linux/mm/kfence/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * KFENCE guarded object allocator and fault handling.
   4 *
   5 * Copyright (C) 2020, Google LLC.
   6 */
   7
   8#define pr_fmt(fmt) "kfence: " fmt
   9
  10#include <linux/atomic.h>
  11#include <linux/bug.h>
  12#include <linux/debugfs.h>
  13#include <linux/irq_work.h>
  14#include <linux/kcsan-checks.h>
  15#include <linux/kfence.h>
  16#include <linux/kmemleak.h>
  17#include <linux/list.h>
  18#include <linux/lockdep.h>
  19#include <linux/memblock.h>
  20#include <linux/moduleparam.h>
  21#include <linux/random.h>
  22#include <linux/rcupdate.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/seq_file.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28
  29#include <asm/kfence.h>
  30
  31#include "kfence.h"
  32
  33/* Disables KFENCE on the first warning assuming an irrecoverable error. */
  34#define KFENCE_WARN_ON(cond)                                                   \
  35        ({                                                                     \
  36                const bool __cond = WARN_ON(cond);                             \
  37                if (unlikely(__cond))                                          \
  38                        WRITE_ONCE(kfence_enabled, false);                     \
  39                __cond;                                                        \
  40        })
  41
  42/* === Data ================================================================= */
  43
  44static bool kfence_enabled __read_mostly;
  45
  46static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
  47
  48#ifdef MODULE_PARAM_PREFIX
  49#undef MODULE_PARAM_PREFIX
  50#endif
  51#define MODULE_PARAM_PREFIX "kfence."
  52
  53static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
  54{
  55        unsigned long num;
  56        int ret = kstrtoul(val, 0, &num);
  57
  58        if (ret < 0)
  59                return ret;
  60
  61        if (!num) /* Using 0 to indicate KFENCE is disabled. */
  62                WRITE_ONCE(kfence_enabled, false);
  63        else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
  64                return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
  65
  66        *((unsigned long *)kp->arg) = num;
  67        return 0;
  68}
  69
  70static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
  71{
  72        if (!READ_ONCE(kfence_enabled))
  73                return sprintf(buffer, "0\n");
  74
  75        return param_get_ulong(buffer, kp);
  76}
  77
  78static const struct kernel_param_ops sample_interval_param_ops = {
  79        .set = param_set_sample_interval,
  80        .get = param_get_sample_interval,
  81};
  82module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
  83
  84/* The pool of pages used for guard pages and objects. */
  85char *__kfence_pool __ro_after_init;
  86EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
  87
  88/*
  89 * Per-object metadata, with one-to-one mapping of object metadata to
  90 * backing pages (in __kfence_pool).
  91 */
  92static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
  93struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
  94
  95/* Freelist with available objects. */
  96static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
  97static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
  98
  99#ifdef CONFIG_KFENCE_STATIC_KEYS
 100/* The static key to set up a KFENCE allocation. */
 101DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
 102#endif
 103
 104/* Gates the allocation, ensuring only one succeeds in a given period. */
 105atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
 106
 107/* Statistics counters for debugfs. */
 108enum kfence_counter_id {
 109        KFENCE_COUNTER_ALLOCATED,
 110        KFENCE_COUNTER_ALLOCS,
 111        KFENCE_COUNTER_FREES,
 112        KFENCE_COUNTER_ZOMBIES,
 113        KFENCE_COUNTER_BUGS,
 114        KFENCE_COUNTER_COUNT,
 115};
 116static atomic_long_t counters[KFENCE_COUNTER_COUNT];
 117static const char *const counter_names[] = {
 118        [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
 119        [KFENCE_COUNTER_ALLOCS]         = "total allocations",
 120        [KFENCE_COUNTER_FREES]          = "total frees",
 121        [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
 122        [KFENCE_COUNTER_BUGS]           = "total bugs",
 123};
 124static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
 125
 126/* === Internals ============================================================ */
 127
 128static bool kfence_protect(unsigned long addr)
 129{
 130        return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
 131}
 132
 133static bool kfence_unprotect(unsigned long addr)
 134{
 135        return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
 136}
 137
 138static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
 139{
 140        long index;
 141
 142        /* The checks do not affect performance; only called from slow-paths. */
 143
 144        if (!is_kfence_address((void *)addr))
 145                return NULL;
 146
 147        /*
 148         * May be an invalid index if called with an address at the edge of
 149         * __kfence_pool, in which case we would report an "invalid access"
 150         * error.
