linux/mm/ksm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *      Izik Eidus
  11 *      Andrea Arcangeli
  12 *      Chris Wright
  13 *      Hugh Dickins
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/mman.h>
  20#include <linux/sched.h>
  21#include <linux/sched/mm.h>
  22#include <linux/sched/coredump.h>
  23#include <linux/rwsem.h>
  24#include <linux/pagemap.h>
  25#include <linux/rmap.h>
  26#include <linux/spinlock.h>
  27#include <linux/xxhash.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/wait.h>
  31#include <linux/slab.h>
  32#include <linux/rbtree.h>
  33#include <linux/memory.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/swap.h>
  36#include <linux/ksm.h>
  37#include <linux/hashtable.h>
  38#include <linux/freezer.h>
  39#include <linux/oom.h>
  40#include <linux/numa.h>
  41
  42#include <asm/tlbflush.h>
  43#include "internal.h"
  44
  45#ifdef CONFIG_NUMA
  46#define NUMA(x)         (x)
  47#define DO_NUMA(x)      do { (x); } while (0)
  48#else
  49#define NUMA(x)         (0)
  50#define DO_NUMA(x)      do { } while (0)
  51#endif
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * A few notes about the KSM scanning process,
  57 * to make it easier to understand the data structures below:
  58 *
  59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  60 * contents into a data structure that holds pointers to the pages' locations.
  61 *
  62 * Since the contents of the pages may change at any moment, KSM cannot just
  63 * insert the pages into a normal sorted tree and expect it to find anything.
  64 * Therefore KSM uses two data structures - the stable and the unstable tree.
  65 *
  66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  67 * by their contents.  Because each such page is write-protected, searching on
  68 * this tree is fully assured to be working (except when pages are unmapped),
  69 * and therefore this tree is called the stable tree.
  70 *
  71 * The stable tree node includes information required for reverse
  72 * mapping from a KSM page to virtual addresses that map this page.
  73 *
  74 * In order to avoid large latencies of the rmap walks on KSM pages,
  75 * KSM maintains two types of nodes in the stable tree:
  76 *
  77 * * the regular nodes that keep the reverse mapping structures in a
  78 *   linked list
  79 * * the "chains" that link nodes ("dups") that represent the same
  80 *   write protected memory content, but each "dup" corresponds to a
  81 *   different KSM page copy of that content
  82 *
  83 * Internally, the regular nodes, "dups" and "chains" are represented
  84 * using the same struct stable_node structure.
  85 *
  86 * In addition to the stable tree, KSM uses a second data structure called the
  87 * unstable tree: this tree holds pointers to pages which have been found to
  88 * be "unchanged for a period of time".  The unstable tree sorts these pages
  89 * by their contents, but since they are not write-protected, KSM cannot rely
  90 * upon the unstable tree to work correctly - the unstable tree is liable to
  91 * be corrupted as its contents are modified, and so it is called unstable.
  92 *
  93 * KSM solves this problem by several techniques:
  94 *
  95 * 1) The unstable tree is flushed every time KSM completes scanning all
  96 *    memory areas, and then the tree is rebuilt again from the beginning.
  97 * 2) KSM will only insert into the unstable tree, pages whose hash value
  98 *    has not changed since the previous scan of all memory areas.
  99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 100 *    colors of the nodes and not on their contents, assuring that even when
 101 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 102 *    remains the same (also, searching and inserting nodes in an rbtree uses
 103 *    the same algorithm, so we have no overhead when we flush and rebuild).
 104 * 4) KSM never flushes the stable tree, which means that even if it were to
 105 *    take 10 attempts to find a page in the unstable tree, once it is found,
 106 *    it is secured in the stable tree.  (When we scan a new page, we first
 107 *    compare it against the stable tree, and then against the unstable tree.)
 108 *
 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 110 * stable trees and multiple unstable trees: one of each for each NUMA node.
 111 */
 112
 113/**
 114 * struct mm_slot - ksm information per mm that is being scanned
 115 * @link: link to the mm_slots hash list
 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 118 * @mm: the mm that this information is valid for
 119 */
 120struct mm_slot {
 121        struct hlist_node link;
 122        struct list_head mm_list;
 123        struct rmap_item *rmap_list;
 124        struct mm_struct *mm;
 125};
 126
 127/**
 128 * struct ksm_scan - cursor for scanning
 129 * @mm_slot: the current mm_slot we are scanning
 130 * @address: the next address inside that to be scanned
 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 132 * @seqnr: count of completed full scans (needed when removing unstable node)
 133 *
 134 * There is only the one ksm_scan instance of this cursor structure.
 135 */
 136struct ksm_scan {
 137        struct mm_slot *mm_slot;
 138        unsigned long address;
 139        struct rmap_item **rmap_list;
 140        unsigned long seqnr;
 141};
 142
 143/**
 144 * struct stable_node - node of the stable rbtree
 145 * @node: rb node of this ksm page in the stable tree
 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
 149 * @hlist: hlist head of rmap_items using this ksm page
 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 151 * @chain_prune_time: time of the last full garbage collection
 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 154 */
 155struct stable_node {
 156        union {
 157                struct rb_node node;    /* when node of stable tree */
 158                struct {                /* when listed for migration */
 159                        struct list_head *head;
 160                        struct {
 161                                struct hlist_node hlist_dup;
 162                                struct list_head list;
 163                        };
 164                };
 165        };
 166        struct hlist_head hlist;
 167        union {
 168                unsigned long kpfn;
 169                unsigned long chain_prune_time;
 170        };
 171        /*
 172         * STABLE_NODE_CHAIN can be any negative number in
 173         * rmap_hlist_len negative range, but better not -1 to be able
 174         * to reliably detect underflows.
 175         */
 176#define STABLE_NODE_CHAIN -1024
 177        int rmap_hlist_len;
 178#ifdef CONFIG_NUMA
 179        int nid;
 180#endif
 181};
 182
 183/**
 184 * struct rmap_item - reverse mapping item for virtual addresses
 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 188 * @mm: the memory structure this rmap_item is pointing into
 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 190 * @oldchecksum: previous checksum of the page at that virtual address
 191 * @node: rb node of this rmap_item in the unstable tree
 192 * @head: pointer to stable_node heading this list in the stable tree
 193 * @hlist: link into hlist of rmap_items hanging off that stable_node
 194 */
 195struct rmap_item {
 196        struct rmap_item *rmap_list;
 197        union {
 198                struct anon_vma *anon_vma;      /* when stable */
 199#ifdef CONFIG_NUMA
 200                int nid;                /* when node of unstable tree */
 201#endif
 202        };
 203        struct mm_struct *mm;
 204        unsigned long address;          /* + low bits used for flags below */
 205        unsigned int oldchecksum;       /* when unstable */
 206        union {
 207                struct rb_node node;    /* when node of unstable tree */
 208                struct {                /* when listed from stable tree */
 209                        struct stable_node *head;
 210                        struct hlist_node hlist;
 211                };
 212        };
 213};
 214
 215#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 216#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 217#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 218
 219/* The stable and unstable tree heads */
 220static struct rb_root one_stable_tree[1] = { RB_ROOT };
 221static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 222static struct rb_root *root_stable_tree = one_stable_tree;
 223static struct rb_root *root_unstable_tree = one_unstable_tree;
 224
 225/* Recently migrated nodes of stable tree, pending proper placement */
 226static LIST_HEAD(migrate_nodes);
 227#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 228
 229#define MM_SLOTS_HASH_BITS 10
 230static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 231
 232static struct mm_slot ksm_mm_head = {
 233        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 234};
 235static struct ksm_scan ksm_scan = {
 236        .mm_slot = &ksm_mm_head,
 237};
 238
 239static struct kmem_cache *rmap_item_cache;
 240static struct kmem_cache *stable_node_cache;
 241static struct kmem_cache *mm_slot_cache;
 242
 243/* The number of nodes in the stable tree */
 244static unsigned long ksm_pages_shared;
 245
 246/* The number of page slots additionally sharing those nodes */
 247static unsigned long ksm_pages_sharing;
 248
 249/* The number of nodes in the unstable tree */
 250static unsigned long ksm_pages_unshared;
 251
 252/* The number of rmap_items in use: to calculate pages_volatile */
 253static unsigned long ksm_rmap_items;
 254
 255/* The number of stable_node chains */
 256static unsigned long ksm_stable_node_chains;
 257
 258/* The number of stable_node dups linked to the stable_node chains */
 259static unsigned long ksm_stable_node_dups;
 260
 261/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 262static int ksm_stable_node_chains_prune_millisecs = 2000;
 263
 264/* Maximum number of page slots sharing a stable node */
 265static int ksm_max_page_sharing = 256;
 266
 267/* Number of pages ksmd should scan in one batch */
 268static unsigned int ksm_thread_pages_to_scan = 100;
 269
 270/* Milliseconds ksmd should sleep between batches */
 271static unsigned int ksm_thread_sleep_millisecs = 20;
 272
 273/* Checksum of an empty (zeroed) page */
 274static unsigned int zero_checksum __read_mostly;
 275
 276/* Whether to merge empty (zeroed) pages with actual zero pages */
 277static bool ksm_use_zero_pages __read_mostly;
 278
 279#ifdef CONFIG_NUMA
 280/* Zeroed when merging across nodes is not allowed */
 281static unsigned int ksm_merge_across_nodes = 1;
 282static int ksm_nr_node_ids = 1;
 283#else
 284#define ksm_merge_across_nodes  1U
 285#define ksm_nr_node_ids         1
 286#endif
 287
 288#define KSM_RUN_STOP    0
 289#define KSM_RUN_MERGE   1
 290#define KSM_RUN_UNMERGE 2
 291#define KSM_RUN_OFFLINE 4
 292static unsigned long ksm_run = KSM_RUN_STOP;
 293static void wait_while_offlining(void);
 294
 295static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 296static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 297static DEFINE_MUTEX(ksm_thread_mutex);
 298static DEFINE_SPINLOCK(ksm_mmlist_lock);
 299
 300#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 301                sizeof(struct __struct), __alignof__(struct __struct),\
 302                (__flags), NULL)
 303
 304static int __init ksm_slab_init(void)
 305{
 306        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 307        if (!rmap_item_cache)
 308                goto out;
 309
 310        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 311        if (!stable_node_cache)
 312                goto out_free1;
 313
 314        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 315        if (!mm_slot_cache)
 316                goto out_free2;
 317
 318        return 0;
 319
 320out_free2:
 321        kmem_cache_destroy(stable_node_cache);
 322out_free1:
 323        kmem_cache_destroy(rmap_item_cache);
 324out:
 325        return -ENOMEM;
 326}
 327
 328static void __init ksm_slab_free(void)
 329{
 330        kmem_cache_destroy(mm_slot_cache);
 331        kmem_cache_destroy(stable_node_cache);
 332        kmem_cache_destroy(rmap_item_cache);
 333        mm_slot_cache = NULL;
 334}
 335
 336static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 337{
 338        return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 339}
 340
 341static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 342{
 343        return dup->head == STABLE_NODE_DUP_HEAD;
 344}
 345
 346static inline void stable_node_chain_add_dup(struct stable_node *dup,
 347                                             struct stable_node *chain)
 348{
 349        VM_BUG_ON(is_stable_node_dup(dup));
 350        dup->head = STABLE_NODE_DUP_HEAD;
 351        VM_BUG_ON(!is_stable_node_chain(chain));
 352        hlist_add_head(&dup->hlist_dup, &chain->hlist);
 353        ksm_stable_node_dups++;
 354}
 355
 356static inline void __stable_node_dup_del(struct stable_node *dup)
 357{
 358        VM_BUG_ON(!is_stable_node_dup(dup));
 359        hlist_del(&dup->hlist_dup);
 360        ksm_stable_node_dups--;
 361}
 362
 363static inline void stable_node_dup_del(struct stable_node *dup)
 364{
 365        VM_BUG_ON(is_stable_node_chain(dup));
 366        if (is_stable_node_dup(dup))
 367                __stable_node_dup_del(dup);
 368        else
 369                rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 370#ifdef CONFIG_DEBUG_VM
 371        dup->head = NULL;
 372#endif
 373}
 374
 375static inline struct rmap_item *alloc_rmap_item(void)
 376{
 377        struct rmap_item *rmap_item;
 378
 379        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 380                                                __GFP_NORETRY | __GFP_NOWARN);
 381        if (rmap_item)
 382                ksm_rmap_items++;
 383        return rmap_item;
 384}
 385
 386static inline void free_rmap_item(struct rmap_item *rmap_item)
 387{
 388        ksm_rmap_items--;
 389        rmap_item->mm = NULL;   /* debug safety */
 390        kmem_cache_free(rmap_item_cache, rmap_item);
 391}
 392
 393static inline struct stable_node *alloc_stable_node(void)
 394{
 395        /*
 396         * The allocation can take too long with GFP_KERNEL when memory is under
 397         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 398         * grants access to memory reserves, helping to avoid this problem.
