linux/mm/hugetlb_vmemmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Free some vmemmap pages of HugeTLB
   4 *
   5 * Copyright (c) 2020, Bytedance. All rights reserved.
   6 *
   7 *     Author: Muchun Song <songmuchun@bytedance.com>
   8 *
   9 * The struct page structures (page structs) are used to describe a physical
  10 * page frame. By default, there is a one-to-one mapping from a page frame to
  11 * it's corresponding page struct.
  12 *
  13 * HugeTLB pages consist of multiple base page size pages and is supported by
  14 * many architectures. See hugetlbpage.rst in the Documentation directory for
  15 * more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB
  16 * are currently supported. Since the base page size on x86 is 4KB, a 2MB
  17 * HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of
  18 * 4096 base pages. For each base page, there is a corresponding page struct.
  19 *
  20 * Within the HugeTLB subsystem, only the first 4 page structs are used to
  21 * contain unique information about a HugeTLB page. __NR_USED_SUBPAGE provides
  22 * this upper limit. The only 'useful' information in the remaining page structs
  23 * is the compound_head field, and this field is the same for all tail pages.
  24 *
  25 * By removing redundant page structs for HugeTLB pages, memory can be returned
  26 * to the buddy allocator for other uses.
  27 *
  28 * Different architectures support different HugeTLB pages. For example, the
  29 * following table is the HugeTLB page size supported by x86 and arm64
  30 * architectures. Because arm64 supports 4k, 16k, and 64k base pages and
  31 * supports contiguous entries, so it supports many kinds of sizes of HugeTLB
  32 * page.
  33 *
  34 * +--------------+-----------+-----------------------------------------------+
  35 * | Architecture | Page Size |                HugeTLB Page Size              |
  36 * +--------------+-----------+-----------+-----------+-----------+-----------+
  37 * |    x86-64    |    4KB    |    2MB    |    1GB    |           |           |
  38 * +--------------+-----------+-----------+-----------+-----------+-----------+
  39 * |              |    4KB    |   64KB    |    2MB    |    32MB   |    1GB    |
  40 * |              +-----------+-----------+-----------+-----------+-----------+
  41 * |    arm64     |   16KB    |    2MB    |   32MB    |     1GB   |           |
  42 * |              +-----------+-----------+-----------+-----------+-----------+
  43 * |              |   64KB    |    2MB    |  512MB    |    16GB   |           |
  44 * +--------------+-----------+-----------+-----------+-----------+-----------+
  45 *
  46 * When the system boot up, every HugeTLB page has more than one struct page
  47 * structs which size is (unit: pages):
  48 *
  49 *    struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
  50 *
  51 * Where HugeTLB_Size is the size of the HugeTLB page. We know that the size
  52 * of the HugeTLB page is always n times PAGE_SIZE. So we can get the following
  53 * relationship.
  54 *
  55 *    HugeTLB_Size = n * PAGE_SIZE
  56 *
  57 * Then,
  58 *
  59 *    struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
  60 *                = n * sizeof(struct page) / PAGE_SIZE
  61 *
  62 * We can use huge mapping at the pud/pmd level for the HugeTLB page.
  63 *
  64 * For the HugeTLB page of the pmd level mapping, then
  65 *
  66 *    struct_size = n * sizeof(struct page) / PAGE_SIZE
  67 *                = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE
  68 *                = sizeof(struct page) / sizeof(pte_t)
  69 *                = 64 / 8
  70 *                = 8 (pages)
  71 *
  72 * Where n is how many pte entries which one page can contains. So the value of
  73 * n is (PAGE_SIZE / sizeof(pte_t)).
  74 *
  75 * This optimization only supports 64-bit system, so the value of sizeof(pte_t)
  76 * is 8. And this optimization also applicable only when the size of struct page
  77 * is a power of two. In most cases, the size of struct page is 64 bytes (e.g.
  78 * x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the
  79 * size of struct page structs of it is 8 page frames which size depends on the
  80 * size of the base page.
  81 *
  82 * For the HugeTLB page of the pud level mapping, then
  83 *
  84 *    struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd)
  85 *                = PAGE_SIZE / 8 * 8 (pages)
  86 *                = PAGE_SIZE (pages)
  87 *
  88 * Where the struct_size(pmd) is the size of the struct page structs of a
  89 * HugeTLB page of the pmd level mapping.
