
2472                if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2473                        return -EAGAIN;
2474                err = filemap_create_page(filp, mapping,
2475                                iocb->ki_pos >> PAGE_SHIFT, pvec);
2476                if (err == AOP_TRUNCATED_PAGE)
2477                        goto retry;
2478                return err;
2479        }
2480
2481        page = pvec->pages[pagevec_count(pvec) - 1];
2482        if (PageReadahead(page)) {
2483                err = filemap_readahead(iocb, filp, mapping, page, last_index);
2484                if (err)
2485                        goto err;
2486        }
2487        if (!PageUptodate(page)) {
2488                if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2489                        iocb->ki_flags |= IOCB_NOWAIT;
2490                err = filemap_update_page(iocb, mapping, iter, page);
2491                if (err)
2492                        goto err;
2493        }
2494
2495        return 0;
2496err:
2497        if (err < 0)
2498                put_page(page);
2499        if (likely(--pvec->nr))
2500                return 0;
2501        if (err == AOP_TRUNCATED_PAGE)
2502                goto retry;
2503        return err;
2504}
2505
2506/**
2507 * filemap_read - Read data from the page cache.
2508 * @iocb: The iocb to read.
2509 * @iter: Destination for the data.
2510 * @already_read: Number of bytes already read by the caller.
2511 *
2512 * Copies data from the page cache.  If the data is not currently present,
2513 * uses the readahead and readpage address_space operations to fetch it.
2514 *
2515 * Return: Total number of bytes copied, including those already read by
2516 * the caller.  If an error happens before any bytes are copied, returns
2517 * a negative error number.
2518 */
2519ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2520                ssize_t already_read)
2521{
2522        struct file *filp = iocb->ki_filp;
2523        struct file_ra_state *ra = &filp->f_ra;
2524        struct address_space *mapping = filp->f_mapping;
2525        struct inode *inode = mapping->host;
2526        struct pagevec pvec;
2527        int i, error = 0;
2528        bool writably_mapped;
2529        loff_t isize, end_offset;
2530
2531        if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2532                return 0;
2533        if (unlikely(!iov_iter_count(iter)))
2534                return 0;
2535
2536        iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2537        pagevec_init(&pvec);
2538
2539        do {
2540                cond_resched();
2541
2542                /*
2543                 * If we've already successfully copied some data, then we
2544                 * can no longer safely return -EIOCBQUEUED. Hence mark
2545                 * an async read NOWAIT at that point.
2546                 */
2547                if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2548                        iocb->ki_flags |= IOCB_NOWAIT;
2549
2550                error = filemap_get_pages(iocb, iter, &pvec);
2551                if (error < 0)
2552                        break;
2553
2554                /*
2555                 * i_size must be checked after we know the pages are Uptodate.
2556                 *
2557                 * Checking i_size after the check allows us to calculate
2558                 * the correct value for "nr", which means the zero-filled
2559                 * part of the page is not copied back to userspace (unless
2560                 * another truncate extends the file - this is desired though).
2561                 */
2562                isize = i_size_read(inode);
2563                if (unlikely(iocb->ki_pos >= isize))
2564                        goto put_pages;
2565                end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2566
2567                /*
2568                 * Once we start copying data, we don't want to be touching any
2569                 * cachelines that might be contended:
2570                 */
2571                writably_mapped = mapping_writably_mapped(mapping);
2572
2573                /*
2574                 * When a sequential read accesses a page several times, only
2575                 * mark it as accessed the first time.
2576                 */
2577                if (iocb->ki_pos >> PAGE_SHIFT !=
2578                    ra->prev_pos >> PAGE_SHIFT)
2579                        mark_page_accessed(pvec.pages[0]);
2580
2581                for (i = 0; i < pagevec_count(&pvec); i++) {
2582                        struct page *page = pvec.pages[i];
2583                        size_t page_size = thp_size(page);
2584                        size_t offset = iocb->ki_pos & (page_size - 1);
2585                        size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2586                                             page_size - offset);
2587                        size_t copied;
2588
2589                        if (end_offset < page_offset(page))
2590                                break;
2591                        if (i > 0)
2592                                mark_page_accessed(page);
2593                        /*
2594                         * If users can be writing to this page using arbitrary
2595                         * virtual addresses, take care about potential aliasing
2596                         * before reading the page on the kernel side.
2597                         */
2598                        if (writably_mapped) {
2599                                int j;
2600
2601                                for (j = 0; j < thp_nr_pages(page); j++)
2602                                        flush_dcache_page(page + j);
2603                        }
2604
2605                        copied = copy_page_to_iter(page, offset, bytes, iter);
2606
2607                        already_read += copied;
2608                        iocb->ki_pos += copied;
2609                        ra->prev_pos = iocb->ki_pos;
2610
2611                        if (copied < bytes) {
2612                                error = -EFAULT;
2613                                break;
2614                        }
2615                }
2616put_pages:
2617                for (i = 0; i < pagevec_count(&pvec); i++)
2618                        put_page(pvec.pages[i]);
2619                pagevec_reinit(&pvec);
2620        } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2621
2622        file_accessed(filp);
2623
2624        return already_read ? already_read : error;
2625}
2626EXPORT_SYMBOL_GPL(filemap_read);
2627
2628/**
2629 * generic_file_read_iter - generic filesystem read routine
2630 * @iocb:       kernel I/O control block
2631 * @iter:       destination for the data read
2632 *
2633 * This is the "read_iter()" routine for all filesystems
2634 * that can use the page cache directly.
2635 *
2636 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2637 * be returned when no data can be read without waiting for I/O requests
2638 * to complete; it doesn't prevent readahead.
2639 *
2640 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2641 * requests shall be made for the read or for readahead.  When no data
2642 * can be read, -EAGAIN shall be returned.  When readahead would be
2643 * triggered, a partial, possibly empty read shall be returned.
