linux/mm/hugetlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33#include <linux/migrate.h>
  34
  35#include <asm/page.h>
  36#include <asm/pgalloc.h>
  37#include <asm/tlb.h>
  38
  39#include <linux/io.h>
  40#include <linux/hugetlb.h>
  41#include <linux/hugetlb_cgroup.h>
  42#include <linux/node.h>
  43#include <linux/page_owner.h>
  44#include "internal.h"
  45#include "hugetlb_vmemmap.h"
  46
  47int hugetlb_max_hstate __read_mostly;
  48unsigned int default_hstate_idx;
  49struct hstate hstates[HUGE_MAX_HSTATE];
  50
  51#ifdef CONFIG_CMA
  52static struct cma *hugetlb_cma[MAX_NUMNODES];
  53#endif
  54static unsigned long hugetlb_cma_size __initdata;
  55
  56/*
  57 * Minimum page order among possible hugepage sizes, set to a proper value
  58 * at boot time.
  59 */
  60static unsigned int minimum_order __read_mostly = UINT_MAX;
  61
  62__initdata LIST_HEAD(huge_boot_pages);
  63
  64/* for command line parsing */
  65static struct hstate * __initdata parsed_hstate;
  66static unsigned long __initdata default_hstate_max_huge_pages;
  67static bool __initdata parsed_valid_hugepagesz = true;
  68static bool __initdata parsed_default_hugepagesz;
  69
  70/*
  71 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  72 * free_huge_pages, and surplus_huge_pages.
  73 */
  74DEFINE_SPINLOCK(hugetlb_lock);
  75
  76/*
  77 * Serializes faults on the same logical page.  This is used to
  78 * prevent spurious OOMs when the hugepage pool is fully utilized.
  79 */
  80static int num_fault_mutexes;
  81struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  82
  83/* Forward declaration */
  84static int hugetlb_acct_memory(struct hstate *h, long delta);
  85
  86static inline bool subpool_is_free(struct hugepage_subpool *spool)
  87{
  88        if (spool->count)
  89                return false;
  90        if (spool->max_hpages != -1)
  91                return spool->used_hpages == 0;
  92        if (spool->min_hpages != -1)
  93                return spool->rsv_hpages == spool->min_hpages;
  94
  95        return true;
  96}
  97
  98static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
  99                                                unsigned long irq_flags)
 100{
 101        spin_unlock_irqrestore(&spool->lock, irq_flags);
 102
 103        /* If no pages are used, and no other handles to the subpool
 104         * remain, give up any reservations based on minimum size and
 105         * free the subpool */
 106        if (subpool_is_free(spool)) {
 107                if (spool->min_hpages != -1)
 108                        hugetlb_acct_memory(spool->hstate,
 109                                                -spool->min_hpages);
 110                kfree(spool);
 111        }
 112}
 113
 114struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 115                                                long min_hpages)
 116{
 117        struct hugepage_subpool *spool;
 118
 119        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 120        if (!spool)
 121                return NULL;
 122
 123        spin_lock_init(&spool->lock);
 124        spool->count = 1;
 125        spool->max_hpages = max_hpages;
 126        spool->hstate = h;
 127        spool->min_hpages = min_hpages;
 128
 129        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 130                kfree(spool);
 131                return NULL;
 132        }
 133        spool->rsv_hpages = min_hpages;
 134
 135        return spool;
 136}
 137
 138void hugepage_put_subpool(struct hugepage_subpool *spool)
 139{
 140        unsigned long flags;
 141
 142        spin_lock_irqsave(&spool->lock, flags);
 143        BUG_ON(!spool->count);
 144        spool->count--;
 145        unlock_or_release_subpool(spool, flags);
 146}
 147
 148/*
 149 * Subpool accounting for allocating and reserving pages.
 150 * Return -ENOMEM if there are not enough resources to satisfy the
 151 * request.  Otherwise, return the number of pages by which the
 152 * global pools must be adjusted (upward).  The returned value may
 153 * only be different than the passed value (delta) in the case where
 154 * a subpool minimum size must be maintained.
 155 */
 156static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 157                                      long delta)
 158{
 159        long ret = delta;
 160
 161        if (!spool)
 162                return ret;
 163
 164        spin_lock_irq(&spool->lock);
 165
 166        if (spool->max_hpages != -1) {          /* maximum size accounting */
 167                if ((spool->used_hpages + delta) <= spool->max_hpages)
 168                        spool->used_hpages += delta;
 169                else {
 170                        ret = -ENOMEM;
 171                        goto unlock_ret;
 172                }
 173        }
 174
 175        /* minimum size accounting */
 176        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 177                if (delta > spool->rsv_hpages) {
 178                        /*
 179                         * Asking for more reserves than those already taken on
 180                         * behalf of subpool.  Return difference.
 181                         */
 182                        ret = delta - spool->rsv_hpages;
 183                        spool->rsv_hpages = 0;
 184                } else {
 185                        ret = 0;        /* reserves already accounted for */
 186                        spool->rsv_hpages -= delta;
 187                }
 188        }
 189
 190unlock_ret:
 191        spin_unlock_irq(&spool->lock);
 192        return ret;
 193}
 194
 195/*
 196 * Subpool accounting for freeing and unreserving pages.
 197 * Return the number of global page reservations that must be dropped.
 198 * The return value may only be different than the passed value (delta)
 199 * in the case where a subpool minimum size must be maintained.
 200 */
 201static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 202                                       long delta)
 203{
 204        long ret = delta;
 205        unsigned long flags;
 206
 207        if (!spool)
 208                return delta;
 209
 210        spin_lock_irqsave(&spool->lock, flags);
 211
 212        if (spool->max_hpages != -1)            /* maximum size accounting */
 213                spool->used_hpages -= delta;
 214
 215         /* minimum size accounting */
 216        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 217                if (spool->rsv_hpages + delta <= spool->min_hpages)
 218                        ret = 0;
 219                else
 220                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 221
 222                spool->rsv_hpages += delta;
 223                if (spool->rsv_hpages > spool->min_hpages)
 224                        spool->rsv_hpages = spool->min_hpages;
 225        }
 226
 227        /*
 228         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 229         * quota reference, free it now.
 230         */
 231        unlock_or_release_subpool(spool, flags);
 232
 233        return ret;
 234}
 235
 236static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 237{
 238        return HUGETLBFS_SB(inode->i_sb)->spool;
 239}
 240
 241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 242{
 243        return subpool_inode(file_inode(vma->vm_file));
 244}
 245
 246/* Helper that removes a struct file_region from the resv_map cache and returns
 247 * it for use.
 248 */
 249static struct file_region *
 250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 251{
 252        struct file_region *nrg = NULL;
 253
 254        VM_BUG_ON(resv->region_cache_count <= 0);
 255
 256        resv->region_cache_count--;
 257        nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 258        list_del(&nrg->link);
 259
 260        nrg->from = from;
 261        nrg->to = to;
 262
 263        return nrg;
 264}
 265
 266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 267                                              struct file_region *rg)
 268{
 269#ifdef CONFIG_CGROUP_HUGETLB
 270        nrg->reservation_counter = rg->reservation_counter;
 271        nrg->css = rg->css;
 272        if (rg->css)
 273                css_get(rg->css);
 274#endif
 275}
 276
 277/* Helper that records hugetlb_cgroup uncharge info. */
 278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 279                                                struct hstate *h,
 280                                                struct resv_map *resv,
 281                                                struct file_region *nrg)
 282{
 283#ifdef CONFIG_CGROUP_HUGETLB
 284        if (h_cg) {
 285                nrg->reservation_counter =
 286                        &h_cg->rsvd_hugepage[hstate_index(h)];
 287                nrg->css = &h_cg->css;
 288                /*
 289                 * The caller will hold exactly one h_cg->css reference for the
 290                 * whole contiguous reservation region. But this area might be
 291                 * scattered when there are already some file_regions reside in
 292                 * it. As a result, many file_regions may share only one css
 293                 * reference. In order to ensure that one file_region must hold
 294                 * exactly one h_cg->css reference, we should do css_get for
 295                 * each file_region and leave the reference held by caller
 296                 * untouched.
 297                 */
 298                css_get(&h_cg->css);
 299                if (!resv->pages_per_hpage)
 300                        resv->pages_per_hpage = pages_per_huge_page(h);
 301                /* pages_per_hpage should be the same for all entries in
 302                 * a resv_map.
 303                 */
 304                VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 305        } else {
 306                nrg->reservation_counter = NULL;
 307                nrg->css = NULL;
 308        }
 309#endif
 310}
 311
 312static void put_uncharge_info(struct file_region *rg)
 313{
 314#ifdef CONFIG_CGROUP_HUGETLB
 315        if (rg->css)
 316                css_put(rg->css);
 317#endif
 318}
 319
 320static bool has_same_uncharge_info(struct file_region *rg,
 321                                   struct file_region *org)
 322{
 323#ifdef CONFIG_CGROUP_HUGETLB
 324        return rg && org &&
 325               rg->reservation_counter == org->reservation_counter &&
 326               rg->css == org->css;
 327
 328#else
 329        return true;
 330#endif
 331}
 332
 333static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 334{
 335        struct file_region *nrg = NULL, *prg = NULL;
 336
 337        prg = list_prev_entry(rg, link);
 338        if (&prg->link != &resv->regions && prg->to == rg->from &&
 339            has_same_uncharge_info(prg, rg)) {
 340                prg->to = rg->to;
 341
 342                list_del(&rg->link);
 343                put_uncharge_info(rg);
 344                kfree(rg);
 345
 346                rg = prg;
 347        }
 348
 349        nrg = list_next_entry(rg, link);
 350        if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 351            has_same_uncharge_info(nrg, rg)) {
 352                nrg->from = rg->from;
 353
 354                list_del(&rg->link);
 355                put_uncharge_info(rg);
 356                kfree(rg);
 357        }
 358}
 359
 360static inline long
 361hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
 362                     long to, struct hstate *h, struct hugetlb_cgroup *cg,
 363                     long *regions_needed)
 364{
 365        struct file_region *nrg;
 366
 367        if (!regions_needed) {
 368                nrg = get_file_region_entry_from_cache(map, from, to);
 369                record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
 370                list_add(&nrg->link, rg->link.prev);
 371                coalesce_file_region(map, nrg);
 372        } else
 373                *regions_needed += 1;
 374
 375        return to - from;
 376}
 377
 378/*
 379 * Must be called with resv->lock held.
 380 *
 381 * Calling this with regions_needed != NULL will count the number of pages
 382 * to be added but will not modify the linked list. And regions_needed will
 383 * indicate the number of file_regions needed in the cache to carry out to add
 384 * the regions for this range.
 385 */
 386static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 387                                     struct hugetlb_cgroup *h_cg,
 388                                     struct hstate *h, long *regions_needed)
 389{
 390        long add = 0;
 391        struct list_head *head = &resv->regions;
 392        long last_accounted_offset = f;
 393        struct file_region *rg = NULL, *trg = NULL;
 394
 395        if (regions_needed)
 396                *regions_needed = 0;
 397
 398        /* In this loop, we essentially handle an entry for the range
 399         * [last_accounted_offset, rg->from), at every iteration, with some
 400         * bounds checking.
 401         */
 402        list_for_each_entry_safe(rg, trg, head, link) {
 403                /* Skip irrelevant regions that start before our range. */
 404                if (rg->from < f) {
 405                        /* If this region ends after the last accounted offset,
 406                         * then we need to update last_accounted_offset.
 407                         */
 408                        if (rg->to > last_accounted_offset)
 409                                last_accounted_offset = rg->to;
 410                        continue;
 411                }
 412
 413                /* When we find a region that starts beyond our range, we've
 414                 * finished.
 415                 */
 416                if (rg->from >= t)
 417                        break;
 418
 419                /* Add an entry for last_accounted_offset -> rg->from, and
 420                 * update last_accounted_offset.
 421                 */
 422                if (rg->from > last_accounted_offset)
 423                        add += hugetlb_resv_map_add(resv, rg,
 424                                                    last_accounted_offset,
 425                                                    rg->from, h, h_cg,
 426                                                    regions_needed);
 427
 428                last_accounted_offset = rg->to;
 429        }
 430
 431        /* Handle the case where our range extends beyond
 432         * last_accounted_offset.
 433         */
 434        if (last_accounted_offset < t)
 435                add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
 436                                            t, h, h_cg, regions_needed);
 437
 438        VM_BUG_ON(add < 0);
 439        return add;
 440}
 441
 442/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 443 */
 444static int allocate_file_region_entries(struct resv_map *resv,
 445                                        int regions_needed)
 446        __must_hold(&resv->lock)
 447{
 448        struct list_head allocated_regions;
 449        int to_allocate = 0, i = 0;
 450        struct file_region *trg = NULL, *rg = NULL;
 451
 452        VM_BUG_ON(regions_needed < 0);
 453
 454        INIT_LIST_HEAD(&allocated_regions);
 455
 456        /*
 457         * Check for sufficient descriptors in the cache to accommodate
 458         * the number of in progress add operations plus regions_needed.
 459         *
 460         * This is a while loop because when we drop the lock, some other call
 461         * to region_add or region_del may have consumed some region_entries,
 462         * so we keep looping here until we finally have enough entries for
 463         * (adds_in_progress + regions_needed).
 464         */
 465        while (resv->region_cache_count <
 466               (resv->adds_in_progress + regions_needed)) {
 467                to_allocate = resv->adds_in_progress + regions_needed -
 468                              resv->region_cache_count;
 469
 470                /* At this point, we should have enough entries in the cache
 471                 * for all the existing adds_in_progress. We should only be
 472                 * needing to allocate for regions_needed.
 473                 */
 474                VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 475
 476                spin_unlock(&resv->lock);
 477                for (i = 0; i < to_allocate; i++) {
 478                        trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 479                        if (!trg)
 480                                goto out_of_memory;
 481                        list_add(&trg->link, &allocated_regions);
 482                }
 483
 484                spin_lock(&resv->lock);
 485
 486                list_splice(&allocated_regions, &resv->region_cache);
 487                resv->region_cache_count += to_allocate;
 488        }
 489
 490        return 0;
 491
 492out_of_memory:
 493        list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 494                list_del(&rg->link);
 495                kfree(rg);
 496        }
 497        return -ENOMEM;
 498}
 499
 500/*
 501 * Add the huge page range represented by [f, t) to the reserve
 502 * map.  Regions will be taken from the cache to fill in this range.
 503 * Sufficient regions should exist in the cache due to the previous
 504 * call to region_chg with the same range, but in some cases the cache will not
 505 * have sufficient entries due to races with other code doing region_add or
 506 * region_del.  The extra needed entries will be allocated.
 507 *
 508 * regions_needed is the out value provided by a previous call to region_chg.
 509 *
 510 * Return the number of new huge pages added to the map.  This number is greater
 511 * than or equal to zero.  If file_region entries needed to be allocated for
 512 * this operation and we were not able to allocate, it returns -ENOMEM.
 513 * region_add of regions of length 1 never allocate file_regions and cannot
 514 * fail; region_chg will always allocate at least 1 entry and a region_add for
 515 * 1 page will only require at most 1 entry.
 516 */
 517static long region_add(struct resv_map *resv, long f, long t,
 518                       long in_regions_needed, struct hstate *h,
 519                       struct hugetlb_cgroup *h_cg)
 520{
 521        long add = 0, actual_regions_needed = 0;
 522
 523        spin_lock(&resv->lock);
 524retry:
 525
 526        /* Count how many regions are actually needed to execute this add. */
 527        add_reservation_in_range(resv, f, t, NULL, NULL,
 528                                 &actual_regions_needed);
 529
 530        /*
 531         * Check for sufficient descriptors in the cache to accommodate
 532         * this add operation. Note that actual_regions_needed may be greater
 533         * than in_regions_needed, as the resv_map may have been modified since
 534         * the region_chg call. In this case, we need to make sure that we
 535         * allocate extra entries, such that we have enough for all the
 536         * existing adds_in_progress, plus the excess needed for this
 537         * operation.
 538         */
 539        if (actual_regions_needed > in_regions_needed &&
 540            resv->region_cache_count <
 541                    resv->adds_in_progress +
 542                            (actual_regions_needed - in_regions_needed)) {
 543                /* region_add operation of range 1 should never need to
 544                 * allocate file_region entries.
 545                 */
 546                VM_BUG_ON(t - f <= 1);
 547
 548                if (allocate_file_region_entries(
 549                            resv, actual_regions_needed - in_regions_needed)) {
 550                        return -ENOMEM;
 551                }
 552
 553                goto retry;
 554        }
 555
 556        add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 557
 558        resv->adds_in_progress -= in_regions_needed;
 559
 560        spin_unlock(&resv->lock);
 561        return add;
 562}
 563
 564/*
 565 * Examine the existing reserve map and determine how many
 566 * huge pages in the specified range [f, t) are NOT currently
 567 * represented.  This routine is called before a subsequent
 568 * call to region_add that will actually modify the reserve
 569 * map to add the specified range [f, t).  region_chg does
 570 * not change the number of huge pages represented by the
 571 * map.  A number of new file_region structures is added to the cache as a
 572 * placeholder, for the subsequent region_add call to use. At least 1
 573 * file_region structure is added.
 574 *
 575 * out_regions_needed is the number of regions added to the
 576 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 577 * to region_add or region_abort for proper accounting.
 578 *
 579 * Returns the number of huge pages that need to be added to the existing
 580 * reservation map for the range [f, t).  This number is greater or equal to
 581 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 582 * is needed and can not be allocated.
 583 */
 584static long region_chg(struct resv_map *resv, long f, long t,
 585                       long *out_regions_needed)
 586{
 587        long chg = 0;
 588
 589        spin_lock(&resv->lock);
 590
 591        /* Count how many hugepages in this range are NOT represented. */
 592        chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 593                                       out_regions_needed);
 594
 595        if (*out_regions_needed == 0)
 596                *out_regions_needed = 1;
 597
 598        if (allocate_file_region_entries(resv, *out_regions_needed))
 599                return -ENOMEM;
 600
 601        resv->adds_in_progress += *out_regions_needed;
 602
 603        spin_unlock(&resv->lock);
 604        return chg;
 605}
 606
 607/*
 608 * Abort the in progress add operation.  The adds_in_progress field
 609 * of the resv_map keeps track of the operations in progress between
 610 * calls to region_chg and region_add.  Operations are sometimes
 611 * aborted after the call to region_chg.  In such cases, region_abort
 612 * is called to decrement the adds_in_progress counter. regions_needed
 613 * is the value returned by the region_chg call, it is used to decrement
 614 * the adds_in_progress counter.
 615 *
 616 * NOTE: The range arguments [f, t) are not needed or used in this
 617 * routine.  They are kept to make reading the calling code easier as
 618 * arguments will match the associated region_chg call.
 619 */
 620static void region_abort(struct resv_map *resv, long f, long t,
 621                         long regions_needed)
 622{
 623        spin_lock(&resv->lock);
 624        VM_BUG_ON(!resv->region_cache_count);
 625        resv->adds_in_progress -= regions_needed;
 626        spin_unlock(&resv->lock);
 627}
 628
 629/*
 630 * Delete the specified range [f, t) from the reserve map.  If the
 631 * t parameter is LONG_MAX, this indicates that ALL regions after f
 632 * should be deleted.  Locate the regions which intersect [f, t)
 633 * and either trim, delete or split the existing regions.
 634 *
 635 * Returns the number of huge pages deleted from the reserve map.
 636 * In the normal case, the return value is zero or more.  In the
 637 * case where a region must be split, a new region descriptor must
 638 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 639 * NOTE: If the parameter t == LONG_MAX, then we will never split
 640 * a region and possibly return -ENOMEM.  Callers specifying
 641 * t == LONG_MAX do not need to check for -ENOMEM error.
 642 */
 643static long region_del(struct resv_map *resv, long f, long t)
 644{
 645        struct list_head *head = &resv->regions;
 646        struct file_region *rg, *trg;
 647        struct file_region *nrg = NULL;
 648        long del = 0;
 649
 650retry:
 651        spin_lock(&resv->lock);
 652        list_for_each_entry_safe(rg, trg, head, link) {
 653                /*
 654                 * Skip regions before the range to be deleted.  file_region
 655                 * ranges are normally of the form [from, to).  However, there
 656                 * may be a "placeholder" entry in the map which is of the form
 657                 * (from, to) with from == to.  Check for placeholder entries
 658                 * at the beginning of the range to be deleted.
 659                 */
 660                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 661                        continue;
 662
 663                if (rg->from >= t)
 664                        break;
 665
 666                if (f > rg->from && t < rg->to) { /* Must split region */
 667                        /*
 668                         * Check for an entry in the cache before dropping
 669                         * lock and attempting allocation.
 670                         */
 671                        if (!nrg &&
 672                            resv->region_cache_count > resv->adds_in_progress) {
 673                                nrg = list_first_entry(&resv->region_cache,
 674                                                        struct file_region,
 675                                                        link);
 676                                list_del(&nrg->link);
 677                                resv->region_cache_count--;
 678                        }
 679
 680                        if (!nrg) {
 681                                spin_unlock(&resv->lock);
 682                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 683                                if (!nrg)
 684                                        return -ENOMEM;
 685                                goto retry;
 686                        }
 687
 688                        del += t - f;
 689                        hugetlb_cgroup_uncharge_file_region(
 690                                resv, rg, t - f, false);
 691
 692                        /* New entry for end of split region */
 693                        nrg->from = t;
 694                        nrg->to = rg->to;
 695
 696                        copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 697
 698                        INIT_LIST_HEAD(&nrg->link);
 699
 700                        /* Original entry is trimmed */
 701                        rg->to = f;
 702
 703                        list_add(&nrg->link, &rg->link);
 704                        nrg = NULL;
 705                        break;
 706                }
 707
 708                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 709                        del += rg->to - rg->from;
 710                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 711                                                            rg->to - rg->from, true);
 712                        list_del(&rg->link);
 713                        kfree(rg);
 714                        continue;
 715                }
 716
 717                if (f <= rg->from) {    /* Trim beginning of region */
 718                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 719                                                            t - rg->from, false);
 720
 721                        del += t - rg->from;
 722                        rg->from = t;
 723                } else {                /* Trim end of region */
 724                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 725                                                            rg->to - f, false);
 726
 727                        del += rg->to - f;
 728                        rg->to = f;
 729                }
 730        }
 731
 732        spin_unlock(&resv->lock);
 733        kfree(nrg);
 734        return del;
 735}
 736
 737/*
 738 * A rare out of memory error was encountered which prevented removal of
 739 * the reserve map region for a page.  The huge page itself was free'ed
 740 * and removed from the page cache.  This routine will adjust the subpool
 741 * usage count, and the global reserve count if needed.  By incrementing
 742 * these counts, the reserve map entry which could not be deleted will
 743 * appear as a "reserved" entry instead of simply dangling with incorrect
 744 * counts.
 745 */
 746void hugetlb_fix_reserve_counts(struct inode *inode)
 747{
 748        struct hugepage_subpool *spool = subpool_inode(inode);
 749        long rsv_adjust;
 750        bool reserved = false;
 751
 752        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 753        if (rsv_adjust > 0) {
 754                struct hstate *h = hstate_inode(inode);
 755
 756                if (!hugetlb_acct_memory(h, 1))
 757                        reserved = true;
 758        } else if (!rsv_adjust) {
 759                reserved = true;
 760        }
 761
 762        if (!reserved)
 763                pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
 764}
 765
 766/*
 767 * Count and return the number of huge pages in the reserve map
 768 * that intersect with the range [f, t).
 769 */
 770static long region_count(struct resv_map *resv, long f, long t)
 771{
 772        struct list_head *head = &resv->regions;
 773        struct file_region *rg;
 774        long chg = 0;
 775
 776        spin_lock(&resv->lock);
 777        /* Locate each segment we overlap with, and count that overlap. */
 778        list_for_each_entry(rg, head, link) {
 779                long seg_from;
 780                long seg_to;
 781
 782                if (rg->to <= f)
 783                        continue;
 784                if (rg->from >= t)
 785                        break;
 786
 787                seg_from = max(rg->from, f);
 788                seg_to = min(rg->to, t);
 789
 790                chg += seg_to - seg_from;
 791        }
 792        spin_unlock(&resv->lock);
 793
 794        return chg;
 795}
 796
 797/*
 798 * Convert the address within this vma to the page offset within
 799 * the mapping, in pagecache page units; huge pages here.
 800 */
 801static pgoff_t vma_hugecache_offset(struct hstate *h,
 802                        struct vm_area_struct *vma, unsigned long address)
 803{
 804        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 805                        (vma->vm_pgoff >> huge_page_order(h));
 806}
 807
 808pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 809                                     unsigned long address)
 810{
 811        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 812}
 813EXPORT_SYMBOL_GPL(linear_hugepage_index);
 814
 815/*
 816 * Return the size of the pages allocated when backing a VMA. In the majority
 817 * cases this will be same size as used by the page table entries.
