linux/mm/mmu_notifier.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/mmu_notifier.c
   4 *
   5 *  Copyright (C) 2008  Qumranet, Inc.
   6 *  Copyright (C) 2008  SGI
   7 *             Christoph Lameter <cl@linux.com>
   8 */
   9
  10#include <linux/rculist.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/export.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/interval_tree.h>
  16#include <linux/srcu.h>
  17#include <linux/rcupdate.h>
  18#include <linux/sched.h>
  19#include <linux/sched/mm.h>
  20#include <linux/slab.h>
  21
  22/* global SRCU for all MMs */
  23DEFINE_STATIC_SRCU(srcu);
  24
  25#ifdef CONFIG_LOCKDEP
  26struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
  27        .name = "mmu_notifier_invalidate_range_start"
  28};
  29#endif
  30
  31/*
  32 * The mmu_notifier_subscriptions structure is allocated and installed in
  33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
  34 * critical section and it's released only when mm_count reaches zero
  35 * in mmdrop().
  36 */
  37struct mmu_notifier_subscriptions {
  38        /* all mmu notifiers registered in this mm are queued in this list */
  39        struct hlist_head list;
  40        bool has_itree;
  41        /* to serialize the list modifications and hlist_unhashed */
  42        spinlock_t lock;
  43        unsigned long invalidate_seq;
  44        unsigned long active_invalidate_ranges;
  45        struct rb_root_cached itree;
  46        wait_queue_head_t wq;
  47        struct hlist_head deferred_list;
  48};
  49
  50/*
  51 * This is a collision-retry read-side/write-side 'lock', a lot like a
  52 * seqcount, however this allows multiple write-sides to hold it at
  53 * once. Conceptually the write side is protecting the values of the PTEs in
  54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
  55 * writer exists.
  56 *
  57 * Note that the core mm creates nested invalidate_range_start()/end() regions
  58 * within the same thread, and runs invalidate_range_start()/end() in parallel
  59 * on multiple CPUs. This is designed to not reduce concurrency or block
  60 * progress on the mm side.
  61 *
  62 * As a secondary function, holding the full write side also serves to prevent
  63 * writers for the itree, this is an optimization to avoid extra locking
  64 * during invalidate_range_start/end notifiers.
  65 *
  66 * The write side has two states, fully excluded:
  67 *  - mm->active_invalidate_ranges != 0
  68 *  - subscriptions->invalidate_seq & 1 == True (odd)
  69 *  - some range on the mm_struct is being invalidated
  70 *  - the itree is not allowed to change
  71 *
  72 * And partially excluded:
  73 *  - mm->active_invalidate_ranges != 0
  74 *  - subscriptions->invalidate_seq & 1 == False (even)
  75 *  - some range on the mm_struct is being invalidated
  76 *  - the itree is allowed to change
  77 *
  78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
  79 *    seq |= 1  # Begin writing
  80 *    seq++     # Release the writing state
  81 *    seq & 1   # True if a writer exists
  82 *
  83 * The later state avoids some expensive work on inv_end in the common case of
  84 * no mmu_interval_notifier monitoring the VA.
  85 */
  86static bool
  87mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
  88{
  89        lockdep_assert_held(&subscriptions->lock);
  90        return subscriptions->invalidate_seq & 1;
  91}
  92
  93static struct mmu_interval_notifier *
  94mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
  95                         const struct mmu_notifier_range *range,
  96                         unsigned long *seq)
  97{
  98        struct interval_tree_node *node;
  99        struct mmu_interval_notifier *res = NULL;
 100
 101        spin_lock(&subscriptions->lock);
 102        subscriptions->active_invalidate_ranges++;
 103        node = interval_tree_iter_first(&subscriptions->itree, range->start,
 104                                        range->end - 1);
 105        if (node) {
 106                subscriptions->invalidate_seq |= 1;
 107                res = container_of(node, struct mmu_interval_notifier,
 108                                   interval_tree);
 109        }
 110
 111        *seq = subscriptions->invalidate_seq;
 112        spin_unlock(&subscriptions->lock);
 113        return res;
 114}
 115
 116static struct mmu_interval_notifier *
 117mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
 118                  const struct mmu_notifier_range *range)
 119{
 120        struct interval_tree_node *node;
 121
 122        node = interval_tree_iter_next(&interval_sub->interval_tree,
 123                                       range->start, range->end - 1);
 124        if (!node)
 125                return NULL;
 126        return container_of(node, struct mmu_interval_notifier, interval_tree);
 127}
 128
 129static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
 130{
 131        struct mmu_interval_notifier *interval_sub;
 132        struct hlist_node *next;
 133
 134        spin_lock(&subscriptions->lock);
 135        if (--subscriptions->active_invalidate_ranges ||
 136            !mn_itree_is_invalidating(subscriptions)) {
 137                spin_unlock(&subscriptions->lock);
 138                return;
 139        }
 140
 141        /* Make invalidate_seq even */
 142        subscriptions->invalidate_seq++;
 143
 144        /*
 145         * The inv_end incorporates a deferred mechanism like rtnl_unlock().