 151         */
 152        index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
 153        if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
 154                return NULL;
 155
 156        return &kfence_metadata[index];
 157}
 158
 159static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
 160{
 161        unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
 162        unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
 163
 164        /* The checks do not affect performance; only called from slow-paths. */
 165
 166        /* Only call with a pointer into kfence_metadata. */
 167        if (KFENCE_WARN_ON(meta < kfence_metadata ||
 168                           meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
 169                return 0;
 170
 171        /*
 172         * This metadata object only ever maps to 1 page; verify that the stored
 173         * address is in the expected range.
 174         */
 175        if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
 176                return 0;
 177
 178        return pageaddr;
 179}
 180
 181/*
 182 * Update the object's metadata state, including updating the alloc/free stacks
 183 * depending on the state transition.
 184 */
 185static noinline void metadata_update_state(struct kfence_metadata *meta,
 186                                           enum kfence_object_state next)
 187{
 188        struct kfence_track *track =
 189                next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
 190
 191        lockdep_assert_held(&meta->lock);
 192
 193        /*
 194         * Skip over 1 (this) functions; noinline ensures we do not accidentally
 195         * skip over the caller by never inlining.
 196         */
 197        track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
 198        track->pid = task_pid_nr(current);
 199
 200        /*
 201         * Pairs with READ_ONCE() in
 202         *      kfence_shutdown_cache(),
 203         *      kfence_handle_page_fault().
 204         */
 205        WRITE_ONCE(meta->state, next);
 206}
 207
 208/* Write canary byte to @addr. */
 209static inline bool set_canary_byte(u8 *addr)
 210{
 211        *addr = KFENCE_CANARY_PATTERN(addr);
 212        return true;
 213}
 214
 215/* Check canary byte at @addr. */
 216static inline bool check_canary_byte(u8 *addr)
 217{
 218        if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
 219                return true;
 220
 221        atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 222        kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
 223                            KFENCE_ERROR_CORRUPTION);
 224        return false;
 225}
 226
 227/* __always_inline this to ensure we won't do an indirect call to fn. */
 228static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
 229{
 230        const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
 231        unsigned long addr;
 232
 233        lockdep_assert_held(&meta->lock);
 234
 235        /*
 236         * We'll iterate over each canary byte per-side until fn() returns
 237         * false. However, we'll still iterate over the canary bytes to the
 238         * right of the object even if there was an error in the canary bytes to
 239         * the left of the object. Specifically, if check_canary_byte()
 240         * generates an error, showing both sides might give more clues as to
 241         * what the error is about when displaying which bytes were corrupted.
 242         */
 243
 244        /* Apply to left of object. */
 245        for (addr = pageaddr; addr < meta->addr; addr++) {
 246                if (!fn((u8 *)addr))
 247                        break;
 248        }
 249
 250        /* Apply to right of object. */
 251        for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
 252                if (!fn((u8 *)addr))
 253                        break;
 254        }
 255}
 256
 257static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
 258{
 259        struct kfence_metadata *meta = NULL;
 260        unsigned long flags;
 261        struct page *page;
 262        void *addr;
 263
 264        /* Try to obtain a free object. */
 265        raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 266        if (!list_empty(&kfence_freelist)) {
 267                meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
 268                list_del_init(&meta->list);
 269        }
 270        raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 271        if (!meta)
 272                return NULL;
 273
 274        if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
 275                /*
 276                 * This is extremely unlikely -- we are reporting on a
 277                 * use-after-free, which locked meta->lock, and the reporting
 278                 * code via printk calls kmalloc() which ends up in
 279                 * kfence_alloc() and tries to grab the same object that we're
 280                 * reporting on. While it has never been observed, lockdep does
 281                 * report that there is a possibility of deadlock. Fix it by
 282                 * using trylock and bailing out gracefully.