2644 *
2645 * Return:
2646 * * number of bytes copied, even for partial reads
2647 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2648 */
2649ssize_t
2650generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2651{
2652        size_t count = iov_iter_count(iter);
2653        ssize_t retval = 0;
2654
2655        if (!count)
2656                return 0; /* skip atime */
2657
2658        if (iocb->ki_flags & IOCB_DIRECT) {
2659                struct file *file = iocb->ki_filp;
2660                struct address_space *mapping = file->f_mapping;
2661                struct inode *inode = mapping->host;
2662                loff_t size;
2663
2664                size = i_size_read(inode);
2665                if (iocb->ki_flags & IOCB_NOWAIT) {
2666                        if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2667                                                iocb->ki_pos + count - 1))
2668                                return -EAGAIN;
2669                } else {
2670                        retval = filemap_write_and_wait_range(mapping,
2671                                                iocb->ki_pos,
2672                                                iocb->ki_pos + count - 1);
2673                        if (retval < 0)
2674                                return retval;
2675                }
2676
2677                file_accessed(file);
2678
2679                retval = mapping->a_ops->direct_IO(iocb, iter);
2680                if (retval >= 0) {
2681                        iocb->ki_pos += retval;
2682                        count -= retval;
2683                }
2684                if (retval != -EIOCBQUEUED)
2685                        iov_iter_revert(iter, count - iov_iter_count(iter));
2686
2687                /*
2688                 * Btrfs can have a short DIO read if we encounter
2689                 * compressed extents, so if there was an error, or if
2690                 * we've already read everything we wanted to, or if
2691                 * there was a short read because we hit EOF, go ahead
2692                 * and return.  Otherwise fallthrough to buffered io for
2693                 * the rest of the read.  Buffered reads will not work for
2694                 * DAX files, so don't bother trying.
2695                 */
2696                if (retval < 0 || !count || iocb->ki_pos >= size ||
2697                    IS_DAX(inode))
2698                        return retval;
2699        }
2700
2701        return filemap_read(iocb, iter, retval);
2702}
2703EXPORT_SYMBOL(generic_file_read_iter);
2704
2705static inline loff_t page_seek_hole_data(struct xa_state *xas,
2706                struct address_space *mapping, struct page *page,
2707                loff_t start, loff_t end, bool seek_data)
2708{
2709        const struct address_space_operations *ops = mapping->a_ops;
2710        size_t offset, bsz = i_blocksize(mapping->host);
2711
2712        if (xa_is_value(page) || PageUptodate(page))
2713                return seek_data ? start : end;
2714        if (!ops->is_partially_uptodate)
2715                return seek_data ? end : start;
2716
2717        xas_pause(xas);
2718        rcu_read_unlock();
2719        lock_page(page);
2720        if (unlikely(page->mapping != mapping))
2721                goto unlock;
2722
2723        offset = offset_in_thp(page, start) & ~(bsz - 1);
2724
2725        do {
2726                if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2727                        break;
2728                start = (start + bsz) & ~(bsz - 1);
2729                offset += bsz;
2730        } while (offset < thp_size(page));
2731unlock:
2732        unlock_page(page);
2733        rcu_read_lock();
2734        return start;
2735}
2736
2737static inline
2738unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2739{
2740        if (xa_is_value(page))
2741                return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2742        return thp_size(page);
2743}
2744
2745/**
2746 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2747 * @mapping: Address space to search.
2748 * @start: First byte to consider.
2749 * @end: Limit of search (exclusive).
2750 * @whence: Either SEEK_HOLE or SEEK_DATA.
2751 *
2752 * If the page cache knows which blocks contain holes and which blocks
2753 * contain data, your filesystem can use this function to implement
2754 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2755 * entirely memory-based such as tmpfs, and filesystems which support
2756 * unwritten extents.
2757 *
2758 * Return: The requested offset on success, or -ENXIO if @whence specifies
2759 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2760 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2761 * and @end contain data.
2762 */
2763loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2764                loff_t end, int whence)
2765{
2766        XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2767        pgoff_t max = (end - 1) >> PAGE_SHIFT;
2768        bool seek_data = (whence == SEEK_DATA);
2769        struct page *page;
2770
2771        if (end <= start)
2772                return -ENXIO;
2773
2774        rcu_read_lock();
2775        while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2776                loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2777                unsigned int seek_size;
2778
2779                if (start < pos) {
2780                        if (!seek_data)
2781                                goto unlock;
2782                        start = pos;
2783                }
2784
2785                seek_size = seek_page_size(&xas, page);
2786                pos = round_up(pos + 1, seek_size);
2787                start = page_seek_hole_data(&xas, mapping, page, start, pos,
2788                                seek_data);
2789                if (start < pos)
2790                        goto unlock;
2791                if (start >= end)
2792                        break;
2793                if (seek_size > PAGE_SIZE)
2794                        xas_set(&xas, pos >> PAGE_SHIFT);
2795                if (!xa_is_value(page))
2796                        put_page(page);
2797        }
2798        if (seek_data)
2799                start = -ENXIO;
2800unlock:
2801        rcu_read_unlock();
2802        if (page && !xa_is_value(page))
2803                put_page(page);
2804        if (start > end)
2805                return end;
2806        return start;
2807}
2808
2809#ifdef CONFIG_MMU
2810#define MMAP_LOTSAMISS  (100)
2811/*
2812 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2813 * @vmf - the vm_fault for this fault.
2814 * @page - the page to lock.
2815 * @fpin - the pointer to the file we may pin (or is already pinned).
2816 *
2817 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2818 * It differs in that it actually returns the page locked if it returns 1 and 0
2819 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2820 * will point to the pinned file and needs to be fput()'ed at a later point.
