linux/mm/oom_kill.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *      Thanks go out to Claus Fischer for some serious inspiration and
   7 *      for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *      Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/coredump.h>
  28#include <linux/sched/task.h>
  29#include <linux/sched/debug.h>
  30#include <linux/swap.h>
  31#include <linux/timex.h>
  32#include <linux/jiffies.h>
  33#include <linux/cpuset.h>
  34#include <linux/export.h>
  35#include <linux/notifier.h>
  36#include <linux/memcontrol.h>
  37#include <linux/mempolicy.h>
  38#include <linux/security.h>
  39#include <linux/ptrace.h>
  40#include <linux/freezer.h>
  41#include <linux/ftrace.h>
  42#include <linux/ratelimit.h>
  43#include <linux/kthread.h>
  44#include <linux/init.h>
  45#include <linux/mmu_notifier.h>
  46
  47#include <asm/tlb.h>
  48#include "internal.h"
  49#include "slab.h"
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/oom.h>
  53
  54int sysctl_panic_on_oom;
  55int sysctl_oom_kill_allocating_task;
  56int sysctl_oom_dump_tasks = 1;
  57
  58/*
  59 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  60 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  61 * from different domains).
  62 *
  63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  64 * and mark_oom_victim
  65 */
  66DEFINE_MUTEX(oom_lock);
  67/* Serializes oom_score_adj and oom_score_adj_min updates */
  68DEFINE_MUTEX(oom_adj_mutex);
  69
  70static inline bool is_memcg_oom(struct oom_control *oc)
  71{
  72        return oc->memcg != NULL;
  73}
  74
  75#ifdef CONFIG_NUMA
  76/**
  77 * oom_cpuset_eligible() - check task eligibility for kill
  78 * @start: task struct of which task to consider
  79 * @oc: pointer to struct oom_control
  80 *
  81 * Task eligibility is determined by whether or not a candidate task, @tsk,
  82 * shares the same mempolicy nodes as current if it is bound by such a policy
  83 * and whether or not it has the same set of allowed cpuset nodes.
  84 *
  85 * This function is assuming oom-killer context and 'current' has triggered
  86 * the oom-killer.
  87 */
  88static bool oom_cpuset_eligible(struct task_struct *start,
  89                                struct oom_control *oc)
  90{
  91        struct task_struct *tsk;
  92        bool ret = false;
  93        const nodemask_t *mask = oc->nodemask;
  94
  95        if (is_memcg_oom(oc))
  96                return true;
  97
  98        rcu_read_lock();
  99        for_each_thread(start, tsk) {
 100                if (mask) {
 101                        /*
 102                         * If this is a mempolicy constrained oom, tsk's
 103                         * cpuset is irrelevant.  Only return true if its
 104                         * mempolicy intersects current, otherwise it may be
 105                         * needlessly killed.
 106                         */
 107                        ret = mempolicy_in_oom_domain(tsk, mask);
 108                } else {
 109                        /*
 110                         * This is not a mempolicy constrained oom, so only
 111                         * check the mems of tsk's cpuset.
 112                         */
 113                        ret = cpuset_mems_allowed_intersects(current, tsk);
 114                }
 115                if (ret)
 116                        break;
 117        }
 118        rcu_read_unlock();
 119
 120        return ret;
 121}
 122#else
 123static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 124{
 125        return true;
 126}
 127#endif /* CONFIG_NUMA */
 128
 129/*
 130 * The process p may have detached its own ->mm while exiting or through
 131 * kthread_use_mm(), but one or more of its subthreads may still have a valid
 132 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 133 * task_lock() held.
 134 */
 135struct task_struct *find_lock_task_mm(struct task_struct *p)
 136{
 137        struct task_struct *t;
 138
 139        rcu_read_lock();
 140
 141        for_each_thread(p, t) {
 142                task_lock(t);
 143                if (likely(t->mm))
 144                        goto found;
 145                task_unlock(t);
 146        }
 147        t = NULL;
 148found:
 149        rcu_read_unlock();
 150
 151        return t;
 152}
 153
 154/*
 155 * order == -1 means the oom kill is required by sysrq, otherwise only
 156 * for display purposes.