 399         */
 400        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 401}
 402
 403static inline void free_stable_node(struct stable_node *stable_node)
 404{
 405        VM_BUG_ON(stable_node->rmap_hlist_len &&
 406                  !is_stable_node_chain(stable_node));
 407        kmem_cache_free(stable_node_cache, stable_node);
 408}
 409
 410static inline struct mm_slot *alloc_mm_slot(void)
 411{
 412        if (!mm_slot_cache)     /* initialization failed */
 413                return NULL;
 414        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 415}
 416
 417static inline void free_mm_slot(struct mm_slot *mm_slot)
 418{
 419        kmem_cache_free(mm_slot_cache, mm_slot);
 420}
 421
 422static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 423{
 424        struct mm_slot *slot;
 425
 426        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 427                if (slot->mm == mm)
 428                        return slot;
 429
 430        return NULL;
 431}
 432
 433static void insert_to_mm_slots_hash(struct mm_struct *mm,
 434                                    struct mm_slot *mm_slot)
 435{
 436        mm_slot->mm = mm;
 437        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 438}
 439
 440/*
 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 442 * page tables after it has passed through ksm_exit() - which, if necessary,
 443 * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
 444 * a special flag: they can just back out as soon as mm_users goes to zero.
 445 * ksm_test_exit() is used throughout to make this test for exit: in some
 446 * places for correctness, in some places just to avoid unnecessary work.
 447 */
 448static inline bool ksm_test_exit(struct mm_struct *mm)
 449{
 450        return atomic_read(&mm->mm_users) == 0;
 451}
 452
 453/*
 454 * We use break_ksm to break COW on a ksm page: it's a stripped down
 455 *
 456 *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
 457 *              put_page(page);
 458 *
 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 460 * in case the application has unmapped and remapped mm,addr meanwhile.
 461 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 462 * mmap of /dev/mem, where we would not want to touch it.
 463 *
 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 465 * of the process that owns 'vma'.  We also do not want to enforce
 466 * protection keys here anyway.
 467 */
 468static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 469{
 470        struct page *page;
 471        vm_fault_t ret = 0;
 472
 473        do {
 474                cond_resched();
 475                page = follow_page(vma, addr,
 476                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 477                if (IS_ERR_OR_NULL(page))
 478                        break;
 479                if (PageKsm(page))
 480                        ret = handle_mm_fault(vma, addr,
 481                                              FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
 482                                              NULL);
 483                else
 484                        ret = VM_FAULT_WRITE;
 485                put_page(page);
 486        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 487        /*
 488         * We must loop because handle_mm_fault() may back out if there's
 489         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 490         *
 491         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 492         * COW has been broken, even if the vma does not permit VM_WRITE;
 493         * but note that a concurrent fault might break PageKsm for us.
 494         *
 495         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 496         * backing file, which also invalidates anonymous pages: that's
 497         * okay, that truncation will have unmapped the PageKsm for us.
 498         *
 499         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 500         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 501         * current task has TIF_MEMDIE set, and will be OOM killed on return
 502         * to user; and ksmd, having no mm, would never be chosen for that.
 503         *
 504         * But if the mm is in a limited mem_cgroup, then the fault may fail
 505         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 506         * even ksmd can fail in this way - though it's usually breaking ksm
 507         * just to undo a merge it made a moment before, so unlikely to oom.
 508         *
 509         * That's a pity: we might therefore have more kernel pages allocated
 510         * than we're counting as nodes in the stable tree; but ksm_do_scan
 511         * will retry to break_cow on each pass, so should recover the page
 512         * in due course.  The important thing is to not let VM_MERGEABLE
 513         * be cleared while any such pages might remain in the area.
 514         */
 515        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 516}
 517
 518static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 519                unsigned long addr)
 520{
 521        struct vm_area_struct *vma;
 522        if (ksm_test_exit(mm))
 523                return NULL;
 524        vma = vma_lookup(mm, addr);
 525        if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 526                return NULL;
 527        return vma;
 528}
 529
 530static void break_cow(struct rmap_item *rmap_item)
 531{
 532        struct mm_struct *mm = rmap_item->mm;
 533        unsigned long addr = rmap_item->address;
 534        struct vm_area_struct *vma;
 535
 536        /*
 537         * It is not an accident that whenever we want to break COW
 538         * to undo, we also need to drop a reference to the anon_vma.
 539         */
 540        put_anon_vma(rmap_item->anon_vma);
 541
 542        mmap_read_lock(mm);
 543        vma = find_mergeable_vma(mm, addr);
 544        if (vma)
 545                break_ksm(vma, addr);
 546        mmap_read_unlock(mm);
 547}
 548
 549static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 550{
 551        struct mm_struct *mm = rmap_item->mm;
 552        unsigned long addr = rmap_item->address;
 553        struct vm_area_struct *vma;
 554        struct page *page;
 555
 556        mmap_read_lock(mm);
 557        vma = find_mergeable_vma(mm, addr);
 558        if (!vma)
 559                goto out;
 560
 561        page = follow_page(vma, addr, FOLL_GET);
 562        if (IS_ERR_OR_NULL(page))
 563                goto out;
 564        if (PageAnon(page)) {
 565                flush_anon_page(vma, page, addr);
 566                flush_dcache_page(page);
 567        } else {
 568                put_page(page);
 569out:
 570                page = NULL;
 571        }
 572        mmap_read_unlock(mm);
 573        return page;
 574}
 575
 576/*
 577 * This helper is used for getting right index into array of tree roots.
 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 580 * every node has its own stable and unstable tree.
 581 */
 582static inline int get_kpfn_nid(unsigned long kpfn)
 583{
 584        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 585}
 586
 587static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 588                                                   struct rb_root *root)
 589{
 590        struct stable_node *chain = alloc_stable_node();
 591        VM_BUG_ON(is_stable_node_chain(dup));
 592        if (likely(chain)) {
 593                INIT_HLIST_HEAD(&chain->hlist);
 594                chain->chain_prune_time = jiffies;
 595                chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 596#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 597                chain->nid = NUMA_NO_NODE; /* debug */
 598#endif
 599                ksm_stable_node_chains++;
 600
 601                /*
 602                 * Put the stable node chain in the first dimension of
 603                 * the stable tree and at the same time remove the old
 604                 * stable node.
 605                 */
 606                rb_replace_node(&dup->node, &chain->node, root);
 607
 608                /*
 609                 * Move the old stable node to the second dimension
 610                 * queued in the hlist_dup. The invariant is that all
 611                 * dup stable_nodes in the chain->hlist point to pages
 612                 * that are write protected and have the exact same
 613                 * content.
 614                 */
 615                stable_node_chain_add_dup(dup, chain);
 616        }
 617        return chain;
 618}
 619
 620static inline void free_stable_node_chain(struct stable_node *chain,
 621                                          struct rb_root *root)
 622{
 623        rb_erase(&chain->node, root);
 624        free_stable_node(chain);
 625        ksm_stable_node_chains--;
 626}
 627
 628static void remove_node_from_stable_tree(struct stable_node *stable_node)
 629{
 630        struct rmap_item *rmap_item;
 631
 632        /* check it's not STABLE_NODE_CHAIN or negative */
 633        BUG_ON(stable_node->rmap_hlist_len < 0);
 634
 635        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 636                if (rmap_item->hlist.next)
 637                        ksm_pages_sharing--;
 638                else
 639                        ksm_pages_shared--;
 640                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 641                stable_node->rmap_hlist_len--;
 642                put_anon_vma(rmap_item->anon_vma);
 643                rmap_item->address &= PAGE_MASK;
 644                cond_resched();
 645        }
 646
 647        /*
 648         * We need the second aligned pointer of the migrate_nodes
 649         * list_head to stay clear from the rb_parent_color union
 650         * (aligned and different than any node) and also different
 651         * from &migrate_nodes. This will verify that future list.h changes
 652         * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 653         */
 654#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 655        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 656        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 657#endif
 658
 659        if (stable_node->head == &migrate_nodes)
 660                list_del(&stable_node->list);
 661        else
 662                stable_node_dup_del(stable_node);
 663        free_stable_node(stable_node);
 664}
 665
 666enum get_ksm_page_flags {
 667        GET_KSM_PAGE_NOLOCK,
 668        GET_KSM_PAGE_LOCK,
 669        GET_KSM_PAGE_TRYLOCK
 670};
 671
 672/*
 673 * get_ksm_page: checks if the page indicated by the stable node
 674 * is still its ksm page, despite having held no reference to it.
 675 * In which case we can trust the content of the page, and it
 676 * returns the gotten page; but if the page has now been zapped,
 677 * remove the stale node from the stable tree and return NULL.
 678 * But beware, the stable node's page might be being migrated.
 679 *
 680 * You would expect the stable_node to hold a reference to the ksm page.
 681 * But if it increments the page's count, swapping out has to wait for
 682 * ksmd to come around again before it can free the page, which may take
 683 * seconds or even minutes: much too unresponsive.  So instead we use a
 684 * "keyhole reference": access to the ksm page from the stable node peeps
 685 * out through its keyhole to see if that page still holds the right key,
 686 * pointing back to this stable node.  This relies on freeing a PageAnon
 687 * page to reset its page->mapping to NULL, and relies on no other use of
 688 * a page to put something that might look like our key in page->mapping.
 689 * is on its way to being freed; but it is an anomaly to bear in mind.
 690 */
 691static struct page *get_ksm_page(struct stable_node *stable_node,
 692                                 enum get_ksm_page_flags flags)
 693{
 694        struct page *page;
 695        void *expected_mapping;
 696        unsigned long kpfn;
 697
 698        expected_mapping = (void *)((unsigned long)stable_node |
 699                                        PAGE_MAPPING_KSM);
 700again:
 701        kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 702        page = pfn_to_page(kpfn);
 703        if (READ_ONCE(page->mapping) != expected_mapping)
 704                goto stale;
 705
 706        /*
 707         * We cannot do anything with the page while its refcount is 0.
 708         * Usually 0 means free, or tail of a higher-order page: in which
 709         * case this node is no longer referenced, and should be freed;
 710         * however, it might mean that the page is under page_ref_freeze().
 711         * The __remove_mapping() case is easy, again the node is now stale;
 712         * the same is in reuse_ksm_page() case; but if page is swapcache
 713         * in migrate_page_move_mapping(), it might still be our page,
 714         * in which case it's essential to keep the node.
 715         */
 716        while (!get_page_unless_zero(page)) {
 717                /*
 718                 * Another check for page->mapping != expected_mapping would
 719                 * work here too.  We have chosen the !PageSwapCache test to
 720                 * optimize the common case, when the page is or is about to
 721                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 722                 * in the ref_freeze section of __remove_mapping(); but Anon
 723                 * page->mapping reset to NULL later, in free_pages_prepare().
 724                 */
 725                if (!PageSwapCache(page))
 726                        goto stale;
 727                cpu_relax();
 728        }
 729
 730        if (READ_ONCE(page->mapping) != expected_mapping) {
 731                put_page(page);
 732                goto stale;
 733        }
 734
 735        if (flags == GET_KSM_PAGE_TRYLOCK) {
 736                if (!trylock_page(page)) {
 737                        put_page(page);
 738                        return ERR_PTR(-EBUSY);
 739                }
 740        } else if (flags == GET_KSM_PAGE_LOCK)
 741                lock_page(page);
 742
 743        if (flags != GET_KSM_PAGE_NOLOCK) {
 744                if (READ_ONCE(page->mapping) != expected_mapping) {
 745                        unlock_page(page);
 746                        put_page(page);
 747                        goto stale;
 748                }
 749        }
 750        return page;
 751
 752stale:
 753        /*
 754         * We come here from above when page->mapping or !PageSwapCache
 755         * suggests that the node is stale; but it might be under migration.
 756         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 757         * before checking whether node->kpfn has been changed.
 758         */
 759        smp_rmb();
 760        if (READ_ONCE(stable_node->kpfn) != kpfn)
 761                goto again;
 762        remove_node_from_stable_tree(stable_node);
 763        return NULL;
 764}
 765
 766/*
 767 * Removing rmap_item from stable or unstable tree.
 768 * This function will clean the information from the stable/unstable tree.
 769 */
 770static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 771{
 772        if (rmap_item->address & STABLE_FLAG) {
 773                struct stable_node *stable_node;
 774                struct page *page;
 775
 776                stable_node = rmap_item->head;
 777                page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 778                if (!page)
 779                        goto out;
 780
 781                hlist_del(&rmap_item->hlist);
 782                unlock_page(page);
 783                put_page(page);
 784
 785                if (!hlist_empty(&stable_node->hlist))
 786                        ksm_pages_sharing--;
 787                else
 788                        ksm_pages_shared--;
 789                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 790                stable_node->rmap_hlist_len--;
 791
 792                put_anon_vma(rmap_item->anon_vma);
 793                rmap_item->head = NULL;
 794                rmap_item->address &= PAGE_MASK;
 795
 796        } else if (rmap_item->address & UNSTABLE_FLAG) {
 797                unsigned char age;
 798                /*
 799                 * Usually ksmd can and must skip the rb_erase, because
 800                 * root_unstable_tree was already reset to RB_ROOT.
 801                 * But be careful when an mm is exiting: do the rb_erase
 802                 * if this rmap_item was inserted by this scan, rather
 803                 * than left over from before.