 818 */
 819unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 820{
 821        if (vma->vm_ops && vma->vm_ops->pagesize)
 822                return vma->vm_ops->pagesize(vma);
 823        return PAGE_SIZE;
 824}
 825EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 826
 827/*
 828 * Return the page size being used by the MMU to back a VMA. In the majority
 829 * of cases, the page size used by the kernel matches the MMU size. On
 830 * architectures where it differs, an architecture-specific 'strong'
 831 * version of this symbol is required.
 832 */
 833__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 834{
 835        return vma_kernel_pagesize(vma);
 836}
 837
 838/*
 839 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 840 * bits of the reservation map pointer, which are always clear due to
 841 * alignment.
 842 */
 843#define HPAGE_RESV_OWNER    (1UL << 0)
 844#define HPAGE_RESV_UNMAPPED (1UL << 1)
 845#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 846
 847/*
 848 * These helpers are used to track how many pages are reserved for
 849 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 850 * is guaranteed to have their future faults succeed.
 851 *
 852 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 853 * the reserve counters are updated with the hugetlb_lock held. It is safe
 854 * to reset the VMA at fork() time as it is not in use yet and there is no
 855 * chance of the global counters getting corrupted as a result of the values.
 856 *
 857 * The private mapping reservation is represented in a subtly different
 858 * manner to a shared mapping.  A shared mapping has a region map associated
 859 * with the underlying file, this region map represents the backing file
 860 * pages which have ever had a reservation assigned which this persists even
 861 * after the page is instantiated.  A private mapping has a region map
 862 * associated with the original mmap which is attached to all VMAs which
 863 * reference it, this region map represents those offsets which have consumed
 864 * reservation ie. where pages have been instantiated.
 865 */
 866static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 867{
 868        return (unsigned long)vma->vm_private_data;
 869}
 870
 871static void set_vma_private_data(struct vm_area_struct *vma,
 872                                                        unsigned long value)
 873{
 874        vma->vm_private_data = (void *)value;
 875}
 876
 877static void
 878resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 879                                          struct hugetlb_cgroup *h_cg,
 880                                          struct hstate *h)
 881{
 882#ifdef CONFIG_CGROUP_HUGETLB
 883        if (!h_cg || !h) {
 884                resv_map->reservation_counter = NULL;
 885                resv_map->pages_per_hpage = 0;
 886                resv_map->css = NULL;
 887        } else {
 888                resv_map->reservation_counter =
 889                        &h_cg->rsvd_hugepage[hstate_index(h)];
 890                resv_map->pages_per_hpage = pages_per_huge_page(h);
 891                resv_map->css = &h_cg->css;
 892        }
 893#endif
 894}
 895
 896struct resv_map *resv_map_alloc(void)
 897{
 898        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 899        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 900
 901        if (!resv_map || !rg) {
 902                kfree(resv_map);
 903                kfree(rg);
 904                return NULL;
 905        }
 906
 907        kref_init(&resv_map->refs);
 908        spin_lock_init(&resv_map->lock);
 909        INIT_LIST_HEAD(&resv_map->regions);
 910
 911        resv_map->adds_in_progress = 0;
 912        /*
 913         * Initialize these to 0. On shared mappings, 0's here indicate these
 914         * fields don't do cgroup accounting. On private mappings, these will be
 915         * re-initialized to the proper values, to indicate that hugetlb cgroup
 916         * reservations are to be un-charged from here.
 917         */
 918        resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 919
 920        INIT_LIST_HEAD(&resv_map->region_cache);
 921        list_add(&rg->link, &resv_map->region_cache);
 922        resv_map->region_cache_count = 1;
 923
 924        return resv_map;
 925}
 926
 927void resv_map_release(struct kref *ref)
 928{
 929        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 930        struct list_head *head = &resv_map->region_cache;
 931        struct file_region *rg, *trg;
 932
 933        /* Clear out any active regions before we release the map. */
 934        region_del(resv_map, 0, LONG_MAX);
 935
 936        /* ... and any entries left in the cache */
 937        list_for_each_entry_safe(rg, trg, head, link) {
 938                list_del(&rg->link);
 939                kfree(rg);
 940        }
 941
 942        VM_BUG_ON(resv_map->adds_in_progress);
 943
 944        kfree(resv_map);
 945}
 946
 947static inline struct resv_map *inode_resv_map(struct inode *inode)
 948{
 949        /*
 950         * At inode evict time, i_mapping may not point to the original
 951         * address space within the inode.  This original address space
 952         * contains the pointer to the resv_map.  So, always use the
 953         * address space embedded within the inode.
 954         * The VERY common case is inode->mapping == &inode->i_data but,
 955         * this may not be true for device special inodes.
 956         */
 957        return (struct resv_map *)(&inode->i_data)->private_data;
 958}
 959
 960static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 961{
 962        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 963        if (vma->vm_flags & VM_MAYSHARE) {
 964                struct address_space *mapping = vma->vm_file->f_mapping;
 965                struct inode *inode = mapping->host;
 966
 967                return inode_resv_map(inode);
 968
 969        } else {
 970                return (struct resv_map *)(get_vma_private_data(vma) &
 971                                                        ~HPAGE_RESV_MASK);
 972        }
 973}
 974
 975static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 976{
 977        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 978        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 979
 980        set_vma_private_data(vma, (get_vma_private_data(vma) &
 981                                HPAGE_RESV_MASK) | (unsigned long)map);
 982}
 983
 984static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 985{
 986        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 987        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 988
 989        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 990}
 991
 992static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 993{
 994        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 995
 996        return (get_vma_private_data(vma) & flag) != 0;
 997}
 998
 999/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001{
1002        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003        if (!(vma->vm_flags & VM_MAYSHARE))
1004                vma->vm_private_data = (void *)0;
1005}
1006
1007/* Returns true if the VMA has associated reserve pages */
1008static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009{
1010        if (vma->vm_flags & VM_NORESERVE) {
1011                /*
1012                 * This address is already reserved by other process(chg == 0),
1013                 * so, we should decrement reserved count. Without decrementing,
1014                 * reserve count remains after releasing inode, because this
1015                 * allocated page will go into page cache and is regarded as
1016                 * coming from reserved pool in releasing step.  Currently, we
1017                 * don't have any other solution to deal with this situation
1018                 * properly, so add work-around here.
1019                 */
1020                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021                        return true;
1022                else
1023                        return false;
1024        }
1025
1026        /* Shared mappings always use reserves */
1027        if (vma->vm_flags & VM_MAYSHARE) {
1028                /*
1029                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030                 * be a region map for all pages.  The only situation where
1031                 * there is no region map is if a hole was punched via
1032                 * fallocate.  In this case, there really are no reserves to
1033                 * use.  This situation is indicated if chg != 0.
1034                 */
1035                if (chg)
1036                        return false;
1037                else
1038                        return true;
1039        }
1040
1041        /*
1042         * Only the process that called mmap() has reserves for
1043         * private mappings.
1044         */
1045        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046                /*
1047                 * Like the shared case above, a hole punch or truncate
1048                 * could have been performed on the private mapping.
1049                 * Examine the value of chg to determine if reserves
1050                 * actually exist or were previously consumed.
1051                 * Very Subtle - The value of chg comes from a previous
1052                 * call to vma_needs_reserves().  The reserve map for
1053                 * private mappings has different (opposite) semantics
1054                 * than that of shared mappings.  vma_needs_reserves()
1055                 * has already taken this difference in semantics into
1056                 * account.  Therefore, the meaning of chg is the same
1057                 * as in the shared case above.  Code could easily be
1058                 * combined, but keeping it separate draws attention to
1059                 * subtle differences.
1060                 */
1061                if (chg)
1062                        return false;
1063                else
1064                        return true;
1065        }
1066
1067        return false;
1068}
1069
1070static void enqueue_huge_page(struct hstate *h, struct page *page)
1071{
1072        int nid = page_to_nid(page);
1073
1074        lockdep_assert_held(&hugetlb_lock);
1075        list_move(&page->lru, &h->hugepage_freelists[nid]);
1076        h->free_huge_pages++;
1077        h->free_huge_pages_node[nid]++;
1078        SetHPageFreed(page);
1079}
1080
1081static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1082{
1083        struct page *page;
1084        bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1085
1086        lockdep_assert_held(&hugetlb_lock);
1087        list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1088                if (pin && !is_pinnable_page(page))
1089                        continue;
1090
1091                if (PageHWPoison(page))
1092                        continue;
1093
1094                list_move(&page->lru, &h->hugepage_activelist);
1095                set_page_refcounted(page);
1096                ClearHPageFreed(page);
1097                h->free_huge_pages--;
1098                h->free_huge_pages_node[nid]--;
1099                return page;
1100        }
1101
1102        return NULL;
1103}
1104
1105static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1106                nodemask_t *nmask)
1107{
1108        unsigned int cpuset_mems_cookie;
1109        struct zonelist *zonelist;
1110        struct zone *zone;
1111        struct zoneref *z;
1112        int node = NUMA_NO_NODE;
1113
1114        zonelist = node_zonelist(nid, gfp_mask);
1115
1116retry_cpuset:
1117        cpuset_mems_cookie = read_mems_allowed_begin();
1118        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1119                struct page *page;
1120
1121                if (!cpuset_zone_allowed(zone, gfp_mask))
1122                        continue;
1123                /*
1124                 * no need to ask again on the same node. Pool is node rather than
1125                 * zone aware
1126                 */
1127                if (zone_to_nid(zone) == node)
1128                        continue;
1129                node = zone_to_nid(zone);
1130
1131                page = dequeue_huge_page_node_exact(h, node);
1132                if (page)
1133                        return page;
1134        }
1135        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1136                goto retry_cpuset;
1137
1138        return NULL;
1139}
1140
1141static struct page *dequeue_huge_page_vma(struct hstate *h,
1142                                struct vm_area_struct *vma,
1143                                unsigned long address, int avoid_reserve,
1144                                long chg)
1145{
1146        struct page *page;
1147        struct mempolicy *mpol;
1148        gfp_t gfp_mask;
1149        nodemask_t *nodemask;
1150        int nid;
1151
1152        /*
1153         * A child process with MAP_PRIVATE mappings created by their parent
1154         * have no page reserves. This check ensures that reservations are
1155         * not "stolen". The child may still get SIGKILLed
1156         */
1157        if (!vma_has_reserves(vma, chg) &&
1158                        h->free_huge_pages - h->resv_huge_pages == 0)
1159                goto err;
1160
1161        /* If reserves cannot be used, ensure enough pages are in the pool */
1162        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1163                goto err;
1164
1165        gfp_mask = htlb_alloc_mask(h);
1166        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1167        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1168        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1169                SetHPageRestoreReserve(page);
1170                h->resv_huge_pages--;
1171        }
1172
1173        mpol_cond_put(mpol);
1174        return page;
1175
1176err:
1177        return NULL;
1178}
1179
1180/*
1181 * common helper functions for hstate_next_node_to_{alloc|free}.
1182 * We may have allocated or freed a huge page based on a different
1183 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1184 * be outside of *nodes_allowed.  Ensure that we use an allowed
1185 * node for alloc or free.
1186 */
1187static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1188{
1189        nid = next_node_in(nid, *nodes_allowed);
1190        VM_BUG_ON(nid >= MAX_NUMNODES);
1191
1192        return nid;
1193}
1194
1195static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1196{
1197        if (!node_isset(nid, *nodes_allowed))
1198                nid = next_node_allowed(nid, nodes_allowed);
1199        return nid;
1200}
1201
1202/*
1203 * returns the previously saved node ["this node"] from which to
1204 * allocate a persistent huge page for the pool and advance the
1205 * next node from which to allocate, handling wrap at end of node
1206 * mask.
1207 */
1208static int hstate_next_node_to_alloc(struct hstate *h,
1209                                        nodemask_t *nodes_allowed)
1210{
1211        int nid;
1212
1213        VM_BUG_ON(!nodes_allowed);
1214
1215        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1216        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1217
1218        return nid;
1219}
1220
1221/*
1222 * helper for remove_pool_huge_page() - return the previously saved
1223 * node ["this node"] from which to free a huge page.  Advance the
1224 * next node id whether or not we find a free huge page to free so
1225 * that the next attempt to free addresses the next node.
1226 */
1227static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1228{
1229        int nid;
1230
1231        VM_BUG_ON(!nodes_allowed);
1232
1233        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1234        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1235
1236        return nid;
1237}
1238
1239#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1240        for (nr_nodes = nodes_weight(*mask);                            \
1241                nr_nodes > 0 &&                                         \
1242                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1243                nr_nodes--)
1244
1245#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1246        for (nr_nodes = nodes_weight(*mask);                            \
1247                nr_nodes > 0 &&                                         \
1248                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1249                nr_nodes--)
1250
1251#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1252static void destroy_compound_gigantic_page(struct page *page,
1253                                        unsigned int order)
1254{
1255        int i;
1256        int nr_pages = 1 << order;
1257        struct page *p = page + 1;
1258
1259        atomic_set(compound_mapcount_ptr(page), 0);
1260        atomic_set(compound_pincount_ptr(page), 0);
1261
1262        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1263                clear_compound_head(p);
1264                set_page_refcounted(p);
1265        }
1266
1267        set_compound_order(page, 0);
1268        page[1].compound_nr = 0;
1269        __ClearPageHead(page);
1270}
1271
1272static void free_gigantic_page(struct page *page, unsigned int order)
1273{
1274        /*
1275         * If the page isn't allocated using the cma allocator,
1276         * cma_release() returns false.
1277         */
1278#ifdef CONFIG_CMA
1279        if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1280                return;
1281#endif
1282
1283        free_contig_range(page_to_pfn(page), 1 << order);
1284}
1285
1286#ifdef CONFIG_CONTIG_ALLOC
1287static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1288                int nid, nodemask_t *nodemask)
1289{
1290        unsigned long nr_pages = pages_per_huge_page(h);
1291        if (nid == NUMA_NO_NODE)
1292                nid = numa_mem_id();
1293
1294#ifdef CONFIG_CMA
1295        {
1296                struct page *page;
1297                int node;
1298
1299                if (hugetlb_cma[nid]) {
1300                        page = cma_alloc(hugetlb_cma[nid], nr_pages,
1301                                        huge_page_order(h), true);
1302                        if (page)
1303                                return page;
1304                }
1305
1306                if (!(gfp_mask & __GFP_THISNODE)) {
1307                        for_each_node_mask(node, *nodemask) {
1308                                if (node == nid || !hugetlb_cma[node])
1309                                        continue;
1310
1311                                page = cma_alloc(hugetlb_cma[node], nr_pages,
1312                                                huge_page_order(h), true);
1313                                if (page)
1314                                        return page;
1315                        }
1316                }
1317        }
1318#endif
1319
1320        return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1321}
1322
1323#else /* !CONFIG_CONTIG_ALLOC */
1324static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325                                        int nid, nodemask_t *nodemask)
1326{
1327        return NULL;
1328}
1329#endif /* CONFIG_CONTIG_ALLOC */
1330
1331#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333                                        int nid, nodemask_t *nodemask)
1334{
1335        return NULL;
1336}
1337static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338static inline void destroy_compound_gigantic_page(struct page *page,
1339                                                unsigned int order) { }
1340#endif
1341
1342/*
1343 * Remove hugetlb page from lists, and update dtor so that page appears
1344 * as just a compound page.  A reference is held on the page.
1345 *
1346 * Must be called with hugetlb lock held.
1347 */
1348static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349                                                        bool adjust_surplus)
1350{
1351        int nid = page_to_nid(page);
1352
1353        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
1356        lockdep_assert_held(&hugetlb_lock);
1357        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358                return;
1359
1360        list_del(&page->lru);
1361
1362        if (HPageFreed(page)) {
1363                h->free_huge_pages--;
1364                h->free_huge_pages_node[nid]--;
1365        }
1366        if (adjust_surplus) {
1367                h->surplus_huge_pages--;
1368                h->surplus_huge_pages_node[nid]--;
1369        }
1370
1371        set_page_refcounted(page);
1372        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374        h->nr_huge_pages--;
1375        h->nr_huge_pages_node[nid]--;
1376}
1377
1378static void add_hugetlb_page(struct hstate *h, struct page *page,
1379                             bool adjust_surplus)
1380{
1381        int zeroed;
1382        int nid = page_to_nid(page);
1383
1384        VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1385
1386        lockdep_assert_held(&hugetlb_lock);
1387
1388        INIT_LIST_HEAD(&page->lru);
1389        h->nr_huge_pages++;
1390        h->nr_huge_pages_node[nid]++;
1391
1392        if (adjust_surplus) {
1393                h->surplus_huge_pages++;
1394                h->surplus_huge_pages_node[nid]++;
1395        }
1396
1397        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1398        set_page_private(page, 0);
1399        SetHPageVmemmapOptimized(page);
1400
1401        /*
1402         * This page is now managed by the hugetlb allocator and has
1403         * no users -- drop the last reference.
1404         */
1405        zeroed = put_page_testzero(page);
1406        VM_BUG_ON_PAGE(!zeroed, page);
1407        arch_clear_hugepage_flags(page);
1408        enqueue_huge_page(h, page);
1409}
1410
1411static void __update_and_free_page(struct hstate *h, struct page *page)
1412{
1413        int i;
1414        struct page *subpage = page;
1415
1416        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1417                return;
1418
1419        if (alloc_huge_page_vmemmap(h, page)) {
1420                spin_lock_irq(&hugetlb_lock);
1421                /*
1422                 * If we cannot allocate vmemmap pages, just refuse to free the
1423                 * page and put the page back on the hugetlb free list and treat
1424                 * as a surplus page.
1425                 */
1426                add_hugetlb_page(h, page, true);
1427                spin_unlock_irq(&hugetlb_lock);
1428                return;
1429        }
1430
1431        for (i = 0; i < pages_per_huge_page(h);
1432             i++, subpage = mem_map_next(subpage, page, i)) {
1433                subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1434                                1 << PG_referenced | 1 << PG_dirty |
1435                                1 << PG_active | 1 << PG_private |
1436                                1 << PG_writeback);
1437        }
1438        if (hstate_is_gigantic(h)) {
1439                destroy_compound_gigantic_page(page, huge_page_order(h));
1440                free_gigantic_page(page, huge_page_order(h));
1441        } else {
1442                __free_pages(page, huge_page_order(h));
1443        }
1444}
1445
1446/*
1447 * As update_and_free_page() can be called under any context, so we cannot
1448 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1449 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1450 * the vmemmap pages.
1451 *
1452 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1453 * freed and frees them one-by-one. As the page->mapping pointer is going
1454 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1455 * structure of a lockless linked list of huge pages to be freed.
1456 */
1457static LLIST_HEAD(hpage_freelist);
1458
1459static void free_hpage_workfn(struct work_struct *work)
1460{
1461        struct llist_node *node;
1462
1463        node = llist_del_all(&hpage_freelist);
1464
1465        while (node) {
1466                struct page *page;
1467                struct hstate *h;
1468
1469                page = container_of((struct address_space **)node,
1470                                     struct page, mapping);
1471                node = node->next;
1472                page->mapping = NULL;
1473                /*
1474                 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1475                 * is going to trigger because a previous call to
1476                 * remove_hugetlb_page() will set_compound_page_dtor(page,
1477                 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1478                 */
1479                h = size_to_hstate(page_size(page));
1480
1481                __update_and_free_page(h, page);
1482
1483                cond_resched();
1484        }
1485}
1486static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1487
1488static inline void flush_free_hpage_work(struct hstate *h)
1489{
1490        if (free_vmemmap_pages_per_hpage(h))
1491                flush_work(&free_hpage_work);
1492}
1493
1494static void update_and_free_page(struct hstate *h, struct page *page,
1495                                 bool atomic)
1496{
1497        if (!HPageVmemmapOptimized(page) || !atomic) {
1498                __update_and_free_page(h, page);
1499                return;
1500        }
1501
1502        /*
1503         * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1504         *
1505         * Only call schedule_work() if hpage_freelist is previously
1506         * empty. Otherwise, schedule_work() had been called but the workfn
1507         * hasn't retrieved the list yet.
1508         */
1509        if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1510                schedule_work(&free_hpage_work);
1511}
1512
1513static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1514{
1515        struct page *page, *t_page;
1516
1517        list_for_each_entry_safe(page, t_page, list, lru) {
1518                update_and_free_page(h, page, false);
1519                cond_resched();
1520        }
1521}
1522
1523struct hstate *size_to_hstate(unsigned long size)
1524{
1525        struct hstate *h;
1526
1527        for_each_hstate(h) {
1528                if (huge_page_size(h) == size)
1529                        return h;
1530        }
1531        return NULL;
1532}
1533
1534void free_huge_page(struct page *page)
1535{
1536        /*
1537         * Can't pass hstate in here because it is called from the
1538         * compound page destructor.
1539         */
1540        struct hstate *h = page_hstate(page);
1541        int nid = page_to_nid(page);
1542        struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1543        bool restore_reserve;
1544        unsigned long flags;
1545
1546        VM_BUG_ON_PAGE(page_count(page), page);
1547        VM_BUG_ON_PAGE(page_mapcount(page), page);
1548
1549        hugetlb_set_page_subpool(page, NULL);
1550        page->mapping = NULL;
1551        restore_reserve = HPageRestoreReserve(page);
1552        ClearHPageRestoreReserve(page);
1553
1554        /*
1555         * If HPageRestoreReserve was set on page, page allocation consumed a
1556         * reservation.  If the page was associated with a subpool, there
1557         * would have been a page reserved in the subpool before allocation
1558         * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1559         * reservation, do not call hugepage_subpool_put_pages() as this will
1560         * remove the reserved page from the subpool.
1561         */
1562        if (!restore_reserve) {
1563                /*
1564                 * A return code of zero implies that the subpool will be
1565                 * under its minimum size if the reservation is not restored
1566                 * after page is free.  Therefore, force restore_reserve
1567                 * operation.
1568                 */
1569                if (hugepage_subpool_put_pages(spool, 1) == 0)
1570                        restore_reserve = true;
1571        }
1572
1573        spin_lock_irqsave(&hugetlb_lock, flags);
1574        ClearHPageMigratable(page);
1575        hugetlb_cgroup_uncharge_page(hstate_index(h),
1576                                     pages_per_huge_page(h), page);
1577        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1578                                          pages_per_huge_page(h), page);
1579        if (restore_reserve)
1580                h->resv_huge_pages++;
1581
1582        if (HPageTemporary(page)) {
1583                remove_hugetlb_page(h, page, false);
1584                spin_unlock_irqrestore(&hugetlb_lock, flags);
1585                update_and_free_page(h, page, true);
1586        } else if (h->surplus_huge_pages_node[nid]) {
1587                /* remove the page from active list */
1588                remove_hugetlb_page(h, page, true);
1589                spin_unlock_irqrestore(&hugetlb_lock, flags);
1590                update_and_free_page(h, page, true);
1591        } else {
1592                arch_clear_hugepage_flags(page);
1593                enqueue_huge_page(h, page);
1594                spin_unlock_irqrestore(&hugetlb_lock, flags);
1595        }
1596}
1597
1598/*
1599 * Must be called with the hugetlb lock held
1600 */
1601static void __prep_account_new_huge_page(struct hstate *h, int nid)
1602{
1603        lockdep_assert_held(&hugetlb_lock);
1604        h->nr_huge_pages++;
1605        h->nr_huge_pages_node[nid]++;
1606}
1607
1608static void __prep_new_huge_page(struct hstate *h, struct page *page)
1609{
1610        free_huge_page_vmemmap(h, page);
1611        INIT_LIST_HEAD(&page->lru);
1612        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1613        hugetlb_set_page_subpool(page, NULL);
1614        set_hugetlb_cgroup(page, NULL);
1615        set_hugetlb_cgroup_rsvd(page, NULL);
1616}
1617
1618static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1619{
1620        __prep_new_huge_page(h, page);
1621        spin_lock_irq(&hugetlb_lock);
1622        __prep_account_new_huge_page(h, nid);
1623        spin_unlock_irq(&hugetlb_lock);
1624}
1625
1626static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1627{
1628        int i, j;
1629        int nr_pages = 1 << order;
1630        struct page *p = page + 1;
1631
1632        /* we rely on prep_new_huge_page to set the destructor */
1633        set_compound_order(page, order);
1634        __ClearPageReserved(page);
1635        __SetPageHead(page);
1636        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1637                /*
1638                 * For gigantic hugepages allocated through bootmem at
1639                 * boot, it's safer to be consistent with the not-gigantic
1640                 * hugepages and clear the PG_reserved bit from all tail pages
1641                 * too.  Otherwise drivers using get_user_pages() to access tail
1642                 * pages may get the reference counting wrong if they see
1643                 * PG_reserved set on a tail page (despite the head page not
1644                 * having PG_reserved set).  Enforcing this consistency between
1645                 * head and tail pages allows drivers to optimize away a check
1646                 * on the head page when they need know if put_page() is needed
1647                 * after get_user_pages().
