linux/mm/huge_memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/dax.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/oom.h>
  35#include <linux/numa.h>
  36#include <linux/page_owner.h>
  37
  38#include <asm/tlb.h>
  39#include <asm/pgalloc.h>
  40#include "internal.h"
  41
  42/*
  43 * By default, transparent hugepage support is disabled in order to avoid
  44 * risking an increased memory footprint for applications that are not
  45 * guaranteed to benefit from it. When transparent hugepage support is
  46 * enabled, it is for all mappings, and khugepaged scans all mappings.
  47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  48 * for all hugepage allocations.
  49 */
  50unsigned long transparent_hugepage_flags __read_mostly =
  51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  52        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  53#endif
  54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  55        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  56#endif
  57        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  58        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  59        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  60
  61static struct shrinker deferred_split_shrinker;
  62
  63static atomic_t huge_zero_refcount;
  64struct page *huge_zero_page __read_mostly;
  65unsigned long huge_zero_pfn __read_mostly = ~0UL;
  66
  67static inline bool file_thp_enabled(struct vm_area_struct *vma)
  68{
  69        return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
  70               !inode_is_open_for_write(vma->vm_file->f_inode) &&
  71               (vma->vm_flags & VM_EXEC);
  72}
  73
  74bool transparent_hugepage_active(struct vm_area_struct *vma)
  75{
  76        /* The addr is used to check if the vma size fits */
  77        unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
  78
  79        if (!transhuge_vma_suitable(vma, addr))
  80                return false;
  81        if (vma_is_anonymous(vma))
  82                return __transparent_hugepage_enabled(vma);
  83        if (vma_is_shmem(vma))
  84                return shmem_huge_enabled(vma);
  85        if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
  86                return file_thp_enabled(vma);
  87
  88        return false;
  89}
  90
  91static bool get_huge_zero_page(void)
  92{
  93        struct page *zero_page;
  94retry:
  95        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  96                return true;
  97
  98        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  99                        HPAGE_PMD_ORDER);
 100        if (!zero_page) {
 101                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 102                return false;
 103        }
 104        count_vm_event(THP_ZERO_PAGE_ALLOC);
 105        preempt_disable();
 106        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 107                preempt_enable();
 108                __free_pages(zero_page, compound_order(zero_page));
 109                goto retry;
 110        }
 111        WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 112
 113        /* We take additional reference here. It will be put back by shrinker */
 114        atomic_set(&huge_zero_refcount, 2);
 115        preempt_enable();
 116        return true;
 117}
 118
 119static void put_huge_zero_page(void)
 120{
 121        /*
 122         * Counter should never go to zero here. Only shrinker can put
 123         * last reference.
 124         */
 125        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 126}
 127
 128struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 129{
 130        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 131                return READ_ONCE(huge_zero_page);
 132
 133        if (!get_huge_zero_page())
 134                return NULL;
 135
 136        if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 137                put_huge_zero_page();
 138
 139        return READ_ONCE(huge_zero_page);
 140}
 141
 142void mm_put_huge_zero_page(struct mm_struct *mm)
 143{
 144        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 145                put_huge_zero_page();
 146}
 147
 148static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 149                                        struct shrink_control *sc)
 150{
 151        /* we can free zero page only if last reference remains */
 152        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 153}
 154
 155static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 156                                       struct shrink_control *sc)
 157{
 158        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 159                struct page *zero_page = xchg(&huge_zero_page, NULL);
 160                BUG_ON(zero_page == NULL);
 161                WRITE_ONCE(huge_zero_pfn, ~0UL);
 162                __free_pages(zero_page, compound_order(zero_page));
 163                return HPAGE_PMD_NR;
 164        }
 165
 166        return 0;
 167}
 168
 169static struct shrinker huge_zero_page_shrinker = {
 170        .count_objects = shrink_huge_zero_page_count,
 171        .scan_objects = shrink_huge_zero_page_scan,
 172        .seeks = DEFAULT_SEEKS,
 173};
 174
 175#ifdef CONFIG_SYSFS
 176static ssize_t enabled_show(struct kobject *kobj,
 177                            struct kobj_attribute *attr, char *buf)
 178{
 179        const char *output;
 180
 181        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 182                output = "[always] madvise never";
 183        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 184                          &transparent_hugepage_flags))
 185                output = "always [madvise] never";
 186        else
 187                output = "always madvise [never]";
 188
 189        return sysfs_emit(buf, "%s\n", output);
 190}
 191
 192static ssize_t enabled_store(struct kobject *kobj,
 193                             struct kobj_attribute *attr,
 194                             const char *buf, size_t count)
 195{
 196        ssize_t ret = count;
 197
 198        if (sysfs_streq(buf, "always")) {
 199                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 200                set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 201        } else if (sysfs_streq(buf, "madvise")) {
 202                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 203                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 204        } else if (sysfs_streq(buf, "never")) {
 205                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 206                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 207        } else
 208                ret = -EINVAL;
 209
 210        if (ret > 0) {
 211                int err = start_stop_khugepaged();
 212                if (err)
 213                        ret = err;
 214        }
 215        return ret;
 216}
 217static struct kobj_attribute enabled_attr =
 218        __ATTR(enabled, 0644, enabled_show, enabled_store);
 219
 220ssize_t single_hugepage_flag_show(struct kobject *kobj,
 221                                  struct kobj_attribute *attr, char *buf,
 222                                  enum transparent_hugepage_flag flag)
 223{
 224        return sysfs_emit(buf, "%d\n",
 225                          !!test_bit(flag, &transparent_hugepage_flags));
 226}
 227
 228ssize_t single_hugepage_flag_store(struct kobject *kobj,
 229                                 struct kobj_attribute *attr,
 230                                 const char *buf, size_t count,
 231                                 enum transparent_hugepage_flag flag)
 232{
 233        unsigned long value;
 234        int ret;
 235
 236        ret = kstrtoul(buf, 10, &value);
 237        if (ret < 0)
 238                return ret;
 239        if (value > 1)
 240                return -EINVAL;
 241
 242        if (value)
 243                set_bit(flag, &transparent_hugepage_flags);
 244        else
 245                clear_bit(flag, &transparent_hugepage_flags);
 246
 247        return count;
 248}
 249
 250static ssize_t defrag_show(struct kobject *kobj,
 251                           struct kobj_attribute *attr, char *buf)
 252{
 253        const char *output;
 254
 255        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 256                     &transparent_hugepage_flags))
 257                output = "[always] defer defer+madvise madvise never";
 258        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 259                          &transparent_hugepage_flags))
 260                output = "always [defer] defer+madvise madvise never";
 261        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 262                          &transparent_hugepage_flags))
 263                output = "always defer [defer+madvise] madvise never";
 264        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 265                          &transparent_hugepage_flags))
 266                output = "always defer defer+madvise [madvise] never";
 267        else
 268                output = "always defer defer+madvise madvise [never]";
 269
 270        return sysfs_emit(buf, "%s\n", output);
 271}
 272
 273static ssize_t defrag_store(struct kobject *kobj,
 274                            struct kobj_attribute *attr,
 275                            const char *buf, size_t count)
 276{
 277        if (sysfs_streq(buf, "always")) {
 278                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 279                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 280                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 281                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 282        } else if (sysfs_streq(buf, "defer+madvise")) {
 283                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 284                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 285                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 286                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 287        } else if (sysfs_streq(buf, "defer")) {
 288                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 289                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 290                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 291                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 292        } else if (sysfs_streq(buf, "madvise")) {
 293                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 294                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 295                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 296                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 297        } else if (sysfs_streq(buf, "never")) {
 298                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 299                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 300                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 301                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 302        } else
 303                return -EINVAL;
 304
 305        return count;
 306}
 307static struct kobj_attribute defrag_attr =
 308        __ATTR(defrag, 0644, defrag_show, defrag_store);
 309
 310static ssize_t use_zero_page_show(struct kobject *kobj,
 311                                  struct kobj_attribute *attr, char *buf)
 312{
 313        return single_hugepage_flag_show(kobj, attr, buf,
 314                                         TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 315}
 316static ssize_t use_zero_page_store(struct kobject *kobj,
 317                struct kobj_attribute *attr, const char *buf, size_t count)
 318{
 319        return single_hugepage_flag_store(kobj, attr, buf, count,
 320                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 321}
 322static struct kobj_attribute use_zero_page_attr =
 323        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 324
 325static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 326                                   struct kobj_attribute *attr, char *buf)
 327{
 328        return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 329}
 330static struct kobj_attribute hpage_pmd_size_attr =
 331        __ATTR_RO(hpage_pmd_size);
 332
 333static struct attribute *hugepage_attr[] = {
 334        &enabled_attr.attr,
 335        &defrag_attr.attr,
 336        &use_zero_page_attr.attr,
 337        &hpage_pmd_size_attr.attr,
 338#ifdef CONFIG_SHMEM
 339        &shmem_enabled_attr.attr,
 340#endif
 341        NULL,
 342};
 343
 344static const struct attribute_group hugepage_attr_group = {
 345        .attrs = hugepage_attr,
 346};
 347
 348static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 349{
 350        int err;
 351
 352        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 353        if (unlikely(!*hugepage_kobj)) {
 354                pr_err("failed to create transparent hugepage kobject\n");
 355                return -ENOMEM;
 356        }
 357
 358        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 359        if (err) {
 360                pr_err("failed to register transparent hugepage group\n");
 361                goto delete_obj;
 362        }
 363
 364        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 365        if (err) {
 366                pr_err("failed to register transparent hugepage group\n");
 367                goto remove_hp_group;
 368        }
 369
 370        return 0;
 371
 372remove_hp_group:
 373        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 374delete_obj:
 375        kobject_put(*hugepage_kobj);
 376        return err;
 377}
 378
 379static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 380{
 381        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 382        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 383        kobject_put(hugepage_kobj);
 384}
 385#else
 386static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 387{
 388        return 0;
 389}
 390
 391static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 392{
 393}
 394#endif /* CONFIG_SYSFS */
 395
 396static int __init hugepage_init(void)
 397{
 398        int err;
 399        struct kobject *hugepage_kobj;
 400
 401        if (!has_transparent_hugepage()) {
 402                /*
 403                 * Hardware doesn't support hugepages, hence disable
 404                 * DAX PMD support.
 405                 */
 406                transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
 407                return -EINVAL;
 408        }
 409
 410        /*
 411         * hugepages can't be allocated by the buddy allocator
 412         */
 413        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 414        /*
 415         * we use page->mapping and page->index in second tail page
 416         * as list_head: assuming THP order >= 2
 417         */
 418        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 419
 420        err = hugepage_init_sysfs(&hugepage_kobj);
 421        if (err)
 422                goto err_sysfs;
 423
 424        err = khugepaged_init();
 425        if (err)
 426                goto err_slab;
 427
 428        err = register_shrinker(&huge_zero_page_shrinker);
 429        if (err)
 430                goto err_hzp_shrinker;
 431        err = register_shrinker(&deferred_split_shrinker);
 432        if (err)
 433                goto err_split_shrinker;
 434
 435        /*
 436         * By default disable transparent hugepages on smaller systems,
 437         * where the extra memory used could hurt more than TLB overhead
 438         * is likely to save.  The admin can still enable it through /sys.
