linux/mm/page_alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/mmu_notifier.h>
  61#include <linux/migrate.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/mm.h>
  65#include <linux/page_owner.h>
  66#include <linux/kthread.h>
  67#include <linux/memcontrol.h>
  68#include <linux/ftrace.h>
  69#include <linux/lockdep.h>
  70#include <linux/nmi.h>
  71#include <linux/psi.h>
  72#include <linux/padata.h>
  73#include <linux/khugepaged.h>
  74#include <linux/buffer_head.h>
  75#include <asm/sections.h>
  76#include <asm/tlbflush.h>
  77#include <asm/div64.h>
  78#include "internal.h"
  79#include "shuffle.h"
  80#include "page_reporting.h"
  81
  82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  83typedef int __bitwise fpi_t;
  84
  85/* No special request */
  86#define FPI_NONE                ((__force fpi_t)0)
  87
  88/*
  89 * Skip free page reporting notification for the (possibly merged) page.
  90 * This does not hinder free page reporting from grabbing the page,
  91 * reporting it and marking it "reported" -  it only skips notifying
  92 * the free page reporting infrastructure about a newly freed page. For
  93 * example, used when temporarily pulling a page from a freelist and
  94 * putting it back unmodified.
  95 */
  96#define FPI_SKIP_REPORT_NOTIFY  ((__force fpi_t)BIT(0))
  97
  98/*
  99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 100 * page shuffling (relevant code - e.g., memory onlining - is expected to
 101 * shuffle the whole zone).
 102 *
 103 * Note: No code should rely on this flag for correctness - it's purely
 104 *       to allow for optimizations when handing back either fresh pages
 105 *       (memory onlining) or untouched pages (page isolation, free page
 106 *       reporting).
 107 */
 108#define FPI_TO_TAIL             ((__force fpi_t)BIT(1))
 109
 110/*
 111 * Don't poison memory with KASAN (only for the tag-based modes).
 112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 113 * Poisoning all that memory lengthens boot time, especially on systems with
 114 * large amount of RAM. This flag is used to skip that poisoning.
 115 * This is only done for the tag-based KASAN modes, as those are able to
 116 * detect memory corruptions with the memory tags assigned by default.
 117 * All memory allocated normally after boot gets poisoned as usual.
 118 */
 119#define FPI_SKIP_KASAN_POISON   ((__force fpi_t)BIT(2))
 120
 121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 122static DEFINE_MUTEX(pcp_batch_high_lock);
 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
 124
 125struct pagesets {
 126        local_lock_t lock;
 127};
 128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
 129        .lock = INIT_LOCAL_LOCK(lock),
 130};
 131
 132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 133DEFINE_PER_CPU(int, numa_node);
 134EXPORT_PER_CPU_SYMBOL(numa_node);
 135#endif
 136
 137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 138
 139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 140/*
 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 144 * defined in <linux/topology.h>.
 145 */
 146DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
 147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 148#endif
 149
 150/* work_structs for global per-cpu drains */
 151struct pcpu_drain {
 152        struct zone *zone;
 153        struct work_struct work;
 154};
 155static DEFINE_MUTEX(pcpu_drain_mutex);
 156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 157
 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 159volatile unsigned long latent_entropy __latent_entropy;
 160EXPORT_SYMBOL(latent_entropy);
 161#endif
 162
 163/*
 164 * Array of node states.
 165 */
 166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 167        [N_POSSIBLE] = NODE_MASK_ALL,
 168        [N_ONLINE] = { { [0] = 1UL } },
 169#ifndef CONFIG_NUMA
 170        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
 171#ifdef CONFIG_HIGHMEM
 172        [N_HIGH_MEMORY] = { { [0] = 1UL } },
 173#endif
 174        [N_MEMORY] = { { [0] = 1UL } },
 175        [N_CPU] = { { [0] = 1UL } },
 176#endif  /* NUMA */
 177};
 178EXPORT_SYMBOL(node_states);
 179
 180atomic_long_t _totalram_pages __read_mostly;
 181EXPORT_SYMBOL(_totalram_pages);
 182unsigned long totalreserve_pages __read_mostly;
 183unsigned long totalcma_pages __read_mostly;
 184
 185int percpu_pagelist_high_fraction;
 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 188EXPORT_SYMBOL(init_on_alloc);
 189
 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 191EXPORT_SYMBOL(init_on_free);
 192
 193static bool _init_on_alloc_enabled_early __read_mostly
 194                                = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
 195static int __init early_init_on_alloc(char *buf)
 196{
 197
 198        return kstrtobool(buf, &_init_on_alloc_enabled_early);
 199}
 200early_param("init_on_alloc", early_init_on_alloc);
 201
 202static bool _init_on_free_enabled_early __read_mostly
 203                                = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
 204static int __init early_init_on_free(char *buf)
 205{
 206        return kstrtobool(buf, &_init_on_free_enabled_early);
 207}
 208early_param("init_on_free", early_init_on_free);
 209
 210/*
 211 * A cached value of the page's pageblock's migratetype, used when the page is
 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 214 * Also the migratetype set in the page does not necessarily match the pcplist
 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 216 * other index - this ensures that it will be put on the correct CMA freelist.
 217 */
 218static inline int get_pcppage_migratetype(struct page *page)
 219{
 220        return page->index;
 221}
 222
 223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 224{
 225        page->index = migratetype;
 226}
 227
 228#ifdef CONFIG_PM_SLEEP
 229/*
 230 * The following functions are used by the suspend/hibernate code to temporarily
 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 232 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 233 * they should always be called with system_transition_mutex held
 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 236 * with that modification).
 237 */
 238
 239static gfp_t saved_gfp_mask;
 240
 241void pm_restore_gfp_mask(void)
 242{
 243        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 244        if (saved_gfp_mask) {
 245                gfp_allowed_mask = saved_gfp_mask;
 246                saved_gfp_mask = 0;
 247        }
 248}
 249
 250void pm_restrict_gfp_mask(void)
 251{
 252        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 253        WARN_ON(saved_gfp_mask);
 254        saved_gfp_mask = gfp_allowed_mask;
 255        gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 256}
 257
 258bool pm_suspended_storage(void)
 259{
 260        if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 261                return false;
 262        return true;
 263}
 264#endif /* CONFIG_PM_SLEEP */
 265
 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 267unsigned int pageblock_order __read_mostly;
 268#endif
 269
 270static void __free_pages_ok(struct page *page, unsigned int order,
 271                            fpi_t fpi_flags);
 272
 273/*
 274 * results with 256, 32 in the lowmem_reserve sysctl:
 275 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 276 *      1G machine -> (16M dma, 784M normal, 224M high)
 277 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 278 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 279 *      HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 280 *
 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 282 * don't need any ZONE_NORMAL reservation
 283 */
 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 285#ifdef CONFIG_ZONE_DMA
 286        [ZONE_DMA] = 256,
 287#endif
 288#ifdef CONFIG_ZONE_DMA32
 289        [ZONE_DMA32] = 256,
 290#endif
 291        [ZONE_NORMAL] = 32,
 292#ifdef CONFIG_HIGHMEM
 293        [ZONE_HIGHMEM] = 0,
 294#endif
 295        [ZONE_MOVABLE] = 0,
 296};
 297
 298static char * const zone_names[MAX_NR_ZONES] = {
 299#ifdef CONFIG_ZONE_DMA
 300         "DMA",
 301#endif
 302#ifdef CONFIG_ZONE_DMA32
 303         "DMA32",
 304#endif
 305         "Normal",
 306#ifdef CONFIG_HIGHMEM
 307         "HighMem",
 308#endif
 309         "Movable",
 310#ifdef CONFIG_ZONE_DEVICE
 311         "Device",
 312#endif
 313};
 314
 315const char * const migratetype_names[MIGRATE_TYPES] = {
 316        "Unmovable",
 317        "Movable",
 318        "Reclaimable",
 319        "HighAtomic",
 320#ifdef CONFIG_CMA
 321        "CMA",
 322#endif
 323#ifdef CONFIG_MEMORY_ISOLATION
 324        "Isolate",
 325#endif
 326};
 327
 328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 329        [NULL_COMPOUND_DTOR] = NULL,
 330        [COMPOUND_PAGE_DTOR] = free_compound_page,
 331#ifdef CONFIG_HUGETLB_PAGE
 332        [HUGETLB_PAGE_DTOR] = free_huge_page,
 333#endif
 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 335        [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 336#endif
 337};
 338
 339int min_free_kbytes = 1024;
 340int user_min_free_kbytes = -1;
 341int watermark_boost_factor __read_mostly = 15000;
 342int watermark_scale_factor = 10;
 343
 344static unsigned long nr_kernel_pages __initdata;
 345static unsigned long nr_all_pages __initdata;
 346static unsigned long dma_reserve __initdata;
 347
 348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 350static unsigned long required_kernelcore __initdata;
 351static unsigned long required_kernelcore_percent __initdata;
 352static unsigned long required_movablecore __initdata;
 353static unsigned long required_movablecore_percent __initdata;
 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 355static bool mirrored_kernelcore __meminitdata;
 356
 357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 358int movable_zone;
 359EXPORT_SYMBOL(movable_zone);
 360
 361#if MAX_NUMNODES > 1
 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 363unsigned int nr_online_nodes __read_mostly = 1;
 364EXPORT_SYMBOL(nr_node_ids);
 365EXPORT_SYMBOL(nr_online_nodes);
 366#endif
 367
 368int page_group_by_mobility_disabled __read_mostly;
 369
 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 371/*
 372 * During boot we initialize deferred pages on-demand, as needed, but once
 373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 374 * and we can permanently disable that path.
 375 */
 376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 377
 378/*
 379 * Calling kasan_poison_pages() only after deferred memory initialization
 380 * has completed. Poisoning pages during deferred memory init will greatly
 381 * lengthen the process and cause problem in large memory systems as the
 382 * deferred pages initialization is done with interrupt disabled.
 383 *
 384 * Assuming that there will be no reference to those newly initialized
 385 * pages before they are ever allocated, this should have no effect on
 386 * KASAN memory tracking as the poison will be properly inserted at page
 387 * allocation time. The only corner case is when pages are allocated by
 388 * on-demand allocation and then freed again before the deferred pages
 389 * initialization is done, but this is not likely to happen.
 390 */
 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 392{
 393        return static_branch_unlikely(&deferred_pages) ||
 394               (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 395                (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 396               PageSkipKASanPoison(page);
 397}
 398
 399/* Returns true if the struct page for the pfn is uninitialised */
 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 401{
 402        int nid = early_pfn_to_nid(pfn);
 403
 404        if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 405                return true;
 406
 407        return false;
 408}
 409
 410/*
 411 * Returns true when the remaining initialisation should be deferred until
 412 * later in the boot cycle when it can be parallelised.
 413 */
 414static bool __meminit
 415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 416{
 417        static unsigned long prev_end_pfn, nr_initialised;
 418
 419        /*
 420         * prev_end_pfn static that contains the end of previous zone
 421         * No need to protect because called very early in boot before smp_init.
 422         */
 423        if (prev_end_pfn != end_pfn) {
 424                prev_end_pfn = end_pfn;
 425                nr_initialised = 0;
 426        }
 427
 428        /* Always populate low zones for address-constrained allocations */
 429        if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 430                return false;
 431
 432        if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
 433                return true;
 434        /*
 435         * We start only with one section of pages, more pages are added as
 436         * needed until the rest of deferred pages are initialized.
 437         */
 438        nr_initialised++;
 439        if ((nr_initialised > PAGES_PER_SECTION) &&
 440            (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 441                NODE_DATA(nid)->first_deferred_pfn = pfn;
 442                return true;
 443        }
 444        return false;
 445}
 446#else
 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 448{
 449        return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 450                (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 451               PageSkipKASanPoison(page);
 452}
 453
 454static inline bool early_page_uninitialised(unsigned long pfn)
 455{
 456        return false;
 457}
 458
 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 460{
 461        return false;
 462}
 463#endif
 464
 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 467                                                        unsigned long pfn)
 468{
 469#ifdef CONFIG_SPARSEMEM
 470        return section_to_usemap(__pfn_to_section(pfn));
 471#else
 472        return page_zone(page)->pageblock_flags;
 473#endif /* CONFIG_SPARSEMEM */
 474}
 475
 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 477{
 478#ifdef CONFIG_SPARSEMEM
 479        pfn &= (PAGES_PER_SECTION-1);
 480#else
 481        pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 482#endif /* CONFIG_SPARSEMEM */
 483        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 484}
 485
 486static __always_inline
 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
 488                                        unsigned long pfn,
 489                                        unsigned long mask)
 490{
 491        unsigned long *bitmap;
 492        unsigned long bitidx, word_bitidx;
 493        unsigned long word;
 494
 495        bitmap = get_pageblock_bitmap(page, pfn);
 496        bitidx = pfn_to_bitidx(page, pfn);
 497        word_bitidx = bitidx / BITS_PER_LONG;
 498        bitidx &= (BITS_PER_LONG-1);
 499
 500        word = bitmap[word_bitidx];
 501        return (word >> bitidx) & mask;
 502}
 503
 504/**
 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 506 * @page: The page within the block of interest
 507 * @pfn: The target page frame number
 508 * @mask: mask of bits that the caller is interested in
 509 *
 510 * Return: pageblock_bits flags
 511 */
 512unsigned long get_pfnblock_flags_mask(const struct page *page,
 513                                        unsigned long pfn, unsigned long mask)
 514{
 515        return __get_pfnblock_flags_mask(page, pfn, mask);
 516}
 517
 518static __always_inline int get_pfnblock_migratetype(const struct page *page,
 519                                        unsigned long pfn)
 520{
 521        return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 522}
 523
 524/**
 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 526 * @page: The page within the block of interest
 527 * @flags: The flags to set
 528 * @pfn: The target page frame number
 529 * @mask: mask of bits that the caller is interested in
 530 */
 531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 532                                        unsigned long pfn,
 533                                        unsigned long mask)
 534{
 535        unsigned long *bitmap;
 536        unsigned long bitidx, word_bitidx;
 537        unsigned long old_word, word;
 538
 539        BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 540        BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 541
 542        bitmap = get_pageblock_bitmap(page, pfn);
 543        bitidx = pfn_to_bitidx(page, pfn);
 544        word_bitidx = bitidx / BITS_PER_LONG;
 545        bitidx &= (BITS_PER_LONG-1);
 546
 547        VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 548
 549        mask <<= bitidx;
 550        flags <<= bitidx;
 551
 552        word = READ_ONCE(bitmap[word_bitidx]);
 553        for (;;) {
 554                old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 555                if (word == old_word)
 556                        break;
 557                word = old_word;
 558        }
 559}
 560
 561void set_pageblock_migratetype(struct page *page, int migratetype)
 562{
 563        if (unlikely(page_group_by_mobility_disabled &&
 564                     migratetype < MIGRATE_PCPTYPES))
 565                migratetype = MIGRATE_UNMOVABLE;
 566
 567        set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 568                                page_to_pfn(page), MIGRATETYPE_MASK);
 569}
 570
 571#ifdef CONFIG_DEBUG_VM
 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 573{
 574        int ret = 0;
 575        unsigned seq;
 576        unsigned long pfn = page_to_pfn(page);
 577        unsigned long sp, start_pfn;
 578
 579        do {
 580                seq = zone_span_seqbegin(zone);
 581                start_pfn = zone->zone_start_pfn;
 582                sp = zone->spanned_pages;
 583                if (!zone_spans_pfn(zone, pfn))
 584                        ret = 1;
 585        } while (zone_span_seqretry(zone, seq));
 586
 587        if (ret)
 588                pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 589                        pfn, zone_to_nid(zone), zone->name,
 590                        start_pfn, start_pfn + sp);
 591
 592        return ret;
 593}
 594
 595static int page_is_consistent(struct zone *zone, struct page *page)
 596{
 597        if (!pfn_valid_within(page_to_pfn(page)))
 598                return 0;
 599        if (zone != page_zone(page))
 600                return 0;
 601
 602        return 1;
 603}
 604/*
 605 * Temporary debugging check for pages not lying within a given zone.
