linux/mm/memory_hotplug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/highmem.h>
  25#include <linux/vmalloc.h>
  26#include <linux/ioport.h>
  27#include <linux/delay.h>
  28#include <linux/migrate.h>
  29#include <linux/page-isolation.h>
  30#include <linux/pfn.h>
  31#include <linux/suspend.h>
  32#include <linux/mm_inline.h>
  33#include <linux/firmware-map.h>
  34#include <linux/stop_machine.h>
  35#include <linux/hugetlb.h>
  36#include <linux/memblock.h>
  37#include <linux/compaction.h>
  38#include <linux/rmap.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45
  46/*
  47 * memory_hotplug.memmap_on_memory parameter
  48 */
  49static bool memmap_on_memory __ro_after_init;
  50#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
  51module_param(memmap_on_memory, bool, 0444);
  52MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
  53#endif
  54
  55/*
  56 * online_page_callback contains pointer to current page onlining function.
  57 * Initially it is generic_online_page(). If it is required it could be
  58 * changed by calling set_online_page_callback() for callback registration
  59 * and restore_online_page_callback() for generic callback restore.
  60 */
  61
  62static online_page_callback_t online_page_callback = generic_online_page;
  63static DEFINE_MUTEX(online_page_callback_lock);
  64
  65DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  66
  67void get_online_mems(void)
  68{
  69        percpu_down_read(&mem_hotplug_lock);
  70}
  71
  72void put_online_mems(void)
  73{
  74        percpu_up_read(&mem_hotplug_lock);
  75}
  76
  77bool movable_node_enabled = false;
  78
  79#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  80int mhp_default_online_type = MMOP_OFFLINE;
  81#else
  82int mhp_default_online_type = MMOP_ONLINE;
  83#endif
  84
  85static int __init setup_memhp_default_state(char *str)
  86{
  87        const int online_type = mhp_online_type_from_str(str);
  88
  89        if (online_type >= 0)
  90                mhp_default_online_type = online_type;
  91
  92        return 1;
  93}
  94__setup("memhp_default_state=", setup_memhp_default_state);
  95
  96void mem_hotplug_begin(void)
  97{
  98        cpus_read_lock();
  99        percpu_down_write(&mem_hotplug_lock);
 100}
 101
 102void mem_hotplug_done(void)
 103{
 104        percpu_up_write(&mem_hotplug_lock);
 105        cpus_read_unlock();
 106}
 107
 108u64 max_mem_size = U64_MAX;
 109
 110/* add this memory to iomem resource */
 111static struct resource *register_memory_resource(u64 start, u64 size,
 112                                                 const char *resource_name)
 113{
 114        struct resource *res;
 115        unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 116
 117        if (strcmp(resource_name, "System RAM"))
 118                flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
 119
 120        if (!mhp_range_allowed(start, size, true))
 121                return ERR_PTR(-E2BIG);
 122
 123        /*
 124         * Make sure value parsed from 'mem=' only restricts memory adding
 125         * while booting, so that memory hotplug won't be impacted. Please
 126         * refer to document of 'mem=' in kernel-parameters.txt for more
 127         * details.
 128         */
 129        if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
 130                return ERR_PTR(-E2BIG);
 131
 132        /*
 133         * Request ownership of the new memory range.  This might be
 134         * a child of an existing resource that was present but
 135         * not marked as busy.
 136         */
 137        res = __request_region(&iomem_resource, start, size,
 138                               resource_name, flags);
 139
 140        if (!res) {
 141                pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 142                                start, start + size);
 143                return ERR_PTR(-EEXIST);
 144        }
 145        return res;
 146}
 147
 148static void release_memory_resource(struct resource *res)
 149{
 150        if (!res)
 151                return;
 152        release_resource(res);
 153        kfree(res);
 154}
 155
 156#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 157static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
 158                const char *reason)
 159{
 160        /*
 161         * Disallow all operations smaller than a sub-section and only
 162         * allow operations smaller than a section for
 163         * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 164         * enforces a larger memory_block_size_bytes() granularity for
 165         * memory that will be marked online, so this check should only
 166         * fire for direct arch_{add,remove}_memory() users outside of
 167         * add_memory_resource().
 168         */
 169        unsigned long min_align;
 170
 171        if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 172                min_align = PAGES_PER_SUBSECTION;
 173        else
 174                min_align = PAGES_PER_SECTION;
 175        if (!IS_ALIGNED(pfn, min_align)
 176                        || !IS_ALIGNED(nr_pages, min_align)) {
 177                WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
 178                                reason, pfn, pfn + nr_pages - 1);
 179                return -EINVAL;
 180        }
 181        return 0;
 182}
 183
 184/*
 185 * Return page for the valid pfn only if the page is online. All pfn
 186 * walkers which rely on the fully initialized page->flags and others
 187 * should use this rather than pfn_valid && pfn_to_page
 188 */
 189struct page *pfn_to_online_page(unsigned long pfn)
 190{
 191        unsigned long nr = pfn_to_section_nr(pfn);
 192        struct dev_pagemap *pgmap;
 193        struct mem_section *ms;
 194
 195        if (nr >= NR_MEM_SECTIONS)
 196                return NULL;
 197
 198        ms = __nr_to_section(nr);
 199        if (!online_section(ms))
 200                return NULL;
 201
 202        /*
 203         * Save some code text when online_section() +
 204         * pfn_section_valid() are sufficient.
 205         */
 206        if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
 207                return NULL;
 208
 209        if (!pfn_section_valid(ms, pfn))
 210                return NULL;
 211
 212        if (!online_device_section(ms))
 213                return pfn_to_page(pfn);
 214
 215        /*
 216         * Slowpath: when ZONE_DEVICE collides with
 217         * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
 218         * the section may be 'offline' but 'valid'. Only
 219         * get_dev_pagemap() can determine sub-section online status.
 220         */
 221        pgmap = get_dev_pagemap(pfn, NULL);
 222        put_dev_pagemap(pgmap);
 223
 224        /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
 225        if (pgmap)
 226                return NULL;
 227
 228        return pfn_to_page(pfn);
 229}
 230EXPORT_SYMBOL_GPL(pfn_to_online_page);
 231
 232/*
 233 * Reasonably generic function for adding memory.  It is
 234 * expected that archs that support memory hotplug will
 235 * call this function after deciding the zone to which to
 236 * add the new pages.
 237 */
 238int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 239                struct mhp_params *params)
 240{
 241        const unsigned long end_pfn = pfn + nr_pages;
 242        unsigned long cur_nr_pages;
 243        int err;
 244        struct vmem_altmap *altmap = params->altmap;
 245
 246        if (WARN_ON_ONCE(!params->pgprot.pgprot))
 247                return -EINVAL;
 248
 249        VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
 250
 251        if (altmap) {
 252                /*
 253                 * Validate altmap is within bounds of the total request
 254                 */
 255                if (altmap->base_pfn != pfn
 256                                || vmem_altmap_offset(altmap) > nr_pages) {
 257                        pr_warn_once("memory add fail, invalid altmap\n");
 258                        return -EINVAL;
 259                }
 260                altmap->alloc = 0;
 261        }
 262
 263        err = check_pfn_span(pfn, nr_pages, "add");
 264        if (err)
 265                return err;
 266
 267        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 268                /* Select all remaining pages up to the next section boundary */
 269                cur_nr_pages = min(end_pfn - pfn,
 270                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 271                err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
 272                if (err)
 273                        break;
 274                cond_resched();
 275        }
 276        vmemmap_populate_print_last();
 277        return err;
 278}
 279
 280/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 281static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 282                                     unsigned long start_pfn,
 283                                     unsigned long end_pfn)
 284{
 285        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 286                if (unlikely(!pfn_to_online_page(start_pfn)))
 287                        continue;
 288
 289                if (unlikely(pfn_to_nid(start_pfn) != nid))
 290                        continue;
 291
 292                if (zone != page_zone(pfn_to_page(start_pfn)))
 293                        continue;
 294
 295                return start_pfn;
 296        }
 297
 298        return 0;
 299}
 300
 301/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 302static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 303                                    unsigned long start_pfn,
 304                                    unsigned long end_pfn)
 305{
 306        unsigned long pfn;
 307
 308        /* pfn is the end pfn of a memory section. */
 309        pfn = end_pfn - 1;
 310        for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 311                if (unlikely(!pfn_to_online_page(pfn)))
 312                        continue;
 313
 314                if (unlikely(pfn_to_nid(pfn) != nid))
 315                        continue;
 316
 317                if (zone != page_zone(pfn_to_page(pfn)))
 318                        continue;
 319
 320                return pfn;
 321        }
 322
 323        return 0;
 324}
 325
 326static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 327                             unsigned long end_pfn)
 328{
 329        unsigned long pfn;
 330        int nid = zone_to_nid(zone);
 331
 332        if (zone->zone_start_pfn == start_pfn) {
 333                /*
 334                 * If the section is smallest section in the zone, it need
 335                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 336                 * In this case, we find second smallest valid mem_section
 337                 * for shrinking zone.