1648                 */
1649                __ClearPageReserved(p);
1650                /*
1651                 * Subtle and very unlikely
1652                 *
1653                 * Gigantic 'page allocators' such as memblock or cma will
1654                 * return a set of pages with each page ref counted.  We need
1655                 * to turn this set of pages into a compound page with tail
1656                 * page ref counts set to zero.  Code such as speculative page
1657                 * cache adding could take a ref on a 'to be' tail page.
1658                 * We need to respect any increased ref count, and only set
1659                 * the ref count to zero if count is currently 1.  If count
1660                 * is not 1, we call synchronize_rcu in the hope that a rcu
1661                 * grace period will cause ref count to drop and then retry.
1662                 * If count is still inflated on retry we return an error and
1663                 * must discard the pages.
1664                 */
1665                if (!page_ref_freeze(p, 1)) {
1666                        pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
1667                        synchronize_rcu();
1668                        if (!page_ref_freeze(p, 1))
1669                                goto out_error;
1670                }
1671                set_page_count(p, 0);
1672                set_compound_head(p, page);
1673        }
1674        atomic_set(compound_mapcount_ptr(page), -1);
1675        atomic_set(compound_pincount_ptr(page), 0);
1676        return true;
1677
1678out_error:
1679        /* undo tail page modifications made above */
1680        p = page + 1;
1681        for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1682                clear_compound_head(p);
1683                set_page_refcounted(p);
1684        }
1685        /* need to clear PG_reserved on remaining tail pages  */
1686        for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1687                __ClearPageReserved(p);
1688        set_compound_order(page, 0);
1689        page[1].compound_nr = 0;
1690        __ClearPageHead(page);
1691        return false;
1692}
1693
1694/*
1695 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1696 * transparent huge pages.  See the PageTransHuge() documentation for more
1697 * details.
1698 */
1699int PageHuge(struct page *page)
1700{
1701        if (!PageCompound(page))
1702                return 0;
1703
1704        page = compound_head(page);
1705        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1706}
1707EXPORT_SYMBOL_GPL(PageHuge);
1708
1709/*
1710 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1711 * normal or transparent huge pages.
1712 */
1713int PageHeadHuge(struct page *page_head)
1714{
1715        if (!PageHead(page_head))
1716                return 0;
1717
1718        return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1719}
1720
1721/*
1722 * Find and lock address space (mapping) in write mode.
1723 *
1724 * Upon entry, the page is locked which means that page_mapping() is
1725 * stable.  Due to locking order, we can only trylock_write.  If we can
1726 * not get the lock, simply return NULL to caller.
1727 */
1728struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1729{
1730        struct address_space *mapping = page_mapping(hpage);
1731
1732        if (!mapping)
1733                return mapping;
1734
1735        if (i_mmap_trylock_write(mapping))
1736                return mapping;
1737
1738        return NULL;
1739}
1740
1741pgoff_t hugetlb_basepage_index(struct page *page)
1742{
1743        struct page *page_head = compound_head(page);
1744        pgoff_t index = page_index(page_head);
1745        unsigned long compound_idx;
1746
1747        if (compound_order(page_head) >= MAX_ORDER)
1748                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1749        else
1750                compound_idx = page - page_head;
1751
1752        return (index << compound_order(page_head)) + compound_idx;
1753}
1754
1755static struct page *alloc_buddy_huge_page(struct hstate *h,
1756                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1757                nodemask_t *node_alloc_noretry)
1758{
1759        int order = huge_page_order(h);
1760        struct page *page;
1761        bool alloc_try_hard = true;
1762
1763        /*
1764         * By default we always try hard to allocate the page with
1765         * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1766         * a loop (to adjust global huge page counts) and previous allocation
1767         * failed, do not continue to try hard on the same node.  Use the
1768         * node_alloc_noretry bitmap to manage this state information.
1769         */
1770        if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1771                alloc_try_hard = false;
1772        gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1773        if (alloc_try_hard)
1774                gfp_mask |= __GFP_RETRY_MAYFAIL;
1775        if (nid == NUMA_NO_NODE)
1776                nid = numa_mem_id();
1777        page = __alloc_pages(gfp_mask, order, nid, nmask);
1778        if (page)
1779                __count_vm_event(HTLB_BUDDY_PGALLOC);
1780        else
1781                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1782
1783        /*
1784         * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1785         * indicates an overall state change.  Clear bit so that we resume
1786         * normal 'try hard' allocations.
1787         */
1788        if (node_alloc_noretry && page && !alloc_try_hard)
1789                node_clear(nid, *node_alloc_noretry);
1790
1791        /*
1792         * If we tried hard to get a page but failed, set bit so that
1793         * subsequent attempts will not try as hard until there is an
1794         * overall state change.
1795         */
1796        if (node_alloc_noretry && !page && alloc_try_hard)
1797                node_set(nid, *node_alloc_noretry);
1798
1799        return page;
1800}
1801
1802/*
1803 * Common helper to allocate a fresh hugetlb page. All specific allocators
1804 * should use this function to get new hugetlb pages
1805 */
1806static struct page *alloc_fresh_huge_page(struct hstate *h,
1807                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1808                nodemask_t *node_alloc_noretry)
1809{
1810        struct page *page;
1811        bool retry = false;
1812
1813retry:
1814        if (hstate_is_gigantic(h))
1815                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1816        else
1817                page = alloc_buddy_huge_page(h, gfp_mask,
1818                                nid, nmask, node_alloc_noretry);
1819        if (!page)
1820                return NULL;
1821
1822        if (hstate_is_gigantic(h)) {
1823                if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1824                        /*
1825                         * Rare failure to convert pages to compound page.
1826                         * Free pages and try again - ONCE!
1827                         */
1828                        free_gigantic_page(page, huge_page_order(h));
1829                        if (!retry) {
1830                                retry = true;
1831                                goto retry;
1832                        }
1833                        pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1834                        return NULL;
1835                }
1836        }
1837        prep_new_huge_page(h, page, page_to_nid(page));
1838
1839        return page;
1840}
1841
1842/*
1843 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1844 * manner.
1845 */
1846static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1847                                nodemask_t *node_alloc_noretry)
1848{
1849        struct page *page;
1850        int nr_nodes, node;
1851        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1852
1853        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1854                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1855                                                node_alloc_noretry);
1856                if (page)
1857                        break;
1858        }
1859
1860        if (!page)
1861                return 0;
1862
1863        put_page(page); /* free it into the hugepage allocator */
1864
1865        return 1;
1866}
1867
1868/*
1869 * Remove huge page from pool from next node to free.  Attempt to keep
1870 * persistent huge pages more or less balanced over allowed nodes.
1871 * This routine only 'removes' the hugetlb page.  The caller must make
1872 * an additional call to free the page to low level allocators.
1873 * Called with hugetlb_lock locked.
1874 */
1875static struct page *remove_pool_huge_page(struct hstate *h,
1876                                                nodemask_t *nodes_allowed,
1877                                                 bool acct_surplus)
1878{
1879        int nr_nodes, node;
1880        struct page *page = NULL;
1881
1882        lockdep_assert_held(&hugetlb_lock);
1883        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1884                /*
1885                 * If we're returning unused surplus pages, only examine
1886                 * nodes with surplus pages.
1887                 */
1888                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1889                    !list_empty(&h->hugepage_freelists[node])) {
1890                        page = list_entry(h->hugepage_freelists[node].next,
1891                                          struct page, lru);
1892                        remove_hugetlb_page(h, page, acct_surplus);
1893                        break;
1894                }
1895        }
1896
1897        return page;
1898}
1899
1900/*
1901 * Dissolve a given free hugepage into free buddy pages. This function does
1902 * nothing for in-use hugepages and non-hugepages.
1903 * This function returns values like below:
1904 *
1905 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1906 *           when the system is under memory pressure and the feature of
1907 *           freeing unused vmemmap pages associated with each hugetlb page
1908 *           is enabled.
1909 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1910 *           (allocated or reserved.)
1911 *       0:  successfully dissolved free hugepages or the page is not a
1912 *           hugepage (considered as already dissolved)
1913 */
1914int dissolve_free_huge_page(struct page *page)
1915{
1916        int rc = -EBUSY;
1917
1918retry:
1919        /* Not to disrupt normal path by vainly holding hugetlb_lock */
1920        if (!PageHuge(page))
1921                return 0;
1922
1923        spin_lock_irq(&hugetlb_lock);
1924        if (!PageHuge(page)) {
1925                rc = 0;
1926                goto out;
1927        }
1928
1929        if (!page_count(page)) {
1930                struct page *head = compound_head(page);
1931                struct hstate *h = page_hstate(head);
1932                if (h->free_huge_pages - h->resv_huge_pages == 0)
1933                        goto out;
1934
1935                /*
1936                 * We should make sure that the page is already on the free list
1937                 * when it is dissolved.
1938                 */
1939                if (unlikely(!HPageFreed(head))) {
1940                        spin_unlock_irq(&hugetlb_lock);
1941                        cond_resched();
1942
1943                        /*
1944                         * Theoretically, we should return -EBUSY when we
1945                         * encounter this race. In fact, we have a chance
1946                         * to successfully dissolve the page if we do a
1947                         * retry. Because the race window is quite small.
1948                         * If we seize this opportunity, it is an optimization
1949                         * for increasing the success rate of dissolving page.
1950                         */
1951                        goto retry;
1952                }
1953
1954                remove_hugetlb_page(h, head, false);
1955                h->max_huge_pages--;
1956                spin_unlock_irq(&hugetlb_lock);
1957
1958                /*
1959                 * Normally update_and_free_page will allocate required vmemmmap
1960                 * before freeing the page.  update_and_free_page will fail to
1961                 * free the page if it can not allocate required vmemmap.  We
1962                 * need to adjust max_huge_pages if the page is not freed.
1963                 * Attempt to allocate vmemmmap here so that we can take
1964                 * appropriate action on failure.
1965                 */
1966                rc = alloc_huge_page_vmemmap(h, head);
1967                if (!rc) {
1968                        /*
1969                         * Move PageHWPoison flag from head page to the raw
1970                         * error page, which makes any subpages rather than
1971                         * the error page reusable.
1972                         */
1973                        if (PageHWPoison(head) && page != head) {
1974                                SetPageHWPoison(page);
1975                                ClearPageHWPoison(head);
1976                        }
1977                        update_and_free_page(h, head, false);
1978                } else {
1979                        spin_lock_irq(&hugetlb_lock);
1980                        add_hugetlb_page(h, head, false);
1981                        h->max_huge_pages++;
1982                        spin_unlock_irq(&hugetlb_lock);
1983                }
1984
1985                return rc;
1986        }
1987out:
1988        spin_unlock_irq(&hugetlb_lock);
1989        return rc;
1990}
1991
1992/*
1993 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1994 * make specified memory blocks removable from the system.
1995 * Note that this will dissolve a free gigantic hugepage completely, if any
1996 * part of it lies within the given range.
1997 * Also note that if dissolve_free_huge_page() returns with an error, all
1998 * free hugepages that were dissolved before that error are lost.
1999 */
2000int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2001{
2002        unsigned long pfn;
2003        struct page *page;
2004        int rc = 0;
2005
2006        if (!hugepages_supported())
2007                return rc;
2008
2009        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2010                page = pfn_to_page(pfn);
2011                rc = dissolve_free_huge_page(page);
2012                if (rc)
2013                        break;
2014        }
2015
2016        return rc;
2017}
2018
2019/*
2020 * Allocates a fresh surplus page from the page allocator.
2021 */
2022static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2023                int nid, nodemask_t *nmask)
2024{
2025        struct page *page = NULL;
2026
2027        if (hstate_is_gigantic(h))
2028                return NULL;
2029
2030        spin_lock_irq(&hugetlb_lock);
2031        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2032                goto out_unlock;
2033        spin_unlock_irq(&hugetlb_lock);
2034
2035        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2036        if (!page)
2037                return NULL;
2038
2039        spin_lock_irq(&hugetlb_lock);
2040        /*
2041         * We could have raced with the pool size change.
2042         * Double check that and simply deallocate the new page
2043         * if we would end up overcommiting the surpluses. Abuse
2044         * temporary page to workaround the nasty free_huge_page
2045         * codeflow
2046         */
2047        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2048                SetHPageTemporary(page);
2049                spin_unlock_irq(&hugetlb_lock);
2050                put_page(page);
2051                return NULL;
2052        } else {
2053                h->surplus_huge_pages++;
2054                h->surplus_huge_pages_node[page_to_nid(page)]++;
2055        }
2056
2057out_unlock:
2058        spin_unlock_irq(&hugetlb_lock);
2059
2060        return page;
2061}
2062
2063static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2064                                     int nid, nodemask_t *nmask)
2065{
2066        struct page *page;
2067
2068        if (hstate_is_gigantic(h))
2069                return NULL;
2070
2071        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2072        if (!page)
2073                return NULL;
2074
2075        /*
2076         * We do not account these pages as surplus because they are only
2077         * temporary and will be released properly on the last reference
2078         */
2079        SetHPageTemporary(page);
2080
2081        return page;
2082}
2083
2084/*
2085 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2086 */
2087static
2088struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2089                struct vm_area_struct *vma, unsigned long addr)
2090{
2091        struct page *page;
2092        struct mempolicy *mpol;
2093        gfp_t gfp_mask = htlb_alloc_mask(h);
2094        int nid;
2095        nodemask_t *nodemask;
2096
2097        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2098        page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2099        mpol_cond_put(mpol);
2100
2101        return page;
2102}
2103
2104/* page migration callback function */
2105struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2106                nodemask_t *nmask, gfp_t gfp_mask)
2107{
2108        spin_lock_irq(&hugetlb_lock);
2109        if (h->free_huge_pages - h->resv_huge_pages > 0) {
2110                struct page *page;
2111
2112                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2113                if (page) {
2114                        spin_unlock_irq(&hugetlb_lock);
2115                        return page;
2116                }
2117        }
2118        spin_unlock_irq(&hugetlb_lock);
2119
2120        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2121}
2122
2123/* mempolicy aware migration callback */
2124struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2125                unsigned long address)
2126{
2127        struct mempolicy *mpol;
2128        nodemask_t *nodemask;
2129        struct page *page;
2130        gfp_t gfp_mask;
2131        int node;
2132
2133        gfp_mask = htlb_alloc_mask(h);
2134        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2135        page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2136        mpol_cond_put(mpol);
2137
2138        return page;
2139}
2140
2141/*
2142 * Increase the hugetlb pool such that it can accommodate a reservation
2143 * of size 'delta'.
2144 */
2145static int gather_surplus_pages(struct hstate *h, long delta)
2146        __must_hold(&hugetlb_lock)
2147{
2148        struct list_head surplus_list;
2149        struct page *page, *tmp;
2150        int ret;
2151        long i;
2152        long needed, allocated;
2153        bool alloc_ok = true;
2154
2155        lockdep_assert_held(&hugetlb_lock);
2156        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2157        if (needed <= 0) {
2158                h->resv_huge_pages += delta;
2159                return 0;
2160        }
2161
2162        allocated = 0;
2163        INIT_LIST_HEAD(&surplus_list);
2164
2165        ret = -ENOMEM;
2166retry:
2167        spin_unlock_irq(&hugetlb_lock);
2168        for (i = 0; i < needed; i++) {
2169                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2170                                NUMA_NO_NODE, NULL);
2171                if (!page) {
2172                        alloc_ok = false;
2173                        break;
2174                }
2175                list_add(&page->lru, &surplus_list);
2176                cond_resched();
2177        }
2178        allocated += i;
2179
2180        /*
2181         * After retaking hugetlb_lock, we need to recalculate 'needed'
2182         * because either resv_huge_pages or free_huge_pages may have changed.
2183         */
2184        spin_lock_irq(&hugetlb_lock);
2185        needed = (h->resv_huge_pages + delta) -
2186                        (h->free_huge_pages + allocated);
2187        if (needed > 0) {
2188                if (alloc_ok)
2189                        goto retry;
2190                /*
2191                 * We were not able to allocate enough pages to
2192                 * satisfy the entire reservation so we free what
2193                 * we've allocated so far.
2194                 */
2195                goto free;
2196        }
2197        /*
2198         * The surplus_list now contains _at_least_ the number of extra pages
2199         * needed to accommodate the reservation.  Add the appropriate number
2200         * of pages to the hugetlb pool and free the extras back to the buddy
2201         * allocator.  Commit the entire reservation here to prevent another
2202         * process from stealing the pages as they are added to the pool but
2203         * before they are reserved.
2204         */
2205        needed += allocated;
2206        h->resv_huge_pages += delta;
2207        ret = 0;
2208
2209        /* Free the needed pages to the hugetlb pool */
2210        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2211                int zeroed;
2212
2213                if ((--needed) < 0)
2214                        break;
2215                /*
2216                 * This page is now managed by the hugetlb allocator and has
2217                 * no users -- drop the buddy allocator's reference.
2218                 */
2219                zeroed = put_page_testzero(page);
2220                VM_BUG_ON_PAGE(!zeroed, page);
2221                enqueue_huge_page(h, page);
2222        }
2223free:
2224        spin_unlock_irq(&hugetlb_lock);
2225
2226        /* Free unnecessary surplus pages to the buddy allocator */
2227        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2228                put_page(page);
2229        spin_lock_irq(&hugetlb_lock);
2230
2231        return ret;
2232}
2233
2234/*
2235 * This routine has two main purposes:
2236 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2237 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2238 *    to the associated reservation map.
2239 * 2) Free any unused surplus pages that may have been allocated to satisfy
2240 *    the reservation.  As many as unused_resv_pages may be freed.
2241 */
2242static void return_unused_surplus_pages(struct hstate *h,
2243                                        unsigned long unused_resv_pages)
2244{
2245        unsigned long nr_pages;
2246        struct page *page;
2247        LIST_HEAD(page_list);
2248
2249        lockdep_assert_held(&hugetlb_lock);
2250        /* Uncommit the reservation */
2251        h->resv_huge_pages -= unused_resv_pages;
2252
2253        /* Cannot return gigantic pages currently */
2254        if (hstate_is_gigantic(h))
2255                goto out;
2256
2257        /*
2258         * Part (or even all) of the reservation could have been backed
2259         * by pre-allocated pages. Only free surplus pages.
2260         */
2261        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2262
2263        /*
2264         * We want to release as many surplus pages as possible, spread
2265         * evenly across all nodes with memory. Iterate across these nodes
2266         * until we can no longer free unreserved surplus pages. This occurs
2267         * when the nodes with surplus pages have no free pages.
2268         * remove_pool_huge_page() will balance the freed pages across the
2269         * on-line nodes with memory and will handle the hstate accounting.
2270         */
2271        while (nr_pages--) {
2272                page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2273                if (!page)
2274                        goto out;
2275
2276                list_add(&page->lru, &page_list);
2277        }
2278
2279out:
2280        spin_unlock_irq(&hugetlb_lock);
2281        update_and_free_pages_bulk(h, &page_list);
2282        spin_lock_irq(&hugetlb_lock);
2283}
2284
2285
2286/*
2287 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2288 * are used by the huge page allocation routines to manage reservations.
2289 *
2290 * vma_needs_reservation is called to determine if the huge page at addr
2291 * within the vma has an associated reservation.  If a reservation is
2292 * needed, the value 1 is returned.  The caller is then responsible for
2293 * managing the global reservation and subpool usage counts.  After
2294 * the huge page has been allocated, vma_commit_reservation is called
2295 * to add the page to the reservation map.  If the page allocation fails,
2296 * the reservation must be ended instead of committed.  vma_end_reservation
2297 * is called in such cases.
2298 *
2299 * In the normal case, vma_commit_reservation returns the same value
2300 * as the preceding vma_needs_reservation call.  The only time this
2301 * is not the case is if a reserve map was changed between calls.  It
2302 * is the responsibility of the caller to notice the difference and
2303 * take appropriate action.
2304 *
2305 * vma_add_reservation is used in error paths where a reservation must
2306 * be restored when a newly allocated huge page must be freed.  It is
2307 * to be called after calling vma_needs_reservation to determine if a
2308 * reservation exists.
2309 *
2310 * vma_del_reservation is used in error paths where an entry in the reserve
2311 * map was created during huge page allocation and must be removed.  It is to
2312 * be called after calling vma_needs_reservation to determine if a reservation
2313 * exists.
2314 */
2315enum vma_resv_mode {
2316        VMA_NEEDS_RESV,
2317        VMA_COMMIT_RESV,
2318        VMA_END_RESV,
2319        VMA_ADD_RESV,
2320        VMA_DEL_RESV,
2321};
2322static long __vma_reservation_common(struct hstate *h,
2323                                struct vm_area_struct *vma, unsigned long addr,
2324                                enum vma_resv_mode mode)
2325{
2326        struct resv_map *resv;
2327        pgoff_t idx;
2328        long ret;
2329        long dummy_out_regions_needed;
2330
2331        resv = vma_resv_map(vma);
2332        if (!resv)
2333                return 1;
2334
2335        idx = vma_hugecache_offset(h, vma, addr);
2336        switch (mode) {
2337        case VMA_NEEDS_RESV:
2338                ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2339                /* We assume that vma_reservation_* routines always operate on
2340                 * 1 page, and that adding to resv map a 1 page entry can only
2341                 * ever require 1 region.
2342                 */
2343                VM_BUG_ON(dummy_out_regions_needed != 1);
2344                break;
2345        case VMA_COMMIT_RESV:
2346                ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2347                /* region_add calls of range 1 should never fail. */
2348                VM_BUG_ON(ret < 0);
2349                break;
2350        case VMA_END_RESV:
2351                region_abort(resv, idx, idx + 1, 1);
2352                ret = 0;
2353                break;
2354        case VMA_ADD_RESV:
2355                if (vma->vm_flags & VM_MAYSHARE) {
2356                        ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2357                        /* region_add calls of range 1 should never fail. */
2358                        VM_BUG_ON(ret < 0);
2359                } else {
2360                        region_abort(resv, idx, idx + 1, 1);
2361                        ret = region_del(resv, idx, idx + 1);
2362                }
2363                break;
2364        case VMA_DEL_RESV:
2365                if (vma->vm_flags & VM_MAYSHARE) {
2366                        region_abort(resv, idx, idx + 1, 1);
2367                        ret = region_del(resv, idx, idx + 1);
2368                } else {
2369                        ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2370                        /* region_add calls of range 1 should never fail. */
2371                        VM_BUG_ON(ret < 0);
2372                }
2373                break;
2374        default:
2375                BUG();
2376        }
2377
2378        if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2379                return ret;
2380        /*
2381         * We know private mapping must have HPAGE_RESV_OWNER set.
2382         *
2383         * In most cases, reserves always exist for private mappings.
2384         * However, a file associated with mapping could have been
2385         * hole punched or truncated after reserves were consumed.
2386         * As subsequent fault on such a range will not use reserves.
2387         * Subtle - The reserve map for private mappings has the
2388         * opposite meaning than that of shared mappings.  If NO
2389         * entry is in the reserve map, it means a reservation exists.
2390         * If an entry exists in the reserve map, it means the
2391         * reservation has already been consumed.  As a result, the
2392         * return value of this routine is the opposite of the
2393         * value returned from reserve map manipulation routines above.
2394         */
2395        if (ret > 0)
2396                return 0;
2397        if (ret == 0)
2398                return 1;
2399        return ret;
2400}
2401
2402static long vma_needs_reservation(struct hstate *h,
2403                        struct vm_area_struct *vma, unsigned long addr)
2404{
2405        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2406}
2407
2408static long vma_commit_reservation(struct hstate *h,
2409                        struct vm_area_struct *vma, unsigned long addr)
2410{
2411        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2412}
2413
2414static void vma_end_reservation(struct hstate *h,
2415                        struct vm_area_struct *vma, unsigned long addr)
2416{
2417        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2418}
2419
2420static long vma_add_reservation(struct hstate *h,
2421                        struct vm_area_struct *vma, unsigned long addr)
2422{
2423        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2424}
2425
2426static long vma_del_reservation(struct hstate *h,
2427                        struct vm_area_struct *vma, unsigned long addr)
2428{
2429        return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2430}
2431
2432/*
2433 * This routine is called to restore reservation information on error paths.
2434 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2435 * the hugetlb mutex should remain held when calling this routine.
2436 *
2437 * It handles two specific cases:
2438 * 1) A reservation was in place and the page consumed the reservation.
2439 *    HPageRestoreReserve is set in the page.
2440 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2441 *    not set.  However, alloc_huge_page always updates the reserve map.
2442 *
2443 * In case 1, free_huge_page later in the error path will increment the
2444 * global reserve count.  But, free_huge_page does not have enough context
2445 * to adjust the reservation map.  This case deals primarily with private
2446 * mappings.  Adjust the reserve map here to be consistent with global
2447 * reserve count adjustments to be made by free_huge_page.  Make sure the
2448 * reserve map indicates there is a reservation present.