 606 */
 607static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 608{
 609        if (page_outside_zone_boundaries(zone, page))
 610                return 1;
 611        if (!page_is_consistent(zone, page))
 612                return 1;
 613
 614        return 0;
 615}
 616#else
 617static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 618{
 619        return 0;
 620}
 621#endif
 622
 623static void bad_page(struct page *page, const char *reason)
 624{
 625        static unsigned long resume;
 626        static unsigned long nr_shown;
 627        static unsigned long nr_unshown;
 628
 629        /*
 630         * Allow a burst of 60 reports, then keep quiet for that minute;
 631         * or allow a steady drip of one report per second.
 632         */
 633        if (nr_shown == 60) {
 634                if (time_before(jiffies, resume)) {
 635                        nr_unshown++;
 636                        goto out;
 637                }
 638                if (nr_unshown) {
 639                        pr_alert(
 640                              "BUG: Bad page state: %lu messages suppressed\n",
 641                                nr_unshown);
 642                        nr_unshown = 0;
 643                }
 644                nr_shown = 0;
 645        }
 646        if (nr_shown++ == 0)
 647                resume = jiffies + 60 * HZ;
 648
 649        pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 650                current->comm, page_to_pfn(page));
 651        dump_page(page, reason);
 652
 653        print_modules();
 654        dump_stack();
 655out:
 656        /* Leave bad fields for debug, except PageBuddy could make trouble */
 657        page_mapcount_reset(page); /* remove PageBuddy */
 658        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 659}
 660
 661static inline unsigned int order_to_pindex(int migratetype, int order)
 662{
 663        int base = order;
 664
 665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 666        if (order > PAGE_ALLOC_COSTLY_ORDER) {
 667                VM_BUG_ON(order != pageblock_order);
 668                base = PAGE_ALLOC_COSTLY_ORDER + 1;
 669        }
 670#else
 671        VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 672#endif
 673
 674        return (MIGRATE_PCPTYPES * base) + migratetype;
 675}
 676
 677static inline int pindex_to_order(unsigned int pindex)
 678{
 679        int order = pindex / MIGRATE_PCPTYPES;
 680
 681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 682        if (order > PAGE_ALLOC_COSTLY_ORDER) {
 683                order = pageblock_order;
 684                VM_BUG_ON(order != pageblock_order);
 685        }
 686#else
 687        VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 688#endif
 689
 690        return order;
 691}
 692
 693static inline bool pcp_allowed_order(unsigned int order)
 694{
 695        if (order <= PAGE_ALLOC_COSTLY_ORDER)
 696                return true;
 697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 698        if (order == pageblock_order)
 699                return true;
 700#endif
 701        return false;
 702}
 703
 704static inline void free_the_page(struct page *page, unsigned int order)
 705{
 706        if (pcp_allowed_order(order))           /* Via pcp? */
 707                free_unref_page(page, order);
 708        else
 709                __free_pages_ok(page, order, FPI_NONE);
 710}
 711
 712/*
 713 * Higher-order pages are called "compound pages".  They are structured thusly:
 714 *
 715 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 716 *
 717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 719 *
 720 * The first tail page's ->compound_dtor holds the offset in array of compound
 721 * page destructors. See compound_page_dtors.
 722 *
 723 * The first tail page's ->compound_order holds the order of allocation.
 724 * This usage means that zero-order pages may not be compound.
 725 */
 726
 727void free_compound_page(struct page *page)
 728{
 729        mem_cgroup_uncharge(page);
 730        free_the_page(page, compound_order(page));
 731}
 732
 733void prep_compound_page(struct page *page, unsigned int order)
 734{
 735        int i;
 736        int nr_pages = 1 << order;
 737
 738        __SetPageHead(page);
 739        for (i = 1; i < nr_pages; i++) {
 740                struct page *p = page + i;
 741                p->mapping = TAIL_MAPPING;
 742                set_compound_head(p, page);
 743        }
 744
 745        set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 746        set_compound_order(page, order);
 747        atomic_set(compound_mapcount_ptr(page), -1);
 748        if (hpage_pincount_available(page))
 749                atomic_set(compound_pincount_ptr(page), 0);
 750}
 751
 752#ifdef CONFIG_DEBUG_PAGEALLOC
 753unsigned int _debug_guardpage_minorder;
 754
 755bool _debug_pagealloc_enabled_early __read_mostly
 756                        = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 757EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 758DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 759EXPORT_SYMBOL(_debug_pagealloc_enabled);
 760
 761DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 762
 763static int __init early_debug_pagealloc(char *buf)
 764{
 765        return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 766}
 767early_param("debug_pagealloc", early_debug_pagealloc);
 768
 769static int __init debug_guardpage_minorder_setup(char *buf)
 770{
 771        unsigned long res;
 772
 773        if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 774                pr_err("Bad debug_guardpage_minorder value\n");
 775                return 0;
 776        }
 777        _debug_guardpage_minorder = res;
 778        pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 779        return 0;
 780}
 781early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 782
 783static inline bool set_page_guard(struct zone *zone, struct page *page,
 784                                unsigned int order, int migratetype)
 785{
 786        if (!debug_guardpage_enabled())
 787                return false;
 788
 789        if (order >= debug_guardpage_minorder())
 790                return false;
 791
 792        __SetPageGuard(page);
 793        INIT_LIST_HEAD(&page->lru);
 794        set_page_private(page, order);
 795        /* Guard pages are not available for any usage */
 796        __mod_zone_freepage_state(zone, -(1 << order), migratetype);
 797
 798        return true;
 799}
 800
 801static inline void clear_page_guard(struct zone *zone, struct page *page,
 802                                unsigned int order, int migratetype)
 803{
 804        if (!debug_guardpage_enabled())
 805                return;
 806
 807        __ClearPageGuard(page);
 808
 809        set_page_private(page, 0);
 810        if (!is_migrate_isolate(migratetype))
 811                __mod_zone_freepage_state(zone, (1 << order), migratetype);
 812}
 813#else
 814static inline bool set_page_guard(struct zone *zone, struct page *page,
 815                        unsigned int order, int migratetype) { return false; }
 816static inline void clear_page_guard(struct zone *zone, struct page *page,
 817                                unsigned int order, int migratetype) {}
 818#endif
 819
 820/*
 821 * Enable static keys related to various memory debugging and hardening options.
 822 * Some override others, and depend on early params that are evaluated in the
 823 * order of appearance. So we need to first gather the full picture of what was
 824 * enabled, and then make decisions.
 825 */
 826void init_mem_debugging_and_hardening(void)
 827{
 828        bool page_poisoning_requested = false;
 829
 830#ifdef CONFIG_PAGE_POISONING
 831        /*
 832         * Page poisoning is debug page alloc for some arches. If
 833         * either of those options are enabled, enable poisoning.
 834         */
 835        if (page_poisoning_enabled() ||
 836             (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
 837              debug_pagealloc_enabled())) {
 838                static_branch_enable(&_page_poisoning_enabled);
 839                page_poisoning_requested = true;
 840        }
 841#endif
 842
 843        if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
 844            page_poisoning_requested) {
 845                pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 846                        "will take precedence over init_on_alloc and init_on_free\n");
 847                _init_on_alloc_enabled_early = false;
 848                _init_on_free_enabled_early = false;
 849        }
 850
 851        if (_init_on_alloc_enabled_early)
 852                static_branch_enable(&init_on_alloc);
 853        else
 854                static_branch_disable(&init_on_alloc);
 855
 856        if (_init_on_free_enabled_early)
 857                static_branch_enable(&init_on_free);
 858        else
 859                static_branch_disable(&init_on_free);
 860
 861#ifdef CONFIG_DEBUG_PAGEALLOC
 862        if (!debug_pagealloc_enabled())
 863                return;
 864
 865        static_branch_enable(&_debug_pagealloc_enabled);
 866
 867        if (!debug_guardpage_minorder())
 868                return;
 869
 870        static_branch_enable(&_debug_guardpage_enabled);
 871#endif
 872}
 873
 874static inline void set_buddy_order(struct page *page, unsigned int order)
 875{
 876        set_page_private(page, order);
 877        __SetPageBuddy(page);
 878}
 879
 880/*
 881 * This function checks whether a page is free && is the buddy
 882 * we can coalesce a page and its buddy if
 883 * (a) the buddy is not in a hole (check before calling!) &&
 884 * (b) the buddy is in the buddy system &&
 885 * (c) a page and its buddy have the same order &&
 886 * (d) a page and its buddy are in the same zone.
 887 *
 888 * For recording whether a page is in the buddy system, we set PageBuddy.
 889 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 890 *
 891 * For recording page's order, we use page_private(page).
 892 */
 893static inline bool page_is_buddy(struct page *page, struct page *buddy,
 894                                                        unsigned int order)
 895{
 896        if (!page_is_guard(buddy) && !PageBuddy(buddy))
 897                return false;
 898
 899        if (buddy_order(buddy) != order)
 900                return false;
 901
 902        /*
 903         * zone check is done late to avoid uselessly calculating
 904         * zone/node ids for pages that could never merge.
 905         */
 906        if (page_zone_id(page) != page_zone_id(buddy))
 907                return false;
 908
 909        VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 910
 911        return true;
 912}
 913
 914#ifdef CONFIG_COMPACTION
 915static inline struct capture_control *task_capc(struct zone *zone)
 916{
 917        struct capture_control *capc = current->capture_control;
 918
 919        return unlikely(capc) &&
 920                !(current->flags & PF_KTHREAD) &&
 921                !capc->page &&
 922                capc->cc->zone == zone ? capc : NULL;
 923}
 924
 925static inline bool
 926compaction_capture(struct capture_control *capc, struct page *page,
 927                   int order, int migratetype)
 928{
 929        if (!capc || order != capc->cc->order)
 930                return false;
 931
 932        /* Do not accidentally pollute CMA or isolated regions*/
 933        if (is_migrate_cma(migratetype) ||
 934            is_migrate_isolate(migratetype))
 935                return false;
 936
 937        /*
 938         * Do not let lower order allocations pollute a movable pageblock.
 939         * This might let an unmovable request use a reclaimable pageblock
 940         * and vice-versa but no more than normal fallback logic which can
 941         * have trouble finding a high-order free page.
 942         */
 943        if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 944                return false;
 945
 946        capc->page = page;
 947        return true;
 948}
 949
 950#else
 951static inline struct capture_control *task_capc(struct zone *zone)
 952{
 953        return NULL;
 954}
 955
 956static inline bool
 957compaction_capture(struct capture_control *capc, struct page *page,
 958                   int order, int migratetype)
 959{
 960        return false;
 961}
 962#endif /* CONFIG_COMPACTION */
 963
 964/* Used for pages not on another list */
 965static inline void add_to_free_list(struct page *page, struct zone *zone,
 966                                    unsigned int order, int migratetype)
 967{
 968        struct free_area *area = &zone->free_area[order];
 969
 970        list_add(&page->lru, &area->free_list[migratetype]);
 971        area->nr_free++;
 972}
 973
 974/* Used for pages not on another list */
 975static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 976                                         unsigned int order, int migratetype)
 977{
 978        struct free_area *area = &zone->free_area[order];
 979
 980        list_add_tail(&page->lru, &area->free_list[migratetype]);
 981        area->nr_free++;
 982}
 983
 984/*
 985 * Used for pages which are on another list. Move the pages to the tail
 986 * of the list - so the moved pages won't immediately be considered for
 987 * allocation again (e.g., optimization for memory onlining).
 988 */
 989static inline void move_to_free_list(struct page *page, struct zone *zone,
 990                                     unsigned int order, int migratetype)
 991{
 992        struct free_area *area = &zone->free_area[order];
 993
 994        list_move_tail(&page->lru, &area->free_list[migratetype]);
 995}
 996
 997static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 998                                           unsigned int order)
 999{
1000        /* clear reported state and update reported page count */
1001        if (page_reported(page))
1002                __ClearPageReported(page);
1003
1004        list_del(&page->lru);
1005        __ClearPageBuddy(page);
1006        set_page_private(page, 0);
1007        zone->free_area[order].nr_free--;
1008}
1009
1010/*
1011 * If this is not the largest possible page, check if the buddy
1012 * of the next-highest order is free. If it is, it's possible
1013 * that pages are being freed that will coalesce soon. In case,
1014 * that is happening, add the free page to the tail of the list
1015 * so it's less likely to be used soon and more likely to be merged
1016 * as a higher order page
1017 */
1018static inline bool
1019buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1020                   struct page *page, unsigned int order)
1021{
1022        struct page *higher_page, *higher_buddy;
1023        unsigned long combined_pfn;
1024
1025        if (order >= MAX_ORDER - 2)
1026                return false;
1027
1028        if (!pfn_valid_within(buddy_pfn))
1029                return false;
1030
1031        combined_pfn = buddy_pfn & pfn;
1032        higher_page = page + (combined_pfn - pfn);
1033        buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1034        higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1035
1036        return pfn_valid_within(buddy_pfn) &&
1037               page_is_buddy(higher_page, higher_buddy, order + 1);
1038}
1039
1040/*
1041 * Freeing function for a buddy system allocator.
1042 *
1043 * The concept of a buddy system is to maintain direct-mapped table
1044 * (containing bit values) for memory blocks of various "orders".
1045 * The bottom level table contains the map for the smallest allocatable
1046 * units of memory (here, pages), and each level above it describes
1047 * pairs of units from the levels below, hence, "buddies".
1048 * At a high level, all that happens here is marking the table entry
1049 * at the bottom level available, and propagating the changes upward
1050 * as necessary, plus some accounting needed to play nicely with other
1051 * parts of the VM system.
1052 * At each level, we keep a list of pages, which are heads of continuous
1053 * free pages of length of (1 << order) and marked with PageBuddy.
1054 * Page's order is recorded in page_private(page) field.
1055 * So when we are allocating or freeing one, we can derive the state of the
1056 * other.  That is, if we allocate a small block, and both were
1057 * free, the remainder of the region must be split into blocks.
1058 * If a block is freed, and its buddy is also free, then this
1059 * triggers coalescing into a block of larger size.
1060 *
1061 * -- nyc
1062 */
1063
1064static inline void __free_one_page(struct page *page,
1065                unsigned long pfn,
1066                struct zone *zone, unsigned int order,
1067                int migratetype, fpi_t fpi_flags)
1068{
1069        struct capture_control *capc = task_capc(zone);
1070        unsigned long buddy_pfn;
1071        unsigned long combined_pfn;
1072        unsigned int max_order;
1073        struct page *buddy;
1074        bool to_tail;
1075
1076        max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1077
1078        VM_BUG_ON(!zone_is_initialized(zone));
1079        VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1080
1081        VM_BUG_ON(migratetype == -1);
1082        if (likely(!is_migrate_isolate(migratetype)))
1083                __mod_zone_freepage_state(zone, 1 << order, migratetype);
1084
1085        VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1086        VM_BUG_ON_PAGE(bad_range(zone, page), page);
1087
1088continue_merging:
1089        while (order < max_order) {
1090                if (compaction_capture(capc, page, order, migratetype)) {
1091                        __mod_zone_freepage_state(zone, -(1 << order),
1092                                                                migratetype);
1093                        return;
1094                }
1095                buddy_pfn = __find_buddy_pfn(pfn, order);
1096                buddy = page + (buddy_pfn - pfn);
1097
1098                if (!pfn_valid_within(buddy_pfn))
1099                        goto done_merging;
1100                if (!page_is_buddy(page, buddy, order))
1101                        goto done_merging;
1102                /*
1103                 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1104                 * merge with it and move up one order.