2821 */
2822static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2823                                     struct file **fpin)
2824{
2825        if (trylock_page(page))
2826                return 1;
2827
2828        /*
2829         * NOTE! This will make us return with VM_FAULT_RETRY, but with
2830         * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2831         * is supposed to work. We have way too many special cases..
2832         */
2833        if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2834                return 0;
2835
2836        *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2837        if (vmf->flags & FAULT_FLAG_KILLABLE) {
2838                if (__lock_page_killable(page)) {
2839                        /*
2840                         * We didn't have the right flags to drop the mmap_lock,
2841                         * but all fault_handlers only check for fatal signals
2842                         * if we return VM_FAULT_RETRY, so we need to drop the
2843                         * mmap_lock here and return 0 if we don't have a fpin.
2844                         */
2845                        if (*fpin == NULL)
2846                                mmap_read_unlock(vmf->vma->vm_mm);
2847                        return 0;
2848                }
2849        } else
2850                __lock_page(page);
2851        return 1;
2852}
2853
2854
2855/*
2856 * Synchronous readahead happens when we don't even find a page in the page
2857 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2858 * to drop the mmap sem we return the file that was pinned in order for us to do
2859 * that.  If we didn't pin a file then we return NULL.  The file that is
2860 * returned needs to be fput()'ed when we're done with it.
2861 */
2862static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2863{
2864        struct file *file = vmf->vma->vm_file;
2865        struct file_ra_state *ra = &file->f_ra;
2866        struct address_space *mapping = file->f_mapping;
2867        DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2868        struct file *fpin = NULL;
2869        unsigned int mmap_miss;
2870
2871        /* If we don't want any read-ahead, don't bother */
2872        if (vmf->vma->vm_flags & VM_RAND_READ)
2873                return fpin;
2874        if (!ra->ra_pages)
2875                return fpin;
2876
2877        if (vmf->vma->vm_flags & VM_SEQ_READ) {
2878                fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2879                page_cache_sync_ra(&ractl, ra->ra_pages);
2880                return fpin;
2881        }
2882
2883        /* Avoid banging the cache line if not needed */
2884        mmap_miss = READ_ONCE(ra->mmap_miss);
2885        if (mmap_miss < MMAP_LOTSAMISS * 10)
2886                WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2887
2888        /*
2889         * Do we miss much more than hit in this file? If so,
2890         * stop bothering with read-ahead. It will only hurt.
2891         */
2892        if (mmap_miss > MMAP_LOTSAMISS)
2893                return fpin;
2894
2895        /*
2896         * mmap read-around
2897         */
2898        fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2899        ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2900        ra->size = ra->ra_pages;
2901        ra->async_size = ra->ra_pages / 4;
2902        ractl._index = ra->start;
2903        do_page_cache_ra(&ractl, ra->size, ra->async_size);
2904        return fpin;
2905}
2906
2907/*
2908 * Asynchronous readahead happens when we find the page and PG_readahead,
2909 * so we want to possibly extend the readahead further.  We return the file that
2910 * was pinned if we have to drop the mmap_lock in order to do IO.
2911 */
2912static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2913                                            struct page *page)
2914{
2915        struct file *file = vmf->vma->vm_file;
2916        struct file_ra_state *ra = &file->f_ra;
2917        struct address_space *mapping = file->f_mapping;
2918        struct file *fpin = NULL;
2919        unsigned int mmap_miss;
2920        pgoff_t offset = vmf->pgoff;
2921
2922        /* If we don't want any read-ahead, don't bother */
2923        if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2924                return fpin;
2925        mmap_miss = READ_ONCE(ra->mmap_miss);
2926        if (mmap_miss)
2927                WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2928        if (PageReadahead(page)) {
2929                fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2930                page_cache_async_readahead(mapping, ra, file,
2931                                           page, offset, ra->ra_pages);
2932        }
2933        return fpin;
2934}
2935
2936/**
2937 * filemap_fault - read in file data for page fault handling
2938 * @vmf:        struct vm_fault containing details of the fault
2939 *
2940 * filemap_fault() is invoked via the vma operations vector for a
2941 * mapped memory region to read in file data during a page fault.
2942 *
2943 * The goto's are kind of ugly, but this streamlines the normal case of having
2944 * it in the page cache, and handles the special cases reasonably without
2945 * having a lot of duplicated code.
2946 *
2947 * vma->vm_mm->mmap_lock must be held on entry.
2948 *
2949 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2950 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2951 *
2952 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2953 * has not been released.
2954 *
2955 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2956 *
2957 * Return: bitwise-OR of %VM_FAULT_ codes.
2958 */
2959vm_fault_t filemap_fault(struct vm_fault *vmf)
2960{
2961        int error;
2962        struct file *file = vmf->vma->vm_file;
2963        struct file *fpin = NULL;
2964        struct address_space *mapping = file->f_mapping;
2965        struct inode *inode = mapping->host;
2966        pgoff_t offset = vmf->pgoff;
2967        pgoff_t max_off;
2968        struct page *page;
2969        vm_fault_t ret = 0;
2970
2971        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2972        if (unlikely(offset >= max_off))
2973                return VM_FAULT_SIGBUS;
2974
2975        /*
2976         * Do we have something in the page cache already?
2977         */
2978        page = find_get_page(mapping, offset);
2979        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2980                /*
2981                 * We found the page, so try async readahead before
2982                 * waiting for the lock.