 338                 */
 339                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 340                                                zone_end_pfn(zone));
 341                if (pfn) {
 342                        zone->spanned_pages = zone_end_pfn(zone) - pfn;
 343                        zone->zone_start_pfn = pfn;
 344                } else {
 345                        zone->zone_start_pfn = 0;
 346                        zone->spanned_pages = 0;
 347                }
 348        } else if (zone_end_pfn(zone) == end_pfn) {
 349                /*
 350                 * If the section is biggest section in the zone, it need
 351                 * shrink zone->spanned_pages.
 352                 * In this case, we find second biggest valid mem_section for
 353                 * shrinking zone.
 354                 */
 355                pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
 356                                               start_pfn);
 357                if (pfn)
 358                        zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
 359                else {
 360                        zone->zone_start_pfn = 0;
 361                        zone->spanned_pages = 0;
 362                }
 363        }
 364}
 365
 366static void update_pgdat_span(struct pglist_data *pgdat)
 367{
 368        unsigned long node_start_pfn = 0, node_end_pfn = 0;
 369        struct zone *zone;
 370
 371        for (zone = pgdat->node_zones;
 372             zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
 373                unsigned long end_pfn = zone_end_pfn(zone);
 374
 375                /* No need to lock the zones, they can't change. */
 376                if (!zone->spanned_pages)
 377                        continue;
 378                if (!node_end_pfn) {
 379                        node_start_pfn = zone->zone_start_pfn;
 380                        node_end_pfn = end_pfn;
 381                        continue;
 382                }
 383
 384                if (end_pfn > node_end_pfn)
 385                        node_end_pfn = end_pfn;
 386                if (zone->zone_start_pfn < node_start_pfn)
 387                        node_start_pfn = zone->zone_start_pfn;
 388        }
 389
 390        pgdat->node_start_pfn = node_start_pfn;
 391        pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
 392}
 393
 394void __ref remove_pfn_range_from_zone(struct zone *zone,
 395                                      unsigned long start_pfn,
 396                                      unsigned long nr_pages)
 397{
 398        const unsigned long end_pfn = start_pfn + nr_pages;
 399        struct pglist_data *pgdat = zone->zone_pgdat;
 400        unsigned long pfn, cur_nr_pages;
 401
 402        /* Poison struct pages because they are now uninitialized again. */
 403        for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
 404                cond_resched();
 405
 406                /* Select all remaining pages up to the next section boundary */
 407                cur_nr_pages =
 408                        min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
 409                page_init_poison(pfn_to_page(pfn),
 410                                 sizeof(struct page) * cur_nr_pages);
 411        }
 412
 413#ifdef CONFIG_ZONE_DEVICE
 414        /*
 415         * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
 416         * we will not try to shrink the zones - which is okay as
 417         * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
 418         */
 419        if (zone_idx(zone) == ZONE_DEVICE)
 420                return;
 421#endif
 422
 423        clear_zone_contiguous(zone);
 424
 425        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 426        update_pgdat_span(pgdat);
 427
 428        set_zone_contiguous(zone);
 429}
 430
 431static void __remove_section(unsigned long pfn, unsigned long nr_pages,
 432                             unsigned long map_offset,
 433                             struct vmem_altmap *altmap)
 434{
 435        struct mem_section *ms = __pfn_to_section(pfn);
 436
 437        if (WARN_ON_ONCE(!valid_section(ms)))
 438                return;
 439
 440        sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 441}
 442
 443/**
 444 * __remove_pages() - remove sections of pages
 445 * @pfn: starting pageframe (must be aligned to start of a section)
 446 * @nr_pages: number of pages to remove (must be multiple of section size)
 447 * @altmap: alternative device page map or %NULL if default memmap is used
 448 *
 449 * Generic helper function to remove section mappings and sysfs entries
 450 * for the section of the memory we are removing. Caller needs to make
 451 * sure that pages are marked reserved and zones are adjust properly by
 452 * calling offline_pages().
 453 */
 454void __remove_pages(unsigned long pfn, unsigned long nr_pages,
 455                    struct vmem_altmap *altmap)
 456{
 457        const unsigned long end_pfn = pfn + nr_pages;
 458        unsigned long cur_nr_pages;
 459        unsigned long map_offset = 0;
 460
 461        map_offset = vmem_altmap_offset(altmap);
 462
 463        if (check_pfn_span(pfn, nr_pages, "remove"))
 464                return;
 465
 466        for (; pfn < end_pfn; pfn += cur_nr_pages) {
 467                cond_resched();
 468                /* Select all remaining pages up to the next section boundary */
 469                cur_nr_pages = min(end_pfn - pfn,
 470                                   SECTION_ALIGN_UP(pfn + 1) - pfn);
 471                __remove_section(pfn, cur_nr_pages, map_offset, altmap);
 472                map_offset = 0;
 473        }
 474}
 475
 476int set_online_page_callback(online_page_callback_t callback)
 477{
 478        int rc = -EINVAL;
 479
 480        get_online_mems();
 481        mutex_lock(&online_page_callback_lock);
 482
 483        if (online_page_callback == generic_online_page) {
 484                online_page_callback = callback;
 485                rc = 0;
 486        }
 487
 488        mutex_unlock(&online_page_callback_lock);
 489        put_online_mems();
 490
 491        return rc;
 492}
 493EXPORT_SYMBOL_GPL(set_online_page_callback);
 494
 495int restore_online_page_callback(online_page_callback_t callback)
 496{
 497        int rc = -EINVAL;
 498
 499        get_online_mems();
 500        mutex_lock(&online_page_callback_lock);
 501
 502        if (online_page_callback == callback) {
 503                online_page_callback = generic_online_page;
 504                rc = 0;
 505        }
 506
 507        mutex_unlock(&online_page_callback_lock);
 508        put_online_mems();
 509
 510        return rc;
 511}
 512EXPORT_SYMBOL_GPL(restore_online_page_callback);
 513
 514void generic_online_page(struct page *page, unsigned int order)
 515{
 516        /*
 517         * Freeing the page with debug_pagealloc enabled will try to unmap it,
 518         * so we should map it first. This is better than introducing a special
 519         * case in page freeing fast path.
 520         */
 521        debug_pagealloc_map_pages(page, 1 << order);
 522        __free_pages_core(page, order);
 523        totalram_pages_add(1UL << order);
 524#ifdef CONFIG_HIGHMEM
 525        if (PageHighMem(page))
 526                totalhigh_pages_add(1UL << order);
 527#endif
 528}
 529EXPORT_SYMBOL_GPL(generic_online_page);
 530
 531static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
 532{
 533        const unsigned long end_pfn = start_pfn + nr_pages;
 534        unsigned long pfn;
 535
 536        /*
 537         * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
 538         * decide to not expose all pages to the buddy (e.g., expose them
 539         * later). We account all pages as being online and belonging to this
 540         * zone ("present").