 804                 */
 805                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 806                BUG_ON(age > 1);
 807                if (!age)
 808                        rb_erase(&rmap_item->node,
 809                                 root_unstable_tree + NUMA(rmap_item->nid));
 810                ksm_pages_unshared--;
 811                rmap_item->address &= PAGE_MASK;
 812        }
 813out:
 814        cond_resched();         /* we're called from many long loops */
 815}
 816
 817static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
 818{
 819        while (*rmap_list) {
 820                struct rmap_item *rmap_item = *rmap_list;
 821                *rmap_list = rmap_item->rmap_list;
 822                remove_rmap_item_from_tree(rmap_item);
 823                free_rmap_item(rmap_item);
 824        }
 825}
 826
 827/*
 828 * Though it's very tempting to unmerge rmap_items from stable tree rather
 829 * than check every pte of a given vma, the locking doesn't quite work for
 830 * that - an rmap_item is assigned to the stable tree after inserting ksm
 831 * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
 832 * rmap_items from parent to child at fork time (so as not to waste time
 833 * if exit comes before the next scan reaches it).
 834 *
 835 * Similarly, although we'd like to remove rmap_items (so updating counts
 836 * and freeing memory) when unmerging an area, it's easier to leave that
 837 * to the next pass of ksmd - consider, for example, how ksmd might be
 838 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 839 */
 840static int unmerge_ksm_pages(struct vm_area_struct *vma,
 841                             unsigned long start, unsigned long end)
 842{
 843        unsigned long addr;
 844        int err = 0;
 845
 846        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 847                if (ksm_test_exit(vma->vm_mm))
 848                        break;
 849                if (signal_pending(current))
 850                        err = -ERESTARTSYS;
 851                else
 852                        err = break_ksm(vma, addr);
 853        }
 854        return err;
 855}
 856
 857static inline struct stable_node *page_stable_node(struct page *page)
 858{
 859        return PageKsm(page) ? page_rmapping(page) : NULL;
 860}
 861
 862static inline void set_page_stable_node(struct page *page,
 863                                        struct stable_node *stable_node)
 864{
 865        page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 866}
 867
 868#ifdef CONFIG_SYSFS
 869/*
 870 * Only called through the sysfs control interface:
 871 */
 872static int remove_stable_node(struct stable_node *stable_node)
 873{
 874        struct page *page;
 875        int err;
 876
 877        page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 878        if (!page) {
 879                /*
 880                 * get_ksm_page did remove_node_from_stable_tree itself.
 881                 */
 882                return 0;
 883        }
 884
 885        /*
 886         * Page could be still mapped if this races with __mmput() running in
 887         * between ksm_exit() and exit_mmap(). Just refuse to let
 888         * merge_across_nodes/max_page_sharing be switched.
 889         */
 890        err = -EBUSY;
 891        if (!page_mapped(page)) {
 892                /*
 893                 * The stable node did not yet appear stale to get_ksm_page(),
 894                 * since that allows for an unmapped ksm page to be recognized
 895                 * right up until it is freed; but the node is safe to remove.
 896                 * This page might be in a pagevec waiting to be freed,
 897                 * or it might be PageSwapCache (perhaps under writeback),
 898                 * or it might have been removed from swapcache a moment ago.
 899                 */
 900                set_page_stable_node(page, NULL);
 901                remove_node_from_stable_tree(stable_node);
 902                err = 0;
 903        }
 904
 905        unlock_page(page);
 906        put_page(page);
 907        return err;
 908}
 909
 910static int remove_stable_node_chain(struct stable_node *stable_node,
 911                                    struct rb_root *root)
 912{
 913        struct stable_node *dup;
 914        struct hlist_node *hlist_safe;
 915
 916        if (!is_stable_node_chain(stable_node)) {
 917                VM_BUG_ON(is_stable_node_dup(stable_node));
 918                if (remove_stable_node(stable_node))
 919                        return true;
 920                else
 921                        return false;
 922        }
 923
 924        hlist_for_each_entry_safe(dup, hlist_safe,
 925                                  &stable_node->hlist, hlist_dup) {
 926                VM_BUG_ON(!is_stable_node_dup(dup));
 927                if (remove_stable_node(dup))
 928                        return true;
 929        }
 930        BUG_ON(!hlist_empty(&stable_node->hlist));
 931        free_stable_node_chain(stable_node, root);
 932        return false;
 933}
 934
 935static int remove_all_stable_nodes(void)
 936{
 937        struct stable_node *stable_node, *next;
 938        int nid;
 939        int err = 0;
 940
 941        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 942                while (root_stable_tree[nid].rb_node) {
 943                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 944                                                struct stable_node, node);
 945                        if (remove_stable_node_chain(stable_node,
 946                                                     root_stable_tree + nid)) {
 947                                err = -EBUSY;
 948                                break;  /* proceed to next nid */
 949                        }
 950                        cond_resched();
 951                }
 952        }
 953        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 954                if (remove_stable_node(stable_node))
 955                        err = -EBUSY;
 956                cond_resched();
 957        }
 958        return err;
 959}
 960
 961static int unmerge_and_remove_all_rmap_items(void)
 962{
 963        struct mm_slot *mm_slot;
 964        struct mm_struct *mm;
 965        struct vm_area_struct *vma;
 966        int err = 0;
 967
 968        spin_lock(&ksm_mmlist_lock);
 969        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 970                                                struct mm_slot, mm_list);
 971        spin_unlock(&ksm_mmlist_lock);
 972
 973        for (mm_slot = ksm_scan.mm_slot;
 974                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 975                mm = mm_slot->mm;
 976                mmap_read_lock(mm);
 977                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 978                        if (ksm_test_exit(mm))
 979                                break;
 980                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 981                                continue;
 982                        err = unmerge_ksm_pages(vma,
 983                                                vma->vm_start, vma->vm_end);
 984                        if (err)
 985                                goto error;
 986                }
 987
 988                remove_trailing_rmap_items(&mm_slot->rmap_list);
 989                mmap_read_unlock(mm);
 990
 991                spin_lock(&ksm_mmlist_lock);
 992                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 993                                                struct mm_slot, mm_list);
 994                if (ksm_test_exit(mm)) {
 995                        hash_del(&mm_slot->link);
 996                        list_del(&mm_slot->mm_list);
 997                        spin_unlock(&ksm_mmlist_lock);
 998
 999                        free_mm_slot(mm_slot);
1000                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1001                        mmdrop(mm);
1002                } else
1003                        spin_unlock(&ksm_mmlist_lock);
1004        }
1005
1006        /* Clean up stable nodes, but don't worry if some are still busy */
1007        remove_all_stable_nodes();
1008        ksm_scan.seqnr = 0;
1009        return 0;
1010
1011error:
1012        mmap_read_unlock(mm);
1013        spin_lock(&ksm_mmlist_lock);
1014        ksm_scan.mm_slot = &ksm_mm_head;
1015        spin_unlock(&ksm_mmlist_lock);
1016        return err;
1017}
1018#endif /* CONFIG_SYSFS */
1019
1020static u32 calc_checksum(struct page *page)
1021{
1022        u32 checksum;
1023        void *addr = kmap_atomic(page);
1024        checksum = xxhash(addr, PAGE_SIZE, 0);
1025        kunmap_atomic(addr);
1026        return checksum;
1027}
1028
1029static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1030                              pte_t *orig_pte)
1031{
1032        struct mm_struct *mm = vma->vm_mm;
1033        struct page_vma_mapped_walk pvmw = {
1034                .page = page,
1035                .vma = vma,
1036        };
1037        int swapped;
1038        int err = -EFAULT;
1039        struct mmu_notifier_range range;
1040
1041        pvmw.address = page_address_in_vma(page, vma);
1042        if (pvmw.address == -EFAULT)
1043                goto out;
1044
1045        BUG_ON(PageTransCompound(page));
1046
1047        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1048                                pvmw.address,
1049                                pvmw.address + PAGE_SIZE);
1050        mmu_notifier_invalidate_range_start(&range);
1051
1052        if (!page_vma_mapped_walk(&pvmw))
1053                goto out_mn;
1054        if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1055                goto out_unlock;
1056
1057        if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1058            (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1059                                                mm_tlb_flush_pending(mm)) {
1060                pte_t entry;
1061
1062                swapped = PageSwapCache(page);
1063                flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1064                /*
1065                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1066                 * take any lock, therefore the check that we are going to make
1067                 * with the pagecount against the mapcount is racy and
1068                 * O_DIRECT can happen right after the check.
1069                 * So we clear the pte and flush the tlb before the check
1070                 * this assure us that no O_DIRECT can happen after the check
1071                 * or in the middle of the check.
1072                 *
1073                 * No need to notify as we are downgrading page table to read
1074                 * only not changing it to point to a new page.
1075                 *
1076                 * See Documentation/vm/mmu_notifier.rst
1077                 */
1078                entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1079                /*
1080                 * Check that no O_DIRECT or similar I/O is in progress on the
1081                 * page
1082                 */
1083                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1084                        set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1085                        goto out_unlock;
1086                }
1087                if (pte_dirty(entry))
1088                        set_page_dirty(page);
1089
1090                if (pte_protnone(entry))
1091                        entry = pte_mkclean(pte_clear_savedwrite(entry));
1092                else
1093                        entry = pte_mkclean(pte_wrprotect(entry));
1094                set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1095        }
1096        *orig_pte = *pvmw.pte;
1097        err = 0;
1098
1099out_unlock:
1100        page_vma_mapped_walk_done(&pvmw);
1101out_mn:
1102        mmu_notifier_invalidate_range_end(&range);
1103out:
1104        return err;
1105}
1106
1107/**
1108 * replace_page - replace page in vma by new ksm page
1109 * @vma:      vma that holds the pte pointing to page
1110 * @page:     the page we are replacing by kpage
1111 * @kpage:    the ksm page we replace page by
1112 * @orig_pte: the original value of the pte
1113 *
1114 * Returns 0 on success, -EFAULT on failure.
1115 */
1116static int replace_page(struct vm_area_struct *vma, struct page *page,
1117                        struct page *kpage, pte_t orig_pte)
1118{
1119        struct mm_struct *mm = vma->vm_mm;
1120        pmd_t *pmd;
1121        pte_t *ptep;
1122        pte_t newpte;
1123        spinlock_t *ptl;
1124        unsigned long addr;
1125        int err = -EFAULT;
1126        struct mmu_notifier_range range;
1127
1128        addr = page_address_in_vma(page, vma);
1129        if (addr == -EFAULT)
1130                goto out;
1131
1132        pmd = mm_find_pmd(mm, addr);
1133        if (!pmd)
1134                goto out;
1135
1136        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1137                                addr + PAGE_SIZE);
1138        mmu_notifier_invalidate_range_start(&range);
1139
1140        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1141        if (!pte_same(*ptep, orig_pte)) {
1142                pte_unmap_unlock(ptep, ptl);
1143                goto out_mn;
1144        }
1145
1146        /*
1147         * No need to check ksm_use_zero_pages here: we can only have a
1148         * zero_page here if ksm_use_zero_pages was enabled already.
1149         */
1150        if (!is_zero_pfn(page_to_pfn(kpage))) {
1151                get_page(kpage);
1152                page_add_anon_rmap(kpage, vma, addr, false);
1153                newpte = mk_pte(kpage, vma->vm_page_prot);
1154        } else {
1155                newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1156                                               vma->vm_page_prot));
1157                /*
1158                 * We're replacing an anonymous page with a zero page, which is
1159                 * not anonymous. We need to do proper accounting otherwise we
1160                 * will get wrong values in /proc, and a BUG message in dmesg
1161                 * when tearing down the mm.
1162                 */
1163                dec_mm_counter(mm, MM_ANONPAGES);
1164        }
1165
1166        flush_cache_page(vma, addr, pte_pfn(*ptep));
1167        /*
1168         * No need to notify as we are replacing a read only page with another
1169         * read only page with the same content.
1170         *
1171         * See Documentation/vm/mmu_notifier.rst
1172         */
1173        ptep_clear_flush(vma, addr, ptep);
1174        set_pte_at_notify(mm, addr, ptep, newpte);
1175
1176        page_remove_rmap(page, false);
1177        if (!page_mapped(page))
1178                try_to_free_swap(page);
1179        put_page(page);
1180
1181        pte_unmap_unlock(ptep, ptl);
1182        err = 0;
1183out_mn:
1184        mmu_notifier_invalidate_range_end(&range);
1185out:
1186        return err;
1187}
1188
1189/*
1190 * try_to_merge_one_page - take two pages and merge them into one
1191 * @vma: the vma that holds the pte pointing to page
1192 * @page: the PageAnon page that we want to replace with kpage
1193 * @kpage: the PageKsm page that we want to map instead of page,
1194 *         or NULL the first time when we want to use page as kpage.
1195 *
1196 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1197 */
1198static int try_to_merge_one_page(struct vm_area_struct *vma,
1199                                 struct page *page, struct page *kpage)
1200{
1201        pte_t orig_pte = __pte(0);
1202        int err = -EFAULT;
1203
1204        if (page == kpage)                      /* ksm page forked */
1205                return 0;
1206
1207        if (!PageAnon(page))
1208                goto out;
1209
1210        /*
1211         * We need the page lock to read a stable PageSwapCache in
1212         * write_protect_page().  We use trylock_page() instead of
1213         * lock_page() because we don't want to wait here - we
1214         * prefer to continue scanning and merging different pages,
1215         * then come back to this page when it is unlocked.
