linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60int isolate_movable_page(struct page *page, isolate_mode_t mode)
  61{
  62        struct address_space *mapping;
  63
  64        /*
  65         * Avoid burning cycles with pages that are yet under __free_pages(),
  66         * or just got freed under us.
  67         *
  68         * In case we 'win' a race for a movable page being freed under us and
  69         * raise its refcount preventing __free_pages() from doing its job
  70         * the put_page() at the end of this block will take care of
  71         * release this page, thus avoiding a nasty leakage.
  72         */
  73        if (unlikely(!get_page_unless_zero(page)))
  74                goto out;
  75
  76        /*
  77         * Check PageMovable before holding a PG_lock because page's owner
  78         * assumes anybody doesn't touch PG_lock of newly allocated page
  79         * so unconditionally grabbing the lock ruins page's owner side.
  80         */
  81        if (unlikely(!__PageMovable(page)))
  82                goto out_putpage;
  83        /*
  84         * As movable pages are not isolated from LRU lists, concurrent
  85         * compaction threads can race against page migration functions
  86         * as well as race against the releasing a page.
  87         *
  88         * In order to avoid having an already isolated movable page
  89         * being (wrongly) re-isolated while it is under migration,
  90         * or to avoid attempting to isolate pages being released,
  91         * lets be sure we have the page lock
  92         * before proceeding with the movable page isolation steps.
  93         */
  94        if (unlikely(!trylock_page(page)))
  95                goto out_putpage;
  96
  97        if (!PageMovable(page) || PageIsolated(page))
  98                goto out_no_isolated;
  99
 100        mapping = page_mapping(page);
 101        VM_BUG_ON_PAGE(!mapping, page);
 102
 103        if (!mapping->a_ops->isolate_page(page, mode))
 104                goto out_no_isolated;
 105
 106        /* Driver shouldn't use PG_isolated bit of page->flags */
 107        WARN_ON_ONCE(PageIsolated(page));
 108        __SetPageIsolated(page);
 109        unlock_page(page);
 110
 111        return 0;
 112
 113out_no_isolated:
 114        unlock_page(page);
 115out_putpage:
 116        put_page(page);
 117out:
 118        return -EBUSY;
 119}
 120
 121static void putback_movable_page(struct page *page)
 122{
 123        struct address_space *mapping;
 124
 125        mapping = page_mapping(page);
 126        mapping->a_ops->putback_page(page);
 127        __ClearPageIsolated(page);
 128}
 129
 130/*
 131 * Put previously isolated pages back onto the appropriate lists
 132 * from where they were once taken off for compaction/migration.
 133 *
 134 * This function shall be used whenever the isolated pageset has been
 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 136 * and isolate_huge_page().
 137 */
 138void putback_movable_pages(struct list_head *l)
 139{
 140        struct page *page;
 141        struct page *page2;
 142
 143        list_for_each_entry_safe(page, page2, l, lru) {
 144                if (unlikely(PageHuge(page))) {
 145                        putback_active_hugepage(page);
 146                        continue;
 147                }
 148                list_del(&page->lru);
 149                /*
 150                 * We isolated non-lru movable page so here we can use
 151                 * __PageMovable because LRU page's mapping cannot have
 152                 * PAGE_MAPPING_MOVABLE.
 153                 */
 154                if (unlikely(__PageMovable(page))) {
 155                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 156                        lock_page(page);
 157                        if (PageMovable(page))
 158                                putback_movable_page(page);
 159                        else
 160                                __ClearPageIsolated(page);
 161                        unlock_page(page);
 162                        put_page(page);
 163                } else {
 164                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 165                                        page_is_file_lru(page), -thp_nr_pages(page));
 166                        putback_lru_page(page);
 167                }
 168        }
 169}
 170
 171/*
 172 * Restore a potential migration pte to a working pte entry
 173 */
 174static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 175                                 unsigned long addr, void *old)
 176{
 177        struct page_vma_mapped_walk pvmw = {
 178                .page = old,
 179                .vma = vma,
 180                .address = addr,
 181                .flags = PVMW_SYNC | PVMW_MIGRATION,
 182        };
 183        struct page *new;
 184        pte_t pte;
 185        swp_entry_t entry;
 186
 187        VM_BUG_ON_PAGE(PageTail(page), page);
 188        while (page_vma_mapped_walk(&pvmw)) {
 189                if (PageKsm(page))
 190                        new = page;
 191                else
 192                        new = page - pvmw.page->index +
 193                                linear_page_index(vma, pvmw.address);
 194
 195#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 196                /* PMD-mapped THP migration entry */
 197                if (!pvmw.pte) {
 198                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 199                        remove_migration_pmd(&pvmw, new);
 200                        continue;
 201                }
 202#endif
 203
 204                get_page(new);
 205                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 206                if (pte_swp_soft_dirty(*pvmw.pte))
 207                        pte = pte_mksoft_dirty(pte);
 208
 209                /*
 210                 * Recheck VMA as permissions can change since migration started
 211                 */
 212                entry = pte_to_swp_entry(*pvmw.pte);
 213                if (is_writable_migration_entry(entry))
 214                        pte = maybe_mkwrite(pte, vma);
 215                else if (pte_swp_uffd_wp(*pvmw.pte))
 216                        pte = pte_mkuffd_wp(pte);
 217
 218                if (unlikely(is_device_private_page(new))) {
 219                        if (pte_write(pte))
 220                                entry = make_writable_device_private_entry(
 221                                                        page_to_pfn(new));
 222                        else
 223                                entry = make_readable_device_private_entry(
 224                                                        page_to_pfn(new));
 225                        pte = swp_entry_to_pte(entry);
 226                        if (pte_swp_soft_dirty(*pvmw.pte))
 227                                pte = pte_swp_mksoft_dirty(pte);
 228                        if (pte_swp_uffd_wp(*pvmw.pte))
 229                                pte = pte_swp_mkuffd_wp(pte);
 230                }
 231
 232#ifdef CONFIG_HUGETLB_PAGE
 233                if (PageHuge(new)) {
 234                        unsigned int shift = huge_page_shift(hstate_vma(vma));
 235
 236                        pte = pte_mkhuge(pte);
 237                        pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
 238                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 239                        if (PageAnon(new))
 240                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 241                        else
 242                                page_dup_rmap(new, true);
 243                } else
 244#endif
 245                {
 246                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 247
 248                        if (PageAnon(new))
 249                                page_add_anon_rmap(new, vma, pvmw.address, false);
 250                        else
 251                                page_add_file_rmap(new, false);
 252                }
 253                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 254                        mlock_vma_page(new);
 255
 256                if (PageTransHuge(page) && PageMlocked(page))
 257                        clear_page_mlock(page);
 258
 259                /* No need to invalidate - it was non-present before */
 260                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 261        }
 262
 263        return true;
 264}
 265
 266/*
 267 * Get rid of all migration entries and replace them by
 268 * references to the indicated page.
 269 */
 270void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 271{
 272        struct rmap_walk_control rwc = {
 273                .rmap_one = remove_migration_pte,
 274                .arg = old,
 275        };
 276
 277        if (locked)
 278                rmap_walk_locked(new, &rwc);
 279        else
 280                rmap_walk(new, &rwc);
 281}
 282
 283/*
 284 * Something used the pte of a page under migration. We need to
 285 * get to the page and wait until migration is finished.
 286 * When we return from this function the fault will be retried.
 287 */
 288void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 289                                spinlock_t *ptl)
 290{
 291        pte_t pte;
 292        swp_entry_t entry;
 293        struct page *page;
 294
 295        spin_lock(ptl);
 296        pte = *ptep;
 297        if (!is_swap_pte(pte))
 298                goto out;
 299
 300        entry = pte_to_swp_entry(pte);
 301        if (!is_migration_entry(entry))
 302                goto out;
 303
 304        page = pfn_swap_entry_to_page(entry);
 305        page = compound_head(page);
 306
 307        /*
 308         * Once page cache replacement of page migration started, page_count
 309         * is zero; but we must not call put_and_wait_on_page_locked() without
 310         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 311         */
 312        if (!get_page_unless_zero(page))
 313                goto out;
 314        pte_unmap_unlock(ptep, ptl);
 315        put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 316        return;
 317out:
 318        pte_unmap_unlock(ptep, ptl);
 319}
 320
 321void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 322                                unsigned long address)
 323{
 324        spinlock_t *ptl = pte_lockptr(mm, pmd);
 325        pte_t *ptep = pte_offset_map(pmd, address);
 326        __migration_entry_wait(mm, ptep, ptl);
 327}
 328
 329void migration_entry_wait_huge(struct vm_area_struct *vma,
 330                struct mm_struct *mm, pte_t *pte)
 331{
 332        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 333        __migration_entry_wait(mm, pte, ptl);
 334}
 335
 336#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 337void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 338{
 339        spinlock_t *ptl;
 340        struct page *page;
 341
 342        ptl = pmd_lock(mm, pmd);
 343        if (!is_pmd_migration_entry(*pmd))
 344                goto unlock;
 345        page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
 346        if (!get_page_unless_zero(page))
 347                goto unlock;
 348        spin_unlock(ptl);
 349        put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
 350        return;
 351unlock:
 352        spin_unlock(ptl);
 353}
 354#endif
 355
 356static int expected_page_refs(struct address_space *mapping, struct page *page)
 357{
 358        int expected_count = 1;
 359
 360        /*
 361         * Device private pages have an extra refcount as they are
 362         * ZONE_DEVICE pages.
 363         */
 364        expected_count += is_device_private_page(page);
 365        if (mapping)
 366                expected_count += thp_nr_pages(page) + page_has_private(page);
 367
 368        return expected_count;
 369}
 370
 371/*
 372 * Replace the page in the mapping.
 373 *
 374 * The number of remaining references must be:
 375 * 1 for anonymous pages without a mapping
 376 * 2 for pages with a mapping
 377 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 378 */
 379int migrate_page_move_mapping(struct address_space *mapping,
 380                struct page *newpage, struct page *page, int extra_count)
 381{
 382        XA_STATE(xas, &mapping->i_pages, page_index(page));
 383        struct zone *oldzone, *newzone;
 384        int dirty;
 385        int expected_count = expected_page_refs(mapping, page) + extra_count;
 386        int nr = thp_nr_pages(page);
 387
 388        if (!mapping) {
 389                /* Anonymous page without mapping */
 390                if (page_count(page) != expected_count)
 391                        return -EAGAIN;
 392
 393                /* No turning back from here */
 394                newpage->index = page->index;
 395                newpage->mapping = page->mapping;
 396                if (PageSwapBacked(page))
 397                        __SetPageSwapBacked(newpage);
 398
 399                return MIGRATEPAGE_SUCCESS;
 400        }
 401
 402        oldzone = page_zone(page);
 403        newzone = page_zone(newpage);
 404
 405        xas_lock_irq(&xas);
 406        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 407                xas_unlock_irq(&xas);
 408                return -EAGAIN;
 409        }
 410
 411        if (!page_ref_freeze(page, expected_count)) {
 412                xas_unlock_irq(&xas);
 413                return -EAGAIN;
 414        }
 415
 416        /*
 417         * Now we know that no one else is looking at the page:
 418         * no turning back from here.
