linux/mm/mmap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)       (0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm,
  80                struct vm_area_struct *vma, struct vm_area_struct *prev,
  81                unsigned long start, unsigned long end);
  82
  83/* description of effects of mapping type and prot in current implementation.
  84 * this is due to the limited x86 page protection hardware.  The expected
  85 * behavior is in parens:
  86 *
  87 * map_type     prot
  88 *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
  89 * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  90 *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
  91 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  92 *
  93 * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  94 *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
  95 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  96 *
  97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  98 * MAP_PRIVATE (with Enhanced PAN supported):
  99 *                                                              r: (no) no
 100 *                                                              w: (no) no
 101 *                                                              x: (yes) yes
 102 */
 103pgprot_t protection_map[16] __ro_after_init = {
 104        __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 105        __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 106};
 107
 108#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 109static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 110{
 111        return prot;
 112}
 113#endif
 114
 115pgprot_t vm_get_page_prot(unsigned long vm_flags)
 116{
 117        pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 118                                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 119                        pgprot_val(arch_vm_get_page_prot(vm_flags)));
 120
 121        return arch_filter_pgprot(ret);
 122}
 123EXPORT_SYMBOL(vm_get_page_prot);
 124
 125static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 126{
 127        return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 128}
 129
 130/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 131void vma_set_page_prot(struct vm_area_struct *vma)
 132{
 133        unsigned long vm_flags = vma->vm_flags;
 134        pgprot_t vm_page_prot;
 135
 136        vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 137        if (vma_wants_writenotify(vma, vm_page_prot)) {
 138                vm_flags &= ~VM_SHARED;
 139                vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 140        }
 141        /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 142        WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 143}
 144
 145/*
 146 * Requires inode->i_mapping->i_mmap_rwsem
 147 */
 148static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 149                struct file *file, struct address_space *mapping)
 150{
 151        if (vma->vm_flags & VM_DENYWRITE)
 152                allow_write_access(file);
 153        if (vma->vm_flags & VM_SHARED)
 154                mapping_unmap_writable(mapping);
 155
 156        flush_dcache_mmap_lock(mapping);
 157        vma_interval_tree_remove(vma, &mapping->i_mmap);
 158        flush_dcache_mmap_unlock(mapping);
 159}
 160
 161/*
 162 * Unlink a file-based vm structure from its interval tree, to hide
 163 * vma from rmap and vmtruncate before freeing its page tables.
 164 */
 165void unlink_file_vma(struct vm_area_struct *vma)
 166{
 167        struct file *file = vma->vm_file;
 168
 169        if (file) {
 170                struct address_space *mapping = file->f_mapping;
 171                i_mmap_lock_write(mapping);
 172                __remove_shared_vm_struct(vma, file, mapping);
 173                i_mmap_unlock_write(mapping);
 174        }
 175}
 176
 177/*
 178 * Close a vm structure and free it, returning the next.
 179 */
 180static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 181{
 182        struct vm_area_struct *next = vma->vm_next;
 183
 184        might_sleep();
 185        if (vma->vm_ops && vma->vm_ops->close)
 186                vma->vm_ops->close(vma);
 187        if (vma->vm_file)
 188                fput(vma->vm_file);
 189        mpol_put(vma_policy(vma));
 190        vm_area_free(vma);
 191        return next;
 192}
 193
 194static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 195                struct list_head *uf);
 196SYSCALL_DEFINE1(brk, unsigned long, brk)
 197{
 198        unsigned long newbrk, oldbrk, origbrk;
 199        struct mm_struct *mm = current->mm;
 200        struct vm_area_struct *next;
 201        unsigned long min_brk;
 202        bool populate;
 203        bool downgraded = false;
 204        LIST_HEAD(uf);
 205
 206        if (mmap_write_lock_killable(mm))
 207                return -EINTR;
 208
 209        origbrk = mm->brk;
 210
 211#ifdef CONFIG_COMPAT_BRK
 212        /*
 213         * CONFIG_COMPAT_BRK can still be overridden by setting
 214         * randomize_va_space to 2, which will still cause mm->start_brk
 215         * to be arbitrarily shifted
 216         */
 217        if (current->brk_randomized)
 218                min_brk = mm->start_brk;
 219        else
 220                min_brk = mm->end_data;
 221#else
 222        min_brk = mm->start_brk;
 223#endif
 224        if (brk < min_brk)
 225                goto out;
 226
 227        /*
 228         * Check against rlimit here. If this check is done later after the test
 229         * of oldbrk with newbrk then it can escape the test and let the data
 230         * segment grow beyond its set limit the in case where the limit is
 231         * not page aligned -Ram Gupta
 232         */
 233        if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 234                              mm->end_data, mm->start_data))
 235                goto out;
 236
 237        newbrk = PAGE_ALIGN(brk);
 238        oldbrk = PAGE_ALIGN(mm->brk);
 239        if (oldbrk == newbrk) {
 240                mm->brk = brk;
 241                goto success;
 242        }
 243
 244        /*
 245         * Always allow shrinking brk.
 246         * __do_munmap() may downgrade mmap_lock to read.
 247         */
 248        if (brk <= mm->brk) {
 249                int ret;
 250
 251                /*
 252                 * mm->brk must to be protected by write mmap_lock so update it
 253                 * before downgrading mmap_lock. When __do_munmap() fails,
 254                 * mm->brk will be restored from origbrk.
 255                 */
 256                mm->brk = brk;
 257                ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 258                if (ret < 0) {
 259                        mm->brk = origbrk;
 260                        goto out;
 261                } else if (ret == 1) {
 262                        downgraded = true;
 263                }
 264                goto success;
 265        }
 266
 267        /* Check against existing mmap mappings. */
 268        next = find_vma(mm, oldbrk);
 269        if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 270                goto out;
 271
 272        /* Ok, looks good - let it rip. */
 273        if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 274                goto out;
 275        mm->brk = brk;
 276
 277success:
 278        populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 279        if (downgraded)
 280                mmap_read_unlock(mm);
 281        else
 282                mmap_write_unlock(mm);
 283        userfaultfd_unmap_complete(mm, &uf);
 284        if (populate)
 285                mm_populate(oldbrk, newbrk - oldbrk);
 286        return brk;
 287
 288out:
 289        mmap_write_unlock(mm);
 290        return origbrk;
 291}
 292
 293static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 294{
 295        unsigned long gap, prev_end;
 296
 297        /*
 298         * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 299         * allow two stack_guard_gaps between them here, and when choosing
 300         * an unmapped area; whereas when expanding we only require one.
 301         * That's a little inconsistent, but keeps the code here simpler.
 302         */
 303        gap = vm_start_gap(vma);
 304        if (vma->vm_prev) {
 305                prev_end = vm_end_gap(vma->vm_prev);
 306                if (gap > prev_end)
 307                        gap -= prev_end;
 308                else
 309                        gap = 0;
 310        }
 311        return gap;
 312}
 313
 314#ifdef CONFIG_DEBUG_VM_RB
 315static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 316{
 317        unsigned long max = vma_compute_gap(vma), subtree_gap;
 318        if (vma->vm_rb.rb_left) {
 319                subtree_gap = rb_entry(vma->vm_rb.rb_left,
 320                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 321                if (subtree_gap > max)
 322                        max = subtree_gap;
 323        }
 324        if (vma->vm_rb.rb_right) {
 325                subtree_gap = rb_entry(vma->vm_rb.rb_right,
 326                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 327                if (subtree_gap > max)
 328                        max = subtree_gap;
 329        }
 330        return max;
 331}
 332
 333static int browse_rb(struct mm_struct *mm)
 334{
 335        struct rb_root *root = &mm->mm_rb;
 336        int i = 0, j, bug = 0;
 337        struct rb_node *nd, *pn = NULL;
 338        unsigned long prev = 0, pend = 0;
 339
 340        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 341                struct vm_area_struct *vma;
 342                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 343                if (vma->vm_start < prev) {
 344                        pr_emerg("vm_start %lx < prev %lx\n",
 345                                  vma->vm_start, prev);
 346                        bug = 1;
 347                }
 348                if (vma->vm_start < pend) {
 349                        pr_emerg("vm_start %lx < pend %lx\n",
 350                                  vma->vm_start, pend);
 351                        bug = 1;
 352                }
 353                if (vma->vm_start > vma->vm_end) {
 354                        pr_emerg("vm_start %lx > vm_end %lx\n",
 355                                  vma->vm_start, vma->vm_end);
 356                        bug = 1;
 357                }
 358                spin_lock(&mm->page_table_lock);
 359                if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 360                        pr_emerg("free gap %lx, correct %lx\n",
 361                               vma->rb_subtree_gap,
 362                               vma_compute_subtree_gap(vma));
 363                        bug = 1;
 364                }
 365                spin_unlock(&mm->page_table_lock);
 366                i++;
 367                pn = nd;
 368                prev = vma->vm_start;
 369                pend = vma->vm_end;
 370        }
 371        j = 0;
 372        for (nd = pn; nd; nd = rb_prev(nd))
 373                j++;
 374        if (i != j) {
 375                pr_emerg("backwards %d, forwards %d\n", j, i);
 376                bug = 1;
 377        }
 378        return bug ? -1 : i;
 379}
 380
 381static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 382{
 383        struct rb_node *nd;
 384
 385        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 386                struct vm_area_struct *vma;
 387                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 388                VM_BUG_ON_VMA(vma != ignore &&
 389                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 390                        vma);
 391        }
 392}
 393
 394static void validate_mm(struct mm_struct *mm)
 395{
 396        int bug = 0;
 397        int i = 0;
 398        unsigned long highest_address = 0;
 399        struct vm_area_struct *vma = mm->mmap;
 400
 401        while (vma) {
 402                struct anon_vma *anon_vma = vma->anon_vma;
 403                struct anon_vma_chain *avc;
 404
 405                if (anon_vma) {
 406                        anon_vma_lock_read(anon_vma);
 407                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 408                                anon_vma_interval_tree_verify(avc);
 409                        anon_vma_unlock_read(anon_vma);
 410                }
 411
 412                highest_address = vm_end_gap(vma);
 413                vma = vma->vm_next;
 414                i++;
 415        }
 416        if (i != mm->map_count) {
 417                pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 418                bug = 1;
 419        }
 420        if (highest_address != mm->highest_vm_end) {
 421                pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 422                          mm->highest_vm_end, highest_address);
 423                bug = 1;
 424        }
 425        i = browse_rb(mm);
 426        if (i != mm->map_count) {
 427                if (i != -1)
 428                        pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 429                bug = 1;
 430        }
 431        VM_BUG_ON_MM(bug, mm);
 432}
 433#else
 434#define validate_mm_rb(root, ignore) do { } while (0)
 435#define validate_mm(mm) do { } while (0)
 436#endif
 437
 438RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 439                         struct vm_area_struct, vm_rb,
 440                         unsigned long, rb_subtree_gap, vma_compute_gap)
 441
 442/*
 443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 444 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 445 * in the rbtree.
 446 */
 447static void vma_gap_update(struct vm_area_struct *vma)
 448{
 449        /*
 450         * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 451         * a callback function that does exactly what we want.
 452         */
 453        vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 454}
 455
 456static inline void vma_rb_insert(struct vm_area_struct *vma,
 457                                 struct rb_root *root)
 458{
 459        /* All rb_subtree_gap values must be consistent prior to insertion */
 460        validate_mm_rb(root, NULL);
 461
 462        rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 463}
 464
 465static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 466{
 467        /*
 468         * Note rb_erase_augmented is a fairly large inline function,
 469         * so make sure we instantiate it only once with our desired
 470         * augmented rbtree callbacks.
 471         */
 472        rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 473}
 474
 475static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 476                                                struct rb_root *root,
 477                                                struct vm_area_struct *ignore)
 478{
 479        /*
 480         * All rb_subtree_gap values must be consistent prior to erase,
 481         * with the possible exception of
 482         *
 483         * a. the "next" vma being erased if next->vm_start was reduced in
 484         *    __vma_adjust() -> __vma_unlink()
 485         * b. the vma being erased in detach_vmas_to_be_unmapped() ->
 486         *    vma_rb_erase()
 487         */
 488        validate_mm_rb(root, ignore);
 489
 490        __vma_rb_erase(vma, root);
 491}
 492
 493static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 494                                         struct rb_root *root)
 495{
 496        vma_rb_erase_ignore(vma, root, vma);
 497}
 498
 499/*
 500 * vma has some anon_vma assigned, and is already inserted on that
 501 * anon_vma's interval trees.
 502 *
 503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 504 * vma must be removed from the anon_vma's interval trees using
 505 * anon_vma_interval_tree_pre_update_vma().
 506 *
 507 * After the update, the vma will be reinserted using
 508 * anon_vma_interval_tree_post_update_vma().
 509 *
 510 * The entire update must be protected by exclusive mmap_lock and by
 511 * the root anon_vma's mutex.
 512 */
 513static inline void
 514anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 515{
 516        struct anon_vma_chain *avc;
 517
 518        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 519                anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 520}
 521
 522static inline void
 523anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 524{
 525        struct anon_vma_chain *avc;
 526
 527        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 528                anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 529}
 530
 531static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 532                unsigned long end, struct vm_area_struct **pprev,
 533                struct rb_node ***rb_link, struct rb_node **rb_parent)
 534{
 535        struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 536
 537        __rb_link = &mm->mm_rb.rb_node;
 538        rb_prev = __rb_parent = NULL;
 539
 540        while (*__rb_link) {
 541                struct vm_area_struct *vma_tmp;
 542
 543                __rb_parent = *__rb_link;
 544                vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 545
 546                if (vma_tmp->vm_end > addr) {
 547                        /* Fail if an existing vma overlaps the area */
 548                        if (vma_tmp->vm_start < end)
 549                                return -ENOMEM;
 550                        __rb_link = &__rb_parent->rb_left;
 551                } else {
 552                        rb_prev = __rb_parent;
 553                        __rb_link = &__rb_parent->rb_right;
 554                }
 555        }
 556
 557        *pprev = NULL;
 558        if (rb_prev)
 559                *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 560        *rb_link = __rb_link;
 561        *rb_parent = __rb_parent;
 562        return 0;
 563}
 564
 565/*
 566 * vma_next() - Get the next VMA.
 567 * @mm: The mm_struct.
 568 * @vma: The current vma.
 569 *
 570 * If @vma is NULL, return the first vma in the mm.
 571 *
 572 * Returns: The next VMA after @vma.
 573 */
 574static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
 575                                         struct vm_area_struct *vma)
 576{
 577        if (!vma)
 578                return mm->mmap;
 579
 580        return vma->vm_next;
 581}
 582
 583/*
 584 * munmap_vma_range() - munmap VMAs that overlap a range.
 585 * @mm: The mm struct
 586 * @start: The start of the range.
 587 * @len: The length of the range.
 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
 589 * @rb_link: the rb_node
 590 * @rb_parent: the parent rb_node
 591 *
 592 * Find all the vm_area_struct that overlap from @start to
 593 * @end and munmap them.  Set @pprev to the previous vm_area_struct.