 146         * Adds and removes are queued until the final inv_end happens then
 147         * they are progressed. This arrangement for tree updates is used to
 148         * avoid using a blocking lock during invalidate_range_start.
 149         */
 150        hlist_for_each_entry_safe(interval_sub, next,
 151                                  &subscriptions->deferred_list,
 152                                  deferred_item) {
 153                if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
 154                        interval_tree_insert(&interval_sub->interval_tree,
 155                                             &subscriptions->itree);
 156                else
 157                        interval_tree_remove(&interval_sub->interval_tree,
 158                                             &subscriptions->itree);
 159                hlist_del(&interval_sub->deferred_item);
 160        }
 161        spin_unlock(&subscriptions->lock);
 162
 163        wake_up_all(&subscriptions->wq);
 164}
 165
 166/**
 167 * mmu_interval_read_begin - Begin a read side critical section against a VA
 168 *                           range
 169 * @interval_sub: The interval subscription
 170 *
 171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
 172 * collision-retry scheme similar to seqcount for the VA range under
 173 * subscription. If the mm invokes invalidation during the critical section
 174 * then mmu_interval_read_retry() will return true.
 175 *
 176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
 177 * require a blocking context.  The critical region formed by this can sleep,
 178 * and the required 'user_lock' can also be a sleeping lock.
 179 *
 180 * The caller is required to provide a 'user_lock' to serialize both teardown
 181 * and setup.
 182 *
 183 * The return value should be passed to mmu_interval_read_retry().
 184 */
 185unsigned long
 186mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
 187{
 188        struct mmu_notifier_subscriptions *subscriptions =
 189                interval_sub->mm->notifier_subscriptions;
 190        unsigned long seq;
 191        bool is_invalidating;
 192
 193        /*
 194         * If the subscription has a different seq value under the user_lock
 195         * than we started with then it has collided.
 196         *
 197         * If the subscription currently has the same seq value as the
 198         * subscriptions seq, then it is currently between
 199         * invalidate_start/end and is colliding.
 200         *
 201         * The locking looks broadly like this:
 202         *   mn_tree_invalidate_start():          mmu_interval_read_begin():
 203         *                                         spin_lock
 204         *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
 205         *                                          seq == subs->invalidate_seq
 206         *                                         spin_unlock
 207         *    spin_lock
 208         *     seq = ++subscriptions->invalidate_seq
 209         *    spin_unlock
 210         *     op->invalidate_range():
 211         *       user_lock
 212         *        mmu_interval_set_seq()
 213         *         interval_sub->invalidate_seq = seq
 214         *       user_unlock
 215         *
 216         *                          [Required: mmu_interval_read_retry() == true]
 217         *
 218         *   mn_itree_inv_end():
 219         *    spin_lock
 220         *     seq = ++subscriptions->invalidate_seq
 221         *    spin_unlock
 222         *
 223         *                                        user_lock
 224         *                                         mmu_interval_read_retry():
 225         *                                          interval_sub->invalidate_seq != seq
 226         *                                        user_unlock
 227         *
 228         * Barriers are not needed here as any races here are closed by an
 229         * eventual mmu_interval_read_retry(), which provides a barrier via the
 230         * user_lock.
 231         */
 232        spin_lock(&subscriptions->lock);
 233        /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
 234        seq = READ_ONCE(interval_sub->invalidate_seq);
 235        is_invalidating = seq == subscriptions->invalidate_seq;
 236        spin_unlock(&subscriptions->lock);
 237
 238        /*
 239         * interval_sub->invalidate_seq must always be set to an odd value via
 240         * mmu_interval_set_seq() using the provided cur_seq from
 241         * mn_itree_inv_start_range(). This ensures that if seq does wrap we
 242         * will always clear the below sleep in some reasonable time as
 243         * subscriptions->invalidate_seq is even in the idle state.
 244         */
 245        lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 246        lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 247        if (is_invalidating)
 248                wait_event(subscriptions->wq,
 249                           READ_ONCE(subscriptions->invalidate_seq) != seq);
 250
 251        /*
 252         * Notice that mmu_interval_read_retry() can already be true at this
 253         * point, avoiding loops here allows the caller to provide a global
 254         * time bound.
 255         */
 256
 257        return seq;
 258}
 259EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
 260
 261static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
 262                             struct mm_struct *mm)
 263{
 264        struct mmu_notifier_range range = {
 265                .flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
 266                .event = MMU_NOTIFY_RELEASE,
 267                .mm = mm,
 268                .start = 0,
 269                .end = ULONG_MAX,
 270        };
 271        struct mmu_interval_notifier *interval_sub;
 272        unsigned long cur_seq;
 273        bool ret;
 274
 275        for (interval_sub =
 276                     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
 277             interval_sub;
 278             interval_sub = mn_itree_inv_next(interval_sub, &range)) {
 279                ret = interval_sub->ops->invalidate(interval_sub, &range,
 280                                                    cur_seq);
 281                WARN_ON(!ret);
 282        }
 283
 284        mn_itree_inv_end(subscriptions);
 285}
 286
 287/*
 288 * This function can't run concurrently against mmu_notifier_register
 289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
 290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
 291 * in parallel despite there being no task using this mm any more,
 292 * through the vmas outside of the exit_mmap context, such as with
 293 * vmtruncate. This serializes against mmu_notifier_unregister with
 294 * the notifier_subscriptions->lock in addition to SRCU and it serializes
 295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
 296 * can't go away from under us as exit_mmap holds an mm_count pin
 297 * itself.