 541         * When using memmap_on_memory, the range might not be aligned to
 542         * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
 543         * this and the first chunk to online will be pageblock_nr_pages.
 544         */
 545        for (pfn = start_pfn; pfn < end_pfn;) {
 546                int order = min(MAX_ORDER - 1UL, __ffs(pfn));
 547
 548                (*online_page_callback)(pfn_to_page(pfn), order);
 549                pfn += (1UL << order);
 550        }
 551
 552        /* mark all involved sections as online */
 553        online_mem_sections(start_pfn, end_pfn);
 554}
 555
 556/* check which state of node_states will be changed when online memory */
 557static void node_states_check_changes_online(unsigned long nr_pages,
 558        struct zone *zone, struct memory_notify *arg)
 559{
 560        int nid = zone_to_nid(zone);
 561
 562        arg->status_change_nid = NUMA_NO_NODE;
 563        arg->status_change_nid_normal = NUMA_NO_NODE;
 564        arg->status_change_nid_high = NUMA_NO_NODE;
 565
 566        if (!node_state(nid, N_MEMORY))
 567                arg->status_change_nid = nid;
 568        if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 569                arg->status_change_nid_normal = nid;
 570#ifdef CONFIG_HIGHMEM
 571        if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
 572                arg->status_change_nid_high = nid;
 573#endif
 574}
 575
 576static void node_states_set_node(int node, struct memory_notify *arg)
 577{
 578        if (arg->status_change_nid_normal >= 0)
 579                node_set_state(node, N_NORMAL_MEMORY);
 580
 581        if (arg->status_change_nid_high >= 0)
 582                node_set_state(node, N_HIGH_MEMORY);
 583
 584        if (arg->status_change_nid >= 0)
 585                node_set_state(node, N_MEMORY);
 586}
 587
 588static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 589                unsigned long nr_pages)
 590{
 591        unsigned long old_end_pfn = zone_end_pfn(zone);
 592
 593        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 594                zone->zone_start_pfn = start_pfn;
 595
 596        zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 597}
 598
 599static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 600                                     unsigned long nr_pages)
 601{
 602        unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 603
 604        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 605                pgdat->node_start_pfn = start_pfn;
 606
 607        pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 608
 609}
 610
 611static void section_taint_zone_device(unsigned long pfn)
 612{
 613        struct mem_section *ms = __pfn_to_section(pfn);
 614
 615        ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
 616}
 617
 618/*
 619 * Associate the pfn range with the given zone, initializing the memmaps
 620 * and resizing the pgdat/zone data to span the added pages. After this
 621 * call, all affected pages are PG_reserved.
 622 *
 623 * All aligned pageblocks are initialized to the specified migratetype
 624 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 625 * zone stats (e.g., nr_isolate_pageblock) are touched.
 626 */
 627void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 628                                  unsigned long nr_pages,
 629                                  struct vmem_altmap *altmap, int migratetype)
 630{
 631        struct pglist_data *pgdat = zone->zone_pgdat;
 632        int nid = pgdat->node_id;
 633
 634        clear_zone_contiguous(zone);
 635
 636        if (zone_is_empty(zone))
 637                init_currently_empty_zone(zone, start_pfn, nr_pages);
 638        resize_zone_range(zone, start_pfn, nr_pages);
 639        resize_pgdat_range(pgdat, start_pfn, nr_pages);
 640
 641        /*
 642         * Subsection population requires care in pfn_to_online_page().
 643         * Set the taint to enable the slow path detection of
 644         * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
 645         * section.
 646         */
 647        if (zone_is_zone_device(zone)) {
 648                if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
 649                        section_taint_zone_device(start_pfn);
 650                if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
 651                        section_taint_zone_device(start_pfn + nr_pages);
 652        }
 653
 654        /*
 655         * TODO now we have a visible range of pages which are not associated
 656         * with their zone properly. Not nice but set_pfnblock_flags_mask
 657         * expects the zone spans the pfn range. All the pages in the range
 658         * are reserved so nobody should be touching them so we should be safe
 659         */
 660        memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
 661                         MEMINIT_HOTPLUG, altmap, migratetype);
 662
 663        set_zone_contiguous(zone);
 664}
 665
 666/*
 667 * Returns a default kernel memory zone for the given pfn range.
 668 * If no kernel zone covers this pfn range it will automatically go
 669 * to the ZONE_NORMAL.
 670 */
 671static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 672                unsigned long nr_pages)
 673{
 674        struct pglist_data *pgdat = NODE_DATA(nid);
 675        int zid;
 676
 677        for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 678                struct zone *zone = &pgdat->node_zones[zid];
 679
 680                if (zone_intersects(zone, start_pfn, nr_pages))
 681                        return zone;
 682        }
 683
 684        return &pgdat->node_zones[ZONE_NORMAL];
 685}
 686
 687static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 688                unsigned long nr_pages)
 689{
 690        struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 691                        nr_pages);
 692        struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 693        bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 694        bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 695
 696        /*
 697         * We inherit the existing zone in a simple case where zones do not
 698         * overlap in the given range
 699         */
 700        if (in_kernel ^ in_movable)
 701                return (in_kernel) ? kernel_zone : movable_zone;
 702
 703        /*
 704         * If the range doesn't belong to any zone or two zones overlap in the
 705         * given range then we use movable zone only if movable_node is
 706         * enabled because we always online to a kernel zone by default.
 707         */
 708        return movable_node_enabled ? movable_zone : kernel_zone;
 709}
 710
 711struct zone *zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
 712                unsigned long nr_pages)
 713{
 714        if (online_type == MMOP_ONLINE_KERNEL)
 715                return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 716
 717        if (online_type == MMOP_ONLINE_MOVABLE)
 718                return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 719
 720        return default_zone_for_pfn(nid, start_pfn, nr_pages);
 721}
 722
 723/*
 724 * This function should only be called by memory_block_{online,offline},
 725 * and {online,offline}_pages.
 726 */
 727void adjust_present_page_count(struct zone *zone, long nr_pages)
 728{
 729        zone->present_pages += nr_pages;
 730        zone->zone_pgdat->node_present_pages += nr_pages;
 731}
 732
 733int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
 734                              struct zone *zone)
 735{
 736        unsigned long end_pfn = pfn + nr_pages;
 737        int ret;
 738
 739        ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 740        if (ret)
 741                return ret;
 742
 743        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
 744
 745        /*
 746         * It might be that the vmemmap_pages fully span sections. If that is
 747         * the case, mark those sections online here as otherwise they will be
 748         * left offline.
 749         */
 750        if (nr_pages >= PAGES_PER_SECTION)
 751                online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 752
 753        return ret;
 754}
 755
 756void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
 757{
 758        unsigned long end_pfn = pfn + nr_pages;
 759
 760        /*
 761         * It might be that the vmemmap_pages fully span sections. If that is
 762         * the case, mark those sections offline here as otherwise they will be
 763         * left online.
 764         */
 765        if (nr_pages >= PAGES_PER_SECTION)
 766                offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
 767
 768        /*
 769         * The pages associated with this vmemmap have been offlined, so
 770         * we can reset its state here.
 771         */
 772        remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
 773        kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
 774}
 775
 776int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
 777{
 778        unsigned long flags;
 779        int need_zonelists_rebuild = 0;
 780        const int nid = zone_to_nid(zone);
 781        int ret;
 782        struct memory_notify arg;
 783
 784        /*
 785         * {on,off}lining is constrained to full memory sections (or more
 786         * precisely to memory blocks from the user space POV).
 787         * memmap_on_memory is an exception because it reserves initial part
 788         * of the physical memory space for vmemmaps. That space is pageblock
 789         * aligned.