 419         */
 420        newpage->index = page->index;
 421        newpage->mapping = page->mapping;
 422        page_ref_add(newpage, nr); /* add cache reference */
 423        if (PageSwapBacked(page)) {
 424                __SetPageSwapBacked(newpage);
 425                if (PageSwapCache(page)) {
 426                        SetPageSwapCache(newpage);
 427                        set_page_private(newpage, page_private(page));
 428                }
 429        } else {
 430                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 431        }
 432
 433        /* Move dirty while page refs frozen and newpage not yet exposed */
 434        dirty = PageDirty(page);
 435        if (dirty) {
 436                ClearPageDirty(page);
 437                SetPageDirty(newpage);
 438        }
 439
 440        xas_store(&xas, newpage);
 441        if (PageTransHuge(page)) {
 442                int i;
 443
 444                for (i = 1; i < nr; i++) {
 445                        xas_next(&xas);
 446                        xas_store(&xas, newpage);
 447                }
 448        }
 449
 450        /*
 451         * Drop cache reference from old page by unfreezing
 452         * to one less reference.
 453         * We know this isn't the last reference.
 454         */
 455        page_ref_unfreeze(page, expected_count - nr);
 456
 457        xas_unlock(&xas);
 458        /* Leave irq disabled to prevent preemption while updating stats */
 459
 460        /*
 461         * If moved to a different zone then also account
 462         * the page for that zone. Other VM counters will be
 463         * taken care of when we establish references to the
 464         * new page and drop references to the old page.
 465         *
 466         * Note that anonymous pages are accounted for
 467         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 468         * are mapped to swap space.
 469         */
 470        if (newzone != oldzone) {
 471                struct lruvec *old_lruvec, *new_lruvec;
 472                struct mem_cgroup *memcg;
 473
 474                memcg = page_memcg(page);
 475                old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 476                new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 477
 478                __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 479                __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 480                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 481                        __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 482                        __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 483                }
 484#ifdef CONFIG_SWAP
 485                if (PageSwapCache(page)) {
 486                        __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
 487                        __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
 488                }
 489#endif
 490                if (dirty && mapping_can_writeback(mapping)) {
 491                        __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 492                        __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 493                        __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 494                        __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 495                }
 496        }
 497        local_irq_enable();
 498
 499        return MIGRATEPAGE_SUCCESS;
 500}
 501EXPORT_SYMBOL(migrate_page_move_mapping);
 502
 503/*
 504 * The expected number of remaining references is the same as that
 505 * of migrate_page_move_mapping().
 506 */
 507int migrate_huge_page_move_mapping(struct address_space *mapping,
 508                                   struct page *newpage, struct page *page)
 509{
 510        XA_STATE(xas, &mapping->i_pages, page_index(page));
 511        int expected_count;
 512
 513        xas_lock_irq(&xas);
 514        expected_count = 2 + page_has_private(page);
 515        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 516                xas_unlock_irq(&xas);
 517                return -EAGAIN;
 518        }
 519
 520        if (!page_ref_freeze(page, expected_count)) {
 521                xas_unlock_irq(&xas);
 522                return -EAGAIN;
 523        }
 524
 525        newpage->index = page->index;
 526        newpage->mapping = page->mapping;
 527
 528        get_page(newpage);
 529
 530        xas_store(&xas, newpage);
 531
 532        page_ref_unfreeze(page, expected_count - 1);
 533
 534        xas_unlock_irq(&xas);
 535
 536        return MIGRATEPAGE_SUCCESS;
 537}
 538
 539/*
 540 * Copy the page to its new location
 541 */
 542void migrate_page_states(struct page *newpage, struct page *page)
 543{
 544        int cpupid;
 545
 546        if (PageError(page))
 547                SetPageError(newpage);
 548        if (PageReferenced(page))
 549                SetPageReferenced(newpage);
 550        if (PageUptodate(page))
 551                SetPageUptodate(newpage);
 552        if (TestClearPageActive(page)) {
 553                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 554                SetPageActive(newpage);
 555        } else if (TestClearPageUnevictable(page))
 556                SetPageUnevictable(newpage);
 557        if (PageWorkingset(page))
 558                SetPageWorkingset(newpage);
 559        if (PageChecked(page))
 560                SetPageChecked(newpage);
 561        if (PageMappedToDisk(page))
 562                SetPageMappedToDisk(newpage);
 563
 564        /* Move dirty on pages not done by migrate_page_move_mapping() */
 565        if (PageDirty(page))
 566                SetPageDirty(newpage);
 567
 568        if (page_is_young(page))
 569                set_page_young(newpage);
 570        if (page_is_idle(page))
 571                set_page_idle(newpage);
 572
 573        /*
 574         * Copy NUMA information to the new page, to prevent over-eager
 575         * future migrations of this same page.
 576         */
 577        cpupid = page_cpupid_xchg_last(page, -1);
 578        page_cpupid_xchg_last(newpage, cpupid);
 579
 580        ksm_migrate_page(newpage, page);
 581        /*
 582         * Please do not reorder this without considering how mm/ksm.c's
 583         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 584         */
 585        if (PageSwapCache(page))
 586                ClearPageSwapCache(page);
 587        ClearPagePrivate(page);
 588
 589        /* page->private contains hugetlb specific flags */
 590        if (!PageHuge(page))
 591                set_page_private(page, 0);
 592
 593        /*
 594         * If any waiters have accumulated on the new page then
 595         * wake them up.
 596         */
 597        if (PageWriteback(newpage))
 598                end_page_writeback(newpage);
 599
 600        /*
 601         * PG_readahead shares the same bit with PG_reclaim.  The above
 602         * end_page_writeback() may clear PG_readahead mistakenly, so set the
 603         * bit after that.
 604         */
 605        if (PageReadahead(page))
 606                SetPageReadahead(newpage);
 607
 608        copy_page_owner(page, newpage);
 609
 610        if (!PageHuge(page))
 611                mem_cgroup_migrate(page, newpage);
 612}
 613EXPORT_SYMBOL(migrate_page_states);
 614
 615void migrate_page_copy(struct page *newpage, struct page *page)
 616{
 617        if (PageHuge(page) || PageTransHuge(page))
 618                copy_huge_page(newpage, page);
 619        else
 620                copy_highpage(newpage, page);
 621
 622        migrate_page_states(newpage, page);
 623}
 624EXPORT_SYMBOL(migrate_page_copy);
 625
 626/************************************************************
 627 *                    Migration functions
 628 ***********************************************************/
 629
 630/*
 631 * Common logic to directly migrate a single LRU page suitable for
 632 * pages that do not use PagePrivate/PagePrivate2.
 633 *
 634 * Pages are locked upon entry and exit.
 635 */
 636int migrate_page(struct address_space *mapping,
 637                struct page *newpage, struct page *page,
 638                enum migrate_mode mode)
 639{
 640        int rc;
 641
 642        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 643
 644        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 645
 646        if (rc != MIGRATEPAGE_SUCCESS)
 647                return rc;
 648
 649        if (mode != MIGRATE_SYNC_NO_COPY)
 650                migrate_page_copy(newpage, page);
 651        else
 652                migrate_page_states(newpage, page);
 653        return MIGRATEPAGE_SUCCESS;
 654}
 655EXPORT_SYMBOL(migrate_page);
 656
 657#ifdef CONFIG_BLOCK
 658/* Returns true if all buffers are successfully locked */
 659static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 660                                                        enum migrate_mode mode)
 661{
 662        struct buffer_head *bh = head;
 663
 664        /* Simple case, sync compaction */
 665        if (mode != MIGRATE_ASYNC) {
 666                do {
 667                        lock_buffer(bh);
 668                        bh = bh->b_this_page;
 669
 670                } while (bh != head);
 671
 672                return true;
 673        }
 674
 675        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 676        do {
 677                if (!trylock_buffer(bh)) {
 678                        /*
 679                         * We failed to lock the buffer and cannot stall in
 680                         * async migration. Release the taken locks
 681                         */
 682                        struct buffer_head *failed_bh = bh;
 683                        bh = head;
 684                        while (bh != failed_bh) {
 685                                unlock_buffer(bh);
 686                                bh = bh->b_this_page;
 687                        }
 688                        return false;
 689                }
 690
 691                bh = bh->b_this_page;
 692        } while (bh != head);
 693        return true;
 694}
 695
 696static int __buffer_migrate_page(struct address_space *mapping,
 697                struct page *newpage, struct page *page, enum migrate_mode mode,
 698                bool check_refs)
 699{
 700        struct buffer_head *bh, *head;
 701        int rc;
 702        int expected_count;
 703
 704        if (!page_has_buffers(page))
 705                return migrate_page(mapping, newpage, page, mode);
 706
 707        /* Check whether page does not have extra refs before we do more work */
 708        expected_count = expected_page_refs(mapping, page);
 709        if (page_count(page) != expected_count)
 710                return -EAGAIN;
 711
 712        head = page_buffers(page);
 713        if (!buffer_migrate_lock_buffers(head, mode))
 714                return -EAGAIN;
 715
 716        if (check_refs) {
 717                bool busy;
 718                bool invalidated = false;
 719
 720recheck_buffers:
 721                busy = false;
 722                spin_lock(&mapping->private_lock);
 723                bh = head;
 724                do {
 725                        if (atomic_read(&bh->b_count)) {
 726                                busy = true;
 727                                break;
 728                        }
 729                        bh = bh->b_this_page;
 730                } while (bh != head);
 731                if (busy) {
 732                        if (invalidated) {
 733                                rc = -EAGAIN;
 734                                goto unlock_buffers;
 735                        }
 736                        spin_unlock(&mapping->private_lock);
 737                        invalidate_bh_lrus();
 738                        invalidated = true;
 739                        goto recheck_buffers;
 740                }
 741        }
 742
 743        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 744        if (rc != MIGRATEPAGE_SUCCESS)
 745                goto unlock_buffers;
 746
 747        attach_page_private(newpage, detach_page_private(page));
 748
 749        bh = head;
 750        do {
 751                set_bh_page(bh, newpage, bh_offset(bh));
 752                bh = bh->b_this_page;
 753
 754        } while (bh != head);
 755
 756        if (mode != MIGRATE_SYNC_NO_COPY)
 757                migrate_page_copy(newpage, page);
 758        else
 759                migrate_page_states(newpage, page);
 760
 761        rc = MIGRATEPAGE_SUCCESS;
 762unlock_buffers:
 763        if (check_refs)
 764                spin_unlock(&mapping->private_lock);
 765        bh = head;
 766        do {
 767                unlock_buffer(bh);
 768                bh = bh->b_this_page;
 769
 770        } while (bh != head);
 771
 772        return rc;
 773}
 774
 775/*
 776 * Migration function for pages with buffers. This function can only be used
 777 * if the underlying filesystem guarantees that no other references to "page"
 778 * exist. For example attached buffer heads are accessed only under page lock.
 779 */
 780int buffer_migrate_page(struct address_space *mapping,
 781                struct page *newpage, struct page *page, enum migrate_mode mode)
 782{
 783        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 784}
 785EXPORT_SYMBOL(buffer_migrate_page);
 786
 787/*
 788 * Same as above except that this variant is more careful and checks that there
 789 * are also no buffer head references. This function is the right one for
 790 * mappings where buffer heads are directly looked up and referenced (such as
 791 * block device mappings).