 298 */
 299static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
 300                             struct mm_struct *mm)
 301{
 302        struct mmu_notifier *subscription;
 303        int id;
 304
 305        /*
 306         * SRCU here will block mmu_notifier_unregister until
 307         * ->release returns.
 308         */
 309        id = srcu_read_lock(&srcu);
 310        hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 311                                 srcu_read_lock_held(&srcu))
 312                /*
 313                 * If ->release runs before mmu_notifier_unregister it must be
 314                 * handled, as it's the only way for the driver to flush all
 315                 * existing sptes and stop the driver from establishing any more
 316                 * sptes before all the pages in the mm are freed.
 317                 */
 318                if (subscription->ops->release)
 319                        subscription->ops->release(subscription, mm);
 320
 321        spin_lock(&subscriptions->lock);
 322        while (unlikely(!hlist_empty(&subscriptions->list))) {
 323                subscription = hlist_entry(subscriptions->list.first,
 324                                           struct mmu_notifier, hlist);
 325                /*
 326                 * We arrived before mmu_notifier_unregister so
 327                 * mmu_notifier_unregister will do nothing other than to wait
 328                 * for ->release to finish and for mmu_notifier_unregister to
 329                 * return.
 330                 */
 331                hlist_del_init_rcu(&subscription->hlist);
 332        }
 333        spin_unlock(&subscriptions->lock);
 334        srcu_read_unlock(&srcu, id);
 335
 336        /*
 337         * synchronize_srcu here prevents mmu_notifier_release from returning to
 338         * exit_mmap (which would proceed with freeing all pages in the mm)
 339         * until the ->release method returns, if it was invoked by
 340         * mmu_notifier_unregister.
 341         *
 342         * The notifier_subscriptions can't go away from under us because
 343         * one mm_count is held by exit_mmap.
 344         */
 345        synchronize_srcu(&srcu);
 346}
 347
 348void __mmu_notifier_release(struct mm_struct *mm)
 349{
 350        struct mmu_notifier_subscriptions *subscriptions =
 351                mm->notifier_subscriptions;
 352
 353        if (subscriptions->has_itree)
 354                mn_itree_release(subscriptions, mm);
 355
 356        if (!hlist_empty(&subscriptions->list))
 357                mn_hlist_release(subscriptions, mm);
 358}
 359
 360/*
 361 * If no young bitflag is supported by the hardware, ->clear_flush_young can
 362 * unmap the address and return 1 or 0 depending if the mapping previously
 363 * existed or not.
 364 */
 365int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 366                                        unsigned long start,
 367                                        unsigned long end)
 368{
 369        struct mmu_notifier *subscription;
 370        int young = 0, id;
 371
 372        id = srcu_read_lock(&srcu);
 373        hlist_for_each_entry_rcu(subscription,
 374                                 &mm->notifier_subscriptions->list, hlist,
 375                                 srcu_read_lock_held(&srcu)) {
 376                if (subscription->ops->clear_flush_young)
 377                        young |= subscription->ops->clear_flush_young(
 378                                subscription, mm, start, end);
 379        }
 380        srcu_read_unlock(&srcu, id);
 381
 382        return young;
 383}
 384
 385int __mmu_notifier_clear_young(struct mm_struct *mm,
 386                               unsigned long start,
 387                               unsigned long end)
 388{
 389        struct mmu_notifier *subscription;
 390        int young = 0, id;
 391
 392        id = srcu_read_lock(&srcu);
 393        hlist_for_each_entry_rcu(subscription,
 394                                 &mm->notifier_subscriptions->list, hlist,
 395                                 srcu_read_lock_held(&srcu)) {
 396                if (subscription->ops->clear_young)
 397                        young |= subscription->ops->clear_young(subscription,
 398                                                                mm, start, end);
 399        }
 400        srcu_read_unlock(&srcu, id);
 401
 402        return young;
 403}
 404
 405int __mmu_notifier_test_young(struct mm_struct *mm,
 406                              unsigned long address)
 407{
 408        struct mmu_notifier *subscription;
 409        int young = 0, id;
 410
 411        id = srcu_read_lock(&srcu);
 412        hlist_for_each_entry_rcu(subscription,
 413                                 &mm->notifier_subscriptions->list, hlist,
 414                                 srcu_read_lock_held(&srcu)) {
 415                if (subscription->ops->test_young) {
 416                        young = subscription->ops->test_young(subscription, mm,
 417                                                              address);
 418                        if (young)
 419                                break;
 420                }
 421        }
 422        srcu_read_unlock(&srcu, id);
 423
 424        return young;
 425}
 426
 427void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
 428                               pte_t pte)
 429{
 430        struct mmu_notifier *subscription;
 431        int id;
 432
 433        id = srcu_read_lock(&srcu);
 434        hlist_for_each_entry_rcu(subscription,
 435                                 &mm->notifier_subscriptions->list, hlist,
 436                                 srcu_read_lock_held(&srcu)) {
 437                if (subscription->ops->change_pte)