 594 *
 595 * Returns: -ENOMEM on munmap failure or 0 on success.
 596 */
 597static inline int
 598munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
 599                 struct vm_area_struct **pprev, struct rb_node ***link,
 600                 struct rb_node **parent, struct list_head *uf)
 601{
 602
 603        while (find_vma_links(mm, start, start + len, pprev, link, parent))
 604                if (do_munmap(mm, start, len, uf))
 605                        return -ENOMEM;
 606
 607        return 0;
 608}
 609static unsigned long count_vma_pages_range(struct mm_struct *mm,
 610                unsigned long addr, unsigned long end)
 611{
 612        unsigned long nr_pages = 0;
 613        struct vm_area_struct *vma;
 614
 615        /* Find first overlapping mapping */
 616        vma = find_vma_intersection(mm, addr, end);
 617        if (!vma)
 618                return 0;
 619
 620        nr_pages = (min(end, vma->vm_end) -
 621                max(addr, vma->vm_start)) >> PAGE_SHIFT;
 622
 623        /* Iterate over the rest of the overlaps */
 624        for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 625                unsigned long overlap_len;
 626
 627                if (vma->vm_start > end)
 628                        break;
 629
 630                overlap_len = min(end, vma->vm_end) - vma->vm_start;
 631                nr_pages += overlap_len >> PAGE_SHIFT;
 632        }
 633
 634        return nr_pages;
 635}
 636
 637void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 638                struct rb_node **rb_link, struct rb_node *rb_parent)
 639{
 640        /* Update tracking information for the gap following the new vma. */
 641        if (vma->vm_next)
 642                vma_gap_update(vma->vm_next);
 643        else
 644                mm->highest_vm_end = vm_end_gap(vma);
 645
 646        /*
 647         * vma->vm_prev wasn't known when we followed the rbtree to find the
 648         * correct insertion point for that vma. As a result, we could not
 649         * update the vma vm_rb parents rb_subtree_gap values on the way down.
 650         * So, we first insert the vma with a zero rb_subtree_gap value
 651         * (to be consistent with what we did on the way down), and then
 652         * immediately update the gap to the correct value. Finally we
 653         * rebalance the rbtree after all augmented values have been set.
 654         */
 655        rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 656        vma->rb_subtree_gap = 0;
 657        vma_gap_update(vma);
 658        vma_rb_insert(vma, &mm->mm_rb);
 659}
 660
 661static void __vma_link_file(struct vm_area_struct *vma)
 662{
 663        struct file *file;
 664
 665        file = vma->vm_file;
 666        if (file) {
 667                struct address_space *mapping = file->f_mapping;
 668
 669                if (vma->vm_flags & VM_DENYWRITE)
 670                        put_write_access(file_inode(file));
 671                if (vma->vm_flags & VM_SHARED)
 672                        mapping_allow_writable(mapping);
 673
 674                flush_dcache_mmap_lock(mapping);
 675                vma_interval_tree_insert(vma, &mapping->i_mmap);
 676                flush_dcache_mmap_unlock(mapping);
 677        }
 678}
 679
 680static void
 681__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 682        struct vm_area_struct *prev, struct rb_node **rb_link,
 683        struct rb_node *rb_parent)
 684{
 685        __vma_link_list(mm, vma, prev);
 686        __vma_link_rb(mm, vma, rb_link, rb_parent);
 687}
 688
 689static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 690                        struct vm_area_struct *prev, struct rb_node **rb_link,
 691                        struct rb_node *rb_parent)
 692{
 693        struct address_space *mapping = NULL;
 694
 695        if (vma->vm_file) {
 696                mapping = vma->vm_file->f_mapping;
 697                i_mmap_lock_write(mapping);
 698        }
 699
 700        __vma_link(mm, vma, prev, rb_link, rb_parent);
 701        __vma_link_file(vma);
 702
 703        if (mapping)
 704                i_mmap_unlock_write(mapping);
 705
 706        mm->map_count++;
 707        validate_mm(mm);
 708}
 709
 710/*
 711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 712 * mm's list and rbtree.  It has already been inserted into the interval tree.
 713 */
 714static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 715{
 716        struct vm_area_struct *prev;
 717        struct rb_node **rb_link, *rb_parent;
 718
 719        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 720                           &prev, &rb_link, &rb_parent))
 721                BUG();
 722        __vma_link(mm, vma, prev, rb_link, rb_parent);
 723        mm->map_count++;
 724}
 725
 726static __always_inline void __vma_unlink(struct mm_struct *mm,
 727                                                struct vm_area_struct *vma,
 728                                                struct vm_area_struct *ignore)
 729{
 730        vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 731        __vma_unlink_list(mm, vma);
 732        /* Kill the cache */
 733        vmacache_invalidate(mm);
 734}
 735
 736/*
 737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 738 * is already present in an i_mmap tree without adjusting the tree.
 739 * The following helper function should be used when such adjustments
 740 * are necessary.  The "insert" vma (if any) is to be inserted
 741 * before we drop the necessary locks.
 742 */
 743int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 744        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 745        struct vm_area_struct *expand)
 746{
 747        struct mm_struct *mm = vma->vm_mm;
 748        struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 749        struct address_space *mapping = NULL;
 750        struct rb_root_cached *root = NULL;
 751        struct anon_vma *anon_vma = NULL;
 752        struct file *file = vma->vm_file;
 753        bool start_changed = false, end_changed = false;
 754        long adjust_next = 0;
 755        int remove_next = 0;
 756
 757        if (next && !insert) {
 758                struct vm_area_struct *exporter = NULL, *importer = NULL;
 759
 760                if (end >= next->vm_end) {
 761                        /*
 762                         * vma expands, overlapping all the next, and
 763                         * perhaps the one after too (mprotect case 6).
 764                         * The only other cases that gets here are
 765                         * case 1, case 7 and case 8.
 766                         */
 767                        if (next == expand) {
 768                                /*
 769                                 * The only case where we don't expand "vma"
 770                                 * and we expand "next" instead is case 8.
 771                                 */
 772                                VM_WARN_ON(end != next->vm_end);
 773                                /*
 774                                 * remove_next == 3 means we're
 775                                 * removing "vma" and that to do so we
 776                                 * swapped "vma" and "next".
 777                                 */
 778                                remove_next = 3;
 779                                VM_WARN_ON(file != next->vm_file);
 780                                swap(vma, next);
 781                        } else {
 782                                VM_WARN_ON(expand != vma);
 783                                /*
 784                                 * case 1, 6, 7, remove_next == 2 is case 6,
 785                                 * remove_next == 1 is case 1 or 7.
 786                                 */
 787                                remove_next = 1 + (end > next->vm_end);
 788                                VM_WARN_ON(remove_next == 2 &&
 789                                           end != next->vm_next->vm_end);
 790                                /* trim end to next, for case 6 first pass */
 791                                end = next->vm_end;
 792                        }
 793
 794                        exporter = next;
 795                        importer = vma;
 796
 797                        /*
 798                         * If next doesn't have anon_vma, import from vma after
 799                         * next, if the vma overlaps with it.
 800                         */
 801                        if (remove_next == 2 && !next->anon_vma)
 802                                exporter = next->vm_next;
 803
 804                } else if (end > next->vm_start) {
 805                        /*
 806                         * vma expands, overlapping part of the next:
 807                         * mprotect case 5 shifting the boundary up.
 808                         */
 809                        adjust_next = (end - next->vm_start);
 810                        exporter = next;
 811                        importer = vma;
 812                        VM_WARN_ON(expand != importer);
 813                } else if (end < vma->vm_end) {
 814                        /*
 815                         * vma shrinks, and !insert tells it's not
 816                         * split_vma inserting another: so it must be
 817                         * mprotect case 4 shifting the boundary down.
 818                         */
 819                        adjust_next = -(vma->vm_end - end);
 820                        exporter = vma;
 821                        importer = next;
 822                        VM_WARN_ON(expand != importer);
 823                }
 824
 825                /*
 826                 * Easily overlooked: when mprotect shifts the boundary,
 827                 * make sure the expanding vma has anon_vma set if the
 828                 * shrinking vma had, to cover any anon pages imported.
 829                 */
 830                if (exporter && exporter->anon_vma && !importer->anon_vma) {
 831                        int error;
 832
 833                        importer->anon_vma = exporter->anon_vma;
 834                        error = anon_vma_clone(importer, exporter);
 835                        if (error)
 836                                return error;
 837                }
 838        }
 839again:
 840        vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 841
 842        if (file) {
 843                mapping = file->f_mapping;
 844                root = &mapping->i_mmap;
 845                uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 846
 847                if (adjust_next)
 848                        uprobe_munmap(next, next->vm_start, next->vm_end);
 849
 850                i_mmap_lock_write(mapping);
 851                if (insert) {
 852                        /*
 853                         * Put into interval tree now, so instantiated pages
 854                         * are visible to arm/parisc __flush_dcache_page
 855                         * throughout; but we cannot insert into address
 856                         * space until vma start or end is updated.
 857                         */
 858                        __vma_link_file(insert);
 859                }
 860        }
 861
 862        anon_vma = vma->anon_vma;
 863        if (!anon_vma && adjust_next)
 864                anon_vma = next->anon_vma;
 865        if (anon_vma) {
 866                VM_WARN_ON(adjust_next && next->anon_vma &&
 867                           anon_vma != next->anon_vma);
 868                anon_vma_lock_write(anon_vma);
 869                anon_vma_interval_tree_pre_update_vma(vma);
 870                if (adjust_next)
 871                        anon_vma_interval_tree_pre_update_vma(next);
 872        }
 873
 874        if (file) {
 875                flush_dcache_mmap_lock(mapping);
 876                vma_interval_tree_remove(vma, root);
 877                if (adjust_next)
 878                        vma_interval_tree_remove(next, root);
 879        }
 880
 881        if (start != vma->vm_start) {
 882                vma->vm_start = start;
 883                start_changed = true;
 884        }
 885        if (end != vma->vm_end) {
 886                vma->vm_end = end;
 887                end_changed = true;
 888        }
 889        vma->vm_pgoff = pgoff;
 890        if (adjust_next) {
 891                next->vm_start += adjust_next;
 892                next->vm_pgoff += adjust_next >> PAGE_SHIFT;
 893        }
 894
 895        if (file) {
 896                if (adjust_next)
 897                        vma_interval_tree_insert(next, root);
 898                vma_interval_tree_insert(vma, root);
 899                flush_dcache_mmap_unlock(mapping);
 900        }
 901
 902        if (remove_next) {
 903                /*
 904                 * vma_merge has merged next into vma, and needs
 905                 * us to remove next before dropping the locks.
 906                 */
 907                if (remove_next != 3)
 908                        __vma_unlink(mm, next, next);
 909                else
 910                        /*
 911                         * vma is not before next if they've been
 912                         * swapped.
 913                         *
 914                         * pre-swap() next->vm_start was reduced so
 915                         * tell validate_mm_rb to ignore pre-swap()
 916                         * "next" (which is stored in post-swap()
 917                         * "vma").
 918                         */
 919                        __vma_unlink(mm, next, vma);
 920                if (file)
 921                        __remove_shared_vm_struct(next, file, mapping);
 922        } else if (insert) {
 923                /*
 924                 * split_vma has split insert from vma, and needs
 925                 * us to insert it before dropping the locks
 926                 * (it may either follow vma or precede it).
 927                 */
 928                __insert_vm_struct(mm, insert);
 929        } else {
 930                if (start_changed)
 931                        vma_gap_update(vma);
 932                if (end_changed) {
 933                        if (!next)
 934                                mm->highest_vm_end = vm_end_gap(vma);
 935                        else if (!adjust_next)
 936                                vma_gap_update(next);
 937                }
 938        }
 939
 940        if (anon_vma) {
 941                anon_vma_interval_tree_post_update_vma(vma);
 942                if (adjust_next)
 943                        anon_vma_interval_tree_post_update_vma(next);
 944                anon_vma_unlock_write(anon_vma);
 945        }
 946
 947        if (file) {
 948                i_mmap_unlock_write(mapping);
 949                uprobe_mmap(vma);
 950
 951                if (adjust_next)
 952                        uprobe_mmap(next);
 953        }
 954
 955        if (remove_next) {
 956                if (file) {
 957                        uprobe_munmap(next, next->vm_start, next->vm_end);
 958                        fput(file);
 959                }
 960                if (next->anon_vma)
 961                        anon_vma_merge(vma, next);
 962                mm->map_count--;
 963                mpol_put(vma_policy(next));
 964                vm_area_free(next);
 965                /*
 966                 * In mprotect's case 6 (see comments on vma_merge),
 967                 * we must remove another next too. It would clutter
 968                 * up the code too much to do both in one go.
 969                 */
 970                if (remove_next != 3) {
 971                        /*
 972                         * If "next" was removed and vma->vm_end was
 973                         * expanded (up) over it, in turn
 974                         * "next->vm_prev->vm_end" changed and the
 975                         * "vma->vm_next" gap must be updated.
 976                         */
 977                        next = vma->vm_next;
 978                } else {
 979                        /*
 980                         * For the scope of the comment "next" and
 981                         * "vma" considered pre-swap(): if "vma" was
 982                         * removed, next->vm_start was expanded (down)
 983                         * over it and the "next" gap must be updated.
 984                         * Because of the swap() the post-swap() "vma"
 985                         * actually points to pre-swap() "next"
 986                         * (post-swap() "next" as opposed is now a
 987                         * dangling pointer).
 988                         */
 989                        next = vma;
 990                }
 991                if (remove_next == 2) {
 992                        remove_next = 1;
 993                        end = next->vm_end;
 994                        goto again;
 995                }
 996                else if (next)
 997                        vma_gap_update(next);
 998                else {
 999                        /*
1000                         * If remove_next == 2 we obviously can't
1001                         * reach this path.
1002                         *
1003                         * If remove_next == 3 we can't reach this
1004                         * path because pre-swap() next is always not
1005                         * NULL. pre-swap() "next" is not being
1006                         * removed and its next->vm_end is not altered
1007                         * (and furthermore "end" already matches
1008                         * next->vm_end in remove_next == 3).
1009                         *
1010                         * We reach this only in the remove_next == 1
1011                         * case if the "next" vma that was removed was
1012                         * the highest vma of the mm. However in such
1013                         * case next->vm_end == "end" and the extended
1014                         * "vma" has vma->vm_end == next->vm_end so
1015                         * mm->highest_vm_end doesn't need any update
1016                         * in remove_next == 1 case.
1017                         */
1018                        VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019                }
1020        }
1021        if (insert && file)
1022                uprobe_mmap(insert);
1023
1024        validate_mm(mm);
1025
1026        return 0;
1027}
1028
1029/*
1030 * If the vma has a ->close operation then the driver probably needs to release
1031 * per-vma resources, so we don't attempt to merge those.