1216         */
1217        if (!trylock_page(page))
1218                goto out;
1219
1220        if (PageTransCompound(page)) {
1221                if (split_huge_page(page))
1222                        goto out_unlock;
1223        }
1224
1225        /*
1226         * If this anonymous page is mapped only here, its pte may need
1227         * to be write-protected.  If it's mapped elsewhere, all of its
1228         * ptes are necessarily already write-protected.  But in either
1229         * case, we need to lock and check page_count is not raised.
1230         */
1231        if (write_protect_page(vma, page, &orig_pte) == 0) {
1232                if (!kpage) {
1233                        /*
1234                         * While we hold page lock, upgrade page from
1235                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1236                         * stable_tree_insert() will update stable_node.
1237                         */
1238                        set_page_stable_node(page, NULL);
1239                        mark_page_accessed(page);
1240                        /*
1241                         * Page reclaim just frees a clean page with no dirty
1242                         * ptes: make sure that the ksm page would be swapped.
1243                         */
1244                        if (!PageDirty(page))
1245                                SetPageDirty(page);
1246                        err = 0;
1247                } else if (pages_identical(page, kpage))
1248                        err = replace_page(vma, page, kpage, orig_pte);
1249        }
1250
1251        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1252                munlock_vma_page(page);
1253                if (!PageMlocked(kpage)) {
1254                        unlock_page(page);
1255                        lock_page(kpage);
1256                        mlock_vma_page(kpage);
1257                        page = kpage;           /* for final unlock */
1258                }
1259        }
1260
1261out_unlock:
1262        unlock_page(page);
1263out:
1264        return err;
1265}
1266
1267/*
1268 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1269 * but no new kernel page is allocated: kpage must already be a ksm page.
1270 *
1271 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1272 */
1273static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1274                                      struct page *page, struct page *kpage)
1275{
1276        struct mm_struct *mm = rmap_item->mm;
1277        struct vm_area_struct *vma;
1278        int err = -EFAULT;
1279
1280        mmap_read_lock(mm);
1281        vma = find_mergeable_vma(mm, rmap_item->address);
1282        if (!vma)
1283                goto out;
1284
1285        err = try_to_merge_one_page(vma, page, kpage);
1286        if (err)
1287                goto out;
1288
1289        /* Unstable nid is in union with stable anon_vma: remove first */
1290        remove_rmap_item_from_tree(rmap_item);
1291
1292        /* Must get reference to anon_vma while still holding mmap_lock */
1293        rmap_item->anon_vma = vma->anon_vma;
1294        get_anon_vma(vma->anon_vma);
1295out:
1296        mmap_read_unlock(mm);
1297        return err;
1298}
1299
1300/*
1301 * try_to_merge_two_pages - take two identical pages and prepare them
1302 * to be merged into one page.
1303 *
1304 * This function returns the kpage if we successfully merged two identical
1305 * pages into one ksm page, NULL otherwise.
1306 *
1307 * Note that this function upgrades page to ksm page: if one of the pages
1308 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1309 */
1310static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1311                                           struct page *page,
1312                                           struct rmap_item *tree_rmap_item,
1313                                           struct page *tree_page)
1314{
1315        int err;
1316
1317        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1318        if (!err) {
1319                err = try_to_merge_with_ksm_page(tree_rmap_item,
1320                                                        tree_page, page);
1321                /*
1322                 * If that fails, we have a ksm page with only one pte
1323                 * pointing to it: so break it.
1324                 */
1325                if (err)
1326                        break_cow(rmap_item);
1327        }
1328        return err ? NULL : page;
1329}
1330
1331static __always_inline
1332bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1333{
1334        VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1335        /*
1336         * Check that at least one mapping still exists, otherwise
1337         * there's no much point to merge and share with this
1338         * stable_node, as the underlying tree_page of the other
1339         * sharer is going to be freed soon.
1340         */
1341        return stable_node->rmap_hlist_len &&
1342                stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1343}
1344
1345static __always_inline
1346bool is_page_sharing_candidate(struct stable_node *stable_node)
1347{
1348        return __is_page_sharing_candidate(stable_node, 0);
1349}
1350
1351static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1352                                    struct stable_node **_stable_node,
1353                                    struct rb_root *root,
1354                                    bool prune_stale_stable_nodes)
1355{
1356        struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1357        struct hlist_node *hlist_safe;
1358        struct page *_tree_page, *tree_page = NULL;
1359        int nr = 0;
1360        int found_rmap_hlist_len;
1361
1362        if (!prune_stale_stable_nodes ||
1363            time_before(jiffies, stable_node->chain_prune_time +
1364                        msecs_to_jiffies(
1365                                ksm_stable_node_chains_prune_millisecs)))
1366                prune_stale_stable_nodes = false;
1367        else
1368                stable_node->chain_prune_time = jiffies;
1369
1370        hlist_for_each_entry_safe(dup, hlist_safe,
1371                                  &stable_node->hlist, hlist_dup) {
1372                cond_resched();
1373                /*
1374                 * We must walk all stable_node_dup to prune the stale
1375                 * stable nodes during lookup.
1376                 *
1377                 * get_ksm_page can drop the nodes from the
1378                 * stable_node->hlist if they point to freed pages
1379                 * (that's why we do a _safe walk). The "dup"
1380                 * stable_node parameter itself will be freed from
1381                 * under us if it returns NULL.
1382                 */
1383                _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1384                if (!_tree_page)
1385                        continue;
1386                nr += 1;
1387                if (is_page_sharing_candidate(dup)) {
1388                        if (!found ||
1389                            dup->rmap_hlist_len > found_rmap_hlist_len) {
1390                                if (found)
1391                                        put_page(tree_page);
1392                                found = dup;
1393                                found_rmap_hlist_len = found->rmap_hlist_len;
1394                                tree_page = _tree_page;
1395
1396                                /* skip put_page for found dup */
1397                                if (!prune_stale_stable_nodes)
1398                                        break;
1399                                continue;
1400                        }
1401                }
1402                put_page(_tree_page);
1403        }
1404
1405        if (found) {
1406                /*
1407                 * nr is counting all dups in the chain only if
1408                 * prune_stale_stable_nodes is true, otherwise we may
1409                 * break the loop at nr == 1 even if there are
1410                 * multiple entries.
1411                 */
1412                if (prune_stale_stable_nodes && nr == 1) {
1413                        /*
1414                         * If there's not just one entry it would
1415                         * corrupt memory, better BUG_ON. In KSM
1416                         * context with no lock held it's not even
1417                         * fatal.
1418                         */
1419                        BUG_ON(stable_node->hlist.first->next);
1420
1421                        /*
1422                         * There's just one entry and it is below the
1423                         * deduplication limit so drop the chain.
1424                         */
1425                        rb_replace_node(&stable_node->node, &found->node,
1426                                        root);
1427                        free_stable_node(stable_node);
1428                        ksm_stable_node_chains--;
1429                        ksm_stable_node_dups--;
1430                        /*
1431                         * NOTE: the caller depends on the stable_node
1432                         * to be equal to stable_node_dup if the chain
1433                         * was collapsed.
1434                         */
1435                        *_stable_node = found;
1436                        /*
1437                         * Just for robustness, as stable_node is
1438                         * otherwise left as a stable pointer, the
1439                         * compiler shall optimize it away at build
1440                         * time.
1441                         */
1442                        stable_node = NULL;
1443                } else if (stable_node->hlist.first != &found->hlist_dup &&
1444                           __is_page_sharing_candidate(found, 1)) {
1445                        /*
1446                         * If the found stable_node dup can accept one
1447                         * more future merge (in addition to the one
1448                         * that is underway) and is not at the head of
1449                         * the chain, put it there so next search will
1450                         * be quicker in the !prune_stale_stable_nodes
1451                         * case.
1452                         *
1453                         * NOTE: it would be inaccurate to use nr > 1
1454                         * instead of checking the hlist.first pointer
1455                         * directly, because in the
1456                         * prune_stale_stable_nodes case "nr" isn't
1457                         * the position of the found dup in the chain,
1458                         * but the total number of dups in the chain.
1459                         */
1460                        hlist_del(&found->hlist_dup);
1461                        hlist_add_head(&found->hlist_dup,
1462                                       &stable_node->hlist);
1463                }
1464        }
1465
1466        *_stable_node_dup = found;
1467        return tree_page;
1468}
1469
1470static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1471                                               struct rb_root *root)
1472{
1473        if (!is_stable_node_chain(stable_node))
1474                return stable_node;
1475        if (hlist_empty(&stable_node->hlist)) {
1476                free_stable_node_chain(stable_node, root);
1477                return NULL;
1478        }
1479        return hlist_entry(stable_node->hlist.first,
1480                           typeof(*stable_node), hlist_dup);
1481}
1482
1483/*
1484 * Like for get_ksm_page, this function can free the *_stable_node and
1485 * *_stable_node_dup if the returned tree_page is NULL.
1486 *
1487 * It can also free and overwrite *_stable_node with the found
1488 * stable_node_dup if the chain is collapsed (in which case
1489 * *_stable_node will be equal to *_stable_node_dup like if the chain
1490 * never existed). It's up to the caller to verify tree_page is not
1491 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1492 *
1493 * *_stable_node_dup is really a second output parameter of this
1494 * function and will be overwritten in all cases, the caller doesn't
1495 * need to initialize it.
1496 */
1497static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1498                                        struct stable_node **_stable_node,
1499                                        struct rb_root *root,
1500                                        bool prune_stale_stable_nodes)
1501{
1502        struct stable_node *stable_node = *_stable_node;
1503        if (!is_stable_node_chain(stable_node)) {
1504                if (is_page_sharing_candidate(stable_node)) {
1505                        *_stable_node_dup = stable_node;
1506                        return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1507                }
1508                /*
1509                 * _stable_node_dup set to NULL means the stable_node
1510                 * reached the ksm_max_page_sharing limit.
1511                 */
1512                *_stable_node_dup = NULL;
1513                return NULL;
1514        }
1515        return stable_node_dup(_stable_node_dup, _stable_node, root,
1516                               prune_stale_stable_nodes);
1517}
1518
1519static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1520                                                struct stable_node **s_n,
1521                                                struct rb_root *root)
1522{
1523        return __stable_node_chain(s_n_d, s_n, root, true);
1524}
1525
1526static __always_inline struct page *chain(struct stable_node **s_n_d,
1527                                          struct stable_node *s_n,
1528                                          struct rb_root *root)
1529{
1530        struct stable_node *old_stable_node = s_n;
1531        struct page *tree_page;
1532
1533        tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1534        /* not pruning dups so s_n cannot have changed */
1535        VM_BUG_ON(s_n != old_stable_node);
1536        return tree_page;
1537}
1538
1539/*
1540 * stable_tree_search - search for page inside the stable tree
1541 *
1542 * This function checks if there is a page inside the stable tree
1543 * with identical content to the page that we are scanning right now.
1544 *
1545 * This function returns the stable tree node of identical content if found,
1546 * NULL otherwise.
1547 */
1548static struct page *stable_tree_search(struct page *page)
1549{
1550        int nid;
1551        struct rb_root *root;
1552        struct rb_node **new;
1553        struct rb_node *parent;
1554        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1555        struct stable_node *page_node;
1556
1557        page_node = page_stable_node(page);
1558        if (page_node && page_node->head != &migrate_nodes) {
1559                /* ksm page forked */
1560                get_page(page);
1561                return page;
1562        }
1563
1564        nid = get_kpfn_nid(page_to_pfn(page));
1565        root = root_stable_tree + nid;
1566again:
1567        new = &root->rb_node;
1568        parent = NULL;
1569
1570        while (*new) {
1571                struct page *tree_page;
1572                int ret;
1573
1574                cond_resched();
1575                stable_node = rb_entry(*new, struct stable_node, node);
1576                stable_node_any = NULL;
1577                tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1578                /*
1579                 * NOTE: stable_node may have been freed by
1580                 * chain_prune() if the returned stable_node_dup is
1581                 * not NULL. stable_node_dup may have been inserted in
1582                 * the rbtree instead as a regular stable_node (in
1583                 * order to collapse the stable_node chain if a single
1584                 * stable_node dup was found in it). In such case the
1585                 * stable_node is overwritten by the calleee to point
1586                 * to the stable_node_dup that was collapsed in the
1587                 * stable rbtree and stable_node will be equal to
1588                 * stable_node_dup like if the chain never existed.
1589                 */
1590                if (!stable_node_dup) {
1591                        /*
1592                         * Either all stable_node dups were full in
1593                         * this stable_node chain, or this chain was
1594                         * empty and should be rb_erased.
1595                         */
1596                        stable_node_any = stable_node_dup_any(stable_node,
1597                                                              root);
1598                        if (!stable_node_any) {
1599                                /* rb_erase just run */
1600                                goto again;
1601                        }
1602                        /*
1603                         * Take any of the stable_node dups page of
1604                         * this stable_node chain to let the tree walk
1605                         * continue. All KSM pages belonging to the
1606                         * stable_node dups in a stable_node chain
1607                         * have the same content and they're
1608                         * write protected at all times. Any will work
1609                         * fine to continue the walk.