 792 */
 793int buffer_migrate_page_norefs(struct address_space *mapping,
 794                struct page *newpage, struct page *page, enum migrate_mode mode)
 795{
 796        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 797}
 798#endif
 799
 800/*
 801 * Writeback a page to clean the dirty state
 802 */
 803static int writeout(struct address_space *mapping, struct page *page)
 804{
 805        struct writeback_control wbc = {
 806                .sync_mode = WB_SYNC_NONE,
 807                .nr_to_write = 1,
 808                .range_start = 0,
 809                .range_end = LLONG_MAX,
 810                .for_reclaim = 1
 811        };
 812        int rc;
 813
 814        if (!mapping->a_ops->writepage)
 815                /* No write method for the address space */
 816                return -EINVAL;
 817
 818        if (!clear_page_dirty_for_io(page))
 819                /* Someone else already triggered a write */
 820                return -EAGAIN;
 821
 822        /*
 823         * A dirty page may imply that the underlying filesystem has
 824         * the page on some queue. So the page must be clean for
 825         * migration. Writeout may mean we loose the lock and the
 826         * page state is no longer what we checked for earlier.
 827         * At this point we know that the migration attempt cannot
 828         * be successful.
 829         */
 830        remove_migration_ptes(page, page, false);
 831
 832        rc = mapping->a_ops->writepage(page, &wbc);
 833
 834        if (rc != AOP_WRITEPAGE_ACTIVATE)
 835                /* unlocked. Relock */
 836                lock_page(page);
 837
 838        return (rc < 0) ? -EIO : -EAGAIN;
 839}
 840
 841/*
 842 * Default handling if a filesystem does not provide a migration function.
 843 */
 844static int fallback_migrate_page(struct address_space *mapping,
 845        struct page *newpage, struct page *page, enum migrate_mode mode)
 846{
 847        if (PageDirty(page)) {
 848                /* Only writeback pages in full synchronous migration */
 849                switch (mode) {
 850                case MIGRATE_SYNC:
 851                case MIGRATE_SYNC_NO_COPY:
 852                        break;
 853                default:
 854                        return -EBUSY;
 855                }
 856                return writeout(mapping, page);
 857        }
 858
 859        /*
 860         * Buffers may be managed in a filesystem specific way.
 861         * We must have no buffers or drop them.
 862         */
 863        if (page_has_private(page) &&
 864            !try_to_release_page(page, GFP_KERNEL))
 865                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 866
 867        return migrate_page(mapping, newpage, page, mode);
 868}
 869
 870/*
 871 * Move a page to a newly allocated page
 872 * The page is locked and all ptes have been successfully removed.
 873 *
 874 * The new page will have replaced the old page if this function
 875 * is successful.
 876 *
 877 * Return value:
 878 *   < 0 - error code
 879 *  MIGRATEPAGE_SUCCESS - success
 880 */
 881static int move_to_new_page(struct page *newpage, struct page *page,
 882                                enum migrate_mode mode)
 883{
 884        struct address_space *mapping;
 885        int rc = -EAGAIN;
 886        bool is_lru = !__PageMovable(page);
 887
 888        VM_BUG_ON_PAGE(!PageLocked(page), page);
 889        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 890
 891        mapping = page_mapping(page);
 892
 893        if (likely(is_lru)) {
 894                if (!mapping)
 895                        rc = migrate_page(mapping, newpage, page, mode);
 896                else if (mapping->a_ops->migratepage)
 897                        /*
 898                         * Most pages have a mapping and most filesystems
 899                         * provide a migratepage callback. Anonymous pages
 900                         * are part of swap space which also has its own
 901                         * migratepage callback. This is the most common path
 902                         * for page migration.
 903                         */
 904                        rc = mapping->a_ops->migratepage(mapping, newpage,
 905                                                        page, mode);
 906                else
 907                        rc = fallback_migrate_page(mapping, newpage,
 908                                                        page, mode);
 909        } else {
 910                /*
 911                 * In case of non-lru page, it could be released after
 912                 * isolation step. In that case, we shouldn't try migration.
 913                 */
 914                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 915                if (!PageMovable(page)) {
 916                        rc = MIGRATEPAGE_SUCCESS;
 917                        __ClearPageIsolated(page);
 918                        goto out;
 919                }
 920
 921                rc = mapping->a_ops->migratepage(mapping, newpage,
 922                                                page, mode);
 923                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 924                        !PageIsolated(page));
 925        }
 926
 927        /*
 928         * When successful, old pagecache page->mapping must be cleared before
 929         * page is freed; but stats require that PageAnon be left as PageAnon.
 930         */
 931        if (rc == MIGRATEPAGE_SUCCESS) {
 932                if (__PageMovable(page)) {
 933                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 934
 935                        /*
 936                         * We clear PG_movable under page_lock so any compactor
 937                         * cannot try to migrate this page.
 938                         */
 939                        __ClearPageIsolated(page);
 940                }
 941
 942                /*
 943                 * Anonymous and movable page->mapping will be cleared by
 944                 * free_pages_prepare so don't reset it here for keeping
 945                 * the type to work PageAnon, for example.
 946                 */
 947                if (!PageMappingFlags(page))
 948                        page->mapping = NULL;
 949
 950                if (likely(!is_zone_device_page(newpage)))
 951                        flush_dcache_page(newpage);
 952
 953        }
 954out:
 955        return rc;
 956}
 957
 958static int __unmap_and_move(struct page *page, struct page *newpage,
 959                                int force, enum migrate_mode mode)
 960{
 961        int rc = -EAGAIN;
 962        int page_was_mapped = 0;
 963        struct anon_vma *anon_vma = NULL;
 964        bool is_lru = !__PageMovable(page);
 965
 966        if (!trylock_page(page)) {
 967                if (!force || mode == MIGRATE_ASYNC)
 968                        goto out;
 969
 970                /*
 971                 * It's not safe for direct compaction to call lock_page.
 972                 * For example, during page readahead pages are added locked
 973                 * to the LRU. Later, when the IO completes the pages are
 974                 * marked uptodate and unlocked. However, the queueing
 975                 * could be merging multiple pages for one bio (e.g.
 976                 * mpage_readahead). If an allocation happens for the
 977                 * second or third page, the process can end up locking
 978                 * the same page twice and deadlocking. Rather than
 979                 * trying to be clever about what pages can be locked,
 980                 * avoid the use of lock_page for direct compaction
 981                 * altogether.
 982                 */
 983                if (current->flags & PF_MEMALLOC)
 984                        goto out;
 985
 986                lock_page(page);
 987        }
 988
 989        if (PageWriteback(page)) {
 990                /*
 991                 * Only in the case of a full synchronous migration is it
 992                 * necessary to wait for PageWriteback. In the async case,
 993                 * the retry loop is too short and in the sync-light case,
 994                 * the overhead of stalling is too much
 995                 */
 996                switch (mode) {
 997                case MIGRATE_SYNC:
 998                case MIGRATE_SYNC_NO_COPY:
 999                        break;
1000                default:
1001                        rc = -EBUSY;
1002                        goto out_unlock;
1003                }
1004                if (!force)
1005                        goto out_unlock;
1006                wait_on_page_writeback(page);
1007        }
1008
1009        /*
1010         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1011         * we cannot notice that anon_vma is freed while we migrates a page.
1012         * This get_anon_vma() delays freeing anon_vma pointer until the end
1013         * of migration. File cache pages are no problem because of page_lock()
1014         * File Caches may use write_page() or lock_page() in migration, then,
1015         * just care Anon page here.
1016         *
1017         * Only page_get_anon_vma() understands the subtleties of
1018         * getting a hold on an anon_vma from outside one of its mms.
1019         * But if we cannot get anon_vma, then we won't need it anyway,
1020         * because that implies that the anon page is no longer mapped
1021         * (and cannot be remapped so long as we hold the page lock).
1022         */
1023        if (PageAnon(page) && !PageKsm(page))
1024                anon_vma = page_get_anon_vma(page);
1025
1026        /*
1027         * Block others from accessing the new page when we get around to
1028         * establishing additional references. We are usually the only one
1029         * holding a reference to newpage at this point. We used to have a BUG
1030         * here if trylock_page(newpage) fails, but would like to allow for
1031         * cases where there might be a race with the previous use of newpage.
1032         * This is much like races on refcount of oldpage: just don't BUG().
1033         */
1034        if (unlikely(!trylock_page(newpage)))
1035                goto out_unlock;
1036
1037        if (unlikely(!is_lru)) {
1038                rc = move_to_new_page(newpage, page, mode);
1039                goto out_unlock_both;
1040        }
1041
1042        /*
1043         * Corner case handling:
1044         * 1. When a new swap-cache page is read into, it is added to the LRU
1045         * and treated as swapcache but it has no rmap yet.
1046         * Calling try_to_unmap() against a page->mapping==NULL page will
1047         * trigger a BUG.  So handle it here.
1048         * 2. An orphaned page (see truncate_cleanup_page) might have
1049         * fs-private metadata. The page can be picked up due to memory
1050         * offlining.  Everywhere else except page reclaim, the page is
1051         * invisible to the vm, so the page can not be migrated.  So try to
1052         * free the metadata, so the page can be freed.
1053         */
1054        if (!page->mapping) {
1055                VM_BUG_ON_PAGE(PageAnon(page), page);
1056                if (page_has_private(page)) {
1057                        try_to_free_buffers(page);
1058                        goto out_unlock_both;
1059                }
1060        } else if (page_mapped(page)) {
1061                /* Establish migration ptes */
1062                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1063                                page);
1064                try_to_migrate(page, 0);
1065                page_was_mapped = 1;
1066        }
1067
1068        if (!page_mapped(page))
1069                rc = move_to_new_page(newpage, page, mode);
1070
1071        if (page_was_mapped)
1072                remove_migration_ptes(page,
1073                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1074
1075out_unlock_both:
1076        unlock_page(newpage);
1077out_unlock:
1078        /* Drop an anon_vma reference if we took one */
1079        if (anon_vma)
1080                put_anon_vma(anon_vma);
1081        unlock_page(page);
1082out:
1083        /*
1084         * If migration is successful, decrease refcount of the newpage
1085         * which will not free the page because new page owner increased
1086         * refcounter. As well, if it is LRU page, add the page to LRU
1087         * list in here. Use the old state of the isolated source page to
1088         * determine if we migrated a LRU page. newpage was already unlocked
1089         * and possibly modified by its owner - don't rely on the page
1090         * state.
1091         */
1092        if (rc == MIGRATEPAGE_SUCCESS) {
1093                if (unlikely(!is_lru))
1094                        put_page(newpage);
1095                else
1096                        putback_lru_page(newpage);
1097        }
1098
1099        return rc;
1100}
1101
1102/*
1103 * Obtain the lock on page, remove all ptes and migrate the page
1104 * to the newly allocated page in newpage.
1105 */
1106static int unmap_and_move(new_page_t get_new_page,
1107                                   free_page_t put_new_page,
1108                                   unsigned long private, struct page *page,
1109                                   int force, enum migrate_mode mode,
1110                                   enum migrate_reason reason,
1111                                   struct list_head *ret)
1112{
1113        int rc = MIGRATEPAGE_SUCCESS;
1114        struct page *newpage = NULL;
1115
1116        if (!thp_migration_supported() && PageTransHuge(page))
1117                return -ENOSYS;
1118
1119        if (page_count(page) == 1) {
1120                /* page was freed from under us. So we are done. */
1121                ClearPageActive(page);
1122                ClearPageUnevictable(page);
1123                if (unlikely(__PageMovable(page))) {
1124                        lock_page(page);
1125                        if (!PageMovable(page))
1126                                __ClearPageIsolated(page);
1127                        unlock_page(page);
1128                }
1129                goto out;
1130        }
1131
1132        newpage = get_new_page(page, private);
1133        if (!newpage)
1134                return -ENOMEM;
1135
1136        rc = __unmap_and_move(page, newpage, force, mode);
1137        if (rc == MIGRATEPAGE_SUCCESS)
1138                set_page_owner_migrate_reason(newpage, reason);
1139
1140out:
1141        if (rc != -EAGAIN) {
1142                /*
1143                 * A page that has been migrated has all references
1144                 * removed and will be freed. A page that has not been
1145                 * migrated will have kept its references and be restored.