1032 */
1033static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034                                struct file *file, unsigned long vm_flags,
1035                                struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036{
1037        /*
1038         * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039         * match the flags but dirty bit -- the caller should mark
1040         * merged VMA as dirty. If dirty bit won't be excluded from
1041         * comparison, we increase pressure on the memory system forcing
1042         * the kernel to generate new VMAs when old one could be
1043         * extended instead.
1044         */
1045        if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046                return 0;
1047        if (vma->vm_file != file)
1048                return 0;
1049        if (vma->vm_ops && vma->vm_ops->close)
1050                return 0;
1051        if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052                return 0;
1053        return 1;
1054}
1055
1056static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057                                        struct anon_vma *anon_vma2,
1058                                        struct vm_area_struct *vma)
1059{
1060        /*
1061         * The list_is_singular() test is to avoid merging VMA cloned from
1062         * parents. This can improve scalability caused by anon_vma lock.
1063         */
1064        if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065                list_is_singular(&vma->anon_vma_chain)))
1066                return 1;
1067        return anon_vma1 == anon_vma2;
1068}
1069
1070/*
1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072 * in front of (at a lower virtual address and file offset than) the vma.
1073 *
1074 * We cannot merge two vmas if they have differently assigned (non-NULL)
1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076 *
1077 * We don't check here for the merged mmap wrapping around the end of pagecache
1078 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079 * wrap, nor mmaps which cover the final page at index -1UL.
1080 */
1081static int
1082can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083                     struct anon_vma *anon_vma, struct file *file,
1084                     pgoff_t vm_pgoff,
1085                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086{
1087        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089                if (vma->vm_pgoff == vm_pgoff)
1090                        return 1;
1091        }
1092        return 0;
1093}
1094
1095/*
1096 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097 * beyond (at a higher virtual address and file offset than) the vma.
1098 *
1099 * We cannot merge two vmas if they have differently assigned (non-NULL)
1100 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101 */
1102static int
1103can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104                    struct anon_vma *anon_vma, struct file *file,
1105                    pgoff_t vm_pgoff,
1106                    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107{
1108        if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110                pgoff_t vm_pglen;
1111                vm_pglen = vma_pages(vma);
1112                if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113                        return 1;
1114        }
1115        return 0;
1116}
1117
1118/*
1119 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120 * whether that can be merged with its predecessor or its successor.
1121 * Or both (it neatly fills a hole).
1122 *
1123 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124 * certain not to be mapped by the time vma_merge is called; but when
1125 * called for mprotect, it is certain to be already mapped (either at
1126 * an offset within prev, or at the start of next), and the flags of
1127 * this area are about to be changed to vm_flags - and the no-change
1128 * case has already been eliminated.
1129 *
1130 * The following mprotect cases have to be considered, where AAAA is
1131 * the area passed down from mprotect_fixup, never extending beyond one
1132 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133 *
1134 *     AAAA             AAAA                   AAAA
1135 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136 *    cannot merge    might become       might become
1137 *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138 *    mmap, brk or    case 4 below       case 5 below
1139 *    mremap move:
1140 *                        AAAA               AAAA
1141 *                    PPPP    NNNN       PPPPNNNNXXXX
1142 *                    might become       might become
1143 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144 *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145 *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146 *
1147 * It is important for case 8 that the vma NNNN overlapping the
1148 * region AAAA is never going to extended over XXXX. Instead XXXX must
1149 * be extended in region AAAA and NNNN must be removed. This way in
1150 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151 * rmap_locks, the properties of the merged vma will be already
1152 * correct for the whole merged range. Some of those properties like
1153 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154 * be correct for the whole merged range immediately after the
1155 * rmap_locks are released. Otherwise if XXXX would be removed and
1156 * NNNN would be extended over the XXXX range, remove_migration_ptes
1157 * or other rmap walkers (if working on addresses beyond the "end"
1158 * parameter) may establish ptes with the wrong permissions of NNNN
1159 * instead of the right permissions of XXXX.
1160 */
1161struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162                        struct vm_area_struct *prev, unsigned long addr,
1163                        unsigned long end, unsigned long vm_flags,
1164                        struct anon_vma *anon_vma, struct file *file,
1165                        pgoff_t pgoff, struct mempolicy *policy,
1166                        struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167{
1168        pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169        struct vm_area_struct *area, *next;
1170        int err;
1171
1172        /*
1173         * We later require that vma->vm_flags == vm_flags,
1174         * so this tests vma->vm_flags & VM_SPECIAL, too.
1175         */
1176        if (vm_flags & VM_SPECIAL)
1177                return NULL;
1178
1179        next = vma_next(mm, prev);
1180        area = next;
1181        if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1182                next = next->vm_next;
1183
1184        /* verify some invariant that must be enforced by the caller */
1185        VM_WARN_ON(prev && addr <= prev->vm_start);
1186        VM_WARN_ON(area && end > area->vm_end);
1187        VM_WARN_ON(addr >= end);
1188
1189        /*
1190         * Can it merge with the predecessor?
1191         */
1192        if (prev && prev->vm_end == addr &&
1193                        mpol_equal(vma_policy(prev), policy) &&
1194                        can_vma_merge_after(prev, vm_flags,
1195                                            anon_vma, file, pgoff,
1196                                            vm_userfaultfd_ctx)) {
1197                /*
1198                 * OK, it can.  Can we now merge in the successor as well?
1199                 */
1200                if (next && end == next->vm_start &&
1201                                mpol_equal(policy, vma_policy(next)) &&
1202                                can_vma_merge_before(next, vm_flags,
1203                                                     anon_vma, file,
1204                                                     pgoff+pglen,
1205                                                     vm_userfaultfd_ctx) &&
1206                                is_mergeable_anon_vma(prev->anon_vma,
1207                                                      next->anon_vma, NULL)) {
1208                                                        /* cases 1, 6 */
1209                        err = __vma_adjust(prev, prev->vm_start,
1210                                         next->vm_end, prev->vm_pgoff, NULL,
1211                                         prev);
1212                } else                                  /* cases 2, 5, 7 */
1213                        err = __vma_adjust(prev, prev->vm_start,
1214                                         end, prev->vm_pgoff, NULL, prev);
1215                if (err)
1216                        return NULL;
1217                khugepaged_enter_vma_merge(prev, vm_flags);
1218                return prev;
1219        }
1220
1221        /*
1222         * Can this new request be merged in front of next?
1223         */
1224        if (next && end == next->vm_start &&
1225                        mpol_equal(policy, vma_policy(next)) &&
1226                        can_vma_merge_before(next, vm_flags,
1227                                             anon_vma, file, pgoff+pglen,
1228                                             vm_userfaultfd_ctx)) {
1229                if (prev && addr < prev->vm_end)        /* case 4 */
1230                        err = __vma_adjust(prev, prev->vm_start,
1231                                         addr, prev->vm_pgoff, NULL, next);
1232                else {                                  /* cases 3, 8 */
1233                        err = __vma_adjust(area, addr, next->vm_end,
1234                                         next->vm_pgoff - pglen, NULL, next);
1235                        /*
1236                         * In case 3 area is already equal to next and
1237                         * this is a noop, but in case 8 "area" has
1238                         * been removed and next was expanded over it.
1239                         */
1240                        area = next;
1241                }
1242                if (err)
1243                        return NULL;
1244                khugepaged_enter_vma_merge(area, vm_flags);
1245                return area;
1246        }
1247
1248        return NULL;
1249}
1250
1251/*
1252 * Rough compatibility check to quickly see if it's even worth looking
1253 * at sharing an anon_vma.
1254 *
1255 * They need to have the same vm_file, and the flags can only differ
1256 * in things that mprotect may change.
1257 *
1258 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259 * we can merge the two vma's. For example, we refuse to merge a vma if
1260 * there is a vm_ops->close() function, because that indicates that the
1261 * driver is doing some kind of reference counting. But that doesn't
1262 * really matter for the anon_vma sharing case.
1263 */
1264static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265{
1266        return a->vm_end == b->vm_start &&
1267                mpol_equal(vma_policy(a), vma_policy(b)) &&
1268                a->vm_file == b->vm_file &&
1269                !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270                b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271}
1272
1273/*
1274 * Do some basic sanity checking to see if we can re-use the anon_vma
1275 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276 * the same as 'old', the other will be the new one that is trying
1277 * to share the anon_vma.
1278 *
1279 * NOTE! This runs with mm_sem held for reading, so it is possible that
1280 * the anon_vma of 'old' is concurrently in the process of being set up
1281 * by another page fault trying to merge _that_. But that's ok: if it
1282 * is being set up, that automatically means that it will be a singleton
1283 * acceptable for merging, so we can do all of this optimistically. But
1284 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285 *
1286 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288 * is to return an anon_vma that is "complex" due to having gone through
1289 * a fork).
1290 *
1291 * We also make sure that the two vma's are compatible (adjacent,
1292 * and with the same memory policies). That's all stable, even with just
1293 * a read lock on the mm_sem.
1294 */
1295static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296{
1297        if (anon_vma_compatible(a, b)) {
1298                struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299
1300                if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301                        return anon_vma;
1302        }
1303        return NULL;
1304}
1305
1306/*
1307 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308 * neighbouring vmas for a suitable anon_vma, before it goes off
1309 * to allocate a new anon_vma.  It checks because a repetitive
1310 * sequence of mprotects and faults may otherwise lead to distinct
1311 * anon_vmas being allocated, preventing vma merge in subsequent
1312 * mprotect.
1313 */
1314struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315{
1316        struct anon_vma *anon_vma = NULL;
1317
1318        /* Try next first. */
1319        if (vma->vm_next) {
1320                anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321                if (anon_vma)
1322                        return anon_vma;
1323        }
1324
1325        /* Try prev next. */
1326        if (vma->vm_prev)
1327                anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328
1329        /*
1330         * We might reach here with anon_vma == NULL if we can't find
1331         * any reusable anon_vma.
1332         * There's no absolute need to look only at touching neighbours:
1333         * we could search further afield for "compatible" anon_vmas.
1334         * But it would probably just be a waste of time searching,
1335         * or lead to too many vmas hanging off the same anon_vma.
1336         * We're trying to allow mprotect remerging later on,
1337         * not trying to minimize memory used for anon_vmas.
1338         */
1339        return anon_vma;
1340}
1341
1342/*
1343 * If a hint addr is less than mmap_min_addr change hint to be as
1344 * low as possible but still greater than mmap_min_addr
1345 */
1346static inline unsigned long round_hint_to_min(unsigned long hint)
1347{
1348        hint &= PAGE_MASK;
1349        if (((void *)hint != NULL) &&
1350            (hint < mmap_min_addr))
1351                return PAGE_ALIGN(mmap_min_addr);
1352        return hint;
1353}
1354
1355int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1356                       unsigned long len)
1357{
1358        unsigned long locked, lock_limit;
1359
1360        /*  mlock MCL_FUTURE? */
1361        if (flags & VM_LOCKED) {
1362                locked = len >> PAGE_SHIFT;
1363                locked += mm->locked_vm;
1364                lock_limit = rlimit(RLIMIT_MEMLOCK);
1365                lock_limit >>= PAGE_SHIFT;
1366                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1367                        return -EAGAIN;
1368        }
1369        return 0;
1370}
1371
1372static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1373{
1374        if (S_ISREG(inode->i_mode))
1375                return MAX_LFS_FILESIZE;
1376
1377        if (S_ISBLK(inode->i_mode))
1378                return MAX_LFS_FILESIZE;
1379
1380        if (S_ISSOCK(inode->i_mode))
1381                return MAX_LFS_FILESIZE;
1382
1383        /* Special "we do even unsigned file positions" case */
1384        if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1385                return 0;
1386
1387        /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1388        return ULONG_MAX;
1389}
1390
1391static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1392                                unsigned long pgoff, unsigned long len)
1393{
1394        u64 maxsize = file_mmap_size_max(file, inode);
1395
1396        if (maxsize && len > maxsize)
1397                return false;
1398        maxsize -= len;
1399        if (pgoff > maxsize >> PAGE_SHIFT)
1400                return false;
1401        return true;
1402}
1403
1404/*
1405 * The caller must write-lock current->mm->mmap_lock.
1406 */
1407unsigned long do_mmap(struct file *file, unsigned long addr,
1408                        unsigned long len, unsigned long prot,
1409                        unsigned long flags, unsigned long pgoff,
1410                        unsigned long *populate, struct list_head *uf)
1411{
1412        struct mm_struct *mm = current->mm;
1413        vm_flags_t vm_flags;
1414        int pkey = 0;
1415
1416        *populate = 0;
1417
1418        if (!len)
1419                return -EINVAL;
1420
1421        /*
1422         * Does the application expect PROT_READ to imply PROT_EXEC?
1423         *
1424         * (the exception is when the underlying filesystem is noexec
1425         *  mounted, in which case we dont add PROT_EXEC.)
1426         */
1427        if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1428                if (!(file && path_noexec(&file->f_path)))
1429                        prot |= PROT_EXEC;
1430
1431        /* force arch specific MAP_FIXED handling in get_unmapped_area */
1432        if (flags & MAP_FIXED_NOREPLACE)
1433                flags |= MAP_FIXED;
1434
1435        if (!(flags & MAP_FIXED))
1436                addr = round_hint_to_min(addr);
1437
1438        /* Careful about overflows.. */
1439        len = PAGE_ALIGN(len);
1440        if (!len)
1441                return -ENOMEM;
1442
1443        /* offset overflow? */
1444        if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1445                return -EOVERFLOW;
1446
1447        /* Too many mappings? */
1448        if (mm->map_count > sysctl_max_map_count)
1449                return -ENOMEM;
1450
1451        /* Obtain the address to map to. we verify (or select) it and ensure
1452         * that it represents a valid section of the address space.
1453         */
1454        addr = get_unmapped_area(file, addr, len, pgoff, flags);
1455        if (IS_ERR_VALUE(addr))
1456                return addr;
1457
1458        if (flags & MAP_FIXED_NOREPLACE) {
1459                if (find_vma_intersection(mm, addr, addr + len))
1460                        return -EEXIST;
1461        }
1462
1463        if (prot == PROT_EXEC) {
1464                pkey = execute_only_pkey(mm);
1465                if (pkey < 0)
1466                        pkey = 0;
1467        }
1468
1469        /* Do simple checking here so the lower-level routines won't have
1470         * to. we assume access permissions have been handled by the open
1471         * of the memory object, so we don't do any here.
1472         */
1473        vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1474                        mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1475
1476        if (flags & MAP_LOCKED)
1477                if (!can_do_mlock())
1478                        return -EPERM;
1479
1480        if (mlock_future_check(mm, vm_flags, len))
1481                return -EAGAIN;
1482
1483        if (file) {
1484                struct inode *inode = file_inode(file);
1485                unsigned long flags_mask;
1486
1487                if (!file_mmap_ok(file, inode, pgoff, len))
1488                        return -EOVERFLOW;
1489
1490                flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1491
1492                switch (flags & MAP_TYPE) {
1493                case MAP_SHARED:
1494                        /*
1495                         * Force use of MAP_SHARED_VALIDATE with non-legacy
1496                         * flags. E.g. MAP_SYNC is dangerous to use with
1497                         * MAP_SHARED as you don't know which consistency model
1498                         * you will get. We silently ignore unsupported flags
1499                         * with MAP_SHARED to preserve backward compatibility.