 157 */
 158static inline bool is_sysrq_oom(struct oom_control *oc)
 159{
 160        return oc->order == -1;
 161}
 162
 163/* return true if the task is not adequate as candidate victim task. */
 164static bool oom_unkillable_task(struct task_struct *p)
 165{
 166        if (is_global_init(p))
 167                return true;
 168        if (p->flags & PF_KTHREAD)
 169                return true;
 170        return false;
 171}
 172
 173/*
 174 * Check whether unreclaimable slab amount is greater than
 175 * all user memory(LRU pages).
 176 * dump_unreclaimable_slab() could help in the case that
 177 * oom due to too much unreclaimable slab used by kernel.
 178*/
 179static bool should_dump_unreclaim_slab(void)
 180{
 181        unsigned long nr_lru;
 182
 183        nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 184                 global_node_page_state(NR_INACTIVE_ANON) +
 185                 global_node_page_state(NR_ACTIVE_FILE) +
 186                 global_node_page_state(NR_INACTIVE_FILE) +
 187                 global_node_page_state(NR_ISOLATED_ANON) +
 188                 global_node_page_state(NR_ISOLATED_FILE) +
 189                 global_node_page_state(NR_UNEVICTABLE);
 190
 191        return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
 192}
 193
 194/**
 195 * oom_badness - heuristic function to determine which candidate task to kill
 196 * @p: task struct of which task we should calculate
 197 * @totalpages: total present RAM allowed for page allocation
 198 *
 199 * The heuristic for determining which task to kill is made to be as simple and
 200 * predictable as possible.  The goal is to return the highest value for the
 201 * task consuming the most memory to avoid subsequent oom failures.
 202 */
 203long oom_badness(struct task_struct *p, unsigned long totalpages)
 204{
 205        long points;
 206        long adj;
 207
 208        if (oom_unkillable_task(p))
 209                return LONG_MIN;
 210
 211        p = find_lock_task_mm(p);
 212        if (!p)
 213                return LONG_MIN;
 214
 215        /*
 216         * Do not even consider tasks which are explicitly marked oom
 217         * unkillable or have been already oom reaped or the are in
 218         * the middle of vfork
 219         */
 220        adj = (long)p->signal->oom_score_adj;
 221        if (adj == OOM_SCORE_ADJ_MIN ||
 222                        test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 223                        in_vfork(p)) {
 224                task_unlock(p);
 225                return LONG_MIN;
 226        }
 227
 228        /*
 229         * The baseline for the badness score is the proportion of RAM that each
 230         * task's rss, pagetable and swap space use.
 231         */
 232        points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 233                mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 234        task_unlock(p);
 235
 236        /* Normalize to oom_score_adj units */
 237        adj *= totalpages / 1000;
 238        points += adj;
 239
 240        return points;
 241}
 242
 243static const char * const oom_constraint_text[] = {
 244        [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 245        [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 246        [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 247        [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 248};
 249
 250/*
 251 * Determine the type of allocation constraint.
 252 */
 253static enum oom_constraint constrained_alloc(struct oom_control *oc)
 254{
 255        struct zone *zone;
 256        struct zoneref *z;
 257        enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
 258        bool cpuset_limited = false;
 259        int nid;
 260
 261        if (is_memcg_oom(oc)) {
 262                oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 263                return CONSTRAINT_MEMCG;
 264        }
 265
 266        /* Default to all available memory */
 267        oc->totalpages = totalram_pages() + total_swap_pages;
 268
 269        if (!IS_ENABLED(CONFIG_NUMA))
 270                return CONSTRAINT_NONE;
 271
 272        if (!oc->zonelist)
 273                return CONSTRAINT_NONE;
 274        /*
 275         * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 276         * to kill current.We have to random task kill in this case.
 277         * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 278         */
 279        if (oc->gfp_mask & __GFP_THISNODE)
 280                return CONSTRAINT_NONE;
 281
 282        /*
 283         * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 284         * the page allocator means a mempolicy is in effect.  Cpuset policy
 285         * is enforced in get_page_from_freelist().
 286         */
 287        if (oc->nodemask &&
 288            !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 289                oc->totalpages = total_swap_pages;
 290                for_each_node_mask(nid, *oc->nodemask)
 291                        oc->totalpages += node_present_pages(nid);
 292                return CONSTRAINT_MEMORY_POLICY;
 293        }
 294
 295        /* Check this allocation failure is caused by cpuset's wall function */
 296        for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 297                        highest_zoneidx, oc->nodemask)
 298                if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 299                        cpuset_limited = true;
 300
 301        if (cpuset_limited) {
 302                oc->totalpages = total_swap_pages;
 303                for_each_node_mask(nid, cpuset_current_mems_allowed)
 304                        oc->totalpages += node_present_pages(nid);
 305                return CONSTRAINT_CPUSET;
 306        }
 307        return CONSTRAINT_NONE;
 308}
 309
 310static int oom_evaluate_task(struct task_struct *task, void *arg)
 311{
 312        struct oom_control *oc = arg;
 313        long points;
 314
 315        if (oom_unkillable_task(task))
 316                goto next;
 317
 318        /* p may not have freeable memory in nodemask */
 319        if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 320                goto next;
 321
 322        /*
 323         * This task already has access to memory reserves and is being killed.