 790         */
 791        if (WARN_ON_ONCE(!nr_pages ||
 792                         !IS_ALIGNED(pfn, pageblock_nr_pages) ||
 793                         !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
 794                return -EINVAL;
 795
 796        mem_hotplug_begin();
 797
 798        /* associate pfn range with the zone */
 799        move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
 800
 801        arg.start_pfn = pfn;
 802        arg.nr_pages = nr_pages;
 803        node_states_check_changes_online(nr_pages, zone, &arg);
 804
 805        ret = memory_notify(MEM_GOING_ONLINE, &arg);
 806        ret = notifier_to_errno(ret);
 807        if (ret)
 808                goto failed_addition;
 809
 810        /*
 811         * Fixup the number of isolated pageblocks before marking the sections
 812         * onlining, such that undo_isolate_page_range() works correctly.
 813         */
 814        spin_lock_irqsave(&zone->lock, flags);
 815        zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
 816        spin_unlock_irqrestore(&zone->lock, flags);
 817
 818        /*
 819         * If this zone is not populated, then it is not in zonelist.
 820         * This means the page allocator ignores this zone.
 821         * So, zonelist must be updated after online.
 822         */
 823        if (!populated_zone(zone)) {
 824                need_zonelists_rebuild = 1;
 825                setup_zone_pageset(zone);
 826        }
 827
 828        online_pages_range(pfn, nr_pages);
 829        adjust_present_page_count(zone, nr_pages);
 830
 831        node_states_set_node(nid, &arg);
 832        if (need_zonelists_rebuild)
 833                build_all_zonelists(NULL);
 834
 835        /* Basic onlining is complete, allow allocation of onlined pages. */
 836        undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
 837
 838        /*
 839         * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
 840         * the tail of the freelist when undoing isolation). Shuffle the whole
 841         * zone to make sure the just onlined pages are properly distributed
 842         * across the whole freelist - to create an initial shuffle.
 843         */
 844        shuffle_zone(zone);
 845
 846        /* reinitialise watermarks and update pcp limits */
 847        init_per_zone_wmark_min();
 848
 849        kswapd_run(nid);
 850        kcompactd_run(nid);
 851
 852        writeback_set_ratelimit();
 853
 854        memory_notify(MEM_ONLINE, &arg);
 855        mem_hotplug_done();
 856        return 0;
 857
 858failed_addition:
 859        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 860                 (unsigned long long) pfn << PAGE_SHIFT,
 861                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 862        memory_notify(MEM_CANCEL_ONLINE, &arg);
 863        remove_pfn_range_from_zone(zone, pfn, nr_pages);
 864        mem_hotplug_done();
 865        return ret;
 866}
 867#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 868
 869static void reset_node_present_pages(pg_data_t *pgdat)
 870{
 871        struct zone *z;
 872
 873        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 874                z->present_pages = 0;
 875
 876        pgdat->node_present_pages = 0;
 877}
 878
 879/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 880static pg_data_t __ref *hotadd_new_pgdat(int nid)
 881{
 882        struct pglist_data *pgdat;
 883
 884        pgdat = NODE_DATA(nid);
 885        if (!pgdat) {
 886                pgdat = arch_alloc_nodedata(nid);
 887                if (!pgdat)
 888                        return NULL;
 889
 890                pgdat->per_cpu_nodestats =
 891                        alloc_percpu(struct per_cpu_nodestat);
 892                arch_refresh_nodedata(nid, pgdat);
 893        } else {
 894                int cpu;
 895                /*
 896                 * Reset the nr_zones, order and highest_zoneidx before reuse.
 897                 * Note that kswapd will init kswapd_highest_zoneidx properly
 898                 * when it starts in the near future.
 899                 */
 900                pgdat->nr_zones = 0;
 901                pgdat->kswapd_order = 0;
 902                pgdat->kswapd_highest_zoneidx = 0;
 903                for_each_online_cpu(cpu) {
 904                        struct per_cpu_nodestat *p;
 905
 906                        p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 907                        memset(p, 0, sizeof(*p));
 908                }
 909        }
 910
 911        /* we can use NODE_DATA(nid) from here */
 912        pgdat->node_id = nid;
 913        pgdat->node_start_pfn = 0;
 914
 915        /* init node's zones as empty zones, we don't have any present pages.*/
 916        free_area_init_core_hotplug(nid);
 917
 918        /*
 919         * The node we allocated has no zone fallback lists. For avoiding
 920         * to access not-initialized zonelist, build here.
 921         */
 922        build_all_zonelists(pgdat);
 923
 924        /*
 925         * When memory is hot-added, all the memory is in offline state. So
 926         * clear all zones' present_pages because they will be updated in
 927         * online_pages() and offline_pages().
 928         */
 929        reset_node_managed_pages(pgdat);
 930        reset_node_present_pages(pgdat);
 931
 932        return pgdat;
 933}
 934
 935static void rollback_node_hotadd(int nid)
 936{
 937        pg_data_t *pgdat = NODE_DATA(nid);
 938
 939        arch_refresh_nodedata(nid, NULL);
 940        free_percpu(pgdat->per_cpu_nodestats);
 941        arch_free_nodedata(pgdat);
 942}
 943
 944
 945/*
 946 * __try_online_node - online a node if offlined
 947 * @nid: the node ID
 948 * @set_node_online: Whether we want to online the node
 949 * called by cpu_up() to online a node without onlined memory.
 950 *
 951 * Returns:
 952 * 1 -> a new node has been allocated
 953 * 0 -> the node is already online
 954 * -ENOMEM -> the node could not be allocated
 955 */
 956static int __try_online_node(int nid, bool set_node_online)
 957{
 958        pg_data_t *pgdat;
 959        int ret = 1;
 960
 961        if (node_online(nid))
 962                return 0;
 963
 964        pgdat = hotadd_new_pgdat(nid);
 965        if (!pgdat) {
 966                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
 967                ret = -ENOMEM;
 968                goto out;
 969        }
 970
 971        if (set_node_online) {
 972                node_set_online(nid);
 973                ret = register_one_node(nid);
 974                BUG_ON(ret);
 975        }
 976out:
 977        return ret;
 978}
 979
 980/*
 981 * Users of this function always want to online/register the node
 982 */
 983int try_online_node(int nid)
 984{
 985        int ret;
 986
 987        mem_hotplug_begin();
 988        ret =  __try_online_node(nid, true);
 989        mem_hotplug_done();
 990        return ret;
 991}
 992
 993static int check_hotplug_memory_range(u64 start, u64 size)
 994{
 995        /* memory range must be block size aligned */
 996        if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
 997            !IS_ALIGNED(size, memory_block_size_bytes())) {
 998                pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
 999                       memory_block_size_bytes(), start, size);
1000                return -EINVAL;
1001        }
1002
1003        return 0;
1004}
1005
1006static int online_memory_block(struct memory_block *mem, void *arg)
1007{
1008        mem->online_type = mhp_default_online_type;
1009        return device_online(&mem->dev);
1010}
1011
1012bool mhp_supports_memmap_on_memory(unsigned long size)
1013{
1014        unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1015        unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1016        unsigned long remaining_size = size - vmemmap_size;
1017
1018        /*
1019         * Besides having arch support and the feature enabled at runtime, we
1020         * need a few more assumptions to hold true:
1021         *
1022         * a) We span a single memory block: memory onlining/offlinin;g happens
1023         *    in memory block granularity. We don't want the vmemmap of online
1024         *    memory blocks to reside on offline memory blocks. In the future,
1025         *    we might want to support variable-sized memory blocks to make the
1026         *    feature more versatile.
1027         *
1028         * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1029         *    to populate memory from the altmap for unrelated parts (i.e.,
1030         *    other memory blocks)
1031         *
1032         * c) The vmemmap pages (and thereby the pages that will be exposed to
1033         *    the buddy) have to cover full pageblocks: memory onlining/offlining
1034         *    code requires applicable ranges to be page-aligned, for example, to
1035         *    set the migratetypes properly.
1036         *
1037         * TODO: Although we have a check here to make sure that vmemmap pages
1038         *       fully populate a PMD, it is not the right place to check for
1039         *       this. A much better solution involves improving vmemmap code
1040         *       to fallback to base pages when trying to populate vmemmap using
1041         *       altmap as an alternative source of memory, and we do not exactly
1042         *       populate a single PMD.