1610                         */
1611                        tree_page = get_ksm_page(stable_node_any,
1612                                                 GET_KSM_PAGE_NOLOCK);
1613                }
1614                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1615                if (!tree_page) {
1616                        /*
1617                         * If we walked over a stale stable_node,
1618                         * get_ksm_page() will call rb_erase() and it
1619                         * may rebalance the tree from under us. So
1620                         * restart the search from scratch. Returning
1621                         * NULL would be safe too, but we'd generate
1622                         * false negative insertions just because some
1623                         * stable_node was stale.
1624                         */
1625                        goto again;
1626                }
1627
1628                ret = memcmp_pages(page, tree_page);
1629                put_page(tree_page);
1630
1631                parent = *new;
1632                if (ret < 0)
1633                        new = &parent->rb_left;
1634                else if (ret > 0)
1635                        new = &parent->rb_right;
1636                else {
1637                        if (page_node) {
1638                                VM_BUG_ON(page_node->head != &migrate_nodes);
1639                                /*
1640                                 * Test if the migrated page should be merged
1641                                 * into a stable node dup. If the mapcount is
1642                                 * 1 we can migrate it with another KSM page
1643                                 * without adding it to the chain.
1644                                 */
1645                                if (page_mapcount(page) > 1)
1646                                        goto chain_append;
1647                        }
1648
1649                        if (!stable_node_dup) {
1650                                /*
1651                                 * If the stable_node is a chain and
1652                                 * we got a payload match in memcmp
1653                                 * but we cannot merge the scanned
1654                                 * page in any of the existing
1655                                 * stable_node dups because they're
1656                                 * all full, we need to wait the
1657                                 * scanned page to find itself a match
1658                                 * in the unstable tree to create a
1659                                 * brand new KSM page to add later to
1660                                 * the dups of this stable_node.
1661                                 */
1662                                return NULL;
1663                        }
1664
1665                        /*
1666                         * Lock and unlock the stable_node's page (which
1667                         * might already have been migrated) so that page
1668                         * migration is sure to notice its raised count.
1669                         * It would be more elegant to return stable_node
1670                         * than kpage, but that involves more changes.
1671                         */
1672                        tree_page = get_ksm_page(stable_node_dup,
1673                                                 GET_KSM_PAGE_TRYLOCK);
1674
1675                        if (PTR_ERR(tree_page) == -EBUSY)
1676                                return ERR_PTR(-EBUSY);
1677
1678                        if (unlikely(!tree_page))
1679                                /*
1680                                 * The tree may have been rebalanced,
1681                                 * so re-evaluate parent and new.
1682                                 */
1683                                goto again;
1684                        unlock_page(tree_page);
1685
1686                        if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687                            NUMA(stable_node_dup->nid)) {
1688                                put_page(tree_page);
1689                                goto replace;
1690                        }
1691                        return tree_page;
1692                }
1693        }
1694
1695        if (!page_node)
1696                return NULL;
1697
1698        list_del(&page_node->list);
1699        DO_NUMA(page_node->nid = nid);
1700        rb_link_node(&page_node->node, parent, new);
1701        rb_insert_color(&page_node->node, root);
1702out:
1703        if (is_page_sharing_candidate(page_node)) {
1704                get_page(page);
1705                return page;
1706        } else
1707                return NULL;
1708
1709replace:
1710        /*
1711         * If stable_node was a chain and chain_prune collapsed it,
1712         * stable_node has been updated to be the new regular
1713         * stable_node. A collapse of the chain is indistinguishable
1714         * from the case there was no chain in the stable
1715         * rbtree. Otherwise stable_node is the chain and
1716         * stable_node_dup is the dup to replace.
1717         */
1718        if (stable_node_dup == stable_node) {
1719                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1721                /* there is no chain */
1722                if (page_node) {
1723                        VM_BUG_ON(page_node->head != &migrate_nodes);
1724                        list_del(&page_node->list);
1725                        DO_NUMA(page_node->nid = nid);
1726                        rb_replace_node(&stable_node_dup->node,
1727                                        &page_node->node,
1728                                        root);
1729                        if (is_page_sharing_candidate(page_node))
1730                                get_page(page);
1731                        else
1732                                page = NULL;
1733                } else {
1734                        rb_erase(&stable_node_dup->node, root);
1735                        page = NULL;
1736                }
1737        } else {
1738                VM_BUG_ON(!is_stable_node_chain(stable_node));
1739                __stable_node_dup_del(stable_node_dup);
1740                if (page_node) {
1741                        VM_BUG_ON(page_node->head != &migrate_nodes);
1742                        list_del(&page_node->list);
1743                        DO_NUMA(page_node->nid = nid);
1744                        stable_node_chain_add_dup(page_node, stable_node);
1745                        if (is_page_sharing_candidate(page_node))
1746                                get_page(page);
1747                        else
1748                                page = NULL;
1749                } else {
1750                        page = NULL;
1751                }
1752        }
1753        stable_node_dup->head = &migrate_nodes;
1754        list_add(&stable_node_dup->list, stable_node_dup->head);
1755        return page;
1756
1757chain_append:
1758        /* stable_node_dup could be null if it reached the limit */
1759        if (!stable_node_dup)
1760                stable_node_dup = stable_node_any;
1761        /*
1762         * If stable_node was a chain and chain_prune collapsed it,
1763         * stable_node has been updated to be the new regular
1764         * stable_node. A collapse of the chain is indistinguishable
1765         * from the case there was no chain in the stable
1766         * rbtree. Otherwise stable_node is the chain and
1767         * stable_node_dup is the dup to replace.
1768         */
1769        if (stable_node_dup == stable_node) {
1770                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1771                /* chain is missing so create it */
1772                stable_node = alloc_stable_node_chain(stable_node_dup,
1773                                                      root);
1774                if (!stable_node)
1775                        return NULL;
1776        }
1777        /*
1778         * Add this stable_node dup that was
1779         * migrated to the stable_node chain
1780         * of the current nid for this page
1781         * content.
1782         */
1783        VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1784        VM_BUG_ON(page_node->head != &migrate_nodes);
1785        list_del(&page_node->list);
1786        DO_NUMA(page_node->nid = nid);
1787        stable_node_chain_add_dup(page_node, stable_node);
1788        goto out;
1789}
1790
1791/*
1792 * stable_tree_insert - insert stable tree node pointing to new ksm page
1793 * into the stable tree.
1794 *
1795 * This function returns the stable tree node just allocated on success,
1796 * NULL otherwise.
1797 */
1798static struct stable_node *stable_tree_insert(struct page *kpage)
1799{
1800        int nid;
1801        unsigned long kpfn;
1802        struct rb_root *root;
1803        struct rb_node **new;
1804        struct rb_node *parent;
1805        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1806        bool need_chain = false;
1807
1808        kpfn = page_to_pfn(kpage);
1809        nid = get_kpfn_nid(kpfn);
1810        root = root_stable_tree + nid;
1811again:
1812        parent = NULL;
1813        new = &root->rb_node;
1814
1815        while (*new) {
1816                struct page *tree_page;
1817                int ret;
1818
1819                cond_resched();
1820                stable_node = rb_entry(*new, struct stable_node, node);
1821                stable_node_any = NULL;
1822                tree_page = chain(&stable_node_dup, stable_node, root);
1823                if (!stable_node_dup) {
1824                        /*
1825                         * Either all stable_node dups were full in
1826                         * this stable_node chain, or this chain was
1827                         * empty and should be rb_erased.
1828                         */
1829                        stable_node_any = stable_node_dup_any(stable_node,
1830                                                              root);
1831                        if (!stable_node_any) {
1832                                /* rb_erase just run */
1833                                goto again;
1834                        }
1835                        /*
1836                         * Take any of the stable_node dups page of
1837                         * this stable_node chain to let the tree walk
1838                         * continue. All KSM pages belonging to the
1839                         * stable_node dups in a stable_node chain
1840                         * have the same content and they're
1841                         * write protected at all times. Any will work
1842                         * fine to continue the walk.
1843                         */
1844                        tree_page = get_ksm_page(stable_node_any,
1845                                                 GET_KSM_PAGE_NOLOCK);
1846                }
1847                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1848                if (!tree_page) {
1849                        /*
1850                         * If we walked over a stale stable_node,
1851                         * get_ksm_page() will call rb_erase() and it
1852                         * may rebalance the tree from under us. So
1853                         * restart the search from scratch. Returning
1854                         * NULL would be safe too, but we'd generate
1855                         * false negative insertions just because some
1856                         * stable_node was stale.
1857                         */
1858                        goto again;
1859                }
1860
1861                ret = memcmp_pages(kpage, tree_page);
1862                put_page(tree_page);
1863
1864                parent = *new;
1865                if (ret < 0)
1866                        new = &parent->rb_left;
1867                else if (ret > 0)
1868                        new = &parent->rb_right;
1869                else {
1870                        need_chain = true;
1871                        break;
1872                }
1873        }
1874
1875        stable_node_dup = alloc_stable_node();
1876        if (!stable_node_dup)
1877                return NULL;
1878
1879        INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880        stable_node_dup->kpfn = kpfn;
1881        set_page_stable_node(kpage, stable_node_dup);
1882        stable_node_dup->rmap_hlist_len = 0;
1883        DO_NUMA(stable_node_dup->nid = nid);
1884        if (!need_chain) {
1885                rb_link_node(&stable_node_dup->node, parent, new);
1886                rb_insert_color(&stable_node_dup->node, root);
1887        } else {
1888                if (!is_stable_node_chain(stable_node)) {
1889                        struct stable_node *orig = stable_node;
1890                        /* chain is missing so create it */
1891                        stable_node = alloc_stable_node_chain(orig, root);
1892                        if (!stable_node) {
1893                                free_stable_node(stable_node_dup);
1894                                return NULL;
1895                        }
1896                }
1897                stable_node_chain_add_dup(stable_node_dup, stable_node);
1898        }
1899
1900        return stable_node_dup;
1901}
1902
1903/*
1904 * unstable_tree_search_insert - search for identical page,
1905 * else insert rmap_item into the unstable tree.
1906 *
1907 * This function searches for a page in the unstable tree identical to the
1908 * page currently being scanned; and if no identical page is found in the
1909 * tree, we insert rmap_item as a new object into the unstable tree.
1910 *
1911 * This function returns pointer to rmap_item found to be identical
1912 * to the currently scanned page, NULL otherwise.
1913 *
1914 * This function does both searching and inserting, because they share
1915 * the same walking algorithm in an rbtree.
1916 */
1917static
1918struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919                                              struct page *page,
1920                                              struct page **tree_pagep)
1921{
1922        struct rb_node **new;
1923        struct rb_root *root;
1924        struct rb_node *parent = NULL;
1925        int nid;
1926
1927        nid = get_kpfn_nid(page_to_pfn(page));
1928        root = root_unstable_tree + nid;
1929        new = &root->rb_node;
1930
1931        while (*new) {
1932                struct rmap_item *tree_rmap_item;
1933                struct page *tree_page;
1934                int ret;
1935
1936                cond_resched();
1937                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1938                tree_page = get_mergeable_page(tree_rmap_item);
1939                if (!tree_page)
1940                        return NULL;
1941
1942                /*
1943                 * Don't substitute a ksm page for a forked page.
1944                 */
1945                if (page == tree_page) {
1946                        put_page(tree_page);
1947                        return NULL;
1948                }
1949
1950                ret = memcmp_pages(page, tree_page);
1951
1952                parent = *new;
1953                if (ret < 0) {
1954                        put_page(tree_page);
1955                        new = &parent->rb_left;
1956                } else if (ret > 0) {
1957                        put_page(tree_page);
1958                        new = &parent->rb_right;
1959                } else if (!ksm_merge_across_nodes &&
1960                           page_to_nid(tree_page) != nid) {
1961                        /*
1962                         * If tree_page has been migrated to another NUMA node,
1963                         * it will be flushed out and put in the right unstable
1964                         * tree next time: only merge with it when across_nodes.
1965                         */
1966                        put_page(tree_page);
1967                        return NULL;
1968                } else {
1969                        *tree_pagep = tree_page;
1970                        return tree_rmap_item;
1971                }
1972        }
1973
1974        rmap_item->address |= UNSTABLE_FLAG;
1975        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1976        DO_NUMA(rmap_item->nid = nid);
1977        rb_link_node(&rmap_item->node, parent, new);
1978        rb_insert_color(&rmap_item->node, root);
1979
1980        ksm_pages_unshared++;
1981        return NULL;
1982}
1983
1984/*
1985 * stable_tree_append - add another rmap_item to the linked list of
1986 * rmap_items hanging off a given node of the stable tree, all sharing
1987 * the same ksm page.