 324         * Don't allow any other task to have access to the reserves unless
 325         * the task has MMF_OOM_SKIP because chances that it would release
 326         * any memory is quite low.
 327         */
 328        if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 329                if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 330                        goto next;
 331                goto abort;
 332        }
 333
 334        /*
 335         * If task is allocating a lot of memory and has been marked to be
 336         * killed first if it triggers an oom, then select it.
 337         */
 338        if (oom_task_origin(task)) {
 339                points = LONG_MAX;
 340                goto select;
 341        }
 342
 343        points = oom_badness(task, oc->totalpages);
 344        if (points == LONG_MIN || points < oc->chosen_points)
 345                goto next;
 346
 347select:
 348        if (oc->chosen)
 349                put_task_struct(oc->chosen);
 350        get_task_struct(task);
 351        oc->chosen = task;
 352        oc->chosen_points = points;
 353next:
 354        return 0;
 355abort:
 356        if (oc->chosen)
 357                put_task_struct(oc->chosen);
 358        oc->chosen = (void *)-1UL;
 359        return 1;
 360}
 361
 362/*
 363 * Simple selection loop. We choose the process with the highest number of
 364 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 365 */
 366static void select_bad_process(struct oom_control *oc)
 367{
 368        oc->chosen_points = LONG_MIN;
 369
 370        if (is_memcg_oom(oc))
 371                mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 372        else {
 373                struct task_struct *p;
 374
 375                rcu_read_lock();
 376                for_each_process(p)
 377                        if (oom_evaluate_task(p, oc))
 378                                break;
 379                rcu_read_unlock();
 380        }
 381}
 382
 383static int dump_task(struct task_struct *p, void *arg)
 384{
 385        struct oom_control *oc = arg;
 386        struct task_struct *task;
 387
 388        if (oom_unkillable_task(p))
 389                return 0;
 390
 391        /* p may not have freeable memory in nodemask */
 392        if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 393                return 0;
 394
 395        task = find_lock_task_mm(p);
 396        if (!task) {
 397                /*
 398                 * All of p's threads have already detached their mm's. There's
 399                 * no need to report them; they can't be oom killed anyway.
 400                 */
 401                return 0;
 402        }
 403
 404        pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 405                task->pid, from_kuid(&init_user_ns, task_uid(task)),
 406                task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 407                mm_pgtables_bytes(task->mm),
 408                get_mm_counter(task->mm, MM_SWAPENTS),
 409                task->signal->oom_score_adj, task->comm);
 410        task_unlock(task);
 411
 412        return 0;
 413}
 414
 415/**
 416 * dump_tasks - dump current memory state of all system tasks
 417 * @oc: pointer to struct oom_control
 418 *
 419 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 421 * are not shown.
 422 * State information includes task's pid, uid, tgid, vm size, rss,
 423 * pgtables_bytes, swapents, oom_score_adj value, and name.