1043         */
1044        return memmap_on_memory &&
1045               !hugetlb_free_vmemmap_enabled &&
1046               IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1047               size == memory_block_size_bytes() &&
1048               IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1049               IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1050}
1051
1052/*
1053 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1054 * and online/offline operations (triggered e.g. by sysfs).
1055 *
1056 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1057 */
1058int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1059{
1060        struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1061        struct vmem_altmap mhp_altmap = {};
1062        u64 start, size;
1063        bool new_node = false;
1064        int ret;
1065
1066        start = res->start;
1067        size = resource_size(res);
1068
1069        ret = check_hotplug_memory_range(start, size);
1070        if (ret)
1071                return ret;
1072
1073        if (!node_possible(nid)) {
1074                WARN(1, "node %d was absent from the node_possible_map\n", nid);
1075                return -EINVAL;
1076        }
1077
1078        mem_hotplug_begin();
1079
1080        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1081                memblock_add_node(start, size, nid);
1082
1083        ret = __try_online_node(nid, false);
1084        if (ret < 0)
1085                goto error;
1086        new_node = ret;
1087
1088        /*
1089         * Self hosted memmap array
1090         */
1091        if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1092                if (!mhp_supports_memmap_on_memory(size)) {
1093                        ret = -EINVAL;
1094                        goto error;
1095                }
1096                mhp_altmap.free = PHYS_PFN(size);
1097                mhp_altmap.base_pfn = PHYS_PFN(start);
1098                params.altmap = &mhp_altmap;
1099        }
1100
1101        /* call arch's memory hotadd */
1102        ret = arch_add_memory(nid, start, size, &params);
1103        if (ret < 0)
1104                goto error;
1105
1106        /* create memory block devices after memory was added */
1107        ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1108        if (ret) {
1109                arch_remove_memory(nid, start, size, NULL);
1110                goto error;
1111        }
1112
1113        if (new_node) {
1114                /* If sysfs file of new node can't be created, cpu on the node
1115                 * can't be hot-added. There is no rollback way now.
1116                 * So, check by BUG_ON() to catch it reluctantly..
1117                 * We online node here. We can't roll back from here.
1118                 */
1119                node_set_online(nid);
1120                ret = __register_one_node(nid);
1121                BUG_ON(ret);
1122        }
1123
1124        /* link memory sections under this node.*/
1125        link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1126                          MEMINIT_HOTPLUG);
1127
1128        /* create new memmap entry */
1129        if (!strcmp(res->name, "System RAM"))
1130                firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132        /* device_online() will take the lock when calling online_pages() */
1133        mem_hotplug_done();
1134
1135        /*
1136         * In case we're allowed to merge the resource, flag it and trigger
1137         * merging now that adding succeeded.
1138         */
1139        if (mhp_flags & MHP_MERGE_RESOURCE)
1140                merge_system_ram_resource(res);
1141
1142        /* online pages if requested */
1143        if (mhp_default_online_type != MMOP_OFFLINE)
1144                walk_memory_blocks(start, size, NULL, online_memory_block);
1145
1146        return ret;
1147error:
1148        /* rollback pgdat allocation and others */
1149        if (new_node)
1150                rollback_node_hotadd(nid);
1151        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1152                memblock_remove(start, size);
1153        mem_hotplug_done();
1154        return ret;
1155}
1156
1157/* requires device_hotplug_lock, see add_memory_resource() */
1158int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1159{
1160        struct resource *res;
1161        int ret;
1162
1163        res = register_memory_resource(start, size, "System RAM");
1164        if (IS_ERR(res))
1165                return PTR_ERR(res);
1166
1167        ret = add_memory_resource(nid, res, mhp_flags);
1168        if (ret < 0)
1169                release_memory_resource(res);
1170        return ret;
1171}
1172
1173int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1174{
1175        int rc;
1176
1177        lock_device_hotplug();
1178        rc = __add_memory(nid, start, size, mhp_flags);
1179        unlock_device_hotplug();
1180
1181        return rc;
1182}
1183EXPORT_SYMBOL_GPL(add_memory);
1184
1185/*
1186 * Add special, driver-managed memory to the system as system RAM. Such
1187 * memory is not exposed via the raw firmware-provided memmap as system
1188 * RAM, instead, it is detected and added by a driver - during cold boot,
1189 * after a reboot, and after kexec.
1190 *
1191 * Reasons why this memory should not be used for the initial memmap of a
1192 * kexec kernel or for placing kexec images:
1193 * - The booting kernel is in charge of determining how this memory will be
1194 *   used (e.g., use persistent memory as system RAM)
1195 * - Coordination with a hypervisor is required before this memory
1196 *   can be used (e.g., inaccessible parts).
1197 *
1198 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1199 * memory map") are created. Also, the created memory resource is flagged
1200 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1201 * this memory as well (esp., not place kexec images onto it).
1202 *
1203 * The resource_name (visible via /proc/iomem) has to have the format
1204 * "System RAM ($DRIVER)".
1205 */
1206int add_memory_driver_managed(int nid, u64 start, u64 size,
1207                              const char *resource_name, mhp_t mhp_flags)
1208{
1209        struct resource *res;
1210        int rc;
1211
1212        if (!resource_name ||
1213            strstr(resource_name, "System RAM (") != resource_name ||
1214            resource_name[strlen(resource_name) - 1] != ')')
1215                return -EINVAL;
1216
1217        lock_device_hotplug();
1218
1219        res = register_memory_resource(start, size, resource_name);
1220        if (IS_ERR(res)) {
1221                rc = PTR_ERR(res);
1222                goto out_unlock;
1223        }
1224
1225        rc = add_memory_resource(nid, res, mhp_flags);
1226        if (rc < 0)
1227                release_memory_resource(res);
1228
1229out_unlock:
1230        unlock_device_hotplug();
1231        return rc;
1232}
1233EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1234
1235/*
1236 * Platforms should define arch_get_mappable_range() that provides
1237 * maximum possible addressable physical memory range for which the
1238 * linear mapping could be created. The platform returned address
1239 * range must adhere to these following semantics.
1240 *
1241 * - range.start <= range.end
1242 * - Range includes both end points [range.start..range.end]
1243 *
1244 * There is also a fallback definition provided here, allowing the
1245 * entire possible physical address range in case any platform does
1246 * not define arch_get_mappable_range().
1247 */
1248struct range __weak arch_get_mappable_range(void)
1249{
1250        struct range mhp_range = {
1251                .start = 0UL,
1252                .end = -1ULL,
1253        };
1254        return mhp_range;
1255}
1256
1257struct range mhp_get_pluggable_range(bool need_mapping)
1258{
1259        const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1260        struct range mhp_range;
1261
1262        if (need_mapping) {
1263                mhp_range = arch_get_mappable_range();
1264                if (mhp_range.start > max_phys) {
1265                        mhp_range.start = 0;
1266                        mhp_range.end = 0;
1267                }
1268                mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1269        } else {
1270                mhp_range.start = 0;
1271                mhp_range.end = max_phys;
1272        }
1273        return mhp_range;
1274}
1275EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1276
1277bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1278{
1279        struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1280        u64 end = start + size;
1281
1282        if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1283                return true;
1284
1285        pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1286                start, end, mhp_range.start, mhp_range.end);
1287        return false;
1288}
1289
1290#ifdef CONFIG_MEMORY_HOTREMOVE
1291/*
1292 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1293 * memory holes). When true, return the zone.