 439         */
 440        if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 441                transparent_hugepage_flags = 0;
 442                return 0;
 443        }
 444
 445        err = start_stop_khugepaged();
 446        if (err)
 447                goto err_khugepaged;
 448
 449        return 0;
 450err_khugepaged:
 451        unregister_shrinker(&deferred_split_shrinker);
 452err_split_shrinker:
 453        unregister_shrinker(&huge_zero_page_shrinker);
 454err_hzp_shrinker:
 455        khugepaged_destroy();
 456err_slab:
 457        hugepage_exit_sysfs(hugepage_kobj);
 458err_sysfs:
 459        return err;
 460}
 461subsys_initcall(hugepage_init);
 462
 463static int __init setup_transparent_hugepage(char *str)
 464{
 465        int ret = 0;
 466        if (!str)
 467                goto out;
 468        if (!strcmp(str, "always")) {
 469                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 470                        &transparent_hugepage_flags);
 471                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 472                          &transparent_hugepage_flags);
 473                ret = 1;
 474        } else if (!strcmp(str, "madvise")) {
 475                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 476                          &transparent_hugepage_flags);
 477                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 478                        &transparent_hugepage_flags);
 479                ret = 1;
 480        } else if (!strcmp(str, "never")) {
 481                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 482                          &transparent_hugepage_flags);
 483                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 484                          &transparent_hugepage_flags);
 485                ret = 1;
 486        }
 487out:
 488        if (!ret)
 489                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 490        return ret;
 491}
 492__setup("transparent_hugepage=", setup_transparent_hugepage);
 493
 494pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 495{
 496        if (likely(vma->vm_flags & VM_WRITE))
 497                pmd = pmd_mkwrite(pmd);
 498        return pmd;
 499}
 500
 501#ifdef CONFIG_MEMCG
 502static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 503{
 504        struct mem_cgroup *memcg = page_memcg(compound_head(page));
 505        struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 506
 507        if (memcg)
 508                return &memcg->deferred_split_queue;
 509        else
 510                return &pgdat->deferred_split_queue;
 511}
 512#else
 513static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 514{
 515        struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 516
 517        return &pgdat->deferred_split_queue;
 518}
 519#endif
 520
 521void prep_transhuge_page(struct page *page)
 522{
 523        /*
 524         * we use page->mapping and page->indexlru in second tail page
 525         * as list_head: assuming THP order >= 2
 526         */
 527
 528        INIT_LIST_HEAD(page_deferred_list(page));
 529        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 530}
 531
 532bool is_transparent_hugepage(struct page *page)
 533{
 534        if (!PageCompound(page))
 535                return false;
 536
 537        page = compound_head(page);
 538        return is_huge_zero_page(page) ||
 539               page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 540}
 541EXPORT_SYMBOL_GPL(is_transparent_hugepage);
 542
 543static unsigned long __thp_get_unmapped_area(struct file *filp,
 544                unsigned long addr, unsigned long len,
 545                loff_t off, unsigned long flags, unsigned long size)
 546{
 547        loff_t off_end = off + len;
 548        loff_t off_align = round_up(off, size);
 549        unsigned long len_pad, ret;
 550
 551        if (off_end <= off_align || (off_end - off_align) < size)
 552                return 0;
 553
 554        len_pad = len + size;
 555        if (len_pad < len || (off + len_pad) < off)
 556                return 0;
 557
 558        ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 559                                              off >> PAGE_SHIFT, flags);
 560
 561        /*
 562         * The failure might be due to length padding. The caller will retry
 563         * without the padding.
 564         */
 565        if (IS_ERR_VALUE(ret))
 566                return 0;
 567
 568        /*
 569         * Do not try to align to THP boundary if allocation at the address
 570         * hint succeeds.
 571         */
 572        if (ret == addr)
 573                return addr;
 574
 575        ret += (off - ret) & (size - 1);
 576        return ret;
 577}
 578
 579unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 580                unsigned long len, unsigned long pgoff, unsigned long flags)
 581{
 582        unsigned long ret;
 583        loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 584
 585        if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 586                goto out;
 587
 588        ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 589        if (ret)
 590                return ret;
 591out:
 592        return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 593}
 594EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 595
 596static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 597                        struct page *page, gfp_t gfp)
 598{
 599        struct vm_area_struct *vma = vmf->vma;
 600        pgtable_t pgtable;
 601        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 602        vm_fault_t ret = 0;
 603
 604        VM_BUG_ON_PAGE(!PageCompound(page), page);
 605
 606        if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
 607                put_page(page);
 608                count_vm_event(THP_FAULT_FALLBACK);
 609                count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 610                return VM_FAULT_FALLBACK;
 611        }
 612        cgroup_throttle_swaprate(page, gfp);
 613
 614        pgtable = pte_alloc_one(vma->vm_mm);
 615        if (unlikely(!pgtable)) {
 616                ret = VM_FAULT_OOM;
 617                goto release;
 618        }
 619
 620        clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 621        /*
 622         * The memory barrier inside __SetPageUptodate makes sure that
 623         * clear_huge_page writes become visible before the set_pmd_at()
 624         * write.
 625         */
 626        __SetPageUptodate(page);
 627
 628        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 629        if (unlikely(!pmd_none(*vmf->pmd))) {
 630                goto unlock_release;
 631        } else {
 632                pmd_t entry;
 633
 634                ret = check_stable_address_space(vma->vm_mm);
 635                if (ret)
 636                        goto unlock_release;
 637
 638                /* Deliver the page fault to userland */
 639                if (userfaultfd_missing(vma)) {
 640                        spin_unlock(vmf->ptl);
 641                        put_page(page);
 642                        pte_free(vma->vm_mm, pgtable);
 643                        ret = handle_userfault(vmf, VM_UFFD_MISSING);
 644                        VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 645                        return ret;
 646                }
 647
 648                entry = mk_huge_pmd(page, vma->vm_page_prot);
 649                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 650                page_add_new_anon_rmap(page, vma, haddr, true);
 651                lru_cache_add_inactive_or_unevictable(page, vma);
 652                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 653                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 654                update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 655                add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 656                mm_inc_nr_ptes(vma->vm_mm);
 657                spin_unlock(vmf->ptl);
 658                count_vm_event(THP_FAULT_ALLOC);
 659                count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 660        }
 661
 662        return 0;
 663unlock_release:
 664        spin_unlock(vmf->ptl);
 665release:
 666        if (pgtable)
 667                pte_free(vma->vm_mm, pgtable);
 668        put_page(page);
 669        return ret;
 670
 671}
 672
 673/*
 674 * always: directly stall for all thp allocations
 675 * defer: wake kswapd and fail if not immediately available
 676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 677 *                fail if not immediately available
 678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 679 *          available
 680 * never: never stall for any thp allocation
 681 */
 682gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 683{
 684        const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 685
 686        /* Always do synchronous compaction */
 687        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 688                return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 689
 690        /* Kick kcompactd and fail quickly */
 691        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 692                return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 693
 694        /* Synchronous compaction if madvised, otherwise kick kcompactd */
 695        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 696                return GFP_TRANSHUGE_LIGHT |
 697                        (vma_madvised ? __GFP_DIRECT_RECLAIM :
 698                                        __GFP_KSWAPD_RECLAIM);
 699
 700        /* Only do synchronous compaction if madvised */
 701        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 702                return GFP_TRANSHUGE_LIGHT |
 703                       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 704
 705        return GFP_TRANSHUGE_LIGHT;
 706}
 707
 708/* Caller must hold page table lock. */
 709static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 710                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 711                struct page *zero_page)
 712{
 713        pmd_t entry;
 714        if (!pmd_none(*pmd))
 715                return;
 716        entry = mk_pmd(zero_page, vma->vm_page_prot);
 717        entry = pmd_mkhuge(entry);
 718        if (pgtable)
 719                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 720        set_pmd_at(mm, haddr, pmd, entry);
 721        mm_inc_nr_ptes(mm);
 722}
 723
 724vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 725{
 726        struct vm_area_struct *vma = vmf->vma;
 727        gfp_t gfp;
 728        struct page *page;
 729        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 730
 731        if (!transhuge_vma_suitable(vma, haddr))
 732                return VM_FAULT_FALLBACK;
 733        if (unlikely(anon_vma_prepare(vma)))
 734                return VM_FAULT_OOM;
 735        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 736                return VM_FAULT_OOM;
 737        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 738                        !mm_forbids_zeropage(vma->vm_mm) &&
 739                        transparent_hugepage_use_zero_page()) {
 740                pgtable_t pgtable;
 741                struct page *zero_page;
 742                vm_fault_t ret;
 743                pgtable = pte_alloc_one(vma->vm_mm);
 744                if (unlikely(!pgtable))
 745                        return VM_FAULT_OOM;
 746                zero_page = mm_get_huge_zero_page(vma->vm_mm);
 747                if (unlikely(!zero_page)) {
 748                        pte_free(vma->vm_mm, pgtable);
 749                        count_vm_event(THP_FAULT_FALLBACK);
 750                        return VM_FAULT_FALLBACK;
 751                }
 752                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 753                ret = 0;
 754                if (pmd_none(*vmf->pmd)) {
 755                        ret = check_stable_address_space(vma->vm_mm);
 756                        if (ret) {
 757                                spin_unlock(vmf->ptl);
 758                                pte_free(vma->vm_mm, pgtable);
 759                        } else if (userfaultfd_missing(vma)) {
 760                                spin_unlock(vmf->ptl);
 761                                pte_free(vma->vm_mm, pgtable);
 762                                ret = handle_userfault(vmf, VM_UFFD_MISSING);
 763                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 764                        } else {
 765                                set_huge_zero_page(pgtable, vma->vm_mm, vma,
 766                                                   haddr, vmf->pmd, zero_page);
 767                                update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 768                                spin_unlock(vmf->ptl);
 769                        }
 770                } else {
 771                        spin_unlock(vmf->ptl);
 772                        pte_free(vma->vm_mm, pgtable);
 773                }
 774                return ret;
 775        }
 776        gfp = vma_thp_gfp_mask(vma);
 777        page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 778        if (unlikely(!page)) {
 779                count_vm_event(THP_FAULT_FALLBACK);
 780                return VM_FAULT_FALLBACK;
 781        }
 782        prep_transhuge_page(page);
 783        return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 784}
 785
 786static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 787                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 788                pgtable_t pgtable)
 789{
 790        struct mm_struct *mm = vma->vm_mm;
 791        pmd_t entry;
 792        spinlock_t *ptl;
 793
 794        ptl = pmd_lock(mm, pmd);
 795        if (!pmd_none(*pmd)) {
 796                if (write) {
 797                        if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 798                                WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 799                                goto out_unlock;
 800                        }
 801                        entry = pmd_mkyoung(*pmd);
 802                        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 803                        if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 804                                update_mmu_cache_pmd(vma, addr, pmd);
 805                }
 806
 807                goto out_unlock;
 808        }
 809
 810        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 811        if (pfn_t_devmap(pfn))
 812                entry = pmd_mkdevmap(entry);
 813        if (write) {
 814                entry = pmd_mkyoung(pmd_mkdirty(entry));
 815                entry = maybe_pmd_mkwrite(entry, vma);
 816        }
 817
 818        if (pgtable) {
 819                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 820                mm_inc_nr_ptes(mm);
 821                pgtable = NULL;
 822        }
 823
 824        set_pmd_at(mm, addr, pmd, entry);
 825        update_mmu_cache_pmd(vma, addr, pmd);
 826
 827out_unlock:
 828        spin_unlock(ptl);
 829        if (pgtable)
 830                pte_free(mm, pgtable);
 831}
 832
 833/**
 834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 835 * @vmf: Structure describing the fault
 836 * @pfn: pfn to insert
 837 * @pgprot: page protection to use
 838 * @write: whether it's a write fault
 839 *
 840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 841 * also consult the vmf_insert_mixed_prot() documentation when
 842 * @pgprot != @vmf->vma->vm_page_prot.
 843 *
 844 * Return: vm_fault_t value.
 845 */
 846vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 847                                   pgprot_t pgprot, bool write)
 848{
 849        unsigned long addr = vmf->address & PMD_MASK;
 850        struct vm_area_struct *vma = vmf->vma;
 851        pgtable_t pgtable = NULL;
 852
 853        /*
 854         * If we had pmd_special, we could avoid all these restrictions,
 855         * but we need to be consistent with PTEs and architectures that
 856         * can't support a 'special' bit.