 424 */
 425static void dump_tasks(struct oom_control *oc)
 426{
 427        pr_info("Tasks state (memory values in pages):\n");
 428        pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 429
 430        if (is_memcg_oom(oc))
 431                mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 432        else {
 433                struct task_struct *p;
 434
 435                rcu_read_lock();
 436                for_each_process(p)
 437                        dump_task(p, oc);
 438                rcu_read_unlock();
 439        }
 440}
 441
 442static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 443{
 444        /* one line summary of the oom killer context. */
 445        pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 446                        oom_constraint_text[oc->constraint],
 447                        nodemask_pr_args(oc->nodemask));
 448        cpuset_print_current_mems_allowed();
 449        mem_cgroup_print_oom_context(oc->memcg, victim);
 450        pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 451                from_kuid(&init_user_ns, task_uid(victim)));
 452}
 453
 454static void dump_header(struct oom_control *oc, struct task_struct *p)
 455{
 456        pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 457                current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 458                        current->signal->oom_score_adj);
 459        if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 460                pr_warn("COMPACTION is disabled!!!\n");
 461
 462        dump_stack();
 463        if (is_memcg_oom(oc))
 464                mem_cgroup_print_oom_meminfo(oc->memcg);
 465        else {
 466                show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 467                if (should_dump_unreclaim_slab())
 468                        dump_unreclaimable_slab();
 469        }
 470        if (sysctl_oom_dump_tasks)
 471                dump_tasks(oc);
 472        if (p)
 473                dump_oom_summary(oc, p);
 474}
 475
 476/*
 477 * Number of OOM victims in flight
 478 */
 479static atomic_t oom_victims = ATOMIC_INIT(0);
 480static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 481
 482static bool oom_killer_disabled __read_mostly;
 483
 484#define K(x) ((x) << (PAGE_SHIFT-10))
 485
 486/*
 487 * task->mm can be NULL if the task is the exited group leader.  So to
 488 * determine whether the task is using a particular mm, we examine all the
 489 * task's threads: if one of those is using this mm then this task was also
 490 * using it.
 491 */
 492bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 493{
 494        struct task_struct *t;
 495
 496        for_each_thread(p, t) {
 497                struct mm_struct *t_mm = READ_ONCE(t->mm);
 498                if (t_mm)
 499                        return t_mm == mm;
 500        }
 501        return false;
 502}
 503
 504#ifdef CONFIG_MMU
 505/*
 506 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 507 * victim (if that is possible) to help the OOM killer to move on.
 508 */
 509static struct task_struct *oom_reaper_th;
 510static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 511static struct task_struct *oom_reaper_list;
 512static DEFINE_SPINLOCK(oom_reaper_lock);
 513
 514bool __oom_reap_task_mm(struct mm_struct *mm)
 515{
 516        struct vm_area_struct *vma;
 517        bool ret = true;
 518
 519        /*
 520         * Tell all users of get_user/copy_from_user etc... that the content
 521         * is no longer stable. No barriers really needed because unmapping
 522         * should imply barriers already and the reader would hit a page fault
 523         * if it stumbled over a reaped memory.
 524         */
 525        set_bit(MMF_UNSTABLE, &mm->flags);
 526
 527        for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 528                if (!can_madv_lru_vma(vma))
 529                        continue;
 530
 531                /*
 532                 * Only anonymous pages have a good chance to be dropped
 533                 * without additional steps which we cannot afford as we
 534                 * are OOM already.
 535                 *
 536                 * We do not even care about fs backed pages because all
 537                 * which are reclaimable have already been reclaimed and
 538                 * we do not want to block exit_mmap by keeping mm ref
 539                 * count elevated without a good reason.
 540                 */
 541                if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 542                        struct mmu_notifier_range range;
 543                        struct mmu_gather tlb;
 544
 545                        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 546                                                vma, mm, vma->vm_start,
 547                                                vma->vm_end);
 548                        tlb_gather_mmu(&tlb, mm);
 549                        if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 550                                tlb_finish_mmu(&tlb);
 551                                ret = false;
 552                                continue;
 553                        }
 554                        unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 555                        mmu_notifier_invalidate_range_end(&range);
 556                        tlb_finish_mmu(&tlb);
 557                }
 558        }
 559
 560        return ret;
 561}
 562
 563/*
 564 * Reaps the address space of the give task.
 565 *
 566 * Returns true on success and false if none or part of the address space
 567 * has been reclaimed and the caller should retry later.