1105                 */
1106                if (page_is_guard(buddy))
1107                        clear_page_guard(zone, buddy, order, migratetype);
1108                else
1109                        del_page_from_free_list(buddy, zone, order);
1110                combined_pfn = buddy_pfn & pfn;
1111                page = page + (combined_pfn - pfn);
1112                pfn = combined_pfn;
1113                order++;
1114        }
1115        if (order < MAX_ORDER - 1) {
1116                /* If we are here, it means order is >= pageblock_order.
1117                 * We want to prevent merge between freepages on isolate
1118                 * pageblock and normal pageblock. Without this, pageblock
1119                 * isolation could cause incorrect freepage or CMA accounting.
1120                 *
1121                 * We don't want to hit this code for the more frequent
1122                 * low-order merging.
1123                 */
1124                if (unlikely(has_isolate_pageblock(zone))) {
1125                        int buddy_mt;
1126
1127                        buddy_pfn = __find_buddy_pfn(pfn, order);
1128                        buddy = page + (buddy_pfn - pfn);
1129                        buddy_mt = get_pageblock_migratetype(buddy);
1130
1131                        if (migratetype != buddy_mt
1132                                        && (is_migrate_isolate(migratetype) ||
1133                                                is_migrate_isolate(buddy_mt)))
1134                                goto done_merging;
1135                }
1136                max_order = order + 1;
1137                goto continue_merging;
1138        }
1139
1140done_merging:
1141        set_buddy_order(page, order);
1142
1143        if (fpi_flags & FPI_TO_TAIL)
1144                to_tail = true;
1145        else if (is_shuffle_order(order))
1146                to_tail = shuffle_pick_tail();
1147        else
1148                to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1149
1150        if (to_tail)
1151                add_to_free_list_tail(page, zone, order, migratetype);
1152        else
1153                add_to_free_list(page, zone, order, migratetype);
1154
1155        /* Notify page reporting subsystem of freed page */
1156        if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1157                page_reporting_notify_free(order);
1158}
1159
1160/*
1161 * A bad page could be due to a number of fields. Instead of multiple branches,
1162 * try and check multiple fields with one check. The caller must do a detailed
1163 * check if necessary.
1164 */
1165static inline bool page_expected_state(struct page *page,
1166                                        unsigned long check_flags)
1167{
1168        if (unlikely(atomic_read(&page->_mapcount) != -1))
1169                return false;
1170
1171        if (unlikely((unsigned long)page->mapping |
1172                        page_ref_count(page) |
1173#ifdef CONFIG_MEMCG
1174                        page->memcg_data |
1175#endif
1176                        (page->flags & check_flags)))
1177                return false;
1178
1179        return true;
1180}
1181
1182static const char *page_bad_reason(struct page *page, unsigned long flags)
1183{
1184        const char *bad_reason = NULL;
1185
1186        if (unlikely(atomic_read(&page->_mapcount) != -1))
1187                bad_reason = "nonzero mapcount";
1188        if (unlikely(page->mapping != NULL))
1189                bad_reason = "non-NULL mapping";
1190        if (unlikely(page_ref_count(page) != 0))
1191                bad_reason = "nonzero _refcount";
1192        if (unlikely(page->flags & flags)) {
1193                if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1194                        bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1195                else
1196                        bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1197        }
1198#ifdef CONFIG_MEMCG
1199        if (unlikely(page->memcg_data))
1200                bad_reason = "page still charged to cgroup";
1201#endif
1202        return bad_reason;
1203}
1204
1205static void check_free_page_bad(struct page *page)
1206{
1207        bad_page(page,
1208                 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1209}
1210
1211static inline int check_free_page(struct page *page)
1212{
1213        if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1214                return 0;
1215
1216        /* Something has gone sideways, find it */
1217        check_free_page_bad(page);
1218        return 1;
1219}
1220
1221static int free_tail_pages_check(struct page *head_page, struct page *page)
1222{
1223        int ret = 1;
1224
1225        /*
1226         * We rely page->lru.next never has bit 0 set, unless the page
1227         * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1228         */
1229        BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1230
1231        if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1232                ret = 0;
1233                goto out;
1234        }
1235        switch (page - head_page) {
1236        case 1:
1237                /* the first tail page: ->mapping may be compound_mapcount() */
1238                if (unlikely(compound_mapcount(page))) {
1239                        bad_page(page, "nonzero compound_mapcount");
1240                        goto out;
1241                }
1242                break;
1243        case 2:
1244                /*
1245                 * the second tail page: ->mapping is
1246                 * deferred_list.next -- ignore value.
1247                 */
1248                break;
1249        default:
1250                if (page->mapping != TAIL_MAPPING) {
1251                        bad_page(page, "corrupted mapping in tail page");
1252                        goto out;
1253                }
1254                break;
1255        }
1256        if (unlikely(!PageTail(page))) {
1257                bad_page(page, "PageTail not set");
1258                goto out;
1259        }
1260        if (unlikely(compound_head(page) != head_page)) {
1261                bad_page(page, "compound_head not consistent");
1262                goto out;
1263        }
1264        ret = 0;
1265out:
1266        page->mapping = NULL;
1267        clear_compound_head(page);
1268        return ret;
1269}
1270
1271static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1272{
1273        int i;
1274
1275        if (zero_tags) {
1276                for (i = 0; i < numpages; i++)
1277                        tag_clear_highpage(page + i);
1278                return;
1279        }
1280
1281        /* s390's use of memset() could override KASAN redzones. */
1282        kasan_disable_current();
1283        for (i = 0; i < numpages; i++) {
1284                u8 tag = page_kasan_tag(page + i);
1285                page_kasan_tag_reset(page + i);
1286                clear_highpage(page + i);
1287                page_kasan_tag_set(page + i, tag);
1288        }
1289        kasan_enable_current();
1290}
1291
1292static __always_inline bool free_pages_prepare(struct page *page,
1293                        unsigned int order, bool check_free, fpi_t fpi_flags)
1294{
1295        int bad = 0;
1296        bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1297
1298        VM_BUG_ON_PAGE(PageTail(page), page);
1299
1300        trace_mm_page_free(page, order);
1301
1302        if (unlikely(PageHWPoison(page)) && !order) {
1303                /*
1304                 * Do not let hwpoison pages hit pcplists/buddy
1305                 * Untie memcg state and reset page's owner
1306                 */
1307                if (memcg_kmem_enabled() && PageMemcgKmem(page))
1308                        __memcg_kmem_uncharge_page(page, order);
1309                reset_page_owner(page, order);
1310                return false;
1311        }
1312
1313        /*
1314         * Check tail pages before head page information is cleared to
1315         * avoid checking PageCompound for order-0 pages.
1316         */
1317        if (unlikely(order)) {
1318                bool compound = PageCompound(page);
1319                int i;
1320
1321                VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1322
1323                if (compound)
1324                        ClearPageDoubleMap(page);
1325                for (i = 1; i < (1 << order); i++) {
1326                        if (compound)
1327                                bad += free_tail_pages_check(page, page + i);
1328                        if (unlikely(check_free_page(page + i))) {
1329                                bad++;
1330                                continue;
1331                        }
1332                        (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1333                }
1334        }
1335        if (PageMappingFlags(page))
1336                page->mapping = NULL;
1337        if (memcg_kmem_enabled() && PageMemcgKmem(page))
1338                __memcg_kmem_uncharge_page(page, order);
1339        if (check_free)
1340                bad += check_free_page(page);
1341        if (bad)
1342                return false;
1343
1344        page_cpupid_reset_last(page);
1345        page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1346        reset_page_owner(page, order);
1347
1348        if (!PageHighMem(page)) {
1349                debug_check_no_locks_freed(page_address(page),
1350                                           PAGE_SIZE << order);
1351                debug_check_no_obj_freed(page_address(page),
1352                                           PAGE_SIZE << order);
1353        }
1354
1355        kernel_poison_pages(page, 1 << order);
1356
1357        /*
1358         * As memory initialization might be integrated into KASAN,
1359         * kasan_free_pages and kernel_init_free_pages must be
1360         * kept together to avoid discrepancies in behavior.
1361         *
1362         * With hardware tag-based KASAN, memory tags must be set before the
1363         * page becomes unavailable via debug_pagealloc or arch_free_page.
1364         */
1365        if (kasan_has_integrated_init()) {
1366                if (!skip_kasan_poison)
1367                        kasan_free_pages(page, order);
1368        } else {
1369                bool init = want_init_on_free();
1370
1371                if (init)
1372                        kernel_init_free_pages(page, 1 << order, false);
1373                if (!skip_kasan_poison)
1374                        kasan_poison_pages(page, order, init);
1375        }
1376
1377        /*
1378         * arch_free_page() can make the page's contents inaccessible.  s390
1379         * does this.  So nothing which can access the page's contents should
1380         * happen after this.
1381         */
1382        arch_free_page(page, order);
1383
1384        debug_pagealloc_unmap_pages(page, 1 << order);
1385
1386        return true;
1387}
1388
1389#ifdef CONFIG_DEBUG_VM
1390/*
1391 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1392 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1393 * moved from pcp lists to free lists.
1394 */
1395static bool free_pcp_prepare(struct page *page, unsigned int order)
1396{
1397        return free_pages_prepare(page, order, true, FPI_NONE);
1398}
1399
1400static bool bulkfree_pcp_prepare(struct page *page)
1401{
1402        if (debug_pagealloc_enabled_static())
1403                return check_free_page(page);
1404        else
1405                return false;
1406}
1407#else
1408/*
1409 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1410 * moving from pcp lists to free list in order to reduce overhead. With
1411 * debug_pagealloc enabled, they are checked also immediately when being freed
1412 * to the pcp lists.
1413 */
1414static bool free_pcp_prepare(struct page *page, unsigned int order)
1415{
1416        if (debug_pagealloc_enabled_static())
1417                return free_pages_prepare(page, order, true, FPI_NONE);
1418        else
1419                return free_pages_prepare(page, order, false, FPI_NONE);
1420}
1421
1422static bool bulkfree_pcp_prepare(struct page *page)
1423{
1424        return check_free_page(page);
1425}
1426#endif /* CONFIG_DEBUG_VM */
1427
1428static inline void prefetch_buddy(struct page *page)
1429{
1430        unsigned long pfn = page_to_pfn(page);
1431        unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1432        struct page *buddy = page + (buddy_pfn - pfn);
1433
1434        prefetch(buddy);
1435}
1436
1437/*
1438 * Frees a number of pages from the PCP lists
1439 * Assumes all pages on list are in same zone, and of same order.
1440 * count is the number of pages to free.
1441 *
1442 * If the zone was previously in an "all pages pinned" state then look to
1443 * see if this freeing clears that state.
1444 *
1445 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1446 * pinned" detection logic.
1447 */
1448static void free_pcppages_bulk(struct zone *zone, int count,
1449                                        struct per_cpu_pages *pcp)
1450{
1451        int pindex = 0;
1452        int batch_free = 0;
1453        int nr_freed = 0;
1454        unsigned int order;
1455        int prefetch_nr = READ_ONCE(pcp->batch);
1456        bool isolated_pageblocks;
1457        struct page *page, *tmp;
1458        LIST_HEAD(head);
1459
1460        /*
1461         * Ensure proper count is passed which otherwise would stuck in the
1462         * below while (list_empty(list)) loop.
1463         */
1464        count = min(pcp->count, count);
1465        while (count > 0) {
1466                struct list_head *list;
1467
1468                /*
1469                 * Remove pages from lists in a round-robin fashion. A
1470                 * batch_free count is maintained that is incremented when an
1471                 * empty list is encountered.  This is so more pages are freed
1472                 * off fuller lists instead of spinning excessively around empty
1473                 * lists
1474                 */
1475                do {
1476                        batch_free++;
1477                        if (++pindex == NR_PCP_LISTS)
1478                                pindex = 0;
1479                        list = &pcp->lists[pindex];
1480                } while (list_empty(list));
1481
1482                /* This is the only non-empty list. Free them all. */
1483                if (batch_free == NR_PCP_LISTS)
1484                        batch_free = count;
1485
1486                order = pindex_to_order(pindex);
1487                BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1488                do {
1489                        page = list_last_entry(list, struct page, lru);
1490                        /* must delete to avoid corrupting pcp list */
1491                        list_del(&page->lru);
1492                        nr_freed += 1 << order;
1493                        count -= 1 << order;
1494
1495                        if (bulkfree_pcp_prepare(page))
1496                                continue;
1497
1498                        /* Encode order with the migratetype */
1499                        page->index <<= NR_PCP_ORDER_WIDTH;
1500                        page->index |= order;
1501
1502                        list_add_tail(&page->lru, &head);
1503
1504                        /*
1505                         * We are going to put the page back to the global
1506                         * pool, prefetch its buddy to speed up later access
1507                         * under zone->lock. It is believed the overhead of
1508                         * an additional test and calculating buddy_pfn here
1509                         * can be offset by reduced memory latency later. To
1510                         * avoid excessive prefetching due to large count, only
1511                         * prefetch buddy for the first pcp->batch nr of pages.
1512                         */
1513                        if (prefetch_nr) {
1514                                prefetch_buddy(page);
1515                                prefetch_nr--;
1516                        }
1517                } while (count > 0 && --batch_free && !list_empty(list));
1518        }
1519        pcp->count -= nr_freed;
1520
1521        /*
1522         * local_lock_irq held so equivalent to spin_lock_irqsave for
1523         * both PREEMPT_RT and non-PREEMPT_RT configurations.
1524         */
1525        spin_lock(&zone->lock);
1526        isolated_pageblocks = has_isolate_pageblock(zone);
1527
1528        /*
1529         * Use safe version since after __free_one_page(),
1530         * page->lru.next will not point to original list.
1531         */
1532        list_for_each_entry_safe(page, tmp, &head, lru) {
1533                int mt = get_pcppage_migratetype(page);
1534
1535                /* mt has been encoded with the order (see above) */
1536                order = mt & NR_PCP_ORDER_MASK;
1537                mt >>= NR_PCP_ORDER_WIDTH;
1538
1539                /* MIGRATE_ISOLATE page should not go to pcplists */
1540                VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1541                /* Pageblock could have been isolated meanwhile */
1542                if (unlikely(isolated_pageblocks))
1543                        mt = get_pageblock_migratetype(page);
1544
1545                __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1546                trace_mm_page_pcpu_drain(page, order, mt);
1547        }
1548        spin_unlock(&zone->lock);
1549}
1550
1551static void free_one_page(struct zone *zone,
1552                                struct page *page, unsigned long pfn,
1553                                unsigned int order,
1554                                int migratetype, fpi_t fpi_flags)
1555{
1556        unsigned long flags;
1557
1558        spin_lock_irqsave(&zone->lock, flags);
1559        if (unlikely(has_isolate_pageblock(zone) ||
1560                is_migrate_isolate(migratetype))) {
1561                migratetype = get_pfnblock_migratetype(page, pfn);
1562        }
1563        __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1564        spin_unlock_irqrestore(&zone->lock, flags);
1565}
1566
1567static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1568                                unsigned long zone, int nid)
1569{
1570        mm_zero_struct_page(page);
1571        set_page_links(page, zone, nid, pfn);
1572        init_page_count(page);
1573        page_mapcount_reset(page);
1574        page_cpupid_reset_last(page);
1575        page_kasan_tag_reset(page);
1576
1577        INIT_LIST_HEAD(&page->lru);
1578#ifdef WANT_PAGE_VIRTUAL
1579        /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1580        if (!is_highmem_idx(zone))
1581                set_page_address(page, __va(pfn << PAGE_SHIFT));
1582#endif
1583}
1584
1585#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586static void __meminit init_reserved_page(unsigned long pfn)
1587{
1588        pg_data_t *pgdat;
1589        int nid, zid;
1590
1591        if (!early_page_uninitialised(pfn))
1592                return;
1593
1594        nid = early_pfn_to_nid(pfn);
1595        pgdat = NODE_DATA(nid);
1596
1597        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1598                struct zone *zone = &pgdat->node_zones[zid];
1599
1600                if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1601                        break;
1602        }
1603        __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1604}
1605#else
1606static inline void init_reserved_page(unsigned long pfn)
1607{
1608}
1609#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1610
1611/*
1612 * Initialised pages do not have PageReserved set. This function is
1613 * called for each range allocated by the bootmem allocator and
1614 * marks the pages PageReserved. The remaining valid pages are later
1615 * sent to the buddy page allocator.