 438                        subscription->ops->change_pte(subscription, mm, address,
 439                                                      pte);
 440        }
 441        srcu_read_unlock(&srcu, id);
 442}
 443
 444static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
 445                               const struct mmu_notifier_range *range)
 446{
 447        struct mmu_interval_notifier *interval_sub;
 448        unsigned long cur_seq;
 449
 450        for (interval_sub =
 451                     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
 452             interval_sub;
 453             interval_sub = mn_itree_inv_next(interval_sub, range)) {
 454                bool ret;
 455
 456                ret = interval_sub->ops->invalidate(interval_sub, range,
 457                                                    cur_seq);
 458                if (!ret) {
 459                        if (WARN_ON(mmu_notifier_range_blockable(range)))
 460                                continue;
 461                        goto out_would_block;
 462                }
 463        }
 464        return 0;
 465
 466out_would_block:
 467        /*
 468         * On -EAGAIN the non-blocking caller is not allowed to call
 469         * invalidate_range_end()
 470         */
 471        mn_itree_inv_end(subscriptions);
 472        return -EAGAIN;
 473}
 474
 475static int mn_hlist_invalidate_range_start(
 476        struct mmu_notifier_subscriptions *subscriptions,
 477        struct mmu_notifier_range *range)
 478{
 479        struct mmu_notifier *subscription;
 480        int ret = 0;
 481        int id;
 482
 483        id = srcu_read_lock(&srcu);
 484        hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 485                                 srcu_read_lock_held(&srcu)) {
 486                const struct mmu_notifier_ops *ops = subscription->ops;
 487
 488                if (ops->invalidate_range_start) {
 489                        int _ret;
 490
 491                        if (!mmu_notifier_range_blockable(range))
 492                                non_block_start();
 493                        _ret = ops->invalidate_range_start(subscription, range);
 494                        if (!mmu_notifier_range_blockable(range))
 495                                non_block_end();
 496                        if (_ret) {
 497                                pr_info("%pS callback failed with %d in %sblockable context.\n",
 498                                        ops->invalidate_range_start, _ret,
 499                                        !mmu_notifier_range_blockable(range) ?
 500                                                "non-" :
 501                                                "");
 502                                WARN_ON(mmu_notifier_range_blockable(range) ||
 503                                        _ret != -EAGAIN);
 504                                /*
 505                                 * We call all the notifiers on any EAGAIN,
 506                                 * there is no way for a notifier to know if
 507                                 * its start method failed, thus a start that
 508                                 * does EAGAIN can't also do end.
 509                                 */
 510                                WARN_ON(ops->invalidate_range_end);
 511                                ret = _ret;
 512                        }
 513                }
 514        }
 515
 516        if (ret) {
 517                /*
 518                 * Must be non-blocking to get here.  If there are multiple
 519                 * notifiers and one or more failed start, any that succeeded
 520                 * start are expecting their end to be called.  Do so now.
 521                 */
 522                hlist_for_each_entry_rcu(subscription, &subscriptions->list,
 523                                         hlist, srcu_read_lock_held(&srcu)) {
 524                        if (!subscription->ops->invalidate_range_end)
 525                                continue;
 526
 527                        subscription->ops->invalidate_range_end(subscription,
 528                                                                range);
 529                }
 530        }
 531        srcu_read_unlock(&srcu, id);
 532
 533        return ret;
 534}
 535
 536int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
 537{
 538        struct mmu_notifier_subscriptions *subscriptions =
 539                range->mm->notifier_subscriptions;
 540        int ret;
 541
 542        if (subscriptions->has_itree) {
 543                ret = mn_itree_invalidate(subscriptions, range);
 544                if (ret)
 545                        return ret;
 546        }
 547        if (!hlist_empty(&subscriptions->list))
 548                return mn_hlist_invalidate_range_start(subscriptions, range);
 549        return 0;
 550}
 551
 552static void
 553mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
 554                        struct mmu_notifier_range *range, bool only_end)
 555{
 556        struct mmu_notifier *subscription;
 557        int id;
 558
 559        id = srcu_read_lock(&srcu);
 560        hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
 561                                 srcu_read_lock_held(&srcu)) {
 562                /*
 563                 * Call invalidate_range here too to avoid the need for the
 564                 * subsystem of having to register an invalidate_range_end
 565                 * call-back when there is invalidate_range already. Usually a
 566                 * subsystem registers either invalidate_range_start()/end() or
 567                 * invalidate_range(), so this will be no additional overhead
 568                 * (besides the pointer check).