 568 */
 569static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 570{
 571        bool ret = true;
 572
 573        if (!mmap_read_trylock(mm)) {
 574                trace_skip_task_reaping(tsk->pid);
 575                return false;
 576        }
 577
 578        /*
 579         * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 580         * work on the mm anymore. The check for MMF_OOM_SKIP must run
 581         * under mmap_lock for reading because it serializes against the
 582         * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
 583         */
 584        if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 585                trace_skip_task_reaping(tsk->pid);
 586                goto out_unlock;
 587        }
 588
 589        trace_start_task_reaping(tsk->pid);
 590
 591        /* failed to reap part of the address space. Try again later */
 592        ret = __oom_reap_task_mm(mm);
 593        if (!ret)
 594                goto out_finish;
 595
 596        pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 597                        task_pid_nr(tsk), tsk->comm,
 598                        K(get_mm_counter(mm, MM_ANONPAGES)),
 599                        K(get_mm_counter(mm, MM_FILEPAGES)),
 600                        K(get_mm_counter(mm, MM_SHMEMPAGES)));
 601out_finish:
 602        trace_finish_task_reaping(tsk->pid);
 603out_unlock:
 604        mmap_read_unlock(mm);
 605
 606        return ret;
 607}
 608
 609#define MAX_OOM_REAP_RETRIES 10
 610static void oom_reap_task(struct task_struct *tsk)
 611{
 612        int attempts = 0;
 613        struct mm_struct *mm = tsk->signal->oom_mm;
 614
 615        /* Retry the mmap_read_trylock(mm) a few times */
 616        while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 617                schedule_timeout_idle(HZ/10);
 618
 619        if (attempts <= MAX_OOM_REAP_RETRIES ||
 620            test_bit(MMF_OOM_SKIP, &mm->flags))
 621                goto done;
 622
 623        pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 624                task_pid_nr(tsk), tsk->comm);
 625        sched_show_task(tsk);
 626        debug_show_all_locks();
 627
 628done:
 629        tsk->oom_reaper_list = NULL;
 630
 631        /*
 632         * Hide this mm from OOM killer because it has been either reaped or
 633         * somebody can't call mmap_write_unlock(mm).
 634         */
 635        set_bit(MMF_OOM_SKIP, &mm->flags);
 636
 637        /* Drop a reference taken by wake_oom_reaper */
 638        put_task_struct(tsk);
 639}
 640
 641static int oom_reaper(void *unused)
 642{
 643        while (true) {
 644                struct task_struct *tsk = NULL;
 645
 646                wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 647                spin_lock(&oom_reaper_lock);
 648                if (oom_reaper_list != NULL) {
 649                        tsk = oom_reaper_list;
 650                        oom_reaper_list = tsk->oom_reaper_list;
 651                }
 652                spin_unlock(&oom_reaper_lock);
 653
 654                if (tsk)
 655                        oom_reap_task(tsk);
 656        }
 657
 658        return 0;
 659}
 660
 661static void wake_oom_reaper(struct task_struct *tsk)
 662{
 663        /* mm is already queued? */
 664        if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 665                return;
 666
 667        get_task_struct(tsk);
 668
 669        spin_lock(&oom_reaper_lock);
 670        tsk->oom_reaper_list = oom_reaper_list;
 671        oom_reaper_list = tsk;
 672        spin_unlock(&oom_reaper_lock);
 673        trace_wake_reaper(tsk->pid);
 674        wake_up(&oom_reaper_wait);
 675}
 676
 677static int __init oom_init(void)
 678{
 679        oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 680        return 0;
 681}
 682subsys_initcall(oom_init)
 683#else
 684static inline void wake_oom_reaper(struct task_struct *tsk)
 685{
 686}
 687#endif /* CONFIG_MMU */
 688
 689/**
 690 * mark_oom_victim - mark the given task as OOM victim
 691 * @tsk: task to mark
 692 *
 693 * Has to be called with oom_lock held and never after
 694 * oom has been disabled already.
 695 *
 696 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 697 * under task_lock or operate on the current).
 698 */
 699static void mark_oom_victim(struct task_struct *tsk)
 700{
 701        struct mm_struct *mm = tsk->mm;
 702
 703        WARN_ON(oom_killer_disabled);
 704        /* OOM killer might race with memcg OOM */
 705        if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 706                return;
 707
 708        /* oom_mm is bound to the signal struct life time. */
 709        if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 710                mmgrab(tsk->signal->oom_mm);
 711                set_bit(MMF_OOM_VICTIM, &mm->flags);
 712        }
 713
 714        /*
 715         * Make sure that the task is woken up from uninterruptible sleep
 716         * if it is frozen because OOM killer wouldn't be able to free
 717         * any memory and livelock. freezing_slow_path will tell the freezer
 718         * that TIF_MEMDIE tasks should be ignored.