 857         */
 858        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 859                        !pfn_t_devmap(pfn));
 860        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 861                                                (VM_PFNMAP|VM_MIXEDMAP));
 862        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 863
 864        if (addr < vma->vm_start || addr >= vma->vm_end)
 865                return VM_FAULT_SIGBUS;
 866
 867        if (arch_needs_pgtable_deposit()) {
 868                pgtable = pte_alloc_one(vma->vm_mm);
 869                if (!pgtable)
 870                        return VM_FAULT_OOM;
 871        }
 872
 873        track_pfn_insert(vma, &pgprot, pfn);
 874
 875        insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 876        return VM_FAULT_NOPAGE;
 877}
 878EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 879
 880#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 881static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 882{
 883        if (likely(vma->vm_flags & VM_WRITE))
 884                pud = pud_mkwrite(pud);
 885        return pud;
 886}
 887
 888static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 889                pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 890{
 891        struct mm_struct *mm = vma->vm_mm;
 892        pud_t entry;
 893        spinlock_t *ptl;
 894
 895        ptl = pud_lock(mm, pud);
 896        if (!pud_none(*pud)) {
 897                if (write) {
 898                        if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 899                                WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 900                                goto out_unlock;
 901                        }
 902                        entry = pud_mkyoung(*pud);
 903                        entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 904                        if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 905                                update_mmu_cache_pud(vma, addr, pud);
 906                }
 907                goto out_unlock;
 908        }
 909
 910        entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 911        if (pfn_t_devmap(pfn))
 912                entry = pud_mkdevmap(entry);
 913        if (write) {
 914                entry = pud_mkyoung(pud_mkdirty(entry));
 915                entry = maybe_pud_mkwrite(entry, vma);
 916        }
 917        set_pud_at(mm, addr, pud, entry);
 918        update_mmu_cache_pud(vma, addr, pud);
 919
 920out_unlock:
 921        spin_unlock(ptl);
 922}
 923
 924/**
 925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 926 * @vmf: Structure describing the fault
 927 * @pfn: pfn to insert
 928 * @pgprot: page protection to use
 929 * @write: whether it's a write fault
 930 *
 931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 932 * also consult the vmf_insert_mixed_prot() documentation when
 933 * @pgprot != @vmf->vma->vm_page_prot.
 934 *
 935 * Return: vm_fault_t value.
 936 */
 937vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 938                                   pgprot_t pgprot, bool write)
 939{
 940        unsigned long addr = vmf->address & PUD_MASK;
 941        struct vm_area_struct *vma = vmf->vma;
 942
 943        /*
 944         * If we had pud_special, we could avoid all these restrictions,
 945         * but we need to be consistent with PTEs and architectures that
 946         * can't support a 'special' bit.
 947         */
 948        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 949                        !pfn_t_devmap(pfn));
 950        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 951                                                (VM_PFNMAP|VM_MIXEDMAP));
 952        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 953
 954        if (addr < vma->vm_start || addr >= vma->vm_end)
 955                return VM_FAULT_SIGBUS;
 956
 957        track_pfn_insert(vma, &pgprot, pfn);
 958
 959        insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
 960        return VM_FAULT_NOPAGE;
 961}
 962EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
 963#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 964
 965static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 966                pmd_t *pmd, int flags)
 967{
 968        pmd_t _pmd;
 969
 970        _pmd = pmd_mkyoung(*pmd);
 971        if (flags & FOLL_WRITE)
 972                _pmd = pmd_mkdirty(_pmd);
 973        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 974                                pmd, _pmd, flags & FOLL_WRITE))
 975                update_mmu_cache_pmd(vma, addr, pmd);
 976}
 977
 978struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 979                pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
 980{
 981        unsigned long pfn = pmd_pfn(*pmd);
 982        struct mm_struct *mm = vma->vm_mm;
 983        struct page *page;
 984
 985        assert_spin_locked(pmd_lockptr(mm, pmd));
 986
 987        /*
 988         * When we COW a devmap PMD entry, we split it into PTEs, so we should
 989         * not be in this function with `flags & FOLL_COW` set.
 990         */
 991        WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 992
 993        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
 994        if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 995                         (FOLL_PIN | FOLL_GET)))
 996                return NULL;
 997
 998        if (flags & FOLL_WRITE && !pmd_write(*pmd))
 999                return NULL;
1000
1001        if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002                /* pass */;
1003        else
1004                return NULL;
1005
1006        if (flags & FOLL_TOUCH)
1007                touch_pmd(vma, addr, pmd, flags);
1008
1009        /*
1010         * device mapped pages can only be returned if the
1011         * caller will manage the page reference count.
1012         */
1013        if (!(flags & (FOLL_GET | FOLL_PIN)))
1014                return ERR_PTR(-EEXIST);
1015
1016        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017        *pgmap = get_dev_pagemap(pfn, *pgmap);
1018        if (!*pgmap)
1019                return ERR_PTR(-EFAULT);
1020        page = pfn_to_page(pfn);
1021        if (!try_grab_page(page, flags))
1022                page = ERR_PTR(-ENOMEM);
1023
1024        return page;
1025}
1026
1027int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029                  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030{
1031        spinlock_t *dst_ptl, *src_ptl;
1032        struct page *src_page;
1033        pmd_t pmd;
1034        pgtable_t pgtable = NULL;
1035        int ret = -ENOMEM;
1036
1037        /* Skip if can be re-fill on fault */
1038        if (!vma_is_anonymous(dst_vma))
1039                return 0;
1040
1041        pgtable = pte_alloc_one(dst_mm);
1042        if (unlikely(!pgtable))
1043                goto out;
1044
1045        dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046        src_ptl = pmd_lockptr(src_mm, src_pmd);
1047        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049        ret = -EAGAIN;
1050        pmd = *src_pmd;
1051
1052#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053        if (unlikely(is_swap_pmd(pmd))) {
1054                swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056                VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057                if (is_writable_migration_entry(entry)) {
1058                        entry = make_readable_migration_entry(
1059                                                        swp_offset(entry));
1060                        pmd = swp_entry_to_pmd(entry);
1061                        if (pmd_swp_soft_dirty(*src_pmd))
1062                                pmd = pmd_swp_mksoft_dirty(pmd);
1063                        if (pmd_swp_uffd_wp(*src_pmd))
1064                                pmd = pmd_swp_mkuffd_wp(pmd);
1065                        set_pmd_at(src_mm, addr, src_pmd, pmd);
1066                }
1067                add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068                mm_inc_nr_ptes(dst_mm);
1069                pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070                if (!userfaultfd_wp(dst_vma))
1071                        pmd = pmd_swp_clear_uffd_wp(pmd);
1072                set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073                ret = 0;
1074                goto out_unlock;
1075        }
1076#endif
1077
1078        if (unlikely(!pmd_trans_huge(pmd))) {
1079                pte_free(dst_mm, pgtable);
1080                goto out_unlock;
1081        }
1082        /*
1083         * When page table lock is held, the huge zero pmd should not be
1084         * under splitting since we don't split the page itself, only pmd to
1085         * a page table.
1086         */
1087        if (is_huge_zero_pmd(pmd)) {
1088                /*
1089                 * get_huge_zero_page() will never allocate a new page here,
1090                 * since we already have a zero page to copy. It just takes a
1091                 * reference.
1092                 */
1093                mm_get_huge_zero_page(dst_mm);
1094                goto out_zero_page;
1095        }
1096
1097        src_page = pmd_page(pmd);
1098        VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099
1100        /*
1101         * If this page is a potentially pinned page, split and retry the fault
1102         * with smaller page size.  Normally this should not happen because the
1103         * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1104         * best effort that the pinned pages won't be replaced by another
1105         * random page during the coming copy-on-write.
1106         */
1107        if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108                pte_free(dst_mm, pgtable);
1109                spin_unlock(src_ptl);
1110                spin_unlock(dst_ptl);
1111                __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112                return -EAGAIN;
1113        }
1114
1115        get_page(src_page);
1116        page_dup_rmap(src_page, true);
1117        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118out_zero_page:
1119        mm_inc_nr_ptes(dst_mm);
1120        pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121        pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122        if (!userfaultfd_wp(dst_vma))
1123                pmd = pmd_clear_uffd_wp(pmd);
1124        pmd = pmd_mkold(pmd_wrprotect(pmd));
1125        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126
1127        ret = 0;
1128out_unlock:
1129        spin_unlock(src_ptl);
1130        spin_unlock(dst_ptl);
1131out:
1132        return ret;
1133}
1134
1135#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1136static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137                pud_t *pud, int flags)
1138{
1139        pud_t _pud;
1140
1141        _pud = pud_mkyoung(*pud);
1142        if (flags & FOLL_WRITE)
1143                _pud = pud_mkdirty(_pud);
1144        if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145                                pud, _pud, flags & FOLL_WRITE))
1146                update_mmu_cache_pud(vma, addr, pud);
1147}
1148
1149struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150                pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151{
1152        unsigned long pfn = pud_pfn(*pud);
1153        struct mm_struct *mm = vma->vm_mm;
1154        struct page *page;
1155
1156        assert_spin_locked(pud_lockptr(mm, pud));
1157
1158        if (flags & FOLL_WRITE && !pud_write(*pud))
1159                return NULL;
1160
1161        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162        if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163                         (FOLL_PIN | FOLL_GET)))
1164                return NULL;
1165
1166        if (pud_present(*pud) && pud_devmap(*pud))
1167                /* pass */;
1168        else
1169                return NULL;
1170
1171        if (flags & FOLL_TOUCH)
1172                touch_pud(vma, addr, pud, flags);
1173
1174        /*
1175         * device mapped pages can only be returned if the
1176         * caller will manage the page reference count.
1177         *
1178         * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179         */
1180        if (!(flags & (FOLL_GET | FOLL_PIN)))
1181                return ERR_PTR(-EEXIST);
1182
1183        pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184        *pgmap = get_dev_pagemap(pfn, *pgmap);
1185        if (!*pgmap)
1186                return ERR_PTR(-EFAULT);
1187        page = pfn_to_page(pfn);
1188        if (!try_grab_page(page, flags))
1189                page = ERR_PTR(-ENOMEM);
1190
1191        return page;
1192}
1193
1194int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195                  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196                  struct vm_area_struct *vma)
1197{
1198        spinlock_t *dst_ptl, *src_ptl;
1199        pud_t pud;
1200        int ret;
1201
1202        dst_ptl = pud_lock(dst_mm, dst_pud);
1203        src_ptl = pud_lockptr(src_mm, src_pud);
1204        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205
1206        ret = -EAGAIN;
1207        pud = *src_pud;
1208        if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209                goto out_unlock;
1210
1211        /*
1212         * When page table lock is held, the huge zero pud should not be
1213         * under splitting since we don't split the page itself, only pud to
1214         * a page table.
1215         */
1216        if (is_huge_zero_pud(pud)) {
1217                /* No huge zero pud yet */
1218        }
1219
1220        /* Please refer to comments in copy_huge_pmd() */
1221        if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222                spin_unlock(src_ptl);
1223                spin_unlock(dst_ptl);
1224                __split_huge_pud(vma, src_pud, addr);
1225                return -EAGAIN;
1226        }
1227
1228        pudp_set_wrprotect(src_mm, addr, src_pud);
1229        pud = pud_mkold(pud_wrprotect(pud));
1230        set_pud_at(dst_mm, addr, dst_pud, pud);
1231
1232        ret = 0;
1233out_unlock:
1234        spin_unlock(src_ptl);
1235        spin_unlock(dst_ptl);
1236        return ret;
1237}
1238
1239void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240{
1241        pud_t entry;
1242        unsigned long haddr;
1243        bool write = vmf->flags & FAULT_FLAG_WRITE;
1244
1245        vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246        if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247                goto unlock;
1248
1249        entry = pud_mkyoung(orig_pud);
1250        if (write)
1251                entry = pud_mkdirty(entry);
1252        haddr = vmf->address & HPAGE_PUD_MASK;
1253        if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254                update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255
1256unlock:
1257        spin_unlock(vmf->ptl);
1258}
1259#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260
1261void huge_pmd_set_accessed(struct vm_fault *vmf)
1262{
1263        pmd_t entry;
1264        unsigned long haddr;
1265        bool write = vmf->flags & FAULT_FLAG_WRITE;
1266        pmd_t orig_pmd = vmf->orig_pmd;
1267
1268        vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270                goto unlock;
1271
1272        entry = pmd_mkyoung(orig_pmd);
1273        if (write)
1274                entry = pmd_mkdirty(entry);
1275        haddr = vmf->address & HPAGE_PMD_MASK;
1276        if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277                update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278
1279unlock:
1280        spin_unlock(vmf->ptl);
1281}
1282
1283vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284{
1285        struct vm_area_struct *vma = vmf->vma;
1286        struct page *page;
1287        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288        pmd_t orig_pmd = vmf->orig_pmd;
1289
1290        vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292
1293        if (is_huge_zero_pmd(orig_pmd))
1294                goto fallback;
1295
1296        spin_lock(vmf->ptl);
1297
1298        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299                spin_unlock(vmf->ptl);
1300                return 0;
1301        }
1302
1303        page = pmd_page(orig_pmd);
1304        VM_BUG_ON_PAGE(!PageHead(page), page);
1305
1306        /* Lock page for reuse_swap_page() */
1307        if (!trylock_page(page)) {
1308                get_page(page);
1309                spin_unlock(vmf->ptl);
1310                lock_page(page);
1311                spin_lock(vmf->ptl);
1312                if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313                        spin_unlock(vmf->ptl);
1314                        unlock_page(page);
1315                        put_page(page);
1316                        return 0;
1317                }
1318                put_page(page);
1319        }
1320
1321        /*
1322         * We can only reuse the page if nobody else maps the huge page or it's
1323         * part.