1146                 */
1147                list_del(&page->lru);
1148        }
1149
1150        /*
1151         * If migration is successful, releases reference grabbed during
1152         * isolation. Otherwise, restore the page to right list unless
1153         * we want to retry.
1154         */
1155        if (rc == MIGRATEPAGE_SUCCESS) {
1156                /*
1157                 * Compaction can migrate also non-LRU pages which are
1158                 * not accounted to NR_ISOLATED_*. They can be recognized
1159                 * as __PageMovable
1160                 */
1161                if (likely(!__PageMovable(page)))
1162                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1163                                        page_is_file_lru(page), -thp_nr_pages(page));
1164
1165                if (reason != MR_MEMORY_FAILURE)
1166                        /*
1167                         * We release the page in page_handle_poison.
1168                         */
1169                        put_page(page);
1170        } else {
1171                if (rc != -EAGAIN)
1172                        list_add_tail(&page->lru, ret);
1173
1174                if (put_new_page)
1175                        put_new_page(newpage, private);
1176                else
1177                        put_page(newpage);
1178        }
1179
1180        return rc;
1181}
1182
1183/*
1184 * Counterpart of unmap_and_move_page() for hugepage migration.
1185 *
1186 * This function doesn't wait the completion of hugepage I/O
1187 * because there is no race between I/O and migration for hugepage.
1188 * Note that currently hugepage I/O occurs only in direct I/O
1189 * where no lock is held and PG_writeback is irrelevant,
1190 * and writeback status of all subpages are counted in the reference
1191 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1192 * under direct I/O, the reference of the head page is 512 and a bit more.)
1193 * This means that when we try to migrate hugepage whose subpages are
1194 * doing direct I/O, some references remain after try_to_unmap() and
1195 * hugepage migration fails without data corruption.
1196 *
1197 * There is also no race when direct I/O is issued on the page under migration,
1198 * because then pte is replaced with migration swap entry and direct I/O code
1199 * will wait in the page fault for migration to complete.
1200 */
1201static int unmap_and_move_huge_page(new_page_t get_new_page,
1202                                free_page_t put_new_page, unsigned long private,
1203                                struct page *hpage, int force,
1204                                enum migrate_mode mode, int reason,
1205                                struct list_head *ret)
1206{
1207        int rc = -EAGAIN;
1208        int page_was_mapped = 0;
1209        struct page *new_hpage;
1210        struct anon_vma *anon_vma = NULL;
1211        struct address_space *mapping = NULL;
1212
1213        /*
1214         * Migratability of hugepages depends on architectures and their size.
1215         * This check is necessary because some callers of hugepage migration
1216         * like soft offline and memory hotremove don't walk through page
1217         * tables or check whether the hugepage is pmd-based or not before
1218         * kicking migration.
1219         */
1220        if (!hugepage_migration_supported(page_hstate(hpage))) {
1221                list_move_tail(&hpage->lru, ret);
1222                return -ENOSYS;
1223        }
1224
1225        if (page_count(hpage) == 1) {
1226                /* page was freed from under us. So we are done. */
1227                putback_active_hugepage(hpage);
1228                return MIGRATEPAGE_SUCCESS;
1229        }
1230
1231        new_hpage = get_new_page(hpage, private);
1232        if (!new_hpage)
1233                return -ENOMEM;
1234
1235        if (!trylock_page(hpage)) {
1236                if (!force)
1237                        goto out;
1238                switch (mode) {
1239                case MIGRATE_SYNC:
1240                case MIGRATE_SYNC_NO_COPY:
1241                        break;
1242                default:
1243                        goto out;
1244                }
1245                lock_page(hpage);
1246        }
1247
1248        /*
1249         * Check for pages which are in the process of being freed.  Without
1250         * page_mapping() set, hugetlbfs specific move page routine will not
1251         * be called and we could leak usage counts for subpools.
1252         */
1253        if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1254                rc = -EBUSY;
1255                goto out_unlock;
1256        }
1257
1258        if (PageAnon(hpage))
1259                anon_vma = page_get_anon_vma(hpage);
1260
1261        if (unlikely(!trylock_page(new_hpage)))
1262                goto put_anon;
1263
1264        if (page_mapped(hpage)) {
1265                bool mapping_locked = false;
1266                enum ttu_flags ttu = 0;
1267
1268                if (!PageAnon(hpage)) {
1269                        /*
1270                         * In shared mappings, try_to_unmap could potentially
1271                         * call huge_pmd_unshare.  Because of this, take
1272                         * semaphore in write mode here and set TTU_RMAP_LOCKED
1273                         * to let lower levels know we have taken the lock.
1274                         */
1275                        mapping = hugetlb_page_mapping_lock_write(hpage);
1276                        if (unlikely(!mapping))
1277                                goto unlock_put_anon;
1278
1279                        mapping_locked = true;
1280                        ttu |= TTU_RMAP_LOCKED;
1281                }
1282
1283                try_to_migrate(hpage, ttu);
1284                page_was_mapped = 1;
1285
1286                if (mapping_locked)
1287                        i_mmap_unlock_write(mapping);
1288        }
1289
1290        if (!page_mapped(hpage))
1291                rc = move_to_new_page(new_hpage, hpage, mode);
1292
1293        if (page_was_mapped)
1294                remove_migration_ptes(hpage,
1295                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1296
1297unlock_put_anon:
1298        unlock_page(new_hpage);
1299
1300put_anon:
1301        if (anon_vma)
1302                put_anon_vma(anon_vma);
1303
1304        if (rc == MIGRATEPAGE_SUCCESS) {
1305                move_hugetlb_state(hpage, new_hpage, reason);
1306                put_new_page = NULL;
1307        }
1308
1309out_unlock:
1310        unlock_page(hpage);
1311out:
1312        if (rc == MIGRATEPAGE_SUCCESS)
1313                putback_active_hugepage(hpage);
1314        else if (rc != -EAGAIN)
1315                list_move_tail(&hpage->lru, ret);
1316
1317        /*
1318         * If migration was not successful and there's a freeing callback, use
1319         * it.  Otherwise, put_page() will drop the reference grabbed during
1320         * isolation.
1321         */
1322        if (put_new_page)
1323                put_new_page(new_hpage, private);
1324        else
1325                putback_active_hugepage(new_hpage);
1326
1327        return rc;
1328}
1329
1330static inline int try_split_thp(struct page *page, struct page **page2,
1331                                struct list_head *from)
1332{
1333        int rc = 0;
1334
1335        lock_page(page);
1336        rc = split_huge_page_to_list(page, from);
1337        unlock_page(page);
1338        if (!rc)
1339                list_safe_reset_next(page, *page2, lru);
1340
1341        return rc;
1342}
1343
1344/*
1345 * migrate_pages - migrate the pages specified in a list, to the free pages
1346 *                 supplied as the target for the page migration
1347 *
1348 * @from:               The list of pages to be migrated.
1349 * @get_new_page:       The function used to allocate free pages to be used
1350 *                      as the target of the page migration.
1351 * @put_new_page:       The function used to free target pages if migration
1352 *                      fails, or NULL if no special handling is necessary.
1353 * @private:            Private data to be passed on to get_new_page()
1354 * @mode:               The migration mode that specifies the constraints for
1355 *                      page migration, if any.
1356 * @reason:             The reason for page migration.
1357 *
1358 * The function returns after 10 attempts or if no pages are movable any more
1359 * because the list has become empty or no retryable pages exist any more.
1360 * It is caller's responsibility to call putback_movable_pages() to return pages
1361 * to the LRU or free list only if ret != 0.
1362 *
1363 * Returns the number of pages that were not migrated, or an error code.
1364 */
1365int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366                free_page_t put_new_page, unsigned long private,
1367                enum migrate_mode mode, int reason)
1368{
1369        int retry = 1;
1370        int thp_retry = 1;
1371        int nr_failed = 0;
1372        int nr_succeeded = 0;
1373        int nr_thp_succeeded = 0;
1374        int nr_thp_failed = 0;
1375        int nr_thp_split = 0;
1376        int pass = 0;
1377        bool is_thp = false;
1378        struct page *page;
1379        struct page *page2;
1380        int swapwrite = current->flags & PF_SWAPWRITE;
1381        int rc, nr_subpages;
1382        LIST_HEAD(ret_pages);
1383        bool nosplit = (reason == MR_NUMA_MISPLACED);
1384
1385        trace_mm_migrate_pages_start(mode, reason);
1386
1387        if (!swapwrite)
1388                current->flags |= PF_SWAPWRITE;
1389
1390        for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1391                retry = 0;
1392                thp_retry = 0;
1393
1394                list_for_each_entry_safe(page, page2, from, lru) {
1395retry:
1396                        /*
1397                         * THP statistics is based on the source huge page.
1398                         * Capture required information that might get lost
1399                         * during migration.
1400                         */
1401                        is_thp = PageTransHuge(page) && !PageHuge(page);
1402                        nr_subpages = thp_nr_pages(page);
1403                        cond_resched();
1404
1405                        if (PageHuge(page))
1406                                rc = unmap_and_move_huge_page(get_new_page,
1407                                                put_new_page, private, page,
1408                                                pass > 2, mode, reason,
1409                                                &ret_pages);
1410                        else
1411                                rc = unmap_and_move(get_new_page, put_new_page,
1412                                                private, page, pass > 2, mode,
1413                                                reason, &ret_pages);
1414                        /*
1415                         * The rules are:
1416                         *      Success: non hugetlb page will be freed, hugetlb
1417                         *               page will be put back
1418                         *      -EAGAIN: stay on the from list
1419                         *      -ENOMEM: stay on the from list
1420                         *      Other errno: put on ret_pages list then splice to
1421                         *                   from list
1422                         */
1423                        switch(rc) {
1424                        /*
1425                         * THP migration might be unsupported or the
1426                         * allocation could've failed so we should
1427                         * retry on the same page with the THP split
1428                         * to base pages.
1429                         *
1430                         * Head page is retried immediately and tail
1431                         * pages are added to the tail of the list so
1432                         * we encounter them after the rest of the list
1433                         * is processed.
1434                         */
1435                        case -ENOSYS:
1436                                /* THP migration is unsupported */
1437                                if (is_thp) {
1438                                        if (!try_split_thp(page, &page2, from)) {
1439                                                nr_thp_split++;
1440                                                goto retry;
1441                                        }
1442
1443                                        nr_thp_failed++;
1444                                        nr_failed += nr_subpages;
1445                                        break;
1446                                }
1447
1448                                /* Hugetlb migration is unsupported */
1449                                nr_failed++;
1450                                break;
1451                        case -ENOMEM:
1452                                /*
1453                                 * When memory is low, don't bother to try to migrate
1454                                 * other pages, just exit.
1455                                 * THP NUMA faulting doesn't split THP to retry.