1616 */
1617void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1618{
1619        unsigned long start_pfn = PFN_DOWN(start);
1620        unsigned long end_pfn = PFN_UP(end);
1621
1622        for (; start_pfn < end_pfn; start_pfn++) {
1623                if (pfn_valid(start_pfn)) {
1624                        struct page *page = pfn_to_page(start_pfn);
1625
1626                        init_reserved_page(start_pfn);
1627
1628                        /* Avoid false-positive PageTail() */
1629                        INIT_LIST_HEAD(&page->lru);
1630
1631                        /*
1632                         * no need for atomic set_bit because the struct
1633                         * page is not visible yet so nobody should
1634                         * access it yet.
1635                         */
1636                        __SetPageReserved(page);
1637                }
1638        }
1639}
1640
1641static void __free_pages_ok(struct page *page, unsigned int order,
1642                            fpi_t fpi_flags)
1643{
1644        unsigned long flags;
1645        int migratetype;
1646        unsigned long pfn = page_to_pfn(page);
1647        struct zone *zone = page_zone(page);
1648
1649        if (!free_pages_prepare(page, order, true, fpi_flags))
1650                return;
1651
1652        migratetype = get_pfnblock_migratetype(page, pfn);
1653
1654        spin_lock_irqsave(&zone->lock, flags);
1655        if (unlikely(has_isolate_pageblock(zone) ||
1656                is_migrate_isolate(migratetype))) {
1657                migratetype = get_pfnblock_migratetype(page, pfn);
1658        }
1659        __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1660        spin_unlock_irqrestore(&zone->lock, flags);
1661
1662        __count_vm_events(PGFREE, 1 << order);
1663}
1664
1665void __free_pages_core(struct page *page, unsigned int order)
1666{
1667        unsigned int nr_pages = 1 << order;
1668        struct page *p = page;
1669        unsigned int loop;
1670
1671        /*
1672         * When initializing the memmap, __init_single_page() sets the refcount
1673         * of all pages to 1 ("allocated"/"not free"). We have to set the
1674         * refcount of all involved pages to 0.
1675         */
1676        prefetchw(p);
1677        for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1678                prefetchw(p + 1);
1679                __ClearPageReserved(p);
1680                set_page_count(p, 0);
1681        }
1682        __ClearPageReserved(p);
1683        set_page_count(p, 0);
1684
1685        atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1686
1687        /*
1688         * Bypass PCP and place fresh pages right to the tail, primarily
1689         * relevant for memory onlining.
1690         */
1691        __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1692}
1693
1694#ifdef CONFIG_NUMA
1695
1696/*
1697 * During memory init memblocks map pfns to nids. The search is expensive and
1698 * this caches recent lookups. The implementation of __early_pfn_to_nid
1699 * treats start/end as pfns.
1700 */
1701struct mminit_pfnnid_cache {
1702        unsigned long last_start;
1703        unsigned long last_end;
1704        int last_nid;
1705};
1706
1707static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1708
1709/*
1710 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1711 */
1712static int __meminit __early_pfn_to_nid(unsigned long pfn,
1713                                        struct mminit_pfnnid_cache *state)
1714{
1715        unsigned long start_pfn, end_pfn;
1716        int nid;
1717
1718        if (state->last_start <= pfn && pfn < state->last_end)
1719                return state->last_nid;
1720
1721        nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1722        if (nid != NUMA_NO_NODE) {
1723                state->last_start = start_pfn;
1724                state->last_end = end_pfn;
1725                state->last_nid = nid;
1726        }
1727
1728        return nid;
1729}
1730
1731int __meminit early_pfn_to_nid(unsigned long pfn)
1732{
1733        static DEFINE_SPINLOCK(early_pfn_lock);
1734        int nid;
1735
1736        spin_lock(&early_pfn_lock);
1737        nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1738        if (nid < 0)
1739                nid = first_online_node;
1740        spin_unlock(&early_pfn_lock);
1741
1742        return nid;
1743}
1744#endif /* CONFIG_NUMA */
1745
1746void __init memblock_free_pages(struct page *page, unsigned long pfn,
1747                                                        unsigned int order)
1748{
1749        if (early_page_uninitialised(pfn))
1750                return;
1751        __free_pages_core(page, order);
1752}
1753
1754/*
1755 * Check that the whole (or subset of) a pageblock given by the interval of
1756 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1757 * with the migration of free compaction scanner. The scanners then need to
1758 * use only pfn_valid_within() check for arches that allow holes within
1759 * pageblocks.
1760 *
1761 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1762 *
1763 * It's possible on some configurations to have a setup like node0 node1 node0
1764 * i.e. it's possible that all pages within a zones range of pages do not
1765 * belong to a single zone. We assume that a border between node0 and node1
1766 * can occur within a single pageblock, but not a node0 node1 node0
1767 * interleaving within a single pageblock. It is therefore sufficient to check
1768 * the first and last page of a pageblock and avoid checking each individual
1769 * page in a pageblock.
1770 */
1771struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1772                                     unsigned long end_pfn, struct zone *zone)
1773{
1774        struct page *start_page;
1775        struct page *end_page;
1776
1777        /* end_pfn is one past the range we are checking */
1778        end_pfn--;
1779
1780        if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1781                return NULL;
1782
1783        start_page = pfn_to_online_page(start_pfn);
1784        if (!start_page)
1785                return NULL;
1786
1787        if (page_zone(start_page) != zone)
1788                return NULL;
1789
1790        end_page = pfn_to_page(end_pfn);
1791
1792        /* This gives a shorter code than deriving page_zone(end_page) */
1793        if (page_zone_id(start_page) != page_zone_id(end_page))
1794                return NULL;
1795
1796        return start_page;
1797}
1798
1799void set_zone_contiguous(struct zone *zone)
1800{
1801        unsigned long block_start_pfn = zone->zone_start_pfn;
1802        unsigned long block_end_pfn;
1803
1804        block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1805        for (; block_start_pfn < zone_end_pfn(zone);
1806                        block_start_pfn = block_end_pfn,
1807                         block_end_pfn += pageblock_nr_pages) {
1808
1809                block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1810
1811                if (!__pageblock_pfn_to_page(block_start_pfn,
1812                                             block_end_pfn, zone))
1813                        return;
1814                cond_resched();
1815        }
1816
1817        /* We confirm that there is no hole */
1818        zone->contiguous = true;
1819}
1820
1821void clear_zone_contiguous(struct zone *zone)
1822{
1823        zone->contiguous = false;
1824}
1825
1826#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827static void __init deferred_free_range(unsigned long pfn,
1828                                       unsigned long nr_pages)
1829{
1830        struct page *page;
1831        unsigned long i;
1832
1833        if (!nr_pages)
1834                return;
1835
1836        page = pfn_to_page(pfn);
1837
1838        /* Free a large naturally-aligned chunk if possible */
1839        if (nr_pages == pageblock_nr_pages &&
1840            (pfn & (pageblock_nr_pages - 1)) == 0) {
1841                set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1842                __free_pages_core(page, pageblock_order);
1843                return;
1844        }
1845
1846        for (i = 0; i < nr_pages; i++, page++, pfn++) {
1847                if ((pfn & (pageblock_nr_pages - 1)) == 0)
1848                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1849                __free_pages_core(page, 0);
1850        }
1851}
1852
1853/* Completion tracking for deferred_init_memmap() threads */
1854static atomic_t pgdat_init_n_undone __initdata;
1855static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1856
1857static inline void __init pgdat_init_report_one_done(void)
1858{
1859        if (atomic_dec_and_test(&pgdat_init_n_undone))
1860                complete(&pgdat_init_all_done_comp);
1861}
1862
1863/*
1864 * Returns true if page needs to be initialized or freed to buddy allocator.
1865 *
1866 * First we check if pfn is valid on architectures where it is possible to have
1867 * holes within pageblock_nr_pages. On systems where it is not possible, this
1868 * function is optimized out.
1869 *
1870 * Then, we check if a current large page is valid by only checking the validity
1871 * of the head pfn.
1872 */
1873static inline bool __init deferred_pfn_valid(unsigned long pfn)
1874{
1875        if (!pfn_valid_within(pfn))
1876                return false;
1877        if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1878                return false;
1879        return true;
1880}
1881
1882/*
1883 * Free pages to buddy allocator. Try to free aligned pages in
1884 * pageblock_nr_pages sizes.
1885 */
1886static void __init deferred_free_pages(unsigned long pfn,
1887                                       unsigned long end_pfn)
1888{
1889        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1890        unsigned long nr_free = 0;
1891
1892        for (; pfn < end_pfn; pfn++) {
1893                if (!deferred_pfn_valid(pfn)) {
1894                        deferred_free_range(pfn - nr_free, nr_free);
1895                        nr_free = 0;
1896                } else if (!(pfn & nr_pgmask)) {
1897                        deferred_free_range(pfn - nr_free, nr_free);
1898                        nr_free = 1;
1899                } else {
1900                        nr_free++;
1901                }
1902        }
1903        /* Free the last block of pages to allocator */
1904        deferred_free_range(pfn - nr_free, nr_free);
1905}
1906
1907/*
1908 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1909 * by performing it only once every pageblock_nr_pages.
1910 * Return number of pages initialized.
1911 */
1912static unsigned long  __init deferred_init_pages(struct zone *zone,
1913                                                 unsigned long pfn,
1914                                                 unsigned long end_pfn)
1915{
1916        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1917        int nid = zone_to_nid(zone);
1918        unsigned long nr_pages = 0;
1919        int zid = zone_idx(zone);
1920        struct page *page = NULL;
1921
1922        for (; pfn < end_pfn; pfn++) {
1923                if (!deferred_pfn_valid(pfn)) {
1924                        page = NULL;
1925                        continue;
1926                } else if (!page || !(pfn & nr_pgmask)) {
1927                        page = pfn_to_page(pfn);
1928                } else {
1929                        page++;
1930                }
1931                __init_single_page(page, pfn, zid, nid);
1932                nr_pages++;
1933        }
1934        return (nr_pages);
1935}
1936
1937/*
1938 * This function is meant to pre-load the iterator for the zone init.
1939 * Specifically it walks through the ranges until we are caught up to the
1940 * first_init_pfn value and exits there. If we never encounter the value we
1941 * return false indicating there are no valid ranges left.
1942 */
1943static bool __init
1944deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1945                                    unsigned long *spfn, unsigned long *epfn,
1946                                    unsigned long first_init_pfn)
1947{
1948        u64 j;
1949
1950        /*
1951         * Start out by walking through the ranges in this zone that have
1952         * already been initialized. We don't need to do anything with them
1953         * so we just need to flush them out of the system.
1954         */
1955        for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1956                if (*epfn <= first_init_pfn)
1957                        continue;
1958                if (*spfn < first_init_pfn)
1959                        *spfn = first_init_pfn;
1960                *i = j;
1961                return true;
1962        }
1963
1964        return false;
1965}
1966
1967/*
1968 * Initialize and free pages. We do it in two loops: first we initialize
1969 * struct page, then free to buddy allocator, because while we are
1970 * freeing pages we can access pages that are ahead (computing buddy
1971 * page in __free_one_page()).
1972 *
1973 * In order to try and keep some memory in the cache we have the loop
1974 * broken along max page order boundaries. This way we will not cause
1975 * any issues with the buddy page computation.
1976 */
1977static unsigned long __init
1978deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1979                       unsigned long *end_pfn)
1980{
1981        unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1982        unsigned long spfn = *start_pfn, epfn = *end_pfn;
1983        unsigned long nr_pages = 0;
1984        u64 j = *i;
1985
1986        /* First we loop through and initialize the page values */
1987        for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1988                unsigned long t;
1989
1990                if (mo_pfn <= *start_pfn)
1991                        break;
1992
1993                t = min(mo_pfn, *end_pfn);
1994                nr_pages += deferred_init_pages(zone, *start_pfn, t);
1995
1996                if (mo_pfn < *end_pfn) {
1997                        *start_pfn = mo_pfn;
1998                        break;
1999                }
2000        }
2001
2002        /* Reset values and now loop through freeing pages as needed */
2003        swap(j, *i);
2004
2005        for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2006                unsigned long t;
2007
2008                if (mo_pfn <= spfn)
2009                        break;
2010
2011                t = min(mo_pfn, epfn);
2012                deferred_free_pages(spfn, t);
2013
2014                if (mo_pfn <= epfn)
2015                        break;
2016        }
2017
2018        return nr_pages;
2019}
2020
2021static void __init
2022deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2023                           void *arg)
2024{
2025        unsigned long spfn, epfn;
2026        struct zone *zone = arg;
2027        u64 i;
2028
2029        deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2030
2031        /*
2032         * Initialize and free pages in MAX_ORDER sized increments so that we
2033         * can avoid introducing any issues with the buddy allocator.
2034         */
2035        while (spfn < end_pfn) {
2036                deferred_init_maxorder(&i, zone, &spfn, &epfn);
2037                cond_resched();
2038        }
2039}
2040
2041/* An arch may override for more concurrency. */
2042__weak int __init
2043deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2044{
2045        return 1;
2046}
2047
2048/* Initialise remaining memory on a node */
2049static int __init deferred_init_memmap(void *data)
2050{
2051        pg_data_t *pgdat = data;
2052        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053        unsigned long spfn = 0, epfn = 0;
2054        unsigned long first_init_pfn, flags;
2055        unsigned long start = jiffies;
2056        struct zone *zone;
2057        int zid, max_threads;
2058        u64 i;
2059
2060        /* Bind memory initialisation thread to a local node if possible */
2061        if (!cpumask_empty(cpumask))
2062                set_cpus_allowed_ptr(current, cpumask);
2063
2064        pgdat_resize_lock(pgdat, &flags);
2065        first_init_pfn = pgdat->first_deferred_pfn;
2066        if (first_init_pfn == ULONG_MAX) {
2067                pgdat_resize_unlock(pgdat, &flags);
2068                pgdat_init_report_one_done();
2069                return 0;
2070        }
2071
2072        /* Sanity check boundaries */
2073        BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2074        BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2075        pgdat->first_deferred_pfn = ULONG_MAX;
2076
2077        /*
2078         * Once we unlock here, the zone cannot be grown anymore, thus if an
2079         * interrupt thread must allocate this early in boot, zone must be
2080         * pre-grown prior to start of deferred page initialization.