1324         */
1325        if (reuse_swap_page(page, NULL)) {
1326                pmd_t entry;
1327                entry = pmd_mkyoung(orig_pmd);
1328                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329                if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1330                        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1331                unlock_page(page);
1332                spin_unlock(vmf->ptl);
1333                return VM_FAULT_WRITE;
1334        }
1335
1336        unlock_page(page);
1337        spin_unlock(vmf->ptl);
1338fallback:
1339        __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1340        return VM_FAULT_FALLBACK;
1341}
1342
1343/*
1344 * FOLL_FORCE can write to even unwritable pmd's, but only
1345 * after we've gone through a COW cycle and they are dirty.
1346 */
1347static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1348{
1349        return pmd_write(pmd) ||
1350               ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1351}
1352
1353struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354                                   unsigned long addr,
1355                                   pmd_t *pmd,
1356                                   unsigned int flags)
1357{
1358        struct mm_struct *mm = vma->vm_mm;
1359        struct page *page = NULL;
1360
1361        assert_spin_locked(pmd_lockptr(mm, pmd));
1362
1363        if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364                goto out;
1365
1366        /* Avoid dumping huge zero page */
1367        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1368                return ERR_PTR(-EFAULT);
1369
1370        /* Full NUMA hinting faults to serialise migration in fault paths */
1371        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372                goto out;
1373
1374        page = pmd_page(*pmd);
1375        VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1376
1377        if (!try_grab_page(page, flags))
1378                return ERR_PTR(-ENOMEM);
1379
1380        if (flags & FOLL_TOUCH)
1381                touch_pmd(vma, addr, pmd, flags);
1382
1383        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1384                /*
1385                 * We don't mlock() pte-mapped THPs. This way we can avoid
1386                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1387                 *
1388                 * For anon THP:
1389                 *
1390                 * In most cases the pmd is the only mapping of the page as we
1391                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1392                 * writable private mappings in populate_vma_page_range().
1393                 *
1394                 * The only scenario when we have the page shared here is if we
1395                 * mlocking read-only mapping shared over fork(). We skip
1396                 * mlocking such pages.
1397                 *
1398                 * For file THP:
1399                 *
1400                 * We can expect PageDoubleMap() to be stable under page lock:
1401                 * for file pages we set it in page_add_file_rmap(), which
1402                 * requires page to be locked.
1403                 */
1404
1405                if (PageAnon(page) && compound_mapcount(page) != 1)
1406                        goto skip_mlock;
1407                if (PageDoubleMap(page) || !page->mapping)
1408                        goto skip_mlock;
1409                if (!trylock_page(page))
1410                        goto skip_mlock;
1411                if (page->mapping && !PageDoubleMap(page))
1412                        mlock_vma_page(page);
1413                unlock_page(page);
1414        }
1415skip_mlock:
1416        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1417        VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1418
1419out:
1420        return page;
1421}
1422
1423/* NUMA hinting page fault entry point for trans huge pmds */
1424vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1425{
1426        struct vm_area_struct *vma = vmf->vma;
1427        pmd_t oldpmd = vmf->orig_pmd;
1428        pmd_t pmd;
1429        struct page *page;
1430        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1431        int page_nid = NUMA_NO_NODE;
1432        int target_nid, last_cpupid = -1;
1433        bool migrated = false;
1434        bool was_writable = pmd_savedwrite(oldpmd);
1435        int flags = 0;
1436
1437        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438        if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1439                spin_unlock(vmf->ptl);
1440                goto out;
1441        }
1442
1443        /*
1444         * Since we took the NUMA fault, we must have observed the !accessible
1445         * bit. Make sure all other CPUs agree with that, to avoid them
1446         * modifying the page we're about to migrate.
1447         *
1448         * Must be done under PTL such that we'll observe the relevant
1449         * inc_tlb_flush_pending().
1450         *
1451         * We are not sure a pending tlb flush here is for a huge page
1452         * mapping or not. Hence use the tlb range variant
1453         */
1454        if (mm_tlb_flush_pending(vma->vm_mm)) {
1455                flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1456                /*
1457                 * change_huge_pmd() released the pmd lock before
1458                 * invalidating the secondary MMUs sharing the primary
1459                 * MMU pagetables (with ->invalidate_range()). The
1460                 * mmu_notifier_invalidate_range_end() (which
1461                 * internally calls ->invalidate_range()) in
1462                 * change_pmd_range() will run after us, so we can't
1463                 * rely on it here and we need an explicit invalidate.
1464                 */
1465                mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1466                                              haddr + HPAGE_PMD_SIZE);
1467        }
1468
1469        pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1470        page = vm_normal_page_pmd(vma, haddr, pmd);
1471        if (!page)
1472                goto out_map;
1473
1474        /* See similar comment in do_numa_page for explanation */
1475        if (!was_writable)
1476                flags |= TNF_NO_GROUP;
1477
1478        page_nid = page_to_nid(page);
1479        last_cpupid = page_cpupid_last(page);
1480        target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1481                                       &flags);
1482
1483        if (target_nid == NUMA_NO_NODE) {
1484                put_page(page);
1485                goto out_map;
1486        }
1487
1488        spin_unlock(vmf->ptl);
1489
1490        migrated = migrate_misplaced_page(page, vma, target_nid);
1491        if (migrated) {
1492                flags |= TNF_MIGRATED;
1493                page_nid = target_nid;
1494        } else {
1495                flags |= TNF_MIGRATE_FAIL;
1496                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1497                if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1498                        spin_unlock(vmf->ptl);
1499                        goto out;
1500                }
1501                goto out_map;
1502        }
1503
1504out:
1505        if (page_nid != NUMA_NO_NODE)
1506                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1507                                flags);
1508
1509        return 0;
1510
1511out_map:
1512        /* Restore the PMD */
1513        pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1514        pmd = pmd_mkyoung(pmd);
1515        if (was_writable)
1516                pmd = pmd_mkwrite(pmd);
1517        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1518        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1519        spin_unlock(vmf->ptl);
1520        goto out;
1521}
1522
1523/*
1524 * Return true if we do MADV_FREE successfully on entire pmd page.
1525 * Otherwise, return false.
1526 */
1527bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1528                pmd_t *pmd, unsigned long addr, unsigned long next)
1529{
1530        spinlock_t *ptl;
1531        pmd_t orig_pmd;
1532        struct page *page;
1533        struct mm_struct *mm = tlb->mm;
1534        bool ret = false;
1535
1536        tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1537
1538        ptl = pmd_trans_huge_lock(pmd, vma);
1539        if (!ptl)
1540                goto out_unlocked;
1541
1542        orig_pmd = *pmd;
1543        if (is_huge_zero_pmd(orig_pmd))
1544                goto out;
1545
1546        if (unlikely(!pmd_present(orig_pmd))) {
1547                VM_BUG_ON(thp_migration_supported() &&
1548                                  !is_pmd_migration_entry(orig_pmd));
1549                goto out;
1550        }
1551
1552        page = pmd_page(orig_pmd);
1553        /*
1554         * If other processes are mapping this page, we couldn't discard
1555         * the page unless they all do MADV_FREE so let's skip the page.
1556         */
1557        if (total_mapcount(page) != 1)
1558                goto out;
1559
1560        if (!trylock_page(page))
1561                goto out;
1562
1563        /*
1564         * If user want to discard part-pages of THP, split it so MADV_FREE
1565         * will deactivate only them.
1566         */
1567        if (next - addr != HPAGE_PMD_SIZE) {
1568                get_page(page);
1569                spin_unlock(ptl);
1570                split_huge_page(page);
1571                unlock_page(page);
1572                put_page(page);
1573                goto out_unlocked;
1574        }
1575
1576        if (PageDirty(page))
1577                ClearPageDirty(page);
1578        unlock_page(page);
1579
1580        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1581                pmdp_invalidate(vma, addr, pmd);
1582                orig_pmd = pmd_mkold(orig_pmd);
1583                orig_pmd = pmd_mkclean(orig_pmd);
1584
1585                set_pmd_at(mm, addr, pmd, orig_pmd);
1586                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1587        }
1588
1589        mark_page_lazyfree(page);
1590        ret = true;
1591out:
1592        spin_unlock(ptl);
1593out_unlocked:
1594        return ret;
1595}
1596
1597static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1598{
1599        pgtable_t pgtable;
1600
1601        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1602        pte_free(mm, pgtable);
1603        mm_dec_nr_ptes(mm);
1604}
1605
1606int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1607                 pmd_t *pmd, unsigned long addr)
1608{
1609        pmd_t orig_pmd;
1610        spinlock_t *ptl;
1611
1612        tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1613
1614        ptl = __pmd_trans_huge_lock(pmd, vma);
1615        if (!ptl)
1616                return 0;
1617        /*
1618         * For architectures like ppc64 we look at deposited pgtable
1619         * when calling pmdp_huge_get_and_clear. So do the
1620         * pgtable_trans_huge_withdraw after finishing pmdp related
1621         * operations.
1622         */
1623        orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1624                                                tlb->fullmm);
1625        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1626        if (vma_is_special_huge(vma)) {
1627                if (arch_needs_pgtable_deposit())
1628                        zap_deposited_table(tlb->mm, pmd);
1629                spin_unlock(ptl);
1630        } else if (is_huge_zero_pmd(orig_pmd)) {
1631                zap_deposited_table(tlb->mm, pmd);
1632                spin_unlock(ptl);
1633        } else {
1634                struct page *page = NULL;
1635                int flush_needed = 1;
1636
1637                if (pmd_present(orig_pmd)) {
1638                        page = pmd_page(orig_pmd);
1639                        page_remove_rmap(page, true);
1640                        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1641                        VM_BUG_ON_PAGE(!PageHead(page), page);
1642                } else if (thp_migration_supported()) {
1643                        swp_entry_t entry;
1644
1645                        VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1646                        entry = pmd_to_swp_entry(orig_pmd);
1647                        page = pfn_swap_entry_to_page(entry);
1648                        flush_needed = 0;
1649                } else
1650                        WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1651
1652                if (PageAnon(page)) {
1653                        zap_deposited_table(tlb->mm, pmd);
1654                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1655                } else {
1656                        if (arch_needs_pgtable_deposit())
1657                                zap_deposited_table(tlb->mm, pmd);
1658                        add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1659                }
1660
1661                spin_unlock(ptl);
1662                if (flush_needed)
1663                        tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1664        }
1665        return 1;
1666}
1667
1668#ifndef pmd_move_must_withdraw
1669static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1670                                         spinlock_t *old_pmd_ptl,
1671                                         struct vm_area_struct *vma)
1672{
1673        /*
1674         * With split pmd lock we also need to move preallocated
1675         * PTE page table if new_pmd is on different PMD page table.
1676         *
1677         * We also don't deposit and withdraw tables for file pages.
1678         */
1679        return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1680}
1681#endif
1682
1683static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1684{
1685#ifdef CONFIG_MEM_SOFT_DIRTY
1686        if (unlikely(is_pmd_migration_entry(pmd)))
1687                pmd = pmd_swp_mksoft_dirty(pmd);
1688        else if (pmd_present(pmd))
1689                pmd = pmd_mksoft_dirty(pmd);
1690#endif
1691        return pmd;
1692}
1693
1694bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1695                  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1696{
1697        spinlock_t *old_ptl, *new_ptl;
1698        pmd_t pmd;
1699        struct mm_struct *mm = vma->vm_mm;
1700        bool force_flush = false;
1701
1702        /*
1703         * The destination pmd shouldn't be established, free_pgtables()
1704         * should have release it.
1705         */
1706        if (WARN_ON(!pmd_none(*new_pmd))) {
1707                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1708                return false;
1709        }
1710
1711        /*
1712         * We don't have to worry about the ordering of src and dst
1713         * ptlocks because exclusive mmap_lock prevents deadlock.