1456                                 */
1457                                if (is_thp && !nosplit) {
1458                                        if (!try_split_thp(page, &page2, from)) {
1459                                                nr_thp_split++;
1460                                                goto retry;
1461                                        }
1462
1463                                        nr_thp_failed++;
1464                                        nr_failed += nr_subpages;
1465                                        goto out;
1466                                }
1467                                nr_failed++;
1468                                goto out;
1469                        case -EAGAIN:
1470                                if (is_thp) {
1471                                        thp_retry++;
1472                                        break;
1473                                }
1474                                retry++;
1475                                break;
1476                        case MIGRATEPAGE_SUCCESS:
1477                                if (is_thp) {
1478                                        nr_thp_succeeded++;
1479                                        nr_succeeded += nr_subpages;
1480                                        break;
1481                                }
1482                                nr_succeeded++;
1483                                break;
1484                        default:
1485                                /*
1486                                 * Permanent failure (-EBUSY, etc.):
1487                                 * unlike -EAGAIN case, the failed page is
1488                                 * removed from migration page list and not
1489                                 * retried in the next outer loop.
1490                                 */
1491                                if (is_thp) {
1492                                        nr_thp_failed++;
1493                                        nr_failed += nr_subpages;
1494                                        break;
1495                                }
1496                                nr_failed++;
1497                                break;
1498                        }
1499                }
1500        }
1501        nr_failed += retry + thp_retry;
1502        nr_thp_failed += thp_retry;
1503        rc = nr_failed;
1504out:
1505        /*
1506         * Put the permanent failure page back to migration list, they
1507         * will be put back to the right list by the caller.
1508         */
1509        list_splice(&ret_pages, from);
1510
1511        count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1512        count_vm_events(PGMIGRATE_FAIL, nr_failed);
1513        count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1514        count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1515        count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1516        trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1517                               nr_thp_failed, nr_thp_split, mode, reason);
1518
1519        if (!swapwrite)
1520                current->flags &= ~PF_SWAPWRITE;
1521
1522        return rc;
1523}
1524
1525struct page *alloc_migration_target(struct page *page, unsigned long private)
1526{
1527        struct migration_target_control *mtc;
1528        gfp_t gfp_mask;
1529        unsigned int order = 0;
1530        struct page *new_page = NULL;
1531        int nid;
1532        int zidx;
1533
1534        mtc = (struct migration_target_control *)private;
1535        gfp_mask = mtc->gfp_mask;
1536        nid = mtc->nid;
1537        if (nid == NUMA_NO_NODE)
1538                nid = page_to_nid(page);
1539
1540        if (PageHuge(page)) {
1541                struct hstate *h = page_hstate(compound_head(page));
1542
1543                gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1544                return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1545        }
1546
1547        if (PageTransHuge(page)) {
1548                /*
1549                 * clear __GFP_RECLAIM to make the migration callback
1550                 * consistent with regular THP allocations.
1551                 */
1552                gfp_mask &= ~__GFP_RECLAIM;
1553                gfp_mask |= GFP_TRANSHUGE;
1554                order = HPAGE_PMD_ORDER;
1555        }
1556        zidx = zone_idx(page_zone(page));
1557        if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1558                gfp_mask |= __GFP_HIGHMEM;
1559
1560        new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1561
1562        if (new_page && PageTransHuge(new_page))
1563                prep_transhuge_page(new_page);
1564
1565        return new_page;
1566}
1567
1568#ifdef CONFIG_NUMA
1569
1570static int store_status(int __user *status, int start, int value, int nr)
1571{
1572        while (nr-- > 0) {
1573                if (put_user(value, status + start))
1574                        return -EFAULT;
1575                start++;
1576        }
1577
1578        return 0;
1579}
1580
1581static int do_move_pages_to_node(struct mm_struct *mm,
1582                struct list_head *pagelist, int node)
1583{
1584        int err;
1585        struct migration_target_control mtc = {
1586                .nid = node,
1587                .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1588        };
1589
1590        err = migrate_pages(pagelist, alloc_migration_target, NULL,
1591                        (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1592        if (err)
1593                putback_movable_pages(pagelist);
1594        return err;
1595}
1596
1597/*
1598 * Resolves the given address to a struct page, isolates it from the LRU and
1599 * puts it to the given pagelist.
1600 * Returns:
1601 *     errno - if the page cannot be found/isolated
1602 *     0 - when it doesn't have to be migrated because it is already on the
1603 *         target node
1604 *     1 - when it has been queued
1605 */
1606static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1607                int node, struct list_head *pagelist, bool migrate_all)
1608{
1609        struct vm_area_struct *vma;
1610        struct page *page;
1611        unsigned int follflags;
1612        int err;
1613
1614        mmap_read_lock(mm);
1615        err = -EFAULT;
1616        vma = find_vma(mm, addr);
1617        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1618                goto out;
1619
1620        /* FOLL_DUMP to ignore special (like zero) pages */
1621        follflags = FOLL_GET | FOLL_DUMP;
1622        page = follow_page(vma, addr, follflags);
1623
1624        err = PTR_ERR(page);
1625        if (IS_ERR(page))
1626                goto out;
1627
1628        err = -ENOENT;
1629        if (!page)
1630                goto out;
1631
1632        err = 0;
1633        if (page_to_nid(page) == node)
1634                goto out_putpage;
1635
1636        err = -EACCES;
1637        if (page_mapcount(page) > 1 && !migrate_all)
1638                goto out_putpage;
1639
1640        if (PageHuge(page)) {
1641                if (PageHead(page)) {
1642                        isolate_huge_page(page, pagelist);
1643                        err = 1;
1644                }
1645        } else {
1646                struct page *head;
1647
1648                head = compound_head(page);
1649                err = isolate_lru_page(head);
1650                if (err)
1651                        goto out_putpage;
1652
1653                err = 1;
1654                list_add_tail(&head->lru, pagelist);
1655                mod_node_page_state(page_pgdat(head),
1656                        NR_ISOLATED_ANON + page_is_file_lru(head),
1657                        thp_nr_pages(head));
1658        }
1659out_putpage:
1660        /*
1661         * Either remove the duplicate refcount from
1662         * isolate_lru_page() or drop the page ref if it was
1663         * not isolated.
1664         */
1665        put_page(page);
1666out:
1667        mmap_read_unlock(mm);
1668        return err;
1669}
1670
1671static int move_pages_and_store_status(struct mm_struct *mm, int node,
1672                struct list_head *pagelist, int __user *status,
1673                int start, int i, unsigned long nr_pages)
1674{
1675        int err;
1676
1677        if (list_empty(pagelist))
1678                return 0;
1679
1680        err = do_move_pages_to_node(mm, pagelist, node);
1681        if (err) {
1682                /*
1683                 * Positive err means the number of failed
1684                 * pages to migrate.  Since we are going to
1685                 * abort and return the number of non-migrated
1686                 * pages, so need to include the rest of the
1687                 * nr_pages that have not been attempted as
1688                 * well.
1689                 */
1690                if (err > 0)
1691                        err += nr_pages - i - 1;
1692                return err;
1693        }
1694        return store_status(status, start, node, i - start);
1695}
1696
1697/*
1698 * Migrate an array of page address onto an array of nodes and fill
1699 * the corresponding array of status.
1700 */
1701static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1702                         unsigned long nr_pages,
1703                         const void __user * __user *pages,
1704                         const int __user *nodes,
1705                         int __user *status, int flags)
1706{
1707        int current_node = NUMA_NO_NODE;
1708        LIST_HEAD(pagelist);
1709        int start, i;
1710        int err = 0, err1;
1711
1712        lru_cache_disable();
1713
1714        for (i = start = 0; i < nr_pages; i++) {
1715                const void __user *p;
1716                unsigned long addr;
1717                int node;
1718
1719                err = -EFAULT;
1720                if (get_user(p, pages + i))
1721                        goto out_flush;
1722                if (get_user(node, nodes + i))
1723                        goto out_flush;
1724                addr = (unsigned long)untagged_addr(p);
1725
1726                err = -ENODEV;
1727                if (node < 0 || node >= MAX_NUMNODES)
1728                        goto out_flush;
1729                if (!node_state(node, N_MEMORY))
1730                        goto out_flush;
1731
1732                err = -EACCES;
1733                if (!node_isset(node, task_nodes))
1734                        goto out_flush;
1735
1736                if (current_node == NUMA_NO_NODE) {
1737                        current_node = node;
1738                        start = i;
1739                } else if (node != current_node) {
1740                        err = move_pages_and_store_status(mm, current_node,
1741                                        &pagelist, status, start, i, nr_pages);
1742                        if (err)
1743                                goto out;
1744                        start = i;
1745                        current_node = node;
1746                }
1747
1748                /*
1749                 * Errors in the page lookup or isolation are not fatal and we simply
1750                 * report them via status
1751                 */
1752                err = add_page_for_migration(mm, addr, current_node,
1753                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1754
1755                if (err > 0) {
1756                        /* The page is successfully queued for migration */
1757                        continue;
1758                }
1759
1760                /*
1761                 * If the page is already on the target node (!err), store the
1762                 * node, otherwise, store the err.
1763                 */
1764                err = store_status(status, i, err ? : current_node, 1);
1765                if (err)
1766                        goto out_flush;
1767
1768                err = move_pages_and_store_status(mm, current_node, &pagelist,
1769                                status, start, i, nr_pages);
1770                if (err)
1771                        goto out;
1772                current_node = NUMA_NO_NODE;
1773        }
1774out_flush:
1775        /* Make sure we do not overwrite the existing error */
1776        err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1777                                status, start, i, nr_pages);
1778        if (err >= 0)
1779                err = err1;
1780out:
1781        lru_cache_enable();
1782        return err;
1783}
1784
1785/*
1786 * Determine the nodes of an array of pages and store it in an array of status.
1787 */
1788static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1789                                const void __user **pages, int *status)
1790{
1791        unsigned long i;
1792
1793        mmap_read_lock(mm);
1794
1795        for (i = 0; i < nr_pages; i++) {
1796                unsigned long addr = (unsigned long)(*pages);
1797                struct vm_area_struct *vma;
1798                struct page *page;
1799                int err = -EFAULT;
1800
1801                vma = vma_lookup(mm, addr);
1802                if (!vma)
1803                        goto set_status;
1804
1805                /* FOLL_DUMP to ignore special (like zero) pages */
1806                page = follow_page(vma, addr, FOLL_DUMP);
1807
1808                err = PTR_ERR(page);
1809                if (IS_ERR(page))
1810                        goto set_status;
1811
1812                err = page ? page_to_nid(page) : -ENOENT;
1813set_status:
1814                *status = err;
1815
1816                pages++;
1817                status++;
1818        }
1819
1820        mmap_read_unlock(mm);
1821}
1822
1823/*
1824 * Determine the nodes of a user array of pages and store it in
1825 * a user array of status.
1826 */
1827static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1828                         const void __user * __user *pages,
1829                         int __user *status)
1830{
1831#define DO_PAGES_STAT_CHUNK_NR 16
1832        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1833        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1834
1835        while (nr_pages) {
1836                unsigned long chunk_nr;
1837
1838                chunk_nr = nr_pages;
1839                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1840                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1841
1842                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1843                        break;
1844
1845                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1846
1847                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1848                        break;
1849
1850                pages += chunk_nr;
1851                status += chunk_nr;
1852                nr_pages -= chunk_nr;
1853        }
1854        return nr_pages ? -EFAULT : 0;
1855}
1856
1857static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1858{
1859        struct task_struct *task;
1860        struct mm_struct *mm;
1861
1862        /*
1863         * There is no need to check if current process has the right to modify
1864         * the specified process when they are same.