 283                 */
 284                raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 285                /* Put the object back on the freelist. */
 286                list_add_tail(&meta->list, &kfence_freelist);
 287                raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 288
 289                return NULL;
 290        }
 291
 292        meta->addr = metadata_to_pageaddr(meta);
 293        /* Unprotect if we're reusing this page. */
 294        if (meta->state == KFENCE_OBJECT_FREED)
 295                kfence_unprotect(meta->addr);
 296
 297        /*
 298         * Note: for allocations made before RNG initialization, will always
 299         * return zero. We still benefit from enabling KFENCE as early as
 300         * possible, even when the RNG is not yet available, as this will allow
 301         * KFENCE to detect bugs due to earlier allocations. The only downside
 302         * is that the out-of-bounds accesses detected are deterministic for
 303         * such allocations.
 304         */
 305        if (prandom_u32_max(2)) {
 306                /* Allocate on the "right" side, re-calculate address. */
 307                meta->addr += PAGE_SIZE - size;
 308                meta->addr = ALIGN_DOWN(meta->addr, cache->align);
 309        }
 310
 311        addr = (void *)meta->addr;
 312
 313        /* Update remaining metadata. */
 314        metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
 315        /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
 316        WRITE_ONCE(meta->cache, cache);
 317        meta->size = size;
 318        for_each_canary(meta, set_canary_byte);
 319
 320        /* Set required struct page fields. */
 321        page = virt_to_page(meta->addr);
 322        page->slab_cache = cache;
 323        if (IS_ENABLED(CONFIG_SLUB))
 324                page->objects = 1;
 325        if (IS_ENABLED(CONFIG_SLAB))
 326                page->s_mem = addr;
 327
 328        raw_spin_unlock_irqrestore(&meta->lock, flags);
 329
 330        /* Memory initialization. */
 331
 332        /*
 333         * We check slab_want_init_on_alloc() ourselves, rather than letting
 334         * SL*B do the initialization, as otherwise we might overwrite KFENCE's
 335         * redzone.
 336         */
 337        if (unlikely(slab_want_init_on_alloc(gfp, cache)))
 338                memzero_explicit(addr, size);
 339        if (cache->ctor)
 340                cache->ctor(addr);
 341
 342        if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
 343                kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
 344
 345        atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
 346        atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
 347
 348        return addr;
 349}
 350
 351static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
 352{
 353        struct kcsan_scoped_access assert_page_exclusive;
 354        unsigned long flags;
 355
 356        raw_spin_lock_irqsave(&meta->lock, flags);
 357
 358        if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
 359                /* Invalid or double-free, bail out. */
 360                atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 361                kfence_report_error((unsigned long)addr, false, NULL, meta,
 362                                    KFENCE_ERROR_INVALID_FREE);
 363                raw_spin_unlock_irqrestore(&meta->lock, flags);
 364                return;
 365        }
 366
 367        /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
 368        kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
 369                                  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
 370                                  &assert_page_exclusive);
 371
 372        if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
 373                kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
 374
 375        /* Restore page protection if there was an OOB access. */
 376        if (meta->unprotected_page) {
 377                memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
 378                kfence_protect(meta->unprotected_page);
 379                meta->unprotected_page = 0;
 380        }
 381
 382        /* Check canary bytes for memory corruption. */
 383        for_each_canary(meta, check_canary_byte);
 384
 385        /*
 386         * Clear memory if init-on-free is set. While we protect the page, the
 387         * data is still there, and after a use-after-free is detected, we
 388         * unprotect the page, so the data is still accessible.