2081         */
2082        pgdat_resize_unlock(pgdat, &flags);
2083
2084        /* Only the highest zone is deferred so find it */
2085        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2086                zone = pgdat->node_zones + zid;
2087                if (first_init_pfn < zone_end_pfn(zone))
2088                        break;
2089        }
2090
2091        /* If the zone is empty somebody else may have cleared out the zone */
2092        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2093                                                 first_init_pfn))
2094                goto zone_empty;
2095
2096        max_threads = deferred_page_init_max_threads(cpumask);
2097
2098        while (spfn < epfn) {
2099                unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2100                struct padata_mt_job job = {
2101                        .thread_fn   = deferred_init_memmap_chunk,
2102                        .fn_arg      = zone,
2103                        .start       = spfn,
2104                        .size        = epfn_align - spfn,
2105                        .align       = PAGES_PER_SECTION,
2106                        .min_chunk   = PAGES_PER_SECTION,
2107                        .max_threads = max_threads,
2108                };
2109
2110                padata_do_multithreaded(&job);
2111                deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2112                                                    epfn_align);
2113        }
2114zone_empty:
2115        /* Sanity check that the next zone really is unpopulated */
2116        WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2117
2118        pr_info("node %d deferred pages initialised in %ums\n",
2119                pgdat->node_id, jiffies_to_msecs(jiffies - start));
2120
2121        pgdat_init_report_one_done();
2122        return 0;
2123}
2124
2125/*
2126 * If this zone has deferred pages, try to grow it by initializing enough
2127 * deferred pages to satisfy the allocation specified by order, rounded up to
2128 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2129 * of SECTION_SIZE bytes by initializing struct pages in increments of
2130 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2131 *
2132 * Return true when zone was grown, otherwise return false. We return true even
2133 * when we grow less than requested, to let the caller decide if there are
2134 * enough pages to satisfy the allocation.
2135 *
2136 * Note: We use noinline because this function is needed only during boot, and
2137 * it is called from a __ref function _deferred_grow_zone. This way we are
2138 * making sure that it is not inlined into permanent text section.
2139 */
2140static noinline bool __init
2141deferred_grow_zone(struct zone *zone, unsigned int order)
2142{
2143        unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2144        pg_data_t *pgdat = zone->zone_pgdat;
2145        unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2146        unsigned long spfn, epfn, flags;
2147        unsigned long nr_pages = 0;
2148        u64 i;
2149
2150        /* Only the last zone may have deferred pages */
2151        if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2152                return false;
2153
2154        pgdat_resize_lock(pgdat, &flags);
2155
2156        /*
2157         * If someone grew this zone while we were waiting for spinlock, return
2158         * true, as there might be enough pages already.
2159         */
2160        if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2161                pgdat_resize_unlock(pgdat, &flags);
2162                return true;
2163        }
2164
2165        /* If the zone is empty somebody else may have cleared out the zone */
2166        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2167                                                 first_deferred_pfn)) {
2168                pgdat->first_deferred_pfn = ULONG_MAX;
2169                pgdat_resize_unlock(pgdat, &flags);
2170                /* Retry only once. */
2171                return first_deferred_pfn != ULONG_MAX;
2172        }
2173
2174        /*
2175         * Initialize and free pages in MAX_ORDER sized increments so
2176         * that we can avoid introducing any issues with the buddy
2177         * allocator.
2178         */
2179        while (spfn < epfn) {
2180                /* update our first deferred PFN for this section */
2181                first_deferred_pfn = spfn;
2182
2183                nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2184                touch_nmi_watchdog();
2185
2186                /* We should only stop along section boundaries */
2187                if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2188                        continue;
2189
2190                /* If our quota has been met we can stop here */
2191                if (nr_pages >= nr_pages_needed)
2192                        break;
2193        }
2194
2195        pgdat->first_deferred_pfn = spfn;
2196        pgdat_resize_unlock(pgdat, &flags);
2197
2198        return nr_pages > 0;
2199}
2200
2201/*
2202 * deferred_grow_zone() is __init, but it is called from
2203 * get_page_from_freelist() during early boot until deferred_pages permanently
2204 * disables this call. This is why we have refdata wrapper to avoid warning,
2205 * and to ensure that the function body gets unloaded.
2206 */
2207static bool __ref
2208_deferred_grow_zone(struct zone *zone, unsigned int order)
2209{
2210        return deferred_grow_zone(zone, order);
2211}
2212
2213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2214
2215void __init page_alloc_init_late(void)
2216{
2217        struct zone *zone;
2218        int nid;
2219
2220#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2221
2222        /* There will be num_node_state(N_MEMORY) threads */
2223        atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2224        for_each_node_state(nid, N_MEMORY) {
2225                kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2226        }
2227
2228        /* Block until all are initialised */
2229        wait_for_completion(&pgdat_init_all_done_comp);
2230
2231        /*
2232         * We initialized the rest of the deferred pages.  Permanently disable
2233         * on-demand struct page initialization.
2234         */
2235        static_branch_disable(&deferred_pages);
2236
2237        /* Reinit limits that are based on free pages after the kernel is up */
2238        files_maxfiles_init();
2239#endif
2240
2241        buffer_init();
2242
2243        /* Discard memblock private memory */
2244        memblock_discard();
2245
2246        for_each_node_state(nid, N_MEMORY)
2247                shuffle_free_memory(NODE_DATA(nid));
2248
2249        for_each_populated_zone(zone)
2250                set_zone_contiguous(zone);
2251}
2252
2253#ifdef CONFIG_CMA
2254/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2255void __init init_cma_reserved_pageblock(struct page *page)
2256{
2257        unsigned i = pageblock_nr_pages;
2258        struct page *p = page;
2259
2260        do {
2261                __ClearPageReserved(p);
2262                set_page_count(p, 0);
2263        } while (++p, --i);
2264
2265        set_pageblock_migratetype(page, MIGRATE_CMA);
2266
2267        if (pageblock_order >= MAX_ORDER) {
2268                i = pageblock_nr_pages;
2269                p = page;
2270                do {
2271                        set_page_refcounted(p);
2272                        __free_pages(p, MAX_ORDER - 1);
2273                        p += MAX_ORDER_NR_PAGES;
2274                } while (i -= MAX_ORDER_NR_PAGES);
2275        } else {
2276                set_page_refcounted(page);
2277                __free_pages(page, pageblock_order);
2278        }
2279
2280        adjust_managed_page_count(page, pageblock_nr_pages);
2281        page_zone(page)->cma_pages += pageblock_nr_pages;
2282}
2283#endif
2284
2285/*
2286 * The order of subdivision here is critical for the IO subsystem.
2287 * Please do not alter this order without good reasons and regression
2288 * testing. Specifically, as large blocks of memory are subdivided,
2289 * the order in which smaller blocks are delivered depends on the order
2290 * they're subdivided in this function. This is the primary factor
2291 * influencing the order in which pages are delivered to the IO
2292 * subsystem according to empirical testing, and this is also justified
2293 * by considering the behavior of a buddy system containing a single
2294 * large block of memory acted on by a series of small allocations.
2295 * This behavior is a critical factor in sglist merging's success.
2296 *
2297 * -- nyc
2298 */
2299static inline void expand(struct zone *zone, struct page *page,
2300        int low, int high, int migratetype)
2301{
2302        unsigned long size = 1 << high;
2303
2304        while (high > low) {
2305                high--;
2306                size >>= 1;
2307                VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2308
2309                /*
2310                 * Mark as guard pages (or page), that will allow to
2311                 * merge back to allocator when buddy will be freed.
2312                 * Corresponding page table entries will not be touched,
2313                 * pages will stay not present in virtual address space
2314                 */
2315                if (set_page_guard(zone, &page[size], high, migratetype))
2316                        continue;
2317
2318                add_to_free_list(&page[size], zone, high, migratetype);
2319                set_buddy_order(&page[size], high);
2320        }
2321}
2322
2323static void check_new_page_bad(struct page *page)
2324{
2325        if (unlikely(page->flags & __PG_HWPOISON)) {
2326                /* Don't complain about hwpoisoned pages */
2327                page_mapcount_reset(page); /* remove PageBuddy */
2328                return;
2329        }
2330
2331        bad_page(page,
2332                 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2333}
2334
2335/*
2336 * This page is about to be returned from the page allocator
2337 */
2338static inline int check_new_page(struct page *page)
2339{
2340        if (likely(page_expected_state(page,
2341                                PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2342                return 0;
2343
2344        check_new_page_bad(page);
2345        return 1;
2346}
2347
2348#ifdef CONFIG_DEBUG_VM
2349/*
2350 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2351 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2352 * also checked when pcp lists are refilled from the free lists.
2353 */
2354static inline bool check_pcp_refill(struct page *page)
2355{
2356        if (debug_pagealloc_enabled_static())
2357                return check_new_page(page);
2358        else
2359                return false;
2360}
2361
2362static inline bool check_new_pcp(struct page *page)
2363{
2364        return check_new_page(page);
2365}
2366#else
2367/*
2368 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2369 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2370 * enabled, they are also checked when being allocated from the pcp lists.
2371 */
2372static inline bool check_pcp_refill(struct page *page)
2373{
2374        return check_new_page(page);
2375}
2376static inline bool check_new_pcp(struct page *page)
2377{
2378        if (debug_pagealloc_enabled_static())
2379                return check_new_page(page);
2380        else
2381                return false;
2382}
2383#endif /* CONFIG_DEBUG_VM */
2384
2385static bool check_new_pages(struct page *page, unsigned int order)
2386{
2387        int i;
2388        for (i = 0; i < (1 << order); i++) {
2389                struct page *p = page + i;
2390
2391                if (unlikely(check_new_page(p)))
2392                        return true;
2393        }
2394
2395        return false;
2396}
2397
2398inline void post_alloc_hook(struct page *page, unsigned int order,
2399                                gfp_t gfp_flags)
2400{
2401        set_page_private(page, 0);
2402        set_page_refcounted(page);
2403
2404        arch_alloc_page(page, order);
2405        debug_pagealloc_map_pages(page, 1 << order);
2406
2407        /*
2408         * Page unpoisoning must happen before memory initialization.
2409         * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410         * allocations and the page unpoisoning code will complain.
2411         */
2412        kernel_unpoison_pages(page, 1 << order);
2413
2414        /*
2415         * As memory initialization might be integrated into KASAN,
2416         * kasan_alloc_pages and kernel_init_free_pages must be
2417         * kept together to avoid discrepancies in behavior.
2418         */
2419        if (kasan_has_integrated_init()) {
2420                kasan_alloc_pages(page, order, gfp_flags);
2421        } else {
2422                bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2423
2424                kasan_unpoison_pages(page, order, init);
2425                if (init)
2426                        kernel_init_free_pages(page, 1 << order,
2427                                               gfp_flags & __GFP_ZEROTAGS);
2428        }
2429
2430        set_page_owner(page, order, gfp_flags);
2431}
2432
2433static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2434                                                        unsigned int alloc_flags)
2435{
2436        post_alloc_hook(page, order, gfp_flags);
2437
2438        if (order && (gfp_flags & __GFP_COMP))
2439                prep_compound_page(page, order);
2440
2441        /*
2442         * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2443         * allocate the page. The expectation is that the caller is taking
2444         * steps that will free more memory. The caller should avoid the page
2445         * being used for !PFMEMALLOC purposes.
2446         */
2447        if (alloc_flags & ALLOC_NO_WATERMARKS)
2448                set_page_pfmemalloc(page);
2449        else
2450                clear_page_pfmemalloc(page);
2451}
2452
2453/*
2454 * Go through the free lists for the given migratetype and remove
2455 * the smallest available page from the freelists
2456 */
2457static __always_inline
2458struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2459                                                int migratetype)
2460{
2461        unsigned int current_order;
2462        struct free_area *area;
2463        struct page *page;
2464
2465        /* Find a page of the appropriate size in the preferred list */
2466        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2467                area = &(zone->free_area[current_order]);
2468                page = get_page_from_free_area(area, migratetype);
2469                if (!page)
2470                        continue;
2471                del_page_from_free_list(page, zone, current_order);
2472                expand(zone, page, order, current_order, migratetype);
2473                set_pcppage_migratetype(page, migratetype);
2474                return page;
2475        }
2476
2477        return NULL;
2478}
2479
2480
2481/*
2482 * This array describes the order lists are fallen back to when
2483 * the free lists for the desirable migrate type are depleted
2484 */
2485static int fallbacks[MIGRATE_TYPES][3] = {
2486        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2487        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2488        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2489#ifdef CONFIG_CMA
2490        [MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2491#endif
2492#ifdef CONFIG_MEMORY_ISOLATION
2493        [MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2494#endif
2495};
2496
2497#ifdef CONFIG_CMA
2498static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2499                                        unsigned int order)
2500{
2501        return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2502}
2503#else
2504static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2505                                        unsigned int order) { return NULL; }
2506#endif
2507
2508/*
2509 * Move the free pages in a range to the freelist tail of the requested type.
2510 * Note that start_page and end_pages are not aligned on a pageblock
2511 * boundary. If alignment is required, use move_freepages_block()
2512 */
2513static int move_freepages(struct zone *zone,
2514                          unsigned long start_pfn, unsigned long end_pfn,
2515                          int migratetype, int *num_movable)
2516{
2517        struct page *page;
2518        unsigned long pfn;
2519        unsigned int order;
2520        int pages_moved = 0;
2521
2522        for (pfn = start_pfn; pfn <= end_pfn;) {
2523                if (!pfn_valid_within(pfn)) {
2524                        pfn++;
2525                        continue;
2526                }
2527
2528                page = pfn_to_page(pfn);
2529                if (!PageBuddy(page)) {
2530                        /*
2531                         * We assume that pages that could be isolated for
2532                         * migration are movable. But we don't actually try
2533                         * isolating, as that would be expensive.
2534                         */
2535                        if (num_movable &&
2536                                        (PageLRU(page) || __PageMovable(page)))
2537                                (*num_movable)++;
2538                        pfn++;
2539                        continue;
2540                }
2541
2542                /* Make sure we are not inadvertently changing nodes */
2543                VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2544                VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2545
2546                order = buddy_order(page);
2547                move_to_free_list(page, zone, order, migratetype);
2548                pfn += 1 << order;
2549                pages_moved += 1 << order;
2550        }
2551
2552        return pages_moved;
2553}
2554
2555int move_freepages_block(struct zone *zone, struct page *page,
2556                                int migratetype, int *num_movable)
2557{
2558        unsigned long start_pfn, end_pfn, pfn;
2559
2560        if (num_movable)
2561                *num_movable = 0;
2562
2563        pfn = page_to_pfn(page);
2564        start_pfn = pfn & ~(pageblock_nr_pages - 1);
2565        end_pfn = start_pfn + pageblock_nr_pages - 1;
2566
2567        /* Do not cross zone boundaries */
2568        if (!zone_spans_pfn(zone, start_pfn))
2569                start_pfn = pfn;
2570        if (!zone_spans_pfn(zone, end_pfn))
2571                return 0;
2572
2573        return move_freepages(zone, start_pfn, end_pfn, migratetype,
2574                                                                num_movable);
2575}
2576
2577static void change_pageblock_range(struct page *pageblock_page,
2578                                        int start_order, int migratetype)
2579{
2580        int nr_pageblocks = 1 << (start_order - pageblock_order);
2581
2582        while (nr_pageblocks--) {
2583                set_pageblock_migratetype(pageblock_page, migratetype);
2584                pageblock_page += pageblock_nr_pages;
2585        }
2586}
2587
2588/*
2589 * When we are falling back to another migratetype during allocation, try to
2590 * steal extra free pages from the same pageblocks to satisfy further
2591 * allocations, instead of polluting multiple pageblocks.
2592 *
2593 * If we are stealing a relatively large buddy page, it is likely there will
2594 * be more free pages in the pageblock, so try to steal them all. For
2595 * reclaimable and unmovable allocations, we steal regardless of page size,
2596 * as fragmentation caused by those allocations polluting movable pageblocks
2597 * is worse than movable allocations stealing from unmovable and reclaimable
2598 * pageblocks.