 569                 *
 570                 * We skip call to invalidate_range() if we know it is safe ie
 571                 * call site use mmu_notifier_invalidate_range_only_end() which
 572                 * is safe to do when we know that a call to invalidate_range()
 573                 * already happen under page table lock.
 574                 */
 575                if (!only_end && subscription->ops->invalidate_range)
 576                        subscription->ops->invalidate_range(subscription,
 577                                                            range->mm,
 578                                                            range->start,
 579                                                            range->end);
 580                if (subscription->ops->invalidate_range_end) {
 581                        if (!mmu_notifier_range_blockable(range))
 582                                non_block_start();
 583                        subscription->ops->invalidate_range_end(subscription,
 584                                                                range);
 585                        if (!mmu_notifier_range_blockable(range))
 586                                non_block_end();
 587                }
 588        }
 589        srcu_read_unlock(&srcu, id);
 590}
 591
 592void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
 593                                         bool only_end)
 594{
 595        struct mmu_notifier_subscriptions *subscriptions =
 596                range->mm->notifier_subscriptions;
 597
 598        lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 599        if (subscriptions->has_itree)
 600                mn_itree_inv_end(subscriptions);
 601
 602        if (!hlist_empty(&subscriptions->list))
 603                mn_hlist_invalidate_end(subscriptions, range, only_end);
 604        lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 605}
 606
 607void __mmu_notifier_invalidate_range(struct mm_struct *mm,
 608                                  unsigned long start, unsigned long end)
 609{
 610        struct mmu_notifier *subscription;
 611        int id;
 612
 613        id = srcu_read_lock(&srcu);
 614        hlist_for_each_entry_rcu(subscription,
 615                                 &mm->notifier_subscriptions->list, hlist,
 616                                 srcu_read_lock_held(&srcu)) {
 617                if (subscription->ops->invalidate_range)
 618                        subscription->ops->invalidate_range(subscription, mm,
 619                                                            start, end);
 620        }
 621        srcu_read_unlock(&srcu, id);
 622}
 623
 624/*
 625 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
 626 * write mode. A NULL mn signals the notifier is being registered for itree
 627 * mode.
 628 */
 629int __mmu_notifier_register(struct mmu_notifier *subscription,
 630                            struct mm_struct *mm)
 631{
 632        struct mmu_notifier_subscriptions *subscriptions = NULL;
 633        int ret;
 634
 635        mmap_assert_write_locked(mm);
 636        BUG_ON(atomic_read(&mm->mm_users) <= 0);
 637
 638        if (!mm->notifier_subscriptions) {
 639                /*
 640                 * kmalloc cannot be called under mm_take_all_locks(), but we
 641                 * know that mm->notifier_subscriptions can't change while we
 642                 * hold the write side of the mmap_lock.
 643                 */
 644                subscriptions = kzalloc(
 645                        sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
 646                if (!subscriptions)
 647                        return -ENOMEM;
 648
 649                INIT_HLIST_HEAD(&subscriptions->list);
 650                spin_lock_init(&subscriptions->lock);
 651                subscriptions->invalidate_seq = 2;
 652                subscriptions->itree = RB_ROOT_CACHED;
 653                init_waitqueue_head(&subscriptions->wq);
 654                INIT_HLIST_HEAD(&subscriptions->deferred_list);
 655        }
 656
 657        ret = mm_take_all_locks(mm);
 658        if (unlikely(ret))
 659                goto out_clean;
 660
 661        /*
 662         * Serialize the update against mmu_notifier_unregister. A
 663         * side note: mmu_notifier_release can't run concurrently with
 664         * us because we hold the mm_users pin (either implicitly as
 665         * current->mm or explicitly with get_task_mm() or similar).
 666         * We can't race against any other mmu notifier method either
 667         * thanks to mm_take_all_locks().
 668         *
 669         * release semantics on the initialization of the
 670         * mmu_notifier_subscriptions's contents are provided for unlocked
 671         * readers.  acquire can only be used while holding the mmgrab or
 672         * mmget, and is safe because once created the
 673         * mmu_notifier_subscriptions is not freed until the mm is destroyed.
 674         * As above, users holding the mmap_lock or one of the
 675         * mm_take_all_locks() do not need to use acquire semantics.
 676         */
 677        if (subscriptions)
 678                smp_store_release(&mm->notifier_subscriptions, subscriptions);
 679
 680        if (subscription) {
 681                /* Pairs with the mmdrop in mmu_notifier_unregister_* */
 682                mmgrab(mm);
 683                subscription->mm = mm;
 684                subscription->users = 1;
 685
 686                spin_lock(&mm->notifier_subscriptions->lock);
 687                hlist_add_head_rcu(&subscription->hlist,
 688                                   &mm->notifier_subscriptions->list);
 689                spin_unlock(&mm->notifier_subscriptions->lock);
 690        } else
 691                mm->notifier_subscriptions->has_itree = true;
 692
 693        mm_drop_all_locks(mm);
 694        BUG_ON(atomic_read(&mm->mm_users) <= 0);
 695        return 0;
 696
 697out_clean:
 698        kfree(subscriptions);
 699        return ret;
 700}
 701EXPORT_SYMBOL_GPL(__mmu_notifier_register);
 702
 703/**
 704 * mmu_notifier_register - Register a notifier on a mm
 705 * @subscription: The notifier to attach
 706 * @mm: The mm to attach the notifier to
 707 *
 708 * Must not hold mmap_lock nor any other VM related lock when calling
 709 * this registration function. Must also ensure mm_users can't go down
 710 * to zero while this runs to avoid races with mmu_notifier_release,
 711 * so mm has to be current->mm or the mm should be pinned safely such
 712 * as with get_task_mm(). If the mm is not current->mm, the mm_users
 713 * pin should be released by calling mmput after mmu_notifier_register
 714 * returns.