2983                 */
2984                fpin = do_async_mmap_readahead(vmf, page);
2985        } else if (!page) {
2986                /* No page in the page cache at all */
2987                count_vm_event(PGMAJFAULT);
2988                count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2989                ret = VM_FAULT_MAJOR;
2990                fpin = do_sync_mmap_readahead(vmf);
2991retry_find:
2992                page = pagecache_get_page(mapping, offset,
2993                                          FGP_CREAT|FGP_FOR_MMAP,
2994                                          vmf->gfp_mask);
2995                if (!page) {
2996                        if (fpin)
2997                                goto out_retry;
2998                        return VM_FAULT_OOM;
2999                }
3000        }
3001
3002        if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3003                goto out_retry;
3004
3005        /* Did it get truncated? */
3006        if (unlikely(compound_head(page)->mapping != mapping)) {
3007                unlock_page(page);
3008                put_page(page);
3009                goto retry_find;
3010        }
3011        VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3012
3013        /*
3014         * We have a locked page in the page cache, now we need to check
3015         * that it's up-to-date. If not, it is going to be due to an error.
3016         */
3017        if (unlikely(!PageUptodate(page)))
3018                goto page_not_uptodate;
3019
3020        /*
3021         * We've made it this far and we had to drop our mmap_lock, now is the
3022         * time to return to the upper layer and have it re-find the vma and
3023         * redo the fault.
3024         */
3025        if (fpin) {
3026                unlock_page(page);
3027                goto out_retry;
3028        }
3029
3030        /*
3031         * Found the page and have a reference on it.
3032         * We must recheck i_size under page lock.
3033         */
3034        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3035        if (unlikely(offset >= max_off)) {
3036                unlock_page(page);
3037                put_page(page);
3038                return VM_FAULT_SIGBUS;
3039        }
3040
3041        vmf->page = page;
3042        return ret | VM_FAULT_LOCKED;
3043
3044page_not_uptodate:
3045        /*
3046         * Umm, take care of errors if the page isn't up-to-date.
3047         * Try to re-read it _once_. We do this synchronously,
3048         * because there really aren't any performance issues here
3049         * and we need to check for errors.
3050         */
3051        fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3052        error = filemap_read_page(file, mapping, page);
3053        if (fpin)
3054                goto out_retry;
3055        put_page(page);
3056
3057        if (!error || error == AOP_TRUNCATED_PAGE)
3058                goto retry_find;
3059
3060        return VM_FAULT_SIGBUS;
3061
3062out_retry:
3063        /*
3064         * We dropped the mmap_lock, we need to return to the fault handler to
3065         * re-find the vma and come back and find our hopefully still populated
3066         * page.
3067         */
3068        if (page)
3069                put_page(page);
3070        if (fpin)
3071                fput(fpin);
3072        return ret | VM_FAULT_RETRY;
3073}
3074EXPORT_SYMBOL(filemap_fault);
3075
3076static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3077{
3078        struct mm_struct *mm = vmf->vma->vm_mm;
3079
3080        /* Huge page is mapped? No need to proceed. */
3081        if (pmd_trans_huge(*vmf->pmd)) {
3082                unlock_page(page);
3083                put_page(page);
3084                return true;
3085        }
3086
3087        if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3088            vm_fault_t ret = do_set_pmd(vmf, page);
3089            if (!ret) {
3090                    /* The page is mapped successfully, reference consumed. */
3091                    unlock_page(page);
3092                    return true;
3093            }
3094        }
3095
3096        if (pmd_none(*vmf->pmd)) {
3097                vmf->ptl = pmd_lock(mm, vmf->pmd);
3098                if (likely(pmd_none(*vmf->pmd))) {
3099                        mm_inc_nr_ptes(mm);
3100                        pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3101                        vmf->prealloc_pte = NULL;
3102                }
3103                spin_unlock(vmf->ptl);
3104        }
3105
3106        /* See comment in handle_pte_fault() */
3107        if (pmd_devmap_trans_unstable(vmf->pmd)) {
3108                unlock_page(page);
3109                put_page(page);
3110                return true;
3111        }
3112
3113        return false;
3114}
3115
3116static struct page *next_uptodate_page(struct page *page,
3117                                       struct address_space *mapping,
3118                                       struct xa_state *xas, pgoff_t end_pgoff)
3119{
3120        unsigned long max_idx;
3121
3122        do {
3123                if (!page)
3124                        return NULL;
3125                if (xas_retry(xas, page))
3126                        continue;
3127                if (xa_is_value(page))
3128                        continue;
3129                if (PageLocked(page))
3130                        continue;
3131                if (!page_cache_get_speculative(page))
3132                        continue;
3133                /* Has the page moved or been split? */
3134                if (unlikely(page != xas_reload(xas)))
3135                        goto skip;
3136                if (!PageUptodate(page) || PageReadahead(page))
3137                        goto skip;
3138                if (PageHWPoison(page))
3139                        goto skip;
3140                if (!trylock_page(page))
3141                        goto skip;
3142                if (page->mapping != mapping)
3143                        goto unlock;
3144                if (!PageUptodate(page))
3145                        goto unlock;
3146                max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3147                if (xas->xa_index >= max_idx)
3148                        goto unlock;
3149                return page;
3150unlock:
3151                unlock_page(page);
3152skip:
3153                put_page(page);
3154        } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3155
3156        return NULL;
3157}
3158
3159static inline struct page *first_map_page(struct address_space *mapping,
3160                                          struct xa_state *xas,
3161                                          pgoff_t end_pgoff)
3162{
3163        return next_uptodate_page(xas_find(xas, end_pgoff),
3164                                  mapping, xas, end_pgoff);
3165}
3166
3167static inline struct page *next_map_page(struct address_space *mapping,
3168                                         struct xa_state *xas,
3169                                         pgoff_t end_pgoff)
3170{
