linux/mm/internal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* internal.h: mm/ internal definitions
   3 *
   4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7#ifndef __MM_INTERNAL_H
   8#define __MM_INTERNAL_H
   9
  10#include <linux/fs.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/tracepoint-defs.h>
  14
  15/*
  16 * The set of flags that only affect watermark checking and reclaim
  17 * behaviour. This is used by the MM to obey the caller constraints
  18 * about IO, FS and watermark checking while ignoring placement
  19 * hints such as HIGHMEM usage.
  20 */
  21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
  22                        __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
  23                        __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
  24                        __GFP_ATOMIC)
  25
  26/* The GFP flags allowed during early boot */
  27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
  28
  29/* Control allocation cpuset and node placement constraints */
  30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
  31
  32/* Do not use these with a slab allocator */
  33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
  34
  35void page_writeback_init(void);
  36
  37vm_fault_t do_swap_page(struct vm_fault *vmf);
  38
  39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  40                unsigned long floor, unsigned long ceiling);
  41
  42static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
  43{
  44        return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
  45}
  46
  47void unmap_page_range(struct mmu_gather *tlb,
  48                             struct vm_area_struct *vma,
  49                             unsigned long addr, unsigned long end,
  50                             struct zap_details *details);
  51
  52void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
  53                unsigned long lookahead_size);
  54void force_page_cache_ra(struct readahead_control *, unsigned long nr);
  55static inline void force_page_cache_readahead(struct address_space *mapping,
  56                struct file *file, pgoff_t index, unsigned long nr_to_read)
  57{
  58        DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
  59        force_page_cache_ra(&ractl, nr_to_read);
  60}
  61
  62unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
  63                pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
  64
  65/**
  66 * page_evictable - test whether a page is evictable
  67 * @page: the page to test
  68 *
  69 * Test whether page is evictable--i.e., should be placed on active/inactive
  70 * lists vs unevictable list.
  71 *
  72 * Reasons page might not be evictable:
  73 * (1) page's mapping marked unevictable
  74 * (2) page is part of an mlocked VMA
  75 *
  76 */
  77static inline bool page_evictable(struct page *page)
  78{
  79        bool ret;
  80
  81        /* Prevent address_space of inode and swap cache from being freed */
  82        rcu_read_lock();
  83        ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  84        rcu_read_unlock();
  85        return ret;
  86}
  87
  88/*
  89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
  90 * a count of one.
  91 */
  92static inline void set_page_refcounted(struct page *page)
  93{
  94        VM_BUG_ON_PAGE(PageTail(page), page);
  95        VM_BUG_ON_PAGE(page_ref_count(page), page);
  96        set_page_count(page, 1);
  97}
  98
  99extern unsigned long highest_memmap_pfn;
 100
 101/*
 102 * Maximum number of reclaim retries without progress before the OOM
 103 * killer is consider the only way forward.
 104 */
 105#define MAX_RECLAIM_RETRIES 16
 106
 107/*
 108 * in mm/vmscan.c:
 109 */
 110extern int isolate_lru_page(struct page *page);
 111extern void putback_lru_page(struct page *page);
 112
 113/*
 114 * in mm/rmap.c:
 115 */
 116extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 117
 118/*
 119 * in mm/memcontrol.c:
 120 */
 121extern bool cgroup_memory_nokmem;
 122
 123/*
 124 * in mm/page_alloc.c
 125 */
 126
 127/*
 128 * Structure for holding the mostly immutable allocation parameters passed
 129 * between functions involved in allocations, including the alloc_pages*
 130 * family of functions.
 131 *
 132 * nodemask, migratetype and highest_zoneidx are initialized only once in
 133 * __alloc_pages() and then never change.
 134 *
 135 * zonelist, preferred_zone and highest_zoneidx are set first in
 136 * __alloc_pages() for the fast path, and might be later changed
 137 * in __alloc_pages_slowpath(). All other functions pass the whole structure
 138 * by a const pointer.
 139 */
 140struct alloc_context {
 141        struct zonelist *zonelist;
 142        nodemask_t *nodemask;
 143        struct zoneref *preferred_zoneref;
 144        int migratetype;
 145
 146        /*
 147         * highest_zoneidx represents highest usable zone index of
 148         * the allocation request. Due to the nature of the zone,
 149         * memory on lower zone than the highest_zoneidx will be
 150         * protected by lowmem_reserve[highest_zoneidx].
 151         *
 152         * highest_zoneidx is also used by reclaim/compaction to limit
 153         * the target zone since higher zone than this index cannot be
 154         * usable for this allocation request.