2599 */
2600static bool can_steal_fallback(unsigned int order, int start_mt)
2601{
2602        /*
2603         * Leaving this order check is intended, although there is
2604         * relaxed order check in next check. The reason is that
2605         * we can actually steal whole pageblock if this condition met,
2606         * but, below check doesn't guarantee it and that is just heuristic
2607         * so could be changed anytime.
2608         */
2609        if (order >= pageblock_order)
2610                return true;
2611
2612        if (order >= pageblock_order / 2 ||
2613                start_mt == MIGRATE_RECLAIMABLE ||
2614                start_mt == MIGRATE_UNMOVABLE ||
2615                page_group_by_mobility_disabled)
2616                return true;
2617
2618        return false;
2619}
2620
2621static inline bool boost_watermark(struct zone *zone)
2622{
2623        unsigned long max_boost;
2624
2625        if (!watermark_boost_factor)
2626                return false;
2627        /*
2628         * Don't bother in zones that are unlikely to produce results.
2629         * On small machines, including kdump capture kernels running
2630         * in a small area, boosting the watermark can cause an out of
2631         * memory situation immediately.
2632         */
2633        if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2634                return false;
2635
2636        max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2637                        watermark_boost_factor, 10000);
2638
2639        /*
2640         * high watermark may be uninitialised if fragmentation occurs
2641         * very early in boot so do not boost. We do not fall
2642         * through and boost by pageblock_nr_pages as failing
2643         * allocations that early means that reclaim is not going
2644         * to help and it may even be impossible to reclaim the
2645         * boosted watermark resulting in a hang.
2646         */
2647        if (!max_boost)
2648                return false;
2649
2650        max_boost = max(pageblock_nr_pages, max_boost);
2651
2652        zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2653                max_boost);
2654
2655        return true;
2656}
2657
2658/*
2659 * This function implements actual steal behaviour. If order is large enough,
2660 * we can steal whole pageblock. If not, we first move freepages in this
2661 * pageblock to our migratetype and determine how many already-allocated pages
2662 * are there in the pageblock with a compatible migratetype. If at least half
2663 * of pages are free or compatible, we can change migratetype of the pageblock
2664 * itself, so pages freed in the future will be put on the correct free list.
2665 */
2666static void steal_suitable_fallback(struct zone *zone, struct page *page,
2667                unsigned int alloc_flags, int start_type, bool whole_block)
2668{
2669        unsigned int current_order = buddy_order(page);
2670        int free_pages, movable_pages, alike_pages;
2671        int old_block_type;
2672
2673        old_block_type = get_pageblock_migratetype(page);
2674
2675        /*
2676         * This can happen due to races and we want to prevent broken
2677         * highatomic accounting.
2678         */
2679        if (is_migrate_highatomic(old_block_type))
2680                goto single_page;
2681
2682        /* Take ownership for orders >= pageblock_order */
2683        if (current_order >= pageblock_order) {
2684                change_pageblock_range(page, current_order, start_type);
2685                goto single_page;
2686        }
2687
2688        /*
2689         * Boost watermarks to increase reclaim pressure to reduce the
2690         * likelihood of future fallbacks. Wake kswapd now as the node
2691         * may be balanced overall and kswapd will not wake naturally.
2692         */
2693        if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2694                set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2695
2696        /* We are not allowed to try stealing from the whole block */
2697        if (!whole_block)
2698                goto single_page;
2699
2700        free_pages = move_freepages_block(zone, page, start_type,
2701                                                &movable_pages);
2702        /*
2703         * Determine how many pages are compatible with our allocation.
2704         * For movable allocation, it's the number of movable pages which
2705         * we just obtained. For other types it's a bit more tricky.
2706         */
2707        if (start_type == MIGRATE_MOVABLE) {
2708                alike_pages = movable_pages;
2709        } else {
2710                /*
2711                 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2712                 * to MOVABLE pageblock, consider all non-movable pages as
2713                 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2714                 * vice versa, be conservative since we can't distinguish the
2715                 * exact migratetype of non-movable pages.
2716                 */
2717                if (old_block_type == MIGRATE_MOVABLE)
2718                        alike_pages = pageblock_nr_pages
2719                                                - (free_pages + movable_pages);
2720                else
2721                        alike_pages = 0;
2722        }
2723
2724        /* moving whole block can fail due to zone boundary conditions */
2725        if (!free_pages)
2726                goto single_page;
2727
2728        /*
2729         * If a sufficient number of pages in the block are either free or of
2730         * comparable migratability as our allocation, claim the whole block.
2731         */
2732        if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2733                        page_group_by_mobility_disabled)
2734                set_pageblock_migratetype(page, start_type);
2735
2736        return;
2737
2738single_page:
2739        move_to_free_list(page, zone, current_order, start_type);
2740}
2741
2742/*
2743 * Check whether there is a suitable fallback freepage with requested order.
2744 * If only_stealable is true, this function returns fallback_mt only if
2745 * we can steal other freepages all together. This would help to reduce
2746 * fragmentation due to mixed migratetype pages in one pageblock.
2747 */
2748int find_suitable_fallback(struct free_area *area, unsigned int order,
2749                        int migratetype, bool only_stealable, bool *can_steal)
2750{
2751        int i;
2752        int fallback_mt;
2753
2754        if (area->nr_free == 0)
2755                return -1;
2756
2757        *can_steal = false;
2758        for (i = 0;; i++) {
2759                fallback_mt = fallbacks[migratetype][i];
2760                if (fallback_mt == MIGRATE_TYPES)
2761                        break;
2762
2763                if (free_area_empty(area, fallback_mt))
2764                        continue;
2765
2766                if (can_steal_fallback(order, migratetype))
2767                        *can_steal = true;
2768
2769                if (!only_stealable)
2770                        return fallback_mt;
2771
2772                if (*can_steal)
2773                        return fallback_mt;
2774        }
2775
2776        return -1;
2777}
2778
2779/*
2780 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2781 * there are no empty page blocks that contain a page with a suitable order
2782 */
2783static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2784                                unsigned int alloc_order)
2785{
2786        int mt;
2787        unsigned long max_managed, flags;
2788
2789        /*
2790         * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2791         * Check is race-prone but harmless.
2792         */
2793        max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2794        if (zone->nr_reserved_highatomic >= max_managed)
2795                return;
2796
2797        spin_lock_irqsave(&zone->lock, flags);
2798
2799        /* Recheck the nr_reserved_highatomic limit under the lock */
2800        if (zone->nr_reserved_highatomic >= max_managed)
2801                goto out_unlock;
2802
2803        /* Yoink! */
2804        mt = get_pageblock_migratetype(page);
2805        if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2806            && !is_migrate_cma(mt)) {
2807                zone->nr_reserved_highatomic += pageblock_nr_pages;
2808                set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2809                move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2810        }
2811
2812out_unlock:
2813        spin_unlock_irqrestore(&zone->lock, flags);
2814}
2815
2816/*
2817 * Used when an allocation is about to fail under memory pressure. This
2818 * potentially hurts the reliability of high-order allocations when under
2819 * intense memory pressure but failed atomic allocations should be easier
2820 * to recover from than an OOM.
2821 *
2822 * If @force is true, try to unreserve a pageblock even though highatomic
2823 * pageblock is exhausted.
2824 */
2825static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2826                                                bool force)
2827{
2828        struct zonelist *zonelist = ac->zonelist;
2829        unsigned long flags;
2830        struct zoneref *z;
2831        struct zone *zone;
2832        struct page *page;
2833        int order;
2834        bool ret;
2835
2836        for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2837                                                                ac->nodemask) {
2838                /*
2839                 * Preserve at least one pageblock unless memory pressure
2840                 * is really high.
2841                 */
2842                if (!force && zone->nr_reserved_highatomic <=
2843                                        pageblock_nr_pages)
2844                        continue;
2845
2846                spin_lock_irqsave(&zone->lock, flags);
2847                for (order = 0; order < MAX_ORDER; order++) {
2848                        struct free_area *area = &(zone->free_area[order]);
2849
2850                        page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2851                        if (!page)
2852                                continue;
2853
2854                        /*
2855                         * In page freeing path, migratetype change is racy so
2856                         * we can counter several free pages in a pageblock
2857                         * in this loop although we changed the pageblock type
2858                         * from highatomic to ac->migratetype. So we should
2859                         * adjust the count once.
2860                         */
2861                        if (is_migrate_highatomic_page(page)) {
2862                                /*
2863                                 * It should never happen but changes to
2864                                 * locking could inadvertently allow a per-cpu
2865                                 * drain to add pages to MIGRATE_HIGHATOMIC
2866                                 * while unreserving so be safe and watch for
2867                                 * underflows.
2868                                 */
2869                                zone->nr_reserved_highatomic -= min(
2870                                                pageblock_nr_pages,
2871                                                zone->nr_reserved_highatomic);
2872                        }
2873
2874                        /*
2875                         * Convert to ac->migratetype and avoid the normal
2876                         * pageblock stealing heuristics. Minimally, the caller
2877                         * is doing the work and needs the pages. More
2878                         * importantly, if the block was always converted to
2879                         * MIGRATE_UNMOVABLE or another type then the number
2880                         * of pageblocks that cannot be completely freed
2881                         * may increase.
2882                         */
2883                        set_pageblock_migratetype(page, ac->migratetype);
2884                        ret = move_freepages_block(zone, page, ac->migratetype,
2885                                                                        NULL);
2886                        if (ret) {
2887                                spin_unlock_irqrestore(&zone->lock, flags);
2888                                return ret;
2889                        }
2890                }
2891                spin_unlock_irqrestore(&zone->lock, flags);
2892        }
2893
2894        return false;
2895}
2896
2897/*
2898 * Try finding a free buddy page on the fallback list and put it on the free
2899 * list of requested migratetype, possibly along with other pages from the same
2900 * block, depending on fragmentation avoidance heuristics. Returns true if
2901 * fallback was found so that __rmqueue_smallest() can grab it.
2902 *
2903 * The use of signed ints for order and current_order is a deliberate
2904 * deviation from the rest of this file, to make the for loop
2905 * condition simpler.
2906 */
2907static __always_inline bool
2908__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2909                                                unsigned int alloc_flags)
2910{
2911        struct free_area *area;
2912        int current_order;
2913        int min_order = order;
2914        struct page *page;
2915        int fallback_mt;
2916        bool can_steal;
2917
2918        /*
2919         * Do not steal pages from freelists belonging to other pageblocks
2920         * i.e. orders < pageblock_order. If there are no local zones free,
2921         * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2922         */
2923        if (alloc_flags & ALLOC_NOFRAGMENT)
2924                min_order = pageblock_order;
2925
2926        /*
2927         * Find the largest available free page in the other list. This roughly
2928         * approximates finding the pageblock with the most free pages, which
2929         * would be too costly to do exactly.
2930         */
2931        for (current_order = MAX_ORDER - 1; current_order >= min_order;
2932                                --current_order) {
2933                area = &(zone->free_area[current_order]);
2934                fallback_mt = find_suitable_fallback(area, current_order,
2935                                start_migratetype, false, &can_steal);
2936                if (fallback_mt == -1)
2937                        continue;
2938
2939                /*
2940                 * We cannot steal all free pages from the pageblock and the
2941                 * requested migratetype is movable. In that case it's better to
2942                 * steal and split the smallest available page instead of the
2943                 * largest available page, because even if the next movable
2944                 * allocation falls back into a different pageblock than this
2945                 * one, it won't cause permanent fragmentation.
2946                 */
2947                if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2948                                        && current_order > order)
2949                        goto find_smallest;
2950
2951                goto do_steal;
2952        }
2953
2954        return false;
2955
2956find_smallest:
2957        for (current_order = order; current_order < MAX_ORDER;
2958                                                        current_order++) {
2959                area = &(zone->free_area[current_order]);
2960                fallback_mt = find_suitable_fallback(area, current_order,
2961                                start_migratetype, false, &can_steal);
2962                if (fallback_mt != -1)
2963                        break;
2964        }
2965
2966        /*
2967         * This should not happen - we already found a suitable fallback
2968         * when looking for the largest page.
2969         */
2970        VM_BUG_ON(current_order == MAX_ORDER);
2971
2972do_steal:
2973        page = get_page_from_free_area(area, fallback_mt);
2974
2975        steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2976                                                                can_steal);
2977
2978        trace_mm_page_alloc_extfrag(page, order, current_order,
2979                start_migratetype, fallback_mt);
2980
2981        return true;
2982
2983}
2984
2985/*
2986 * Do the hard work of removing an element from the buddy allocator.
2987 * Call me with the zone->lock already held.
2988 */
2989static __always_inline struct page *
2990__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2991                                                unsigned int alloc_flags)
2992{
2993        struct page *page;
2994
2995        if (IS_ENABLED(CONFIG_CMA)) {
2996                /*
2997                 * Balance movable allocations between regular and CMA areas by
2998                 * allocating from CMA when over half of the zone's free memory
2999                 * is in the CMA area.
3000                 */
3001                if (alloc_flags & ALLOC_CMA &&
3002                    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3003                    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3004                        page = __rmqueue_cma_fallback(zone, order);
3005                        if (page)
3006                                goto out;
3007                }
3008        }
3009retry:
3010        page = __rmqueue_smallest(zone, order, migratetype);
3011        if (unlikely(!page)) {
3012                if (alloc_flags & ALLOC_CMA)
3013                        page = __rmqueue_cma_fallback(zone, order);
3014
3015                if (!page && __rmqueue_fallback(zone, order, migratetype,
3016                                                                alloc_flags))
3017                        goto retry;
3018        }
3019out:
3020        if (page)
3021                trace_mm_page_alloc_zone_locked(page, order, migratetype);
3022        return page;
3023}
3024
3025/*
3026 * Obtain a specified number of elements from the buddy allocator, all under
3027 * a single hold of the lock, for efficiency.  Add them to the supplied list.
3028 * Returns the number of new pages which were placed at *list.
3029 */
3030static int rmqueue_bulk(struct zone *zone, unsigned int order,
3031                        unsigned long count, struct list_head *list,
3032                        int migratetype, unsigned int alloc_flags)
3033{
3034        int i, allocated = 0;
3035
3036        /*
3037         * local_lock_irq held so equivalent to spin_lock_irqsave for
3038         * both PREEMPT_RT and non-PREEMPT_RT configurations.
3039         */
3040        spin_lock(&zone->lock);
3041        for (i = 0; i < count; ++i) {
3042                struct page *page = __rmqueue(zone, order, migratetype,
3043                                                                alloc_flags);
3044                if (unlikely(page == NULL))
3045                        break;
3046
3047                if (unlikely(check_pcp_refill(page)))
3048                        continue;
3049
3050                /*
3051                 * Split buddy pages returned by expand() are received here in
3052                 * physical page order. The page is added to the tail of
3053                 * caller's list. From the callers perspective, the linked list
3054                 * is ordered by page number under some conditions. This is
3055                 * useful for IO devices that can forward direction from the
3056                 * head, thus also in the physical page order. This is useful
3057                 * for IO devices that can merge IO requests if the physical
3058                 * pages are ordered properly.
3059                 */
3060                list_add_tail(&page->lru, list);
3061                allocated++;
3062                if (is_migrate_cma(get_pcppage_migratetype(page)))
3063                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3064                                              -(1 << order));
3065        }
3066
3067        /*
3068         * i pages were removed from the buddy list even if some leak due
3069         * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3070         * on i. Do not confuse with 'allocated' which is the number of
3071         * pages added to the pcp list.
3072         */
3073        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3074        spin_unlock(&zone->lock);
3075        return allocated;
3076}
3077
3078#ifdef CONFIG_NUMA
3079/*
3080 * Called from the vmstat counter updater to drain pagesets of this
3081 * currently executing processor on remote nodes after they have
3082 * expired.