1714         */
1715        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1716        if (old_ptl) {
1717                new_ptl = pmd_lockptr(mm, new_pmd);
1718                if (new_ptl != old_ptl)
1719                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1720                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1721                if (pmd_present(pmd))
1722                        force_flush = true;
1723                VM_BUG_ON(!pmd_none(*new_pmd));
1724
1725                if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1726                        pgtable_t pgtable;
1727                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1728                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1729                }
1730                pmd = move_soft_dirty_pmd(pmd);
1731                set_pmd_at(mm, new_addr, new_pmd, pmd);
1732                if (force_flush)
1733                        flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1734                if (new_ptl != old_ptl)
1735                        spin_unlock(new_ptl);
1736                spin_unlock(old_ptl);
1737                return true;
1738        }
1739        return false;
1740}
1741
1742/*
1743 * Returns
1744 *  - 0 if PMD could not be locked
1745 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1746 *      or if prot_numa but THP migration is not supported
1747 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1748 */
1749int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1750                unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1751{
1752        struct mm_struct *mm = vma->vm_mm;
1753        spinlock_t *ptl;
1754        pmd_t entry;
1755        bool preserve_write;
1756        int ret;
1757        bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1758        bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1759        bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1760
1761        if (prot_numa && !thp_migration_supported())
1762                return 1;
1763
1764        ptl = __pmd_trans_huge_lock(pmd, vma);
1765        if (!ptl)
1766                return 0;
1767
1768        preserve_write = prot_numa && pmd_write(*pmd);
1769        ret = 1;
1770
1771#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1772        if (is_swap_pmd(*pmd)) {
1773                swp_entry_t entry = pmd_to_swp_entry(*pmd);
1774
1775                VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1776                if (is_writable_migration_entry(entry)) {
1777                        pmd_t newpmd;
1778                        /*
1779                         * A protection check is difficult so
1780                         * just be safe and disable write
1781                         */
1782                        entry = make_readable_migration_entry(
1783                                                        swp_offset(entry));
1784                        newpmd = swp_entry_to_pmd(entry);
1785                        if (pmd_swp_soft_dirty(*pmd))
1786                                newpmd = pmd_swp_mksoft_dirty(newpmd);
1787                        if (pmd_swp_uffd_wp(*pmd))
1788                                newpmd = pmd_swp_mkuffd_wp(newpmd);
1789                        set_pmd_at(mm, addr, pmd, newpmd);
1790                }
1791                goto unlock;
1792        }
1793#endif
1794
1795        /*
1796         * Avoid trapping faults against the zero page. The read-only
1797         * data is likely to be read-cached on the local CPU and
1798         * local/remote hits to the zero page are not interesting.
1799         */
1800        if (prot_numa && is_huge_zero_pmd(*pmd))
1801                goto unlock;
1802
1803        if (prot_numa && pmd_protnone(*pmd))
1804                goto unlock;
1805
1806        /*
1807         * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1808         * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1809         * which is also under mmap_read_lock(mm):
1810         *
1811         *      CPU0:                           CPU1:
1812         *                              change_huge_pmd(prot_numa=1)
1813         *                               pmdp_huge_get_and_clear_notify()
1814         * madvise_dontneed()
1815         *  zap_pmd_range()
1816         *   pmd_trans_huge(*pmd) == 0 (without ptl)
1817         *   // skip the pmd
1818         *                               set_pmd_at();
1819         *                               // pmd is re-established
1820         *
1821         * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1822         * which may break userspace.
1823         *
1824         * pmdp_invalidate() is required to make sure we don't miss
1825         * dirty/young flags set by hardware.
1826         */
1827        entry = pmdp_invalidate(vma, addr, pmd);
1828
1829        entry = pmd_modify(entry, newprot);
1830        if (preserve_write)
1831                entry = pmd_mk_savedwrite(entry);
1832        if (uffd_wp) {
1833                entry = pmd_wrprotect(entry);
1834                entry = pmd_mkuffd_wp(entry);
1835        } else if (uffd_wp_resolve) {
1836                /*
1837                 * Leave the write bit to be handled by PF interrupt
1838                 * handler, then things like COW could be properly
1839                 * handled.
1840                 */
1841                entry = pmd_clear_uffd_wp(entry);
1842        }
1843        ret = HPAGE_PMD_NR;
1844        set_pmd_at(mm, addr, pmd, entry);
1845        BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1846unlock:
1847        spin_unlock(ptl);
1848        return ret;
1849}
1850
1851/*
1852 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1853 *
1854 * Note that if it returns page table lock pointer, this routine returns without
1855 * unlocking page table lock. So callers must unlock it.
1856 */
1857spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1858{
1859        spinlock_t *ptl;
1860        ptl = pmd_lock(vma->vm_mm, pmd);
1861        if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1862                        pmd_devmap(*pmd)))
1863                return ptl;
1864        spin_unlock(ptl);
1865        return NULL;
1866}
1867
1868/*
1869 * Returns true if a given pud maps a thp, false otherwise.
1870 *
1871 * Note that if it returns true, this routine returns without unlocking page
1872 * table lock. So callers must unlock it.
1873 */
1874spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1875{
1876        spinlock_t *ptl;
1877
1878        ptl = pud_lock(vma->vm_mm, pud);
1879        if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1880                return ptl;
1881        spin_unlock(ptl);
1882        return NULL;
1883}
1884
1885#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1886int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1887                 pud_t *pud, unsigned long addr)
1888{
1889        spinlock_t *ptl;
1890
1891        ptl = __pud_trans_huge_lock(pud, vma);
1892        if (!ptl)
1893                return 0;
1894        /*
1895         * For architectures like ppc64 we look at deposited pgtable
1896         * when calling pudp_huge_get_and_clear. So do the
1897         * pgtable_trans_huge_withdraw after finishing pudp related
1898         * operations.
1899         */
1900        pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1901        tlb_remove_pud_tlb_entry(tlb, pud, addr);
1902        if (vma_is_special_huge(vma)) {
1903                spin_unlock(ptl);
1904                /* No zero page support yet */
1905        } else {
1906                /* No support for anonymous PUD pages yet */
1907                BUG();
1908        }
1909        return 1;
1910}
1911
1912static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1913                unsigned long haddr)
1914{
1915        VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1916        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1917        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1918        VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1919
1920        count_vm_event(THP_SPLIT_PUD);
1921
1922        pudp_huge_clear_flush_notify(vma, haddr, pud);
1923}
1924
1925void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1926                unsigned long address)
1927{
1928        spinlock_t *ptl;
1929        struct mmu_notifier_range range;
1930
1931        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1932                                address & HPAGE_PUD_MASK,
1933                                (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1934        mmu_notifier_invalidate_range_start(&range);
1935        ptl = pud_lock(vma->vm_mm, pud);
1936        if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1937                goto out;
1938        __split_huge_pud_locked(vma, pud, range.start);
1939
1940out:
1941        spin_unlock(ptl);
1942        /*
1943         * No need to double call mmu_notifier->invalidate_range() callback as
1944         * the above pudp_huge_clear_flush_notify() did already call it.
1945         */
1946        mmu_notifier_invalidate_range_only_end(&range);
1947}
1948#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1949
1950static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1951                unsigned long haddr, pmd_t *pmd)
1952{
1953        struct mm_struct *mm = vma->vm_mm;
1954        pgtable_t pgtable;
1955        pmd_t _pmd;
1956        int i;
1957
1958        /*
1959         * Leave pmd empty until pte is filled note that it is fine to delay
1960         * notification until mmu_notifier_invalidate_range_end() as we are
1961         * replacing a zero pmd write protected page with a zero pte write
1962         * protected page.
1963         *
1964         * See Documentation/vm/mmu_notifier.rst
1965         */
1966        pmdp_huge_clear_flush(vma, haddr, pmd);
1967
1968        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1969        pmd_populate(mm, &_pmd, pgtable);
1970
1971        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1972                pte_t *pte, entry;
1973                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1974                entry = pte_mkspecial(entry);
1975                pte = pte_offset_map(&_pmd, haddr);
1976                VM_BUG_ON(!pte_none(*pte));
1977                set_pte_at(mm, haddr, pte, entry);
1978                pte_unmap(pte);
1979        }
1980        smp_wmb(); /* make pte visible before pmd */
1981        pmd_populate(mm, pmd, pgtable);
1982}
1983
1984static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1985                unsigned long haddr, bool freeze)
1986{
1987        struct mm_struct *mm = vma->vm_mm;
1988        struct page *page;
1989        pgtable_t pgtable;
1990        pmd_t old_pmd, _pmd;
1991        bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1992        unsigned long addr;
1993        int i;
1994
1995        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1996        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1997        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1998        VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1999                                && !pmd_devmap(*pmd));
2000
2001        count_vm_event(THP_SPLIT_PMD);
2002
2003        if (!vma_is_anonymous(vma)) {
2004                old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2005                /*
2006                 * We are going to unmap this huge page. So
2007                 * just go ahead and zap it
2008                 */
2009                if (arch_needs_pgtable_deposit())
2010                        zap_deposited_table(mm, pmd);
2011                if (vma_is_special_huge(vma))
2012                        return;
2013                if (unlikely(is_pmd_migration_entry(old_pmd))) {
2014                        swp_entry_t entry;
2015
2016                        entry = pmd_to_swp_entry(old_pmd);
2017                        page = pfn_swap_entry_to_page(entry);
2018                } else {
2019                        page = pmd_page(old_pmd);
2020                        if (!PageDirty(page) && pmd_dirty(old_pmd))
2021                                set_page_dirty(page);
2022                        if (!PageReferenced(page) && pmd_young(old_pmd))
2023                                SetPageReferenced(page);
2024                        page_remove_rmap(page, true);
2025                        put_page(page);
2026                }
2027                add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2028                return;
2029        }
2030
2031        if (is_huge_zero_pmd(*pmd)) {
2032                /*
2033                 * FIXME: Do we want to invalidate secondary mmu by calling
2034                 * mmu_notifier_invalidate_range() see comments below inside
2035                 * __split_huge_pmd() ?
2036                 *
2037                 * We are going from a zero huge page write protected to zero
2038                 * small page also write protected so it does not seems useful
2039                 * to invalidate secondary mmu at this time.
2040                 */
2041                return __split_huge_zero_page_pmd(vma, haddr, pmd);
2042        }
2043
2044        /*
2045         * Up to this point the pmd is present and huge and userland has the
2046         * whole access to the hugepage during the split (which happens in
2047         * place). If we overwrite the pmd with the not-huge version pointing
2048         * to the pte here (which of course we could if all CPUs were bug
2049         * free), userland could trigger a small page size TLB miss on the
2050         * small sized TLB while the hugepage TLB entry is still established in
2051         * the huge TLB. Some CPU doesn't like that.
2052         * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2053         * 383 on page 105. Intel should be safe but is also warns that it's
2054         * only safe if the permission and cache attributes of the two entries
2055         * loaded in the two TLB is identical (which should be the case here).
2056         * But it is generally safer to never allow small and huge TLB entries
2057         * for the same virtual address to be loaded simultaneously. So instead
2058         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2059         * current pmd notpresent (atomically because here the pmd_trans_huge
2060         * must remain set at all times on the pmd until the split is complete
2061         * for this pmd), then we flush the SMP TLB and finally we write the
2062         * non-huge version of the pmd entry with pmd_populate.
2063         */
2064        old_pmd = pmdp_invalidate(vma, haddr, pmd);
2065
2066        pmd_migration = is_pmd_migration_entry(old_pmd);
2067        if (unlikely(pmd_migration)) {
2068                swp_entry_t entry;
2069
2070                entry = pmd_to_swp_entry(old_pmd);
2071                page = pfn_swap_entry_to_page(entry);
2072                write = is_writable_migration_entry(entry);
2073                young = false;
2074                soft_dirty = pmd_swp_soft_dirty(old_pmd);
2075                uffd_wp = pmd_swp_uffd_wp(old_pmd);
2076        } else {
2077                page = pmd_page(old_pmd);
2078                if (pmd_dirty(old_pmd))
2079                        SetPageDirty(page);
2080                write = pmd_write(old_pmd);
2081                young = pmd_young(old_pmd);
2082                soft_dirty = pmd_soft_dirty(old_pmd);
2083                uffd_wp = pmd_uffd_wp(old_pmd);
2084        }
2085        VM_BUG_ON_PAGE(!page_count(page), page);
2086        page_ref_add(page, HPAGE_PMD_NR - 1);
2087
2088        /*
2089         * Withdraw the table only after we mark the pmd entry invalid.