2449 *
2450 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2451 */
2452void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2453                        unsigned long address, struct page *page)
2454{
2455        long rc = vma_needs_reservation(h, vma, address);
2456
2457        if (HPageRestoreReserve(page)) {
2458                if (unlikely(rc < 0))
2459                        /*
2460                         * Rare out of memory condition in reserve map
2461                         * manipulation.  Clear HPageRestoreReserve so that
2462                         * global reserve count will not be incremented
2463                         * by free_huge_page.  This will make it appear
2464                         * as though the reservation for this page was
2465                         * consumed.  This may prevent the task from
2466                         * faulting in the page at a later time.  This
2467                         * is better than inconsistent global huge page
2468                         * accounting of reserve counts.
2469                         */
2470                        ClearHPageRestoreReserve(page);
2471                else if (rc)
2472                        (void)vma_add_reservation(h, vma, address);
2473                else
2474                        vma_end_reservation(h, vma, address);
2475        } else {
2476                if (!rc) {
2477                        /*
2478                         * This indicates there is an entry in the reserve map
2479                         * not added by alloc_huge_page.  We know it was added
2480                         * before the alloc_huge_page call, otherwise
2481                         * HPageRestoreReserve would be set on the page.
2482                         * Remove the entry so that a subsequent allocation
2483                         * does not consume a reservation.
2484                         */
2485                        rc = vma_del_reservation(h, vma, address);
2486                        if (rc < 0)
2487                                /*
2488                                 * VERY rare out of memory condition.  Since
2489                                 * we can not delete the entry, set
2490                                 * HPageRestoreReserve so that the reserve
2491                                 * count will be incremented when the page
2492                                 * is freed.  This reserve will be consumed
2493                                 * on a subsequent allocation.
2494                                 */
2495                                SetHPageRestoreReserve(page);
2496                } else if (rc < 0) {
2497                        /*
2498                         * Rare out of memory condition from
2499                         * vma_needs_reservation call.  Memory allocation is
2500                         * only attempted if a new entry is needed.  Therefore,
2501                         * this implies there is not an entry in the
2502                         * reserve map.
2503                         *
2504                         * For shared mappings, no entry in the map indicates
2505                         * no reservation.  We are done.
2506                         */
2507                        if (!(vma->vm_flags & VM_MAYSHARE))
2508                                /*
2509                                 * For private mappings, no entry indicates
2510                                 * a reservation is present.  Since we can
2511                                 * not add an entry, set SetHPageRestoreReserve
2512                                 * on the page so reserve count will be
2513                                 * incremented when freed.  This reserve will
2514                                 * be consumed on a subsequent allocation.
2515                                 */
2516                                SetHPageRestoreReserve(page);
2517                } else
2518                        /*
2519                         * No reservation present, do nothing
2520                         */
2521                         vma_end_reservation(h, vma, address);
2522        }
2523}
2524
2525/*
2526 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2527 * @h: struct hstate old page belongs to
2528 * @old_page: Old page to dissolve
2529 * @list: List to isolate the page in case we need to
2530 * Returns 0 on success, otherwise negated error.
2531 */
2532static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2533                                        struct list_head *list)
2534{
2535        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2536        int nid = page_to_nid(old_page);
2537        struct page *new_page;
2538        int ret = 0;
2539
2540        /*
2541         * Before dissolving the page, we need to allocate a new one for the
2542         * pool to remain stable.  Here, we allocate the page and 'prep' it
2543         * by doing everything but actually updating counters and adding to
2544         * the pool.  This simplifies and let us do most of the processing
2545         * under the lock.
2546         */
2547        new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2548        if (!new_page)
2549                return -ENOMEM;
2550        __prep_new_huge_page(h, new_page);
2551
2552retry:
2553        spin_lock_irq(&hugetlb_lock);
2554        if (!PageHuge(old_page)) {
2555                /*
2556                 * Freed from under us. Drop new_page too.
2557                 */
2558                goto free_new;
2559        } else if (page_count(old_page)) {
2560                /*
2561                 * Someone has grabbed the page, try to isolate it here.
2562                 * Fail with -EBUSY if not possible.
2563                 */
2564                spin_unlock_irq(&hugetlb_lock);
2565                if (!isolate_huge_page(old_page, list))
2566                        ret = -EBUSY;
2567                spin_lock_irq(&hugetlb_lock);
2568                goto free_new;
2569        } else if (!HPageFreed(old_page)) {
2570                /*
2571                 * Page's refcount is 0 but it has not been enqueued in the
2572                 * freelist yet. Race window is small, so we can succeed here if
2573                 * we retry.
2574                 */
2575                spin_unlock_irq(&hugetlb_lock);
2576                cond_resched();
2577                goto retry;
2578        } else {
2579                /*
2580                 * Ok, old_page is still a genuine free hugepage. Remove it from
2581                 * the freelist and decrease the counters. These will be
2582                 * incremented again when calling __prep_account_new_huge_page()
2583                 * and enqueue_huge_page() for new_page. The counters will remain
2584                 * stable since this happens under the lock.
2585                 */
2586                remove_hugetlb_page(h, old_page, false);
2587
2588                /*
2589                 * Reference count trick is needed because allocator gives us
2590                 * referenced page but the pool requires pages with 0 refcount.
2591                 */
2592                __prep_account_new_huge_page(h, nid);
2593                page_ref_dec(new_page);
2594                enqueue_huge_page(h, new_page);
2595
2596                /*
2597                 * Pages have been replaced, we can safely free the old one.
2598                 */
2599                spin_unlock_irq(&hugetlb_lock);
2600                update_and_free_page(h, old_page, false);
2601        }
2602
2603        return ret;
2604
2605free_new:
2606        spin_unlock_irq(&hugetlb_lock);
2607        update_and_free_page(h, new_page, false);
2608
2609        return ret;
2610}
2611
2612int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2613{
2614        struct hstate *h;
2615        struct page *head;
2616        int ret = -EBUSY;
2617
2618        /*
2619         * The page might have been dissolved from under our feet, so make sure
2620         * to carefully check the state under the lock.
2621         * Return success when racing as if we dissolved the page ourselves.
2622         */
2623        spin_lock_irq(&hugetlb_lock);
2624        if (PageHuge(page)) {
2625                head = compound_head(page);
2626                h = page_hstate(head);
2627        } else {
2628                spin_unlock_irq(&hugetlb_lock);
2629                return 0;
2630        }
2631        spin_unlock_irq(&hugetlb_lock);
2632
2633        /*
2634         * Fence off gigantic pages as there is a cyclic dependency between
2635         * alloc_contig_range and them. Return -ENOMEM as this has the effect
2636         * of bailing out right away without further retrying.
2637         */
2638        if (hstate_is_gigantic(h))
2639                return -ENOMEM;
2640
2641        if (page_count(head) && isolate_huge_page(head, list))
2642                ret = 0;
2643        else if (!page_count(head))
2644                ret = alloc_and_dissolve_huge_page(h, head, list);
2645
2646        return ret;
2647}
2648
2649struct page *alloc_huge_page(struct vm_area_struct *vma,
2650                                    unsigned long addr, int avoid_reserve)
2651{
2652        struct hugepage_subpool *spool = subpool_vma(vma);
2653        struct hstate *h = hstate_vma(vma);
2654        struct page *page;
2655        long map_chg, map_commit;
2656        long gbl_chg;
2657        int ret, idx;
2658        struct hugetlb_cgroup *h_cg;
2659        bool deferred_reserve;
2660
2661        idx = hstate_index(h);
2662        /*
2663         * Examine the region/reserve map to determine if the process
2664         * has a reservation for the page to be allocated.  A return
2665         * code of zero indicates a reservation exists (no change).
2666         */
2667        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2668        if (map_chg < 0)
2669                return ERR_PTR(-ENOMEM);
2670
2671        /*
2672         * Processes that did not create the mapping will have no
2673         * reserves as indicated by the region/reserve map. Check
2674         * that the allocation will not exceed the subpool limit.
2675         * Allocations for MAP_NORESERVE mappings also need to be
2676         * checked against any subpool limit.
2677         */
2678        if (map_chg || avoid_reserve) {
2679                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2680                if (gbl_chg < 0) {
2681                        vma_end_reservation(h, vma, addr);
2682                        return ERR_PTR(-ENOSPC);
2683                }
2684
2685                /*
2686                 * Even though there was no reservation in the region/reserve
2687                 * map, there could be reservations associated with the
2688                 * subpool that can be used.  This would be indicated if the
2689                 * return value of hugepage_subpool_get_pages() is zero.
2690                 * However, if avoid_reserve is specified we still avoid even
2691                 * the subpool reservations.
2692                 */
2693                if (avoid_reserve)
2694                        gbl_chg = 1;
2695        }
2696
2697        /* If this allocation is not consuming a reservation, charge it now.
2698         */
2699        deferred_reserve = map_chg || avoid_reserve;
2700        if (deferred_reserve) {
2701                ret = hugetlb_cgroup_charge_cgroup_rsvd(
2702                        idx, pages_per_huge_page(h), &h_cg);
2703                if (ret)
2704                        goto out_subpool_put;
2705        }
2706
2707        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2708        if (ret)
2709                goto out_uncharge_cgroup_reservation;
2710
2711        spin_lock_irq(&hugetlb_lock);
2712        /*
2713         * glb_chg is passed to indicate whether or not a page must be taken
2714         * from the global free pool (global change).  gbl_chg == 0 indicates
2715         * a reservation exists for the allocation.
2716         */
2717        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2718        if (!page) {
2719                spin_unlock_irq(&hugetlb_lock);
2720                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2721                if (!page)
2722                        goto out_uncharge_cgroup;
2723                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2724                        SetHPageRestoreReserve(page);
2725                        h->resv_huge_pages--;
2726                }
2727                spin_lock_irq(&hugetlb_lock);
2728                list_add(&page->lru, &h->hugepage_activelist);
2729                /* Fall through */
2730        }
2731        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2732        /* If allocation is not consuming a reservation, also store the
2733         * hugetlb_cgroup pointer on the page.
2734         */
2735        if (deferred_reserve) {
2736                hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2737                                                  h_cg, page);
2738        }
2739
2740        spin_unlock_irq(&hugetlb_lock);
2741
2742        hugetlb_set_page_subpool(page, spool);
2743
2744        map_commit = vma_commit_reservation(h, vma, addr);
2745        if (unlikely(map_chg > map_commit)) {
2746                /*
2747                 * The page was added to the reservation map between
2748                 * vma_needs_reservation and vma_commit_reservation.
2749                 * This indicates a race with hugetlb_reserve_pages.
2750                 * Adjust for the subpool count incremented above AND
2751                 * in hugetlb_reserve_pages for the same page.  Also,
2752                 * the reservation count added in hugetlb_reserve_pages
2753                 * no longer applies.
2754                 */
2755                long rsv_adjust;
2756
2757                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2758                hugetlb_acct_memory(h, -rsv_adjust);
2759                if (deferred_reserve)
2760                        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2761                                        pages_per_huge_page(h), page);
2762        }
2763        return page;
2764
2765out_uncharge_cgroup:
2766        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2767out_uncharge_cgroup_reservation:
2768        if (deferred_reserve)
2769                hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2770                                                    h_cg);
2771out_subpool_put:
2772        if (map_chg || avoid_reserve)
2773                hugepage_subpool_put_pages(spool, 1);
2774        vma_end_reservation(h, vma, addr);
2775        return ERR_PTR(-ENOSPC);
2776}
2777
2778int alloc_bootmem_huge_page(struct hstate *h)
2779        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2780int __alloc_bootmem_huge_page(struct hstate *h)
2781{
2782        struct huge_bootmem_page *m;
2783        int nr_nodes, node;
2784
2785        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2786                void *addr;
2787
2788                addr = memblock_alloc_try_nid_raw(
2789                                huge_page_size(h), huge_page_size(h),
2790                                0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2791                if (addr) {
2792                        /*
2793                         * Use the beginning of the huge page to store the
2794                         * huge_bootmem_page struct (until gather_bootmem
2795                         * puts them into the mem_map).
2796                         */
2797                        m = addr;
2798                        goto found;
2799                }
2800        }
2801        return 0;
2802
2803found:
2804        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2805        /* Put them into a private list first because mem_map is not up yet */
2806        INIT_LIST_HEAD(&m->list);
2807        list_add(&m->list, &huge_boot_pages);
2808        m->hstate = h;
2809        return 1;
2810}
2811
2812/*
2813 * Put bootmem huge pages into the standard lists after mem_map is up.
2814 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2815 */
2816static void __init gather_bootmem_prealloc(void)
2817{
2818        struct huge_bootmem_page *m;
2819
2820        list_for_each_entry(m, &huge_boot_pages, list) {
2821                struct page *page = virt_to_page(m);
2822                struct hstate *h = m->hstate;
2823
2824                VM_BUG_ON(!hstate_is_gigantic(h));
2825                WARN_ON(page_count(page) != 1);
2826                if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2827                        WARN_ON(PageReserved(page));
2828                        prep_new_huge_page(h, page, page_to_nid(page));
2829                        put_page(page); /* add to the hugepage allocator */
2830                } else {
2831                        free_gigantic_page(page, huge_page_order(h));
2832                        pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2833                }
2834
2835                /*
2836                 * We need to restore the 'stolen' pages to totalram_pages
2837                 * in order to fix confusing memory reports from free(1) and
2838                 * other side-effects, like CommitLimit going negative.
2839                 */
2840                adjust_managed_page_count(page, pages_per_huge_page(h));
2841                cond_resched();
2842        }
2843}
2844
2845static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2846{
2847        unsigned long i;
2848        nodemask_t *node_alloc_noretry;
2849
2850        if (!hstate_is_gigantic(h)) {
2851                /*
2852                 * Bit mask controlling how hard we retry per-node allocations.
2853                 * Ignore errors as lower level routines can deal with
2854                 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2855                 * time, we are likely in bigger trouble.
2856                 */
2857                node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2858                                                GFP_KERNEL);
2859        } else {
2860                /* allocations done at boot time */
2861                node_alloc_noretry = NULL;
2862        }
2863
2864        /* bit mask controlling how hard we retry per-node allocations */
2865        if (node_alloc_noretry)
2866                nodes_clear(*node_alloc_noretry);
2867
2868        for (i = 0; i < h->max_huge_pages; ++i) {
2869                if (hstate_is_gigantic(h)) {
2870                        if (hugetlb_cma_size) {
2871                                pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2872                                goto free;
2873                        }
2874                        if (!alloc_bootmem_huge_page(h))
2875                                break;
2876                } else if (!alloc_pool_huge_page(h,
2877                                         &node_states[N_MEMORY],
2878                                         node_alloc_noretry))
2879                        break;
2880                cond_resched();
2881        }
2882        if (i < h->max_huge_pages) {
2883                char buf[32];
2884
2885                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2886                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2887                        h->max_huge_pages, buf, i);
2888                h->max_huge_pages = i;
2889        }
2890free:
2891        kfree(node_alloc_noretry);
2892}
2893
2894static void __init hugetlb_init_hstates(void)
2895{
2896        struct hstate *h;
2897
2898        for_each_hstate(h) {
2899                if (minimum_order > huge_page_order(h))
2900                        minimum_order = huge_page_order(h);
2901
2902                /* oversize hugepages were init'ed in early boot */
2903                if (!hstate_is_gigantic(h))
2904                        hugetlb_hstate_alloc_pages(h);
2905        }
2906        VM_BUG_ON(minimum_order == UINT_MAX);
2907}
2908
2909static void __init report_hugepages(void)
2910{
2911        struct hstate *h;
2912
2913        for_each_hstate(h) {
2914                char buf[32];
2915
2916                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2917                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2918                        buf, h->free_huge_pages);
2919        }
2920}
2921
2922#ifdef CONFIG_HIGHMEM
2923static void try_to_free_low(struct hstate *h, unsigned long count,
2924                                                nodemask_t *nodes_allowed)
2925{
2926        int i;
2927        LIST_HEAD(page_list);
2928
2929        lockdep_assert_held(&hugetlb_lock);
2930        if (hstate_is_gigantic(h))
2931                return;
2932
2933        /*
2934         * Collect pages to be freed on a list, and free after dropping lock
2935         */
2936        for_each_node_mask(i, *nodes_allowed) {
2937                struct page *page, *next;
2938                struct list_head *freel = &h->hugepage_freelists[i];
2939                list_for_each_entry_safe(page, next, freel, lru) {
2940                        if (count >= h->nr_huge_pages)
2941                                goto out;
2942                        if (PageHighMem(page))
2943                                continue;
2944                        remove_hugetlb_page(h, page, false);
2945                        list_add(&page->lru, &page_list);
2946                }
2947        }
2948
2949out:
2950        spin_unlock_irq(&hugetlb_lock);
2951        update_and_free_pages_bulk(h, &page_list);
2952        spin_lock_irq(&hugetlb_lock);
2953}
2954#else
2955static inline void try_to_free_low(struct hstate *h, unsigned long count,
2956                                                nodemask_t *nodes_allowed)
2957{
2958}
2959#endif
2960
2961/*
2962 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2963 * balanced by operating on them in a round-robin fashion.
2964 * Returns 1 if an adjustment was made.
2965 */
2966static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2967                                int delta)
2968{
2969        int nr_nodes, node;
2970
2971        lockdep_assert_held(&hugetlb_lock);
2972        VM_BUG_ON(delta != -1 && delta != 1);
2973
2974        if (delta < 0) {
2975                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2976                        if (h->surplus_huge_pages_node[node])
2977                                goto found;
2978                }
2979        } else {
2980                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2981                        if (h->surplus_huge_pages_node[node] <
2982                                        h->nr_huge_pages_node[node])
2983                                goto found;
2984                }
2985        }
2986        return 0;
2987
2988found:
2989        h->surplus_huge_pages += delta;
2990        h->surplus_huge_pages_node[node] += delta;
2991        return 1;
2992}
2993
2994#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2995static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2996                              nodemask_t *nodes_allowed)
2997{
2998        unsigned long min_count, ret;
2999        struct page *page;
3000        LIST_HEAD(page_list);
3001        NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3002
3003        /*
3004         * Bit mask controlling how hard we retry per-node allocations.
3005         * If we can not allocate the bit mask, do not attempt to allocate
3006         * the requested huge pages.
3007         */
3008        if (node_alloc_noretry)
3009                nodes_clear(*node_alloc_noretry);
3010        else
3011                return -ENOMEM;
3012
3013        /*
3014         * resize_lock mutex prevents concurrent adjustments to number of
3015         * pages in hstate via the proc/sysfs interfaces.
3016         */
3017        mutex_lock(&h->resize_lock);
3018        flush_free_hpage_work(h);
3019        spin_lock_irq(&hugetlb_lock);
3020
3021        /*
3022         * Check for a node specific request.
3023         * Changing node specific huge page count may require a corresponding
3024         * change to the global count.  In any case, the passed node mask
3025         * (nodes_allowed) will restrict alloc/free to the specified node.
3026         */
3027        if (nid != NUMA_NO_NODE) {
3028                unsigned long old_count = count;
3029
3030                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3031                /*
3032                 * User may have specified a large count value which caused the
3033                 * above calculation to overflow.  In this case, they wanted
3034                 * to allocate as many huge pages as possible.  Set count to
3035                 * largest possible value to align with their intention.
3036                 */
3037                if (count < old_count)
3038                        count = ULONG_MAX;
3039        }
3040
3041        /*
3042         * Gigantic pages runtime allocation depend on the capability for large
3043         * page range allocation.
3044         * If the system does not provide this feature, return an error when
3045         * the user tries to allocate gigantic pages but let the user free the
3046         * boottime allocated gigantic pages.
3047         */
3048        if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3049                if (count > persistent_huge_pages(h)) {
3050                        spin_unlock_irq(&hugetlb_lock);
3051                        mutex_unlock(&h->resize_lock);
3052                        NODEMASK_FREE(node_alloc_noretry);
3053                        return -EINVAL;
3054                }
3055                /* Fall through to decrease pool */
3056        }
3057
3058        /*
3059         * Increase the pool size
3060         * First take pages out of surplus state.  Then make up the
3061         * remaining difference by allocating fresh huge pages.
3062         *
3063         * We might race with alloc_surplus_huge_page() here and be unable
3064         * to convert a surplus huge page to a normal huge page. That is
3065         * not critical, though, it just means the overall size of the
3066         * pool might be one hugepage larger than it needs to be, but
3067         * within all the constraints specified by the sysctls.
3068         */
3069        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3070                if (!adjust_pool_surplus(h, nodes_allowed, -1))
3071                        break;
3072        }
3073
3074        while (count > persistent_huge_pages(h)) {
3075                /*
3076                 * If this allocation races such that we no longer need the
3077                 * page, free_huge_page will handle it by freeing the page
3078                 * and reducing the surplus.
3079                 */
3080                spin_unlock_irq(&hugetlb_lock);
3081
3082                /* yield cpu to avoid soft lockup */
3083                cond_resched();
3084
3085                ret = alloc_pool_huge_page(h, nodes_allowed,
3086                                                node_alloc_noretry);
3087                spin_lock_irq(&hugetlb_lock);
3088                if (!ret)
3089                        goto out;
3090
3091                /* Bail for signals. Probably ctrl-c from user */
3092                if (signal_pending(current))
3093                        goto out;
3094        }
3095
3096        /*
3097         * Decrease the pool size
3098         * First return free pages to the buddy allocator (being careful
3099         * to keep enough around to satisfy reservations).  Then place
3100         * pages into surplus state as needed so the pool will shrink
3101         * to the desired size as pages become free.
3102         *
3103         * By placing pages into the surplus state independent of the
3104         * overcommit value, we are allowing the surplus pool size to
3105         * exceed overcommit. There are few sane options here. Since
3106         * alloc_surplus_huge_page() is checking the global counter,
3107         * though, we'll note that we're not allowed to exceed surplus
3108         * and won't grow the pool anywhere else. Not until one of the
3109         * sysctls are changed, or the surplus pages go out of use.
3110         */
3111        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3112        min_count = max(count, min_count);
3113        try_to_free_low(h, min_count, nodes_allowed);
3114
3115        /*
3116         * Collect pages to be removed on list without dropping lock
3117         */
3118        while (min_count < persistent_huge_pages(h)) {
3119                page = remove_pool_huge_page(h, nodes_allowed, 0);
3120                if (!page)
3121                        break;
3122
3123                list_add(&page->lru, &page_list);
3124        }
3125        /* free the pages after dropping lock */
3126        spin_unlock_irq(&hugetlb_lock);
3127        update_and_free_pages_bulk(h, &page_list);
3128        flush_free_hpage_work(h);
3129        spin_lock_irq(&hugetlb_lock);
3130
3131        while (count < persistent_huge_pages(h)) {
3132                if (!adjust_pool_surplus(h, nodes_allowed, 1))
3133                        break;
3134        }
3135out:
3136        h->max_huge_pages = persistent_huge_pages(h);
3137        spin_unlock_irq(&hugetlb_lock);
3138        mutex_unlock(&h->resize_lock);
3139
3140        NODEMASK_FREE(node_alloc_noretry);
3141
3142        return 0;
3143}
3144
3145#define HSTATE_ATTR_RO(_name) \
3146        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3147
3148#define HSTATE_ATTR(_name) \
3149        static struct kobj_attribute _name##_attr = \
3150                __ATTR(_name, 0644, _name##_show, _name##_store)
3151
3152static struct kobject *hugepages_kobj;
3153static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3154
3155static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3156
3157static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3158{
3159        int i;
3160
3161        for (i = 0; i < HUGE_MAX_HSTATE; i++)
3162                if (hstate_kobjs[i] == kobj) {
3163                        if (nidp)
3164                                *nidp = NUMA_NO_NODE;
3165                        return &hstates[i];
3166                }
3167
3168        return kobj_to_node_hstate(kobj, nidp);
3169}
3170
3171static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3172                                        struct kobj_attribute *attr, char *buf)
3173{
3174        struct hstate *h;
3175        unsigned long nr_huge_pages;
3176        int nid;
3177
3178        h = kobj_to_hstate(kobj, &nid);
3179        if (nid == NUMA_NO_NODE)
3180                nr_huge_pages = h->nr_huge_pages;
3181        else
3182                nr_huge_pages = h->nr_huge_pages_node[nid];
3183
3184        return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3185}
3186
3187static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3188                                           struct hstate *h, int nid,
3189                                           unsigned long count, size_t len)
3190{
3191        int err;
3192        nodemask_t nodes_allowed, *n_mask;
3193
3194        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3195                return -EINVAL;
3196
3197        if (nid == NUMA_NO_NODE) {
3198                /*
3199                 * global hstate attribute
3200                 */
3201                if (!(obey_mempolicy &&
3202                                init_nodemask_of_mempolicy(&nodes_allowed)))
3203                        n_mask = &node_states[N_MEMORY];
3204                else
3205                        n_mask = &nodes_allowed;
3206        } else {
3207                /*
3208                 * Node specific request.  count adjustment happens in
3209                 * set_max_huge_pages() after acquiring hugetlb_lock.