 719         */
 720        __thaw_task(tsk);
 721        atomic_inc(&oom_victims);
 722        trace_mark_victim(tsk->pid);
 723}
 724
 725/**
 726 * exit_oom_victim - note the exit of an OOM victim
 727 */
 728void exit_oom_victim(void)
 729{
 730        clear_thread_flag(TIF_MEMDIE);
 731
 732        if (!atomic_dec_return(&oom_victims))
 733                wake_up_all(&oom_victims_wait);
 734}
 735
 736/**
 737 * oom_killer_enable - enable OOM killer
 738 */
 739void oom_killer_enable(void)
 740{
 741        oom_killer_disabled = false;
 742        pr_info("OOM killer enabled.\n");
 743}
 744
 745/**
 746 * oom_killer_disable - disable OOM killer
 747 * @timeout: maximum timeout to wait for oom victims in jiffies
 748 *
 749 * Forces all page allocations to fail rather than trigger OOM killer.
 750 * Will block and wait until all OOM victims are killed or the given
 751 * timeout expires.
 752 *
 753 * The function cannot be called when there are runnable user tasks because
 754 * the userspace would see unexpected allocation failures as a result. Any
 755 * new usage of this function should be consulted with MM people.
 756 *
 757 * Returns true if successful and false if the OOM killer cannot be
 758 * disabled.
 759 */
 760bool oom_killer_disable(signed long timeout)
 761{
 762        signed long ret;
 763
 764        /*
 765         * Make sure to not race with an ongoing OOM killer. Check that the
 766         * current is not killed (possibly due to sharing the victim's memory).
 767         */
 768        if (mutex_lock_killable(&oom_lock))
 769                return false;
 770        oom_killer_disabled = true;
 771        mutex_unlock(&oom_lock);
 772
 773        ret = wait_event_interruptible_timeout(oom_victims_wait,
 774                        !atomic_read(&oom_victims), timeout);
 775        if (ret <= 0) {
 776                oom_killer_enable();
 777                return false;
 778        }
 779        pr_info("OOM killer disabled.\n");
 780
 781        return true;
 782}
 783
 784static inline bool __task_will_free_mem(struct task_struct *task)
 785{
 786        struct signal_struct *sig = task->signal;
 787
 788        /*
 789         * A coredumping process may sleep for an extended period in exit_mm(),
 790         * so the oom killer cannot assume that the process will promptly exit
 791         * and release memory.
 792         */
 793        if (sig->flags & SIGNAL_GROUP_COREDUMP)
 794                return false;
 795
 796        if (sig->flags & SIGNAL_GROUP_EXIT)
 797                return true;
 798
 799        if (thread_group_empty(task) && (task->flags & PF_EXITING))
 800                return true;
 801
 802        return false;
 803}
 804
 805/*
 806 * Checks whether the given task is dying or exiting and likely to
 807 * release its address space. This means that all threads and processes
 808 * sharing the same mm have to be killed or exiting.
 809 * Caller has to make sure that task->mm is stable (hold task_lock or
 810 * it operates on the current).
 811 */
 812static bool task_will_free_mem(struct task_struct *task)
 813{
 814        struct mm_struct *mm = task->mm;
 815        struct task_struct *p;
 816        bool ret = true;
 817
 818        /*
 819         * Skip tasks without mm because it might have passed its exit_mm and
 820         * exit_oom_victim. oom_reaper could have rescued that but do not rely
 821         * on that for now. We can consider find_lock_task_mm in future.
 822         */
 823        if (!mm)
 824                return false;
 825
 826        if (!__task_will_free_mem(task))
 827                return false;
 828
 829        /*
 830         * This task has already been drained by the oom reaper so there are
 831         * only small chances it will free some more
 832         */
 833        if (test_bit(MMF_OOM_SKIP, &mm->flags))
 834                return false;
 835
 836        if (atomic_read(&mm->mm_users) <= 1)
 837                return true;
 838
 839        /*
 840         * Make sure that all tasks which share the mm with the given tasks
 841         * are dying as well to make sure that a) nobody pins its mm and
 842         * b) the task is also reapable by the oom reaper.
 843         */
 844        rcu_read_lock();
 845        for_each_process(p) {
 846                if (!process_shares_mm(p, mm))
 847                        continue;
 848                if (same_thread_group(task, p))
 849                        continue;
 850                ret = __task_will_free_mem(p);
 851                if (!ret)
 852                        break;
 853        }
 854        rcu_read_unlock();
 855
 856        return ret;
 857}
 858
 859static void __oom_kill_process(struct task_struct *victim, const char *message)
 860{
 861        struct task_struct *p;
 862        struct mm_struct *mm;
 863        bool can_oom_reap = true;
 864
 865        p = find_lock_task_mm(victim);
 866        if (!p) {
 867                pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
 868                        message, task_pid_nr(victim), victim->comm);
 869                put_task_struct(victim);
 870                return;
 871        } else if (victim != p) {
 872                get_task_struct(p);
 873                put_task_struct(victim);
 874                victim = p;
 875        }
 876
 877        /* Get a reference to safely compare mm after task_unlock(victim) */
 878        mm = victim->mm;
 879        mmgrab(mm);
 880
 881        /* Raise event before sending signal: task reaper must see this */
 882        count_vm_event(OOM_KILL);
 883        memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 884
 885        /*
 886         * We should send SIGKILL before granting access to memory reserves
 887         * in order to prevent the OOM victim from depleting the memory
 888         * reserves from the user space under its control.