1865         */
1866        if (!pid) {
1867                mmget(current->mm);
1868                *mem_nodes = cpuset_mems_allowed(current);
1869                return current->mm;
1870        }
1871
1872        /* Find the mm_struct */
1873        rcu_read_lock();
1874        task = find_task_by_vpid(pid);
1875        if (!task) {
1876                rcu_read_unlock();
1877                return ERR_PTR(-ESRCH);
1878        }
1879        get_task_struct(task);
1880
1881        /*
1882         * Check if this process has the right to modify the specified
1883         * process. Use the regular "ptrace_may_access()" checks.
1884         */
1885        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1886                rcu_read_unlock();
1887                mm = ERR_PTR(-EPERM);
1888                goto out;
1889        }
1890        rcu_read_unlock();
1891
1892        mm = ERR_PTR(security_task_movememory(task));
1893        if (IS_ERR(mm))
1894                goto out;
1895        *mem_nodes = cpuset_mems_allowed(task);
1896        mm = get_task_mm(task);
1897out:
1898        put_task_struct(task);
1899        if (!mm)
1900                mm = ERR_PTR(-EINVAL);
1901        return mm;
1902}
1903
1904/*
1905 * Move a list of pages in the address space of the currently executing
1906 * process.
1907 */
1908static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1909                             const void __user * __user *pages,
1910                             const int __user *nodes,
1911                             int __user *status, int flags)
1912{
1913        struct mm_struct *mm;
1914        int err;
1915        nodemask_t task_nodes;
1916
1917        /* Check flags */
1918        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1919                return -EINVAL;
1920
1921        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1922                return -EPERM;
1923
1924        mm = find_mm_struct(pid, &task_nodes);
1925        if (IS_ERR(mm))
1926                return PTR_ERR(mm);
1927
1928        if (nodes)
1929                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1930                                    nodes, status, flags);
1931        else
1932                err = do_pages_stat(mm, nr_pages, pages, status);
1933
1934        mmput(mm);
1935        return err;
1936}
1937
1938SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939                const void __user * __user *, pages,
1940                const int __user *, nodes,
1941                int __user *, status, int, flags)
1942{
1943        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944}
1945
1946#ifdef CONFIG_COMPAT
1947COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948                       compat_uptr_t __user *, pages32,
1949                       const int __user *, nodes,
1950                       int __user *, status,
1951                       int, flags)
1952{
1953        const void __user * __user *pages;
1954        int i;
1955
1956        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957        for (i = 0; i < nr_pages; i++) {
1958                compat_uptr_t p;
1959
1960                if (get_user(p, pages32 + i) ||
1961                        put_user(compat_ptr(p), pages + i))
1962                        return -EFAULT;
1963        }
1964        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965}
1966#endif /* CONFIG_COMPAT */
1967
1968#ifdef CONFIG_NUMA_BALANCING
1969/*
1970 * Returns true if this is a safe migration target node for misplaced NUMA
1971 * pages. Currently it only checks the watermarks which crude
1972 */
1973static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974                                   unsigned long nr_migrate_pages)
1975{
1976        int z;
1977
1978        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979                struct zone *zone = pgdat->node_zones + z;
1980
1981                if (!populated_zone(zone))
1982                        continue;
1983
1984                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985                if (!zone_watermark_ok(zone, 0,
1986                                       high_wmark_pages(zone) +
1987                                       nr_migrate_pages,
1988                                       ZONE_MOVABLE, 0))
1989                        continue;
1990                return true;
1991        }
1992        return false;
1993}
1994
1995static struct page *alloc_misplaced_dst_page(struct page *page,
1996                                           unsigned long data)
1997{
1998        int nid = (int) data;
1999        struct page *newpage;
2000
2001        newpage = __alloc_pages_node(nid,
2002                                         (GFP_HIGHUSER_MOVABLE |
2003                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
2004                                          __GFP_NORETRY | __GFP_NOWARN) &
2005                                         ~__GFP_RECLAIM, 0);
2006
2007        return newpage;
2008}
2009
2010static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2011                                                 unsigned long data)
2012{
2013        int nid = (int) data;
2014        struct page *newpage;
2015
2016        newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2017                                   HPAGE_PMD_ORDER);
2018        if (!newpage)
2019                goto out;
2020
2021        prep_transhuge_page(newpage);
2022
2023out:
2024        return newpage;
2025}
2026
2027static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2028{
2029        int page_lru;
2030
2031        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2032
2033        /* Do not migrate THP mapped by multiple processes */
2034        if (PageTransHuge(page) && total_mapcount(page) > 1)
2035                return 0;
2036
2037        /* Avoid migrating to a node that is nearly full */
2038        if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2039                return 0;
2040
2041        if (isolate_lru_page(page))
2042                return 0;
2043
2044        page_lru = page_is_file_lru(page);
2045        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2046                                thp_nr_pages(page));
2047
2048        /*
2049         * Isolating the page has taken another reference, so the
2050         * caller's reference can be safely dropped without the page
2051         * disappearing underneath us during migration.
2052         */
2053        put_page(page);
2054        return 1;
2055}
2056
2057/*
2058 * Attempt to migrate a misplaced page to the specified destination
2059 * node. Caller is expected to have an elevated reference count on
2060 * the page that will be dropped by this function before returning.
2061 */
2062int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2063                           int node)
2064{
2065        pg_data_t *pgdat = NODE_DATA(node);
2066        int isolated;
2067        int nr_remaining;
2068        LIST_HEAD(migratepages);
2069        new_page_t *new;
2070        bool compound;
2071        int nr_pages = thp_nr_pages(page);
2072
2073        /*
2074         * PTE mapped THP or HugeTLB page can't reach here so the page could
2075         * be either base page or THP.  And it must be head page if it is
2076         * THP.
2077         */
2078        compound = PageTransHuge(page);
2079
2080        if (compound)
2081                new = alloc_misplaced_dst_page_thp;
2082        else
2083                new = alloc_misplaced_dst_page;
2084
2085        /*
2086         * Don't migrate file pages that are mapped in multiple processes
2087         * with execute permissions as they are probably shared libraries.
2088         */
2089        if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2090            (vma->vm_flags & VM_EXEC))
2091                goto out;
2092
2093        /*
2094         * Also do not migrate dirty pages as not all filesystems can move
2095         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2096         */
2097        if (page_is_file_lru(page) && PageDirty(page))
2098                goto out;
2099
2100        isolated = numamigrate_isolate_page(pgdat, page);
2101        if (!isolated)
2102                goto out;
2103
2104        list_add(&page->lru, &migratepages);
2105        nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2106                                     MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2107        if (nr_remaining) {
2108                if (!list_empty(&migratepages)) {
2109                        list_del(&page->lru);
2110                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2111                                        page_is_file_lru(page), -nr_pages);
2112                        putback_lru_page(page);
2113                }
2114                isolated = 0;
2115        } else
2116                count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2117        BUG_ON(!list_empty(&migratepages));
2118        return isolated;
2119
2120out:
2121        put_page(page);
2122        return 0;
2123}
2124#endif /* CONFIG_NUMA_BALANCING */
2125#endif /* CONFIG_NUMA */
2126
2127#ifdef CONFIG_DEVICE_PRIVATE
2128static int migrate_vma_collect_skip(unsigned long start,
2129                                    unsigned long end,
2130                                    struct mm_walk *walk)
2131{
2132        struct migrate_vma *migrate = walk->private;
2133        unsigned long addr;
2134
2135        for (addr = start; addr < end; addr += PAGE_SIZE) {
2136                migrate->dst[migrate->npages] = 0;
2137                migrate->src[migrate->npages++] = 0;
2138        }
2139
2140        return 0;
2141}
2142
2143static int migrate_vma_collect_hole(unsigned long start,
2144                                    unsigned long end,
2145                                    __always_unused int depth,
2146                                    struct mm_walk *walk)
2147{
2148        struct migrate_vma *migrate = walk->private;
2149        unsigned long addr;
2150
2151        /* Only allow populating anonymous memory. */
2152        if (!vma_is_anonymous(walk->vma))
2153                return migrate_vma_collect_skip(start, end, walk);
2154
2155        for (addr = start; addr < end; addr += PAGE_SIZE) {
2156                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2157                migrate->dst[migrate->npages] = 0;
2158                migrate->npages++;
2159                migrate->cpages++;
2160        }
2161
2162        return 0;
2163}
2164
2165static int migrate_vma_collect_pmd(pmd_t *pmdp,
2166                                   unsigned long start,
2167                                   unsigned long end,
2168                                   struct mm_walk *walk)
2169{
2170        struct migrate_vma *migrate = walk->private;
2171        struct vm_area_struct *vma = walk->vma;
2172        struct mm_struct *mm = vma->vm_mm;
2173        unsigned long addr = start, unmapped = 0;
2174        spinlock_t *ptl;
2175        pte_t *ptep;
2176
2177again:
2178        if (pmd_none(*pmdp))
2179                return migrate_vma_collect_hole(start, end, -1, walk);
2180
2181        if (pmd_trans_huge(*pmdp)) {
2182                struct page *page;
2183
2184                ptl = pmd_lock(mm, pmdp);
2185                if (unlikely(!pmd_trans_huge(*pmdp))) {
2186                        spin_unlock(ptl);
2187                        goto again;
2188                }
2189
2190                page = pmd_page(*pmdp);
2191                if (is_huge_zero_page(page)) {
2192                        spin_unlock(ptl);
2193                        split_huge_pmd(vma, pmdp, addr);
2194                        if (pmd_trans_unstable(pmdp))
2195                                return migrate_vma_collect_skip(start, end,
2196                                                                walk);
2197                } else {
2198                        int ret;
2199
2200                        get_page(page);
2201                        spin_unlock(ptl);
2202                        if (unlikely(!trylock_page(page)))
2203                                return migrate_vma_collect_skip(start, end,
2204                                                                walk);
2205                        ret = split_huge_page(page);
2206                        unlock_page(page);
2207                        put_page(page);
2208                        if (ret)
2209                                return migrate_vma_collect_skip(start, end,
2210                                                                walk);
2211                        if (pmd_none(*pmdp))
2212                                return migrate_vma_collect_hole(start, end, -1,
2213                                                                walk);
2214                }
2215        }
2216
2217        if (unlikely(pmd_bad(*pmdp)))
2218                return migrate_vma_collect_skip(start, end, walk);
2219
2220        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2221        arch_enter_lazy_mmu_mode();
2222
2223        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2224                unsigned long mpfn = 0, pfn;
2225                struct page *page;
2226                swp_entry_t entry;
2227                pte_t pte;
2228
2229                pte = *ptep;
2230
2231                if (pte_none(pte)) {
2232                        if (vma_is_anonymous(vma)) {
2233                                mpfn = MIGRATE_PFN_MIGRATE;
2234                                migrate->cpages++;
2235                        }
2236                        goto next;
2237                }
2238
2239                if (!pte_present(pte)) {
2240                        /*
2241                         * Only care about unaddressable device page special
2242                         * page table entry. Other special swap entries are not
2243                         * migratable, and we ignore regular swapped page.