1500                         */
1501                        flags &= LEGACY_MAP_MASK;
1502                        fallthrough;
1503                case MAP_SHARED_VALIDATE:
1504                        if (flags & ~flags_mask)
1505                                return -EOPNOTSUPP;
1506                        if (prot & PROT_WRITE) {
1507                                if (!(file->f_mode & FMODE_WRITE))
1508                                        return -EACCES;
1509                                if (IS_SWAPFILE(file->f_mapping->host))
1510                                        return -ETXTBSY;
1511                        }
1512
1513                        /*
1514                         * Make sure we don't allow writing to an append-only
1515                         * file..
1516                         */
1517                        if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1518                                return -EACCES;
1519
1520                        /*
1521                         * Make sure there are no mandatory locks on the file.
1522                         */
1523                        if (locks_verify_locked(file))
1524                                return -EAGAIN;
1525
1526                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1527                        if (!(file->f_mode & FMODE_WRITE))
1528                                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1529                        fallthrough;
1530                case MAP_PRIVATE:
1531                        if (!(file->f_mode & FMODE_READ))
1532                                return -EACCES;
1533                        if (path_noexec(&file->f_path)) {
1534                                if (vm_flags & VM_EXEC)
1535                                        return -EPERM;
1536                                vm_flags &= ~VM_MAYEXEC;
1537                        }
1538
1539                        if (!file->f_op->mmap)
1540                                return -ENODEV;
1541                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1542                                return -EINVAL;
1543                        break;
1544
1545                default:
1546                        return -EINVAL;
1547                }
1548        } else {
1549                switch (flags & MAP_TYPE) {
1550                case MAP_SHARED:
1551                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1552                                return -EINVAL;
1553                        /*
1554                         * Ignore pgoff.
1555                         */
1556                        pgoff = 0;
1557                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1558                        break;
1559                case MAP_PRIVATE:
1560                        /*
1561                         * Set pgoff according to addr for anon_vma.
1562                         */
1563                        pgoff = addr >> PAGE_SHIFT;
1564                        break;
1565                default:
1566                        return -EINVAL;
1567                }
1568        }
1569
1570        /*
1571         * Set 'VM_NORESERVE' if we should not account for the
1572         * memory use of this mapping.
1573         */
1574        if (flags & MAP_NORESERVE) {
1575                /* We honor MAP_NORESERVE if allowed to overcommit */
1576                if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1577                        vm_flags |= VM_NORESERVE;
1578
1579                /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1580                if (file && is_file_hugepages(file))
1581                        vm_flags |= VM_NORESERVE;
1582        }
1583
1584        addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1585        if (!IS_ERR_VALUE(addr) &&
1586            ((vm_flags & VM_LOCKED) ||
1587             (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1588                *populate = len;
1589        return addr;
1590}
1591
1592unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1593                              unsigned long prot, unsigned long flags,
1594                              unsigned long fd, unsigned long pgoff)
1595{
1596        struct file *file = NULL;
1597        unsigned long retval;
1598
1599        if (!(flags & MAP_ANONYMOUS)) {
1600                audit_mmap_fd(fd, flags);
1601                file = fget(fd);
1602                if (!file)
1603                        return -EBADF;
1604                if (is_file_hugepages(file)) {
1605                        len = ALIGN(len, huge_page_size(hstate_file(file)));
1606                } else if (unlikely(flags & MAP_HUGETLB)) {
1607                        retval = -EINVAL;
1608                        goto out_fput;
1609                }
1610        } else if (flags & MAP_HUGETLB) {
1611                struct ucounts *ucounts = NULL;
1612                struct hstate *hs;
1613
1614                hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1615                if (!hs)
1616                        return -EINVAL;
1617
1618                len = ALIGN(len, huge_page_size(hs));
1619                /*
1620                 * VM_NORESERVE is used because the reservations will be
1621                 * taken when vm_ops->mmap() is called
1622                 * A dummy user value is used because we are not locking
1623                 * memory so no accounting is necessary
1624                 */
1625                file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626                                VM_NORESERVE,
1627                                &ucounts, HUGETLB_ANONHUGE_INODE,
1628                                (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629                if (IS_ERR(file))
1630                        return PTR_ERR(file);
1631        }
1632
1633        flags &= ~MAP_DENYWRITE;
1634
1635        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1636out_fput:
1637        if (file)
1638                fput(file);
1639        return retval;
1640}
1641
1642SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1643                unsigned long, prot, unsigned long, flags,
1644                unsigned long, fd, unsigned long, pgoff)
1645{
1646        return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1647}
1648
1649#ifdef __ARCH_WANT_SYS_OLD_MMAP
1650struct mmap_arg_struct {
1651        unsigned long addr;
1652        unsigned long len;
1653        unsigned long prot;
1654        unsigned long flags;
1655        unsigned long fd;
1656        unsigned long offset;
1657};
1658
1659SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1660{
1661        struct mmap_arg_struct a;
1662
1663        if (copy_from_user(&a, arg, sizeof(a)))
1664                return -EFAULT;
1665        if (offset_in_page(a.offset))
1666                return -EINVAL;
1667
1668        return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1669                               a.offset >> PAGE_SHIFT);
1670}
1671#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1672
1673/*
1674 * Some shared mappings will want the pages marked read-only
1675 * to track write events. If so, we'll downgrade vm_page_prot
1676 * to the private version (using protection_map[] without the
1677 * VM_SHARED bit).
1678 */
1679int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1680{
1681        vm_flags_t vm_flags = vma->vm_flags;
1682        const struct vm_operations_struct *vm_ops = vma->vm_ops;
1683
1684        /* If it was private or non-writable, the write bit is already clear */
1685        if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1686                return 0;
1687
1688        /* The backer wishes to know when pages are first written to? */
1689        if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1690                return 1;
1691
1692        /* The open routine did something to the protections that pgprot_modify
1693         * won't preserve? */
1694        if (pgprot_val(vm_page_prot) !=
1695            pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1696                return 0;
1697
1698        /* Do we need to track softdirty? */
1699        if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1700                return 1;
1701
1702        /* Specialty mapping? */
1703        if (vm_flags & VM_PFNMAP)
1704                return 0;
1705
1706        /* Can the mapping track the dirty pages? */
1707        return vma->vm_file && vma->vm_file->f_mapping &&
1708                mapping_can_writeback(vma->vm_file->f_mapping);
1709}
1710
1711/*
1712 * We account for memory if it's a private writeable mapping,
1713 * not hugepages and VM_NORESERVE wasn't set.
1714 */
1715static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1716{
1717        /*
1718         * hugetlb has its own accounting separate from the core VM
1719         * VM_HUGETLB may not be set yet so we cannot check for that flag.
1720         */
1721        if (file && is_file_hugepages(file))
1722                return 0;
1723
1724        return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1725}
1726
1727unsigned long mmap_region(struct file *file, unsigned long addr,
1728                unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1729                struct list_head *uf)
1730{
1731        struct mm_struct *mm = current->mm;
1732        struct vm_area_struct *vma, *prev, *merge;
1733        int error;
1734        struct rb_node **rb_link, *rb_parent;
1735        unsigned long charged = 0;
1736
1737        /* Check against address space limit. */
1738        if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1739                unsigned long nr_pages;
1740
1741                /*
1742                 * MAP_FIXED may remove pages of mappings that intersects with
1743                 * requested mapping. Account for the pages it would unmap.
1744                 */
1745                nr_pages = count_vma_pages_range(mm, addr, addr + len);
1746
1747                if (!may_expand_vm(mm, vm_flags,
1748                                        (len >> PAGE_SHIFT) - nr_pages))
1749                        return -ENOMEM;
1750        }
1751
1752        /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1753        if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1754                return -ENOMEM;
1755        /*
1756         * Private writable mapping: check memory availability
1757         */
1758        if (accountable_mapping(file, vm_flags)) {
1759                charged = len >> PAGE_SHIFT;
1760                if (security_vm_enough_memory_mm(mm, charged))
1761                        return -ENOMEM;
1762                vm_flags |= VM_ACCOUNT;
1763        }
1764
1765        /*
1766         * Can we just expand an old mapping?
1767         */
1768        vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1769                        NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1770        if (vma)
1771                goto out;
1772
1773        /*
1774         * Determine the object being mapped and call the appropriate
1775         * specific mapper. the address has already been validated, but
1776         * not unmapped, but the maps are removed from the list.
1777         */
1778        vma = vm_area_alloc(mm);
1779        if (!vma) {
1780                error = -ENOMEM;
1781                goto unacct_error;
1782        }
1783
1784        vma->vm_start = addr;
1785        vma->vm_end = addr + len;
1786        vma->vm_flags = vm_flags;
1787        vma->vm_page_prot = vm_get_page_prot(vm_flags);
1788        vma->vm_pgoff = pgoff;
1789
1790        if (file) {
1791                if (vm_flags & VM_DENYWRITE) {
1792                        error = deny_write_access(file);
1793                        if (error)
1794                                goto free_vma;
1795                }
1796                if (vm_flags & VM_SHARED) {
1797                        error = mapping_map_writable(file->f_mapping);
1798                        if (error)
1799                                goto allow_write_and_free_vma;
1800                }
1801
1802                /* ->mmap() can change vma->vm_file, but must guarantee that
1803                 * vma_link() below can deny write-access if VM_DENYWRITE is set
1804                 * and map writably if VM_SHARED is set. This usually means the
1805                 * new file must not have been exposed to user-space, yet.
1806                 */
1807                vma->vm_file = get_file(file);
1808                error = call_mmap(file, vma);
1809                if (error)
1810                        goto unmap_and_free_vma;
1811
1812                /* Can addr have changed??
1813                 *
1814                 * Answer: Yes, several device drivers can do it in their
1815                 *         f_op->mmap method. -DaveM
1816                 * Bug: If addr is changed, prev, rb_link, rb_parent should
1817                 *      be updated for vma_link()
1818                 */
1819                WARN_ON_ONCE(addr != vma->vm_start);
1820
1821                addr = vma->vm_start;
1822
1823                /* If vm_flags changed after call_mmap(), we should try merge vma again
1824                 * as we may succeed this time.
1825                 */
1826                if (unlikely(vm_flags != vma->vm_flags && prev)) {
1827                        merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1828                                NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1829                        if (merge) {
1830                                /* ->mmap() can change vma->vm_file and fput the original file. So
1831                                 * fput the vma->vm_file here or we would add an extra fput for file
1832                                 * and cause general protection fault ultimately.
1833                                 */
1834                                fput(vma->vm_file);
1835                                vm_area_free(vma);
1836                                vma = merge;
1837                                /* Update vm_flags to pick up the change. */
1838                                vm_flags = vma->vm_flags;
1839                                goto unmap_writable;
1840                        }
1841                }
1842
1843                vm_flags = vma->vm_flags;
1844        } else if (vm_flags & VM_SHARED) {
1845                error = shmem_zero_setup(vma);
1846                if (error)
1847                        goto free_vma;
1848        } else {
1849                vma_set_anonymous(vma);
1850        }
1851
1852        /* Allow architectures to sanity-check the vm_flags */
1853        if (!arch_validate_flags(vma->vm_flags)) {
1854                error = -EINVAL;
1855                if (file)
1856                        goto unmap_and_free_vma;
1857                else
1858                        goto free_vma;
1859        }
1860
1861        vma_link(mm, vma, prev, rb_link, rb_parent);
1862        /* Once vma denies write, undo our temporary denial count */
1863        if (file) {
1864unmap_writable:
1865                if (vm_flags & VM_SHARED)
1866                        mapping_unmap_writable(file->f_mapping);
1867                if (vm_flags & VM_DENYWRITE)
1868                        allow_write_access(file);
1869        }
1870        file = vma->vm_file;
1871out:
1872        perf_event_mmap(vma);
1873
1874        vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1875        if (vm_flags & VM_LOCKED) {
1876                if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1877                                        is_vm_hugetlb_page(vma) ||
1878                                        vma == get_gate_vma(current->mm))
1879                        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1880                else
1881                        mm->locked_vm += (len >> PAGE_SHIFT);
1882        }
1883
1884        if (file)
1885                uprobe_mmap(vma);
1886
1887        /*
1888         * New (or expanded) vma always get soft dirty status.
1889         * Otherwise user-space soft-dirty page tracker won't
1890         * be able to distinguish situation when vma area unmapped,
1891         * then new mapped in-place (which must be aimed as
1892         * a completely new data area).