 155         */
 156        enum zone_type highest_zoneidx;
 157        bool spread_dirty_pages;
 158};
 159
 160/*
 161 * Locate the struct page for both the matching buddy in our
 162 * pair (buddy1) and the combined O(n+1) page they form (page).
 163 *
 164 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 165 * the following equation:
 166 *     B2 = B1 ^ (1 << O)
 167 * For example, if the starting buddy (buddy2) is #8 its order
 168 * 1 buddy is #10:
 169 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 170 *
 171 * 2) Any buddy B will have an order O+1 parent P which
 172 * satisfies the following equation:
 173 *     P = B & ~(1 << O)
 174 *
 175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 176 */
 177static inline unsigned long
 178__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 179{
 180        return page_pfn ^ (1 << order);
 181}
 182
 183extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 184                                unsigned long end_pfn, struct zone *zone);
 185
 186static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 187                                unsigned long end_pfn, struct zone *zone)
 188{
 189        if (zone->contiguous)
 190                return pfn_to_page(start_pfn);
 191
 192        return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 193}
 194
 195extern int __isolate_free_page(struct page *page, unsigned int order);
 196extern void __putback_isolated_page(struct page *page, unsigned int order,
 197                                    int mt);
 198extern void memblock_free_pages(struct page *page, unsigned long pfn,
 199                                        unsigned int order);
 200extern void __free_pages_core(struct page *page, unsigned int order);
 201extern void prep_compound_page(struct page *page, unsigned int order);
 202extern void post_alloc_hook(struct page *page, unsigned int order,
 203                                        gfp_t gfp_flags);
 204extern int user_min_free_kbytes;
 205
 206extern void free_unref_page(struct page *page, unsigned int order);
 207extern void free_unref_page_list(struct list_head *list);
 208
 209extern void zone_pcp_update(struct zone *zone, int cpu_online);
 210extern void zone_pcp_reset(struct zone *zone);
 211extern void zone_pcp_disable(struct zone *zone);
 212extern void zone_pcp_enable(struct zone *zone);
 213
 214#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 215
 216/*
 217 * in mm/compaction.c
 218 */
 219/*
 220 * compact_control is used to track pages being migrated and the free pages
 221 * they are being migrated to during memory compaction. The free_pfn starts
 222 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 223 * are moved to the end of a zone during a compaction run and the run
 224 * completes when free_pfn <= migrate_pfn
 225 */
 226struct compact_control {
 227        struct list_head freepages;     /* List of free pages to migrate to */
 228        struct list_head migratepages;  /* List of pages being migrated */
 229        unsigned int nr_freepages;      /* Number of isolated free pages */
 230        unsigned int nr_migratepages;   /* Number of pages to migrate */
 231        unsigned long free_pfn;         /* isolate_freepages search base */
 232        /*
 233         * Acts as an in/out parameter to page isolation for migration.
 234         * isolate_migratepages uses it as a search base.
 235         * isolate_migratepages_block will update the value to the next pfn
 236         * after the last isolated one.
 237         */
 238        unsigned long migrate_pfn;
 239        unsigned long fast_start_pfn;   /* a pfn to start linear scan from */
 240        struct zone *zone;
 241        unsigned long total_migrate_scanned;
 242        unsigned long total_free_scanned;
 243        unsigned short fast_search_fail;/* failures to use free list searches */
 244        short search_order;             /* order to start a fast search at */
 245        const gfp_t gfp_mask;           /* gfp mask of a direct compactor */
 246        int order;                      /* order a direct compactor needs */
 247        int migratetype;                /* migratetype of direct compactor */
 248        const unsigned int alloc_flags; /* alloc flags of a direct compactor */
 249        const int highest_zoneidx;      /* zone index of a direct compactor */
 250        enum migrate_mode mode;         /* Async or sync migration mode */
 251        bool ignore_skip_hint;          /* Scan blocks even if marked skip */
 252        bool no_set_skip_hint;          /* Don't mark blocks for skipping */
 253        bool ignore_block_suitable;     /* Scan blocks considered unsuitable */
 254        bool direct_compaction;         /* False from kcompactd or /proc/... */
 255        bool proactive_compaction;      /* kcompactd proactive compaction */
 256        bool whole_zone;                /* Whole zone should/has been scanned */
 257        bool contended;                 /* Signal lock or sched contention */
 258        bool rescan;                    /* Rescanning the same pageblock */
 259        bool alloc_contig;              /* alloc_contig_range allocation */
 260};
 261
 262/*
 263 * Used in direct compaction when a page should be taken from the freelists
 264 * immediately when one is created during the free path.