 715 *
 716 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
 717 * unregister the notifier.
 718 *
 719 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
 720 * valid, and can be converted to an active mm pointer via mmget_not_zero().
 721 */
 722int mmu_notifier_register(struct mmu_notifier *subscription,
 723                          struct mm_struct *mm)
 724{
 725        int ret;
 726
 727        mmap_write_lock(mm);
 728        ret = __mmu_notifier_register(subscription, mm);
 729        mmap_write_unlock(mm);
 730        return ret;
 731}
 732EXPORT_SYMBOL_GPL(mmu_notifier_register);
 733
 734static struct mmu_notifier *
 735find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
 736{
 737        struct mmu_notifier *subscription;
 738
 739        spin_lock(&mm->notifier_subscriptions->lock);
 740        hlist_for_each_entry_rcu(subscription,
 741                                 &mm->notifier_subscriptions->list, hlist,
 742                                 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
 743                if (subscription->ops != ops)
 744                        continue;
 745
 746                if (likely(subscription->users != UINT_MAX))
 747                        subscription->users++;
 748                else
 749                        subscription = ERR_PTR(-EOVERFLOW);
 750                spin_unlock(&mm->notifier_subscriptions->lock);
 751                return subscription;
 752        }
 753        spin_unlock(&mm->notifier_subscriptions->lock);
 754        return NULL;
 755}
 756
 757/**
 758 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
 759 *                           the mm & ops
 760 * @ops: The operations struct being subscribe with
 761 * @mm : The mm to attach notifiers too
 762 *
 763 * This function either allocates a new mmu_notifier via
 764 * ops->alloc_notifier(), or returns an already existing notifier on the
 765 * list. The value of the ops pointer is used to determine when two notifiers
 766 * are the same.
 767 *
 768 * Each call to mmu_notifier_get() must be paired with a call to
 769 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
 770 *
 771 * While the caller has a mmu_notifier get the mm pointer will remain valid,
 772 * and can be converted to an active mm pointer via mmget_not_zero().
 773 */
 774struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
 775                                             struct mm_struct *mm)
 776{
 777        struct mmu_notifier *subscription;
 778        int ret;
 779
 780        mmap_assert_write_locked(mm);
 781
 782        if (mm->notifier_subscriptions) {
 783                subscription = find_get_mmu_notifier(mm, ops);
 784                if (subscription)
 785                        return subscription;
 786        }
 787
 788        subscription = ops->alloc_notifier(mm);
 789        if (IS_ERR(subscription))
 790                return subscription;
 791        subscription->ops = ops;
 792        ret = __mmu_notifier_register(subscription, mm);
 793        if (ret)
 794                goto out_free;
 795        return subscription;
 796out_free:
 797        subscription->ops->free_notifier(subscription);
 798        return ERR_PTR(ret);
 799}
 800EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
 801
 802/* this is called after the last mmu_notifier_unregister() returned */
 803void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
 804{
 805        BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
 806        kfree(mm->notifier_subscriptions);
 807        mm->notifier_subscriptions = LIST_POISON1; /* debug */
 808}
 809
 810/*
 811 * This releases the mm_count pin automatically and frees the mm
 812 * structure if it was the last user of it. It serializes against
 813 * running mmu notifiers with SRCU and against mmu_notifier_unregister
 814 * with the unregister lock + SRCU. All sptes must be dropped before
 815 * calling mmu_notifier_unregister. ->release or any other notifier
 816 * method may be invoked concurrently with mmu_notifier_unregister,
 817 * and only after mmu_notifier_unregister returned we're guaranteed
 818 * that ->release or any other method can't run anymore.
 819 */
 820void mmu_notifier_unregister(struct mmu_notifier *subscription,
 821                             struct mm_struct *mm)
 822{
 823        BUG_ON(atomic_read(&mm->mm_count) <= 0);
 824
 825        if (!hlist_unhashed(&subscription->hlist)) {
 826                /*
 827                 * SRCU here will force exit_mmap to wait for ->release to
 828                 * finish before freeing the pages.
 829                 */
 830                int id;
 831
 832                id = srcu_read_lock(&srcu);
 833                /*
 834                 * exit_mmap will block in mmu_notifier_release to guarantee
 835                 * that ->release is called before freeing the pages.