1294 */
1295struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1296                                  unsigned long end_pfn)
1297{
1298        unsigned long pfn, sec_end_pfn;
1299        struct zone *zone = NULL;
1300        struct page *page;
1301        int i;
1302        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1303             pfn < end_pfn;
1304             pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1305                /* Make sure the memory section is present first */
1306                if (!present_section_nr(pfn_to_section_nr(pfn)))
1307                        continue;
1308                for (; pfn < sec_end_pfn && pfn < end_pfn;
1309                     pfn += MAX_ORDER_NR_PAGES) {
1310                        i = 0;
1311                        /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1312                        while ((i < MAX_ORDER_NR_PAGES) &&
1313                                !pfn_valid_within(pfn + i))
1314                                i++;
1315                        if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1316                                continue;
1317                        /* Check if we got outside of the zone */
1318                        if (zone && !zone_spans_pfn(zone, pfn + i))
1319                                return NULL;
1320                        page = pfn_to_page(pfn + i);
1321                        if (zone && page_zone(page) != zone)
1322                                return NULL;
1323                        zone = page_zone(page);
1324                }
1325        }
1326
1327        return zone;
1328}
1329
1330/*
1331 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1332 * non-lru movable pages and hugepages). Will skip over most unmovable
1333 * pages (esp., pages that can be skipped when offlining), but bail out on
1334 * definitely unmovable pages.
1335 *
1336 * Returns:
1337 *      0 in case a movable page is found and movable_pfn was updated.
1338 *      -ENOENT in case no movable page was found.
1339 *      -EBUSY in case a definitely unmovable page was found.
1340 */
1341static int scan_movable_pages(unsigned long start, unsigned long end,
1342                              unsigned long *movable_pfn)
1343{
1344        unsigned long pfn;
1345
1346        for (pfn = start; pfn < end; pfn++) {
1347                struct page *page, *head;
1348                unsigned long skip;
1349
1350                if (!pfn_valid(pfn))
1351                        continue;
1352                page = pfn_to_page(pfn);
1353                if (PageLRU(page))
1354                        goto found;
1355                if (__PageMovable(page))
1356                        goto found;
1357
1358                /*
1359                 * PageOffline() pages that are not marked __PageMovable() and
1360                 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1361                 * definitely unmovable. If their reference count would be 0,
1362                 * they could at least be skipped when offlining memory.
1363                 */
1364                if (PageOffline(page) && page_count(page))
1365                        return -EBUSY;
1366
1367                if (!PageHuge(page))
1368                        continue;
1369                head = compound_head(page);
1370                /*
1371                 * This test is racy as we hold no reference or lock.  The
1372                 * hugetlb page could have been free'ed and head is no longer
1373                 * a hugetlb page before the following check.  In such unlikely
1374                 * cases false positives and negatives are possible.  Calling
1375                 * code must deal with these scenarios.
1376                 */
1377                if (HPageMigratable(head))
1378                        goto found;
1379                skip = compound_nr(head) - (page - head);
1380                pfn += skip - 1;
1381        }
1382        return -ENOENT;
1383found:
1384        *movable_pfn = pfn;
1385        return 0;
1386}
1387
1388static int
1389do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1390{
1391        unsigned long pfn;
1392        struct page *page, *head;
1393        int ret = 0;
1394        LIST_HEAD(source);
1395        static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1396                                      DEFAULT_RATELIMIT_BURST);
1397
1398        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1399                if (!pfn_valid(pfn))
1400                        continue;
1401                page = pfn_to_page(pfn);
1402                head = compound_head(page);
1403
1404                if (PageHuge(page)) {
1405                        pfn = page_to_pfn(head) + compound_nr(head) - 1;
1406                        isolate_huge_page(head, &source);
1407                        continue;
1408                } else if (PageTransHuge(page))
1409                        pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1410
1411                /*
1412                 * HWPoison pages have elevated reference counts so the migration would
1413                 * fail on them. It also doesn't make any sense to migrate them in the
1414                 * first place. Still try to unmap such a page in case it is still mapped
1415                 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1416                 * the unmap as the catch all safety net).
1417                 */
1418                if (PageHWPoison(page)) {
1419                        if (WARN_ON(PageLRU(page)))
1420                                isolate_lru_page(page);
1421                        if (page_mapped(page))
1422                                try_to_unmap(page, TTU_IGNORE_MLOCK);
1423                        continue;
1424                }
1425
1426                if (!get_page_unless_zero(page))
1427                        continue;
1428                /*
1429                 * We can skip free pages. And we can deal with pages on
1430                 * LRU and non-lru movable pages.
1431                 */
1432                if (PageLRU(page))
1433                        ret = isolate_lru_page(page);
1434                else
1435                        ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1436                if (!ret) { /* Success */
1437                        list_add_tail(&page->lru, &source);
1438                        if (!__PageMovable(page))
1439                                inc_node_page_state(page, NR_ISOLATED_ANON +
1440                                                    page_is_file_lru(page));
1441
1442                } else {
1443                        if (__ratelimit(&migrate_rs)) {
1444                                pr_warn("failed to isolate pfn %lx\n", pfn);
1445                                dump_page(page, "isolation failed");
1446                        }
1447                }
1448                put_page(page);
1449        }
1450        if (!list_empty(&source)) {
1451                nodemask_t nmask = node_states[N_MEMORY];
1452                struct migration_target_control mtc = {
1453                        .nmask = &nmask,
1454                        .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1455                };
1456
1457                /*
1458                 * We have checked that migration range is on a single zone so
1459                 * we can use the nid of the first page to all the others.
1460                 */
1461                mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1462
1463                /*
1464                 * try to allocate from a different node but reuse this node
1465                 * if there are no other online nodes to be used (e.g. we are
1466                 * offlining a part of the only existing node)
1467                 */
1468                node_clear(mtc.nid, nmask);
1469                if (nodes_empty(nmask))
1470                        node_set(mtc.nid, nmask);
1471                ret = migrate_pages(&source, alloc_migration_target, NULL,
1472                        (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1473                if (ret) {
1474                        list_for_each_entry(page, &source, lru) {
1475                                if (__ratelimit(&migrate_rs)) {
1476                                        pr_warn("migrating pfn %lx failed ret:%d\n",
1477                                                page_to_pfn(page), ret);
1478                                        dump_page(page, "migration failure");
1479                                }
1480                        }
1481                        putback_movable_pages(&source);
1482                }
1483        }
1484
1485        return ret;
1486}
1487
1488static int __init cmdline_parse_movable_node(char *p)
1489{
1490        movable_node_enabled = true;
1491        return 0;
1492}
1493early_param("movable_node", cmdline_parse_movable_node);
1494
1495/* check which state of node_states will be changed when offline memory */
1496static void node_states_check_changes_offline(unsigned long nr_pages,
1497                struct zone *zone, struct memory_notify *arg)
1498{
1499        struct pglist_data *pgdat = zone->zone_pgdat;
1500        unsigned long present_pages = 0;
1501        enum zone_type zt;
1502
1503        arg->status_change_nid = NUMA_NO_NODE;
1504        arg->status_change_nid_normal = NUMA_NO_NODE;
1505        arg->status_change_nid_high = NUMA_NO_NODE;
1506
1507        /*
1508         * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1509         * If the memory to be offline is within the range
1510         * [0..ZONE_NORMAL], and it is the last present memory there,
1511         * the zones in that range will become empty after the offlining,
1512         * thus we can determine that we need to clear the node from
1513         * node_states[N_NORMAL_MEMORY].
1514         */
1515        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1516                present_pages += pgdat->node_zones[zt].present_pages;
1517        if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1518                arg->status_change_nid_normal = zone_to_nid(zone);
1519
1520#ifdef CONFIG_HIGHMEM
1521        /*
1522         * node_states[N_HIGH_MEMORY] contains nodes which
1523         * have normal memory or high memory.
1524         * Here we add the present_pages belonging to ZONE_HIGHMEM.
1525         * If the zone is within the range of [0..ZONE_HIGHMEM), and
1526         * we determine that the zones in that range become empty,
1527         * we need to clear the node for N_HIGH_MEMORY.
1528         */
1529        present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1530        if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1531                arg->status_change_nid_high = zone_to_nid(zone);
1532#endif
1533
1534        /*
1535         * We have accounted the pages from [0..ZONE_NORMAL), and
1536         * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1537         * as well.
1538         * Here we count the possible pages from ZONE_MOVABLE.