1893         */
1894        vma->vm_flags |= VM_SOFTDIRTY;
1895
1896        vma_set_page_prot(vma);
1897
1898        return addr;
1899
1900unmap_and_free_vma:
1901        fput(vma->vm_file);
1902        vma->vm_file = NULL;
1903
1904        /* Undo any partial mapping done by a device driver. */
1905        unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1906        charged = 0;
1907        if (vm_flags & VM_SHARED)
1908                mapping_unmap_writable(file->f_mapping);
1909allow_write_and_free_vma:
1910        if (vm_flags & VM_DENYWRITE)
1911                allow_write_access(file);
1912free_vma:
1913        vm_area_free(vma);
1914unacct_error:
1915        if (charged)
1916                vm_unacct_memory(charged);
1917        return error;
1918}
1919
1920static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1921{
1922        /*
1923         * We implement the search by looking for an rbtree node that
1924         * immediately follows a suitable gap. That is,
1925         * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1926         * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1927         * - gap_end - gap_start >= length
1928         */
1929
1930        struct mm_struct *mm = current->mm;
1931        struct vm_area_struct *vma;
1932        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1933
1934        /* Adjust search length to account for worst case alignment overhead */
1935        length = info->length + info->align_mask;
1936        if (length < info->length)
1937                return -ENOMEM;
1938
1939        /* Adjust search limits by the desired length */
1940        if (info->high_limit < length)
1941                return -ENOMEM;
1942        high_limit = info->high_limit - length;
1943
1944        if (info->low_limit > high_limit)
1945                return -ENOMEM;
1946        low_limit = info->low_limit + length;
1947
1948        /* Check if rbtree root looks promising */
1949        if (RB_EMPTY_ROOT(&mm->mm_rb))
1950                goto check_highest;
1951        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1952        if (vma->rb_subtree_gap < length)
1953                goto check_highest;
1954
1955        while (true) {
1956                /* Visit left subtree if it looks promising */
1957                gap_end = vm_start_gap(vma);
1958                if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1959                        struct vm_area_struct *left =
1960                                rb_entry(vma->vm_rb.rb_left,
1961                                         struct vm_area_struct, vm_rb);
1962                        if (left->rb_subtree_gap >= length) {
1963                                vma = left;
1964                                continue;
1965                        }
1966                }
1967
1968                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1969check_current:
1970                /* Check if current node has a suitable gap */
1971                if (gap_start > high_limit)
1972                        return -ENOMEM;
1973                if (gap_end >= low_limit &&
1974                    gap_end > gap_start && gap_end - gap_start >= length)
1975                        goto found;
1976
1977                /* Visit right subtree if it looks promising */
1978                if (vma->vm_rb.rb_right) {
1979                        struct vm_area_struct *right =
1980                                rb_entry(vma->vm_rb.rb_right,
1981                                         struct vm_area_struct, vm_rb);
1982                        if (right->rb_subtree_gap >= length) {
1983                                vma = right;
1984                                continue;
1985                        }
1986                }
1987
1988                /* Go back up the rbtree to find next candidate node */
1989                while (true) {
1990                        struct rb_node *prev = &vma->vm_rb;
1991                        if (!rb_parent(prev))
1992                                goto check_highest;
1993                        vma = rb_entry(rb_parent(prev),
1994                                       struct vm_area_struct, vm_rb);
1995                        if (prev == vma->vm_rb.rb_left) {
1996                                gap_start = vm_end_gap(vma->vm_prev);
1997                                gap_end = vm_start_gap(vma);
1998                                goto check_current;
1999                        }
2000                }
2001        }
2002
2003check_highest:
2004        /* Check highest gap, which does not precede any rbtree node */
2005        gap_start = mm->highest_vm_end;
2006        gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2007        if (gap_start > high_limit)
2008                return -ENOMEM;
2009
2010found:
2011        /* We found a suitable gap. Clip it with the original low_limit. */
2012        if (gap_start < info->low_limit)
2013                gap_start = info->low_limit;
2014
2015        /* Adjust gap address to the desired alignment */
2016        gap_start += (info->align_offset - gap_start) & info->align_mask;
2017
2018        VM_BUG_ON(gap_start + info->length > info->high_limit);
2019        VM_BUG_ON(gap_start + info->length > gap_end);
2020        return gap_start;
2021}
2022
2023static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2024{
2025        struct mm_struct *mm = current->mm;
2026        struct vm_area_struct *vma;
2027        unsigned long length, low_limit, high_limit, gap_start, gap_end;
2028
2029        /* Adjust search length to account for worst case alignment overhead */
2030        length = info->length + info->align_mask;
2031        if (length < info->length)
2032                return -ENOMEM;
2033
2034        /*
2035         * Adjust search limits by the desired length.
2036         * See implementation comment at top of unmapped_area().
2037         */
2038        gap_end = info->high_limit;
2039        if (gap_end < length)
2040                return -ENOMEM;
2041        high_limit = gap_end - length;
2042
2043        if (info->low_limit > high_limit)
2044                return -ENOMEM;
2045        low_limit = info->low_limit + length;
2046
2047        /* Check highest gap, which does not precede any rbtree node */
2048        gap_start = mm->highest_vm_end;
2049        if (gap_start <= high_limit)
2050                goto found_highest;
2051
2052        /* Check if rbtree root looks promising */
2053        if (RB_EMPTY_ROOT(&mm->mm_rb))
2054                return -ENOMEM;
2055        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2056        if (vma->rb_subtree_gap < length)
2057                return -ENOMEM;
2058
2059        while (true) {
2060                /* Visit right subtree if it looks promising */
2061                gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2062                if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2063                        struct vm_area_struct *right =
2064                                rb_entry(vma->vm_rb.rb_right,
2065                                         struct vm_area_struct, vm_rb);
2066                        if (right->rb_subtree_gap >= length) {
2067                                vma = right;
2068                                continue;
2069                        }
2070                }
2071
2072check_current:
2073                /* Check if current node has a suitable gap */
2074                gap_end = vm_start_gap(vma);
2075                if (gap_end < low_limit)
2076                        return -ENOMEM;
2077                if (gap_start <= high_limit &&
2078                    gap_end > gap_start && gap_end - gap_start >= length)
2079                        goto found;
2080
2081                /* Visit left subtree if it looks promising */
2082                if (vma->vm_rb.rb_left) {
2083                        struct vm_area_struct *left =
2084                                rb_entry(vma->vm_rb.rb_left,
2085                                         struct vm_area_struct, vm_rb);
2086                        if (left->rb_subtree_gap >= length) {
2087                                vma = left;
2088                                continue;
2089                        }
2090                }
2091
2092                /* Go back up the rbtree to find next candidate node */
2093                while (true) {
2094                        struct rb_node *prev = &vma->vm_rb;
2095                        if (!rb_parent(prev))
2096                                return -ENOMEM;
2097                        vma = rb_entry(rb_parent(prev),
2098                                       struct vm_area_struct, vm_rb);
2099                        if (prev == vma->vm_rb.rb_right) {
2100                                gap_start = vma->vm_prev ?
2101                                        vm_end_gap(vma->vm_prev) : 0;
2102                                goto check_current;
2103                        }
2104                }
2105        }
2106
2107found:
2108        /* We found a suitable gap. Clip it with the original high_limit. */
2109        if (gap_end > info->high_limit)
2110                gap_end = info->high_limit;
2111
2112found_highest:
2113        /* Compute highest gap address at the desired alignment */
2114        gap_end -= info->length;
2115        gap_end -= (gap_end - info->align_offset) & info->align_mask;
2116
2117        VM_BUG_ON(gap_end < info->low_limit);
2118        VM_BUG_ON(gap_end < gap_start);
2119        return gap_end;
2120}
2121
2122/*
2123 * Search for an unmapped address range.
2124 *
2125 * We are looking for a range that:
2126 * - does not intersect with any VMA;
2127 * - is contained within the [low_limit, high_limit) interval;
2128 * - is at least the desired size.
2129 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2130 */
2131unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2132{
2133        unsigned long addr;
2134
2135        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2136                addr = unmapped_area_topdown(info);
2137        else
2138                addr = unmapped_area(info);
2139
2140        trace_vm_unmapped_area(addr, info);
2141        return addr;
2142}
2143
2144#ifndef arch_get_mmap_end
2145#define arch_get_mmap_end(addr) (TASK_SIZE)
2146#endif
2147
2148#ifndef arch_get_mmap_base
2149#define arch_get_mmap_base(addr, base) (base)
2150#endif
2151
2152/* Get an address range which is currently unmapped.
2153 * For shmat() with addr=0.
2154 *
2155 * Ugly calling convention alert:
2156 * Return value with the low bits set means error value,
2157 * ie
2158 *      if (ret & ~PAGE_MASK)
2159 *              error = ret;
2160 *
2161 * This function "knows" that -ENOMEM has the bits set.
2162 */
2163#ifndef HAVE_ARCH_UNMAPPED_AREA
2164unsigned long
2165arch_get_unmapped_area(struct file *filp, unsigned long addr,
2166                unsigned long len, unsigned long pgoff, unsigned long flags)
2167{
2168        struct mm_struct *mm = current->mm;
2169        struct vm_area_struct *vma, *prev;
2170        struct vm_unmapped_area_info info;
2171        const unsigned long mmap_end = arch_get_mmap_end(addr);
2172
2173        if (len > mmap_end - mmap_min_addr)
2174                return -ENOMEM;
2175
2176        if (flags & MAP_FIXED)
2177                return addr;
2178
2179        if (addr) {
2180                addr = PAGE_ALIGN(addr);
2181                vma = find_vma_prev(mm, addr, &prev);
2182                if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2183                    (!vma || addr + len <= vm_start_gap(vma)) &&
2184                    (!prev || addr >= vm_end_gap(prev)))
2185                        return addr;
2186        }
2187
2188        info.flags = 0;
2189        info.length = len;
2190        info.low_limit = mm->mmap_base;
2191        info.high_limit = mmap_end;
2192        info.align_mask = 0;
2193        info.align_offset = 0;
2194        return vm_unmapped_area(&info);
2195}
2196#endif
2197
2198/*
2199 * This mmap-allocator allocates new areas top-down from below the
2200 * stack's low limit (the base):
2201 */
2202#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2203unsigned long
2204arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2205                          unsigned long len, unsigned long pgoff,
2206                          unsigned long flags)
2207{
2208        struct vm_area_struct *vma, *prev;
2209        struct mm_struct *mm = current->mm;
2210        struct vm_unmapped_area_info info;
2211        const unsigned long mmap_end = arch_get_mmap_end(addr);
2212
2213        /* requested length too big for entire address space */
2214        if (len > mmap_end - mmap_min_addr)
2215                return -ENOMEM;
2216
2217        if (flags & MAP_FIXED)
2218                return addr;
2219
2220        /* requesting a specific address */
2221        if (addr) {
2222                addr = PAGE_ALIGN(addr);
2223                vma = find_vma_prev(mm, addr, &prev);
2224                if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2225                                (!vma || addr + len <= vm_start_gap(vma)) &&
2226                                (!prev || addr >= vm_end_gap(prev)))
2227                        return addr;
2228        }
2229
2230        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2231        info.length = len;
2232        info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2233        info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2234        info.align_mask = 0;
2235        info.align_offset = 0;
2236        addr = vm_unmapped_area(&info);
2237
2238        /*
2239         * A failed mmap() very likely causes application failure,
2240         * so fall back to the bottom-up function here. This scenario
2241         * can happen with large stack limits and large mmap()
2242         * allocations.
2243         */
2244        if (offset_in_page(addr)) {
2245                VM_BUG_ON(addr != -ENOMEM);
2246                info.flags = 0;
2247                info.low_limit = TASK_UNMAPPED_BASE;
2248                info.high_limit = mmap_end;
2249                addr = vm_unmapped_area(&info);
2250        }
2251
2252        return addr;
2253}
2254#endif
2255
2256unsigned long
2257get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2258                unsigned long pgoff, unsigned long flags)
2259{
2260        unsigned long (*get_area)(struct file *, unsigned long,
2261                                  unsigned long, unsigned long, unsigned long);
2262
2263        unsigned long error = arch_mmap_check(addr, len, flags);
2264        if (error)
2265                return error;
2266
2267        /* Careful about overflows.. */
2268        if (len > TASK_SIZE)
2269                return -ENOMEM;
2270
2271        get_area = current->mm->get_unmapped_area;
2272        if (file) {
2273                if (file->f_op->get_unmapped_area)
2274                        get_area = file->f_op->get_unmapped_area;
2275        } else if (flags & MAP_SHARED) {
2276                /*
2277                 * mmap_region() will call shmem_zero_setup() to create a file,
2278                 * so use shmem's get_unmapped_area in case it can be huge.
2279                 * do_mmap() will clear pgoff, so match alignment.
2280                 */
2281                pgoff = 0;
2282                get_area = shmem_get_unmapped_area;
2283        }
2284
2285        addr = get_area(file, addr, len, pgoff, flags);
2286        if (IS_ERR_VALUE(addr))
2287                return addr;
2288
2289        if (addr > TASK_SIZE - len)
2290                return -ENOMEM;
2291        if (offset_in_page(addr))
2292                return -EINVAL;
2293
2294        error = security_mmap_addr(addr);
2295        return error ? error : addr;
2296}
2297
2298EXPORT_SYMBOL(get_unmapped_area);
2299
2300/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2301struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2302{
2303        struct rb_node *rb_node;
2304        struct vm_area_struct *vma;
2305
2306        /* Check the cache first. */
2307        vma = vmacache_find(mm, addr);
2308        if (likely(vma))
2309                return vma;
2310
2311        rb_node = mm->mm_rb.rb_node;
2312
2313        while (rb_node) {
2314                struct vm_area_struct *tmp;
2315
2316                tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2317
2318                if (tmp->vm_end > addr) {
2319                        vma = tmp;
2320                        if (tmp->vm_start <= addr)
2321                                break;
2322                        rb_node = rb_node->rb_left;
2323                } else
2324                        rb_node = rb_node->rb_right;
2325        }
2326
2327        if (vma)
2328                vmacache_update(addr, vma);
2329        return vma;
2330}
2331
2332EXPORT_SYMBOL(find_vma);
2333
2334/*
2335 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2336 */
2337struct vm_area_struct *
2338find_vma_prev(struct mm_struct *mm, unsigned long addr,
2339                        struct vm_area_struct **pprev)
2340{
2341        struct vm_area_struct *vma;
2342
2343        vma = find_vma(mm, addr);
2344        if (vma) {
2345                *pprev = vma->vm_prev;
2346        } else {
2347                struct rb_node *rb_node = rb_last(&mm->mm_rb);
2348
2349                *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2350        }
2351        return vma;
2352}
2353
2354/*
2355 * Verify that the stack growth is acceptable and
2356 * update accounting. This is shared with both the
2357 * grow-up and grow-down cases.
2358 */
2359static int acct_stack_growth(struct vm_area_struct *vma,
2360                             unsigned long size, unsigned long grow)
2361{
2362        struct mm_struct *mm = vma->vm_mm;
2363        unsigned long new_start;
2364
2365        /* address space limit tests */
2366        if (!may_expand_vm(mm, vma->vm_flags, grow))
2367                return -ENOMEM;
2368
2369        /* Stack limit test */
2370        if (size > rlimit(RLIMIT_STACK))
2371                return -ENOMEM;
2372
2373        /* mlock limit tests */
2374        if (vma->vm_flags & VM_LOCKED) {
2375                unsigned long locked;
2376                unsigned long limit;
2377                locked = mm->locked_vm + grow;
2378                limit = rlimit(RLIMIT_MEMLOCK);
2379                limit >>= PAGE_SHIFT;
2380                if (locked > limit && !capable(CAP_IPC_LOCK))
2381                        return -ENOMEM;
2382        }
2383
2384        /* Check to ensure the stack will not grow into a hugetlb-only region */
2385        new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2386                        vma->vm_end - size;
2387        if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2388                return -EFAULT;
2389
2390        /*
2391         * Overcommit..  This must be the final test, as it will
2392         * update security statistics.
2393         */
2394        if (security_vm_enough_memory_mm(mm, grow))
2395                return -ENOMEM;
2396
2397        return 0;
2398}
2399
2400#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2401/*
2402 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2403 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2404 */
2405int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2406{
2407        struct mm_struct *mm = vma->vm_mm;
2408        struct vm_area_struct *next;
2409        unsigned long gap_addr;
2410        int error = 0;
2411
2412        if (!(vma->vm_flags & VM_GROWSUP))
2413                return -EFAULT;
2414
2415        /* Guard against exceeding limits of the address space. */
2416        address &= PAGE_MASK;
2417        if (address >= (TASK_SIZE & PAGE_MASK))
2418                return -ENOMEM;
2419        address += PAGE_SIZE;
2420
2421        /* Enforce stack_guard_gap */
2422        gap_addr = address + stack_guard_gap;
2423
2424        /* Guard against overflow */
2425        if (gap_addr < address || gap_addr > TASK_SIZE)
2426                gap_addr = TASK_SIZE;
2427
2428        next = vma->vm_next;
2429        if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2430                if (!(next->vm_flags & VM_GROWSUP))
2431                        return -ENOMEM;
2432                /* Check that both stack segments have the same anon_vma? */
2433        }
2434
2435        /* We must make sure the anon_vma is allocated. */
2436        if (unlikely(anon_vma_prepare(vma)))
2437                return -ENOMEM;
2438
2439        /*
2440         * vma->vm_start/vm_end cannot change under us because the caller
2441         * is required to hold the mmap_lock in read mode.  We need the
2442         * anon_vma lock to serialize against concurrent expand_stacks.