 265 */
 266struct capture_control {
 267        struct compact_control *cc;
 268        struct page *page;
 269};
 270
 271unsigned long
 272isolate_freepages_range(struct compact_control *cc,
 273                        unsigned long start_pfn, unsigned long end_pfn);
 274int
 275isolate_migratepages_range(struct compact_control *cc,
 276                           unsigned long low_pfn, unsigned long end_pfn);
 277#endif
 278int find_suitable_fallback(struct free_area *area, unsigned int order,
 279                        int migratetype, bool only_stealable, bool *can_steal);
 280
 281/*
 282 * This function returns the order of a free page in the buddy system. In
 283 * general, page_zone(page)->lock must be held by the caller to prevent the
 284 * page from being allocated in parallel and returning garbage as the order.
 285 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 286 * page cannot be allocated or merged in parallel. Alternatively, it must
 287 * handle invalid values gracefully, and use buddy_order_unsafe() below.
 288 */
 289static inline unsigned int buddy_order(struct page *page)
 290{
 291        /* PageBuddy() must be checked by the caller */
 292        return page_private(page);
 293}
 294
 295/*
 296 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 297 * PageBuddy() should be checked first by the caller to minimize race window,
 298 * and invalid values must be handled gracefully.
 299 *
 300 * READ_ONCE is used so that if the caller assigns the result into a local
 301 * variable and e.g. tests it for valid range before using, the compiler cannot
 302 * decide to remove the variable and inline the page_private(page) multiple
 303 * times, potentially observing different values in the tests and the actual
 304 * use of the result.
 305 */
 306#define buddy_order_unsafe(page)        READ_ONCE(page_private(page))
 307
 308/*
 309 * These three helpers classifies VMAs for virtual memory accounting.
 310 */
 311
 312/*
 313 * Executable code area - executable, not writable, not stack
 314 */
 315static inline bool is_exec_mapping(vm_flags_t flags)
 316{
 317        return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
 318}
 319
 320/*
 321 * Stack area - automatically grows in one direction
 322 *
 323 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
 324 * do_mmap() forbids all other combinations.
 325 */
 326static inline bool is_stack_mapping(vm_flags_t flags)
 327{
 328        return (flags & VM_STACK) == VM_STACK;
 329}
 330
 331/*
 332 * Data area - private, writable, not stack
 333 */
 334static inline bool is_data_mapping(vm_flags_t flags)
 335{
 336        return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
 337}
 338
 339/* mm/util.c */
 340void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 341                struct vm_area_struct *prev);
 342void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
 343
 344#ifdef CONFIG_MMU
 345extern long populate_vma_page_range(struct vm_area_struct *vma,
 346                unsigned long start, unsigned long end, int *locked);
 347extern long faultin_vma_page_range(struct vm_area_struct *vma,
 348                                   unsigned long start, unsigned long end,
 349                                   bool write, int *locked);
 350extern void munlock_vma_pages_range(struct vm_area_struct *vma,
 351                        unsigned long start, unsigned long end);
 352static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
 353{
 354        munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
 355}
 356
 357/*
 358 * must be called with vma's mmap_lock held for read or write, and page locked.
 359 */
 360extern void mlock_vma_page(struct page *page);
 361extern unsigned int munlock_vma_page(struct page *page);
 362
 363extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
 364                              unsigned long len);
 365
 366/*
 367 * Clear the page's PageMlocked().  This can be useful in a situation where
 368 * we want to unconditionally remove a page from the pagecache -- e.g.,
 369 * on truncation or freeing.
 370 *
 371 * It is legal to call this function for any page, mlocked or not.
 372 * If called for a page that is still mapped by mlocked vmas, all we do
 373 * is revert to lazy LRU behaviour -- semantics are not broken.
 374 */
 375extern void clear_page_mlock(struct page *page);
 376
 377extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 378
 379/*
 380 * At what user virtual address is page expected in vma?
 381 * Returns -EFAULT if all of the page is outside the range of vma.
 382 * If page is a compound head, the entire compound page is considered.