2244                         */
2245                        entry = pte_to_swp_entry(pte);
2246                        if (!is_device_private_entry(entry))
2247                                goto next;
2248
2249                        page = pfn_swap_entry_to_page(entry);
2250                        if (!(migrate->flags &
2251                                MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2252                            page->pgmap->owner != migrate->pgmap_owner)
2253                                goto next;
2254
2255                        mpfn = migrate_pfn(page_to_pfn(page)) |
2256                                        MIGRATE_PFN_MIGRATE;
2257                        if (is_writable_device_private_entry(entry))
2258                                mpfn |= MIGRATE_PFN_WRITE;
2259                } else {
2260                        if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2261                                goto next;
2262                        pfn = pte_pfn(pte);
2263                        if (is_zero_pfn(pfn)) {
2264                                mpfn = MIGRATE_PFN_MIGRATE;
2265                                migrate->cpages++;
2266                                goto next;
2267                        }
2268                        page = vm_normal_page(migrate->vma, addr, pte);
2269                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2270                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2271                }
2272
2273                /* FIXME support THP */
2274                if (!page || !page->mapping || PageTransCompound(page)) {
2275                        mpfn = 0;
2276                        goto next;
2277                }
2278
2279                /*
2280                 * By getting a reference on the page we pin it and that blocks
2281                 * any kind of migration. Side effect is that it "freezes" the
2282                 * pte.
2283                 *
2284                 * We drop this reference after isolating the page from the lru
2285                 * for non device page (device page are not on the lru and thus
2286                 * can't be dropped from it).
2287                 */
2288                get_page(page);
2289                migrate->cpages++;
2290
2291                /*
2292                 * Optimize for the common case where page is only mapped once
2293                 * in one process. If we can lock the page, then we can safely
2294                 * set up a special migration page table entry now.
2295                 */
2296                if (trylock_page(page)) {
2297                        pte_t swp_pte;
2298
2299                        mpfn |= MIGRATE_PFN_LOCKED;
2300                        ptep_get_and_clear(mm, addr, ptep);
2301
2302                        /* Setup special migration page table entry */
2303                        if (mpfn & MIGRATE_PFN_WRITE)
2304                                entry = make_writable_migration_entry(
2305                                                        page_to_pfn(page));
2306                        else
2307                                entry = make_readable_migration_entry(
2308                                                        page_to_pfn(page));
2309                        swp_pte = swp_entry_to_pte(entry);
2310                        if (pte_present(pte)) {
2311                                if (pte_soft_dirty(pte))
2312                                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
2313                                if (pte_uffd_wp(pte))
2314                                        swp_pte = pte_swp_mkuffd_wp(swp_pte);
2315                        } else {
2316                                if (pte_swp_soft_dirty(pte))
2317                                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
2318                                if (pte_swp_uffd_wp(pte))
2319                                        swp_pte = pte_swp_mkuffd_wp(swp_pte);
2320                        }
2321                        set_pte_at(mm, addr, ptep, swp_pte);
2322
2323                        /*
2324                         * This is like regular unmap: we remove the rmap and
2325                         * drop page refcount. Page won't be freed, as we took
2326                         * a reference just above.
2327                         */
2328                        page_remove_rmap(page, false);
2329                        put_page(page);
2330
2331                        if (pte_present(pte))
2332                                unmapped++;
2333                }
2334
2335next:
2336                migrate->dst[migrate->npages] = 0;
2337                migrate->src[migrate->npages++] = mpfn;
2338        }
2339        arch_leave_lazy_mmu_mode();
2340        pte_unmap_unlock(ptep - 1, ptl);
2341
2342        /* Only flush the TLB if we actually modified any entries */
2343        if (unmapped)
2344                flush_tlb_range(walk->vma, start, end);
2345
2346        return 0;
2347}
2348
2349static const struct mm_walk_ops migrate_vma_walk_ops = {
2350        .pmd_entry              = migrate_vma_collect_pmd,
2351        .pte_hole               = migrate_vma_collect_hole,
2352};
2353
2354/*
2355 * migrate_vma_collect() - collect pages over a range of virtual addresses
2356 * @migrate: migrate struct containing all migration information
2357 *
2358 * This will walk the CPU page table. For each virtual address backed by a
2359 * valid page, it updates the src array and takes a reference on the page, in
2360 * order to pin the page until we lock it and unmap it.
2361 */
2362static void migrate_vma_collect(struct migrate_vma *migrate)
2363{
2364        struct mmu_notifier_range range;
2365
2366        /*
2367         * Note that the pgmap_owner is passed to the mmu notifier callback so
2368         * that the registered device driver can skip invalidating device
2369         * private page mappings that won't be migrated.
2370         */
2371        mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2372                migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2373                migrate->pgmap_owner);
2374        mmu_notifier_invalidate_range_start(&range);
2375
2376        walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2377                        &migrate_vma_walk_ops, migrate);
2378
2379        mmu_notifier_invalidate_range_end(&range);
2380        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2381}
2382
2383/*
2384 * migrate_vma_check_page() - check if page is pinned or not
2385 * @page: struct page to check
2386 *
2387 * Pinned pages cannot be migrated. This is the same test as in
2388 * migrate_page_move_mapping(), except that here we allow migration of a
2389 * ZONE_DEVICE page.
2390 */
2391static bool migrate_vma_check_page(struct page *page)
2392{
2393        /*
2394         * One extra ref because caller holds an extra reference, either from
2395         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2396         * a device page.
2397         */
2398        int extra = 1;
2399
2400        /*
2401         * FIXME support THP (transparent huge page), it is bit more complex to
2402         * check them than regular pages, because they can be mapped with a pmd
2403         * or with a pte (split pte mapping).
2404         */
2405        if (PageCompound(page))
2406                return false;
2407
2408        /* Page from ZONE_DEVICE have one extra reference */
2409        if (is_zone_device_page(page)) {
2410                /*
2411                 * Private page can never be pin as they have no valid pte and
2412                 * GUP will fail for those. Yet if there is a pending migration
2413                 * a thread might try to wait on the pte migration entry and
2414                 * will bump the page reference count. Sadly there is no way to
2415                 * differentiate a regular pin from migration wait. Hence to
2416                 * avoid 2 racing thread trying to migrate back to CPU to enter
2417                 * infinite loop (one stopping migration because the other is
2418                 * waiting on pte migration entry). We always return true here.
2419                 *
2420                 * FIXME proper solution is to rework migration_entry_wait() so
2421                 * it does not need to take a reference on page.
2422                 */
2423                return is_device_private_page(page);
2424        }
2425
2426        /* For file back page */
2427        if (page_mapping(page))
2428                extra += 1 + page_has_private(page);
2429
2430        if ((page_count(page) - extra) > page_mapcount(page))
2431                return false;
2432
2433        return true;
2434}
2435
2436/*
2437 * migrate_vma_prepare() - lock pages and isolate them from the lru
2438 * @migrate: migrate struct containing all migration information
2439 *
2440 * This locks pages that have been collected by migrate_vma_collect(). Once each
2441 * page is locked it is isolated from the lru (for non-device pages). Finally,
2442 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2443 * migrated by concurrent kernel threads.
2444 */
2445static void migrate_vma_prepare(struct migrate_vma *migrate)
2446{
2447        const unsigned long npages = migrate->npages;
2448        const unsigned long start = migrate->start;
2449        unsigned long addr, i, restore = 0;
2450        bool allow_drain = true;
2451
2452        lru_add_drain();
2453
2454        for (i = 0; (i < npages) && migrate->cpages; i++) {
2455                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2456                bool remap = true;
2457
2458                if (!page)
2459                        continue;
2460
2461                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2462                        /*
2463                         * Because we are migrating several pages there can be
2464                         * a deadlock between 2 concurrent migration where each
2465                         * are waiting on each other page lock.
2466                         *
2467                         * Make migrate_vma() a best effort thing and backoff
2468                         * for any page we can not lock right away.
2469                         */
2470                        if (!trylock_page(page)) {
2471                                migrate->src[i] = 0;
2472                                migrate->cpages--;
2473                                put_page(page);
2474                                continue;
2475                        }
2476                        remap = false;
2477                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2478                }
2479
2480                /* ZONE_DEVICE pages are not on LRU */
2481                if (!is_zone_device_page(page)) {
2482                        if (!PageLRU(page) && allow_drain) {
2483                                /* Drain CPU's pagevec */
2484                                lru_add_drain_all();
2485                                allow_drain = false;
2486                        }
2487
2488                        if (isolate_lru_page(page)) {
2489                                if (remap) {
2490                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2491                                        migrate->cpages--;
2492                                        restore++;
2493                                } else {
2494                                        migrate->src[i] = 0;
2495                                        unlock_page(page);
2496                                        migrate->cpages--;
2497                                        put_page(page);
2498                                }
2499                                continue;
2500                        }
2501
2502                        /* Drop the reference we took in collect */
2503                        put_page(page);
2504                }
2505
2506                if (!migrate_vma_check_page(page)) {
2507                        if (remap) {
2508                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2509                                migrate->cpages--;
2510                                restore++;
2511
2512                                if (!is_zone_device_page(page)) {
2513                                        get_page(page);
2514                                        putback_lru_page(page);
2515                                }
2516                        } else {
2517                                migrate->src[i] = 0;
2518                                unlock_page(page);
2519                                migrate->cpages--;
2520
2521                                if (!is_zone_device_page(page))
2522                                        putback_lru_page(page);
2523                                else
2524                                        put_page(page);
2525                        }
2526                }
2527        }
2528
2529        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2530                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2531
2532                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2533                        continue;
2534
2535                remove_migration_pte(page, migrate->vma, addr, page);
2536
2537                migrate->src[i] = 0;
2538                unlock_page(page);
2539                put_page(page);
2540                restore--;
2541        }
2542}
2543
2544/*
2545 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2546 * @migrate: migrate struct containing all migration information
2547 *
2548 * Replace page mapping (CPU page table pte) with a special migration pte entry
2549 * and check again if it has been pinned. Pinned pages are restored because we
2550 * cannot migrate them.
2551 *
2552 * This is the last step before we call the device driver callback to allocate
2553 * destination memory and copy contents of original page over to new page.
2554 */
2555static void migrate_vma_unmap(struct migrate_vma *migrate)
2556{
2557        const unsigned long npages = migrate->npages;
2558        const unsigned long start = migrate->start;
2559        unsigned long addr, i, restore = 0;
2560
2561        for (i = 0; i < npages; i++) {
2562                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565                        continue;
2566
2567                if (page_mapped(page)) {
2568                        try_to_migrate(page, 0);
2569                        if (page_mapped(page))
2570                                goto restore;
2571                }
2572
2573                if (migrate_vma_check_page(page))
2574                        continue;
2575
2576restore:
2577                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2578                migrate->cpages--;
2579                restore++;
2580        }
2581
2582        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2583                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584
2585                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586                        continue;
2587
2588                remove_migration_ptes(page, page, false);
2589
2590                migrate->src[i] = 0;
2591                unlock_page(page);
2592                restore--;
2593
2594                if (is_zone_device_page(page))
2595                        put_page(page);
2596                else
2597                        putback_lru_page(page);
2598        }
2599}
2600
2601/**
2602 * migrate_vma_setup() - prepare to migrate a range of memory
2603 * @args: contains the vma, start, and pfns arrays for the migration
2604 *
2605 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2606 * without an error.
2607 *
2608 * Prepare to migrate a range of memory virtual address range by collecting all
2609 * the pages backing each virtual address in the range, saving them inside the
2610 * src array.  Then lock those pages and unmap them. Once the pages are locked
2611 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2612 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2613 * corresponding src array entry.  Then restores any pages that are pinned, by
2614 * remapping and unlocking those pages.
2615 *
2616 * The caller should then allocate destination memory and copy source memory to
2617 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2618 * flag set).  Once these are allocated and copied, the caller must update each
2619 * corresponding entry in the dst array with the pfn value of the destination
2620 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2621 * (destination pages must have their struct pages locked, via lock_page()).