3210                 */
3211                init_nodemask_of_node(&nodes_allowed, nid);
3212                n_mask = &nodes_allowed;
3213        }
3214
3215        err = set_max_huge_pages(h, count, nid, n_mask);
3216
3217        return err ? err : len;
3218}
3219
3220static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3221                                         struct kobject *kobj, const char *buf,
3222                                         size_t len)
3223{
3224        struct hstate *h;
3225        unsigned long count;
3226        int nid;
3227        int err;
3228
3229        err = kstrtoul(buf, 10, &count);
3230        if (err)
3231                return err;
3232
3233        h = kobj_to_hstate(kobj, &nid);
3234        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3235}
3236
3237static ssize_t nr_hugepages_show(struct kobject *kobj,
3238                                       struct kobj_attribute *attr, char *buf)
3239{
3240        return nr_hugepages_show_common(kobj, attr, buf);
3241}
3242
3243static ssize_t nr_hugepages_store(struct kobject *kobj,
3244               struct kobj_attribute *attr, const char *buf, size_t len)
3245{
3246        return nr_hugepages_store_common(false, kobj, buf, len);
3247}
3248HSTATE_ATTR(nr_hugepages);
3249
3250#ifdef CONFIG_NUMA
3251
3252/*
3253 * hstate attribute for optionally mempolicy-based constraint on persistent
3254 * huge page alloc/free.
3255 */
3256static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3257                                           struct kobj_attribute *attr,
3258                                           char *buf)
3259{
3260        return nr_hugepages_show_common(kobj, attr, buf);
3261}
3262
3263static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3264               struct kobj_attribute *attr, const char *buf, size_t len)
3265{
3266        return nr_hugepages_store_common(true, kobj, buf, len);
3267}
3268HSTATE_ATTR(nr_hugepages_mempolicy);
3269#endif
3270
3271
3272static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3273                                        struct kobj_attribute *attr, char *buf)
3274{
3275        struct hstate *h = kobj_to_hstate(kobj, NULL);
3276        return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3277}
3278
3279static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3280                struct kobj_attribute *attr, const char *buf, size_t count)
3281{
3282        int err;
3283        unsigned long input;
3284        struct hstate *h = kobj_to_hstate(kobj, NULL);
3285
3286        if (hstate_is_gigantic(h))
3287                return -EINVAL;
3288
3289        err = kstrtoul(buf, 10, &input);
3290        if (err)
3291                return err;
3292
3293        spin_lock_irq(&hugetlb_lock);
3294        h->nr_overcommit_huge_pages = input;
3295        spin_unlock_irq(&hugetlb_lock);
3296
3297        return count;
3298}
3299HSTATE_ATTR(nr_overcommit_hugepages);
3300
3301static ssize_t free_hugepages_show(struct kobject *kobj,
3302                                        struct kobj_attribute *attr, char *buf)
3303{
3304        struct hstate *h;
3305        unsigned long free_huge_pages;
3306        int nid;
3307
3308        h = kobj_to_hstate(kobj, &nid);
3309        if (nid == NUMA_NO_NODE)
3310                free_huge_pages = h->free_huge_pages;
3311        else
3312                free_huge_pages = h->free_huge_pages_node[nid];
3313
3314        return sysfs_emit(buf, "%lu\n", free_huge_pages);
3315}
3316HSTATE_ATTR_RO(free_hugepages);
3317
3318static ssize_t resv_hugepages_show(struct kobject *kobj,
3319                                        struct kobj_attribute *attr, char *buf)
3320{
3321        struct hstate *h = kobj_to_hstate(kobj, NULL);
3322        return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3323}
3324HSTATE_ATTR_RO(resv_hugepages);
3325
3326static ssize_t surplus_hugepages_show(struct kobject *kobj,
3327                                        struct kobj_attribute *attr, char *buf)
3328{
3329        struct hstate *h;
3330        unsigned long surplus_huge_pages;
3331        int nid;
3332
3333        h = kobj_to_hstate(kobj, &nid);
3334        if (nid == NUMA_NO_NODE)
3335                surplus_huge_pages = h->surplus_huge_pages;
3336        else
3337                surplus_huge_pages = h->surplus_huge_pages_node[nid];
3338
3339        return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3340}
3341HSTATE_ATTR_RO(surplus_hugepages);
3342
3343static struct attribute *hstate_attrs[] = {
3344        &nr_hugepages_attr.attr,
3345        &nr_overcommit_hugepages_attr.attr,
3346        &free_hugepages_attr.attr,
3347        &resv_hugepages_attr.attr,
3348        &surplus_hugepages_attr.attr,
3349#ifdef CONFIG_NUMA
3350        &nr_hugepages_mempolicy_attr.attr,
3351#endif
3352        NULL,
3353};
3354
3355static const struct attribute_group hstate_attr_group = {
3356        .attrs = hstate_attrs,
3357};
3358
3359static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3360                                    struct kobject **hstate_kobjs,
3361                                    const struct attribute_group *hstate_attr_group)
3362{
3363        int retval;
3364        int hi = hstate_index(h);
3365
3366        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3367        if (!hstate_kobjs[hi])
3368                return -ENOMEM;
3369
3370        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3371        if (retval) {
3372                kobject_put(hstate_kobjs[hi]);
3373                hstate_kobjs[hi] = NULL;
3374        }
3375
3376        return retval;
3377}
3378
3379static void __init hugetlb_sysfs_init(void)
3380{
3381        struct hstate *h;
3382        int err;
3383
3384        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3385        if (!hugepages_kobj)
3386                return;
3387
3388        for_each_hstate(h) {
3389                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3390                                         hstate_kobjs, &hstate_attr_group);
3391                if (err)
3392                        pr_err("HugeTLB: Unable to add hstate %s", h->name);
3393        }
3394}
3395
3396#ifdef CONFIG_NUMA
3397
3398/*
3399 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3400 * with node devices in node_devices[] using a parallel array.  The array
3401 * index of a node device or _hstate == node id.
3402 * This is here to avoid any static dependency of the node device driver, in
3403 * the base kernel, on the hugetlb module.
3404 */
3405struct node_hstate {
3406        struct kobject          *hugepages_kobj;
3407        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3408};
3409static struct node_hstate node_hstates[MAX_NUMNODES];
3410
3411/*
3412 * A subset of global hstate attributes for node devices
3413 */
3414static struct attribute *per_node_hstate_attrs[] = {
3415        &nr_hugepages_attr.attr,
3416        &free_hugepages_attr.attr,
3417        &surplus_hugepages_attr.attr,
3418        NULL,
3419};
3420
3421static const struct attribute_group per_node_hstate_attr_group = {
3422        .attrs = per_node_hstate_attrs,
3423};
3424
3425/*
3426 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3427 * Returns node id via non-NULL nidp.
3428 */
3429static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3430{
3431        int nid;
3432
3433        for (nid = 0; nid < nr_node_ids; nid++) {
3434                struct node_hstate *nhs = &node_hstates[nid];
3435                int i;
3436                for (i = 0; i < HUGE_MAX_HSTATE; i++)
3437                        if (nhs->hstate_kobjs[i] == kobj) {
3438                                if (nidp)
3439                                        *nidp = nid;
3440                                return &hstates[i];
3441                        }
3442        }
3443
3444        BUG();
3445        return NULL;
3446}
3447
3448/*
3449 * Unregister hstate attributes from a single node device.
3450 * No-op if no hstate attributes attached.
3451 */
3452static void hugetlb_unregister_node(struct node *node)
3453{
3454        struct hstate *h;
3455        struct node_hstate *nhs = &node_hstates[node->dev.id];
3456
3457        if (!nhs->hugepages_kobj)
3458                return;         /* no hstate attributes */
3459
3460        for_each_hstate(h) {
3461                int idx = hstate_index(h);
3462                if (nhs->hstate_kobjs[idx]) {
3463                        kobject_put(nhs->hstate_kobjs[idx]);
3464                        nhs->hstate_kobjs[idx] = NULL;
3465                }
3466        }
3467
3468        kobject_put(nhs->hugepages_kobj);
3469        nhs->hugepages_kobj = NULL;
3470}
3471
3472
3473/*
3474 * Register hstate attributes for a single node device.
3475 * No-op if attributes already registered.
3476 */
3477static void hugetlb_register_node(struct node *node)
3478{
3479        struct hstate *h;
3480        struct node_hstate *nhs = &node_hstates[node->dev.id];
3481        int err;
3482
3483        if (nhs->hugepages_kobj)
3484                return;         /* already allocated */
3485
3486        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3487                                                        &node->dev.kobj);
3488        if (!nhs->hugepages_kobj)
3489                return;
3490
3491        for_each_hstate(h) {
3492                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3493                                                nhs->hstate_kobjs,
3494                                                &per_node_hstate_attr_group);
3495                if (err) {
3496                        pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3497                                h->name, node->dev.id);
3498                        hugetlb_unregister_node(node);
3499                        break;
3500                }
3501        }
3502}
3503
3504/*
3505 * hugetlb init time:  register hstate attributes for all registered node
3506 * devices of nodes that have memory.  All on-line nodes should have
3507 * registered their associated device by this time.
3508 */
3509static void __init hugetlb_register_all_nodes(void)
3510{
3511        int nid;
3512
3513        for_each_node_state(nid, N_MEMORY) {
3514                struct node *node = node_devices[nid];
3515                if (node->dev.id == nid)
3516                        hugetlb_register_node(node);
3517        }
3518
3519        /*
3520         * Let the node device driver know we're here so it can
3521         * [un]register hstate attributes on node hotplug.
3522         */
3523        register_hugetlbfs_with_node(hugetlb_register_node,
3524                                     hugetlb_unregister_node);
3525}
3526#else   /* !CONFIG_NUMA */
3527
3528static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3529{
3530        BUG();
3531        if (nidp)
3532                *nidp = -1;
3533        return NULL;
3534}
3535
3536static void hugetlb_register_all_nodes(void) { }
3537
3538#endif
3539
3540static int __init hugetlb_init(void)
3541{
3542        int i;
3543
3544        BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3545                        __NR_HPAGEFLAGS);
3546
3547        if (!hugepages_supported()) {
3548                if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3549                        pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3550                return 0;
3551        }
3552
3553        /*
3554         * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3555         * architectures depend on setup being done here.
3556         */
3557        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3558        if (!parsed_default_hugepagesz) {
3559                /*
3560                 * If we did not parse a default huge page size, set
3561                 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3562                 * number of huge pages for this default size was implicitly
3563                 * specified, set that here as well.
3564                 * Note that the implicit setting will overwrite an explicit
3565                 * setting.  A warning will be printed in this case.
3566                 */
3567                default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3568                if (default_hstate_max_huge_pages) {
3569                        if (default_hstate.max_huge_pages) {
3570                                char buf[32];
3571
3572                                string_get_size(huge_page_size(&default_hstate),
3573                                        1, STRING_UNITS_2, buf, 32);
3574                                pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3575                                        default_hstate.max_huge_pages, buf);
3576                                pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3577                                        default_hstate_max_huge_pages);
3578                        }
3579                        default_hstate.max_huge_pages =
3580                                default_hstate_max_huge_pages;
3581                }
3582        }
3583
3584        hugetlb_cma_check();
3585        hugetlb_init_hstates();
3586        gather_bootmem_prealloc();
3587        report_hugepages();
3588
3589        hugetlb_sysfs_init();
3590        hugetlb_register_all_nodes();
3591        hugetlb_cgroup_file_init();
3592
3593#ifdef CONFIG_SMP
3594        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3595#else
3596        num_fault_mutexes = 1;
3597#endif
3598        hugetlb_fault_mutex_table =
3599                kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3600                              GFP_KERNEL);
3601        BUG_ON(!hugetlb_fault_mutex_table);
3602
3603        for (i = 0; i < num_fault_mutexes; i++)
3604                mutex_init(&hugetlb_fault_mutex_table[i]);
3605        return 0;
3606}
3607subsys_initcall(hugetlb_init);
3608
3609/* Overwritten by architectures with more huge page sizes */
3610bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3611{
3612        return size == HPAGE_SIZE;
3613}
3614
3615void __init hugetlb_add_hstate(unsigned int order)
3616{
3617        struct hstate *h;
3618        unsigned long i;
3619
3620        if (size_to_hstate(PAGE_SIZE << order)) {
3621                return;
3622        }
3623        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3624        BUG_ON(order == 0);
3625        h = &hstates[hugetlb_max_hstate++];
3626        mutex_init(&h->resize_lock);
3627        h->order = order;
3628        h->mask = ~(huge_page_size(h) - 1);
3629        for (i = 0; i < MAX_NUMNODES; ++i)
3630                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3631        INIT_LIST_HEAD(&h->hugepage_activelist);
3632        h->next_nid_to_alloc = first_memory_node;
3633        h->next_nid_to_free = first_memory_node;
3634        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3635                                        huge_page_size(h)/1024);
3636        hugetlb_vmemmap_init(h);
3637
3638        parsed_hstate = h;
3639}
3640
3641/*
3642 * hugepages command line processing
3643 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3644 * specification.  If not, ignore the hugepages value.  hugepages can also
3645 * be the first huge page command line  option in which case it implicitly
3646 * specifies the number of huge pages for the default size.
3647 */
3648static int __init hugepages_setup(char *s)
3649{
3650        unsigned long *mhp;
3651        static unsigned long *last_mhp;
3652
3653        if (!parsed_valid_hugepagesz) {
3654                pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3655                parsed_valid_hugepagesz = true;
3656                return 0;
3657        }
3658
3659        /*
3660         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3661         * yet, so this hugepages= parameter goes to the "default hstate".
3662         * Otherwise, it goes with the previously parsed hugepagesz or
3663         * default_hugepagesz.
3664         */
3665        else if (!hugetlb_max_hstate)
3666                mhp = &default_hstate_max_huge_pages;
3667        else
3668                mhp = &parsed_hstate->max_huge_pages;
3669
3670        if (mhp == last_mhp) {
3671                pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3672                return 0;
3673        }
3674
3675        if (sscanf(s, "%lu", mhp) <= 0)
3676                *mhp = 0;
3677
3678        /*
3679         * Global state is always initialized later in hugetlb_init.
3680         * But we need to allocate gigantic hstates here early to still
3681         * use the bootmem allocator.
3682         */
3683        if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3684                hugetlb_hstate_alloc_pages(parsed_hstate);
3685
3686        last_mhp = mhp;
3687
3688        return 1;
3689}
3690__setup("hugepages=", hugepages_setup);
3691
3692/*
3693 * hugepagesz command line processing
3694 * A specific huge page size can only be specified once with hugepagesz.
3695 * hugepagesz is followed by hugepages on the command line.  The global
3696 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3697 * hugepagesz argument was valid.
3698 */
3699static int __init hugepagesz_setup(char *s)
3700{
3701        unsigned long size;
3702        struct hstate *h;
3703
3704        parsed_valid_hugepagesz = false;
3705        size = (unsigned long)memparse(s, NULL);
3706
3707        if (!arch_hugetlb_valid_size(size)) {
3708                pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3709                return 0;
3710        }
3711
3712        h = size_to_hstate(size);
3713        if (h) {
3714                /*
3715                 * hstate for this size already exists.  This is normally
3716                 * an error, but is allowed if the existing hstate is the
3717                 * default hstate.  More specifically, it is only allowed if
3718                 * the number of huge pages for the default hstate was not
3719                 * previously specified.
3720                 */
3721                if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3722                    default_hstate.max_huge_pages) {
3723                        pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3724                        return 0;
3725                }
3726
3727                /*
3728                 * No need to call hugetlb_add_hstate() as hstate already
3729                 * exists.  But, do set parsed_hstate so that a following
3730                 * hugepages= parameter will be applied to this hstate.
3731                 */
3732                parsed_hstate = h;
3733                parsed_valid_hugepagesz = true;
3734                return 1;
3735        }
3736
3737        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3738        parsed_valid_hugepagesz = true;
3739        return 1;
3740}
3741__setup("hugepagesz=", hugepagesz_setup);
3742
3743/*
3744 * default_hugepagesz command line input
3745 * Only one instance of default_hugepagesz allowed on command line.
3746 */
3747static int __init default_hugepagesz_setup(char *s)
3748{
3749        unsigned long size;
3750
3751        parsed_valid_hugepagesz = false;
3752        if (parsed_default_hugepagesz) {
3753                pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3754                return 0;
3755        }
3756
3757        size = (unsigned long)memparse(s, NULL);
3758
3759        if (!arch_hugetlb_valid_size(size)) {
3760                pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3761                return 0;
3762        }
3763
3764        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3765        parsed_valid_hugepagesz = true;
3766        parsed_default_hugepagesz = true;
3767        default_hstate_idx = hstate_index(size_to_hstate(size));
3768
3769        /*
3770         * The number of default huge pages (for this size) could have been
3771         * specified as the first hugetlb parameter: hugepages=X.  If so,
3772         * then default_hstate_max_huge_pages is set.  If the default huge
3773         * page size is gigantic (>= MAX_ORDER), then the pages must be
3774         * allocated here from bootmem allocator.
3775         */
3776        if (default_hstate_max_huge_pages) {
3777                default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3778                if (hstate_is_gigantic(&default_hstate))
3779                        hugetlb_hstate_alloc_pages(&default_hstate);
3780                default_hstate_max_huge_pages = 0;
3781        }
3782
3783        return 1;
3784}
3785__setup("default_hugepagesz=", default_hugepagesz_setup);
3786
3787static unsigned int allowed_mems_nr(struct hstate *h)
3788{
3789        int node;
3790        unsigned int nr = 0;
3791        nodemask_t *mpol_allowed;
3792        unsigned int *array = h->free_huge_pages_node;
3793        gfp_t gfp_mask = htlb_alloc_mask(h);
3794
3795        mpol_allowed = policy_nodemask_current(gfp_mask);
3796
3797        for_each_node_mask(node, cpuset_current_mems_allowed) {
3798                if (!mpol_allowed || node_isset(node, *mpol_allowed))
3799                        nr += array[node];
3800        }
3801
3802        return nr;
3803}
3804
3805#ifdef CONFIG_SYSCTL
3806static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3807                                          void *buffer, size_t *length,
3808                                          loff_t *ppos, unsigned long *out)
3809{
3810        struct ctl_table dup_table;
3811
3812        /*
3813         * In order to avoid races with __do_proc_doulongvec_minmax(), we
3814         * can duplicate the @table and alter the duplicate of it.
3815         */
3816        dup_table = *table;
3817        dup_table.data = out;
3818
3819        return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3820}
3821
3822static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3823                         struct ctl_table *table, int write,
3824                         void *buffer, size_t *length, loff_t *ppos)
3825{
3826        struct hstate *h = &default_hstate;
3827        unsigned long tmp = h->max_huge_pages;
3828        int ret;
3829
3830        if (!hugepages_supported())
3831                return -EOPNOTSUPP;
3832
3833        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3834                                             &tmp);
3835        if (ret)
3836                goto out;
3837
3838        if (write)
3839                ret = __nr_hugepages_store_common(obey_mempolicy, h,
3840                                                  NUMA_NO_NODE, tmp, *length);
3841out:
3842        return ret;
3843}
3844
3845int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3846                          void *buffer, size_t *length, loff_t *ppos)
3847{
3848
3849        return hugetlb_sysctl_handler_common(false, table, write,
3850                                                        buffer, length, ppos);
3851}
3852
3853#ifdef CONFIG_NUMA
3854int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3855                          void *buffer, size_t *length, loff_t *ppos)
3856{
3857        return hugetlb_sysctl_handler_common(true, table, write,
3858                                                        buffer, length, ppos);
3859}
3860#endif /* CONFIG_NUMA */
3861
3862int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3863                void *buffer, size_t *length, loff_t *ppos)
3864{
3865        struct hstate *h = &default_hstate;
3866        unsigned long tmp;
3867        int ret;
3868
3869        if (!hugepages_supported())
3870                return -EOPNOTSUPP;
3871
3872        tmp = h->nr_overcommit_huge_pages;
3873
3874        if (write && hstate_is_gigantic(h))
3875                return -EINVAL;
3876
3877        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3878                                             &tmp);
3879        if (ret)
3880                goto out;
3881
3882        if (write) {
3883                spin_lock_irq(&hugetlb_lock);
3884                h->nr_overcommit_huge_pages = tmp;
3885                spin_unlock_irq(&hugetlb_lock);
3886        }
3887out:
3888        return ret;
3889}
3890
3891#endif /* CONFIG_SYSCTL */
3892
3893void hugetlb_report_meminfo(struct seq_file *m)
3894{
3895        struct hstate *h;
3896        unsigned long total = 0;
3897
3898        if (!hugepages_supported())
3899                return;
3900
3901        for_each_hstate(h) {
3902                unsigned long count = h->nr_huge_pages;
3903
3904                total += huge_page_size(h) * count;
3905
3906                if (h == &default_hstate)
3907                        seq_printf(m,
3908                                   "HugePages_Total:   %5lu\n"
3909                                   "HugePages_Free:    %5lu\n"
3910                                   "HugePages_Rsvd:    %5lu\n"
3911                                   "HugePages_Surp:    %5lu\n"
3912                                   "Hugepagesize:   %8lu kB\n",
3913                                   count,
3914                                   h->free_huge_pages,
3915                                   h->resv_huge_pages,
3916                                   h->surplus_huge_pages,
3917                                   huge_page_size(h) / SZ_1K);
3918        }
3919
3920        seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3921}
3922
3923int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3924{
3925        struct hstate *h = &default_hstate;
3926
3927        if (!hugepages_supported())
3928                return 0;
3929
3930        return sysfs_emit_at(buf, len,
3931                             "Node %d HugePages_Total: %5u\n"
3932                             "Node %d HugePages_Free:  %5u\n"
3933                             "Node %d HugePages_Surp:  %5u\n",
3934                             nid, h->nr_huge_pages_node[nid],
3935                             nid, h->free_huge_pages_node[nid],
3936                             nid, h->surplus_huge_pages_node[nid]);
3937}
3938
3939void hugetlb_show_meminfo(void)
3940{
3941        struct hstate *h;
3942        int nid;
3943
3944        if (!hugepages_supported())
3945                return;
3946
3947        for_each_node_state(nid, N_MEMORY)
3948                for_each_hstate(h)
3949                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3950                                nid,
3951                                h->nr_huge_pages_node[nid],
3952                                h->free_huge_pages_node[nid],
3953                                h->surplus_huge_pages_node[nid],
3954                                huge_page_size(h) / SZ_1K);
3955}
3956
3957void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3958{
3959        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3960                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3961}
3962
3963/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3964unsigned long hugetlb_total_pages(void)
3965{
3966        struct hstate *h;
3967        unsigned long nr_total_pages = 0;
3968
3969        for_each_hstate(h)
3970                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3971        return nr_total_pages;
3972}
3973
3974static int hugetlb_acct_memory(struct hstate *h, long delta)
3975{
3976        int ret = -ENOMEM;
3977
3978        if (!delta)
3979                return 0;
3980
3981        spin_lock_irq(&hugetlb_lock);
3982        /*
3983         * When cpuset is configured, it breaks the strict hugetlb page
3984         * reservation as the accounting is done on a global variable. Such
3985         * reservation is completely rubbish in the presence of cpuset because
3986         * the reservation is not checked against page availability for the
3987         * current cpuset. Application can still potentially OOM'ed by kernel
3988         * with lack of free htlb page in cpuset that the task is in.
3989         * Attempt to enforce strict accounting with cpuset is almost
3990         * impossible (or too ugly) because cpuset is too fluid that
3991         * task or memory node can be dynamically moved between cpusets.
3992         *
3993         * The change of semantics for shared hugetlb mapping with cpuset is
3994         * undesirable. However, in order to preserve some of the semantics,
3995         * we fall back to check against current free page availability as
3996         * a best attempt and hopefully to minimize the impact of changing
3997         * semantics that cpuset has.
3998         *
3999         * Apart from cpuset, we also have memory policy mechanism that
4000         * also determines from which node the kernel will allocate memory
4001         * in a NUMA system. So similar to cpuset, we also should consider
4002         * the memory policy of the current task. Similar to the description
4003         * above.
4004         */
4005        if (delta > 0) {
4006                if (gather_surplus_pages(h, delta) < 0)
4007                        goto out;
4008
4009                if (delta > allowed_mems_nr(h)) {
4010                        return_unused_surplus_pages(h, delta);
4011                        goto out;
4012                }
4013        }
4014
4015        ret = 0;
4016        if (delta < 0)
4017                return_unused_surplus_pages(h, (unsigned long) -delta);
4018
4019out:
4020        spin_unlock_irq(&hugetlb_lock);
4021        return ret;
4022}
4023
4024static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4025{
4026        struct resv_map *resv = vma_resv_map(vma);
4027
4028        /*
4029         * This new VMA should share its siblings reservation map if present.
4030         * The VMA will only ever have a valid reservation map pointer where
4031         * it is being copied for another still existing VMA.  As that VMA
4032         * has a reference to the reservation map it cannot disappear until
4033         * after this open call completes.  It is therefore safe to take a
4034         * new reference here without additional locking.