 383 */
 384static inline unsigned long
 385vma_address(struct page *page, struct vm_area_struct *vma)
 386{
 387        pgoff_t pgoff;
 388        unsigned long address;
 389
 390        VM_BUG_ON_PAGE(PageKsm(page), page);    /* KSM page->index unusable */
 391        pgoff = page_to_pgoff(page);
 392        if (pgoff >= vma->vm_pgoff) {
 393                address = vma->vm_start +
 394                        ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 395                /* Check for address beyond vma (or wrapped through 0?) */
 396                if (address < vma->vm_start || address >= vma->vm_end)
 397                        address = -EFAULT;
 398        } else if (PageHead(page) &&
 399                   pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
 400                /* Test above avoids possibility of wrap to 0 on 32-bit */
 401                address = vma->vm_start;
 402        } else {
 403                address = -EFAULT;
 404        }
 405        return address;
 406}
 407
 408/*
 409 * Then at what user virtual address will none of the page be found in vma?
 410 * Assumes that vma_address() already returned a good starting address.
 411 * If page is a compound head, the entire compound page is considered.
 412 */
 413static inline unsigned long
 414vma_address_end(struct page *page, struct vm_area_struct *vma)
 415{
 416        pgoff_t pgoff;
 417        unsigned long address;
 418
 419        VM_BUG_ON_PAGE(PageKsm(page), page);    /* KSM page->index unusable */
 420        pgoff = page_to_pgoff(page) + compound_nr(page);
 421        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 422        /* Check for address beyond vma (or wrapped through 0?) */
 423        if (address < vma->vm_start || address > vma->vm_end)
 424                address = vma->vm_end;
 425        return address;
 426}
 427
 428static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
 429                                                    struct file *fpin)
 430{
 431        int flags = vmf->flags;
 432
 433        if (fpin)
 434                return fpin;
 435
 436        /*
 437         * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
 438         * anything, so we only pin the file and drop the mmap_lock if only
 439         * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
 440         */
 441        if (fault_flag_allow_retry_first(flags) &&
 442            !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
 443                fpin = get_file(vmf->vma->vm_file);
 444                mmap_read_unlock(vmf->vma->vm_mm);
 445        }
 446        return fpin;
 447}
 448
 449#else /* !CONFIG_MMU */
 450static inline void clear_page_mlock(struct page *page) { }
 451static inline void mlock_vma_page(struct page *page) { }
 452static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
 453{
 454}
 455#endif /* !CONFIG_MMU */
 456
 457/*
 458 * Return the mem_map entry representing the 'offset' subpage within
 459 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
 460 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
 461 */
 462static inline struct page *mem_map_offset(struct page *base, int offset)
 463{
 464        if (unlikely(offset >= MAX_ORDER_NR_PAGES))
 465                return nth_page(base, offset);
 466        return base + offset;
 467}
 468
 469/*
 470 * Iterator over all subpages within the maximally aligned gigantic
 471 * page 'base'.  Handle any discontiguity in the mem_map.
 472 */
 473static inline struct page *mem_map_next(struct page *iter,
 474                                                struct page *base, int offset)
 475{
 476        if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
 477                unsigned long pfn = page_to_pfn(base) + offset;
 478                if (!pfn_valid(pfn))
 479                        return NULL;
 480                return pfn_to_page(pfn);
 481        }
 482        return iter + 1;
 483}
 484
 485/* Memory initialisation debug and verification */
 486enum mminit_level {
 487        MMINIT_WARNING,
 488        MMINIT_VERIFY,
 489        MMINIT_TRACE
 490};
 491
 492#ifdef CONFIG_DEBUG_MEMORY_INIT
 493
 494extern int mminit_loglevel;
 495
 496#define mminit_dprintk(level, prefix, fmt, arg...) \
 497do { \
 498        if (level < mminit_loglevel) { \
 499                if (level <= MMINIT_WARNING) \
 500                        pr_warn("mminit::" prefix " " fmt, ##arg);      \
 501                else \
 502                        printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 503        } \
 504} while (0)
 505
 506extern void mminit_verify_pageflags_layout(void);
 507extern void mminit_verify_zonelist(void);
 508#else
 509
 510static inline void mminit_dprintk(enum mminit_level level,
 511                                const char *prefix, const char *fmt, ...)