 889         */
 890        do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 891        mark_oom_victim(victim);
 892        pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 893                message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 894                K(get_mm_counter(mm, MM_ANONPAGES)),
 895                K(get_mm_counter(mm, MM_FILEPAGES)),
 896                K(get_mm_counter(mm, MM_SHMEMPAGES)),
 897                from_kuid(&init_user_ns, task_uid(victim)),
 898                mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
 899        task_unlock(victim);
 900
 901        /*
 902         * Kill all user processes sharing victim->mm in other thread groups, if
 903         * any.  They don't get access to memory reserves, though, to avoid
 904         * depletion of all memory.  This prevents mm->mmap_lock livelock when an
 905         * oom killed thread cannot exit because it requires the semaphore and
 906         * its contended by another thread trying to allocate memory itself.
 907         * That thread will now get access to memory reserves since it has a
 908         * pending fatal signal.
 909         */
 910        rcu_read_lock();
 911        for_each_process(p) {
 912                if (!process_shares_mm(p, mm))
 913                        continue;
 914                if (same_thread_group(p, victim))
 915                        continue;
 916                if (is_global_init(p)) {
 917                        can_oom_reap = false;
 918                        set_bit(MMF_OOM_SKIP, &mm->flags);
 919                        pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 920                                        task_pid_nr(victim), victim->comm,
 921                                        task_pid_nr(p), p->comm);
 922                        continue;
 923                }
 924                /*
 925                 * No kthread_use_mm() user needs to read from the userspace so
 926                 * we are ok to reap it.
 927                 */
 928                if (unlikely(p->flags & PF_KTHREAD))
 929                        continue;
 930                do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 931        }
 932        rcu_read_unlock();
 933
 934        if (can_oom_reap)
 935                wake_oom_reaper(victim);
 936
 937        mmdrop(mm);
 938        put_task_struct(victim);
 939}
 940#undef K
 941
 942/*
 943 * Kill provided task unless it's secured by setting
 944 * oom_score_adj to OOM_SCORE_ADJ_MIN.
 945 */
 946static int oom_kill_memcg_member(struct task_struct *task, void *message)
 947{
 948        if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 949            !is_global_init(task)) {
 950                get_task_struct(task);
 951                __oom_kill_process(task, message);
 952        }
 953        return 0;
 954}
 955
 956static void oom_kill_process(struct oom_control *oc, const char *message)
 957{
 958        struct task_struct *victim = oc->chosen;
 959        struct mem_cgroup *oom_group;
 960        static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 961                                              DEFAULT_RATELIMIT_BURST);
 962
 963        /*
 964         * If the task is already exiting, don't alarm the sysadmin or kill
 965         * its children or threads, just give it access to memory reserves
 966         * so it can die quickly
 967         */
 968        task_lock(victim);
 969        if (task_will_free_mem(victim)) {
 970                mark_oom_victim(victim);
 971                wake_oom_reaper(victim);
 972                task_unlock(victim);
 973                put_task_struct(victim);
 974                return;
 975        }
 976        task_unlock(victim);
 977
 978        if (__ratelimit(&oom_rs))
 979                dump_header(oc, victim);
 980
 981        /*
 982         * Do we need to kill the entire memory cgroup?
 983         * Or even one of the ancestor memory cgroups?
 984         * Check this out before killing the victim task.
 985         */
 986        oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 987
 988        __oom_kill_process(victim, message);
 989
 990        /*
 991         * If necessary, kill all tasks in the selected memory cgroup.