4035         */
4036        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4037                kref_get(&resv->refs);
4038}
4039
4040static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4041{
4042        struct hstate *h = hstate_vma(vma);
4043        struct resv_map *resv = vma_resv_map(vma);
4044        struct hugepage_subpool *spool = subpool_vma(vma);
4045        unsigned long reserve, start, end;
4046        long gbl_reserve;
4047
4048        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4049                return;
4050
4051        start = vma_hugecache_offset(h, vma, vma->vm_start);
4052        end = vma_hugecache_offset(h, vma, vma->vm_end);
4053
4054        reserve = (end - start) - region_count(resv, start, end);
4055        hugetlb_cgroup_uncharge_counter(resv, start, end);
4056        if (reserve) {
4057                /*
4058                 * Decrement reserve counts.  The global reserve count may be
4059                 * adjusted if the subpool has a minimum size.
4060                 */
4061                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4062                hugetlb_acct_memory(h, -gbl_reserve);
4063        }
4064
4065        kref_put(&resv->refs, resv_map_release);
4066}
4067
4068static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4069{
4070        if (addr & ~(huge_page_mask(hstate_vma(vma))))
4071                return -EINVAL;
4072        return 0;
4073}
4074
4075static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4076{
4077        return huge_page_size(hstate_vma(vma));
4078}
4079
4080/*
4081 * We cannot handle pagefaults against hugetlb pages at all.  They cause
4082 * handle_mm_fault() to try to instantiate regular-sized pages in the
4083 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4084 * this far.
4085 */
4086static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4087{
4088        BUG();
4089        return 0;
4090}
4091
4092/*
4093 * When a new function is introduced to vm_operations_struct and added
4094 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4095 * This is because under System V memory model, mappings created via
4096 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4097 * their original vm_ops are overwritten with shm_vm_ops.
4098 */
4099const struct vm_operations_struct hugetlb_vm_ops = {
4100        .fault = hugetlb_vm_op_fault,
4101        .open = hugetlb_vm_op_open,
4102        .close = hugetlb_vm_op_close,
4103        .may_split = hugetlb_vm_op_split,
4104        .pagesize = hugetlb_vm_op_pagesize,
4105};
4106
4107static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4108                                int writable)
4109{
4110        pte_t entry;
4111        unsigned int shift = huge_page_shift(hstate_vma(vma));
4112
4113        if (writable) {
4114                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4115                                         vma->vm_page_prot)));
4116        } else {
4117                entry = huge_pte_wrprotect(mk_huge_pte(page,
4118                                           vma->vm_page_prot));
4119        }
4120        entry = pte_mkyoung(entry);
4121        entry = pte_mkhuge(entry);
4122        entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4123
4124        return entry;
4125}
4126
4127static void set_huge_ptep_writable(struct vm_area_struct *vma,
4128                                   unsigned long address, pte_t *ptep)
4129{
4130        pte_t entry;
4131
4132        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4133        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4134                update_mmu_cache(vma, address, ptep);
4135}
4136
4137bool is_hugetlb_entry_migration(pte_t pte)
4138{
4139        swp_entry_t swp;
4140
4141        if (huge_pte_none(pte) || pte_present(pte))
4142                return false;
4143        swp = pte_to_swp_entry(pte);
4144        if (is_migration_entry(swp))
4145                return true;
4146        else
4147                return false;
4148}
4149
4150static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4151{
4152        swp_entry_t swp;
4153
4154        if (huge_pte_none(pte) || pte_present(pte))
4155                return false;
4156        swp = pte_to_swp_entry(pte);
4157        if (is_hwpoison_entry(swp))
4158                return true;
4159        else
4160                return false;
4161}
4162
4163static void
4164hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4165                     struct page *new_page)
4166{
4167        __SetPageUptodate(new_page);
4168        set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4169        hugepage_add_new_anon_rmap(new_page, vma, addr);
4170        hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4171        ClearHPageRestoreReserve(new_page);
4172        SetHPageMigratable(new_page);
4173}
4174
4175int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4176                            struct vm_area_struct *vma)
4177{
4178        pte_t *src_pte, *dst_pte, entry, dst_entry;
4179        struct page *ptepage;
4180        unsigned long addr;
4181        bool cow = is_cow_mapping(vma->vm_flags);
4182        struct hstate *h = hstate_vma(vma);
4183        unsigned long sz = huge_page_size(h);
4184        unsigned long npages = pages_per_huge_page(h);
4185        struct address_space *mapping = vma->vm_file->f_mapping;
4186        struct mmu_notifier_range range;
4187        int ret = 0;
4188
4189        if (cow) {
4190                mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4191                                        vma->vm_start,
4192                                        vma->vm_end);
4193                mmu_notifier_invalidate_range_start(&range);
4194        } else {
4195                /*
4196                 * For shared mappings i_mmap_rwsem must be held to call
4197                 * huge_pte_alloc, otherwise the returned ptep could go
4198                 * away if part of a shared pmd and another thread calls
4199                 * huge_pmd_unshare.
4200                 */
4201                i_mmap_lock_read(mapping);
4202        }
4203
4204        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4205                spinlock_t *src_ptl, *dst_ptl;
4206                src_pte = huge_pte_offset(src, addr, sz);
4207                if (!src_pte)
4208                        continue;
4209                dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4210                if (!dst_pte) {
4211                        ret = -ENOMEM;
4212                        break;
4213                }
4214
4215                /*
4216                 * If the pagetables are shared don't copy or take references.
4217                 * dst_pte == src_pte is the common case of src/dest sharing.
4218                 *
4219                 * However, src could have 'unshared' and dst shares with
4220                 * another vma.  If dst_pte !none, this implies sharing.
4221                 * Check here before taking page table lock, and once again
4222                 * after taking the lock below.
4223                 */
4224                dst_entry = huge_ptep_get(dst_pte);
4225                if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4226                        continue;
4227
4228                dst_ptl = huge_pte_lock(h, dst, dst_pte);
4229                src_ptl = huge_pte_lockptr(h, src, src_pte);
4230                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4231                entry = huge_ptep_get(src_pte);
4232                dst_entry = huge_ptep_get(dst_pte);
4233again:
4234                if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4235                        /*
4236                         * Skip if src entry none.  Also, skip in the
4237                         * unlikely case dst entry !none as this implies
4238                         * sharing with another vma.
4239                         */
4240                        ;
4241                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4242                                    is_hugetlb_entry_hwpoisoned(entry))) {
4243                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
4244
4245                        if (is_writable_migration_entry(swp_entry) && cow) {
4246                                /*
4247                                 * COW mappings require pages in both
4248                                 * parent and child to be set to read.
4249                                 */
4250                                swp_entry = make_readable_migration_entry(
4251                                                        swp_offset(swp_entry));
4252                                entry = swp_entry_to_pte(swp_entry);
4253                                set_huge_swap_pte_at(src, addr, src_pte,
4254                                                     entry, sz);
4255                        }
4256                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4257                } else {
4258                        entry = huge_ptep_get(src_pte);
4259                        ptepage = pte_page(entry);
4260                        get_page(ptepage);
4261
4262                        /*
4263                         * This is a rare case where we see pinned hugetlb
4264                         * pages while they're prone to COW.  We need to do the
4265                         * COW earlier during fork.
4266                         *
4267                         * When pre-allocating the page or copying data, we
4268                         * need to be without the pgtable locks since we could
4269                         * sleep during the process.
4270                         */
4271                        if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4272                                pte_t src_pte_old = entry;
4273                                struct page *new;
4274
4275                                spin_unlock(src_ptl);
4276                                spin_unlock(dst_ptl);
4277                                /* Do not use reserve as it's private owned */
4278                                new = alloc_huge_page(vma, addr, 1);
4279                                if (IS_ERR(new)) {
4280                                        put_page(ptepage);
4281                                        ret = PTR_ERR(new);
4282                                        break;
4283                                }
4284                                copy_user_huge_page(new, ptepage, addr, vma,
4285                                                    npages);
4286                                put_page(ptepage);
4287
4288                                /* Install the new huge page if src pte stable */
4289                                dst_ptl = huge_pte_lock(h, dst, dst_pte);
4290                                src_ptl = huge_pte_lockptr(h, src, src_pte);
4291                                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4292                                entry = huge_ptep_get(src_pte);
4293                                if (!pte_same(src_pte_old, entry)) {
4294                                        restore_reserve_on_error(h, vma, addr,
4295                                                                new);
4296                                        put_page(new);
4297                                        /* dst_entry won't change as in child */
4298                                        goto again;
4299                                }
4300                                hugetlb_install_page(vma, dst_pte, addr, new);
4301                                spin_unlock(src_ptl);
4302                                spin_unlock(dst_ptl);
4303                                continue;
4304                        }
4305
4306                        if (cow) {
4307                                /*
4308                                 * No need to notify as we are downgrading page
4309                                 * table protection not changing it to point
4310                                 * to a new page.
4311                                 *
4312                                 * See Documentation/vm/mmu_notifier.rst
4313                                 */
4314                                huge_ptep_set_wrprotect(src, addr, src_pte);
4315                                entry = huge_pte_wrprotect(entry);
4316                        }
4317
4318                        page_dup_rmap(ptepage, true);
4319                        set_huge_pte_at(dst, addr, dst_pte, entry);
4320                        hugetlb_count_add(npages, dst);
4321                }
4322                spin_unlock(src_ptl);
4323                spin_unlock(dst_ptl);
4324        }
4325
4326        if (cow)
4327                mmu_notifier_invalidate_range_end(&range);
4328        else
4329                i_mmap_unlock_read(mapping);
4330
4331        return ret;
4332}
4333
4334void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4335                            unsigned long start, unsigned long end,
4336                            struct page *ref_page)
4337{
4338        struct mm_struct *mm = vma->vm_mm;
4339        unsigned long address;
4340        pte_t *ptep;
4341        pte_t pte;
4342        spinlock_t *ptl;
4343        struct page *page;
4344        struct hstate *h = hstate_vma(vma);
4345        unsigned long sz = huge_page_size(h);
4346        struct mmu_notifier_range range;
4347
4348        WARN_ON(!is_vm_hugetlb_page(vma));
4349        BUG_ON(start & ~huge_page_mask(h));
4350        BUG_ON(end & ~huge_page_mask(h));
4351
4352        /*
4353         * This is a hugetlb vma, all the pte entries should point
4354         * to huge page.
4355         */
4356        tlb_change_page_size(tlb, sz);
4357        tlb_start_vma(tlb, vma);
4358
4359        /*
4360         * If sharing possible, alert mmu notifiers of worst case.
4361         */
4362        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4363                                end);
4364        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4365        mmu_notifier_invalidate_range_start(&range);
4366        address = start;
4367        for (; address < end; address += sz) {
4368                ptep = huge_pte_offset(mm, address, sz);
4369                if (!ptep)
4370                        continue;
4371
4372                ptl = huge_pte_lock(h, mm, ptep);
4373                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4374                        spin_unlock(ptl);
4375                        /*
4376                         * We just unmapped a page of PMDs by clearing a PUD.
4377                         * The caller's TLB flush range should cover this area.
4378                         */
4379                        continue;
4380                }
4381
4382                pte = huge_ptep_get(ptep);
4383                if (huge_pte_none(pte)) {
4384                        spin_unlock(ptl);
4385                        continue;
4386                }
4387
4388                /*
4389                 * Migrating hugepage or HWPoisoned hugepage is already
4390                 * unmapped and its refcount is dropped, so just clear pte here.
4391                 */
4392                if (unlikely(!pte_present(pte))) {
4393                        huge_pte_clear(mm, address, ptep, sz);
4394                        spin_unlock(ptl);
4395                        continue;
4396                }
4397
4398                page = pte_page(pte);
4399                /*
4400                 * If a reference page is supplied, it is because a specific
4401                 * page is being unmapped, not a range. Ensure the page we
4402                 * are about to unmap is the actual page of interest.
4403                 */
4404                if (ref_page) {
4405                        if (page != ref_page) {
4406                                spin_unlock(ptl);
4407                                continue;
4408                        }
4409                        /*
4410                         * Mark the VMA as having unmapped its page so that
4411                         * future faults in this VMA will fail rather than
4412                         * looking like data was lost
4413                         */
4414                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4415                }
4416
4417                pte = huge_ptep_get_and_clear(mm, address, ptep);
4418                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4419                if (huge_pte_dirty(pte))
4420                        set_page_dirty(page);
4421
4422                hugetlb_count_sub(pages_per_huge_page(h), mm);
4423                page_remove_rmap(page, true);
4424
4425                spin_unlock(ptl);
4426                tlb_remove_page_size(tlb, page, huge_page_size(h));
4427                /*
4428                 * Bail out after unmapping reference page if supplied
4429                 */
4430                if (ref_page)
4431                        break;
4432        }
4433        mmu_notifier_invalidate_range_end(&range);
4434        tlb_end_vma(tlb, vma);
4435}
4436
4437void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4438                          struct vm_area_struct *vma, unsigned long start,
4439                          unsigned long end, struct page *ref_page)
4440{
4441        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4442
4443        /*
4444         * Clear this flag so that x86's huge_pmd_share page_table_shareable
4445         * test will fail on a vma being torn down, and not grab a page table
4446         * on its way out.  We're lucky that the flag has such an appropriate
4447         * name, and can in fact be safely cleared here. We could clear it
4448         * before the __unmap_hugepage_range above, but all that's necessary
4449         * is to clear it before releasing the i_mmap_rwsem. This works
4450         * because in the context this is called, the VMA is about to be
4451         * destroyed and the i_mmap_rwsem is held.
4452         */
4453        vma->vm_flags &= ~VM_MAYSHARE;
4454}
4455
4456void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4457                          unsigned long end, struct page *ref_page)
4458{
4459        struct mmu_gather tlb;
4460
4461        tlb_gather_mmu(&tlb, vma->vm_mm);
4462        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4463        tlb_finish_mmu(&tlb);
4464}
4465
4466/*
4467 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4468 * mapping it owns the reserve page for. The intention is to unmap the page
4469 * from other VMAs and let the children be SIGKILLed if they are faulting the
4470 * same region.
4471 */
4472static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4473                              struct page *page, unsigned long address)
4474{
4475        struct hstate *h = hstate_vma(vma);
4476        struct vm_area_struct *iter_vma;
4477        struct address_space *mapping;
4478        pgoff_t pgoff;
4479
4480        /*
4481         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4482         * from page cache lookup which is in HPAGE_SIZE units.
4483         */
4484        address = address & huge_page_mask(h);
4485        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4486                        vma->vm_pgoff;
4487        mapping = vma->vm_file->f_mapping;
4488
4489        /*
4490         * Take the mapping lock for the duration of the table walk. As
4491         * this mapping should be shared between all the VMAs,
4492         * __unmap_hugepage_range() is called as the lock is already held
4493         */
4494        i_mmap_lock_write(mapping);
4495        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4496                /* Do not unmap the current VMA */
4497                if (iter_vma == vma)
4498                        continue;
4499
4500                /*
4501                 * Shared VMAs have their own reserves and do not affect
4502                 * MAP_PRIVATE accounting but it is possible that a shared
4503                 * VMA is using the same page so check and skip such VMAs.
4504                 */
4505                if (iter_vma->vm_flags & VM_MAYSHARE)
4506                        continue;
4507
4508                /*
4509                 * Unmap the page from other VMAs without their own reserves.
4510                 * They get marked to be SIGKILLed if they fault in these
4511                 * areas. This is because a future no-page fault on this VMA
4512                 * could insert a zeroed page instead of the data existing
4513                 * from the time of fork. This would look like data corruption
4514                 */
4515                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4516                        unmap_hugepage_range(iter_vma, address,
4517                                             address + huge_page_size(h), page);
4518        }
4519        i_mmap_unlock_write(mapping);
4520}
4521
4522/*
4523 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4524 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4525 * cannot race with other handlers or page migration.
4526 * Keep the pte_same checks anyway to make transition from the mutex easier.
4527 */
4528static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4529                       unsigned long address, pte_t *ptep,
4530                       struct page *pagecache_page, spinlock_t *ptl)
4531{
4532        pte_t pte;
4533        struct hstate *h = hstate_vma(vma);
4534        struct page *old_page, *new_page;
4535        int outside_reserve = 0;
4536        vm_fault_t ret = 0;
4537        unsigned long haddr = address & huge_page_mask(h);
4538        struct mmu_notifier_range range;
4539
4540        pte = huge_ptep_get(ptep);
4541        old_page = pte_page(pte);
4542
4543retry_avoidcopy:
4544        /* If no-one else is actually using this page, avoid the copy
4545         * and just make the page writable */
4546        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4547                page_move_anon_rmap(old_page, vma);
4548                set_huge_ptep_writable(vma, haddr, ptep);
4549                return 0;
4550        }
4551
4552        /*
4553         * If the process that created a MAP_PRIVATE mapping is about to
4554         * perform a COW due to a shared page count, attempt to satisfy
4555         * the allocation without using the existing reserves. The pagecache
4556         * page is used to determine if the reserve at this address was
4557         * consumed or not. If reserves were used, a partial faulted mapping
4558         * at the time of fork() could consume its reserves on COW instead
4559         * of the full address range.
4560         */
4561        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4562                        old_page != pagecache_page)
4563                outside_reserve = 1;
4564
4565        get_page(old_page);
4566
4567        /*
4568         * Drop page table lock as buddy allocator may be called. It will
4569         * be acquired again before returning to the caller, as expected.
4570         */
4571        spin_unlock(ptl);
4572        new_page = alloc_huge_page(vma, haddr, outside_reserve);
4573
4574        if (IS_ERR(new_page)) {
4575                /*
4576                 * If a process owning a MAP_PRIVATE mapping fails to COW,
4577                 * it is due to references held by a child and an insufficient
4578                 * huge page pool. To guarantee the original mappers
4579                 * reliability, unmap the page from child processes. The child
4580                 * may get SIGKILLed if it later faults.
4581                 */
4582                if (outside_reserve) {
4583                        struct address_space *mapping = vma->vm_file->f_mapping;
4584                        pgoff_t idx;
4585                        u32 hash;
4586
4587                        put_page(old_page);
4588                        BUG_ON(huge_pte_none(pte));
4589                        /*
4590                         * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4591                         * unmapping.  unmapping needs to hold i_mmap_rwsem
4592                         * in write mode.  Dropping i_mmap_rwsem in read mode
4593                         * here is OK as COW mappings do not interact with
4594                         * PMD sharing.
4595                         *
4596                         * Reacquire both after unmap operation.
4597                         */
4598                        idx = vma_hugecache_offset(h, vma, haddr);
4599                        hash = hugetlb_fault_mutex_hash(mapping, idx);
4600                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4601                        i_mmap_unlock_read(mapping);
4602
4603                        unmap_ref_private(mm, vma, old_page, haddr);
4604
4605                        i_mmap_lock_read(mapping);
4606                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
4607                        spin_lock(ptl);
4608                        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4609                        if (likely(ptep &&
4610                                   pte_same(huge_ptep_get(ptep), pte)))
4611                                goto retry_avoidcopy;
4612                        /*
4613                         * race occurs while re-acquiring page table
4614                         * lock, and our job is done.
4615                         */
4616                        return 0;
4617                }
4618
4619                ret = vmf_error(PTR_ERR(new_page));
4620                goto out_release_old;
4621        }
4622
4623        /*
4624         * When the original hugepage is shared one, it does not have
4625         * anon_vma prepared.
4626         */
4627        if (unlikely(anon_vma_prepare(vma))) {
4628                ret = VM_FAULT_OOM;
4629                goto out_release_all;
4630        }
4631
4632        copy_user_huge_page(new_page, old_page, address, vma,
4633                            pages_per_huge_page(h));
4634        __SetPageUptodate(new_page);
4635
4636        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4637                                haddr + huge_page_size(h));
4638        mmu_notifier_invalidate_range_start(&range);
4639
4640        /*
4641         * Retake the page table lock to check for racing updates
4642         * before the page tables are altered
4643         */
4644        spin_lock(ptl);
4645        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4646        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4647                ClearHPageRestoreReserve(new_page);
4648
4649                /* Break COW */
4650                huge_ptep_clear_flush(vma, haddr, ptep);
4651                mmu_notifier_invalidate_range(mm, range.start, range.end);
4652                set_huge_pte_at(mm, haddr, ptep,
4653                                make_huge_pte(vma, new_page, 1));
4654                page_remove_rmap(old_page, true);
4655                hugepage_add_new_anon_rmap(new_page, vma, haddr);
4656                SetHPageMigratable(new_page);
4657                /* Make the old page be freed below */
4658                new_page = old_page;
4659        }
4660        spin_unlock(ptl);
4661        mmu_notifier_invalidate_range_end(&range);
4662out_release_all:
4663        /* No restore in case of successful pagetable update (Break COW) */
4664        if (new_page != old_page)
4665                restore_reserve_on_error(h, vma, haddr, new_page);
4666        put_page(new_page);
4667out_release_old:
4668        put_page(old_page);
4669
4670        spin_lock(ptl); /* Caller expects lock to be held */
4671        return ret;
4672}
4673
4674/* Return the pagecache page at a given address within a VMA */
4675static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4676                        struct vm_area_struct *vma, unsigned long address)
4677{
4678        struct address_space *mapping;
4679        pgoff_t idx;
4680
4681        mapping = vma->vm_file->f_mapping;
4682        idx = vma_hugecache_offset(h, vma, address);
4683
4684        return find_lock_page(mapping, idx);
4685}
4686
4687/*
4688 * Return whether there is a pagecache page to back given address within VMA.
4689 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4690 */
4691static bool hugetlbfs_pagecache_present(struct hstate *h,
4692                        struct vm_area_struct *vma, unsigned long address)
4693{
4694        struct address_space *mapping;
4695        pgoff_t idx;
4696        struct page *page;
4697
4698        mapping = vma->vm_file->f_mapping;
4699        idx = vma_hugecache_offset(h, vma, address);
4700
4701        page = find_get_page(mapping, idx);
4702        if (page)
4703                put_page(page);
4704        return page != NULL;
4705}
4706
4707int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4708                           pgoff_t idx)
4709{
4710        struct inode *inode = mapping->host;
4711        struct hstate *h = hstate_inode(inode);
4712        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4713
4714        if (err)
4715                return err;
4716        ClearHPageRestoreReserve(page);
4717
4718        /*
4719         * set page dirty so that it will not be removed from cache/file
4720         * by non-hugetlbfs specific code paths.
4721         */
4722        set_page_dirty(page);
4723
4724        spin_lock(&inode->i_lock);
4725        inode->i_blocks += blocks_per_huge_page(h);
4726        spin_unlock(&inode->i_lock);
4727        return 0;
4728}
4729
4730static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4731                                                  struct address_space *mapping,
4732                                                  pgoff_t idx,
4733                                                  unsigned int flags,
4734                                                  unsigned long haddr,
4735                                                  unsigned long reason)
4736{
4737        vm_fault_t ret;
4738        u32 hash;
4739        struct vm_fault vmf = {
4740                .vma = vma,
4741                .address = haddr,
4742                .flags = flags,
4743
4744                /*
4745                 * Hard to debug if it ends up being
4746                 * used by a callee that assumes
4747                 * something about the other
4748                 * uninitialized fields... same as in
4749                 * memory.c
4750                 */
4751        };
4752
4753        /*
4754         * hugetlb_fault_mutex and i_mmap_rwsem must be
4755         * dropped before handling userfault.  Reacquire
4756         * after handling fault to make calling code simpler.
4757         */
4758        hash = hugetlb_fault_mutex_hash(mapping, idx);
4759        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4760        i_mmap_unlock_read(mapping);
4761        ret = handle_userfault(&vmf, reason);
4762        i_mmap_lock_read(mapping);
4763        mutex_lock(&hugetlb_fault_mutex_table[hash]);
4764
4765        return ret;
4766}
4767
4768static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4769                        struct vm_area_struct *vma,
4770                        struct address_space *mapping, pgoff_t idx,
4771                        unsigned long address, pte_t *ptep, unsigned int flags)
4772{
4773        struct hstate *h = hstate_vma(vma);
4774        vm_fault_t ret = VM_FAULT_SIGBUS;
4775        int anon_rmap = 0;
4776        unsigned long size;
4777        struct page *page;
4778        pte_t new_pte;
4779        spinlock_t *ptl;
4780        unsigned long haddr = address & huge_page_mask(h);
4781        bool new_page, new_pagecache_page = false;
4782
4783        /*
4784         * Currently, we are forced to kill the process in the event the
4785         * original mapper has unmapped pages from the child due to a failed
4786         * COW. Warn that such a situation has occurred as it may not be obvious
4787         */
4788        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4789                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4790                           current->pid);
4791                return ret;
4792        }
4793
4794        /*
4795         * We can not race with truncation due to holding i_mmap_rwsem.
4796         * i_size is modified when holding i_mmap_rwsem, so check here
4797         * once for faults beyond end of file.