1988 */
1989static void stable_tree_append(struct rmap_item *rmap_item,
1990                               struct stable_node *stable_node,
1991                               bool max_page_sharing_bypass)
1992{
1993        /*
1994         * rmap won't find this mapping if we don't insert the
1995         * rmap_item in the right stable_node
1996         * duplicate. page_migration could break later if rmap breaks,
1997         * so we can as well crash here. We really need to check for
1998         * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999         * for other negative values as an underflow if detected here
2000         * for the first time (and not when decreasing rmap_hlist_len)
2001         * would be sign of memory corruption in the stable_node.
2002         */
2003        BUG_ON(stable_node->rmap_hlist_len < 0);
2004
2005        stable_node->rmap_hlist_len++;
2006        if (!max_page_sharing_bypass)
2007                /* possibly non fatal but unexpected overflow, only warn */
2008                WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009                             ksm_max_page_sharing);
2010
2011        rmap_item->head = stable_node;
2012        rmap_item->address |= STABLE_FLAG;
2013        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014
2015        if (rmap_item->hlist.next)
2016                ksm_pages_sharing++;
2017        else
2018                ksm_pages_shared++;
2019}
2020
2021/*
2022 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023 * if not, compare checksum to previous and if it's the same, see if page can
2024 * be inserted into the unstable tree, or merged with a page already there and
2025 * both transferred to the stable tree.
2026 *
2027 * @page: the page that we are searching identical page to.
2028 * @rmap_item: the reverse mapping into the virtual address of this page
2029 */
2030static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031{
2032        struct mm_struct *mm = rmap_item->mm;
2033        struct rmap_item *tree_rmap_item;
2034        struct page *tree_page = NULL;
2035        struct stable_node *stable_node;
2036        struct page *kpage;
2037        unsigned int checksum;
2038        int err;
2039        bool max_page_sharing_bypass = false;
2040
2041        stable_node = page_stable_node(page);
2042        if (stable_node) {
2043                if (stable_node->head != &migrate_nodes &&
2044                    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045                    NUMA(stable_node->nid)) {
2046                        stable_node_dup_del(stable_node);
2047                        stable_node->head = &migrate_nodes;
2048                        list_add(&stable_node->list, stable_node->head);
2049                }
2050                if (stable_node->head != &migrate_nodes &&
2051                    rmap_item->head == stable_node)
2052                        return;
2053                /*
2054                 * If it's a KSM fork, allow it to go over the sharing limit
2055                 * without warnings.
2056                 */
2057                if (!is_page_sharing_candidate(stable_node))
2058                        max_page_sharing_bypass = true;
2059        }
2060
2061        /* We first start with searching the page inside the stable tree */
2062        kpage = stable_tree_search(page);
2063        if (kpage == page && rmap_item->head == stable_node) {
2064                put_page(kpage);
2065                return;
2066        }
2067
2068        remove_rmap_item_from_tree(rmap_item);
2069
2070        if (kpage) {
2071                if (PTR_ERR(kpage) == -EBUSY)
2072                        return;
2073
2074                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2075                if (!err) {
2076                        /*
2077                         * The page was successfully merged:
2078                         * add its rmap_item to the stable tree.
2079                         */
2080                        lock_page(kpage);
2081                        stable_tree_append(rmap_item, page_stable_node(kpage),
2082                                           max_page_sharing_bypass);
2083                        unlock_page(kpage);
2084                }
2085                put_page(kpage);
2086                return;
2087        }
2088
2089        /*
2090         * If the hash value of the page has changed from the last time
2091         * we calculated it, this page is changing frequently: therefore we
2092         * don't want to insert it in the unstable tree, and we don't want
2093         * to waste our time searching for something identical to it there.
2094         */
2095        checksum = calc_checksum(page);
2096        if (rmap_item->oldchecksum != checksum) {
2097                rmap_item->oldchecksum = checksum;
2098                return;
2099        }
2100
2101        /*
2102         * Same checksum as an empty page. We attempt to merge it with the
2103         * appropriate zero page if the user enabled this via sysfs.
2104         */
2105        if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2106                struct vm_area_struct *vma;
2107
2108                mmap_read_lock(mm);
2109                vma = find_mergeable_vma(mm, rmap_item->address);
2110                if (vma) {
2111                        err = try_to_merge_one_page(vma, page,
2112                                        ZERO_PAGE(rmap_item->address));
2113                } else {
2114                        /*
2115                         * If the vma is out of date, we do not need to
2116                         * continue.
2117                         */
2118                        err = 0;
2119                }
2120                mmap_read_unlock(mm);
2121                /*
2122                 * In case of failure, the page was not really empty, so we
2123                 * need to continue. Otherwise we're done.
2124                 */
2125                if (!err)
2126                        return;
2127        }
2128        tree_rmap_item =
2129                unstable_tree_search_insert(rmap_item, page, &tree_page);
2130        if (tree_rmap_item) {
2131                bool split;
2132
2133                kpage = try_to_merge_two_pages(rmap_item, page,
2134                                                tree_rmap_item, tree_page);
2135                /*
2136                 * If both pages we tried to merge belong to the same compound
2137                 * page, then we actually ended up increasing the reference
2138                 * count of the same compound page twice, and split_huge_page
2139                 * failed.
2140                 * Here we set a flag if that happened, and we use it later to
2141                 * try split_huge_page again. Since we call put_page right
2142                 * afterwards, the reference count will be correct and
2143                 * split_huge_page should succeed.
2144                 */
2145                split = PageTransCompound(page)
2146                        && compound_head(page) == compound_head(tree_page);
2147                put_page(tree_page);
2148                if (kpage) {
2149                        /*
2150                         * The pages were successfully merged: insert new
2151                         * node in the stable tree and add both rmap_items.
2152                         */
2153                        lock_page(kpage);
2154                        stable_node = stable_tree_insert(kpage);
2155                        if (stable_node) {
2156                                stable_tree_append(tree_rmap_item, stable_node,
2157                                                   false);
2158                                stable_tree_append(rmap_item, stable_node,
2159                                                   false);
2160                        }
2161                        unlock_page(kpage);
2162
2163                        /*
2164                         * If we fail to insert the page into the stable tree,
2165                         * we will have 2 virtual addresses that are pointing
2166                         * to a ksm page left outside the stable tree,
2167                         * in which case we need to break_cow on both.
2168                         */
2169                        if (!stable_node) {
2170                                break_cow(tree_rmap_item);
2171                                break_cow(rmap_item);
2172                        }
2173                } else if (split) {
2174                        /*
2175                         * We are here if we tried to merge two pages and
2176                         * failed because they both belonged to the same
2177                         * compound page. We will split the page now, but no
2178                         * merging will take place.
2179                         * We do not want to add the cost of a full lock; if
2180                         * the page is locked, it is better to skip it and
2181                         * perhaps try again later.
2182                         */
2183                        if (!trylock_page(page))
2184                                return;
2185                        split_huge_page(page);
2186                        unlock_page(page);
2187                }
2188        }
2189}
2190
2191static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2192                                            struct rmap_item **rmap_list,
2193                                            unsigned long addr)
2194{
2195        struct rmap_item *rmap_item;
2196
2197        while (*rmap_list) {
2198                rmap_item = *rmap_list;
2199                if ((rmap_item->address & PAGE_MASK) == addr)
2200                        return rmap_item;
2201                if (rmap_item->address > addr)
2202                        break;
2203                *rmap_list = rmap_item->rmap_list;
2204                remove_rmap_item_from_tree(rmap_item);
2205                free_rmap_item(rmap_item);
2206        }
2207
2208        rmap_item = alloc_rmap_item();
2209        if (rmap_item) {
2210                /* It has already been zeroed */
2211                rmap_item->mm = mm_slot->mm;
2212                rmap_item->address = addr;
2213                rmap_item->rmap_list = *rmap_list;
2214                *rmap_list = rmap_item;
2215        }
2216        return rmap_item;
2217}
2218
2219static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2220{
2221        struct mm_struct *mm;
2222        struct mm_slot *slot;
2223        struct vm_area_struct *vma;
2224        struct rmap_item *rmap_item;
2225        int nid;
2226
2227        if (list_empty(&ksm_mm_head.mm_list))
2228                return NULL;
2229
2230        slot = ksm_scan.mm_slot;
2231        if (slot == &ksm_mm_head) {
2232                /*
2233                 * A number of pages can hang around indefinitely on per-cpu
2234                 * pagevecs, raised page count preventing write_protect_page
2235                 * from merging them.  Though it doesn't really matter much,
2236                 * it is puzzling to see some stuck in pages_volatile until
2237                 * other activity jostles them out, and they also prevented
2238                 * LTP's KSM test from succeeding deterministically; so drain
2239                 * them here (here rather than on entry to ksm_do_scan(),
2240                 * so we don't IPI too often when pages_to_scan is set low).
2241                 */
2242                lru_add_drain_all();
2243
2244                /*
2245                 * Whereas stale stable_nodes on the stable_tree itself
2246                 * get pruned in the regular course of stable_tree_search(),
2247                 * those moved out to the migrate_nodes list can accumulate:
2248                 * so prune them once before each full scan.
2249                 */
2250                if (!ksm_merge_across_nodes) {
2251                        struct stable_node *stable_node, *next;
2252                        struct page *page;
2253
2254                        list_for_each_entry_safe(stable_node, next,
2255                                                 &migrate_nodes, list) {
2256                                page = get_ksm_page(stable_node,
2257                                                    GET_KSM_PAGE_NOLOCK);
2258                                if (page)
2259                                        put_page(page);
2260                                cond_resched();
2261                        }
2262                }
2263
2264                for (nid = 0; nid < ksm_nr_node_ids; nid++)
2265                        root_unstable_tree[nid] = RB_ROOT;
2266
2267                spin_lock(&ksm_mmlist_lock);
2268                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2269                ksm_scan.mm_slot = slot;
2270                spin_unlock(&ksm_mmlist_lock);
2271                /*
2272                 * Although we tested list_empty() above, a racing __ksm_exit
2273                 * of the last mm on the list may have removed it since then.
2274                 */
2275                if (slot == &ksm_mm_head)
2276                        return NULL;
2277next_mm:
2278                ksm_scan.address = 0;
2279                ksm_scan.rmap_list = &slot->rmap_list;
2280        }
2281
2282        mm = slot->mm;
2283        mmap_read_lock(mm);
2284        if (ksm_test_exit(mm))
2285                vma = NULL;
2286        else
2287                vma = find_vma(mm, ksm_scan.address);
2288
2289        for (; vma; vma = vma->vm_next) {
2290                if (!(vma->vm_flags & VM_MERGEABLE))
2291                        continue;
2292                if (ksm_scan.address < vma->vm_start)
2293                        ksm_scan.address = vma->vm_start;
2294                if (!vma->anon_vma)
2295                        ksm_scan.address = vma->vm_end;
2296
2297                while (ksm_scan.address < vma->vm_end) {
2298                        if (ksm_test_exit(mm))
2299                                break;
2300                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2301                        if (IS_ERR_OR_NULL(*page)) {
2302                                ksm_scan.address += PAGE_SIZE;
2303                                cond_resched();
2304                                continue;
2305                        }
2306                        if (PageAnon(*page)) {
2307                                flush_anon_page(vma, *page, ksm_scan.address);
2308                                flush_dcache_page(*page);
2309                                rmap_item = get_next_rmap_item(slot,
2310                                        ksm_scan.rmap_list, ksm_scan.address);
2311                                if (rmap_item) {
2312                                        ksm_scan.rmap_list =
2313                                                        &rmap_item->rmap_list;
2314                                        ksm_scan.address += PAGE_SIZE;
2315                                } else
2316                                        put_page(*page);
2317                                mmap_read_unlock(mm);
2318                                return rmap_item;
2319                        }
2320                        put_page(*page);
2321                        ksm_scan.address += PAGE_SIZE;
2322                        cond_resched();
2323                }
2324        }
2325
2326        if (ksm_test_exit(mm)) {
2327                ksm_scan.address = 0;
2328                ksm_scan.rmap_list = &slot->rmap_list;
2329        }
2330        /*
2331         * Nuke all the rmap_items that are above this current rmap:
2332         * because there were no VM_MERGEABLE vmas with such addresses.
2333         */
2334        remove_trailing_rmap_items(ksm_scan.rmap_list);
2335
2336        spin_lock(&ksm_mmlist_lock);
2337        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2338                                                struct mm_slot, mm_list);
2339        if (ksm_scan.address == 0) {
2340                /*
2341                 * We've completed a full scan of all vmas, holding mmap_lock
2342                 * throughout, and found no VM_MERGEABLE: so do the same as
2343                 * __ksm_exit does to remove this mm from all our lists now.
2344                 * This applies either when cleaning up after __ksm_exit
2345                 * (but beware: we can reach here even before __ksm_exit),
2346                 * or when all VM_MERGEABLE areas have been unmapped (and
2347                 * mmap_lock then protects against race with MADV_MERGEABLE).
2348                 */
2349                hash_del(&slot->link);
2350                list_del(&slot->mm_list);
2351                spin_unlock(&ksm_mmlist_lock);
2352
2353                free_mm_slot(slot);
2354                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2355                mmap_read_unlock(mm);
2356                mmdrop(mm);
2357        } else {
2358                mmap_read_unlock(mm);
2359                /*
2360                 * mmap_read_unlock(mm) first because after
2361                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2362                 * already have been freed under us by __ksm_exit()
2363                 * because the "mm_slot" is still hashed and
2364                 * ksm_scan.mm_slot doesn't point to it anymore.