2090         * This's critical for some architectures (Power).
2091         */
2092        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2093        pmd_populate(mm, &_pmd, pgtable);
2094
2095        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2096                pte_t entry, *pte;
2097                /*
2098                 * Note that NUMA hinting access restrictions are not
2099                 * transferred to avoid any possibility of altering
2100                 * permissions across VMAs.
2101                 */
2102                if (freeze || pmd_migration) {
2103                        swp_entry_t swp_entry;
2104                        if (write)
2105                                swp_entry = make_writable_migration_entry(
2106                                                        page_to_pfn(page + i));
2107                        else
2108                                swp_entry = make_readable_migration_entry(
2109                                                        page_to_pfn(page + i));
2110                        entry = swp_entry_to_pte(swp_entry);
2111                        if (soft_dirty)
2112                                entry = pte_swp_mksoft_dirty(entry);
2113                        if (uffd_wp)
2114                                entry = pte_swp_mkuffd_wp(entry);
2115                } else {
2116                        entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117                        entry = maybe_mkwrite(entry, vma);
2118                        if (!write)
2119                                entry = pte_wrprotect(entry);
2120                        if (!young)
2121                                entry = pte_mkold(entry);
2122                        if (soft_dirty)
2123                                entry = pte_mksoft_dirty(entry);
2124                        if (uffd_wp)
2125                                entry = pte_mkuffd_wp(entry);
2126                }
2127                pte = pte_offset_map(&_pmd, addr);
2128                BUG_ON(!pte_none(*pte));
2129                set_pte_at(mm, addr, pte, entry);
2130                if (!pmd_migration)
2131                        atomic_inc(&page[i]._mapcount);
2132                pte_unmap(pte);
2133        }
2134
2135        if (!pmd_migration) {
2136                /*
2137                 * Set PG_double_map before dropping compound_mapcount to avoid
2138                 * false-negative page_mapped().
2139                 */
2140                if (compound_mapcount(page) > 1 &&
2141                    !TestSetPageDoubleMap(page)) {
2142                        for (i = 0; i < HPAGE_PMD_NR; i++)
2143                                atomic_inc(&page[i]._mapcount);
2144                }
2145
2146                lock_page_memcg(page);
2147                if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2148                        /* Last compound_mapcount is gone. */
2149                        __mod_lruvec_page_state(page, NR_ANON_THPS,
2150                                                -HPAGE_PMD_NR);
2151                        if (TestClearPageDoubleMap(page)) {
2152                                /* No need in mapcount reference anymore */
2153                                for (i = 0; i < HPAGE_PMD_NR; i++)
2154                                        atomic_dec(&page[i]._mapcount);
2155                        }
2156                }
2157                unlock_page_memcg(page);
2158        }
2159
2160        smp_wmb(); /* make pte visible before pmd */
2161        pmd_populate(mm, pmd, pgtable);
2162
2163        if (freeze) {
2164                for (i = 0; i < HPAGE_PMD_NR; i++) {
2165                        page_remove_rmap(page + i, false);
2166                        put_page(page + i);
2167                }
2168        }
2169}
2170
2171void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2172                unsigned long address, bool freeze, struct page *page)
2173{
2174        spinlock_t *ptl;
2175        struct mmu_notifier_range range;
2176        bool do_unlock_page = false;
2177        pmd_t _pmd;
2178
2179        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2180                                address & HPAGE_PMD_MASK,
2181                                (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2182        mmu_notifier_invalidate_range_start(&range);
2183        ptl = pmd_lock(vma->vm_mm, pmd);
2184
2185        /*
2186         * If caller asks to setup a migration entries, we need a page to check
2187         * pmd against. Otherwise we can end up replacing wrong page.
2188         */
2189        VM_BUG_ON(freeze && !page);
2190        if (page) {
2191                VM_WARN_ON_ONCE(!PageLocked(page));
2192                if (page != pmd_page(*pmd))
2193                        goto out;
2194        }
2195
2196repeat:
2197        if (pmd_trans_huge(*pmd)) {
2198                if (!page) {
2199                        page = pmd_page(*pmd);
2200                        /*
2201                         * An anonymous page must be locked, to ensure that a
2202                         * concurrent reuse_swap_page() sees stable mapcount;
2203                         * but reuse_swap_page() is not used on shmem or file,
2204                         * and page lock must not be taken when zap_pmd_range()
2205                         * calls __split_huge_pmd() while i_mmap_lock is held.
2206                         */
2207                        if (PageAnon(page)) {
2208                                if (unlikely(!trylock_page(page))) {
2209                                        get_page(page);
2210                                        _pmd = *pmd;
2211                                        spin_unlock(ptl);
2212                                        lock_page(page);
2213                                        spin_lock(ptl);
2214                                        if (unlikely(!pmd_same(*pmd, _pmd))) {
2215                                                unlock_page(page);
2216                                                put_page(page);
2217                                                page = NULL;
2218                                                goto repeat;
2219                                        }
2220                                        put_page(page);
2221                                }
2222                                do_unlock_page = true;
2223                        }
2224                }
2225                if (PageMlocked(page))
2226                        clear_page_mlock(page);
2227        } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2228                goto out;
2229        __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2230out:
2231        spin_unlock(ptl);
2232        if (do_unlock_page)
2233                unlock_page(page);
2234        /*
2235         * No need to double call mmu_notifier->invalidate_range() callback.
2236         * They are 3 cases to consider inside __split_huge_pmd_locked():
2237         *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2238         *  2) __split_huge_zero_page_pmd() read only zero page and any write
2239         *    fault will trigger a flush_notify before pointing to a new page
2240         *    (it is fine if the secondary mmu keeps pointing to the old zero
2241         *    page in the meantime)
2242         *  3) Split a huge pmd into pte pointing to the same page. No need
2243         *     to invalidate secondary tlb entry they are all still valid.
2244         *     any further changes to individual pte will notify. So no need
2245         *     to call mmu_notifier->invalidate_range()
2246         */
2247        mmu_notifier_invalidate_range_only_end(&range);
2248}
2249
2250void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2251                bool freeze, struct page *page)
2252{
2253        pgd_t *pgd;
2254        p4d_t *p4d;
2255        pud_t *pud;
2256        pmd_t *pmd;
2257
2258        pgd = pgd_offset(vma->vm_mm, address);
2259        if (!pgd_present(*pgd))
2260                return;
2261
2262        p4d = p4d_offset(pgd, address);
2263        if (!p4d_present(*p4d))
2264                return;
2265
2266        pud = pud_offset(p4d, address);
2267        if (!pud_present(*pud))
2268                return;
2269
2270        pmd = pmd_offset(pud, address);
2271
2272        __split_huge_pmd(vma, pmd, address, freeze, page);
2273}
2274
2275static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2276{
2277        /*
2278         * If the new address isn't hpage aligned and it could previously
2279         * contain an hugepage: check if we need to split an huge pmd.
2280         */
2281        if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2282            range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2283                         ALIGN(address, HPAGE_PMD_SIZE)))
2284                split_huge_pmd_address(vma, address, false, NULL);
2285}
2286
2287void vma_adjust_trans_huge(struct vm_area_struct *vma,
2288                             unsigned long start,
2289                             unsigned long end,
2290                             long adjust_next)
2291{
2292        /* Check if we need to split start first. */
2293        split_huge_pmd_if_needed(vma, start);
2294
2295        /* Check if we need to split end next. */
2296        split_huge_pmd_if_needed(vma, end);
2297
2298        /*
2299         * If we're also updating the vma->vm_next->vm_start,
2300         * check if we need to split it.
2301         */
2302        if (adjust_next > 0) {
2303                struct vm_area_struct *next = vma->vm_next;
2304                unsigned long nstart = next->vm_start;
2305                nstart += adjust_next;
2306                split_huge_pmd_if_needed(next, nstart);
2307        }
2308}
2309
2310static void unmap_page(struct page *page)
2311{
2312        enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2313                TTU_SYNC;
2314
2315        VM_BUG_ON_PAGE(!PageHead(page), page);
2316
2317        /*
2318         * Anon pages need migration entries to preserve them, but file
2319         * pages can simply be left unmapped, then faulted back on demand.
2320         * If that is ever changed (perhaps for mlock), update remap_page().
2321         */
2322        if (PageAnon(page))
2323                try_to_migrate(page, ttu_flags);
2324        else
2325                try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2326
2327        VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2328}
2329
2330static void remap_page(struct page *page, unsigned int nr)
2331{
2332        int i;
2333
2334        /* If unmap_page() uses try_to_migrate() on file, remove this check */
2335        if (!PageAnon(page))
2336                return;
2337        if (PageTransHuge(page)) {
2338                remove_migration_ptes(page, page, true);
2339        } else {
2340                for (i = 0; i < nr; i++)
2341                        remove_migration_ptes(page + i, page + i, true);
2342        }
2343}
2344
2345static void lru_add_page_tail(struct page *head, struct page *tail,
2346                struct lruvec *lruvec, struct list_head *list)
2347{
2348        VM_BUG_ON_PAGE(!PageHead(head), head);
2349        VM_BUG_ON_PAGE(PageCompound(tail), head);
2350        VM_BUG_ON_PAGE(PageLRU(tail), head);
2351        lockdep_assert_held(&lruvec->lru_lock);
2352
2353        if (list) {
2354                /* page reclaim is reclaiming a huge page */
2355                VM_WARN_ON(PageLRU(head));
2356                get_page(tail);
2357                list_add_tail(&tail->lru, list);
2358        } else {
2359                /* head is still on lru (and we have it frozen) */
2360                VM_WARN_ON(!PageLRU(head));
2361                SetPageLRU(tail);
2362                list_add_tail(&tail->lru, &head->lru);
2363        }
2364}
2365
2366static void __split_huge_page_tail(struct page *head, int tail,
2367                struct lruvec *lruvec, struct list_head *list)
2368{
2369        struct page *page_tail = head + tail;
2370
2371        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2372
2373        /*
2374         * Clone page flags before unfreezing refcount.
2375         *
2376         * After successful get_page_unless_zero() might follow flags change,
2377         * for example lock_page() which set PG_waiters.
2378         */
2379        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2380        page_tail->flags |= (head->flags &
2381                        ((1L << PG_referenced) |
2382                         (1L << PG_swapbacked) |
2383                         (1L << PG_swapcache) |
2384                         (1L << PG_mlocked) |
2385                         (1L << PG_uptodate) |
2386                         (1L << PG_active) |
2387                         (1L << PG_workingset) |
2388                         (1L << PG_locked) |
2389                         (1L << PG_unevictable) |
2390#ifdef CONFIG_64BIT
2391                         (1L << PG_arch_2) |
2392#endif
2393                         (1L << PG_dirty)));
2394
2395        /* ->mapping in first tail page is compound_mapcount */
2396        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2397                        page_tail);
2398        page_tail->mapping = head->mapping;
2399        page_tail->index = head->index + tail;
2400
2401        /* Page flags must be visible before we make the page non-compound. */
2402        smp_wmb();
2403
2404        /*
2405         * Clear PageTail before unfreezing page refcount.
2406         *
2407         * After successful get_page_unless_zero() might follow put_page()
2408         * which needs correct compound_head().
2409         */
2410        clear_compound_head(page_tail);
2411
2412        /* Finally unfreeze refcount. Additional reference from page cache. */
2413        page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2414                                          PageSwapCache(head)));
2415
2416        if (page_is_young(head))
2417                set_page_young(page_tail);
2418        if (page_is_idle(head))
2419                set_page_idle(page_tail);
2420
2421        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2422
2423        /*
2424         * always add to the tail because some iterators expect new
2425         * pages to show after the currently processed elements - e.g.