 512{
 513}
 514
 515static inline void mminit_verify_pageflags_layout(void)
 516{
 517}
 518
 519static inline void mminit_verify_zonelist(void)
 520{
 521}
 522#endif /* CONFIG_DEBUG_MEMORY_INIT */
 523
 524/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
 525#if defined(CONFIG_SPARSEMEM)
 526extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
 527                                unsigned long *end_pfn);
 528#else
 529static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
 530                                unsigned long *end_pfn)
 531{
 532}
 533#endif /* CONFIG_SPARSEMEM */
 534
 535#define NODE_RECLAIM_NOSCAN     -2
 536#define NODE_RECLAIM_FULL       -1
 537#define NODE_RECLAIM_SOME       0
 538#define NODE_RECLAIM_SUCCESS    1
 539
 540#ifdef CONFIG_NUMA
 541extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
 542#else
 543static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
 544                                unsigned int order)
 545{
 546        return NODE_RECLAIM_NOSCAN;
 547}
 548#endif
 549
 550extern int hwpoison_filter(struct page *p);
 551
 552extern u32 hwpoison_filter_dev_major;
 553extern u32 hwpoison_filter_dev_minor;
 554extern u64 hwpoison_filter_flags_mask;
 555extern u64 hwpoison_filter_flags_value;
 556extern u64 hwpoison_filter_memcg;
 557extern u32 hwpoison_filter_enable;
 558
 559extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
 560        unsigned long, unsigned long,
 561        unsigned long, unsigned long);
 562
 563extern void set_pageblock_order(void);
 564unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 565                                            struct list_head *page_list);
 566/* The ALLOC_WMARK bits are used as an index to zone->watermark */
 567#define ALLOC_WMARK_MIN         WMARK_MIN
 568#define ALLOC_WMARK_LOW         WMARK_LOW
 569#define ALLOC_WMARK_HIGH        WMARK_HIGH
 570#define ALLOC_NO_WATERMARKS     0x04 /* don't check watermarks at all */
 571
 572/* Mask to get the watermark bits */
 573#define ALLOC_WMARK_MASK        (ALLOC_NO_WATERMARKS-1)
 574
 575/*
 576 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 577 * cannot assume a reduced access to memory reserves is sufficient for
 578 * !MMU
 579 */
 580#ifdef CONFIG_MMU
 581#define ALLOC_OOM               0x08
 582#else
 583#define ALLOC_OOM               ALLOC_NO_WATERMARKS
 584#endif
 585
 586#define ALLOC_HARDER             0x10 /* try to alloc harder */
 587#define ALLOC_HIGH               0x20 /* __GFP_HIGH set */
 588#define ALLOC_CPUSET             0x40 /* check for correct cpuset */
 589#define ALLOC_CMA                0x80 /* allow allocations from CMA areas */
 590#ifdef CONFIG_ZONE_DMA32
 591#define ALLOC_NOFRAGMENT        0x100 /* avoid mixing pageblock types */
 592#else
 593#define ALLOC_NOFRAGMENT          0x0
 594#endif
 595#define ALLOC_KSWAPD            0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
 596
 597enum ttu_flags;
 598struct tlbflush_unmap_batch;
 599
 600
 601/*
 602 * only for MM internal work items which do not depend on
 603 * any allocations or locks which might depend on allocations
 604 */
 605extern struct workqueue_struct *mm_percpu_wq;
 606
 607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 608void try_to_unmap_flush(void);
 609void try_to_unmap_flush_dirty(void);
 610void flush_tlb_batched_pending(struct mm_struct *mm);
 611#else
 612static inline void try_to_unmap_flush(void)
 613{
 614}
 615static inline void try_to_unmap_flush_dirty(void)
 616{
 617}
 618static inline void flush_tlb_batched_pending(struct mm_struct *mm)
 619{
 620}
 621#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 622
 623extern const struct trace_print_flags pageflag_names[];
 624extern const struct trace_print_flags vmaflag_names[];
 625extern const struct trace_print_flags gfpflag_names[];
 626
 627static inline bool is_migrate_highatomic(enum migratetype migratetype)
 628{
 629        return migratetype == MIGRATE_HIGHATOMIC;
 630}
 631
 632static inline bool is_migrate_highatomic_page(struct page *page)
 633{
 634        return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
 635}
 636
 637void setup_zone_pageset(struct zone *zone);
 638
 639struct migration_target_control {
 640        int nid;                /* preferred node id */
 641        nodemask_t *nmask;
 642        gfp_t gfp_mask;
 643};
 644
 645/*
 646 * mm/vmalloc.c
 647 */
 648#ifdef CONFIG_MMU
 649int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 650                pgprot_t prot, struct page **pages, unsigned int page_shift);
 651#else
 652static inline
 653int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 654                pgprot_t prot, struct page **pages, unsigned int page_shift)
 655{
 656        return -EINVAL;
 657}
 658#endif
 659
 660void vunmap_range_noflush(unsigned long start, unsigned long end);
 661
 662int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
 663                      unsigned long addr, int page_nid, int *flags);
 664
 665#endif  /* __MM_INTERNAL_H */
 666