 389         */
 390        if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
 391                memzero_explicit(addr, meta->size);
 392
 393        /* Mark the object as freed. */
 394        metadata_update_state(meta, KFENCE_OBJECT_FREED);
 395
 396        raw_spin_unlock_irqrestore(&meta->lock, flags);
 397
 398        /* Protect to detect use-after-frees. */
 399        kfence_protect((unsigned long)addr);
 400
 401        kcsan_end_scoped_access(&assert_page_exclusive);
 402        if (!zombie) {
 403                /* Add it to the tail of the freelist for reuse. */
 404                raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 405                KFENCE_WARN_ON(!list_empty(&meta->list));
 406                list_add_tail(&meta->list, &kfence_freelist);
 407                raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 408
 409                atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
 410                atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
 411        } else {
 412                /* See kfence_shutdown_cache(). */
 413                atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
 414        }
 415}
 416
 417static void rcu_guarded_free(struct rcu_head *h)
 418{
 419        struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
 420
 421        kfence_guarded_free((void *)meta->addr, meta, false);
 422}
 423
 424static bool __init kfence_init_pool(void)
 425{
 426        unsigned long addr = (unsigned long)__kfence_pool;
 427        struct page *pages;
 428        int i;
 429
 430        if (!__kfence_pool)
 431                return false;
 432
 433        if (!arch_kfence_init_pool())
 434                goto err;
 435
 436        pages = virt_to_page(addr);
 437
 438        /*
 439         * Set up object pages: they must have PG_slab set, to avoid freeing
 440         * these as real pages.
 441         *
 442         * We also want to avoid inserting kfence_free() in the kfree()
 443         * fast-path in SLUB, and therefore need to ensure kfree() correctly
 444         * enters __slab_free() slow-path.
 445         */
 446        for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
 447                if (!i || (i % 2))
 448                        continue;
 449
 450                /* Verify we do not have a compound head page. */
 451                if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
 452                        goto err;
 453
 454                __SetPageSlab(&pages[i]);
 455        }
 456
 457        /*
 458         * Protect the first 2 pages. The first page is mostly unnecessary, and
 459         * merely serves as an extended guard page. However, adding one
 460         * additional page in the beginning gives us an even number of pages,
 461         * which simplifies the mapping of address to metadata index.
 462         */
 463        for (i = 0; i < 2; i++) {
 464                if (unlikely(!kfence_protect(addr)))
 465                        goto err;
 466
 467                addr += PAGE_SIZE;
 468        }
 469
 470        for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 471                struct kfence_metadata *meta = &kfence_metadata[i];
 472
 473                /* Initialize metadata. */
 474                INIT_LIST_HEAD(&meta->list);
 475                raw_spin_lock_init(&meta->lock);
 476                meta->state = KFENCE_OBJECT_UNUSED;
 477                meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
 478                list_add_tail(&meta->list, &kfence_freelist);
 479
 480                /* Protect the right redzone. */
 481                if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
 482                        goto err;
 483
 484                addr += 2 * PAGE_SIZE;
 485        }
 486
 487        /*
 488         * The pool is live and will never be deallocated from this point on.
 489         * Remove the pool object from the kmemleak object tree, as it would
 490         * otherwise overlap with allocations returned by kfence_alloc(), which
 491         * are registered with kmemleak through the slab post-alloc hook.
 492         */
 493        kmemleak_free(__kfence_pool);
 494
 495        return true;
 496
 497err:
 498        /*
 499         * Only release unprotected pages, and do not try to go back and change
 500         * page attributes due to risk of failing to do so as well. If changing
 501         * page attributes for some pages fails, it is very likely that it also
 502         * fails for the first page, and therefore expect addr==__kfence_pool in
 503         * most failure cases.