2426         * migrate_pages
2427         */
2428        lru_add_page_tail(head, page_tail, lruvec, list);
2429}
2430
2431static void __split_huge_page(struct page *page, struct list_head *list,
2432                pgoff_t end)
2433{
2434        struct page *head = compound_head(page);
2435        struct lruvec *lruvec;
2436        struct address_space *swap_cache = NULL;
2437        unsigned long offset = 0;
2438        unsigned int nr = thp_nr_pages(head);
2439        int i;
2440
2441        /* complete memcg works before add pages to LRU */
2442        split_page_memcg(head, nr);
2443
2444        if (PageAnon(head) && PageSwapCache(head)) {
2445                swp_entry_t entry = { .val = page_private(head) };
2446
2447                offset = swp_offset(entry);
2448                swap_cache = swap_address_space(entry);
2449                xa_lock(&swap_cache->i_pages);
2450        }
2451
2452        /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2453        lruvec = lock_page_lruvec(head);
2454
2455        for (i = nr - 1; i >= 1; i--) {
2456                __split_huge_page_tail(head, i, lruvec, list);
2457                /* Some pages can be beyond i_size: drop them from page cache */
2458                if (head[i].index >= end) {
2459                        ClearPageDirty(head + i);
2460                        __delete_from_page_cache(head + i, NULL);
2461                        if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2462                                shmem_uncharge(head->mapping->host, 1);
2463                        put_page(head + i);
2464                } else if (!PageAnon(page)) {
2465                        __xa_store(&head->mapping->i_pages, head[i].index,
2466                                        head + i, 0);
2467                } else if (swap_cache) {
2468                        __xa_store(&swap_cache->i_pages, offset + i,
2469                                        head + i, 0);
2470                }
2471        }
2472
2473        ClearPageCompound(head);
2474        unlock_page_lruvec(lruvec);
2475        /* Caller disabled irqs, so they are still disabled here */
2476
2477        split_page_owner(head, nr);
2478
2479        /* See comment in __split_huge_page_tail() */
2480        if (PageAnon(head)) {
2481                /* Additional pin to swap cache */
2482                if (PageSwapCache(head)) {
2483                        page_ref_add(head, 2);
2484                        xa_unlock(&swap_cache->i_pages);
2485                } else {
2486                        page_ref_inc(head);
2487                }
2488        } else {
2489                /* Additional pin to page cache */
2490                page_ref_add(head, 2);
2491                xa_unlock(&head->mapping->i_pages);
2492        }
2493        local_irq_enable();
2494
2495        remap_page(head, nr);
2496
2497        if (PageSwapCache(head)) {
2498                swp_entry_t entry = { .val = page_private(head) };
2499
2500                split_swap_cluster(entry);
2501        }
2502
2503        for (i = 0; i < nr; i++) {
2504                struct page *subpage = head + i;
2505                if (subpage == page)
2506                        continue;
2507                unlock_page(subpage);
2508
2509                /*
2510                 * Subpages may be freed if there wasn't any mapping
2511                 * like if add_to_swap() is running on a lru page that
2512                 * had its mapping zapped. And freeing these pages
2513                 * requires taking the lru_lock so we do the put_page
2514                 * of the tail pages after the split is complete.
2515                 */
2516                put_page(subpage);
2517        }
2518}
2519
2520int total_mapcount(struct page *page)
2521{
2522        int i, compound, nr, ret;
2523
2524        VM_BUG_ON_PAGE(PageTail(page), page);
2525
2526        if (likely(!PageCompound(page)))
2527                return atomic_read(&page->_mapcount) + 1;
2528
2529        compound = compound_mapcount(page);
2530        nr = compound_nr(page);
2531        if (PageHuge(page))
2532                return compound;
2533        ret = compound;
2534        for (i = 0; i < nr; i++)
2535                ret += atomic_read(&page[i]._mapcount) + 1;
2536        /* File pages has compound_mapcount included in _mapcount */
2537        if (!PageAnon(page))
2538                return ret - compound * nr;
2539        if (PageDoubleMap(page))
2540                ret -= nr;
2541        return ret;
2542}
2543
2544/*
2545 * This calculates accurately how many mappings a transparent hugepage
2546 * has (unlike page_mapcount() which isn't fully accurate). This full
2547 * accuracy is primarily needed to know if copy-on-write faults can
2548 * reuse the page and change the mapping to read-write instead of
2549 * copying them. At the same time this returns the total_mapcount too.
2550 *
2551 * The function returns the highest mapcount any one of the subpages
2552 * has. If the return value is one, even if different processes are
2553 * mapping different subpages of the transparent hugepage, they can
2554 * all reuse it, because each process is reusing a different subpage.
2555 *
2556 * The total_mapcount is instead counting all virtual mappings of the
2557 * subpages. If the total_mapcount is equal to "one", it tells the
2558 * caller all mappings belong to the same "mm" and in turn the
2559 * anon_vma of the transparent hugepage can become the vma->anon_vma
2560 * local one as no other process may be mapping any of the subpages.
2561 *
2562 * It would be more accurate to replace page_mapcount() with
2563 * page_trans_huge_mapcount(), however we only use
2564 * page_trans_huge_mapcount() in the copy-on-write faults where we
2565 * need full accuracy to avoid breaking page pinning, because
2566 * page_trans_huge_mapcount() is slower than page_mapcount().
2567 */
2568int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2569{
2570        int i, ret, _total_mapcount, mapcount;
2571
2572        /* hugetlbfs shouldn't call it */
2573        VM_BUG_ON_PAGE(PageHuge(page), page);
2574
2575        if (likely(!PageTransCompound(page))) {
2576                mapcount = atomic_read(&page->_mapcount) + 1;
2577                if (total_mapcount)
2578                        *total_mapcount = mapcount;
2579                return mapcount;
2580        }
2581
2582        page = compound_head(page);
2583
2584        _total_mapcount = ret = 0;
2585        for (i = 0; i < thp_nr_pages(page); i++) {
2586                mapcount = atomic_read(&page[i]._mapcount) + 1;
2587                ret = max(ret, mapcount);
2588                _total_mapcount += mapcount;
2589        }
2590        if (PageDoubleMap(page)) {
2591                ret -= 1;
2592                _total_mapcount -= thp_nr_pages(page);
2593        }
2594        mapcount = compound_mapcount(page);
2595        ret += mapcount;
2596        _total_mapcount += mapcount;
2597        if (total_mapcount)
2598                *total_mapcount = _total_mapcount;
2599        return ret;
2600}
2601
2602/* Racy check whether the huge page can be split */
2603bool can_split_huge_page(struct page *page, int *pextra_pins)
2604{
2605        int extra_pins;
2606
2607        /* Additional pins from page cache */
2608        if (PageAnon(page))
2609                extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2610        else
2611                extra_pins = thp_nr_pages(page);
2612        if (pextra_pins)
2613                *pextra_pins = extra_pins;
2614        return total_mapcount(page) == page_count(page) - extra_pins - 1;
2615}
2616
2617/*
2618 * This function splits huge page into normal pages. @page can point to any
2619 * subpage of huge page to split. Split doesn't change the position of @page.
2620 *
2621 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2622 * The huge page must be locked.
2623 *
2624 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2625 *
2626 * Both head page and tail pages will inherit mapping, flags, and so on from
2627 * the hugepage.
2628 *
2629 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2630 * they are not mapped.
2631 *
2632 * Returns 0 if the hugepage is split successfully.
2633 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2634 * us.
2635 */
2636int split_huge_page_to_list(struct page *page, struct list_head *list)
2637{
2638        struct page *head = compound_head(page);
2639        struct deferred_split *ds_queue = get_deferred_split_queue(head);
2640        struct anon_vma *anon_vma = NULL;
2641        struct address_space *mapping = NULL;
2642        int extra_pins, ret;
2643        pgoff_t end;
2644
2645        VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2646        VM_BUG_ON_PAGE(!PageLocked(head), head);
2647        VM_BUG_ON_PAGE(!PageCompound(head), head);
2648
2649        if (PageWriteback(head))
2650                return -EBUSY;
2651
2652        if (PageAnon(head)) {
2653                /*
2654                 * The caller does not necessarily hold an mmap_lock that would
2655                 * prevent the anon_vma disappearing so we first we take a
2656                 * reference to it and then lock the anon_vma for write. This
2657                 * is similar to page_lock_anon_vma_read except the write lock
2658                 * is taken to serialise against parallel split or collapse
2659                 * operations.
2660                 */
2661                anon_vma = page_get_anon_vma(head);
2662                if (!anon_vma) {
2663                        ret = -EBUSY;
2664                        goto out;
2665                }
2666                end = -1;
2667                mapping = NULL;
2668                anon_vma_lock_write(anon_vma);
2669        } else {
2670                mapping = head->mapping;
2671
2672                /* Truncated ? */
2673                if (!mapping) {
2674                        ret = -EBUSY;
2675                        goto out;
2676                }
2677
2678                anon_vma = NULL;
2679                i_mmap_lock_read(mapping);
2680
2681                /*
2682                 *__split_huge_page() may need to trim off pages beyond EOF:
2683                 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2684                 * which cannot be nested inside the page tree lock. So note
2685                 * end now: i_size itself may be changed at any moment, but
2686                 * head page lock is good enough to serialize the trimming.
2687                 */
2688                end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2689        }
2690
2691        /*
2692         * Racy check if we can split the page, before unmap_page() will
2693         * split PMDs
2694         */
2695        if (!can_split_huge_page(head, &extra_pins)) {
2696                ret = -EBUSY;
2697                goto out_unlock;
2698        }
2699
2700        unmap_page(head);
2701
2702        /* block interrupt reentry in xa_lock and spinlock */
2703        local_irq_disable();
2704        if (mapping) {
2705                XA_STATE(xas, &mapping->i_pages, page_index(head));
2706
2707                /*
2708                 * Check if the head page is present in page cache.
2709                 * We assume all tail are present too, if head is there.
2710                 */
2711                xa_lock(&mapping->i_pages);
2712                if (xas_load(&xas) != head)
2713                        goto fail;
2714        }
2715
2716        /* Prevent deferred_split_scan() touching ->_refcount */
2717        spin_lock(&ds_queue->split_queue_lock);
2718        if (page_ref_freeze(head, 1 + extra_pins)) {
2719                if (!list_empty(page_deferred_list(head))) {
2720                        ds_queue->split_queue_len--;
2721                        list_del(page_deferred_list(head));
2722                }
2723                spin_unlock(&ds_queue->split_queue_lock);
2724                if (mapping) {
2725                        int nr = thp_nr_pages(head);
2726
2727                        if (PageSwapBacked(head))
2728                                __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2729                                                        -nr);
2730                        else
2731                                __mod_lruvec_page_state(head, NR_FILE_THPS,
2732                                                        -nr);
2733                }
2734
2735                __split_huge_page(page, list, end);
2736                ret = 0;
2737        } else {
2738                spin_unlock(&ds_queue->split_queue_lock);
2739fail:
2740                if (mapping)
2741                        xa_unlock(&mapping->i_pages);
2742                local_irq_enable();
2743                remap_page(head, thp_nr_pages(head));
2744                ret = -EBUSY;
2745        }
2746
2747out_unlock:
2748        if (anon_vma) {
2749                anon_vma_unlock_write(anon_vma);
2750                put_anon_vma(anon_vma);
2751        }
2752        if (mapping)
2753                i_mmap_unlock_read(mapping);
2754out:
2755        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2756        return ret;
2757}
2758
2759void free_transhuge_page(struct page *page)
2760{
2761        struct deferred_split *ds_queue = get_deferred_split_queue(page);
2762        unsigned long flags;
2763
2764        spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2765        if (!list_empty(page_deferred_list(page))) {
2766                ds_queue->split_queue_len--;
2767                list_del(page_deferred_list(page));
2768        }
2769        spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2770        free_compound_page(page);
2771}
2772
2773void deferred_split_huge_page(struct page *page)
2774{
2775        struct deferred_split *ds_queue = get_deferred_split_queue(page);
2776#ifdef CONFIG_MEMCG
2777        struct mem_cgroup *memcg = page_memcg(compound_head(page));
2778#endif
2779        unsigned long flags;
2780
2781        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2782
2783        /*
2784         * The try_to_unmap() in page reclaim path might reach here too,
2785         * this may cause a race condition to corrupt deferred split queue.
2786         * And, if page reclaim is already handling the same page, it is
2787         * unnecessary to handle it again in shrinker.
2788         *
2789         * Check PageSwapCache to determine if the page is being
2790         * handled by page reclaim since THP swap would add the page into
2791         * swap cache before calling try_to_unmap().