 992         */
 993        if (oom_group) {
 994                mem_cgroup_print_oom_group(oom_group);
 995                mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 996                                      (void *)message);
 997                mem_cgroup_put(oom_group);
 998        }
 999}
1000
1001/*
1002 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1003 */
1004static void check_panic_on_oom(struct oom_control *oc)
1005{
1006        if (likely(!sysctl_panic_on_oom))
1007                return;
1008        if (sysctl_panic_on_oom != 2) {
1009                /*
1010                 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1011                 * does not panic for cpuset, mempolicy, or memcg allocation
1012                 * failures.
1013                 */
1014                if (oc->constraint != CONSTRAINT_NONE)
1015                        return;
1016        }
1017        /* Do not panic for oom kills triggered by sysrq */
1018        if (is_sysrq_oom(oc))
1019                return;
1020        dump_header(oc, NULL);
1021        panic("Out of memory: %s panic_on_oom is enabled\n",
1022                sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1023}
1024
1025static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1026
1027int register_oom_notifier(struct notifier_block *nb)
1028{
1029        return blocking_notifier_chain_register(&oom_notify_list, nb);
1030}
1031EXPORT_SYMBOL_GPL(register_oom_notifier);
1032
1033int unregister_oom_notifier(struct notifier_block *nb)
1034{
1035        return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1036}
1037EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1038
1039/**
1040 * out_of_memory - kill the "best" process when we run out of memory
1041 * @oc: pointer to struct oom_control
1042 *
1043 * If we run out of memory, we have the choice between either
1044 * killing a random task (bad), letting the system crash (worse)
1045 * OR try to be smart about which process to kill. Note that we
1046 * don't have to be perfect here, we just have to be good.
1047 */
1048bool out_of_memory(struct oom_control *oc)
1049{
1050        unsigned long freed = 0;
1051
1052        if (oom_killer_disabled)
1053                return false;
1054
1055        if (!is_memcg_oom(oc)) {
1056                blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1057                if (freed > 0)
1058                        /* Got some memory back in the last second. */
1059                        return true;
1060        }
1061
1062        /*
1063         * If current has a pending SIGKILL or is exiting, then automatically
1064         * select it.  The goal is to allow it to allocate so that it may
1065         * quickly exit and free its memory.
1066         */
1067        if (task_will_free_mem(current)) {
1068                mark_oom_victim(current);
1069                wake_oom_reaper(current);
1070                return true;
1071        }
1072
1073        /*
1074         * The OOM killer does not compensate for IO-less reclaim.
1075         * pagefault_out_of_memory lost its gfp context so we have to
1076         * make sure exclude 0 mask - all other users should have at least
1077         * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1078         * invoke the OOM killer even if it is a GFP_NOFS allocation.
1079         */
1080        if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1081                return true;
1082
1083        /*
1084         * Check if there were limitations on the allocation (only relevant for
1085         * NUMA and memcg) that may require different handling.
1086         */
1087        oc->constraint = constrained_alloc(oc);
1088        if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1089                oc->nodemask = NULL;
1090        check_panic_on_oom(oc);
1091
1092        if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1093            current->mm && !oom_unkillable_task(current) &&
1094            oom_cpuset_eligible(current, oc) &&
1095            current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1096                get_task_struct(current);
1097                oc->chosen = current;
1098                oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1099                return true;
1100        }
1101
1102        select_bad_process(oc);
1103        /* Found nothing?!?! */
1104        if (!oc->chosen) {
1105                dump_header(oc, NULL);
1106                pr_warn("Out of memory and no killable processes...\n");
1107                /*
1108                 * If we got here due to an actual allocation at the
1109                 * system level, we cannot survive this and will enter
1110                 * an endless loop in the allocator. Bail out now.
1111                 */
1112                if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1113                        panic("System is deadlocked on memory\n");
1114        }
1115        if (oc->chosen && oc->chosen != (void *)-1UL)
1116                oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1117                                 "Memory cgroup out of memory");
1118        return !!oc->chosen;
1119}
1120
1121/*
1122 * The pagefault handler calls here because it is out of memory, so kill a
1123 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1124 * killing is already in progress so do nothing.
1125 */
1126void pagefault_out_of_memory(void)
1127{
1128        struct oom_control oc = {
1129                .zonelist = NULL,
1130                .nodemask = NULL,
1131                .memcg = NULL,
1132                .gfp_mask = 0,
1133                .order = 0,
1134        };
1135
1136        if (mem_cgroup_oom_synchronize(true))
1137                return;
1138
1139        if (!mutex_trylock(&oom_lock))
1140                return;
1141        out_of_memory(&oc);
1142        mutex_unlock(&oom_lock);
1143}
1144