 504         */
 505        memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
 506        __kfence_pool = NULL;
 507        return false;
 508}
 509
 510/* === DebugFS Interface ==================================================== */
 511
 512static int stats_show(struct seq_file *seq, void *v)
 513{
 514        int i;
 515
 516        seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
 517        for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
 518                seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
 519
 520        return 0;
 521}
 522DEFINE_SHOW_ATTRIBUTE(stats);
 523
 524/*
 525 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
 526 * start_object() and next_object() return the object index + 1, because NULL is used
 527 * to stop iteration.
 528 */
 529static void *start_object(struct seq_file *seq, loff_t *pos)
 530{
 531        if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 532                return (void *)((long)*pos + 1);
 533        return NULL;
 534}
 535
 536static void stop_object(struct seq_file *seq, void *v)
 537{
 538}
 539
 540static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
 541{
 542        ++*pos;
 543        if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 544                return (void *)((long)*pos + 1);
 545        return NULL;
 546}
 547
 548static int show_object(struct seq_file *seq, void *v)
 549{
 550        struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
 551        unsigned long flags;
 552
 553        raw_spin_lock_irqsave(&meta->lock, flags);
 554        kfence_print_object(seq, meta);
 555        raw_spin_unlock_irqrestore(&meta->lock, flags);
 556        seq_puts(seq, "---------------------------------\n");
 557
 558        return 0;
 559}
 560
 561static const struct seq_operations object_seqops = {
 562        .start = start_object,
 563        .next = next_object,
 564        .stop = stop_object,
 565        .show = show_object,
 566};
 567
 568static int open_objects(struct inode *inode, struct file *file)
 569{
 570        return seq_open(file, &object_seqops);
 571}
 572
 573static const struct file_operations objects_fops = {
 574        .open = open_objects,
 575        .read = seq_read,
 576        .llseek = seq_lseek,
 577};
 578
 579static int __init kfence_debugfs_init(void)
 580{
 581        struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
 582
 583        debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
 584        debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
 585        return 0;
 586}
 587
 588late_initcall(kfence_debugfs_init);
 589
 590/* === Allocation Gate Timer ================================================ */
 591
 592#ifdef CONFIG_KFENCE_STATIC_KEYS
 593/* Wait queue to wake up allocation-gate timer task. */
 594static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
 595
 596static void wake_up_kfence_timer(struct irq_work *work)
 597{
 598        wake_up(&allocation_wait);
 599}
 600static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
 601#endif
 602
 603/*
 604 * Set up delayed work, which will enable and disable the static key. We need to
 605 * use a work queue (rather than a simple timer), since enabling and disabling a
 606 * static key cannot be done from an interrupt.
 607 *
 608 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
 609 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
 610 * more aggressive sampling intervals), we could get away with a variant that
 611 * avoids IPIs, at the cost of not immediately capturing allocations if the
 612 * instructions remain cached.
 613 */
 614static struct delayed_work kfence_timer;
 615static void toggle_allocation_gate(struct work_struct *work)
 616{
 617        if (!READ_ONCE(kfence_enabled))
 618                return;
 619
 620        atomic_set(&kfence_allocation_gate, 0);
 621#ifdef CONFIG_KFENCE_STATIC_KEYS
 622        /* Enable static key, and await allocation to happen. */
 623        static_branch_enable(&kfence_allocation_key);
 624
 625        if (sysctl_hung_task_timeout_secs) {
 626                /*
 627                 * During low activity with no allocations we might wait a
 628                 * while; let's avoid the hung task warning.