4798         */
4799        size = i_size_read(mapping->host) >> huge_page_shift(h);
4800        if (idx >= size)
4801                goto out;
4802
4803retry:
4804        new_page = false;
4805        page = find_lock_page(mapping, idx);
4806        if (!page) {
4807                /* Check for page in userfault range */
4808                if (userfaultfd_missing(vma)) {
4809                        ret = hugetlb_handle_userfault(vma, mapping, idx,
4810                                                       flags, haddr,
4811                                                       VM_UFFD_MISSING);
4812                        goto out;
4813                }
4814
4815                page = alloc_huge_page(vma, haddr, 0);
4816                if (IS_ERR(page)) {
4817                        /*
4818                         * Returning error will result in faulting task being
4819                         * sent SIGBUS.  The hugetlb fault mutex prevents two
4820                         * tasks from racing to fault in the same page which
4821                         * could result in false unable to allocate errors.
4822                         * Page migration does not take the fault mutex, but
4823                         * does a clear then write of pte's under page table
4824                         * lock.  Page fault code could race with migration,
4825                         * notice the clear pte and try to allocate a page
4826                         * here.  Before returning error, get ptl and make
4827                         * sure there really is no pte entry.
4828                         */
4829                        ptl = huge_pte_lock(h, mm, ptep);
4830                        ret = 0;
4831                        if (huge_pte_none(huge_ptep_get(ptep)))
4832                                ret = vmf_error(PTR_ERR(page));
4833                        spin_unlock(ptl);
4834                        goto out;
4835                }
4836                clear_huge_page(page, address, pages_per_huge_page(h));
4837                __SetPageUptodate(page);
4838                new_page = true;
4839
4840                if (vma->vm_flags & VM_MAYSHARE) {
4841                        int err = huge_add_to_page_cache(page, mapping, idx);
4842                        if (err) {
4843                                put_page(page);
4844                                if (err == -EEXIST)
4845                                        goto retry;
4846                                goto out;
4847                        }
4848                        new_pagecache_page = true;
4849                } else {
4850                        lock_page(page);
4851                        if (unlikely(anon_vma_prepare(vma))) {
4852                                ret = VM_FAULT_OOM;
4853                                goto backout_unlocked;
4854                        }
4855                        anon_rmap = 1;
4856                }
4857        } else {
4858                /*
4859                 * If memory error occurs between mmap() and fault, some process
4860                 * don't have hwpoisoned swap entry for errored virtual address.
4861                 * So we need to block hugepage fault by PG_hwpoison bit check.
4862                 */
4863                if (unlikely(PageHWPoison(page))) {
4864                        ret = VM_FAULT_HWPOISON_LARGE |
4865                                VM_FAULT_SET_HINDEX(hstate_index(h));
4866                        goto backout_unlocked;
4867                }
4868
4869                /* Check for page in userfault range. */
4870                if (userfaultfd_minor(vma)) {
4871                        unlock_page(page);
4872                        put_page(page);
4873                        ret = hugetlb_handle_userfault(vma, mapping, idx,
4874                                                       flags, haddr,
4875                                                       VM_UFFD_MINOR);
4876                        goto out;
4877                }
4878        }
4879
4880        /*
4881         * If we are going to COW a private mapping later, we examine the
4882         * pending reservations for this page now. This will ensure that
4883         * any allocations necessary to record that reservation occur outside
4884         * the spinlock.
4885         */
4886        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4887                if (vma_needs_reservation(h, vma, haddr) < 0) {
4888                        ret = VM_FAULT_OOM;
4889                        goto backout_unlocked;
4890                }
4891                /* Just decrements count, does not deallocate */
4892                vma_end_reservation(h, vma, haddr);
4893        }
4894
4895        ptl = huge_pte_lock(h, mm, ptep);
4896        ret = 0;
4897        if (!huge_pte_none(huge_ptep_get(ptep)))
4898                goto backout;
4899
4900        if (anon_rmap) {
4901                ClearHPageRestoreReserve(page);
4902                hugepage_add_new_anon_rmap(page, vma, haddr);
4903        } else
4904                page_dup_rmap(page, true);
4905        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4906                                && (vma->vm_flags & VM_SHARED)));
4907        set_huge_pte_at(mm, haddr, ptep, new_pte);
4908
4909        hugetlb_count_add(pages_per_huge_page(h), mm);
4910        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4911                /* Optimization, do the COW without a second fault */
4912                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4913        }
4914
4915        spin_unlock(ptl);
4916
4917        /*
4918         * Only set HPageMigratable in newly allocated pages.  Existing pages
4919         * found in the pagecache may not have HPageMigratableset if they have
4920         * been isolated for migration.
4921         */
4922        if (new_page)
4923                SetHPageMigratable(page);
4924
4925        unlock_page(page);
4926out:
4927        return ret;
4928
4929backout:
4930        spin_unlock(ptl);
4931backout_unlocked:
4932        unlock_page(page);
4933        /* restore reserve for newly allocated pages not in page cache */
4934        if (new_page && !new_pagecache_page)
4935                restore_reserve_on_error(h, vma, haddr, page);
4936        put_page(page);
4937        goto out;
4938}
4939
4940#ifdef CONFIG_SMP
4941u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4942{
4943        unsigned long key[2];
4944        u32 hash;
4945
4946        key[0] = (unsigned long) mapping;
4947        key[1] = idx;
4948
4949        hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4950
4951        return hash & (num_fault_mutexes - 1);
4952}
4953#else
4954/*
4955 * For uniprocessor systems we always use a single mutex, so just
4956 * return 0 and avoid the hashing overhead.
4957 */
4958u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4959{
4960        return 0;
4961}
4962#endif
4963
4964vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4965                        unsigned long address, unsigned int flags)
4966{
4967        pte_t *ptep, entry;
4968        spinlock_t *ptl;
4969        vm_fault_t ret;
4970        u32 hash;
4971        pgoff_t idx;
4972        struct page *page = NULL;
4973        struct page *pagecache_page = NULL;
4974        struct hstate *h = hstate_vma(vma);
4975        struct address_space *mapping;
4976        int need_wait_lock = 0;
4977        unsigned long haddr = address & huge_page_mask(h);
4978
4979        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4980        if (ptep) {
4981                /*
4982                 * Since we hold no locks, ptep could be stale.  That is
4983                 * OK as we are only making decisions based on content and
4984                 * not actually modifying content here.
4985                 */
4986                entry = huge_ptep_get(ptep);
4987                if (unlikely(is_hugetlb_entry_migration(entry))) {
4988                        migration_entry_wait_huge(vma, mm, ptep);
4989                        return 0;
4990                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4991                        return VM_FAULT_HWPOISON_LARGE |
4992                                VM_FAULT_SET_HINDEX(hstate_index(h));
4993        }
4994
4995        /*
4996         * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4997         * until finished with ptep.  This serves two purposes:
4998         * 1) It prevents huge_pmd_unshare from being called elsewhere
4999         *    and making the ptep no longer valid.
5000         * 2) It synchronizes us with i_size modifications during truncation.
5001         *
5002         * ptep could have already be assigned via huge_pte_offset.  That
5003         * is OK, as huge_pte_alloc will return the same value unless
5004         * something has changed.
5005         */
5006        mapping = vma->vm_file->f_mapping;
5007        i_mmap_lock_read(mapping);
5008        ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5009        if (!ptep) {
5010                i_mmap_unlock_read(mapping);
5011                return VM_FAULT_OOM;
5012        }
5013
5014        /*
5015         * Serialize hugepage allocation and instantiation, so that we don't
5016         * get spurious allocation failures if two CPUs race to instantiate
5017         * the same page in the page cache.
5018         */
5019        idx = vma_hugecache_offset(h, vma, haddr);
5020        hash = hugetlb_fault_mutex_hash(mapping, idx);
5021        mutex_lock(&hugetlb_fault_mutex_table[hash]);
5022
5023        entry = huge_ptep_get(ptep);
5024        if (huge_pte_none(entry)) {
5025                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5026                goto out_mutex;
5027        }
5028
5029        ret = 0;
5030
5031        /*
5032         * entry could be a migration/hwpoison entry at this point, so this
5033         * check prevents the kernel from going below assuming that we have
5034         * an active hugepage in pagecache. This goto expects the 2nd page
5035         * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5036         * properly handle it.
5037         */
5038        if (!pte_present(entry))
5039                goto out_mutex;
5040
5041        /*
5042         * If we are going to COW the mapping later, we examine the pending
5043         * reservations for this page now. This will ensure that any
5044         * allocations necessary to record that reservation occur outside the
5045         * spinlock. For private mappings, we also lookup the pagecache
5046         * page now as it is used to determine if a reservation has been
5047         * consumed.
5048         */
5049        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5050                if (vma_needs_reservation(h, vma, haddr) < 0) {
5051                        ret = VM_FAULT_OOM;
5052                        goto out_mutex;
5053                }
5054                /* Just decrements count, does not deallocate */
5055                vma_end_reservation(h, vma, haddr);
5056
5057                if (!(vma->vm_flags & VM_MAYSHARE))
5058                        pagecache_page = hugetlbfs_pagecache_page(h,
5059                                                                vma, haddr);
5060        }
5061
5062        ptl = huge_pte_lock(h, mm, ptep);
5063
5064        /* Check for a racing update before calling hugetlb_cow */
5065        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5066                goto out_ptl;
5067
5068        /*
5069         * hugetlb_cow() requires page locks of pte_page(entry) and
5070         * pagecache_page, so here we need take the former one
5071         * when page != pagecache_page or !pagecache_page.
5072         */
5073        page = pte_page(entry);
5074        if (page != pagecache_page)
5075                if (!trylock_page(page)) {
5076                        need_wait_lock = 1;
5077                        goto out_ptl;
5078                }
5079
5080        get_page(page);
5081
5082        if (flags & FAULT_FLAG_WRITE) {
5083                if (!huge_pte_write(entry)) {
5084                        ret = hugetlb_cow(mm, vma, address, ptep,
5085                                          pagecache_page, ptl);
5086                        goto out_put_page;
5087                }
5088                entry = huge_pte_mkdirty(entry);
5089        }
5090        entry = pte_mkyoung(entry);
5091        if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5092                                                flags & FAULT_FLAG_WRITE))
5093                update_mmu_cache(vma, haddr, ptep);
5094out_put_page:
5095        if (page != pagecache_page)
5096                unlock_page(page);
5097        put_page(page);
5098out_ptl:
5099        spin_unlock(ptl);
5100
5101        if (pagecache_page) {
5102                unlock_page(pagecache_page);
5103                put_page(pagecache_page);
5104        }
5105out_mutex:
5106        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5107        i_mmap_unlock_read(mapping);
5108        /*
5109         * Generally it's safe to hold refcount during waiting page lock. But
5110         * here we just wait to defer the next page fault to avoid busy loop and
5111         * the page is not used after unlocked before returning from the current
5112         * page fault. So we are safe from accessing freed page, even if we wait
5113         * here without taking refcount.
5114         */
5115        if (need_wait_lock)
5116                wait_on_page_locked(page);
5117        return ret;
5118}
5119
5120#ifdef CONFIG_USERFAULTFD
5121/*
5122 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5123 * modifications for huge pages.
5124 */
5125int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5126                            pte_t *dst_pte,
5127                            struct vm_area_struct *dst_vma,
5128                            unsigned long dst_addr,
5129                            unsigned long src_addr,
5130                            enum mcopy_atomic_mode mode,
5131                            struct page **pagep)
5132{
5133        bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5134        struct hstate *h = hstate_vma(dst_vma);
5135        struct address_space *mapping = dst_vma->vm_file->f_mapping;
5136        pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5137        unsigned long size;
5138        int vm_shared = dst_vma->vm_flags & VM_SHARED;
5139        pte_t _dst_pte;
5140        spinlock_t *ptl;
5141        int ret = -ENOMEM;
5142        struct page *page;
5143        int writable;
5144        bool new_pagecache_page = false;
5145
5146        if (is_continue) {
5147                ret = -EFAULT;
5148                page = find_lock_page(mapping, idx);
5149                if (!page)
5150                        goto out;
5151        } else if (!*pagep) {
5152                /* If a page already exists, then it's UFFDIO_COPY for
5153                 * a non-missing case. Return -EEXIST.
5154                 */
5155                if (vm_shared &&
5156                    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5157                        ret = -EEXIST;
5158                        goto out;
5159                }
5160
5161                page = alloc_huge_page(dst_vma, dst_addr, 0);
5162                if (IS_ERR(page)) {
5163                        ret = -ENOMEM;
5164                        goto out;
5165                }
5166
5167                ret = copy_huge_page_from_user(page,
5168                                                (const void __user *) src_addr,
5169                                                pages_per_huge_page(h), false);
5170
5171                /* fallback to copy_from_user outside mmap_lock */
5172                if (unlikely(ret)) {
5173                        ret = -ENOENT;
5174                        /* Free the allocated page which may have
5175                         * consumed a reservation.
5176                         */
5177                        restore_reserve_on_error(h, dst_vma, dst_addr, page);
5178                        put_page(page);
5179
5180                        /* Allocate a temporary page to hold the copied
5181                         * contents.
5182                         */
5183                        page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5184                        if (!page) {
5185                                ret = -ENOMEM;
5186                                goto out;
5187                        }
5188                        *pagep = page;
5189                        /* Set the outparam pagep and return to the caller to
5190                         * copy the contents outside the lock. Don't free the
5191                         * page.
5192                         */
5193                        goto out;
5194                }
5195        } else {
5196                if (vm_shared &&
5197                    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5198                        put_page(*pagep);
5199                        ret = -EEXIST;
5200                        *pagep = NULL;
5201                        goto out;
5202                }
5203
5204                page = alloc_huge_page(dst_vma, dst_addr, 0);
5205                if (IS_ERR(page)) {
5206                        ret = -ENOMEM;
5207                        *pagep = NULL;
5208                        goto out;
5209                }
5210                copy_huge_page(page, *pagep);
5211                put_page(*pagep);
5212                *pagep = NULL;
5213        }
5214
5215        /*
5216         * The memory barrier inside __SetPageUptodate makes sure that
5217         * preceding stores to the page contents become visible before
5218         * the set_pte_at() write.
5219         */
5220        __SetPageUptodate(page);
5221
5222        /* Add shared, newly allocated pages to the page cache. */
5223        if (vm_shared && !is_continue) {
5224                size = i_size_read(mapping->host) >> huge_page_shift(h);
5225                ret = -EFAULT;
5226                if (idx >= size)
5227                        goto out_release_nounlock;
5228
5229                /*
5230                 * Serialization between remove_inode_hugepages() and
5231                 * huge_add_to_page_cache() below happens through the
5232                 * hugetlb_fault_mutex_table that here must be hold by
5233                 * the caller.
5234                 */
5235                ret = huge_add_to_page_cache(page, mapping, idx);
5236                if (ret)
5237                        goto out_release_nounlock;
5238                new_pagecache_page = true;
5239        }
5240
5241        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5242        spin_lock(ptl);
5243
5244        /*
5245         * Recheck the i_size after holding PT lock to make sure not
5246         * to leave any page mapped (as page_mapped()) beyond the end
5247         * of the i_size (remove_inode_hugepages() is strict about
5248         * enforcing that). If we bail out here, we'll also leave a
5249         * page in the radix tree in the vm_shared case beyond the end
5250         * of the i_size, but remove_inode_hugepages() will take care
5251         * of it as soon as we drop the hugetlb_fault_mutex_table.
5252         */
5253        size = i_size_read(mapping->host) >> huge_page_shift(h);
5254        ret = -EFAULT;
5255        if (idx >= size)
5256                goto out_release_unlock;
5257
5258        ret = -EEXIST;
5259        if (!huge_pte_none(huge_ptep_get(dst_pte)))
5260                goto out_release_unlock;
5261
5262        if (vm_shared) {
5263                page_dup_rmap(page, true);
5264        } else {
5265                ClearHPageRestoreReserve(page);
5266                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5267        }
5268
5269        /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5270        if (is_continue && !vm_shared)
5271                writable = 0;
5272        else
5273                writable = dst_vma->vm_flags & VM_WRITE;
5274
5275        _dst_pte = make_huge_pte(dst_vma, page, writable);
5276        if (writable)
5277                _dst_pte = huge_pte_mkdirty(_dst_pte);
5278        _dst_pte = pte_mkyoung(_dst_pte);
5279
5280        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5281
5282        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5283                                        dst_vma->vm_flags & VM_WRITE);
5284        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5285
5286        /* No need to invalidate - it was non-present before */
5287        update_mmu_cache(dst_vma, dst_addr, dst_pte);
5288
5289        spin_unlock(ptl);
5290        if (!is_continue)
5291                SetHPageMigratable(page);
5292        if (vm_shared || is_continue)
5293                unlock_page(page);
5294        ret = 0;
5295out:
5296        return ret;
5297out_release_unlock:
5298        spin_unlock(ptl);
5299        if (vm_shared || is_continue)
5300                unlock_page(page);
5301out_release_nounlock:
5302        if (!new_pagecache_page)
5303                restore_reserve_on_error(h, dst_vma, dst_addr, page);
5304        put_page(page);
5305        goto out;
5306}
5307#endif /* CONFIG_USERFAULTFD */
5308
5309static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5310                                 int refs, struct page **pages,
5311                                 struct vm_area_struct **vmas)
5312{
5313        int nr;
5314
5315        for (nr = 0; nr < refs; nr++) {
5316                if (likely(pages))
5317                        pages[nr] = mem_map_offset(page, nr);
5318                if (vmas)
5319                        vmas[nr] = vma;
5320        }
5321}
5322
5323long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5324                         struct page **pages, struct vm_area_struct **vmas,
5325                         unsigned long *position, unsigned long *nr_pages,
5326                         long i, unsigned int flags, int *locked)
5327{
5328        unsigned long pfn_offset;
5329        unsigned long vaddr = *position;
5330        unsigned long remainder = *nr_pages;
5331        struct hstate *h = hstate_vma(vma);
5332        int err = -EFAULT, refs;
5333
5334        while (vaddr < vma->vm_end && remainder) {
5335                pte_t *pte;
5336                spinlock_t *ptl = NULL;
5337                int absent;
5338                struct page *page;
5339
5340                /*
5341                 * If we have a pending SIGKILL, don't keep faulting pages and
5342                 * potentially allocating memory.
5343                 */
5344                if (fatal_signal_pending(current)) {
5345                        remainder = 0;
5346                        break;
5347                }
5348
5349                /*
5350                 * Some archs (sparc64, sh*) have multiple pte_ts to
5351                 * each hugepage.  We have to make sure we get the
5352                 * first, for the page indexing below to work.
5353                 *
5354                 * Note that page table lock is not held when pte is null.
5355                 */
5356                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5357                                      huge_page_size(h));
5358                if (pte)
5359                        ptl = huge_pte_lock(h, mm, pte);
5360                absent = !pte || huge_pte_none(huge_ptep_get(pte));
5361
5362                /*
5363                 * When coredumping, it suits get_dump_page if we just return
5364                 * an error where there's an empty slot with no huge pagecache
5365                 * to back it.  This way, we avoid allocating a hugepage, and
5366                 * the sparse dumpfile avoids allocating disk blocks, but its
5367                 * huge holes still show up with zeroes where they need to be.
5368                 */
5369                if (absent && (flags & FOLL_DUMP) &&
5370                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5371                        if (pte)
5372                                spin_unlock(ptl);
5373                        remainder = 0;
5374                        break;
5375                }
5376
5377                /*
5378                 * We need call hugetlb_fault for both hugepages under migration
5379                 * (in which case hugetlb_fault waits for the migration,) and
5380                 * hwpoisoned hugepages (in which case we need to prevent the
5381                 * caller from accessing to them.) In order to do this, we use
5382                 * here is_swap_pte instead of is_hugetlb_entry_migration and
5383                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5384                 * both cases, and because we can't follow correct pages
5385                 * directly from any kind of swap entries.
5386                 */
5387                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5388                    ((flags & FOLL_WRITE) &&
5389                      !huge_pte_write(huge_ptep_get(pte)))) {
5390                        vm_fault_t ret;
5391                        unsigned int fault_flags = 0;
5392
5393                        if (pte)
5394                                spin_unlock(ptl);
5395                        if (flags & FOLL_WRITE)
5396                                fault_flags |= FAULT_FLAG_WRITE;
5397                        if (locked)
5398                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5399                                        FAULT_FLAG_KILLABLE;
5400                        if (flags & FOLL_NOWAIT)
5401                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5402                                        FAULT_FLAG_RETRY_NOWAIT;
5403                        if (flags & FOLL_TRIED) {
5404                                /*
5405                                 * Note: FAULT_FLAG_ALLOW_RETRY and
5406                                 * FAULT_FLAG_TRIED can co-exist
5407                                 */
5408                                fault_flags |= FAULT_FLAG_TRIED;
5409                        }
5410                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5411                        if (ret & VM_FAULT_ERROR) {
5412                                err = vm_fault_to_errno(ret, flags);
5413                                remainder = 0;
5414                                break;
5415                        }
5416                        if (ret & VM_FAULT_RETRY) {
5417                                if (locked &&
5418                                    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5419                                        *locked = 0;
5420                                *nr_pages = 0;
5421                                /*
5422                                 * VM_FAULT_RETRY must not return an
5423                                 * error, it will return zero
5424                                 * instead.
5425                                 *
5426                                 * No need to update "position" as the
5427                                 * caller will not check it after
5428                                 * *nr_pages is set to 0.
5429                                 */
5430                                return i;
5431                        }
5432                        continue;
5433                }
5434
5435                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5436                page = pte_page(huge_ptep_get(pte));
5437
5438                /*
5439                 * If subpage information not requested, update counters
5440                 * and skip the same_page loop below.
5441                 */
5442                if (!pages && !vmas && !pfn_offset &&
5443                    (vaddr + huge_page_size(h) < vma->vm_end) &&
5444                    (remainder >= pages_per_huge_page(h))) {
5445                        vaddr += huge_page_size(h);
5446                        remainder -= pages_per_huge_page(h);
5447                        i += pages_per_huge_page(h);
5448                        spin_unlock(ptl);
5449                        continue;
5450                }
5451
5452                /* vaddr may not be aligned to PAGE_SIZE */
5453                refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5454                    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5455
5456                if (pages || vmas)
5457                        record_subpages_vmas(mem_map_offset(page, pfn_offset),
5458                                             vma, refs,
5459                                             likely(pages) ? pages + i : NULL,
5460                                             vmas ? vmas + i : NULL);
5461
5462                if (pages) {
5463                        /*
5464                         * try_grab_compound_head() should always succeed here,
5465                         * because: a) we hold the ptl lock, and b) we've just
5466                         * checked that the huge page is present in the page
5467                         * tables. If the huge page is present, then the tail
5468                         * pages must also be present. The ptl prevents the
5469                         * head page and tail pages from being rearranged in
5470                         * any way. So this page must be available at this
5471                         * point, unless the page refcount overflowed:
5472                         */
5473                        if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5474                                                                 refs,
5475                                                                 flags))) {
5476                                spin_unlock(ptl);
5477                                remainder = 0;
5478                                err = -ENOMEM;
5479                                break;
5480                        }
5481                }
5482
5483                vaddr += (refs << PAGE_SHIFT);
5484                remainder -= refs;
5485                i += refs;
5486
5487                spin_unlock(ptl);
5488        }
5489        *nr_pages = remainder;
5490        /*
5491         * setting position is actually required only if remainder is
5492         * not zero but it's faster not to add a "if (remainder)"
5493         * branch.
5494         */
5495        *position = vaddr;
5496
5497        return i ? i : err;
5498}
5499
5500unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5501                unsigned long address, unsigned long end, pgprot_t newprot)
5502{
5503        struct mm_struct *mm = vma->vm_mm;
5504        unsigned long start = address;
5505        pte_t *ptep;
5506        pte_t pte;
5507        struct hstate *h = hstate_vma(vma);
5508        unsigned long pages = 0;
5509        bool shared_pmd = false;
5510        struct mmu_notifier_range range;
5511
5512        /*
5513         * In the case of shared PMDs, the area to flush could be beyond
5514         * start/end.  Set range.start/range.end to cover the maximum possible
5515         * range if PMD sharing is possible.