2792         */
2793        if (PageSwapCache(page))
2794                return;
2795
2796        spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2797        if (list_empty(page_deferred_list(page))) {
2798                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2799                list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2800                ds_queue->split_queue_len++;
2801#ifdef CONFIG_MEMCG
2802                if (memcg)
2803                        set_shrinker_bit(memcg, page_to_nid(page),
2804                                         deferred_split_shrinker.id);
2805#endif
2806        }
2807        spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808}
2809
2810static unsigned long deferred_split_count(struct shrinker *shrink,
2811                struct shrink_control *sc)
2812{
2813        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2814        struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2815
2816#ifdef CONFIG_MEMCG
2817        if (sc->memcg)
2818                ds_queue = &sc->memcg->deferred_split_queue;
2819#endif
2820        return READ_ONCE(ds_queue->split_queue_len);
2821}
2822
2823static unsigned long deferred_split_scan(struct shrinker *shrink,
2824                struct shrink_control *sc)
2825{
2826        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2827        struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2828        unsigned long flags;
2829        LIST_HEAD(list), *pos, *next;
2830        struct page *page;
2831        int split = 0;
2832
2833#ifdef CONFIG_MEMCG
2834        if (sc->memcg)
2835                ds_queue = &sc->memcg->deferred_split_queue;
2836#endif
2837
2838        spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2839        /* Take pin on all head pages to avoid freeing them under us */
2840        list_for_each_safe(pos, next, &ds_queue->split_queue) {
2841                page = list_entry((void *)pos, struct page, deferred_list);
2842                page = compound_head(page);
2843                if (get_page_unless_zero(page)) {
2844                        list_move(page_deferred_list(page), &list);
2845                } else {
2846                        /* We lost race with put_compound_page() */
2847                        list_del_init(page_deferred_list(page));
2848                        ds_queue->split_queue_len--;
2849                }
2850                if (!--sc->nr_to_scan)
2851                        break;
2852        }
2853        spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2854
2855        list_for_each_safe(pos, next, &list) {
2856                page = list_entry((void *)pos, struct page, deferred_list);
2857                if (!trylock_page(page))
2858                        goto next;
2859                /* split_huge_page() removes page from list on success */
2860                if (!split_huge_page(page))
2861                        split++;
2862                unlock_page(page);
2863next:
2864                put_page(page);
2865        }
2866
2867        spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2868        list_splice_tail(&list, &ds_queue->split_queue);
2869        spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2870
2871        /*
2872         * Stop shrinker if we didn't split any page, but the queue is empty.
2873         * This can happen if pages were freed under us.
2874         */
2875        if (!split && list_empty(&ds_queue->split_queue))
2876                return SHRINK_STOP;
2877        return split;
2878}
2879
2880static struct shrinker deferred_split_shrinker = {
2881        .count_objects = deferred_split_count,
2882        .scan_objects = deferred_split_scan,
2883        .seeks = DEFAULT_SEEKS,
2884        .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2885                 SHRINKER_NONSLAB,
2886};
2887
2888#ifdef CONFIG_DEBUG_FS
2889static void split_huge_pages_all(void)
2890{
2891        struct zone *zone;
2892        struct page *page;
2893        unsigned long pfn, max_zone_pfn;
2894        unsigned long total = 0, split = 0;
2895
2896        pr_debug("Split all THPs\n");
2897        for_each_populated_zone(zone) {
2898                max_zone_pfn = zone_end_pfn(zone);
2899                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2900                        if (!pfn_valid(pfn))
2901                                continue;
2902
2903                        page = pfn_to_page(pfn);
2904                        if (!get_page_unless_zero(page))
2905                                continue;
2906
2907                        if (zone != page_zone(page))
2908                                goto next;
2909
2910                        if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2911                                goto next;
2912
2913                        total++;
2914                        lock_page(page);
2915                        if (!split_huge_page(page))
2916                                split++;
2917                        unlock_page(page);
2918next:
2919                        put_page(page);
2920                        cond_resched();
2921                }
2922        }
2923
2924        pr_debug("%lu of %lu THP split\n", split, total);
2925}
2926
2927static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2928{
2929        return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2930                    is_vm_hugetlb_page(vma);
2931}
2932
2933static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2934                                unsigned long vaddr_end)
2935{
2936        int ret = 0;
2937        struct task_struct *task;
2938        struct mm_struct *mm;
2939        unsigned long total = 0, split = 0;
2940        unsigned long addr;
2941
2942        vaddr_start &= PAGE_MASK;
2943        vaddr_end &= PAGE_MASK;
2944
2945        /* Find the task_struct from pid */
2946        rcu_read_lock();
2947        task = find_task_by_vpid(pid);
2948        if (!task) {
2949                rcu_read_unlock();
2950                ret = -ESRCH;
2951                goto out;
2952        }
2953        get_task_struct(task);
2954        rcu_read_unlock();
2955
2956        /* Find the mm_struct */
2957        mm = get_task_mm(task);
2958        put_task_struct(task);
2959
2960        if (!mm) {
2961                ret = -EINVAL;
2962                goto out;
2963        }
2964
2965        pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2966                 pid, vaddr_start, vaddr_end);
2967
2968        mmap_read_lock(mm);
2969        /*
2970         * always increase addr by PAGE_SIZE, since we could have a PTE page
2971         * table filled with PTE-mapped THPs, each of which is distinct.
2972         */
2973        for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2974                struct vm_area_struct *vma = find_vma(mm, addr);
2975                unsigned int follflags;
2976                struct page *page;
2977
2978                if (!vma || addr < vma->vm_start)
2979                        break;
2980
2981                /* skip special VMA and hugetlb VMA */
2982                if (vma_not_suitable_for_thp_split(vma)) {
2983                        addr = vma->vm_end;
2984                        continue;
2985                }
2986
2987                /* FOLL_DUMP to ignore special (like zero) pages */
2988                follflags = FOLL_GET | FOLL_DUMP;
2989                page = follow_page(vma, addr, follflags);
2990
2991                if (IS_ERR(page))
2992                        continue;
2993                if (!page)
2994                        continue;
2995
2996                if (!is_transparent_hugepage(page))
2997                        goto next;
2998
2999                total++;
3000                if (!can_split_huge_page(compound_head(page), NULL))
3001                        goto next;
3002
3003                if (!trylock_page(page))
3004                        goto next;
3005
3006                if (!split_huge_page(page))
3007                        split++;
3008
3009                unlock_page(page);
3010next:
3011                put_page(page);
3012                cond_resched();
3013        }
3014        mmap_read_unlock(mm);
3015        mmput(mm);
3016
3017        pr_debug("%lu of %lu THP split\n", split, total);
3018
3019out:
3020        return ret;
3021}
3022
3023static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3024                                pgoff_t off_end)
3025{
3026        struct filename *file;
3027        struct file *candidate;
3028        struct address_space *mapping;
3029        int ret = -EINVAL;
3030        pgoff_t index;
3031        int nr_pages = 1;
3032        unsigned long total = 0, split = 0;
3033
3034        file = getname_kernel(file_path);
3035        if (IS_ERR(file))
3036                return ret;
3037
3038        candidate = file_open_name(file, O_RDONLY, 0);
3039        if (IS_ERR(candidate))
3040                goto out;
3041
3042        pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3043                 file_path, off_start, off_end);
3044
3045        mapping = candidate->f_mapping;
3046
3047        for (index = off_start; index < off_end; index += nr_pages) {
3048                struct page *fpage = pagecache_get_page(mapping, index,
3049                                                FGP_ENTRY | FGP_HEAD, 0);
3050
3051                nr_pages = 1;
3052                if (xa_is_value(fpage) || !fpage)
3053                        continue;
3054
3055                if (!is_transparent_hugepage(fpage))
3056                        goto next;
3057
3058                total++;
3059                nr_pages = thp_nr_pages(fpage);
3060
3061                if (!trylock_page(fpage))
3062                        goto next;
3063
3064                if (!split_huge_page(fpage))
3065                        split++;
3066
3067                unlock_page(fpage);
3068next:
3069                put_page(fpage);
3070                cond_resched();
3071        }
3072
3073        filp_close(candidate, NULL);
3074        ret = 0;
3075
3076        pr_debug("%lu of %lu file-backed THP split\n", split, total);
3077out:
3078        putname(file);
3079        return ret;
3080}
3081
3082#define MAX_INPUT_BUF_SZ 255
3083
3084static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3085                                size_t count, loff_t *ppops)
3086{
3087        static DEFINE_MUTEX(split_debug_mutex);
3088        ssize_t ret;
3089        /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3090        char input_buf[MAX_INPUT_BUF_SZ];
3091        int pid;
3092        unsigned long vaddr_start, vaddr_end;
3093
3094        ret = mutex_lock_interruptible(&split_debug_mutex);
3095        if (ret)
3096                return ret;
3097
3098        ret = -EFAULT;
3099
3100        memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3101        if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3102                goto out;
3103
3104        input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3105
3106        if (input_buf[0] == '/') {
3107                char *tok;
3108                char *buf = input_buf;
3109                char file_path[MAX_INPUT_BUF_SZ];
3110                pgoff_t off_start = 0, off_end = 0;
3111                size_t input_len = strlen(input_buf);
3112
3113                tok = strsep(&buf, ",");
3114                if (tok) {
3115                        strcpy(file_path, tok);
3116                } else {
3117                        ret = -EINVAL;
3118                        goto out;
3119                }
3120
3121                ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3122                if (ret != 2) {
3123                        ret = -EINVAL;
3124                        goto out;
3125                }
3126                ret = split_huge_pages_in_file(file_path, off_start, off_end);
3127                if (!ret)
3128                        ret = input_len;
3129
3130                goto out;
3131        }
3132
3133        ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3134        if (ret == 1 && pid == 1) {
3135                split_huge_pages_all();
3136                ret = strlen(input_buf);
3137                goto out;
3138        } else if (ret != 3) {
3139                ret = -EINVAL;
3140                goto out;
3141        }
3142
3143        ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3144        if (!ret)
3145                ret = strlen(input_buf);
3146out:
3147        mutex_unlock(&split_debug_mutex);
3148        return ret;
3149
3150}
3151
3152static const struct file_operations split_huge_pages_fops = {
3153        .owner   = THIS_MODULE,
3154        .write   = split_huge_pages_write,
3155        .llseek  = no_llseek,
3156};
3157
3158static int __init split_huge_pages_debugfs(void)
3159{
3160        debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3161                            &split_huge_pages_fops);
3162        return 0;
3163}
3164late_initcall(split_huge_pages_debugfs);
3165#endif
3166
3167#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3168void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3169                struct page *page)
3170{
3171        struct vm_area_struct *vma = pvmw->vma;
3172        struct mm_struct *mm = vma->vm_mm;
3173        unsigned long address = pvmw->address;
3174        pmd_t pmdval;
3175        swp_entry_t entry;
3176        pmd_t pmdswp;
3177
3178        if (!(pvmw->pmd && !pvmw->pte))
3179                return;
3180
3181        flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3182        pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3183        if (pmd_dirty(pmdval))
3184                set_page_dirty(page);
3185        if (pmd_write(pmdval))
3186                entry = make_writable_migration_entry(page_to_pfn(page));
3187        else
3188                entry = make_readable_migration_entry(page_to_pfn(page));
3189        pmdswp = swp_entry_to_pmd(entry);
3190        if (pmd_soft_dirty(pmdval))
3191                pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3192        set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3193        page_remove_rmap(page, true);
3194        put_page(page);
3195}
3196
3197void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3198{
3199        struct vm_area_struct *vma = pvmw->vma;
3200        struct mm_struct *mm = vma->vm_mm;
3201        unsigned long address = pvmw->address;
3202        unsigned long mmun_start = address & HPAGE_PMD_MASK;
3203        pmd_t pmde;
3204        swp_entry_t entry;
3205
3206        if (!(pvmw->pmd && !pvmw->pte))
3207                return;
3208
3209        entry = pmd_to_swp_entry(*pvmw->pmd);
3210        get_page(new);
3211        pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3212        if (pmd_swp_soft_dirty(*pvmw->pmd))
3213                pmde = pmd_mksoft_dirty(pmde);
3214        if (is_writable_migration_entry(entry))
3215                pmde = maybe_pmd_mkwrite(pmde, vma);
3216        if (pmd_swp_uffd_wp(*pvmw->pmd))
3217                pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3218
3219        flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3220        if (PageAnon(new))
3221                page_add_anon_rmap(new, vma, mmun_start, true);
3222        else
3223                page_add_file_rmap(new, true);
3224        set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3225        if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3226                mlock_vma_page(new);
3227        update_mmu_cache_pmd(vma, address, pvmw->pmd);
3228}
3229#endif
3230