2365                 */
2366                spin_unlock(&ksm_mmlist_lock);
2367        }
2368
2369        /* Repeat until we've completed scanning the whole list */
2370        slot = ksm_scan.mm_slot;
2371        if (slot != &ksm_mm_head)
2372                goto next_mm;
2373
2374        ksm_scan.seqnr++;
2375        return NULL;
2376}
2377
2378/**
2379 * ksm_do_scan  - the ksm scanner main worker function.
2380 * @scan_npages:  number of pages we want to scan before we return.
2381 */
2382static void ksm_do_scan(unsigned int scan_npages)
2383{
2384        struct rmap_item *rmap_item;
2385        struct page *page;
2386
2387        while (scan_npages-- && likely(!freezing(current))) {
2388                cond_resched();
2389                rmap_item = scan_get_next_rmap_item(&page);
2390                if (!rmap_item)
2391                        return;
2392                cmp_and_merge_page(page, rmap_item);
2393                put_page(page);
2394        }
2395}
2396
2397static int ksmd_should_run(void)
2398{
2399        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2400}
2401
2402static int ksm_scan_thread(void *nothing)
2403{
2404        unsigned int sleep_ms;
2405
2406        set_freezable();
2407        set_user_nice(current, 5);
2408
2409        while (!kthread_should_stop()) {
2410                mutex_lock(&ksm_thread_mutex);
2411                wait_while_offlining();
2412                if (ksmd_should_run())
2413                        ksm_do_scan(ksm_thread_pages_to_scan);
2414                mutex_unlock(&ksm_thread_mutex);
2415
2416                try_to_freeze();
2417
2418                if (ksmd_should_run()) {
2419                        sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2420                        wait_event_interruptible_timeout(ksm_iter_wait,
2421                                sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2422                                msecs_to_jiffies(sleep_ms));
2423                } else {
2424                        wait_event_freezable(ksm_thread_wait,
2425                                ksmd_should_run() || kthread_should_stop());
2426                }
2427        }
2428        return 0;
2429}
2430
2431int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2432                unsigned long end, int advice, unsigned long *vm_flags)
2433{
2434        struct mm_struct *mm = vma->vm_mm;
2435        int err;
2436
2437        switch (advice) {
2438        case MADV_MERGEABLE:
2439                /*
2440                 * Be somewhat over-protective for now!
2441                 */
2442                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2443                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2444                                 VM_HUGETLB | VM_MIXEDMAP))
2445                        return 0;               /* just ignore the advice */
2446
2447                if (vma_is_dax(vma))
2448                        return 0;
2449
2450#ifdef VM_SAO
2451                if (*vm_flags & VM_SAO)
2452                        return 0;
2453#endif
2454#ifdef VM_SPARC_ADI
2455                if (*vm_flags & VM_SPARC_ADI)
2456                        return 0;
2457#endif
2458
2459                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2460                        err = __ksm_enter(mm);
2461                        if (err)
2462                                return err;
2463                }
2464
2465                *vm_flags |= VM_MERGEABLE;
2466                break;
2467
2468        case MADV_UNMERGEABLE:
2469                if (!(*vm_flags & VM_MERGEABLE))
2470                        return 0;               /* just ignore the advice */
2471
2472                if (vma->anon_vma) {
2473                        err = unmerge_ksm_pages(vma, start, end);
2474                        if (err)
2475                                return err;
2476                }
2477
2478                *vm_flags &= ~VM_MERGEABLE;
2479                break;
2480        }
2481
2482        return 0;
2483}
2484EXPORT_SYMBOL_GPL(ksm_madvise);
2485
2486int __ksm_enter(struct mm_struct *mm)
2487{
2488        struct mm_slot *mm_slot;
2489        int needs_wakeup;
2490
2491        mm_slot = alloc_mm_slot();
2492        if (!mm_slot)
2493                return -ENOMEM;
2494
2495        /* Check ksm_run too?  Would need tighter locking */
2496        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2497
2498        spin_lock(&ksm_mmlist_lock);
2499        insert_to_mm_slots_hash(mm, mm_slot);
2500        /*
2501         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2502         * insert just behind the scanning cursor, to let the area settle
2503         * down a little; when fork is followed by immediate exec, we don't
2504         * want ksmd to waste time setting up and tearing down an rmap_list.
2505         *
2506         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2507         * scanning cursor, otherwise KSM pages in newly forked mms will be
2508         * missed: then we might as well insert at the end of the list.
2509         */
2510        if (ksm_run & KSM_RUN_UNMERGE)
2511                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2512        else
2513                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2514        spin_unlock(&ksm_mmlist_lock);
2515
2516        set_bit(MMF_VM_MERGEABLE, &mm->flags);
2517        mmgrab(mm);
2518
2519        if (needs_wakeup)
2520                wake_up_interruptible(&ksm_thread_wait);
2521
2522        return 0;
2523}
2524
2525void __ksm_exit(struct mm_struct *mm)
2526{
2527        struct mm_slot *mm_slot;
2528        int easy_to_free = 0;
2529
2530        /*
2531         * This process is exiting: if it's straightforward (as is the
2532         * case when ksmd was never running), free mm_slot immediately.
2533         * But if it's at the cursor or has rmap_items linked to it, use
2534         * mmap_lock to synchronize with any break_cows before pagetables
2535         * are freed, and leave the mm_slot on the list for ksmd to free.
2536         * Beware: ksm may already have noticed it exiting and freed the slot.
2537         */
2538
2539        spin_lock(&ksm_mmlist_lock);
2540        mm_slot = get_mm_slot(mm);
2541        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2542                if (!mm_slot->rmap_list) {
2543                        hash_del(&mm_slot->link);
2544                        list_del(&mm_slot->mm_list);
2545                        easy_to_free = 1;
2546                } else {
2547                        list_move(&mm_slot->mm_list,
2548                                  &ksm_scan.mm_slot->mm_list);
2549                }
2550        }
2551        spin_unlock(&ksm_mmlist_lock);
2552
2553        if (easy_to_free) {
2554                free_mm_slot(mm_slot);
2555                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2556                mmdrop(mm);
2557        } else if (mm_slot) {
2558                mmap_write_lock(mm);
2559                mmap_write_unlock(mm);
2560        }
2561}
2562
2563struct page *ksm_might_need_to_copy(struct page *page,
2564                        struct vm_area_struct *vma, unsigned long address)
2565{
2566        struct anon_vma *anon_vma = page_anon_vma(page);
2567        struct page *new_page;
2568
2569        if (PageKsm(page)) {
2570                if (page_stable_node(page) &&
2571                    !(ksm_run & KSM_RUN_UNMERGE))
2572                        return page;    /* no need to copy it */
2573        } else if (!anon_vma) {
2574                return page;            /* no need to copy it */
2575        } else if (anon_vma->root == vma->anon_vma->root &&
2576                 page->index == linear_page_index(vma, address)) {
2577                return page;            /* still no need to copy it */
2578        }
2579        if (!PageUptodate(page))
2580                return page;            /* let do_swap_page report the error */
2581
2582        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2583        if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2584                put_page(new_page);
2585                new_page = NULL;
2586        }
2587        if (new_page) {
2588                copy_user_highpage(new_page, page, address, vma);
2589
2590                SetPageDirty(new_page);
2591                __SetPageUptodate(new_page);
2592                __SetPageLocked(new_page);
2593        }
2594
2595        return new_page;
2596}
2597
2598void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2599{
2600        struct stable_node *stable_node;
2601        struct rmap_item *rmap_item;
2602        int search_new_forks = 0;
2603
2604        VM_BUG_ON_PAGE(!PageKsm(page), page);
2605
2606        /*
2607         * Rely on the page lock to protect against concurrent modifications
2608         * to that page's node of the stable tree.
2609         */
2610        VM_BUG_ON_PAGE(!PageLocked(page), page);
2611
2612        stable_node = page_stable_node(page);
2613        if (!stable_node)
2614                return;
2615again:
2616        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2617                struct anon_vma *anon_vma = rmap_item->anon_vma;
2618                struct anon_vma_chain *vmac;
2619                struct vm_area_struct *vma;
2620
2621                cond_resched();
2622                anon_vma_lock_read(anon_vma);
2623                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2624                                               0, ULONG_MAX) {
2625                        unsigned long addr;
2626
2627                        cond_resched();
2628                        vma = vmac->vma;
2629
2630                        /* Ignore the stable/unstable/sqnr flags */
2631                        addr = rmap_item->address & PAGE_MASK;
2632
2633                        if (addr < vma->vm_start || addr >= vma->vm_end)
2634                                continue;
2635                        /*
2636                         * Initially we examine only the vma which covers this
2637                         * rmap_item; but later, if there is still work to do,
2638                         * we examine covering vmas in other mms: in case they
2639                         * were forked from the original since ksmd passed.
2640                         */
2641                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2642                                continue;
2643
2644                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2645                                continue;
2646
2647                        if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2648                                anon_vma_unlock_read(anon_vma);
2649                                return;
2650                        }
2651                        if (rwc->done && rwc->done(page)) {
2652                                anon_vma_unlock_read(anon_vma);
2653                                return;
2654                        }
2655                }
2656                anon_vma_unlock_read(anon_vma);
2657        }
2658        if (!search_new_forks++)
2659                goto again;
2660}
2661
2662#ifdef CONFIG_MIGRATION
2663void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2664{
2665        struct stable_node *stable_node;
2666
2667        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2668        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2669        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2670
2671        stable_node = page_stable_node(newpage);
2672        if (stable_node) {
2673                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2674                stable_node->kpfn = page_to_pfn(newpage);
2675                /*
2676                 * newpage->mapping was set in advance; now we need smp_wmb()
2677                 * to make sure that the new stable_node->kpfn is visible
2678                 * to get_ksm_page() before it can see that oldpage->mapping
2679                 * has gone stale (or that PageSwapCache has been cleared).
2680                 */
2681                smp_wmb();
2682                set_page_stable_node(oldpage, NULL);
2683        }
2684}
2685#endif /* CONFIG_MIGRATION */
2686
2687#ifdef CONFIG_MEMORY_HOTREMOVE
2688static void wait_while_offlining(void)
2689{
2690        while (ksm_run & KSM_RUN_OFFLINE) {
2691                mutex_unlock(&ksm_thread_mutex);
2692                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2693                            TASK_UNINTERRUPTIBLE);
2694                mutex_lock(&ksm_thread_mutex);
2695        }
2696}
2697
2698static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2699                                         unsigned long start_pfn,
2700                                         unsigned long end_pfn)
2701{
2702        if (stable_node->kpfn >= start_pfn &&
2703            stable_node->kpfn < end_pfn) {
2704                /*
2705                 * Don't get_ksm_page, page has already gone:
2706                 * which is why we keep kpfn instead of page*
2707                 */
2708                remove_node_from_stable_tree(stable_node);
2709                return true;
2710        }
2711        return false;
2712}
2713
2714static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2715                                           unsigned long start_pfn,
2716                                           unsigned long end_pfn,
2717                                           struct rb_root *root)
2718{
2719        struct stable_node *dup;
2720        struct hlist_node *hlist_safe;
2721
2722        if (!is_stable_node_chain(stable_node)) {
2723                VM_BUG_ON(is_stable_node_dup(stable_node));
2724                return stable_node_dup_remove_range(stable_node, start_pfn,
2725                                                    end_pfn);
2726        }
2727
2728        hlist_for_each_entry_safe(dup, hlist_safe,
2729                                  &stable_node->hlist, hlist_dup) {
2730                VM_BUG_ON(!is_stable_node_dup(dup));
2731                stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2732        }
2733        if (hlist_empty(&stable_node->hlist)) {
2734                free_stable_node_chain(stable_node, root);
2735                return true; /* notify caller that tree was rebalanced */
2736        } else
2737                return false;
2738}
2739
2740static void ksm_check_stable_tree(unsigned long start_pfn,
2741                                  unsigned long end_pfn)
2742{
2743        struct stable_node *stable_node, *next;
2744        struct rb_node *node;
2745        int nid;
2746
2747        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2748                node = rb_first(root_stable_tree + nid);
2749                while (node) {
2750                        stable_node = rb_entry(node, struct stable_node, node);
2751                        if (stable_node_chain_remove_range(stable_node,
2752                                                           start_pfn, end_pfn,
2753                                                           root_stable_tree +
2754                                                           nid))
2755                                node = rb_first(root_stable_tree + nid);
2756                        else
2757                                node = rb_next(node);
2758                        cond_resched();
2759                }
2760        }
2761        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2762                if (stable_node->kpfn >= start_pfn &&
2763                    stable_node->kpfn < end_pfn)
2764                        remove_node_from_stable_tree(stable_node);
2765                cond_resched();
2766        }
2767}
2768
2769static int ksm_memory_callback(struct notifier_block *self,
2770                               unsigned long action, void *arg)
2771{
2772        struct memory_notify *mn = arg;
2773
2774        switch (action) {
2775        case MEM_GOING_OFFLINE:
2776                /*
2777                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2778                 * and remove_all_stable_nodes() while memory is going offline:
2779                 * it is unsafe for them to touch the stable tree at this time.