2622 *
2623 * Note that the caller does not have to migrate all the pages that are marked
2624 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2625 * device memory to system memory.  If the caller cannot migrate a device page
2626 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2627 * consequences for the userspace process, so it must be avoided if at all
2628 * possible.
2629 *
2630 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2631 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2632 * allowing the caller to allocate device memory for those unbacked virtual
2633 * addresses.  For this the caller simply has to allocate device memory and
2634 * properly set the destination entry like for regular migration.  Note that
2635 * this can still fail, and thus inside the device driver you must check if the
2636 * migration was successful for those entries after calling migrate_vma_pages(),
2637 * just like for regular migration.
2638 *
2639 * After that, the callers must call migrate_vma_pages() to go over each entry
2640 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2641 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2642 * then migrate_vma_pages() to migrate struct page information from the source
2643 * struct page to the destination struct page.  If it fails to migrate the
2644 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2645 * src array.
2646 *
2647 * At this point all successfully migrated pages have an entry in the src
2648 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2649 * array entry with MIGRATE_PFN_VALID flag set.
2650 *
2651 * Once migrate_vma_pages() returns the caller may inspect which pages were
2652 * successfully migrated, and which were not.  Successfully migrated pages will
2653 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2654 *
2655 * It is safe to update device page table after migrate_vma_pages() because
2656 * both destination and source page are still locked, and the mmap_lock is held
2657 * in read mode (hence no one can unmap the range being migrated).
2658 *
2659 * Once the caller is done cleaning up things and updating its page table (if it
2660 * chose to do so, this is not an obligation) it finally calls
2661 * migrate_vma_finalize() to update the CPU page table to point to new pages
2662 * for successfully migrated pages or otherwise restore the CPU page table to
2663 * point to the original source pages.
2664 */
2665int migrate_vma_setup(struct migrate_vma *args)
2666{
2667        long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2668
2669        args->start &= PAGE_MASK;
2670        args->end &= PAGE_MASK;
2671        if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2672            (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2673                return -EINVAL;
2674        if (nr_pages <= 0)
2675                return -EINVAL;
2676        if (args->start < args->vma->vm_start ||
2677            args->start >= args->vma->vm_end)
2678                return -EINVAL;
2679        if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2680                return -EINVAL;
2681        if (!args->src || !args->dst)
2682                return -EINVAL;
2683
2684        memset(args->src, 0, sizeof(*args->src) * nr_pages);
2685        args->cpages = 0;
2686        args->npages = 0;
2687
2688        migrate_vma_collect(args);
2689
2690        if (args->cpages)
2691                migrate_vma_prepare(args);
2692        if (args->cpages)
2693                migrate_vma_unmap(args);
2694
2695        /*
2696         * At this point pages are locked and unmapped, and thus they have
2697         * stable content and can safely be copied to destination memory that
2698         * is allocated by the drivers.
2699         */
2700        return 0;
2701
2702}
2703EXPORT_SYMBOL(migrate_vma_setup);
2704
2705/*
2706 * This code closely matches the code in:
2707 *   __handle_mm_fault()
2708 *     handle_pte_fault()
2709 *       do_anonymous_page()
2710 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2711 * private page.
2712 */
2713static void migrate_vma_insert_page(struct migrate_vma *migrate,
2714                                    unsigned long addr,
2715                                    struct page *page,
2716                                    unsigned long *src)
2717{
2718        struct vm_area_struct *vma = migrate->vma;
2719        struct mm_struct *mm = vma->vm_mm;
2720        bool flush = false;
2721        spinlock_t *ptl;
2722        pte_t entry;
2723        pgd_t *pgdp;
2724        p4d_t *p4dp;
2725        pud_t *pudp;
2726        pmd_t *pmdp;
2727        pte_t *ptep;
2728
2729        /* Only allow populating anonymous memory */
2730        if (!vma_is_anonymous(vma))
2731                goto abort;
2732
2733        pgdp = pgd_offset(mm, addr);
2734        p4dp = p4d_alloc(mm, pgdp, addr);
2735        if (!p4dp)
2736                goto abort;
2737        pudp = pud_alloc(mm, p4dp, addr);
2738        if (!pudp)
2739                goto abort;
2740        pmdp = pmd_alloc(mm, pudp, addr);
2741        if (!pmdp)
2742                goto abort;
2743
2744        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2745                goto abort;
2746
2747        /*
2748         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2749         * pte_offset_map() on pmds where a huge pmd might be created
2750         * from a different thread.
2751         *
2752         * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2753         * parallel threads are excluded by other means.
2754         *
2755         * Here we only have mmap_read_lock(mm).
2756         */
2757        if (pte_alloc(mm, pmdp))
2758                goto abort;
2759
2760        /* See the comment in pte_alloc_one_map() */
2761        if (unlikely(pmd_trans_unstable(pmdp)))
2762                goto abort;
2763
2764        if (unlikely(anon_vma_prepare(vma)))
2765                goto abort;
2766        if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2767                goto abort;
2768
2769        /*
2770         * The memory barrier inside __SetPageUptodate makes sure that
2771         * preceding stores to the page contents become visible before
2772         * the set_pte_at() write.
2773         */
2774        __SetPageUptodate(page);
2775
2776        if (is_zone_device_page(page)) {
2777                if (is_device_private_page(page)) {
2778                        swp_entry_t swp_entry;
2779
2780                        if (vma->vm_flags & VM_WRITE)
2781                                swp_entry = make_writable_device_private_entry(
2782                                                        page_to_pfn(page));
2783                        else
2784                                swp_entry = make_readable_device_private_entry(
2785                                                        page_to_pfn(page));
2786                        entry = swp_entry_to_pte(swp_entry);
2787                } else {
2788                        /*
2789                         * For now we only support migrating to un-addressable
2790                         * device memory.
2791                         */
2792                        pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2793                        goto abort;
2794                }
2795        } else {
2796                entry = mk_pte(page, vma->vm_page_prot);
2797                if (vma->vm_flags & VM_WRITE)
2798                        entry = pte_mkwrite(pte_mkdirty(entry));
2799        }
2800
2801        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802
2803        if (check_stable_address_space(mm))
2804                goto unlock_abort;
2805
2806        if (pte_present(*ptep)) {
2807                unsigned long pfn = pte_pfn(*ptep);
2808
2809                if (!is_zero_pfn(pfn))
2810                        goto unlock_abort;
2811                flush = true;
2812        } else if (!pte_none(*ptep))
2813                goto unlock_abort;
2814
2815        /*
2816         * Check for userfaultfd but do not deliver the fault. Instead,
2817         * just back off.
2818         */
2819        if (userfaultfd_missing(vma))
2820                goto unlock_abort;
2821
2822        inc_mm_counter(mm, MM_ANONPAGES);
2823        page_add_new_anon_rmap(page, vma, addr, false);
2824        if (!is_zone_device_page(page))
2825                lru_cache_add_inactive_or_unevictable(page, vma);
2826        get_page(page);
2827
2828        if (flush) {
2829                flush_cache_page(vma, addr, pte_pfn(*ptep));
2830                ptep_clear_flush_notify(vma, addr, ptep);
2831                set_pte_at_notify(mm, addr, ptep, entry);
2832                update_mmu_cache(vma, addr, ptep);
2833        } else {
2834                /* No need to invalidate - it was non-present before */
2835                set_pte_at(mm, addr, ptep, entry);
2836                update_mmu_cache(vma, addr, ptep);
2837        }
2838
2839        pte_unmap_unlock(ptep, ptl);
2840        *src = MIGRATE_PFN_MIGRATE;
2841        return;
2842
2843unlock_abort:
2844        pte_unmap_unlock(ptep, ptl);
2845abort:
2846        *src &= ~MIGRATE_PFN_MIGRATE;
2847}
2848
2849/**
2850 * migrate_vma_pages() - migrate meta-data from src page to dst page
2851 * @migrate: migrate struct containing all migration information
2852 *
2853 * This migrates struct page meta-data from source struct page to destination
2854 * struct page. This effectively finishes the migration from source page to the
2855 * destination page.
2856 */
2857void migrate_vma_pages(struct migrate_vma *migrate)
2858{
2859        const unsigned long npages = migrate->npages;
2860        const unsigned long start = migrate->start;
2861        struct mmu_notifier_range range;
2862        unsigned long addr, i;
2863        bool notified = false;
2864
2865        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868                struct address_space *mapping;
2869                int r;
2870
2871                if (!newpage) {
2872                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2873                        continue;
2874                }
2875
2876                if (!page) {
2877                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2878                                continue;
2879                        if (!notified) {
2880                                notified = true;
2881
2882                                mmu_notifier_range_init_owner(&range,
2883                                        MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2884                                        migrate->vma->vm_mm, addr, migrate->end,
2885                                        migrate->pgmap_owner);
2886                                mmu_notifier_invalidate_range_start(&range);
2887                        }
2888                        migrate_vma_insert_page(migrate, addr, newpage,
2889                                                &migrate->src[i]);
2890                        continue;
2891                }
2892
2893                mapping = page_mapping(page);
2894
2895                if (is_zone_device_page(newpage)) {
2896                        if (is_device_private_page(newpage)) {
2897                                /*
2898                                 * For now only support private anonymous when
2899                                 * migrating to un-addressable device memory.
2900                                 */
2901                                if (mapping) {
2902                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2903                                        continue;
2904                                }
2905                        } else {
2906                                /*
2907                                 * Other types of ZONE_DEVICE page are not
2908                                 * supported.
2909                                 */
2910                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2911                                continue;
2912                        }
2913                }
2914
2915                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2916                if (r != MIGRATEPAGE_SUCCESS)
2917                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918        }
2919
2920        /*
2921         * No need to double call mmu_notifier->invalidate_range() callback as
2922         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2923         * did already call it.
2924         */
2925        if (notified)
2926                mmu_notifier_invalidate_range_only_end(&range);
2927}
2928EXPORT_SYMBOL(migrate_vma_pages);
2929
2930/**
2931 * migrate_vma_finalize() - restore CPU page table entry
2932 * @migrate: migrate struct containing all migration information
2933 *
2934 * This replaces the special migration pte entry with either a mapping to the
2935 * new page if migration was successful for that page, or to the original page
2936 * otherwise.
2937 *
2938 * This also unlocks the pages and puts them back on the lru, or drops the extra
2939 * refcount, for device pages.
2940 */
2941void migrate_vma_finalize(struct migrate_vma *migrate)
2942{
2943        const unsigned long npages = migrate->npages;
2944        unsigned long i;
2945
2946        for (i = 0; i < npages; i++) {
2947                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2948                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2949
2950                if (!page) {
2951                        if (newpage) {
2952                                unlock_page(newpage);
2953                                put_page(newpage);
2954                        }
2955                        continue;
2956                }
2957
2958                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2959                        if (newpage) {
2960                                unlock_page(newpage);
2961                                put_page(newpage);
2962                        }
2963                        newpage = page;
2964                }
2965
2966                remove_migration_ptes(page, newpage, false);
2967                unlock_page(page);
2968
2969                if (is_zone_device_page(page))
2970                        put_page(page);
2971                else
2972                        putback_lru_page(page);
2973
2974                if (newpage != page) {
2975                        unlock_page(newpage);
2976                        if (is_zone_device_page(newpage))
2977                                put_page(newpage);
2978                        else
2979                                putback_lru_page(newpage);
2980                }
2981        }
2982}
2983EXPORT_SYMBOL(migrate_vma_finalize);
2984#endif /* CONFIG_DEVICE_PRIVATE */
2985