  90 *
  91 * E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB
  92 * HugeTLB page consists in 4096.
  93 *
  94 * Next, we take the pmd level mapping of the HugeTLB page as an example to
  95 * show the internal implementation of this optimization. There are 8 pages
  96 * struct page structs associated with a HugeTLB page which is pmd mapped.
  97 *
  98 * Here is how things look before optimization.
  99 *
 100 *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
 101 * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
 102 * |           |                     |     0     | -------------> |     0     |
 103 * |           |                     +-----------+                +-----------+
 104 * |           |                     |     1     | -------------> |     1     |
 105 * |           |                     +-----------+                +-----------+
 106 * |           |                     |     2     | -------------> |     2     |
 107 * |           |                     +-----------+                +-----------+
 108 * |           |                     |     3     | -------------> |     3     |
 109 * |           |                     +-----------+                +-----------+
 110 * |           |                     |     4     | -------------> |     4     |
 111 * |    PMD    |                     +-----------+                +-----------+
 112 * |   level   |                     |     5     | -------------> |     5     |
 113 * |  mapping  |                     +-----------+                +-----------+
 114 * |           |                     |     6     | -------------> |     6     |
 115 * |           |                     +-----------+                +-----------+
 116 * |           |                     |     7     | -------------> |     7     |
 117 * |           |                     +-----------+                +-----------+
 118 * |           |
 119 * |           |
 120 * |           |
 121 * +-----------+
 122 *
 123 * The value of page->compound_head is the same for all tail pages. The first
 124 * page of page structs (page 0) associated with the HugeTLB page contains the 4
 125 * page structs necessary to describe the HugeTLB. The only use of the remaining
 126 * pages of page structs (page 1 to page 7) is to point to page->compound_head.
 127 * Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs
 128 * will be used for each HugeTLB page. This will allow us to free the remaining
 129 * 6 pages to the buddy allocator.
 130 *
 131 * Here is how things look after remapping.
 132 *
 133 *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
 134 * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
 135 * |           |                     |     0     | -------------> |     0     |
 136 * |           |                     +-----------+                +-----------+
 137 * |           |                     |     1     | -------------> |     1     |
 138 * |           |                     +-----------+                +-----------+
 139 * |           |                     |     2     | ----------------^ ^ ^ ^ ^ ^
 140 * |           |                     +-----------+                   | | | | |
 141 * |           |                     |     3     | ------------------+ | | | |
 142 * |           |                     +-----------+                     | | | |
 143 * |           |                     |     4     | --------------------+ | | |
 144 * |    PMD    |                     +-----------+                       | | |
 145 * |   level   |                     |     5     | ----------------------+ | |
 146 * |  mapping  |                     +-----------+                         | |
 147 * |           |                     |     6     | ------------------------+ |
 148 * |           |                     +-----------+                           |
 149 * |           |                     |     7     | --------------------------+
 150 * |           |                     +-----------+
 151 * |           |
 152 * |           |
 153 * |           |
 154 * +-----------+
 155 *
 156 * When a HugeTLB is freed to the buddy system, we should allocate 6 pages for
 157 * vmemmap pages and restore the previous mapping relationship.
 158 *
 159 * For the HugeTLB page of the pud level mapping. It is similar to the former.
 160 * We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages.
 161 *
 162 * Apart from the HugeTLB page of the pmd/pud level mapping, some architectures
 163 * (e.g. aarch64) provides a contiguous bit in the translation table entries
 164 * that hints to the MMU to indicate that it is one of a contiguous set of
 165 * entries that can be cached in a single TLB entry.
 166 *
 167 * The contiguous bit is used to increase the mapping size at the pmd and pte
 168 * (last) level. So this type of HugeTLB page can be optimized only when its
 169 * size of the struct page structs is greater than 2 pages.
 170 */
 171#define pr_fmt(fmt)     "HugeTLB: " fmt
 172
 173#include "hugetlb_vmemmap.h"
 174
 175/*
 176 * There are a lot of struct page structures associated with each HugeTLB page.
 177 * For tail pages, the value of compound_head is the same. So we can reuse first
 178 * page of tail page structures. We map the virtual addresses of the remaining
 179 * pages of tail page structures to the first tail page struct, and then free
 180 * these page frames. Therefore, we need to reserve two pages as vmemmap areas.