2443         */
2444        anon_vma_lock_write(vma->anon_vma);
2445
2446        /* Somebody else might have raced and expanded it already */
2447        if (address > vma->vm_end) {
2448                unsigned long size, grow;
2449
2450                size = address - vma->vm_start;
2451                grow = (address - vma->vm_end) >> PAGE_SHIFT;
2452
2453                error = -ENOMEM;
2454                if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2455                        error = acct_stack_growth(vma, size, grow);
2456                        if (!error) {
2457                                /*
2458                                 * vma_gap_update() doesn't support concurrent
2459                                 * updates, but we only hold a shared mmap_lock
2460                                 * lock here, so we need to protect against
2461                                 * concurrent vma expansions.
2462                                 * anon_vma_lock_write() doesn't help here, as
2463                                 * we don't guarantee that all growable vmas
2464                                 * in a mm share the same root anon vma.
2465                                 * So, we reuse mm->page_table_lock to guard
2466                                 * against concurrent vma expansions.
2467                                 */
2468                                spin_lock(&mm->page_table_lock);
2469                                if (vma->vm_flags & VM_LOCKED)
2470                                        mm->locked_vm += grow;
2471                                vm_stat_account(mm, vma->vm_flags, grow);
2472                                anon_vma_interval_tree_pre_update_vma(vma);
2473                                vma->vm_end = address;
2474                                anon_vma_interval_tree_post_update_vma(vma);
2475                                if (vma->vm_next)
2476                                        vma_gap_update(vma->vm_next);
2477                                else
2478                                        mm->highest_vm_end = vm_end_gap(vma);
2479                                spin_unlock(&mm->page_table_lock);
2480
2481                                perf_event_mmap(vma);
2482                        }
2483                }
2484        }
2485        anon_vma_unlock_write(vma->anon_vma);
2486        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2487        validate_mm(mm);
2488        return error;
2489}
2490#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2491
2492/*
2493 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2494 */
2495int expand_downwards(struct vm_area_struct *vma,
2496                                   unsigned long address)
2497{
2498        struct mm_struct *mm = vma->vm_mm;
2499        struct vm_area_struct *prev;
2500        int error = 0;
2501
2502        address &= PAGE_MASK;
2503        if (address < mmap_min_addr)
2504                return -EPERM;
2505
2506        /* Enforce stack_guard_gap */
2507        prev = vma->vm_prev;
2508        /* Check that both stack segments have the same anon_vma? */
2509        if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2510                        vma_is_accessible(prev)) {
2511                if (address - prev->vm_end < stack_guard_gap)
2512                        return -ENOMEM;
2513        }
2514
2515        /* We must make sure the anon_vma is allocated. */
2516        if (unlikely(anon_vma_prepare(vma)))
2517                return -ENOMEM;
2518
2519        /*
2520         * vma->vm_start/vm_end cannot change under us because the caller
2521         * is required to hold the mmap_lock in read mode.  We need the
2522         * anon_vma lock to serialize against concurrent expand_stacks.
2523         */
2524        anon_vma_lock_write(vma->anon_vma);
2525
2526        /* Somebody else might have raced and expanded it already */
2527        if (address < vma->vm_start) {
2528                unsigned long size, grow;
2529
2530                size = vma->vm_end - address;
2531                grow = (vma->vm_start - address) >> PAGE_SHIFT;
2532
2533                error = -ENOMEM;
2534                if (grow <= vma->vm_pgoff) {
2535                        error = acct_stack_growth(vma, size, grow);
2536                        if (!error) {
2537                                /*
2538                                 * vma_gap_update() doesn't support concurrent
2539                                 * updates, but we only hold a shared mmap_lock
2540                                 * lock here, so we need to protect against
2541                                 * concurrent vma expansions.
2542                                 * anon_vma_lock_write() doesn't help here, as
2543                                 * we don't guarantee that all growable vmas
2544                                 * in a mm share the same root anon vma.
2545                                 * So, we reuse mm->page_table_lock to guard
2546                                 * against concurrent vma expansions.
2547                                 */
2548                                spin_lock(&mm->page_table_lock);
2549                                if (vma->vm_flags & VM_LOCKED)
2550                                        mm->locked_vm += grow;
2551                                vm_stat_account(mm, vma->vm_flags, grow);
2552                                anon_vma_interval_tree_pre_update_vma(vma);
2553                                vma->vm_start = address;
2554                                vma->vm_pgoff -= grow;
2555                                anon_vma_interval_tree_post_update_vma(vma);
2556                                vma_gap_update(vma);
2557                                spin_unlock(&mm->page_table_lock);
2558
2559                                perf_event_mmap(vma);
2560                        }
2561                }
2562        }
2563        anon_vma_unlock_write(vma->anon_vma);
2564        khugepaged_enter_vma_merge(vma, vma->vm_flags);
2565        validate_mm(mm);
2566        return error;
2567}
2568
2569/* enforced gap between the expanding stack and other mappings. */
2570unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2571
2572static int __init cmdline_parse_stack_guard_gap(char *p)
2573{
2574        unsigned long val;
2575        char *endptr;
2576
2577        val = simple_strtoul(p, &endptr, 10);
2578        if (!*endptr)
2579                stack_guard_gap = val << PAGE_SHIFT;
2580
2581        return 0;
2582}
2583__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2584
2585#ifdef CONFIG_STACK_GROWSUP
2586int expand_stack(struct vm_area_struct *vma, unsigned long address)
2587{
2588        return expand_upwards(vma, address);
2589}
2590
2591struct vm_area_struct *
2592find_extend_vma(struct mm_struct *mm, unsigned long addr)
2593{
2594        struct vm_area_struct *vma, *prev;
2595
2596        addr &= PAGE_MASK;
2597        vma = find_vma_prev(mm, addr, &prev);
2598        if (vma && (vma->vm_start <= addr))
2599                return vma;
2600        /* don't alter vm_end if the coredump is running */
2601        if (!prev || expand_stack(prev, addr))
2602                return NULL;
2603        if (prev->vm_flags & VM_LOCKED)
2604                populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2605        return prev;
2606}
2607#else
2608int expand_stack(struct vm_area_struct *vma, unsigned long address)
2609{
2610        return expand_downwards(vma, address);
2611}
2612
2613struct vm_area_struct *
2614find_extend_vma(struct mm_struct *mm, unsigned long addr)
2615{
2616        struct vm_area_struct *vma;
2617        unsigned long start;
2618
2619        addr &= PAGE_MASK;
2620        vma = find_vma(mm, addr);
2621        if (!vma)
2622                return NULL;
2623        if (vma->vm_start <= addr)
2624                return vma;
2625        if (!(vma->vm_flags & VM_GROWSDOWN))
2626                return NULL;
2627        start = vma->vm_start;
2628        if (expand_stack(vma, addr))
2629                return NULL;
2630        if (vma->vm_flags & VM_LOCKED)
2631                populate_vma_page_range(vma, addr, start, NULL);
2632        return vma;
2633}
2634#endif
2635
2636EXPORT_SYMBOL_GPL(find_extend_vma);
2637
2638/*
2639 * Ok - we have the memory areas we should free on the vma list,
2640 * so release them, and do the vma updates.
2641 *
2642 * Called with the mm semaphore held.
2643 */
2644static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2645{
2646        unsigned long nr_accounted = 0;
2647
2648        /* Update high watermark before we lower total_vm */
2649        update_hiwater_vm(mm);
2650        do {
2651                long nrpages = vma_pages(vma);
2652
2653                if (vma->vm_flags & VM_ACCOUNT)
2654                        nr_accounted += nrpages;
2655                vm_stat_account(mm, vma->vm_flags, -nrpages);
2656                vma = remove_vma(vma);
2657        } while (vma);
2658        vm_unacct_memory(nr_accounted);
2659        validate_mm(mm);
2660}
2661
2662/*
2663 * Get rid of page table information in the indicated region.
2664 *
2665 * Called with the mm semaphore held.
2666 */
2667static void unmap_region(struct mm_struct *mm,
2668                struct vm_area_struct *vma, struct vm_area_struct *prev,
2669                unsigned long start, unsigned long end)
2670{
2671        struct vm_area_struct *next = vma_next(mm, prev);
2672        struct mmu_gather tlb;
2673
2674        lru_add_drain();
2675        tlb_gather_mmu(&tlb, mm);
2676        update_hiwater_rss(mm);
2677        unmap_vmas(&tlb, vma, start, end);
2678        free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2679                                 next ? next->vm_start : USER_PGTABLES_CEILING);
2680        tlb_finish_mmu(&tlb);
2681}
2682
2683/*
2684 * Create a list of vma's touched by the unmap, removing them from the mm's
2685 * vma list as we go..
2686 */
2687static bool
2688detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2689        struct vm_area_struct *prev, unsigned long end)
2690{
2691        struct vm_area_struct **insertion_point;
2692        struct vm_area_struct *tail_vma = NULL;
2693
2694        insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2695        vma->vm_prev = NULL;
2696        do {
2697                vma_rb_erase(vma, &mm->mm_rb);
2698                mm->map_count--;
2699                tail_vma = vma;
2700                vma = vma->vm_next;
2701        } while (vma && vma->vm_start < end);
2702        *insertion_point = vma;
2703        if (vma) {
2704                vma->vm_prev = prev;
2705                vma_gap_update(vma);
2706        } else
2707                mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2708        tail_vma->vm_next = NULL;
2709
2710        /* Kill the cache */
2711        vmacache_invalidate(mm);
2712
2713        /*
2714         * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2715         * VM_GROWSUP VMA. Such VMAs can change their size under
2716         * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2717         */
2718        if (vma && (vma->vm_flags & VM_GROWSDOWN))
2719                return false;
2720        if (prev && (prev->vm_flags & VM_GROWSUP))
2721                return false;
2722        return true;
2723}
2724
2725/*
2726 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2727 * has already been checked or doesn't make sense to fail.
2728 */
2729int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2730                unsigned long addr, int new_below)
2731{
2732        struct vm_area_struct *new;
2733        int err;
2734
2735        if (vma->vm_ops && vma->vm_ops->may_split) {
2736                err = vma->vm_ops->may_split(vma, addr);
2737                if (err)
2738                        return err;
2739        }
2740
2741        new = vm_area_dup(vma);
2742        if (!new)
2743                return -ENOMEM;
2744
2745        if (new_below)
2746                new->vm_end = addr;
2747        else {
2748                new->vm_start = addr;
2749                new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2750        }
2751
2752        err = vma_dup_policy(vma, new);
2753        if (err)
2754                goto out_free_vma;
2755
2756        err = anon_vma_clone(new, vma);
2757        if (err)
2758                goto out_free_mpol;
2759
2760        if (new->vm_file)
2761                get_file(new->vm_file);
2762
2763        if (new->vm_ops && new->vm_ops->open)
2764                new->vm_ops->open(new);
2765
2766        if (new_below)
2767                err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2768                        ((addr - new->vm_start) >> PAGE_SHIFT), new);
2769        else
2770                err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2771
2772        /* Success. */
2773        if (!err)
2774                return 0;
2775
2776        /* Clean everything up if vma_adjust failed. */
2777        if (new->vm_ops && new->vm_ops->close)
2778                new->vm_ops->close(new);
2779        if (new->vm_file)
2780                fput(new->vm_file);
2781        unlink_anon_vmas(new);
2782 out_free_mpol:
2783        mpol_put(vma_policy(new));
2784 out_free_vma:
2785        vm_area_free(new);
2786        return err;
2787}
2788
2789/*
2790 * Split a vma into two pieces at address 'addr', a new vma is allocated
2791 * either for the first part or the tail.
2792 */
2793int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2794              unsigned long addr, int new_below)
2795{
2796        if (mm->map_count >= sysctl_max_map_count)
2797                return -ENOMEM;
2798
2799        return __split_vma(mm, vma, addr, new_below);
2800}
2801
2802static inline void
2803unlock_range(struct vm_area_struct *start, unsigned long limit)
2804{
2805        struct mm_struct *mm = start->vm_mm;
2806        struct vm_area_struct *tmp = start;
2807
2808        while (tmp && tmp->vm_start < limit) {
2809                if (tmp->vm_flags & VM_LOCKED) {
2810                        mm->locked_vm -= vma_pages(tmp);
2811                        munlock_vma_pages_all(tmp);
2812                }
2813
2814                tmp = tmp->vm_next;
2815        }
2816}
2817
2818/* Munmap is split into 2 main parts -- this part which finds
2819 * what needs doing, and the areas themselves, which do the
2820 * work.  This now handles partial unmappings.
2821 * Jeremy Fitzhardinge <jeremy@goop.org>
2822 */
2823int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2824                struct list_head *uf, bool downgrade)
2825{
2826        unsigned long end;
2827        struct vm_area_struct *vma, *prev, *last;
2828
2829        if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2830                return -EINVAL;
2831
2832        len = PAGE_ALIGN(len);
2833        end = start + len;
2834        if (len == 0)
2835                return -EINVAL;
2836
2837        /*
2838         * arch_unmap() might do unmaps itself.  It must be called
2839         * and finish any rbtree manipulation before this code
2840         * runs and also starts to manipulate the rbtree.
2841         */
2842        arch_unmap(mm, start, end);
2843
2844        /* Find the first overlapping VMA where start < vma->vm_end */
2845        vma = find_vma_intersection(mm, start, end);
2846        if (!vma)
2847                return 0;
2848        prev = vma->vm_prev;
2849
2850        /*
2851         * If we need to split any vma, do it now to save pain later.
2852         *
2853         * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2854         * unmapped vm_area_struct will remain in use: so lower split_vma
2855         * places tmp vma above, and higher split_vma places tmp vma below.
2856         */
2857        if (start > vma->vm_start) {
2858                int error;
2859
2860                /*
2861                 * Make sure that map_count on return from munmap() will
2862                 * not exceed its limit; but let map_count go just above
2863                 * its limit temporarily, to help free resources as expected.