 629                 */
 630                wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
 631                                        sysctl_hung_task_timeout_secs * HZ / 2);
 632        } else {
 633                wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
 634        }
 635
 636        /* Disable static key and reset timer. */
 637        static_branch_disable(&kfence_allocation_key);
 638#endif
 639        queue_delayed_work(system_unbound_wq, &kfence_timer,
 640                           msecs_to_jiffies(kfence_sample_interval));
 641}
 642static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
 643
 644/* === Public interface ===================================================== */
 645
 646void __init kfence_alloc_pool(void)
 647{
 648        if (!kfence_sample_interval)
 649                return;
 650
 651        __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
 652
 653        if (!__kfence_pool)
 654                pr_err("failed to allocate pool\n");
 655}
 656
 657void __init kfence_init(void)
 658{
 659        /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
 660        if (!kfence_sample_interval)
 661                return;
 662
 663        if (!kfence_init_pool()) {
 664                pr_err("%s failed\n", __func__);
 665                return;
 666        }
 667
 668        WRITE_ONCE(kfence_enabled, true);
 669        queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
 670        pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
 671                CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
 672                (void *)(__kfence_pool + KFENCE_POOL_SIZE));
 673}
 674
 675void kfence_shutdown_cache(struct kmem_cache *s)
 676{
 677        unsigned long flags;
 678        struct kfence_metadata *meta;
 679        int i;
 680
 681        for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 682                bool in_use;
 683
 684                meta = &kfence_metadata[i];
 685
 686                /*
 687                 * If we observe some inconsistent cache and state pair where we
 688                 * should have returned false here, cache destruction is racing
 689                 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
 690                 * the lock will not help, as different critical section
 691                 * serialization will have the same outcome.
 692                 */
 693                if (READ_ONCE(meta->cache) != s ||
 694                    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
 695                        continue;
 696
 697                raw_spin_lock_irqsave(&meta->lock, flags);
 698                in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
 699                raw_spin_unlock_irqrestore(&meta->lock, flags);
 700
 701                if (in_use) {
 702                        /*
 703                         * This cache still has allocations, and we should not
 704                         * release them back into the freelist so they can still
 705                         * safely be used and retain the kernel's default
 706                         * behaviour of keeping the allocations alive (leak the
 707                         * cache); however, they effectively become "zombie
 708                         * allocations" as the KFENCE objects are the only ones
 709                         * still in use and the owning cache is being destroyed.
 710                         *
 711                         * We mark them freed, so that any subsequent use shows
 712                         * more useful error messages that will include stack
 713                         * traces of the user of the object, the original
 714                         * allocation, and caller to shutdown_cache().
 715                         */
 716                        kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
 717                }
 718        }
 719
 720        for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 721                meta = &kfence_metadata[i];
 722
 723                /* See above. */
 724                if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
 725                        continue;
 726
 727                raw_spin_lock_irqsave(&meta->lock, flags);
 728                if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
 729                        meta->cache = NULL;
 730                raw_spin_unlock_irqrestore(&meta->lock, flags);
 731        }
 732}
 733
 734void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
 735{
 736        /*
 737         * Perform size check before switching kfence_allocation_gate, so that
 738         * we don't disable KFENCE without making an allocation.
 739         */
 740        if (size > PAGE_SIZE)
 741                return NULL;
 742
 743        /*
 744         * Skip allocations from non-default zones, including DMA. We cannot
 745         * guarantee that pages in the KFENCE pool will have the requested
 746         * properties (e.g. reside in DMAable memory).
 747         */
 748        if ((flags & GFP_ZONEMASK) ||
 749            (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32)))
 750                return NULL;
 751
 752        /*
 753         * allocation_gate only needs to become non-zero, so it doesn't make
 754         * sense to continue writing to it and pay the associated contention
 755         * cost, in case we have a large number of concurrent allocations.
 756         */
 757        if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
 758                return NULL;
 759#ifdef CONFIG_KFENCE_STATIC_KEYS
 760        /*
 761         * waitqueue_active() is fully ordered after the update of
 762         * kfence_allocation_gate per atomic_inc_return().