3171        return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3172                                  mapping, xas, end_pgoff);
3173}
3174
3175vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3176                             pgoff_t start_pgoff, pgoff_t end_pgoff)
3177{
3178        struct vm_area_struct *vma = vmf->vma;
3179        struct file *file = vma->vm_file;
3180        struct address_space *mapping = file->f_mapping;
3181        pgoff_t last_pgoff = start_pgoff;
3182        unsigned long addr;
3183        XA_STATE(xas, &mapping->i_pages, start_pgoff);
3184        struct page *head, *page;
3185        unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3186        vm_fault_t ret = 0;
3187
3188        rcu_read_lock();
3189        head = first_map_page(mapping, &xas, end_pgoff);
3190        if (!head)
3191                goto out;
3192
3193        if (filemap_map_pmd(vmf, head)) {
3194                ret = VM_FAULT_NOPAGE;
3195                goto out;
3196        }
3197
3198        addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3199        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3200        do {
3201                page = find_subpage(head, xas.xa_index);
3202                if (PageHWPoison(page))
3203                        goto unlock;
3204
3205                if (mmap_miss > 0)
3206                        mmap_miss--;
3207
3208                addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3209                vmf->pte += xas.xa_index - last_pgoff;
3210                last_pgoff = xas.xa_index;
3211
3212                if (!pte_none(*vmf->pte))
3213                        goto unlock;
3214
3215                /* We're about to handle the fault */
3216                if (vmf->address == addr)
3217                        ret = VM_FAULT_NOPAGE;
3218
3219                do_set_pte(vmf, page, addr);
3220                /* no need to invalidate: a not-present page won't be cached */
3221                update_mmu_cache(vma, addr, vmf->pte);
3222                unlock_page(head);
3223                continue;
3224unlock:
3225                unlock_page(head);
3226                put_page(head);
3227        } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3228        pte_unmap_unlock(vmf->pte, vmf->ptl);
3229out:
3230        rcu_read_unlock();
3231        WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3232        return ret;
3233}
3234EXPORT_SYMBOL(filemap_map_pages);
3235
3236vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3237{
3238        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3239        struct page *page = vmf->page;
3240        vm_fault_t ret = VM_FAULT_LOCKED;
3241
3242        sb_start_pagefault(mapping->host->i_sb);
3243        file_update_time(vmf->vma->vm_file);
3244        lock_page(page);
3245        if (page->mapping != mapping) {
3246                unlock_page(page);
3247                ret = VM_FAULT_NOPAGE;
3248                goto out;
3249        }
3250        /*
3251         * We mark the page dirty already here so that when freeze is in
3252         * progress, we are guaranteed that writeback during freezing will
3253         * see the dirty page and writeprotect it again.
3254         */
3255        set_page_dirty(page);
3256        wait_for_stable_page(page);
3257out:
3258        sb_end_pagefault(mapping->host->i_sb);
3259        return ret;
3260}
3261
3262const struct vm_operations_struct generic_file_vm_ops = {
3263        .fault          = filemap_fault,
3264        .map_pages      = filemap_map_pages,
3265        .page_mkwrite   = filemap_page_mkwrite,
3266};
3267
3268/* This is used for a general mmap of a disk file */
3269
3270int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3271{
3272        struct address_space *mapping = file->f_mapping;
3273
3274        if (!mapping->a_ops->readpage)
3275                return -ENOEXEC;
3276        file_accessed(file);
3277        vma->vm_ops = &generic_file_vm_ops;
3278        return 0;
3279}
3280
3281/*
3282 * This is for filesystems which do not implement ->writepage.
3283 */
3284int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3285{
3286        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3287                return -EINVAL;
3288        return generic_file_mmap(file, vma);
3289}
3290#else
3291vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3292{
3293        return VM_FAULT_SIGBUS;
3294}
3295int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3296{
3297        return -ENOSYS;
3298}
3299int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3300{
3301        return -ENOSYS;
3302}
3303#endif /* CONFIG_MMU */
3304
3305EXPORT_SYMBOL(filemap_page_mkwrite);
3306EXPORT_SYMBOL(generic_file_mmap);
3307EXPORT_SYMBOL(generic_file_readonly_mmap);
3308
3309static struct page *wait_on_page_read(struct page *page)
3310{
3311        if (!IS_ERR(page)) {
3312                wait_on_page_locked(page);
3313                if (!PageUptodate(page)) {
3314                        put_page(page);
3315                        page = ERR_PTR(-EIO);
3316                }
3317        }
3318        return page;
3319}
3320
3321static struct page *do_read_cache_page(struct address_space *mapping,
3322                                pgoff_t index,
3323                                int (*filler)(void *, struct page *),
3324                                void *data,
3325                                gfp_t gfp)
3326{
3327        struct page *page;
3328        int err;
3329repeat:
3330        page = find_get_page(mapping, index);
3331        if (!page) {
3332                page = __page_cache_alloc(gfp);
3333                if (!page)
3334                        return ERR_PTR(-ENOMEM);
3335                err = add_to_page_cache_lru(page, mapping, index, gfp);
3336                if (unlikely(err)) {
3337                        put_page(page);
3338                        if (err == -EEXIST)
3339                                goto repeat;
3340                        /* Presumably ENOMEM for xarray node */
3341                        return ERR_PTR(err);
3342                }
3343
3344filler:
3345                if (filler)
3346                        err = filler(data, page);
3347                else
3348                        err = mapping->a_ops->readpage(data, page);
3349
3350                if (err < 0) {
3351                        put_page(page);
3352                        return ERR_PTR(err);
3353                }
3354
3355                page = wait_on_page_read(page);
3356                if (IS_ERR(page))
3357                        return page;
3358                goto out;
3359        }
3360        if (PageUptodate(page))
3361                goto out;
3362
3363        /*
3364         * Page is not up to date and may be locked due to one of the following
3365         * case a: Page is being filled and the page lock is held
3366         * case b: Read/write error clearing the page uptodate status
3367         * case c: Truncation in progress (page locked)
3368         * case d: Reclaim in progress
3369         *
3370         * Case a, the page will be up to date when the page is unlocked.