1539         * If after having accounted all the pages, we see that the nr_pages
1540         * to be offlined is over or equal to the accounted pages,
1541         * we know that the node will become empty, and so, we can clear
1542         * it for N_MEMORY as well.
1543         */
1544        present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1545
1546        if (nr_pages >= present_pages)
1547                arg->status_change_nid = zone_to_nid(zone);
1548}
1549
1550static void node_states_clear_node(int node, struct memory_notify *arg)
1551{
1552        if (arg->status_change_nid_normal >= 0)
1553                node_clear_state(node, N_NORMAL_MEMORY);
1554
1555        if (arg->status_change_nid_high >= 0)
1556                node_clear_state(node, N_HIGH_MEMORY);
1557
1558        if (arg->status_change_nid >= 0)
1559                node_clear_state(node, N_MEMORY);
1560}
1561
1562static int count_system_ram_pages_cb(unsigned long start_pfn,
1563                                     unsigned long nr_pages, void *data)
1564{
1565        unsigned long *nr_system_ram_pages = data;
1566
1567        *nr_system_ram_pages += nr_pages;
1568        return 0;
1569}
1570
1571int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1572{
1573        const unsigned long end_pfn = start_pfn + nr_pages;
1574        unsigned long pfn, system_ram_pages = 0;
1575        unsigned long flags;
1576        struct zone *zone;
1577        struct memory_notify arg;
1578        int ret, node;
1579        char *reason;
1580
1581        /*
1582         * {on,off}lining is constrained to full memory sections (or more
1583         * precisely to memory blocks from the user space POV).
1584         * memmap_on_memory is an exception because it reserves initial part
1585         * of the physical memory space for vmemmaps. That space is pageblock
1586         * aligned.
1587         */
1588        if (WARN_ON_ONCE(!nr_pages ||
1589                         !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1590                         !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1591                return -EINVAL;
1592
1593        mem_hotplug_begin();
1594
1595        /*
1596         * Don't allow to offline memory blocks that contain holes.
1597         * Consequently, memory blocks with holes can never get onlined
1598         * via the hotplug path - online_pages() - as hotplugged memory has
1599         * no holes. This way, we e.g., don't have to worry about marking
1600         * memory holes PG_reserved, don't need pfn_valid() checks, and can
1601         * avoid using walk_system_ram_range() later.
1602         */
1603        walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1604                              count_system_ram_pages_cb);
1605        if (system_ram_pages != nr_pages) {
1606                ret = -EINVAL;
1607                reason = "memory holes";
1608                goto failed_removal;
1609        }
1610
1611        /* This makes hotplug much easier...and readable.
1612           we assume this for now. .*/
1613        zone = test_pages_in_a_zone(start_pfn, end_pfn);
1614        if (!zone) {
1615                ret = -EINVAL;
1616                reason = "multizone range";
1617                goto failed_removal;
1618        }
1619        node = zone_to_nid(zone);
1620
1621        /*
1622         * Disable pcplists so that page isolation cannot race with freeing
1623         * in a way that pages from isolated pageblock are left on pcplists.
1624         */
1625        zone_pcp_disable(zone);
1626        lru_cache_disable();
1627
1628        /* set above range as isolated */
1629        ret = start_isolate_page_range(start_pfn, end_pfn,
1630                                       MIGRATE_MOVABLE,
1631                                       MEMORY_OFFLINE | REPORT_FAILURE);
1632        if (ret) {
1633                reason = "failure to isolate range";
1634                goto failed_removal_pcplists_disabled;
1635        }
1636
1637        arg.start_pfn = start_pfn;
1638        arg.nr_pages = nr_pages;
1639        node_states_check_changes_offline(nr_pages, zone, &arg);
1640
1641        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1642        ret = notifier_to_errno(ret);
1643        if (ret) {
1644                reason = "notifier failure";
1645                goto failed_removal_isolated;
1646        }
1647
1648        do {
1649                pfn = start_pfn;
1650                do {
1651                        if (signal_pending(current)) {
1652                                ret = -EINTR;
1653                                reason = "signal backoff";
1654                                goto failed_removal_isolated;
1655                        }
1656
1657                        cond_resched();
1658
1659                        ret = scan_movable_pages(pfn, end_pfn, &pfn);
1660                        if (!ret) {
1661                                /*
1662                                 * TODO: fatal migration failures should bail
1663                                 * out
1664                                 */
1665                                do_migrate_range(pfn, end_pfn);
1666                        }
1667                } while (!ret);
1668
1669                if (ret != -ENOENT) {
1670                        reason = "unmovable page";
1671                        goto failed_removal_isolated;
1672                }
1673
1674                /*
1675                 * Dissolve free hugepages in the memory block before doing
1676                 * offlining actually in order to make hugetlbfs's object
1677                 * counting consistent.
1678                 */
1679                ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1680                if (ret) {
1681                        reason = "failure to dissolve huge pages";
1682                        goto failed_removal_isolated;
1683                }
1684
1685                ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1686
1687        } while (ret);
1688
1689        /* Mark all sections offline and remove free pages from the buddy. */
1690        __offline_isolated_pages(start_pfn, end_pfn);
1691        pr_debug("Offlined Pages %ld\n", nr_pages);
1692
1693        /*
1694         * The memory sections are marked offline, and the pageblock flags
1695         * effectively stale; nobody should be touching them. Fixup the number
1696         * of isolated pageblocks, memory onlining will properly revert this.
1697         */
1698        spin_lock_irqsave(&zone->lock, flags);
1699        zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1700        spin_unlock_irqrestore(&zone->lock, flags);
1701
1702        lru_cache_enable();
1703        zone_pcp_enable(zone);
1704
1705        /* removal success */
1706        adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1707        adjust_present_page_count(zone, -nr_pages);
1708
1709        /* reinitialise watermarks and update pcp limits */
1710        init_per_zone_wmark_min();
1711
1712        if (!populated_zone(zone)) {
1713                zone_pcp_reset(zone);
1714                build_all_zonelists(NULL);
1715        }
1716
1717        node_states_clear_node(node, &arg);
1718        if (arg.status_change_nid >= 0) {
1719                kswapd_stop(node);
1720                kcompactd_stop(node);
1721        }
1722
1723        writeback_set_ratelimit();
1724
1725        memory_notify(MEM_OFFLINE, &arg);
1726        remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1727        mem_hotplug_done();
1728        return 0;
1729
1730failed_removal_isolated:
1731        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1732        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1733failed_removal_pcplists_disabled:
1734        lru_cache_enable();
1735        zone_pcp_enable(zone);
1736failed_removal:
1737        pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1738                 (unsigned long long) start_pfn << PAGE_SHIFT,
1739                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1740                 reason);
1741        /* pushback to free area */
1742        mem_hotplug_done();
1743        return ret;
1744}
1745
1746static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747{
1748        int ret = !is_memblock_offlined(mem);
1749
1750        if (unlikely(ret)) {
1751                phys_addr_t beginpa, endpa;
1752
1753                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754                endpa = beginpa + memory_block_size_bytes() - 1;
1755                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1756                        &beginpa, &endpa);
1757
1758                return -EBUSY;
1759        }
1760        return 0;
1761}
1762
1763static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1764{
1765        /*
1766         * If not set, continue with the next block.
1767         */
1768        return mem->nr_vmemmap_pages;
1769}
1770
1771static int check_cpu_on_node(pg_data_t *pgdat)
1772{
1773        int cpu;
1774
1775        for_each_present_cpu(cpu) {
1776                if (cpu_to_node(cpu) == pgdat->node_id)
1777                        /*
1778                         * the cpu on this node isn't removed, and we can't
1779                         * offline this node.
1780                         */
1781                        return -EBUSY;
1782        }
1783
1784        return 0;
1785}
1786
1787static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1788{
1789        int nid = *(int *)arg;
1790
1791        /*
1792         * If a memory block belongs to multiple nodes, the stored nid is not
1793         * reliable. However, such blocks are always online (e.g., cannot get
1794         * offlined) and, therefore, are still spanned by the node.