3083 *
3084 * Note that this function must be called with the thread pinned to
3085 * a single processor.
3086 */
3087void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3088{
3089        unsigned long flags;
3090        int to_drain, batch;
3091
3092        local_lock_irqsave(&pagesets.lock, flags);
3093        batch = READ_ONCE(pcp->batch);
3094        to_drain = min(pcp->count, batch);
3095        if (to_drain > 0)
3096                free_pcppages_bulk(zone, to_drain, pcp);
3097        local_unlock_irqrestore(&pagesets.lock, flags);
3098}
3099#endif
3100
3101/*
3102 * Drain pcplists of the indicated processor and zone.
3103 *
3104 * The processor must either be the current processor and the
3105 * thread pinned to the current processor or a processor that
3106 * is not online.
3107 */
3108static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3109{
3110        unsigned long flags;
3111        struct per_cpu_pages *pcp;
3112
3113        local_lock_irqsave(&pagesets.lock, flags);
3114
3115        pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3116        if (pcp->count)
3117                free_pcppages_bulk(zone, pcp->count, pcp);
3118
3119        local_unlock_irqrestore(&pagesets.lock, flags);
3120}
3121
3122/*
3123 * Drain pcplists of all zones on the indicated processor.
3124 *
3125 * The processor must either be the current processor and the
3126 * thread pinned to the current processor or a processor that
3127 * is not online.
3128 */
3129static void drain_pages(unsigned int cpu)
3130{
3131        struct zone *zone;
3132
3133        for_each_populated_zone(zone) {
3134                drain_pages_zone(cpu, zone);
3135        }
3136}
3137
3138/*
3139 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3140 *
3141 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3142 * the single zone's pages.
3143 */
3144void drain_local_pages(struct zone *zone)
3145{
3146        int cpu = smp_processor_id();
3147
3148        if (zone)
3149                drain_pages_zone(cpu, zone);
3150        else
3151                drain_pages(cpu);
3152}
3153
3154static void drain_local_pages_wq(struct work_struct *work)
3155{
3156        struct pcpu_drain *drain;
3157
3158        drain = container_of(work, struct pcpu_drain, work);
3159
3160        /*
3161         * drain_all_pages doesn't use proper cpu hotplug protection so
3162         * we can race with cpu offline when the WQ can move this from
3163         * a cpu pinned worker to an unbound one. We can operate on a different
3164         * cpu which is alright but we also have to make sure to not move to
3165         * a different one.
3166         */
3167        preempt_disable();
3168        drain_local_pages(drain->zone);
3169        preempt_enable();
3170}
3171
3172/*
3173 * The implementation of drain_all_pages(), exposing an extra parameter to
3174 * drain on all cpus.
3175 *
3176 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3177 * not empty. The check for non-emptiness can however race with a free to
3178 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3179 * that need the guarantee that every CPU has drained can disable the
3180 * optimizing racy check.
3181 */
3182static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3183{
3184        int cpu;
3185
3186        /*
3187         * Allocate in the BSS so we won't require allocation in
3188         * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3189         */
3190        static cpumask_t cpus_with_pcps;
3191
3192        /*
3193         * Make sure nobody triggers this path before mm_percpu_wq is fully
3194         * initialized.
3195         */
3196        if (WARN_ON_ONCE(!mm_percpu_wq))
3197                return;
3198
3199        /*
3200         * Do not drain if one is already in progress unless it's specific to
3201         * a zone. Such callers are primarily CMA and memory hotplug and need
3202         * the drain to be complete when the call returns.
3203         */
3204        if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3205                if (!zone)
3206                        return;
3207                mutex_lock(&pcpu_drain_mutex);
3208        }
3209
3210        /*
3211         * We don't care about racing with CPU hotplug event
3212         * as offline notification will cause the notified
3213         * cpu to drain that CPU pcps and on_each_cpu_mask
3214         * disables preemption as part of its processing
3215         */
3216        for_each_online_cpu(cpu) {
3217                struct per_cpu_pages *pcp;
3218                struct zone *z;
3219                bool has_pcps = false;
3220
3221                if (force_all_cpus) {
3222                        /*
3223                         * The pcp.count check is racy, some callers need a
3224                         * guarantee that no cpu is missed.
3225                         */
3226                        has_pcps = true;
3227                } else if (zone) {
3228                        pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3229                        if (pcp->count)
3230                                has_pcps = true;
3231                } else {
3232                        for_each_populated_zone(z) {
3233                                pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3234                                if (pcp->count) {
3235                                        has_pcps = true;
3236                                        break;
3237                                }
3238                        }
3239                }
3240
3241                if (has_pcps)
3242                        cpumask_set_cpu(cpu, &cpus_with_pcps);
3243                else
3244                        cpumask_clear_cpu(cpu, &cpus_with_pcps);
3245        }
3246
3247        for_each_cpu(cpu, &cpus_with_pcps) {
3248                struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3249
3250                drain->zone = zone;
3251                INIT_WORK(&drain->work, drain_local_pages_wq);
3252                queue_work_on(cpu, mm_percpu_wq, &drain->work);
3253        }
3254        for_each_cpu(cpu, &cpus_with_pcps)
3255                flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3256
3257        mutex_unlock(&pcpu_drain_mutex);
3258}
3259
3260/*
3261 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3262 *
3263 * When zone parameter is non-NULL, spill just the single zone's pages.
3264 *
3265 * Note that this can be extremely slow as the draining happens in a workqueue.
3266 */
3267void drain_all_pages(struct zone *zone)
3268{
3269        __drain_all_pages(zone, false);
3270}
3271
3272#ifdef CONFIG_HIBERNATION
3273
3274/*
3275 * Touch the watchdog for every WD_PAGE_COUNT pages.
3276 */
3277#define WD_PAGE_COUNT   (128*1024)
3278
3279void mark_free_pages(struct zone *zone)
3280{
3281        unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3282        unsigned long flags;
3283        unsigned int order, t;
3284        struct page *page;
3285
3286        if (zone_is_empty(zone))
3287                return;
3288
3289        spin_lock_irqsave(&zone->lock, flags);
3290
3291        max_zone_pfn = zone_end_pfn(zone);
3292        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3293                if (pfn_valid(pfn)) {
3294                        page = pfn_to_page(pfn);
3295
3296                        if (!--page_count) {
3297                                touch_nmi_watchdog();
3298                                page_count = WD_PAGE_COUNT;
3299                        }
3300
3301                        if (page_zone(page) != zone)
3302                                continue;
3303
3304                        if (!swsusp_page_is_forbidden(page))
3305                                swsusp_unset_page_free(page);
3306                }
3307
3308        for_each_migratetype_order(order, t) {
3309                list_for_each_entry(page,
3310                                &zone->free_area[order].free_list[t], lru) {
3311                        unsigned long i;
3312
3313                        pfn = page_to_pfn(page);
3314                        for (i = 0; i < (1UL << order); i++) {
3315                                if (!--page_count) {
3316                                        touch_nmi_watchdog();
3317                                        page_count = WD_PAGE_COUNT;
3318                                }
3319                                swsusp_set_page_free(pfn_to_page(pfn + i));
3320                        }
3321                }
3322        }
3323        spin_unlock_irqrestore(&zone->lock, flags);
3324}
3325#endif /* CONFIG_PM */
3326
3327static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3328                                                        unsigned int order)
3329{
3330        int migratetype;
3331
3332        if (!free_pcp_prepare(page, order))
3333                return false;
3334
3335        migratetype = get_pfnblock_migratetype(page, pfn);
3336        set_pcppage_migratetype(page, migratetype);
3337        return true;
3338}
3339
3340static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3341{
3342        int min_nr_free, max_nr_free;
3343
3344        /* Check for PCP disabled or boot pageset */
3345        if (unlikely(high < batch))
3346                return 1;
3347
3348        /* Leave at least pcp->batch pages on the list */
3349        min_nr_free = batch;
3350        max_nr_free = high - batch;
3351
3352        /*
3353         * Double the number of pages freed each time there is subsequent
3354         * freeing of pages without any allocation.
3355         */
3356        batch <<= pcp->free_factor;
3357        if (batch < max_nr_free)
3358                pcp->free_factor++;
3359        batch = clamp(batch, min_nr_free, max_nr_free);
3360
3361        return batch;
3362}
3363
3364static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3365{
3366        int high = READ_ONCE(pcp->high);
3367
3368        if (unlikely(!high))
3369                return 0;
3370
3371        if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3372                return high;
3373
3374        /*
3375         * If reclaim is active, limit the number of pages that can be
3376         * stored on pcp lists
3377         */
3378        return min(READ_ONCE(pcp->batch) << 2, high);
3379}
3380
3381static void free_unref_page_commit(struct page *page, unsigned long pfn,
3382                                   int migratetype, unsigned int order)
3383{
3384        struct zone *zone = page_zone(page);
3385        struct per_cpu_pages *pcp;
3386        int high;
3387        int pindex;
3388
3389        __count_vm_event(PGFREE);
3390        pcp = this_cpu_ptr(zone->per_cpu_pageset);
3391        pindex = order_to_pindex(migratetype, order);
3392        list_add(&page->lru, &pcp->lists[pindex]);
3393        pcp->count += 1 << order;
3394        high = nr_pcp_high(pcp, zone);
3395        if (pcp->count >= high) {
3396                int batch = READ_ONCE(pcp->batch);
3397
3398                free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3399        }
3400}
3401
3402/*
3403 * Free a pcp page
3404 */
3405void free_unref_page(struct page *page, unsigned int order)
3406{
3407        unsigned long flags;
3408        unsigned long pfn = page_to_pfn(page);
3409        int migratetype;
3410
3411        if (!free_unref_page_prepare(page, pfn, order))
3412                return;
3413
3414        /*
3415         * We only track unmovable, reclaimable and movable on pcp lists.
3416         * Place ISOLATE pages on the isolated list because they are being
3417         * offlined but treat HIGHATOMIC as movable pages so we can get those
3418         * areas back if necessary. Otherwise, we may have to free
3419         * excessively into the page allocator
3420         */
3421        migratetype = get_pcppage_migratetype(page);
3422        if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3423                if (unlikely(is_migrate_isolate(migratetype))) {
3424                        free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3425                        return;
3426                }
3427                migratetype = MIGRATE_MOVABLE;
3428        }
3429
3430        local_lock_irqsave(&pagesets.lock, flags);
3431        free_unref_page_commit(page, pfn, migratetype, order);
3432        local_unlock_irqrestore(&pagesets.lock, flags);
3433}
3434
3435/*
3436 * Free a list of 0-order pages
3437 */
3438void free_unref_page_list(struct list_head *list)
3439{
3440        struct page *page, *next;
3441        unsigned long flags, pfn;
3442        int batch_count = 0;
3443        int migratetype;
3444
3445        /* Prepare pages for freeing */
3446        list_for_each_entry_safe(page, next, list, lru) {
3447                pfn = page_to_pfn(page);
3448                if (!free_unref_page_prepare(page, pfn, 0))
3449                        list_del(&page->lru);
3450
3451                /*
3452                 * Free isolated pages directly to the allocator, see
3453                 * comment in free_unref_page.
3454                 */
3455                migratetype = get_pcppage_migratetype(page);
3456                if (unlikely(is_migrate_isolate(migratetype))) {
3457                        list_del(&page->lru);
3458                        free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3459                        continue;
3460                }
3461
3462                set_page_private(page, pfn);
3463        }
3464
3465        local_lock_irqsave(&pagesets.lock, flags);
3466        list_for_each_entry_safe(page, next, list, lru) {
3467                pfn = page_private(page);
3468                set_page_private(page, 0);
3469
3470                /*
3471                 * Non-isolated types over MIGRATE_PCPTYPES get added
3472                 * to the MIGRATE_MOVABLE pcp list.
3473                 */
3474                migratetype = get_pcppage_migratetype(page);
3475                if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3476                        migratetype = MIGRATE_MOVABLE;
3477
3478                trace_mm_page_free_batched(page);
3479                free_unref_page_commit(page, pfn, migratetype, 0);
3480
3481                /*
3482                 * Guard against excessive IRQ disabled times when we get
3483                 * a large list of pages to free.
3484                 */
3485                if (++batch_count == SWAP_CLUSTER_MAX) {
3486                        local_unlock_irqrestore(&pagesets.lock, flags);
3487                        batch_count = 0;
3488                        local_lock_irqsave(&pagesets.lock, flags);
3489                }
3490        }
3491        local_unlock_irqrestore(&pagesets.lock, flags);
3492}
3493
3494/*
3495 * split_page takes a non-compound higher-order page, and splits it into
3496 * n (1<<order) sub-pages: page[0..n]
3497 * Each sub-page must be freed individually.
3498 *
3499 * Note: this is probably too low level an operation for use in drivers.
3500 * Please consult with lkml before using this in your driver.
3501 */
3502void split_page(struct page *page, unsigned int order)
3503{
3504        int i;
3505
3506        VM_BUG_ON_PAGE(PageCompound(page), page);
3507        VM_BUG_ON_PAGE(!page_count(page), page);
3508
3509        for (i = 1; i < (1 << order); i++)
3510                set_page_refcounted(page + i);
3511        split_page_owner(page, 1 << order);
3512        split_page_memcg(page, 1 << order);
3513}
3514EXPORT_SYMBOL_GPL(split_page);
3515
3516int __isolate_free_page(struct page *page, unsigned int order)
3517{
3518        unsigned long watermark;
3519        struct zone *zone;
3520        int mt;
3521
3522        BUG_ON(!PageBuddy(page));
3523
3524        zone = page_zone(page);
3525        mt = get_pageblock_migratetype(page);
3526
3527        if (!is_migrate_isolate(mt)) {
3528                /*
3529                 * Obey watermarks as if the page was being allocated. We can
3530                 * emulate a high-order watermark check with a raised order-0
3531                 * watermark, because we already know our high-order page
3532                 * exists.
3533                 */
3534                watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3535                if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3536                        return 0;
3537
3538                __mod_zone_freepage_state(zone, -(1UL << order), mt);
3539        }
3540
3541        /* Remove page from free list */
3542
3543        del_page_from_free_list(page, zone, order);
3544
3545        /*
3546         * Set the pageblock if the isolated page is at least half of a
3547         * pageblock
3548         */
3549        if (order >= pageblock_order - 1) {
3550                struct page *endpage = page + (1 << order) - 1;
3551                for (; page < endpage; page += pageblock_nr_pages) {
3552                        int mt = get_pageblock_migratetype(page);
3553                        if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3554                            && !is_migrate_highatomic(mt))
3555                                set_pageblock_migratetype(page,
3556                                                          MIGRATE_MOVABLE);
3557                }
3558        }
3559
3560
3561        return 1UL << order;
3562}
3563
3564/**
3565 * __putback_isolated_page - Return a now-isolated page back where we got it
3566 * @page: Page that was isolated
3567 * @order: Order of the isolated page
3568 * @mt: The page's pageblock's migratetype
3569 *
3570 * This function is meant to return a page pulled from the free lists via
3571 * __isolate_free_page back to the free lists they were pulled from.
3572 */
3573void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3574{
3575        struct zone *zone = page_zone(page);
3576
3577        /* zone lock should be held when this function is called */
3578        lockdep_assert_held(&zone->lock);
3579
3580        /* Return isolated page to tail of freelist. */
3581        __free_one_page(page, page_to_pfn(page), zone, order, mt,
3582                        FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3583}
3584
3585/*
3586 * Update NUMA hit/miss statistics
3587 *
3588 * Must be called with interrupts disabled.