 181 */
 182#define RESERVE_VMEMMAP_NR              2U
 183#define RESERVE_VMEMMAP_SIZE            (RESERVE_VMEMMAP_NR << PAGE_SHIFT)
 184
 185bool hugetlb_free_vmemmap_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON);
 186
 187static int __init early_hugetlb_free_vmemmap_param(char *buf)
 188{
 189        /* We cannot optimize if a "struct page" crosses page boundaries. */
 190        if ((!is_power_of_2(sizeof(struct page)))) {
 191                pr_warn("cannot free vmemmap pages because \"struct page\" crosses page boundaries\n");
 192                return 0;
 193        }
 194
 195        if (!buf)
 196                return -EINVAL;
 197
 198        if (!strcmp(buf, "on"))
 199                hugetlb_free_vmemmap_enabled = true;
 200        else if (!strcmp(buf, "off"))
 201                hugetlb_free_vmemmap_enabled = false;
 202        else
 203                return -EINVAL;
 204
 205        return 0;
 206}
 207early_param("hugetlb_free_vmemmap", early_hugetlb_free_vmemmap_param);
 208
 209static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h)
 210{
 211        return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT;
 212}
 213
 214/*
 215 * Previously discarded vmemmap pages will be allocated and remapping
 216 * after this function returns zero.
 217 */
 218int alloc_huge_page_vmemmap(struct hstate *h, struct page *head)
 219{
 220        int ret;
 221        unsigned long vmemmap_addr = (unsigned long)head;
 222        unsigned long vmemmap_end, vmemmap_reuse;
 223
 224        if (!HPageVmemmapOptimized(head))
 225                return 0;
 226
 227        vmemmap_addr += RESERVE_VMEMMAP_SIZE;
 228        vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
 229        vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
 230        /*
 231         * The pages which the vmemmap virtual address range [@vmemmap_addr,
 232         * @vmemmap_end) are mapped to are freed to the buddy allocator, and
 233         * the range is mapped to the page which @vmemmap_reuse is mapped to.
 234         * When a HugeTLB page is freed to the buddy allocator, previously
 235         * discarded vmemmap pages must be allocated and remapping.
 236         */
 237        ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
 238                                  GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
 239
 240        if (!ret)
 241                ClearHPageVmemmapOptimized(head);
 242
 243        return ret;
 244}
 245
 246void free_huge_page_vmemmap(struct hstate *h, struct page *head)
 247{
 248        unsigned long vmemmap_addr = (unsigned long)head;
 249        unsigned long vmemmap_end, vmemmap_reuse;
 250
 251        if (!free_vmemmap_pages_per_hpage(h))
 252                return;
 253
 254        vmemmap_addr += RESERVE_VMEMMAP_SIZE;
 255        vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
 256        vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
 257
 258        /*
 259         * Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end)
 260         * to the page which @vmemmap_reuse is mapped to, then free the pages
 261         * which the range [@vmemmap_addr, @vmemmap_end] is mapped to.
 262         */
 263        if (!vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse))
 264                SetHPageVmemmapOptimized(head);
 265}
 266
 267void __init hugetlb_vmemmap_init(struct hstate *h)
 268{
 269        unsigned int nr_pages = pages_per_huge_page(h);
 270        unsigned int vmemmap_pages;
 271
 272        /*
 273         * There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct
 274         * page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP,
 275         * so add a BUILD_BUG_ON to catch invalid usage of the tail struct page.
 276         */
 277        BUILD_BUG_ON(__NR_USED_SUBPAGE >=
 278                     RESERVE_VMEMMAP_SIZE / sizeof(struct page));
 279
 280        if (!hugetlb_free_vmemmap_enabled)
 281                return;
 282
 283        vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT;
 284        /*
 285         * The head page and the first tail page are not to be freed to buddy
 286         * allocator, the other pages will map to the first tail page, so they
 287         * can be freed.
 288         *
 289         * Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true
 290         * on some architectures (e.g. aarch64). See Documentation/arm64/
 291         * hugetlbpage.rst for more details.
 292         */
 293        if (likely(vmemmap_pages > RESERVE_VMEMMAP_NR))
 294                h->nr_free_vmemmap_pages = vmemmap_pages - RESERVE_VMEMMAP_NR;
 295
 296        pr_info("can free %d vmemmap pages for %s\n", h->nr_free_vmemmap_pages,
 297                h->name);
 298}
 299