 836                 */
 837                if (subscription->ops->release)
 838                        subscription->ops->release(subscription, mm);
 839                srcu_read_unlock(&srcu, id);
 840
 841                spin_lock(&mm->notifier_subscriptions->lock);
 842                /*
 843                 * Can not use list_del_rcu() since __mmu_notifier_release
 844                 * can delete it before we hold the lock.
 845                 */
 846                hlist_del_init_rcu(&subscription->hlist);
 847                spin_unlock(&mm->notifier_subscriptions->lock);
 848        }
 849
 850        /*
 851         * Wait for any running method to finish, of course including
 852         * ->release if it was run by mmu_notifier_release instead of us.
 853         */
 854        synchronize_srcu(&srcu);
 855
 856        BUG_ON(atomic_read(&mm->mm_count) <= 0);
 857
 858        mmdrop(mm);
 859}
 860EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
 861
 862static void mmu_notifier_free_rcu(struct rcu_head *rcu)
 863{
 864        struct mmu_notifier *subscription =
 865                container_of(rcu, struct mmu_notifier, rcu);
 866        struct mm_struct *mm = subscription->mm;
 867
 868        subscription->ops->free_notifier(subscription);
 869        /* Pairs with the get in __mmu_notifier_register() */
 870        mmdrop(mm);
 871}
 872
 873/**
 874 * mmu_notifier_put - Release the reference on the notifier
 875 * @subscription: The notifier to act on
 876 *
 877 * This function must be paired with each mmu_notifier_get(), it releases the
 878 * reference obtained by the get. If this is the last reference then process
 879 * to free the notifier will be run asynchronously.
 880 *
 881 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
 882 * when the mm_struct is destroyed. Instead free_notifier is always called to
 883 * release any resources held by the user.
 884 *
 885 * As ops->release is not guaranteed to be called, the user must ensure that
 886 * all sptes are dropped, and no new sptes can be established before
 887 * mmu_notifier_put() is called.
 888 *
 889 * This function can be called from the ops->release callback, however the
 890 * caller must still ensure it is called pairwise with mmu_notifier_get().
 891 *
 892 * Modules calling this function must call mmu_notifier_synchronize() in
 893 * their __exit functions to ensure the async work is completed.
 894 */
 895void mmu_notifier_put(struct mmu_notifier *subscription)
 896{
 897        struct mm_struct *mm = subscription->mm;
 898
 899        spin_lock(&mm->notifier_subscriptions->lock);
 900        if (WARN_ON(!subscription->users) || --subscription->users)
 901                goto out_unlock;
 902        hlist_del_init_rcu(&subscription->hlist);
 903        spin_unlock(&mm->notifier_subscriptions->lock);
 904
 905        call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
 906        return;
 907
 908out_unlock:
 909        spin_unlock(&mm->notifier_subscriptions->lock);
 910}
 911EXPORT_SYMBOL_GPL(mmu_notifier_put);
 912
 913static int __mmu_interval_notifier_insert(
 914        struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
 915        struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
 916        unsigned long length, const struct mmu_interval_notifier_ops *ops)
 917{
 918        interval_sub->mm = mm;
 919        interval_sub->ops = ops;
 920        RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
 921        interval_sub->interval_tree.start = start;
 922        /*
 923         * Note that the representation of the intervals in the interval tree
 924         * considers the ending point as contained in the interval.
 925         */
 926        if (length == 0 ||
 927            check_add_overflow(start, length - 1,
 928                               &interval_sub->interval_tree.last))
 929                return -EOVERFLOW;
 930
 931        /* Must call with a mmget() held */
 932        if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
 933                return -EINVAL;
 934
 935        /* pairs with mmdrop in mmu_interval_notifier_remove() */
 936        mmgrab(mm);
 937
 938        /*
 939         * If some invalidate_range_start/end region is going on in parallel
 940         * we don't know what VA ranges are affected, so we must assume this
 941         * new range is included.
 942         *
 943         * If the itree is invalidating then we are not allowed to change
 944         * it. Retrying until invalidation is done is tricky due to the
 945         * possibility for live lock, instead defer the add to
 946         * mn_itree_inv_end() so this algorithm is deterministic.
 947         *
 948         * In all cases the value for the interval_sub->invalidate_seq should be
 949         * odd, see mmu_interval_read_begin()
 950         */
 951        spin_lock(&subscriptions->lock);
 952        if (subscriptions->active_invalidate_ranges) {
 953                if (mn_itree_is_invalidating(subscriptions))
 954                        hlist_add_head(&interval_sub->deferred_item,
 955                                       &subscriptions->deferred_list);
 956                else {
 957                        subscriptions->invalidate_seq |= 1;
 958                        interval_tree_insert(&interval_sub->interval_tree,
 959                                             &subscriptions->itree);
 960                }
 961                interval_sub->invalidate_seq = subscriptions->invalidate_seq;
 962        } else {
 963                WARN_ON(mn_itree_is_invalidating(subscriptions));
 964                /*
 965                 * The starting seq for a subscription not under invalidation
 966                 * should be odd, not equal to the current invalidate_seq and
 967                 * invalidate_seq should not 'wrap' to the new seq any time
 968                 * soon.