2864                 */
2865                if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2866                        return -ENOMEM;
2867
2868                error = __split_vma(mm, vma, start, 0);
2869                if (error)
2870                        return error;
2871                prev = vma;
2872        }
2873
2874        /* Does it split the last one? */
2875        last = find_vma(mm, end);
2876        if (last && end > last->vm_start) {
2877                int error = __split_vma(mm, last, end, 1);
2878                if (error)
2879                        return error;
2880        }
2881        vma = vma_next(mm, prev);
2882
2883        if (unlikely(uf)) {
2884                /*
2885                 * If userfaultfd_unmap_prep returns an error the vmas
2886                 * will remain split, but userland will get a
2887                 * highly unexpected error anyway. This is no
2888                 * different than the case where the first of the two
2889                 * __split_vma fails, but we don't undo the first
2890                 * split, despite we could. This is unlikely enough
2891                 * failure that it's not worth optimizing it for.
2892                 */
2893                int error = userfaultfd_unmap_prep(vma, start, end, uf);
2894                if (error)
2895                        return error;
2896        }
2897
2898        /*
2899         * unlock any mlock()ed ranges before detaching vmas
2900         */
2901        if (mm->locked_vm)
2902                unlock_range(vma, end);
2903
2904        /* Detach vmas from rbtree */
2905        if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2906                downgrade = false;
2907
2908        if (downgrade)
2909                mmap_write_downgrade(mm);
2910
2911        unmap_region(mm, vma, prev, start, end);
2912
2913        /* Fix up all other VM information */
2914        remove_vma_list(mm, vma);
2915
2916        return downgrade ? 1 : 0;
2917}
2918
2919int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2920              struct list_head *uf)
2921{
2922        return __do_munmap(mm, start, len, uf, false);
2923}
2924
2925static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2926{
2927        int ret;
2928        struct mm_struct *mm = current->mm;
2929        LIST_HEAD(uf);
2930
2931        if (mmap_write_lock_killable(mm))
2932                return -EINTR;
2933
2934        ret = __do_munmap(mm, start, len, &uf, downgrade);
2935        /*
2936         * Returning 1 indicates mmap_lock is downgraded.
2937         * But 1 is not legal return value of vm_munmap() and munmap(), reset
2938         * it to 0 before return.
2939         */
2940        if (ret == 1) {
2941                mmap_read_unlock(mm);
2942                ret = 0;
2943        } else
2944                mmap_write_unlock(mm);
2945
2946        userfaultfd_unmap_complete(mm, &uf);
2947        return ret;
2948}
2949
2950int vm_munmap(unsigned long start, size_t len)
2951{
2952        return __vm_munmap(start, len, false);
2953}
2954EXPORT_SYMBOL(vm_munmap);
2955
2956SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2957{
2958        addr = untagged_addr(addr);
2959        profile_munmap(addr);
2960        return __vm_munmap(addr, len, true);
2961}
2962
2963
2964/*
2965 * Emulation of deprecated remap_file_pages() syscall.
2966 */
2967SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2968                unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2969{
2970
2971        struct mm_struct *mm = current->mm;
2972        struct vm_area_struct *vma;
2973        unsigned long populate = 0;
2974        unsigned long ret = -EINVAL;
2975        struct file *file;
2976
2977        pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2978                     current->comm, current->pid);
2979
2980        if (prot)
2981                return ret;
2982        start = start & PAGE_MASK;
2983        size = size & PAGE_MASK;
2984
2985        if (start + size <= start)
2986                return ret;
2987
2988        /* Does pgoff wrap? */
2989        if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2990                return ret;
2991
2992        if (mmap_write_lock_killable(mm))
2993                return -EINTR;
2994
2995        vma = find_vma(mm, start);
2996
2997        if (!vma || !(vma->vm_flags & VM_SHARED))
2998                goto out;
2999
3000        if (start < vma->vm_start)
3001                goto out;
3002
3003        if (start + size > vma->vm_end) {
3004                struct vm_area_struct *next;
3005
3006                for (next = vma->vm_next; next; next = next->vm_next) {
3007                        /* hole between vmas ? */
3008                        if (next->vm_start != next->vm_prev->vm_end)
3009                                goto out;
3010
3011                        if (next->vm_file != vma->vm_file)
3012                                goto out;
3013
3014                        if (next->vm_flags != vma->vm_flags)
3015                                goto out;
3016
3017                        if (start + size <= next->vm_end)
3018                                break;
3019                }
3020
3021                if (!next)
3022                        goto out;
3023        }
3024
3025        prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3026        prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3027        prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3028
3029        flags &= MAP_NONBLOCK;
3030        flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3031        if (vma->vm_flags & VM_LOCKED)
3032                flags |= MAP_LOCKED;
3033
3034        file = get_file(vma->vm_file);
3035        ret = do_mmap(vma->vm_file, start, size,
3036                        prot, flags, pgoff, &populate, NULL);
3037        fput(file);
3038out:
3039        mmap_write_unlock(mm);
3040        if (populate)
3041                mm_populate(ret, populate);
3042        if (!IS_ERR_VALUE(ret))
3043                ret = 0;
3044        return ret;
3045}
3046
3047/*
3048 *  this is really a simplified "do_mmap".  it only handles
3049 *  anonymous maps.  eventually we may be able to do some
3050 *  brk-specific accounting here.
3051 */
3052static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3053{
3054        struct mm_struct *mm = current->mm;
3055        struct vm_area_struct *vma, *prev;
3056        struct rb_node **rb_link, *rb_parent;
3057        pgoff_t pgoff = addr >> PAGE_SHIFT;
3058        int error;
3059        unsigned long mapped_addr;
3060
3061        /* Until we need other flags, refuse anything except VM_EXEC. */
3062        if ((flags & (~VM_EXEC)) != 0)
3063                return -EINVAL;
3064        flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3065
3066        mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3067        if (IS_ERR_VALUE(mapped_addr))
3068                return mapped_addr;
3069
3070        error = mlock_future_check(mm, mm->def_flags, len);
3071        if (error)
3072                return error;
3073
3074        /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3075        if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3076                return -ENOMEM;
3077
3078        /* Check against address space limits *after* clearing old maps... */
3079        if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3080                return -ENOMEM;
3081
3082        if (mm->map_count > sysctl_max_map_count)
3083                return -ENOMEM;
3084
3085        if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3086                return -ENOMEM;
3087
3088        /* Can we just expand an old private anonymous mapping? */
3089        vma = vma_merge(mm, prev, addr, addr + len, flags,
3090                        NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3091        if (vma)
3092                goto out;
3093
3094        /*
3095         * create a vma struct for an anonymous mapping
3096         */
3097        vma = vm_area_alloc(mm);
3098        if (!vma) {
3099                vm_unacct_memory(len >> PAGE_SHIFT);
3100                return -ENOMEM;
3101        }
3102
3103        vma_set_anonymous(vma);
3104        vma->vm_start = addr;
3105        vma->vm_end = addr + len;
3106        vma->vm_pgoff = pgoff;
3107        vma->vm_flags = flags;
3108        vma->vm_page_prot = vm_get_page_prot(flags);
3109        vma_link(mm, vma, prev, rb_link, rb_parent);
3110out:
3111        perf_event_mmap(vma);
3112        mm->total_vm += len >> PAGE_SHIFT;
3113        mm->data_vm += len >> PAGE_SHIFT;
3114        if (flags & VM_LOCKED)
3115                mm->locked_vm += (len >> PAGE_SHIFT);
3116        vma->vm_flags |= VM_SOFTDIRTY;
3117        return 0;
3118}
3119
3120int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3121{
3122        struct mm_struct *mm = current->mm;
3123        unsigned long len;
3124        int ret;
3125        bool populate;
3126        LIST_HEAD(uf);
3127
3128        len = PAGE_ALIGN(request);
3129        if (len < request)
3130                return -ENOMEM;
3131        if (!len)
3132                return 0;
3133
3134        if (mmap_write_lock_killable(mm))
3135                return -EINTR;
3136
3137        ret = do_brk_flags(addr, len, flags, &uf);
3138        populate = ((mm->def_flags & VM_LOCKED) != 0);
3139        mmap_write_unlock(mm);
3140        userfaultfd_unmap_complete(mm, &uf);
3141        if (populate && !ret)
3142                mm_populate(addr, len);
3143        return ret;
3144}
3145EXPORT_SYMBOL(vm_brk_flags);
3146
3147int vm_brk(unsigned long addr, unsigned long len)
3148{
3149        return vm_brk_flags(addr, len, 0);
3150}
3151EXPORT_SYMBOL(vm_brk);
3152
3153/* Release all mmaps. */
3154void exit_mmap(struct mm_struct *mm)
3155{
3156        struct mmu_gather tlb;
3157        struct vm_area_struct *vma;
3158        unsigned long nr_accounted = 0;
3159
3160        /* mm's last user has gone, and its about to be pulled down */
3161        mmu_notifier_release(mm);
3162
3163        if (unlikely(mm_is_oom_victim(mm))) {
3164                /*
3165                 * Manually reap the mm to free as much memory as possible.
3166                 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3167                 * this mm from further consideration.  Taking mm->mmap_lock for
3168                 * write after setting MMF_OOM_SKIP will guarantee that the oom
3169                 * reaper will not run on this mm again after mmap_lock is
3170                 * dropped.
3171                 *
3172                 * Nothing can be holding mm->mmap_lock here and the above call
3173                 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3174                 * __oom_reap_task_mm() will not block.
3175                 *
3176                 * This needs to be done before calling munlock_vma_pages_all(),
3177                 * which clears VM_LOCKED, otherwise the oom reaper cannot
3178                 * reliably test it.
3179                 */
3180                (void)__oom_reap_task_mm(mm);
3181
3182                set_bit(MMF_OOM_SKIP, &mm->flags);
3183                mmap_write_lock(mm);
3184                mmap_write_unlock(mm);
3185        }
3186
3187        if (mm->locked_vm)
3188                unlock_range(mm->mmap, ULONG_MAX);
3189
3190        arch_exit_mmap(mm);
3191
3192        vma = mm->mmap;
3193        if (!vma)       /* Can happen if dup_mmap() received an OOM */
3194                return;
3195
3196        lru_add_drain();
3197        flush_cache_mm(mm);
3198        tlb_gather_mmu_fullmm(&tlb, mm);
3199        /* update_hiwater_rss(mm) here? but nobody should be looking */
3200        /* Use -1 here to ensure all VMAs in the mm are unmapped */
3201        unmap_vmas(&tlb, vma, 0, -1);
3202        free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3203        tlb_finish_mmu(&tlb);
3204
3205        /*
3206         * Walk the list again, actually closing and freeing it,
3207         * with preemption enabled, without holding any MM locks.
3208         */
3209        while (vma) {
3210                if (vma->vm_flags & VM_ACCOUNT)
3211                        nr_accounted += vma_pages(vma);
3212                vma = remove_vma(vma);
3213                cond_resched();
3214        }
3215        vm_unacct_memory(nr_accounted);
3216}
3217
3218/* Insert vm structure into process list sorted by address
3219 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3220 * then i_mmap_rwsem is taken here.
3221 */
3222int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3223{
3224        struct vm_area_struct *prev;
3225        struct rb_node **rb_link, *rb_parent;
3226
3227        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3228                           &prev, &rb_link, &rb_parent))
3229                return -ENOMEM;
3230        if ((vma->vm_flags & VM_ACCOUNT) &&
3231             security_vm_enough_memory_mm(mm, vma_pages(vma)))
3232                return -ENOMEM;
3233
3234        /*
3235         * The vm_pgoff of a purely anonymous vma should be irrelevant
3236         * until its first write fault, when page's anon_vma and index
3237         * are set.  But now set the vm_pgoff it will almost certainly
3238         * end up with (unless mremap moves it elsewhere before that
3239         * first wfault), so /proc/pid/maps tells a consistent story.
3240         *
3241         * By setting it to reflect the virtual start address of the
3242         * vma, merges and splits can happen in a seamless way, just
3243         * using the existing file pgoff checks and manipulations.
3244         * Similarly in do_mmap and in do_brk_flags.
3245         */
3246        if (vma_is_anonymous(vma)) {
3247                BUG_ON(vma->anon_vma);
3248                vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3249        }
3250
3251        vma_link(mm, vma, prev, rb_link, rb_parent);
3252        return 0;
3253}
3254
3255/*
3256 * Copy the vma structure to a new location in the same mm,
3257 * prior to moving page table entries, to effect an mremap move.
3258 */
3259struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3260        unsigned long addr, unsigned long len, pgoff_t pgoff,
3261        bool *need_rmap_locks)
3262{
3263        struct vm_area_struct *vma = *vmap;
3264        unsigned long vma_start = vma->vm_start;
3265        struct mm_struct *mm = vma->vm_mm;
3266        struct vm_area_struct *new_vma, *prev;
3267        struct rb_node **rb_link, *rb_parent;
3268        bool faulted_in_anon_vma = true;
3269
3270        /*
3271         * If anonymous vma has not yet been faulted, update new pgoff
3272         * to match new location, to increase its chance of merging.
3273         */
3274        if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3275                pgoff = addr >> PAGE_SHIFT;
3276                faulted_in_anon_vma = false;
3277        }
3278
3279        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3280                return NULL;    /* should never get here */
3281        new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3282                            vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3283                            vma->vm_userfaultfd_ctx);
3284        if (new_vma) {
3285                /*
3286                 * Source vma may have been merged into new_vma
3287                 */
3288                if (unlikely(vma_start >= new_vma->vm_start &&
3289                             vma_start < new_vma->vm_end)) {
3290                        /*
3291                         * The only way we can get a vma_merge with
3292                         * self during an mremap is if the vma hasn't
3293                         * been faulted in yet and we were allowed to
3294                         * reset the dst vma->vm_pgoff to the
3295                         * destination address of the mremap to allow
3296                         * the merge to happen. mremap must change the
3297                         * vm_pgoff linearity between src and dst vmas
3298                         * (in turn preventing a vma_merge) to be
3299                         * safe. It is only safe to keep the vm_pgoff
3300                         * linear if there are no pages mapped yet.
3301                         */
3302                        VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3303                        *vmap = vma = new_vma;
3304                }
3305                *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3306        } else {
3307                new_vma = vm_area_dup(vma);
3308                if (!new_vma)
3309                        goto out;
3310                new_vma->vm_start = addr;
3311                new_vma->vm_end = addr + len;
3312                new_vma->vm_pgoff = pgoff;
3313                if (vma_dup_policy(vma, new_vma))
3314                        goto out_free_vma;
3315                if (anon_vma_clone(new_vma, vma))
3316                        goto out_free_mempol;
3317                if (new_vma->vm_file)
3318                        get_file(new_vma->vm_file);
3319                if (new_vma->vm_ops && new_vma->vm_ops->open)
3320                        new_vma->vm_ops->open(new_vma);
3321                vma_link(mm, new_vma, prev, rb_link, rb_parent);
3322                *need_rmap_locks = false;
3323        }
3324        return new_vma;
3325
3326out_free_mempol:
3327        mpol_put(vma_policy(new_vma));
3328out_free_vma:
3329        vm_area_free(new_vma);
3330out:
3331        return NULL;
3332}
3333
3334/*
3335 * Return true if the calling process may expand its vm space by the passed
3336 * number of pages
3337 */
3338bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3339{
3340        if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3341                return false;
3342
3343        if (is_data_mapping(flags) &&
3344            mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3345                /* Workaround for Valgrind */
3346                if (rlimit(RLIMIT_DATA) == 0 &&
3347                    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3348                        return true;
3349
3350                pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3351                             current->comm, current->pid,
3352                             (mm->data_vm + npages) << PAGE_SHIFT,
3353                             rlimit(RLIMIT_DATA),
3354                             ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3355
3356                if (!ignore_rlimit_data)
3357                        return false;
3358        }
3359
3360        return true;
3361}
3362
3363void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3364{
3365        mm->total_vm += npages;
3366
3367        if (is_exec_mapping(flags))
3368                mm->exec_vm += npages;
3369        else if (is_stack_mapping(flags))
3370                mm->stack_vm += npages;
3371        else if (is_data_mapping(flags))
3372                mm->data_vm += npages;
3373}
3374
3375static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3376
3377/*
3378 * Having a close hook prevents vma merging regardless of flags.