2780                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2781                 * which do not need the ksm_thread_mutex are all safe.
2782                 */
2783                mutex_lock(&ksm_thread_mutex);
2784                ksm_run |= KSM_RUN_OFFLINE;
2785                mutex_unlock(&ksm_thread_mutex);
2786                break;
2787
2788        case MEM_OFFLINE:
2789                /*
2790                 * Most of the work is done by page migration; but there might
2791                 * be a few stable_nodes left over, still pointing to struct
2792                 * pages which have been offlined: prune those from the tree,
2793                 * otherwise get_ksm_page() might later try to access a
2794                 * non-existent struct page.
2795                 */
2796                ksm_check_stable_tree(mn->start_pfn,
2797                                      mn->start_pfn + mn->nr_pages);
2798                fallthrough;
2799        case MEM_CANCEL_OFFLINE:
2800                mutex_lock(&ksm_thread_mutex);
2801                ksm_run &= ~KSM_RUN_OFFLINE;
2802                mutex_unlock(&ksm_thread_mutex);
2803
2804                smp_mb();       /* wake_up_bit advises this */
2805                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2806                break;
2807        }
2808        return NOTIFY_OK;
2809}
2810#else
2811static void wait_while_offlining(void)
2812{
2813}
2814#endif /* CONFIG_MEMORY_HOTREMOVE */
2815
2816#ifdef CONFIG_SYSFS
2817/*
2818 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2819 */
2820
2821#define KSM_ATTR_RO(_name) \
2822        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2823#define KSM_ATTR(_name) \
2824        static struct kobj_attribute _name##_attr = \
2825                __ATTR(_name, 0644, _name##_show, _name##_store)
2826
2827static ssize_t sleep_millisecs_show(struct kobject *kobj,
2828                                    struct kobj_attribute *attr, char *buf)
2829{
2830        return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2831}
2832
2833static ssize_t sleep_millisecs_store(struct kobject *kobj,
2834                                     struct kobj_attribute *attr,
2835                                     const char *buf, size_t count)
2836{
2837        unsigned int msecs;
2838        int err;
2839
2840        err = kstrtouint(buf, 10, &msecs);
2841        if (err)
2842                return -EINVAL;
2843
2844        ksm_thread_sleep_millisecs = msecs;
2845        wake_up_interruptible(&ksm_iter_wait);
2846
2847        return count;
2848}
2849KSM_ATTR(sleep_millisecs);
2850
2851static ssize_t pages_to_scan_show(struct kobject *kobj,
2852                                  struct kobj_attribute *attr, char *buf)
2853{
2854        return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2855}
2856
2857static ssize_t pages_to_scan_store(struct kobject *kobj,
2858                                   struct kobj_attribute *attr,
2859                                   const char *buf, size_t count)
2860{
2861        unsigned int nr_pages;
2862        int err;
2863
2864        err = kstrtouint(buf, 10, &nr_pages);
2865        if (err)
2866                return -EINVAL;
2867
2868        ksm_thread_pages_to_scan = nr_pages;
2869
2870        return count;
2871}
2872KSM_ATTR(pages_to_scan);
2873
2874static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2875                        char *buf)
2876{
2877        return sysfs_emit(buf, "%lu\n", ksm_run);
2878}
2879
2880static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2881                         const char *buf, size_t count)
2882{
2883        unsigned int flags;
2884        int err;
2885
2886        err = kstrtouint(buf, 10, &flags);
2887        if (err)
2888                return -EINVAL;
2889        if (flags > KSM_RUN_UNMERGE)
2890                return -EINVAL;
2891
2892        /*
2893         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2894         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2895         * breaking COW to free the pages_shared (but leaves mm_slots
2896         * on the list for when ksmd may be set running again).
2897         */
2898
2899        mutex_lock(&ksm_thread_mutex);
2900        wait_while_offlining();
2901        if (ksm_run != flags) {
2902                ksm_run = flags;
2903                if (flags & KSM_RUN_UNMERGE) {
2904                        set_current_oom_origin();
2905                        err = unmerge_and_remove_all_rmap_items();
2906                        clear_current_oom_origin();
2907                        if (err) {
2908                                ksm_run = KSM_RUN_STOP;
2909                                count = err;
2910                        }
2911                }
2912        }
2913        mutex_unlock(&ksm_thread_mutex);
2914
2915        if (flags & KSM_RUN_MERGE)
2916                wake_up_interruptible(&ksm_thread_wait);
2917
2918        return count;
2919}
2920KSM_ATTR(run);
2921
2922#ifdef CONFIG_NUMA
2923static ssize_t merge_across_nodes_show(struct kobject *kobj,
2924                                       struct kobj_attribute *attr, char *buf)
2925{
2926        return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2927}
2928
2929static ssize_t merge_across_nodes_store(struct kobject *kobj,
2930                                   struct kobj_attribute *attr,
2931                                   const char *buf, size_t count)
2932{
2933        int err;
2934        unsigned long knob;
2935
2936        err = kstrtoul(buf, 10, &knob);
2937        if (err)
2938                return err;
2939        if (knob > 1)
2940                return -EINVAL;
2941
2942        mutex_lock(&ksm_thread_mutex);
2943        wait_while_offlining();
2944        if (ksm_merge_across_nodes != knob) {
2945                if (ksm_pages_shared || remove_all_stable_nodes())
2946                        err = -EBUSY;
2947                else if (root_stable_tree == one_stable_tree) {
2948                        struct rb_root *buf;
2949                        /*
2950                         * This is the first time that we switch away from the
2951                         * default of merging across nodes: must now allocate
2952                         * a buffer to hold as many roots as may be needed.
2953                         * Allocate stable and unstable together:
2954                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2955                         */
2956                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2957                                      GFP_KERNEL);
2958                        /* Let us assume that RB_ROOT is NULL is zero */
2959                        if (!buf)
2960                                err = -ENOMEM;
2961                        else {
2962                                root_stable_tree = buf;
2963                                root_unstable_tree = buf + nr_node_ids;
2964                                /* Stable tree is empty but not the unstable */
2965                                root_unstable_tree[0] = one_unstable_tree[0];
2966                        }
2967                }
2968                if (!err) {
2969                        ksm_merge_across_nodes = knob;
2970                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2971                }
2972        }
2973        mutex_unlock(&ksm_thread_mutex);
2974
2975        return err ? err : count;
2976}
2977KSM_ATTR(merge_across_nodes);
2978#endif
2979
2980static ssize_t use_zero_pages_show(struct kobject *kobj,
2981                                   struct kobj_attribute *attr, char *buf)
2982{
2983        return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2984}
2985static ssize_t use_zero_pages_store(struct kobject *kobj,
2986                                   struct kobj_attribute *attr,
2987                                   const char *buf, size_t count)
2988{
2989        int err;
2990        bool value;
2991
2992        err = kstrtobool(buf, &value);
2993        if (err)
2994                return -EINVAL;
2995
2996        ksm_use_zero_pages = value;
2997
2998        return count;
2999}
3000KSM_ATTR(use_zero_pages);
3001
3002static ssize_t max_page_sharing_show(struct kobject *kobj,
3003                                     struct kobj_attribute *attr, char *buf)
3004{
3005        return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3006}
3007
3008static ssize_t max_page_sharing_store(struct kobject *kobj,
3009                                      struct kobj_attribute *attr,
3010                                      const char *buf, size_t count)
3011{
3012        int err;
3013        int knob;
3014
3015        err = kstrtoint(buf, 10, &knob);
3016        if (err)
3017                return err;
3018        /*
3019         * When a KSM page is created it is shared by 2 mappings. This
3020         * being a signed comparison, it implicitly verifies it's not
3021         * negative.
3022         */
3023        if (knob < 2)
3024                return -EINVAL;
3025
3026        if (READ_ONCE(ksm_max_page_sharing) == knob)
3027                return count;
3028
3029        mutex_lock(&ksm_thread_mutex);
3030        wait_while_offlining();
3031        if (ksm_max_page_sharing != knob) {
3032                if (ksm_pages_shared || remove_all_stable_nodes())
3033                        err = -EBUSY;
3034                else
3035                        ksm_max_page_sharing = knob;
3036        }
3037        mutex_unlock(&ksm_thread_mutex);
3038
3039        return err ? err : count;
3040}
3041KSM_ATTR(max_page_sharing);
3042
3043static ssize_t pages_shared_show(struct kobject *kobj,
3044                                 struct kobj_attribute *attr, char *buf)
3045{
3046        return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3047}
3048KSM_ATTR_RO(pages_shared);
3049
3050static ssize_t pages_sharing_show(struct kobject *kobj,
3051                                  struct kobj_attribute *attr, char *buf)
3052{
3053        return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3054}
3055KSM_ATTR_RO(pages_sharing);
3056
3057static ssize_t pages_unshared_show(struct kobject *kobj,
3058                                   struct kobj_attribute *attr, char *buf)
3059{
3060        return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3061}
3062KSM_ATTR_RO(pages_unshared);
3063
3064static ssize_t pages_volatile_show(struct kobject *kobj,
3065                                   struct kobj_attribute *attr, char *buf)
3066{
3067        long ksm_pages_volatile;
3068
3069        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3070                                - ksm_pages_sharing - ksm_pages_unshared;
3071        /*
3072         * It was not worth any locking to calculate that statistic,
3073         * but it might therefore sometimes be negative: conceal that.
3074         */
3075        if (ksm_pages_volatile < 0)
3076                ksm_pages_volatile = 0;
3077        return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3078}
3079KSM_ATTR_RO(pages_volatile);
3080
3081static ssize_t stable_node_dups_show(struct kobject *kobj,
3082                                     struct kobj_attribute *attr, char *buf)
3083{
3084        return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3085}
3086KSM_ATTR_RO(stable_node_dups);
3087
3088static ssize_t stable_node_chains_show(struct kobject *kobj,
3089                                       struct kobj_attribute *attr, char *buf)
3090{
3091        return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3092}
3093KSM_ATTR_RO(stable_node_chains);
3094
3095static ssize_t
3096stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3097                                        struct kobj_attribute *attr,
3098                                        char *buf)
3099{
3100        return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3101}
3102
3103static ssize_t
3104stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3105                                         struct kobj_attribute *attr,
3106                                         const char *buf, size_t count)
3107{
3108        unsigned long msecs;
3109        int err;
3110
3111        err = kstrtoul(buf, 10, &msecs);
3112        if (err || msecs > UINT_MAX)
3113                return -EINVAL;
3114
3115        ksm_stable_node_chains_prune_millisecs = msecs;
3116
3117        return count;
3118}
3119KSM_ATTR(stable_node_chains_prune_millisecs);
3120
3121static ssize_t full_scans_show(struct kobject *kobj,
3122                               struct kobj_attribute *attr, char *buf)
3123{
3124        return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3125}
3126KSM_ATTR_RO(full_scans);
3127
3128static struct attribute *ksm_attrs[] = {
3129        &sleep_millisecs_attr.attr,
3130        &pages_to_scan_attr.attr,
3131        &run_attr.attr,
3132        &pages_shared_attr.attr,
3133        &pages_sharing_attr.attr,
3134        &pages_unshared_attr.attr,
3135        &pages_volatile_attr.attr,
3136        &full_scans_attr.attr,
3137#ifdef CONFIG_NUMA
3138        &merge_across_nodes_attr.attr,
3139#endif
3140        &max_page_sharing_attr.attr,
3141        &stable_node_chains_attr.attr,
3142        &stable_node_dups_attr.attr,
3143        &stable_node_chains_prune_millisecs_attr.attr,
3144        &use_zero_pages_attr.attr,
3145        NULL,
3146};
3147
3148static const struct attribute_group ksm_attr_group = {
3149        .attrs = ksm_attrs,
3150        .name = "ksm",
3151};
3152#endif /* CONFIG_SYSFS */
3153
3154static int __init ksm_init(void)
3155{
3156        struct task_struct *ksm_thread;
3157        int err;
3158
3159        /* The correct value depends on page size and endianness */
3160        zero_checksum = calc_checksum(ZERO_PAGE(0));
3161        /* Default to false for backwards compatibility */
3162        ksm_use_zero_pages = false;
3163
3164        err = ksm_slab_init();
3165        if (err)
3166                goto out;
3167
3168        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3169        if (IS_ERR(ksm_thread)) {
3170                pr_err("ksm: creating kthread failed\n");
3171                err = PTR_ERR(ksm_thread);
3172                goto out_free;
3173        }
3174
3175#ifdef CONFIG_SYSFS
3176        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3177        if (err) {
3178                pr_err("ksm: register sysfs failed\n");
3179                kthread_stop(ksm_thread);
3180                goto out_free;
3181        }
3182#else
3183        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3184
3185#endif /* CONFIG_SYSFS */
3186
3187#ifdef CONFIG_MEMORY_HOTREMOVE
3188        /* There is no significance to this priority 100 */
3189        hotplug_memory_notifier(ksm_memory_callback, 100);
3190#endif
3191        return 0;
3192
3193out_free:
3194        ksm_slab_free();
3195out:
3196        return err;
3197}
3198subsys_initcall(ksm_init);
3199