 969                 */
 970                interval_sub->invalidate_seq =
 971                        subscriptions->invalidate_seq - 1;
 972                interval_tree_insert(&interval_sub->interval_tree,
 973                                     &subscriptions->itree);
 974        }
 975        spin_unlock(&subscriptions->lock);
 976        return 0;
 977}
 978
 979/**
 980 * mmu_interval_notifier_insert - Insert an interval notifier
 981 * @interval_sub: Interval subscription to register
 982 * @start: Starting virtual address to monitor
 983 * @length: Length of the range to monitor
 984 * @mm: mm_struct to attach to
 985 * @ops: Interval notifier operations to be called on matching events
 986 *
 987 * This function subscribes the interval notifier for notifications from the
 988 * mm.  Upon return the ops related to mmu_interval_notifier will be called
 989 * whenever an event that intersects with the given range occurs.
 990 *
 991 * Upon return the range_notifier may not be present in the interval tree yet.
 992 * The caller must use the normal interval notifier read flow via
 993 * mmu_interval_read_begin() to establish SPTEs for this range.
 994 */
 995int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
 996                                 struct mm_struct *mm, unsigned long start,
 997                                 unsigned long length,
 998                                 const struct mmu_interval_notifier_ops *ops)
 999{
1000        struct mmu_notifier_subscriptions *subscriptions;
1001        int ret;
1002
1003        might_lock(&mm->mmap_lock);
1004
1005        subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
1006        if (!subscriptions || !subscriptions->has_itree) {
1007                ret = mmu_notifier_register(NULL, mm);
1008                if (ret)
1009                        return ret;
1010                subscriptions = mm->notifier_subscriptions;
1011        }
1012        return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1013                                              start, length, ops);
1014}
1015EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
1016
1017int mmu_interval_notifier_insert_locked(
1018        struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
1019        unsigned long start, unsigned long length,
1020        const struct mmu_interval_notifier_ops *ops)
1021{
1022        struct mmu_notifier_subscriptions *subscriptions =
1023                mm->notifier_subscriptions;
1024        int ret;
1025
1026        mmap_assert_write_locked(mm);
1027
1028        if (!subscriptions || !subscriptions->has_itree) {
1029                ret = __mmu_notifier_register(NULL, mm);
1030                if (ret)
1031                        return ret;
1032                subscriptions = mm->notifier_subscriptions;
1033        }
1034        return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1035                                              start, length, ops);
1036}
1037EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1038
1039/**
1040 * mmu_interval_notifier_remove - Remove a interval notifier
1041 * @interval_sub: Interval subscription to unregister
1042 *
1043 * This function must be paired with mmu_interval_notifier_insert(). It cannot
1044 * be called from any ops callback.
1045 *
1046 * Once this returns ops callbacks are no longer running on other CPUs and
1047 * will not be called in future.
1048 */
1049void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1050{
1051        struct mm_struct *mm = interval_sub->mm;
1052        struct mmu_notifier_subscriptions *subscriptions =
1053                mm->notifier_subscriptions;
1054        unsigned long seq = 0;
1055
1056        might_sleep();
1057
1058        spin_lock(&subscriptions->lock);
1059        if (mn_itree_is_invalidating(subscriptions)) {
1060                /*
1061                 * remove is being called after insert put this on the
1062                 * deferred list, but before the deferred list was processed.
1063                 */
1064                if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1065                        hlist_del(&interval_sub->deferred_item);
1066                } else {
1067                        hlist_add_head(&interval_sub->deferred_item,
1068                                       &subscriptions->deferred_list);
1069                        seq = subscriptions->invalidate_seq;
1070                }
1071        } else {
1072                WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1073                interval_tree_remove(&interval_sub->interval_tree,
1074                                     &subscriptions->itree);
1075        }
1076        spin_unlock(&subscriptions->lock);
1077
1078        /*
1079         * The possible sleep on progress in the invalidation requires the
1080         * caller not hold any locks held by invalidation callbacks.
1081         */
1082        lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1083        lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1084        if (seq)
1085                wait_event(subscriptions->wq,
1086                           READ_ONCE(subscriptions->invalidate_seq) != seq);
1087
1088        /* pairs with mmgrab in mmu_interval_notifier_insert() */
1089        mmdrop(mm);
1090}
1091EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1092
1093/**
1094 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1095 *
1096 * This function ensures that all outstanding async SRU work from
1097 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1098 * associated with an unused mmu_notifier will no longer be called.
1099 *
1100 * Before using the caller must ensure that all of its mmu_notifiers have been
1101 * fully released via mmu_notifier_put().
1102 *
1103 * Modules using the mmu_notifier_put() API should call this in their __exit
1104 * function to avoid module unloading races.
1105 */
1106void mmu_notifier_synchronize(void)
1107{
1108        synchronize_srcu(&srcu);
1109}
1110EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1111
1112bool
1113mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1114{
1115        if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1116                return false;
1117        /* Return true if the vma still have the read flag set. */
1118        return range->vma->vm_flags & VM_READ;
1119}
1120EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
1121