3379 */
3380static void special_mapping_close(struct vm_area_struct *vma)
3381{
3382}
3383
3384static const char *special_mapping_name(struct vm_area_struct *vma)
3385{
3386        return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3387}
3388
3389static int special_mapping_mremap(struct vm_area_struct *new_vma)
3390{
3391        struct vm_special_mapping *sm = new_vma->vm_private_data;
3392
3393        if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3394                return -EFAULT;
3395
3396        if (sm->mremap)
3397                return sm->mremap(sm, new_vma);
3398
3399        return 0;
3400}
3401
3402static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3403{
3404        /*
3405         * Forbid splitting special mappings - kernel has expectations over
3406         * the number of pages in mapping. Together with VM_DONTEXPAND
3407         * the size of vma should stay the same over the special mapping's
3408         * lifetime.
3409         */
3410        return -EINVAL;
3411}
3412
3413static const struct vm_operations_struct special_mapping_vmops = {
3414        .close = special_mapping_close,
3415        .fault = special_mapping_fault,
3416        .mremap = special_mapping_mremap,
3417        .name = special_mapping_name,
3418        /* vDSO code relies that VVAR can't be accessed remotely */
3419        .access = NULL,
3420        .may_split = special_mapping_split,
3421};
3422
3423static const struct vm_operations_struct legacy_special_mapping_vmops = {
3424        .close = special_mapping_close,
3425        .fault = special_mapping_fault,
3426};
3427
3428static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3429{
3430        struct vm_area_struct *vma = vmf->vma;
3431        pgoff_t pgoff;
3432        struct page **pages;
3433
3434        if (vma->vm_ops == &legacy_special_mapping_vmops) {
3435                pages = vma->vm_private_data;
3436        } else {
3437                struct vm_special_mapping *sm = vma->vm_private_data;
3438
3439                if (sm->fault)
3440                        return sm->fault(sm, vmf->vma, vmf);
3441
3442                pages = sm->pages;
3443        }
3444
3445        for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3446                pgoff--;
3447
3448        if (*pages) {
3449                struct page *page = *pages;
3450                get_page(page);
3451                vmf->page = page;
3452                return 0;
3453        }
3454
3455        return VM_FAULT_SIGBUS;
3456}
3457
3458static struct vm_area_struct *__install_special_mapping(
3459        struct mm_struct *mm,
3460        unsigned long addr, unsigned long len,
3461        unsigned long vm_flags, void *priv,
3462        const struct vm_operations_struct *ops)
3463{
3464        int ret;
3465        struct vm_area_struct *vma;
3466
3467        vma = vm_area_alloc(mm);
3468        if (unlikely(vma == NULL))
3469                return ERR_PTR(-ENOMEM);
3470
3471        vma->vm_start = addr;
3472        vma->vm_end = addr + len;
3473
3474        vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3475        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3476
3477        vma->vm_ops = ops;
3478        vma->vm_private_data = priv;
3479
3480        ret = insert_vm_struct(mm, vma);
3481        if (ret)
3482                goto out;
3483
3484        vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3485
3486        perf_event_mmap(vma);
3487
3488        return vma;
3489
3490out:
3491        vm_area_free(vma);
3492        return ERR_PTR(ret);
3493}
3494
3495bool vma_is_special_mapping(const struct vm_area_struct *vma,
3496        const struct vm_special_mapping *sm)
3497{
3498        return vma->vm_private_data == sm &&
3499                (vma->vm_ops == &special_mapping_vmops ||
3500                 vma->vm_ops == &legacy_special_mapping_vmops);
3501}
3502
3503/*
3504 * Called with mm->mmap_lock held for writing.
3505 * Insert a new vma covering the given region, with the given flags.
3506 * Its pages are supplied by the given array of struct page *.
3507 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3508 * The region past the last page supplied will always produce SIGBUS.
3509 * The array pointer and the pages it points to are assumed to stay alive
3510 * for as long as this mapping might exist.
3511 */
3512struct vm_area_struct *_install_special_mapping(
3513        struct mm_struct *mm,
3514        unsigned long addr, unsigned long len,
3515        unsigned long vm_flags, const struct vm_special_mapping *spec)
3516{
3517        return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3518                                        &special_mapping_vmops);
3519}
3520
3521int install_special_mapping(struct mm_struct *mm,
3522                            unsigned long addr, unsigned long len,
3523                            unsigned long vm_flags, struct page **pages)
3524{
3525        struct vm_area_struct *vma = __install_special_mapping(
3526                mm, addr, len, vm_flags, (void *)pages,
3527                &legacy_special_mapping_vmops);
3528
3529        return PTR_ERR_OR_ZERO(vma);
3530}
3531
3532static DEFINE_MUTEX(mm_all_locks_mutex);
3533
3534static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3535{
3536        if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3537                /*
3538                 * The LSB of head.next can't change from under us
3539                 * because we hold the mm_all_locks_mutex.
3540                 */
3541                down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3542                /*
3543                 * We can safely modify head.next after taking the
3544                 * anon_vma->root->rwsem. If some other vma in this mm shares
3545                 * the same anon_vma we won't take it again.
3546                 *
3547                 * No need of atomic instructions here, head.next
3548                 * can't change from under us thanks to the
3549                 * anon_vma->root->rwsem.
3550                 */
3551                if (__test_and_set_bit(0, (unsigned long *)
3552                                       &anon_vma->root->rb_root.rb_root.rb_node))
3553                        BUG();
3554        }
3555}
3556
3557static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3558{
3559        if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3560                /*
3561                 * AS_MM_ALL_LOCKS can't change from under us because
3562                 * we hold the mm_all_locks_mutex.
3563                 *
3564                 * Operations on ->flags have to be atomic because
3565                 * even if AS_MM_ALL_LOCKS is stable thanks to the
3566                 * mm_all_locks_mutex, there may be other cpus
3567                 * changing other bitflags in parallel to us.
3568                 */
3569                if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3570                        BUG();
3571                down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3572        }
3573}
3574
3575/*
3576 * This operation locks against the VM for all pte/vma/mm related
3577 * operations that could ever happen on a certain mm. This includes
3578 * vmtruncate, try_to_unmap, and all page faults.
3579 *
3580 * The caller must take the mmap_lock in write mode before calling
3581 * mm_take_all_locks(). The caller isn't allowed to release the
3582 * mmap_lock until mm_drop_all_locks() returns.
3583 *
3584 * mmap_lock in write mode is required in order to block all operations
3585 * that could modify pagetables and free pages without need of
3586 * altering the vma layout. It's also needed in write mode to avoid new
3587 * anon_vmas to be associated with existing vmas.
3588 *
3589 * A single task can't take more than one mm_take_all_locks() in a row
3590 * or it would deadlock.
3591 *
3592 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3593 * mapping->flags avoid to take the same lock twice, if more than one
3594 * vma in this mm is backed by the same anon_vma or address_space.
3595 *
3596 * We take locks in following order, accordingly to comment at beginning
3597 * of mm/rmap.c:
3598 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3599 *     hugetlb mapping);
3600 *   - all i_mmap_rwsem locks;
3601 *   - all anon_vma->rwseml
3602 *
3603 * We can take all locks within these types randomly because the VM code
3604 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3605 * mm_all_locks_mutex.
3606 *
3607 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3608 * that may have to take thousand of locks.
3609 *
3610 * mm_take_all_locks() can fail if it's interrupted by signals.
3611 */
3612int mm_take_all_locks(struct mm_struct *mm)
3613{
3614        struct vm_area_struct *vma;
3615        struct anon_vma_chain *avc;
3616
3617        BUG_ON(mmap_read_trylock(mm));
3618
3619        mutex_lock(&mm_all_locks_mutex);
3620
3621        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3622                if (signal_pending(current))
3623                        goto out_unlock;
3624                if (vma->vm_file && vma->vm_file->f_mapping &&
3625                                is_vm_hugetlb_page(vma))
3626                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3627        }
3628
3629        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3630                if (signal_pending(current))
3631                        goto out_unlock;
3632                if (vma->vm_file && vma->vm_file->f_mapping &&
3633                                !is_vm_hugetlb_page(vma))
3634                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3635        }
3636
3637        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3638                if (signal_pending(current))
3639                        goto out_unlock;
3640                if (vma->anon_vma)
3641                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3642                                vm_lock_anon_vma(mm, avc->anon_vma);
3643        }
3644
3645        return 0;
3646
3647out_unlock:
3648        mm_drop_all_locks(mm);
3649        return -EINTR;
3650}
3651
3652static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3653{
3654        if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3655                /*
3656                 * The LSB of head.next can't change to 0 from under
3657                 * us because we hold the mm_all_locks_mutex.
3658                 *
3659                 * We must however clear the bitflag before unlocking
3660                 * the vma so the users using the anon_vma->rb_root will
3661                 * never see our bitflag.
3662                 *
3663                 * No need of atomic instructions here, head.next
3664                 * can't change from under us until we release the
3665                 * anon_vma->root->rwsem.
3666                 */
3667                if (!__test_and_clear_bit(0, (unsigned long *)
3668                                          &anon_vma->root->rb_root.rb_root.rb_node))
3669                        BUG();
3670                anon_vma_unlock_write(anon_vma);
3671        }
3672}
3673
3674static void vm_unlock_mapping(struct address_space *mapping)
3675{
3676        if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3677                /*
3678                 * AS_MM_ALL_LOCKS can't change to 0 from under us
3679                 * because we hold the mm_all_locks_mutex.
3680                 */
3681                i_mmap_unlock_write(mapping);
3682                if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3683                                        &mapping->flags))
3684                        BUG();
3685        }
3686}
3687
3688/*
3689 * The mmap_lock cannot be released by the caller until
3690 * mm_drop_all_locks() returns.
3691 */
3692void mm_drop_all_locks(struct mm_struct *mm)
3693{
3694        struct vm_area_struct *vma;
3695        struct anon_vma_chain *avc;
3696
3697        BUG_ON(mmap_read_trylock(mm));
3698        BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3699
3700        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3701                if (vma->anon_vma)
3702                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3703                                vm_unlock_anon_vma(avc->anon_vma);
3704                if (vma->vm_file && vma->vm_file->f_mapping)
3705                        vm_unlock_mapping(vma->vm_file->f_mapping);
3706        }
3707
3708        mutex_unlock(&mm_all_locks_mutex);
3709}
3710
3711/*
3712 * initialise the percpu counter for VM
3713 */
3714void __init mmap_init(void)
3715{
3716        int ret;
3717
3718        ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3719        VM_BUG_ON(ret);
3720}
3721
3722/*
3723 * Initialise sysctl_user_reserve_kbytes.
3724 *
3725 * This is intended to prevent a user from starting a single memory hogging
3726 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3727 * mode.
3728 *
3729 * The default value is min(3% of free memory, 128MB)
3730 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3731 */
3732static int init_user_reserve(void)
3733{
3734        unsigned long free_kbytes;
3735
3736        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3737
3738        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3739        return 0;
3740}
3741subsys_initcall(init_user_reserve);
3742
3743/*
3744 * Initialise sysctl_admin_reserve_kbytes.
3745 *
3746 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3747 * to log in and kill a memory hogging process.
3748 *
3749 * Systems with more than 256MB will reserve 8MB, enough to recover
3750 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3751 * only reserve 3% of free pages by default.
3752 */
3753static int init_admin_reserve(void)
3754{
3755        unsigned long free_kbytes;
3756
3757        free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3758
3759        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3760        return 0;
3761}
3762subsys_initcall(init_admin_reserve);
3763
3764/*
3765 * Reinititalise user and admin reserves if memory is added or removed.
3766 *
3767 * The default user reserve max is 128MB, and the default max for the
3768 * admin reserve is 8MB. These are usually, but not always, enough to
3769 * enable recovery from a memory hogging process using login/sshd, a shell,
3770 * and tools like top. It may make sense to increase or even disable the
3771 * reserve depending on the existence of swap or variations in the recovery
3772 * tools. So, the admin may have changed them.
3773 *
3774 * If memory is added and the reserves have been eliminated or increased above
3775 * the default max, then we'll trust the admin.
3776 *
3777 * If memory is removed and there isn't enough free memory, then we
3778 * need to reset the reserves.
3779 *
3780 * Otherwise keep the reserve set by the admin.
3781 */
3782static int reserve_mem_notifier(struct notifier_block *nb,
3783                             unsigned long action, void *data)
3784{
3785        unsigned long tmp, free_kbytes;
3786
3787        switch (action) {
3788        case MEM_ONLINE:
3789                /* Default max is 128MB. Leave alone if modified by operator. */
3790                tmp = sysctl_user_reserve_kbytes;
3791                if (0 < tmp && tmp < (1UL << 17))
3792                        init_user_reserve();
3793
3794                /* Default max is 8MB.  Leave alone if modified by operator. */
3795                tmp = sysctl_admin_reserve_kbytes;
3796                if (0 < tmp && tmp < (1UL << 13))
3797                        init_admin_reserve();
3798
3799                break;
3800        case MEM_OFFLINE:
3801                free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3802
3803                if (sysctl_user_reserve_kbytes > free_kbytes) {
3804                        init_user_reserve();
3805                        pr_info("vm.user_reserve_kbytes reset to %lu\n",
3806                                sysctl_user_reserve_kbytes);
3807                }
3808
3809                if (sysctl_admin_reserve_kbytes > free_kbytes) {
3810                        init_admin_reserve();
3811                        pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3812                                sysctl_admin_reserve_kbytes);
3813                }
3814                break;
3815        default:
3816                break;
3817        }
3818        return NOTIFY_OK;
3819}
3820
3821static struct notifier_block reserve_mem_nb = {
3822        .notifier_call = reserve_mem_notifier,
3823};
3824
3825static int __meminit init_reserve_notifier(void)
3826{
3827        if (register_hotmemory_notifier(&reserve_mem_nb))
3828                pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3829
3830        return 0;
3831}
3832subsys_initcall(init_reserve_notifier);
3833