1795         */
1796        return mem->nid == nid ? -EEXIST : 0;
1797}
1798
1799/**
1800 * try_offline_node
1801 * @nid: the node ID
1802 *
1803 * Offline a node if all memory sections and cpus of the node are removed.
1804 *
1805 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1806 * and online/offline operations before this call.
1807 */
1808void try_offline_node(int nid)
1809{
1810        pg_data_t *pgdat = NODE_DATA(nid);
1811        int rc;
1812
1813        /*
1814         * If the node still spans pages (especially ZONE_DEVICE), don't
1815         * offline it. A node spans memory after move_pfn_range_to_zone(),
1816         * e.g., after the memory block was onlined.
1817         */
1818        if (pgdat->node_spanned_pages)
1819                return;
1820
1821        /*
1822         * Especially offline memory blocks might not be spanned by the
1823         * node. They will get spanned by the node once they get onlined.
1824         * However, they link to the node in sysfs and can get onlined later.
1825         */
1826        rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1827        if (rc)
1828                return;
1829
1830        if (check_cpu_on_node(pgdat))
1831                return;
1832
1833        /*
1834         * all memory/cpu of this node are removed, we can offline this
1835         * node now.
1836         */
1837        node_set_offline(nid);
1838        unregister_one_node(nid);
1839}
1840EXPORT_SYMBOL(try_offline_node);
1841
1842static int __ref try_remove_memory(int nid, u64 start, u64 size)
1843{
1844        int rc = 0;
1845        struct vmem_altmap mhp_altmap = {};
1846        struct vmem_altmap *altmap = NULL;
1847        unsigned long nr_vmemmap_pages;
1848
1849        BUG_ON(check_hotplug_memory_range(start, size));
1850
1851        /*
1852         * All memory blocks must be offlined before removing memory.  Check
1853         * whether all memory blocks in question are offline and return error
1854         * if this is not the case.
1855         */
1856        rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1857        if (rc)
1858                return rc;
1859
1860        /*
1861         * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1862         * the same granularity it was added - a single memory block.
1863         */
1864        if (memmap_on_memory) {
1865                nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1866                                                      get_nr_vmemmap_pages_cb);
1867                if (nr_vmemmap_pages) {
1868                        if (size != memory_block_size_bytes()) {
1869                                pr_warn("Refuse to remove %#llx - %#llx,"
1870                                        "wrong granularity\n",
1871                                        start, start + size);
1872                                return -EINVAL;
1873                        }
1874
1875                        /*
1876                         * Let remove_pmd_table->free_hugepage_table do the
1877                         * right thing if we used vmem_altmap when hot-adding
1878                         * the range.
1879                         */
1880                        mhp_altmap.alloc = nr_vmemmap_pages;
1881                        altmap = &mhp_altmap;
1882                }
1883        }
1884
1885        /* remove memmap entry */
1886        firmware_map_remove(start, start + size, "System RAM");
1887
1888        /*
1889         * Memory block device removal under the device_hotplug_lock is
1890         * a barrier against racing online attempts.
1891         */
1892        remove_memory_block_devices(start, size);
1893
1894        mem_hotplug_begin();
1895
1896        arch_remove_memory(nid, start, size, altmap);
1897
1898        if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1899                memblock_free(start, size);
1900                memblock_remove(start, size);
1901        }
1902
1903        release_mem_region_adjustable(start, size);
1904
1905        try_offline_node(nid);
1906
1907        mem_hotplug_done();
1908        return 0;
1909}
1910
1911/**
1912 * __remove_memory - Remove memory if every memory block is offline
1913 * @nid: the node ID
1914 * @start: physical address of the region to remove
1915 * @size: size of the region to remove
1916 *
1917 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1918 * and online/offline operations before this call, as required by
1919 * try_offline_node().
1920 */
1921void __remove_memory(int nid, u64 start, u64 size)
1922{
1923
1924        /*
1925         * trigger BUG() if some memory is not offlined prior to calling this
1926         * function
1927         */
1928        if (try_remove_memory(nid, start, size))
1929                BUG();
1930}
1931
1932/*
1933 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1934 * some memory is not offline
1935 */
1936int remove_memory(int nid, u64 start, u64 size)
1937{
1938        int rc;
1939
1940        lock_device_hotplug();
1941        rc  = try_remove_memory(nid, start, size);
1942        unlock_device_hotplug();
1943
1944        return rc;
1945}
1946EXPORT_SYMBOL_GPL(remove_memory);
1947
1948static int try_offline_memory_block(struct memory_block *mem, void *arg)
1949{
1950        uint8_t online_type = MMOP_ONLINE_KERNEL;
1951        uint8_t **online_types = arg;
1952        struct page *page;
1953        int rc;
1954
1955        /*
1956         * Sense the online_type via the zone of the memory block. Offlining
1957         * with multiple zones within one memory block will be rejected
1958         * by offlining code ... so we don't care about that.
1959         */
1960        page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1961        if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1962                online_type = MMOP_ONLINE_MOVABLE;
1963
1964        rc = device_offline(&mem->dev);
1965        /*
1966         * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1967         * so try_reonline_memory_block() can do the right thing.
1968         */
1969        if (!rc)
1970                **online_types = online_type;
1971
1972        (*online_types)++;
1973        /* Ignore if already offline. */
1974        return rc < 0 ? rc : 0;
1975}
1976
1977static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1978{
1979        uint8_t **online_types = arg;
1980        int rc;
1981
1982        if (**online_types != MMOP_OFFLINE) {
1983                mem->online_type = **online_types;
1984                rc = device_online(&mem->dev);
1985                if (rc < 0)
1986                        pr_warn("%s: Failed to re-online memory: %d",
1987                                __func__, rc);
1988        }
1989
1990        /* Continue processing all remaining memory blocks. */
1991        (*online_types)++;
1992        return 0;
1993}
1994
1995/*
1996 * Try to offline and remove memory. Might take a long time to finish in case
1997 * memory is still in use. Primarily useful for memory devices that logically
1998 * unplugged all memory (so it's no longer in use) and want to offline + remove
1999 * that memory.
2000 */
2001int offline_and_remove_memory(int nid, u64 start, u64 size)
2002{
2003        const unsigned long mb_count = size / memory_block_size_bytes();
2004        uint8_t *online_types, *tmp;
2005        int rc;
2006
2007        if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2008            !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2009                return -EINVAL;
2010
2011        /*
2012         * We'll remember the old online type of each memory block, so we can
2013         * try to revert whatever we did when offlining one memory block fails
2014         * after offlining some others succeeded.
2015         */
2016        online_types = kmalloc_array(mb_count, sizeof(*online_types),
2017                                     GFP_KERNEL);
2018        if (!online_types)
2019                return -ENOMEM;
2020        /*
2021         * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2022         * try_offline_memory_block(), we'll skip all unprocessed blocks in
2023         * try_reonline_memory_block().
2024         */
2025        memset(online_types, MMOP_OFFLINE, mb_count);
2026
2027        lock_device_hotplug();
2028
2029        tmp = online_types;
2030        rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2031
2032        /*
2033         * In case we succeeded to offline all memory, remove it.
2034         * This cannot fail as it cannot get onlined in the meantime.
2035         */
2036        if (!rc) {
2037                rc = try_remove_memory(nid, start, size);
2038                if (rc)
2039                        pr_err("%s: Failed to remove memory: %d", __func__, rc);
2040        }
2041
2042        /*
2043         * Rollback what we did. While memory onlining might theoretically fail
2044         * (nacked by a notifier), it barely ever happens.
2045         */
2046        if (rc) {
2047                tmp = online_types;
2048                walk_memory_blocks(start, size, &tmp,
2049                                   try_reonline_memory_block);
2050        }
2051        unlock_device_hotplug();
2052
2053        kfree(online_types);
2054        return rc;
2055}
2056EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2057#endif /* CONFIG_MEMORY_HOTREMOVE */
2058