5516         */
5517        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5518                                0, vma, mm, start, end);
5519        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5520
5521        BUG_ON(address >= end);
5522        flush_cache_range(vma, range.start, range.end);
5523
5524        mmu_notifier_invalidate_range_start(&range);
5525        i_mmap_lock_write(vma->vm_file->f_mapping);
5526        for (; address < end; address += huge_page_size(h)) {
5527                spinlock_t *ptl;
5528                ptep = huge_pte_offset(mm, address, huge_page_size(h));
5529                if (!ptep)
5530                        continue;
5531                ptl = huge_pte_lock(h, mm, ptep);
5532                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5533                        pages++;
5534                        spin_unlock(ptl);
5535                        shared_pmd = true;
5536                        continue;
5537                }
5538                pte = huge_ptep_get(ptep);
5539                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5540                        spin_unlock(ptl);
5541                        continue;
5542                }
5543                if (unlikely(is_hugetlb_entry_migration(pte))) {
5544                        swp_entry_t entry = pte_to_swp_entry(pte);
5545
5546                        if (is_writable_migration_entry(entry)) {
5547                                pte_t newpte;
5548
5549                                entry = make_readable_migration_entry(
5550                                                        swp_offset(entry));
5551                                newpte = swp_entry_to_pte(entry);
5552                                set_huge_swap_pte_at(mm, address, ptep,
5553                                                     newpte, huge_page_size(h));
5554                                pages++;
5555                        }
5556                        spin_unlock(ptl);
5557                        continue;
5558                }
5559                if (!huge_pte_none(pte)) {
5560                        pte_t old_pte;
5561                        unsigned int shift = huge_page_shift(hstate_vma(vma));
5562
5563                        old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5564                        pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5565                        pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5566                        huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5567                        pages++;
5568                }
5569                spin_unlock(ptl);
5570        }
5571        /*
5572         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5573         * may have cleared our pud entry and done put_page on the page table:
5574         * once we release i_mmap_rwsem, another task can do the final put_page
5575         * and that page table be reused and filled with junk.  If we actually
5576         * did unshare a page of pmds, flush the range corresponding to the pud.
5577         */
5578        if (shared_pmd)
5579                flush_hugetlb_tlb_range(vma, range.start, range.end);
5580        else
5581                flush_hugetlb_tlb_range(vma, start, end);
5582        /*
5583         * No need to call mmu_notifier_invalidate_range() we are downgrading
5584         * page table protection not changing it to point to a new page.
5585         *
5586         * See Documentation/vm/mmu_notifier.rst
5587         */
5588        i_mmap_unlock_write(vma->vm_file->f_mapping);
5589        mmu_notifier_invalidate_range_end(&range);
5590
5591        return pages << h->order;
5592}
5593
5594/* Return true if reservation was successful, false otherwise.  */
5595bool hugetlb_reserve_pages(struct inode *inode,
5596                                        long from, long to,
5597                                        struct vm_area_struct *vma,
5598                                        vm_flags_t vm_flags)
5599{
5600        long chg, add = -1;
5601        struct hstate *h = hstate_inode(inode);
5602        struct hugepage_subpool *spool = subpool_inode(inode);
5603        struct resv_map *resv_map;
5604        struct hugetlb_cgroup *h_cg = NULL;
5605        long gbl_reserve, regions_needed = 0;
5606
5607        /* This should never happen */
5608        if (from > to) {
5609                VM_WARN(1, "%s called with a negative range\n", __func__);
5610                return false;
5611        }
5612
5613        /*
5614         * Only apply hugepage reservation if asked. At fault time, an
5615         * attempt will be made for VM_NORESERVE to allocate a page
5616         * without using reserves
5617         */
5618        if (vm_flags & VM_NORESERVE)
5619                return true;
5620
5621        /*
5622         * Shared mappings base their reservation on the number of pages that
5623         * are already allocated on behalf of the file. Private mappings need
5624         * to reserve the full area even if read-only as mprotect() may be
5625         * called to make the mapping read-write. Assume !vma is a shm mapping
5626         */
5627        if (!vma || vma->vm_flags & VM_MAYSHARE) {
5628                /*
5629                 * resv_map can not be NULL as hugetlb_reserve_pages is only
5630                 * called for inodes for which resv_maps were created (see
5631                 * hugetlbfs_get_inode).
5632                 */
5633                resv_map = inode_resv_map(inode);
5634
5635                chg = region_chg(resv_map, from, to, &regions_needed);
5636
5637        } else {
5638                /* Private mapping. */
5639                resv_map = resv_map_alloc();
5640                if (!resv_map)
5641                        return false;
5642
5643                chg = to - from;
5644
5645                set_vma_resv_map(vma, resv_map);
5646                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5647        }
5648
5649        if (chg < 0)
5650                goto out_err;
5651
5652        if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5653                                chg * pages_per_huge_page(h), &h_cg) < 0)
5654                goto out_err;
5655
5656        if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5657                /* For private mappings, the hugetlb_cgroup uncharge info hangs
5658                 * of the resv_map.
5659                 */
5660                resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5661        }
5662
5663        /*
5664         * There must be enough pages in the subpool for the mapping. If
5665         * the subpool has a minimum size, there may be some global
5666         * reservations already in place (gbl_reserve).
5667         */
5668        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5669        if (gbl_reserve < 0)
5670                goto out_uncharge_cgroup;
5671
5672        /*
5673         * Check enough hugepages are available for the reservation.
5674         * Hand the pages back to the subpool if there are not
5675         */
5676        if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5677                goto out_put_pages;
5678
5679        /*
5680         * Account for the reservations made. Shared mappings record regions
5681         * that have reservations as they are shared by multiple VMAs.
5682         * When the last VMA disappears, the region map says how much
5683         * the reservation was and the page cache tells how much of
5684         * the reservation was consumed. Private mappings are per-VMA and
5685         * only the consumed reservations are tracked. When the VMA
5686         * disappears, the original reservation is the VMA size and the
5687         * consumed reservations are stored in the map. Hence, nothing
5688         * else has to be done for private mappings here
5689         */
5690        if (!vma || vma->vm_flags & VM_MAYSHARE) {
5691                add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5692
5693                if (unlikely(add < 0)) {
5694                        hugetlb_acct_memory(h, -gbl_reserve);
5695                        goto out_put_pages;
5696                } else if (unlikely(chg > add)) {
5697                        /*
5698                         * pages in this range were added to the reserve
5699                         * map between region_chg and region_add.  This
5700                         * indicates a race with alloc_huge_page.  Adjust
5701                         * the subpool and reserve counts modified above
5702                         * based on the difference.
5703                         */
5704                        long rsv_adjust;
5705
5706                        /*
5707                         * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5708                         * reference to h_cg->css. See comment below for detail.
5709                         */
5710                        hugetlb_cgroup_uncharge_cgroup_rsvd(
5711                                hstate_index(h),
5712                                (chg - add) * pages_per_huge_page(h), h_cg);
5713
5714                        rsv_adjust = hugepage_subpool_put_pages(spool,
5715                                                                chg - add);
5716                        hugetlb_acct_memory(h, -rsv_adjust);
5717                } else if (h_cg) {
5718                        /*
5719                         * The file_regions will hold their own reference to
5720                         * h_cg->css. So we should release the reference held
5721                         * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5722                         * done.
5723                         */
5724                        hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5725                }
5726        }
5727        return true;
5728
5729out_put_pages:
5730        /* put back original number of pages, chg */
5731        (void)hugepage_subpool_put_pages(spool, chg);
5732out_uncharge_cgroup:
5733        hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5734                                            chg * pages_per_huge_page(h), h_cg);
5735out_err:
5736        if (!vma || vma->vm_flags & VM_MAYSHARE)
5737                /* Only call region_abort if the region_chg succeeded but the
5738                 * region_add failed or didn't run.
5739                 */
5740                if (chg >= 0 && add < 0)
5741                        region_abort(resv_map, from, to, regions_needed);
5742        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5743                kref_put(&resv_map->refs, resv_map_release);
5744        return false;
5745}
5746
5747long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5748                                                                long freed)
5749{
5750        struct hstate *h = hstate_inode(inode);
5751        struct resv_map *resv_map = inode_resv_map(inode);
5752        long chg = 0;
5753        struct hugepage_subpool *spool = subpool_inode(inode);
5754        long gbl_reserve;
5755
5756        /*
5757         * Since this routine can be called in the evict inode path for all
5758         * hugetlbfs inodes, resv_map could be NULL.
5759         */
5760        if (resv_map) {
5761                chg = region_del(resv_map, start, end);
5762                /*
5763                 * region_del() can fail in the rare case where a region
5764                 * must be split and another region descriptor can not be
5765                 * allocated.  If end == LONG_MAX, it will not fail.
5766                 */
5767                if (chg < 0)
5768                        return chg;
5769        }
5770
5771        spin_lock(&inode->i_lock);
5772        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5773        spin_unlock(&inode->i_lock);
5774
5775        /*
5776         * If the subpool has a minimum size, the number of global
5777         * reservations to be released may be adjusted.
5778         *
5779         * Note that !resv_map implies freed == 0. So (chg - freed)
5780         * won't go negative.
5781         */
5782        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5783        hugetlb_acct_memory(h, -gbl_reserve);
5784
5785        return 0;
5786}
5787
5788#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5789static unsigned long page_table_shareable(struct vm_area_struct *svma,
5790                                struct vm_area_struct *vma,
5791                                unsigned long addr, pgoff_t idx)
5792{
5793        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5794                                svma->vm_start;
5795        unsigned long sbase = saddr & PUD_MASK;
5796        unsigned long s_end = sbase + PUD_SIZE;
5797
5798        /* Allow segments to share if only one is marked locked */
5799        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5800        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5801
5802        /*
5803         * match the virtual addresses, permission and the alignment of the
5804         * page table page.
5805         */
5806        if (pmd_index(addr) != pmd_index(saddr) ||
5807            vm_flags != svm_flags ||
5808            !range_in_vma(svma, sbase, s_end))
5809                return 0;
5810
5811        return saddr;
5812}
5813
5814static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5815{
5816        unsigned long base = addr & PUD_MASK;
5817        unsigned long end = base + PUD_SIZE;
5818
5819        /*
5820         * check on proper vm_flags and page table alignment
5821         */
5822        if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5823                return true;
5824        return false;
5825}
5826
5827bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5828{
5829#ifdef CONFIG_USERFAULTFD
5830        if (uffd_disable_huge_pmd_share(vma))
5831                return false;
5832#endif
5833        return vma_shareable(vma, addr);
5834}
5835
5836/*
5837 * Determine if start,end range within vma could be mapped by shared pmd.
5838 * If yes, adjust start and end to cover range associated with possible
5839 * shared pmd mappings.
5840 */
5841void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5842                                unsigned long *start, unsigned long *end)
5843{
5844        unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5845                v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5846
5847        /*
5848         * vma needs to span at least one aligned PUD size, and the range
5849         * must be at least partially within in.
5850         */
5851        if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5852                (*end <= v_start) || (*start >= v_end))
5853                return;
5854
5855        /* Extend the range to be PUD aligned for a worst case scenario */
5856        if (*start > v_start)
5857                *start = ALIGN_DOWN(*start, PUD_SIZE);
5858
5859        if (*end < v_end)
5860                *end = ALIGN(*end, PUD_SIZE);
5861}
5862
5863/*
5864 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5865 * and returns the corresponding pte. While this is not necessary for the
5866 * !shared pmd case because we can allocate the pmd later as well, it makes the
5867 * code much cleaner.
5868 *
5869 * This routine must be called with i_mmap_rwsem held in at least read mode if
5870 * sharing is possible.  For hugetlbfs, this prevents removal of any page
5871 * table entries associated with the address space.  This is important as we
5872 * are setting up sharing based on existing page table entries (mappings).
5873 *
5874 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5875 * huge_pte_alloc know that sharing is not possible and do not take
5876 * i_mmap_rwsem as a performance optimization.  This is handled by the
5877 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5878 * only required for subsequent processing.
5879 */
5880pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5881                      unsigned long addr, pud_t *pud)
5882{
5883        struct address_space *mapping = vma->vm_file->f_mapping;
5884        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5885                        vma->vm_pgoff;
5886        struct vm_area_struct *svma;
5887        unsigned long saddr;
5888        pte_t *spte = NULL;
5889        pte_t *pte;
5890        spinlock_t *ptl;
5891
5892        i_mmap_assert_locked(mapping);
5893        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5894                if (svma == vma)
5895                        continue;
5896
5897                saddr = page_table_shareable(svma, vma, addr, idx);
5898                if (saddr) {
5899                        spte = huge_pte_offset(svma->vm_mm, saddr,
5900                                               vma_mmu_pagesize(svma));
5901                        if (spte) {
5902                                get_page(virt_to_page(spte));
5903                                break;
5904                        }
5905                }
5906        }
5907
5908        if (!spte)
5909                goto out;
5910
5911        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5912        if (pud_none(*pud)) {
5913                pud_populate(mm, pud,
5914                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
5915                mm_inc_nr_pmds(mm);
5916        } else {
5917                put_page(virt_to_page(spte));
5918        }
5919        spin_unlock(ptl);
5920out:
5921        pte = (pte_t *)pmd_alloc(mm, pud, addr);
5922        return pte;
5923}
5924
5925/*
5926 * unmap huge page backed by shared pte.
5927 *
5928 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5929 * indicated by page_count > 1, unmap is achieved by clearing pud and
5930 * decrementing the ref count. If count == 1, the pte page is not shared.
5931 *
5932 * Called with page table lock held and i_mmap_rwsem held in write mode.
5933 *
5934 * returns: 1 successfully unmapped a shared pte page
5935 *          0 the underlying pte page is not shared, or it is the last user
5936 */
5937int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5938                                        unsigned long *addr, pte_t *ptep)
5939{
5940        pgd_t *pgd = pgd_offset(mm, *addr);
5941        p4d_t *p4d = p4d_offset(pgd, *addr);
5942        pud_t *pud = pud_offset(p4d, *addr);
5943
5944        i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5945        BUG_ON(page_count(virt_to_page(ptep)) == 0);
5946        if (page_count(virt_to_page(ptep)) == 1)
5947                return 0;
5948
5949        pud_clear(pud);
5950        put_page(virt_to_page(ptep));
5951        mm_dec_nr_pmds(mm);
5952        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5953        return 1;
5954}
5955
5956#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5957pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5958                      unsigned long addr, pud_t *pud)
5959{
5960        return NULL;
5961}
5962
5963int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5964                                unsigned long *addr, pte_t *ptep)
5965{
5966        return 0;
5967}
5968
5969void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5970                                unsigned long *start, unsigned long *end)
5971{
5972}
5973
5974bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5975{
5976        return false;
5977}
5978#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5979
5980#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5981pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5982                        unsigned long addr, unsigned long sz)
5983{
5984        pgd_t *pgd;
5985        p4d_t *p4d;
5986        pud_t *pud;
5987        pte_t *pte = NULL;
5988
5989        pgd = pgd_offset(mm, addr);
5990        p4d = p4d_alloc(mm, pgd, addr);
5991        if (!p4d)
5992                return NULL;
5993        pud = pud_alloc(mm, p4d, addr);
5994        if (pud) {
5995                if (sz == PUD_SIZE) {
5996                        pte = (pte_t *)pud;
5997                } else {
5998                        BUG_ON(sz != PMD_SIZE);
5999                        if (want_pmd_share(vma, addr) && pud_none(*pud))
6000                                pte = huge_pmd_share(mm, vma, addr, pud);
6001                        else
6002                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
6003                }
6004        }
6005        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6006
6007        return pte;
6008}
6009
6010/*
6011 * huge_pte_offset() - Walk the page table to resolve the hugepage
6012 * entry at address @addr
6013 *
6014 * Return: Pointer to page table entry (PUD or PMD) for
6015 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6016 * size @sz doesn't match the hugepage size at this level of the page
6017 * table.
6018 */
6019pte_t *huge_pte_offset(struct mm_struct *mm,
6020                       unsigned long addr, unsigned long sz)
6021{
6022        pgd_t *pgd;
6023        p4d_t *p4d;
6024        pud_t *pud;
6025        pmd_t *pmd;
6026
6027        pgd = pgd_offset(mm, addr);
6028        if (!pgd_present(*pgd))
6029                return NULL;
6030        p4d = p4d_offset(pgd, addr);
6031        if (!p4d_present(*p4d))
6032                return NULL;
6033
6034        pud = pud_offset(p4d, addr);
6035        if (sz == PUD_SIZE)
6036                /* must be pud huge, non-present or none */
6037                return (pte_t *)pud;
6038        if (!pud_present(*pud))
6039                return NULL;
6040        /* must have a valid entry and size to go further */
6041
6042        pmd = pmd_offset(pud, addr);
6043        /* must be pmd huge, non-present or none */
6044        return (pte_t *)pmd;
6045}
6046
6047#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6048
6049/*
6050 * These functions are overwritable if your architecture needs its own
6051 * behavior.
6052 */
6053struct page * __weak
6054follow_huge_addr(struct mm_struct *mm, unsigned long address,
6055                              int write)
6056{
6057        return ERR_PTR(-EINVAL);
6058}
6059
6060struct page * __weak
6061follow_huge_pd(struct vm_area_struct *vma,
6062               unsigned long address, hugepd_t hpd, int flags, int pdshift)
6063{
6064        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6065        return NULL;
6066}
6067
6068struct page * __weak
6069follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6070                pmd_t *pmd, int flags)
6071{
6072        struct page *page = NULL;
6073        spinlock_t *ptl;
6074        pte_t pte;
6075
6076        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6077        if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6078                         (FOLL_PIN | FOLL_GET)))
6079                return NULL;
6080
6081retry:
6082        ptl = pmd_lockptr(mm, pmd);
6083        spin_lock(ptl);
6084        /*
6085         * make sure that the address range covered by this pmd is not
6086         * unmapped from other threads.
6087         */
6088        if (!pmd_huge(*pmd))
6089                goto out;
6090        pte = huge_ptep_get((pte_t *)pmd);
6091        if (pte_present(pte)) {
6092                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6093                /*
6094                 * try_grab_page() should always succeed here, because: a) we
6095                 * hold the pmd (ptl) lock, and b) we've just checked that the
6096                 * huge pmd (head) page is present in the page tables. The ptl
6097                 * prevents the head page and tail pages from being rearranged
6098                 * in any way. So this page must be available at this point,
6099                 * unless the page refcount overflowed:
6100                 */
6101                if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6102                        page = NULL;
6103                        goto out;
6104                }
6105        } else {
6106                if (is_hugetlb_entry_migration(pte)) {
6107                        spin_unlock(ptl);
6108                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6109                        goto retry;
6110                }
6111                /*
6112                 * hwpoisoned entry is treated as no_page_table in
6113                 * follow_page_mask().
6114                 */
6115        }
6116out:
6117        spin_unlock(ptl);
6118        return page;
6119}
6120
6121struct page * __weak
6122follow_huge_pud(struct mm_struct *mm, unsigned long address,
6123                pud_t *pud, int flags)
6124{
6125        if (flags & (FOLL_GET | FOLL_PIN))
6126                return NULL;
6127
6128        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6129}
6130
6131struct page * __weak
6132follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6133{
6134        if (flags & (FOLL_GET | FOLL_PIN))
6135                return NULL;
6136
6137        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6138}
6139
6140bool isolate_huge_page(struct page *page, struct list_head *list)
6141{
6142        bool ret = true;
6143
6144        spin_lock_irq(&hugetlb_lock);
6145        if (!PageHeadHuge(page) ||
6146            !HPageMigratable(page) ||
6147            !get_page_unless_zero(page)) {
6148                ret = false;
6149                goto unlock;
6150        }
6151        ClearHPageMigratable(page);
6152        list_move_tail(&page->lru, list);
6153unlock:
6154        spin_unlock_irq(&hugetlb_lock);
6155        return ret;
6156}
6157
6158int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6159{
6160        int ret = 0;
6161
6162        *hugetlb = false;
6163        spin_lock_irq(&hugetlb_lock);
6164        if (PageHeadHuge(page)) {
6165                *hugetlb = true;
6166                if (HPageFreed(page) || HPageMigratable(page))
6167                        ret = get_page_unless_zero(page);
6168                else
6169                        ret = -EBUSY;
6170        }
6171        spin_unlock_irq(&hugetlb_lock);
6172        return ret;
6173}
6174
6175void putback_active_hugepage(struct page *page)
6176{
6177        spin_lock_irq(&hugetlb_lock);
6178        SetHPageMigratable(page);
6179        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6180        spin_unlock_irq(&hugetlb_lock);
6181        put_page(page);
6182}
6183
6184void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6185{
6186        struct hstate *h = page_hstate(oldpage);
6187
6188        hugetlb_cgroup_migrate(oldpage, newpage);
6189        set_page_owner_migrate_reason(newpage, reason);
6190
6191        /*
6192         * transfer temporary state of the new huge page. This is
6193         * reverse to other transitions because the newpage is going to
6194         * be final while the old one will be freed so it takes over
6195         * the temporary status.
6196         *
6197         * Also note that we have to transfer the per-node surplus state
6198         * here as well otherwise the global surplus count will not match
6199         * the per-node's.
6200         */
6201        if (HPageTemporary(newpage)) {
6202                int old_nid = page_to_nid(oldpage);
6203                int new_nid = page_to_nid(newpage);
6204
6205                SetHPageTemporary(oldpage);
6206                ClearHPageTemporary(newpage);
6207
6208                /*
6209                 * There is no need to transfer the per-node surplus state
6210                 * when we do not cross the node.
6211                 */
6212                if (new_nid == old_nid)
6213                        return;
6214                spin_lock_irq(&hugetlb_lock);
6215                if (h->surplus_huge_pages_node[old_nid]) {
6216                        h->surplus_huge_pages_node[old_nid]--;
6217                        h->surplus_huge_pages_node[new_nid]++;
6218                }
6219                spin_unlock_irq(&hugetlb_lock);
6220        }
6221}
6222
6223/*
6224 * This function will unconditionally remove all the shared pmd pgtable entries
6225 * within the specific vma for a hugetlbfs memory range.
6226 */
6227void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6228{
6229        struct hstate *h = hstate_vma(vma);
6230        unsigned long sz = huge_page_size(h);
6231        struct mm_struct *mm = vma->vm_mm;
6232        struct mmu_notifier_range range;
6233        unsigned long address, start, end;
6234        spinlock_t *ptl;
6235        pte_t *ptep;
6236
6237        if (!(vma->vm_flags & VM_MAYSHARE))
6238                return;
6239
6240        start = ALIGN(vma->vm_start, PUD_SIZE);
6241        end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6242
6243        if (start >= end)
6244                return;
6245
6246        /*
6247         * No need to call adjust_range_if_pmd_sharing_possible(), because
6248         * we have already done the PUD_SIZE alignment.
6249         */
6250        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6251                                start, end);
6252        mmu_notifier_invalidate_range_start(&range);
6253        i_mmap_lock_write(vma->vm_file->f_mapping);
6254        for (address = start; address < end; address += PUD_SIZE) {
6255                unsigned long tmp = address;
6256
6257                ptep = huge_pte_offset(mm, address, sz);
6258                if (!ptep)
6259                        continue;
6260                ptl = huge_pte_lock(h, mm, ptep);
6261                /* We don't want 'address' to be changed */
6262                huge_pmd_unshare(mm, vma, &tmp, ptep);
6263                spin_unlock(ptl);
6264        }
6265        flush_hugetlb_tlb_range(vma, start, end);
6266        i_mmap_unlock_write(vma->vm_file->f_mapping);
6267        /*
6268         * No need to call mmu_notifier_invalidate_range(), see
6269         * Documentation/vm/mmu_notifier.rst.
6270         */
6271        mmu_notifier_invalidate_range_end(&range);
6272}
6273
6274#ifdef CONFIG_CMA
6275static bool cma_reserve_called __initdata;
6276
6277static int __init cmdline_parse_hugetlb_cma(char *p)
6278{
6279        hugetlb_cma_size = memparse(p, &p);
6280        return 0;
6281}
6282
6283early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6284
6285void __init hugetlb_cma_reserve(int order)
6286{
6287        unsigned long size, reserved, per_node;
6288        int nid;
6289
6290        cma_reserve_called = true;
6291
6292        if (!hugetlb_cma_size)
6293                return;
6294
6295        if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6296                pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6297                        (PAGE_SIZE << order) / SZ_1M);
6298                return;
6299        }
6300
6301        /*
6302         * If 3 GB area is requested on a machine with 4 numa nodes,
6303         * let's allocate 1 GB on first three nodes and ignore the last one.
6304         */
6305        per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6306        pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6307                hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6308
6309        reserved = 0;
6310        for_each_node_state(nid, N_ONLINE) {
6311                int res;
6312                char name[CMA_MAX_NAME];
6313
6314                size = min(per_node, hugetlb_cma_size - reserved);
6315                size = round_up(size, PAGE_SIZE << order);
6316
6317                snprintf(name, sizeof(name), "hugetlb%d", nid);
6318                res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6319                                                 0, false, name,
6320                                                 &hugetlb_cma[nid], nid);
6321                if (res) {
6322                        pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6323                                res, nid);
6324                        continue;
6325                }
6326
6327                reserved += size;
6328                pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6329                        size / SZ_1M, nid);
6330
6331                if (reserved >= hugetlb_cma_size)
6332                        break;
6333        }
6334}
6335
6336void __init hugetlb_cma_check(void)
6337{
6338        if (!hugetlb_cma_size || cma_reserve_called)
6339                return;
6340
6341        pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6342}
6343
6344#endif /* CONFIG_CMA */
6345