3371         *    There is no need to serialise on the page lock here as the page
3372         *    is pinned so the lock gives no additional protection. Even if the
3373         *    page is truncated, the data is still valid if PageUptodate as
3374         *    it's a race vs truncate race.
3375         * Case b, the page will not be up to date
3376         * Case c, the page may be truncated but in itself, the data may still
3377         *    be valid after IO completes as it's a read vs truncate race. The
3378         *    operation must restart if the page is not uptodate on unlock but
3379         *    otherwise serialising on page lock to stabilise the mapping gives
3380         *    no additional guarantees to the caller as the page lock is
3381         *    released before return.
3382         * Case d, similar to truncation. If reclaim holds the page lock, it
3383         *    will be a race with remove_mapping that determines if the mapping
3384         *    is valid on unlock but otherwise the data is valid and there is
3385         *    no need to serialise with page lock.
3386         *
3387         * As the page lock gives no additional guarantee, we optimistically
3388         * wait on the page to be unlocked and check if it's up to date and
3389         * use the page if it is. Otherwise, the page lock is required to
3390         * distinguish between the different cases. The motivation is that we
3391         * avoid spurious serialisations and wakeups when multiple processes
3392         * wait on the same page for IO to complete.
3393         */
3394        wait_on_page_locked(page);
3395        if (PageUptodate(page))
3396                goto out;
3397
3398        /* Distinguish between all the cases under the safety of the lock */
3399        lock_page(page);
3400
3401        /* Case c or d, restart the operation */
3402        if (!page->mapping) {
3403                unlock_page(page);
3404                put_page(page);
3405                goto repeat;
3406        }
3407
3408        /* Someone else locked and filled the page in a very small window */
3409        if (PageUptodate(page)) {
3410                unlock_page(page);
3411                goto out;
3412        }
3413
3414        /*
3415         * A previous I/O error may have been due to temporary
3416         * failures.
3417         * Clear page error before actual read, PG_error will be
3418         * set again if read page fails.
3419         */
3420        ClearPageError(page);
3421        goto filler;
3422
3423out:
3424        mark_page_accessed(page);
3425        return page;
3426}
3427
3428/**
3429 * read_cache_page - read into page cache, fill it if needed
3430 * @mapping:    the page's address_space
3431 * @index:      the page index
3432 * @filler:     function to perform the read
3433 * @data:       first arg to filler(data, page) function, often left as NULL
3434 *
3435 * Read into the page cache. If a page already exists, and PageUptodate() is
3436 * not set, try to fill the page and wait for it to become unlocked.
3437 *
3438 * If the page does not get brought uptodate, return -EIO.
3439 *
3440 * Return: up to date page on success, ERR_PTR() on failure.
3441 */
3442struct page *read_cache_page(struct address_space *mapping,
3443                                pgoff_t index,
3444                                int (*filler)(void *, struct page *),
3445                                void *data)
3446{
3447        return do_read_cache_page(mapping, index, filler, data,
3448                        mapping_gfp_mask(mapping));
3449}
3450EXPORT_SYMBOL(read_cache_page);
3451
3452/**
3453 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3454 * @mapping:    the page's address_space
3455 * @index:      the page index
3456 * @gfp:        the page allocator flags to use if allocating
3457 *
3458 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3459 * any new page allocations done using the specified allocation flags.
3460 *
3461 * If the page does not get brought uptodate, return -EIO.
3462 *
3463 * Return: up to date page on success, ERR_PTR() on failure.
3464 */
3465struct page *read_cache_page_gfp(struct address_space *mapping,
3466                                pgoff_t index,
3467                                gfp_t gfp)
3468{
3469        return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3470}
3471EXPORT_SYMBOL(read_cache_page_gfp);
3472
3473int pagecache_write_begin(struct file *file, struct address_space *mapping,
3474                                loff_t pos, unsigned len, unsigned flags,
3475                                struct page **pagep, void **fsdata)
3476{
3477        const struct address_space_operations *aops = mapping->a_ops;
3478
3479        return aops->write_begin(file, mapping, pos, len, flags,
3480                                                        pagep, fsdata);
3481}
3482EXPORT_SYMBOL(pagecache_write_begin);
3483
3484int pagecache_write_end(struct file *file, struct address_space *mapping,
3485                                loff_t pos, unsigned len, unsigned copied,
3486                                struct page *page, void *fsdata)
3487{
3488        const struct address_space_operations *aops = mapping->a_ops;
3489
3490        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3491}
3492EXPORT_SYMBOL(pagecache_write_end);
3493
3494/*
3495 * Warn about a page cache invalidation failure during a direct I/O write.
3496 */
3497void dio_warn_stale_pagecache(struct file *filp)
3498{
3499        static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3500        char pathname[128];
3501        char *path;
3502
3503        errseq_set(&filp->f_mapping->wb_err, -EIO);
3504        if (__ratelimit(&_rs)) {
3505                path = file_path(filp, pathname, sizeof(pathname));
3506                if (IS_ERR(path))
3507                        path = "(unknown)";
3508                pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3509                pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3510                        current->comm);
3511        }
3512}
3513
3514ssize_t
3515generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3516{
3517        struct file     *file = iocb->ki_filp;
3518        struct address_space *mapping = file->f_mapping;
3519        struct inode    *inode = mapping->host;
3520        loff_t          pos = iocb->ki_pos;
3521        ssize_t         written;
3522        size_t          write_len;
3523        pgoff_t         end;
3524
3525        write_len = iov_iter_count(from);
3526        end = (pos + write_len - 1) >> PAGE_SHIFT;
3527
3528        if (iocb->ki_flags & IOCB_NOWAIT) {
3529                /* If there are pages to writeback, return */
3530                if (filemap_range_has_page(file->f_mapping, pos,
3531                                           pos + write_len - 1))
3532                        return -EAGAIN;
3533        } else {
3534                written = filemap_write_and_wait_range(mapping, pos,
3535                                                        pos + write_len - 1);
3536                if (written)
3537                        goto out;
3538        }
3539
3540        /*
3541         * After a write we want buffered reads to be sure to go to disk to get
3542         * the new data.  We invalidate clean cached page from the region we're
3543         * about to write.  We do this *before* the write so that we can return
3544         * without clobbering -EIOCBQUEUED from ->direct_IO().