 763         */
 764        if (waitqueue_active(&allocation_wait)) {
 765                /*
 766                 * Calling wake_up() here may deadlock when allocations happen
 767                 * from within timer code. Use an irq_work to defer it.
 768                 */
 769                irq_work_queue(&wake_up_kfence_timer_work);
 770        }
 771#endif
 772
 773        if (!READ_ONCE(kfence_enabled))
 774                return NULL;
 775
 776        return kfence_guarded_alloc(s, size, flags);
 777}
 778
 779size_t kfence_ksize(const void *addr)
 780{
 781        const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
 782
 783        /*
 784         * Read locklessly -- if there is a race with __kfence_alloc(), this is
 785         * either a use-after-free or invalid access.
 786         */
 787        return meta ? meta->size : 0;
 788}
 789
 790void *kfence_object_start(const void *addr)
 791{
 792        const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
 793
 794        /*
 795         * Read locklessly -- if there is a race with __kfence_alloc(), this is
 796         * either a use-after-free or invalid access.
 797         */
 798        return meta ? (void *)meta->addr : NULL;
 799}
 800
 801void __kfence_free(void *addr)
 802{
 803        struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
 804
 805        /*
 806         * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
 807         * the object, as the object page may be recycled for other-typed
 808         * objects once it has been freed. meta->cache may be NULL if the cache
 809         * was destroyed.
 810         */
 811        if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
 812                call_rcu(&meta->rcu_head, rcu_guarded_free);
 813        else
 814                kfence_guarded_free(addr, meta, false);
 815}
 816
 817bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
 818{
 819        const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
 820        struct kfence_metadata *to_report = NULL;
 821        enum kfence_error_type error_type;
 822        unsigned long flags;
 823
 824        if (!is_kfence_address((void *)addr))
 825                return false;
 826
 827        if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
 828                return kfence_unprotect(addr); /* ... unprotect and proceed. */
 829
 830        atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 831
 832        if (page_index % 2) {
 833                /* This is a redzone, report a buffer overflow. */
 834                struct kfence_metadata *meta;
 835                int distance = 0;
 836
 837                meta = addr_to_metadata(addr - PAGE_SIZE);
 838                if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
 839                        to_report = meta;
 840                        /* Data race ok; distance calculation approximate. */
 841                        distance = addr - data_race(meta->addr + meta->size);
 842                }
 843
 844                meta = addr_to_metadata(addr + PAGE_SIZE);
 845                if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
 846                        /* Data race ok; distance calculation approximate. */
 847                        if (!to_report || distance > data_race(meta->addr) - addr)
 848                                to_report = meta;
 849                }
 850
 851                if (!to_report)
 852                        goto out;
 853
 854                raw_spin_lock_irqsave(&to_report->lock, flags);
 855                to_report->unprotected_page = addr;
 856                error_type = KFENCE_ERROR_OOB;
 857
 858                /*
 859                 * If the object was freed before we took the look we can still
 860                 * report this as an OOB -- the report will simply show the
 861                 * stacktrace of the free as well.
 862                 */
 863        } else {
 864                to_report = addr_to_metadata(addr);
 865                if (!to_report)
 866                        goto out;
 867
 868                raw_spin_lock_irqsave(&to_report->lock, flags);
 869                error_type = KFENCE_ERROR_UAF;
 870                /*
 871                 * We may race with __kfence_alloc(), and it is possible that a
 872                 * freed object may be reallocated. We simply report this as a
 873                 * use-after-free, with the stack trace showing the place where
 874                 * the object was re-allocated.
 875                 */
 876        }
 877
 878out:
 879        if (to_report) {
 880                kfence_report_error(addr, is_write, regs, to_report, error_type);
 881                raw_spin_unlock_irqrestore(&to_report->lock, flags);
 882        } else {
 883                /* This may be a UAF or OOB access, but we can't be sure. */
 884                kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
 885        }
 886
 887        return kfence_unprotect(addr); /* Unprotect and let access proceed. */
 888}
 889