3545         */
3546        written = invalidate_inode_pages2_range(mapping,
3547                                        pos >> PAGE_SHIFT, end);
3548        /*
3549         * If a page can not be invalidated, return 0 to fall back
3550         * to buffered write.
3551         */
3552        if (written) {
3553                if (written == -EBUSY)
3554                        return 0;
3555                goto out;
3556        }
3557
3558        written = mapping->a_ops->direct_IO(iocb, from);
3559
3560        /*
3561         * Finally, try again to invalidate clean pages which might have been
3562         * cached by non-direct readahead, or faulted in by get_user_pages()
3563         * if the source of the write was an mmap'ed region of the file
3564         * we're writing.  Either one is a pretty crazy thing to do,
3565         * so we don't support it 100%.  If this invalidation
3566         * fails, tough, the write still worked...
3567         *
3568         * Most of the time we do not need this since dio_complete() will do
3569         * the invalidation for us. However there are some file systems that
3570         * do not end up with dio_complete() being called, so let's not break
3571         * them by removing it completely.
3572         *
3573         * Noticeable example is a blkdev_direct_IO().
3574         *
3575         * Skip invalidation for async writes or if mapping has no pages.
3576         */
3577        if (written > 0 && mapping->nrpages &&
3578            invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3579                dio_warn_stale_pagecache(file);
3580
3581        if (written > 0) {
3582                pos += written;
3583                write_len -= written;
3584                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3585                        i_size_write(inode, pos);
3586                        mark_inode_dirty(inode);
3587                }
3588                iocb->ki_pos = pos;
3589        }
3590        if (written != -EIOCBQUEUED)
3591                iov_iter_revert(from, write_len - iov_iter_count(from));
3592out:
3593        return written;
3594}
3595EXPORT_SYMBOL(generic_file_direct_write);
3596
3597/*
3598 * Find or create a page at the given pagecache position. Return the locked
3599 * page. This function is specifically for buffered writes.
3600 */
3601struct page *grab_cache_page_write_begin(struct address_space *mapping,
3602                                        pgoff_t index, unsigned flags)
3603{
3604        struct page *page;
3605        int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3606
3607        if (flags & AOP_FLAG_NOFS)
3608                fgp_flags |= FGP_NOFS;
3609
3610        page = pagecache_get_page(mapping, index, fgp_flags,
3611                        mapping_gfp_mask(mapping));
3612        if (page)
3613                wait_for_stable_page(page);
3614
3615        return page;
3616}
3617EXPORT_SYMBOL(grab_cache_page_write_begin);
3618
3619ssize_t generic_perform_write(struct file *file,
3620                                struct iov_iter *i, loff_t pos)
3621{
3622        struct address_space *mapping = file->f_mapping;
3623        const struct address_space_operations *a_ops = mapping->a_ops;
3624        long status = 0;
3625        ssize_t written = 0;
3626        unsigned int flags = 0;
3627
3628        do {
3629                struct page *page;
3630                unsigned long offset;   /* Offset into pagecache page */
3631                unsigned long bytes;    /* Bytes to write to page */
3632                size_t copied;          /* Bytes copied from user */
3633                void *fsdata;
3634
3635                offset = (pos & (PAGE_SIZE - 1));
3636                bytes = min_t(unsigned long, PAGE_SIZE - offset,
3637                                                iov_iter_count(i));
3638
3639again:
3640                /*
3641                 * Bring in the user page that we will copy from _first_.
3642                 * Otherwise there's a nasty deadlock on copying from the
3643                 * same page as we're writing to, without it being marked
3644                 * up-to-date.
3645                 */
3646                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3647                        status = -EFAULT;
3648                        break;
3649                }
3650
3651                if (fatal_signal_pending(current)) {
3652                        status = -EINTR;
3653                        break;
3654                }
3655
3656                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3657                                                &page, &fsdata);
3658                if (unlikely(status < 0))
3659                        break;
3660
3661                if (mapping_writably_mapped(mapping))
3662                        flush_dcache_page(page);
3663
3664                copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3665                flush_dcache_page(page);
3666
3667                status = a_ops->write_end(file, mapping, pos, bytes, copied,
3668                                                page, fsdata);
3669                if (unlikely(status != copied)) {
3670                        iov_iter_revert(i, copied - max(status, 0L));
3671                        if (unlikely(status < 0))
3672                                break;
3673                }
3674                cond_resched();
3675
3676                if (unlikely(status == 0)) {
3677                        /*
3678                         * A short copy made ->write_end() reject the
3679                         * thing entirely.  Might be memory poisoning
3680                         * halfway through, might be a race with munmap,
3681                         * might be severe memory pressure.
3682                         */
3683                        if (copied)
3684                                bytes = copied;
3685                        goto again;
3686                }
3687                pos += status;
3688                written += status;
3689
3690                balance_dirty_pages_ratelimited(mapping);
3691        } while (iov_iter_count(i));
3692
3693        return written ? written : status;
3694}
3695EXPORT_SYMBOL(generic_perform_write);
3696
3697/**
3698 * __generic_file_write_iter - write data to a file
3699 * @iocb:       IO state structure (file, offset, etc.)
3700 * @from:       iov_iter with data to write
3701 *
3702 * This function does all the work needed for actually writing data to a
3703 * file. It does all basic checks, removes SUID from the file, updates
3704 * modification times and calls proper subroutines depending on whether we
3705 * do direct IO or a standard buffered write.
3706 *
3707 * It expects i_mutex to be grabbed unless we work on a block device or similar
3708 * object which does not need locking at all.
3709 *
3710 * This function does *not* take care of syncing data in case of O_SYNC write.
3711 * A caller has to handle it. This is mainly due to the fact that we want to
3712 * avoid syncing under i_mutex.
3713 *
3714 * Return:
3715 * * number of bytes written, even for truncated writes
3716 * * negative error code if no data has been written at all
3717 */
3718ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3719{
3720        struct file *file = iocb->ki_filp;
3721        struct address_space *mapping = file->f_mapping;
3722        struct inode    *inode = mapping->host;
3723        ssize_t         written = 0;
3724        ssize_t         err;
3725        ssize_t         status;
3726
3727        /* We can write back this queue in page reclaim */
3728        current->backing_dev_info = inode_to_bdi(inode);
3729        err = file_remove_privs(file);
3730        if (err)
3731                goto out;
3732
3733        err = file_update_time(file);
3734        if (err)
3735                goto out;
3736
3737        if (iocb->ki_flags & IOCB_DIRECT) {
3738                loff_t pos, endbyte;
3739
3740                written = generic_file_direct_write(iocb, from);
3741                /*
3742                 * If the write stopped short of completing, fall back to
3743                 * buffered writes.  Some filesystems do this for writes to
3744                 * holes, for example.  For DAX files, a buffered write will
3745                 * not succeed (even if it did, DAX does not handle dirty
3746                 * page-cache pages correctly).
3747                 */
3748                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3749                        goto out;
3750
3751                status = generic_perform_write(file, from, pos = iocb->ki_pos);
3752                /*
3753                 * If generic_perform_write() returned a synchronous error
3754                 * then we want to return the number of bytes which were
3755                 * direct-written, or the error code if that was zero.  Note
3756                 * that this differs from normal direct-io semantics, which
3757                 * will return -EFOO even if some bytes were written.
3758                 */
3759                if (unlikely(status < 0)) {
3760                        err = status;
3761                        goto out;
3762                }
3763                /*
3764                 * We need to ensure that the page cache pages are written to
3765                 * disk and invalidated to preserve the expected O_DIRECT
3766                 * semantics.
3767                 */
3768                endbyte = pos + status - 1;
3769                err = filemap_write_and_wait_range(mapping, pos, endbyte);
3770                if (err == 0) {
3771                        iocb->ki_pos = endbyte + 1;
3772                        written += status;
3773                        invalidate_mapping_pages(mapping,
3774                                                 pos >> PAGE_SHIFT,
3775                                                 endbyte >> PAGE_SHIFT);
3776                } else {
3777                        /*
3778                         * We don't know how much we wrote, so just return
3779                         * the number of bytes which were direct-written
3780                         */
3781                }
3782        } else {
3783                written = generic_perform_write(file, from, iocb->ki_pos);
3784                if (likely(written > 0))
3785                        iocb->ki_pos += written;
3786        }
3787out:
3788        current->backing_dev_info = NULL;
3789        return written ? written : err;
3790}
3791EXPORT_SYMBOL(__generic_file_write_iter);
3792
3793/**
3794 * generic_file_write_iter - write data to a file
3795 * @iocb:       IO state structure
3796 * @from:       iov_iter with data to write
3797 *
3798 * This is a wrapper around __generic_file_write_iter() to be used by most
3799 * filesystems. It takes care of syncing the file in case of O_SYNC file
3800 * and acquires i_mutex as needed.
3801 * Return:
3802 * * negative error code if no data has been written at all of
3803 *   vfs_fsync_range() failed for a synchronous write
3804 * * number of bytes written, even for truncated writes
3805 */
3806ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3807{
3808        struct file *file = iocb->ki_filp;
3809        struct inode *inode = file->f_mapping->host;
3810        ssize_t ret;
3811
3812        inode_lock(inode);
3813        ret = generic_write_checks(iocb, from);
3814        if (ret > 0)
3815                ret = __generic_file_write_iter(iocb, from);
3816        inode_unlock(inode);
3817
3818        if (ret > 0)
3819                ret = generic_write_sync(iocb, ret);
3820        return ret;
3821}
3822EXPORT_SYMBOL(generic_file_write_iter);
3823
3824/**
3825 * try_to_release_page() - release old fs-specific metadata on a page
3826 *
3827 * @page: the page which the kernel is trying to free
3828 * @gfp_mask: memory allocation flags (and I/O mode)
3829 *
3830 * The address_space is to try to release any data against the page
3831 * (presumably at page->private).
3832 *
3833 * This may also be called if PG_fscache is set on a page, indicating that the
3834 * page is known to the local caching routines.
3835 *
3836 * The @gfp_mask argument specifies whether I/O may be performed to release
3837 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3838 *
3839 * Return: %1 if the release was successful, otherwise return zero.
3840 */
3841int try_to_release_page(struct page *page, gfp_t gfp_mask)
3842{
3843        struct address_space * const mapping = page->mapping;
3844
3845        BUG_ON(!PageLocked(page));
3846        if (PageWriteback(page))
3847                return 0;
3848
3849        if (mapping && mapping->a_ops->releasepage)
3850                return mapping->a_ops->releasepage(page, gfp_mask);
3851        return try_to_free_buffers(page);
3852}
3853
3854EXPORT_SYMBOL(try_to_release_page);
3855