3589 */
3590static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3591                                   long nr_account)
3592{
3593#ifdef CONFIG_NUMA
3594        enum numa_stat_item local_stat = NUMA_LOCAL;
3595
3596        /* skip numa counters update if numa stats is disabled */
3597        if (!static_branch_likely(&vm_numa_stat_key))
3598                return;
3599
3600        if (zone_to_nid(z) != numa_node_id())
3601                local_stat = NUMA_OTHER;
3602
3603        if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3604                __count_numa_events(z, NUMA_HIT, nr_account);
3605        else {
3606                __count_numa_events(z, NUMA_MISS, nr_account);
3607                __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3608        }
3609        __count_numa_events(z, local_stat, nr_account);
3610#endif
3611}
3612
3613/* Remove page from the per-cpu list, caller must protect the list */
3614static inline
3615struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3616                        int migratetype,
3617                        unsigned int alloc_flags,
3618                        struct per_cpu_pages *pcp,
3619                        struct list_head *list)
3620{
3621        struct page *page;
3622
3623        do {
3624                if (list_empty(list)) {
3625                        int batch = READ_ONCE(pcp->batch);
3626                        int alloced;
3627
3628                        /*
3629                         * Scale batch relative to order if batch implies
3630                         * free pages can be stored on the PCP. Batch can
3631                         * be 1 for small zones or for boot pagesets which
3632                         * should never store free pages as the pages may
3633                         * belong to arbitrary zones.
3634                         */
3635                        if (batch > 1)
3636                                batch = max(batch >> order, 2);
3637                        alloced = rmqueue_bulk(zone, order,
3638                                        batch, list,
3639                                        migratetype, alloc_flags);
3640
3641                        pcp->count += alloced << order;
3642                        if (unlikely(list_empty(list)))
3643                                return NULL;
3644                }
3645
3646                page = list_first_entry(list, struct page, lru);
3647                list_del(&page->lru);
3648                pcp->count -= 1 << order;
3649        } while (check_new_pcp(page));
3650
3651        return page;
3652}
3653
3654/* Lock and remove page from the per-cpu list */
3655static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3656                        struct zone *zone, unsigned int order,
3657                        gfp_t gfp_flags, int migratetype,
3658                        unsigned int alloc_flags)
3659{
3660        struct per_cpu_pages *pcp;
3661        struct list_head *list;
3662        struct page *page;
3663        unsigned long flags;
3664
3665        local_lock_irqsave(&pagesets.lock, flags);
3666
3667        /*
3668         * On allocation, reduce the number of pages that are batch freed.
3669         * See nr_pcp_free() where free_factor is increased for subsequent
3670         * frees.
3671         */
3672        pcp = this_cpu_ptr(zone->per_cpu_pageset);
3673        pcp->free_factor >>= 1;
3674        list = &pcp->lists[order_to_pindex(migratetype, order)];
3675        page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3676        local_unlock_irqrestore(&pagesets.lock, flags);
3677        if (page) {
3678                __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3679                zone_statistics(preferred_zone, zone, 1);
3680        }
3681        return page;
3682}
3683
3684/*
3685 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3686 */
3687static inline
3688struct page *rmqueue(struct zone *preferred_zone,
3689                        struct zone *zone, unsigned int order,
3690                        gfp_t gfp_flags, unsigned int alloc_flags,
3691                        int migratetype)
3692{
3693        unsigned long flags;
3694        struct page *page;
3695
3696        if (likely(pcp_allowed_order(order))) {
3697                /*
3698                 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3699                 * we need to skip it when CMA area isn't allowed.
3700                 */
3701                if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3702                                migratetype != MIGRATE_MOVABLE) {
3703                        page = rmqueue_pcplist(preferred_zone, zone, order,
3704                                        gfp_flags, migratetype, alloc_flags);
3705                        goto out;
3706                }
3707        }
3708
3709        /*
3710         * We most definitely don't want callers attempting to
3711         * allocate greater than order-1 page units with __GFP_NOFAIL.
3712         */
3713        WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3714        spin_lock_irqsave(&zone->lock, flags);
3715
3716        do {
3717                page = NULL;
3718                /*
3719                 * order-0 request can reach here when the pcplist is skipped
3720                 * due to non-CMA allocation context. HIGHATOMIC area is
3721                 * reserved for high-order atomic allocation, so order-0
3722                 * request should skip it.
3723                 */
3724                if (order > 0 && alloc_flags & ALLOC_HARDER) {
3725                        page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3726                        if (page)
3727                                trace_mm_page_alloc_zone_locked(page, order, migratetype);
3728                }
3729                if (!page)
3730                        page = __rmqueue(zone, order, migratetype, alloc_flags);
3731        } while (page && check_new_pages(page, order));
3732        if (!page)
3733                goto failed;
3734
3735        __mod_zone_freepage_state(zone, -(1 << order),
3736                                  get_pcppage_migratetype(page));
3737        spin_unlock_irqrestore(&zone->lock, flags);
3738
3739        __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3740        zone_statistics(preferred_zone, zone, 1);
3741
3742out:
3743        /* Separate test+clear to avoid unnecessary atomics */
3744        if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3745                clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3746                wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3747        }
3748
3749        VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3750        return page;
3751
3752failed:
3753        spin_unlock_irqrestore(&zone->lock, flags);
3754        return NULL;
3755}
3756
3757#ifdef CONFIG_FAIL_PAGE_ALLOC
3758
3759static struct {
3760        struct fault_attr attr;
3761
3762        bool ignore_gfp_highmem;
3763        bool ignore_gfp_reclaim;
3764        u32 min_order;
3765} fail_page_alloc = {
3766        .attr = FAULT_ATTR_INITIALIZER,
3767        .ignore_gfp_reclaim = true,
3768        .ignore_gfp_highmem = true,
3769        .min_order = 1,
3770};
3771
3772static int __init setup_fail_page_alloc(char *str)
3773{
3774        return setup_fault_attr(&fail_page_alloc.attr, str);
3775}
3776__setup("fail_page_alloc=", setup_fail_page_alloc);
3777
3778static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3779{
3780        if (order < fail_page_alloc.min_order)
3781                return false;
3782        if (gfp_mask & __GFP_NOFAIL)
3783                return false;
3784        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3785                return false;
3786        if (fail_page_alloc.ignore_gfp_reclaim &&
3787                        (gfp_mask & __GFP_DIRECT_RECLAIM))
3788                return false;
3789
3790        return should_fail(&fail_page_alloc.attr, 1 << order);
3791}
3792
3793#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3794
3795static int __init fail_page_alloc_debugfs(void)
3796{
3797        umode_t mode = S_IFREG | 0600;
3798        struct dentry *dir;
3799
3800        dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3801                                        &fail_page_alloc.attr);
3802
3803        debugfs_create_bool("ignore-gfp-wait", mode, dir,
3804                            &fail_page_alloc.ignore_gfp_reclaim);
3805        debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3806                            &fail_page_alloc.ignore_gfp_highmem);
3807        debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3808
3809        return 0;
3810}
3811
3812late_initcall(fail_page_alloc_debugfs);
3813
3814#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3815
3816#else /* CONFIG_FAIL_PAGE_ALLOC */
3817
3818static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3819{
3820        return false;
3821}
3822
3823#endif /* CONFIG_FAIL_PAGE_ALLOC */
3824
3825noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3826{
3827        return __should_fail_alloc_page(gfp_mask, order);
3828}
3829ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3830
3831static inline long __zone_watermark_unusable_free(struct zone *z,
3832                                unsigned int order, unsigned int alloc_flags)
3833{
3834        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3835        long unusable_free = (1 << order) - 1;
3836
3837        /*
3838         * If the caller does not have rights to ALLOC_HARDER then subtract
3839         * the high-atomic reserves. This will over-estimate the size of the
3840         * atomic reserve but it avoids a search.
3841         */
3842        if (likely(!alloc_harder))
3843                unusable_free += z->nr_reserved_highatomic;
3844
3845#ifdef CONFIG_CMA
3846        /* If allocation can't use CMA areas don't use free CMA pages */
3847        if (!(alloc_flags & ALLOC_CMA))
3848                unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3849#endif
3850
3851        return unusable_free;
3852}
3853
3854/*
3855 * Return true if free base pages are above 'mark'. For high-order checks it
3856 * will return true of the order-0 watermark is reached and there is at least
3857 * one free page of a suitable size. Checking now avoids taking the zone lock
3858 * to check in the allocation paths if no pages are free.
3859 */
3860bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3861                         int highest_zoneidx, unsigned int alloc_flags,
3862                         long free_pages)
3863{
3864        long min = mark;
3865        int o;
3866        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3867
3868        /* free_pages may go negative - that's OK */
3869        free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3870
3871        if (alloc_flags & ALLOC_HIGH)
3872                min -= min / 2;
3873
3874        if (unlikely(alloc_harder)) {
3875                /*
3876                 * OOM victims can try even harder than normal ALLOC_HARDER
3877                 * users on the grounds that it's definitely going to be in
3878                 * the exit path shortly and free memory. Any allocation it
3879                 * makes during the free path will be small and short-lived.
3880                 */
3881                if (alloc_flags & ALLOC_OOM)
3882                        min -= min / 2;
3883                else
3884                        min -= min / 4;
3885        }
3886
3887        /*
3888         * Check watermarks for an order-0 allocation request. If these
3889         * are not met, then a high-order request also cannot go ahead
3890         * even if a suitable page happened to be free.
3891         */
3892        if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3893                return false;
3894
3895        /* If this is an order-0 request then the watermark is fine */
3896        if (!order)
3897                return true;
3898
3899        /* For a high-order request, check at least one suitable page is free */
3900        for (o = order; o < MAX_ORDER; o++) {
3901                struct free_area *area = &z->free_area[o];
3902                int mt;
3903
3904                if (!area->nr_free)
3905                        continue;
3906
3907                for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3908                        if (!free_area_empty(area, mt))
3909                                return true;
3910                }
3911
3912#ifdef CONFIG_CMA
3913                if ((alloc_flags & ALLOC_CMA) &&
3914                    !free_area_empty(area, MIGRATE_CMA)) {
3915                        return true;
3916                }
3917#endif
3918                if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3919                        return true;
3920        }
3921        return false;
3922}
3923
3924bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3925                      int highest_zoneidx, unsigned int alloc_flags)
3926{
3927        return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3928                                        zone_page_state(z, NR_FREE_PAGES));
3929}
3930
3931static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3932                                unsigned long mark, int highest_zoneidx,
3933                                unsigned int alloc_flags, gfp_t gfp_mask)
3934{
3935        long free_pages;
3936
3937        free_pages = zone_page_state(z, NR_FREE_PAGES);
3938
3939        /*
3940         * Fast check for order-0 only. If this fails then the reserves
3941         * need to be calculated.
3942         */
3943        if (!order) {
3944                long fast_free;
3945
3946                fast_free = free_pages;
3947                fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3948                if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3949                        return true;
3950        }
3951
3952        if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3953                                        free_pages))
3954                return true;
3955        /*
3956         * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3957         * when checking the min watermark. The min watermark is the
3958         * point where boosting is ignored so that kswapd is woken up
3959         * when below the low watermark.
3960         */
3961        if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3962                && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3963                mark = z->_watermark[WMARK_MIN];
3964                return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3965                                        alloc_flags, free_pages);
3966        }
3967
3968        return false;
3969}
3970
3971bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3972                        unsigned long mark, int highest_zoneidx)
3973{
3974        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3975
3976        if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3977                free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3978
3979        return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3980                                                                free_pages);
3981}
3982
3983#ifdef CONFIG_NUMA
3984static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3985{
3986        return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3987                                node_reclaim_distance;
3988}
3989#else   /* CONFIG_NUMA */
3990static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3991{
3992        return true;
3993}
3994#endif  /* CONFIG_NUMA */
3995
3996/*
3997 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3998 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3999 * premature use of a lower zone may cause lowmem pressure problems that
4000 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4001 * probably too small. It only makes sense to spread allocations to avoid
4002 * fragmentation between the Normal and DMA32 zones.
4003 */
4004static inline unsigned int
4005alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4006{
4007        unsigned int alloc_flags;
4008
4009        /*
4010         * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4011         * to save a branch.
4012         */
4013        alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4014
4015#ifdef CONFIG_ZONE_DMA32
4016        if (!zone)
4017                return alloc_flags;
4018
4019        if (zone_idx(zone) != ZONE_NORMAL)
4020                return alloc_flags;
4021
4022        /*
4023         * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4024         * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4025         * on UMA that if Normal is populated then so is DMA32.
4026         */
4027        BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4028        if (nr_online_nodes > 1 && !populated_zone(--zone))
4029                return alloc_flags;
4030
4031        alloc_flags |= ALLOC_NOFRAGMENT;
4032#endif /* CONFIG_ZONE_DMA32 */
4033        return alloc_flags;
4034}
4035
4036/* Must be called after current_gfp_context() which can change gfp_mask */
4037static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4038                                                  unsigned int alloc_flags)
4039{
4040#ifdef CONFIG_CMA
4041        if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4042                alloc_flags |= ALLOC_CMA;
4043#endif
4044        return alloc_flags;
4045}
4046
4047/*
4048 * get_page_from_freelist goes through the zonelist trying to allocate
4049 * a page.
4050 */
4051static struct page *
4052get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4053                                                const struct alloc_context *ac)
4054{
4055        struct zoneref *z;
4056        struct zone *zone;
4057        struct pglist_data *last_pgdat_dirty_limit = NULL;
4058        bool no_fallback;
4059
4060retry:
4061        /*
4062         * Scan zonelist, looking for a zone with enough free.
4063         * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4064         */
4065        no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4066        z = ac->preferred_zoneref;
4067        for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4068                                        ac->nodemask) {
4069                struct page *page;
4070                unsigned long mark;
4071
4072                if (cpusets_enabled() &&
4073                        (alloc_flags & ALLOC_CPUSET) &&
4074                        !__cpuset_zone_allowed(zone, gfp_mask))
4075                                continue;
4076                /*
4077                 * When allocating a page cache page for writing, we
4078                 * want to get it from a node that is within its dirty
4079                 * limit, such that no single node holds more than its
4080                 * proportional share of globally allowed dirty pages.
4081                 * The dirty limits take into account the node's
4082                 * lowmem reserves and high watermark so that kswapd
4083                 * should be able to balance it without having to
4084                 * write pages from its LRU list.
4085                 *
4086                 * XXX: For now, allow allocations to potentially
4087                 * exceed the per-node dirty limit in the slowpath
4088                 * (spread_dirty_pages unset) before going into reclaim,
4089                 * which is important when on a NUMA setup the allowed
4090                 * nodes are together not big enough to reach the
4091                 * global limit.  The proper fix for these situations
4092                 * will require awareness of nodes in the
4093                 * dirty-throttling and the flusher threads.
4094                 */
4095                if (ac->spread_dirty_pages) {
4096                        if (last_pgdat_dirty_limit == zone->zone_pgdat)
4097                                continue;
4098
4099                        if (!node_dirty_ok(zone->zone_pgdat)) {
4100                                last_pgdat_dirty_limit = zone->zone_pgdat;
4101                                continue;
4102                        }
4103                }
4104
4105                if (no_fallback && nr_online_nodes > 1 &&
4106                    zone != ac->preferred_zoneref->zone) {
4107                        int local_nid;
4108
4109                        /*
4110                         * If moving to a remote node, retry but allow
4111                         * fragmenting fallbacks. Locality is more important
4112                         * than fragmentation avoidance.
4113                         */
4114                        local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4115                        if (zone_to_nid(zone) != local_nid) {
4116                                alloc_flags &= ~ALLOC_NOFRAGMENT;
4117                                goto retry;
4118                        }
4119                }
4120
4121                mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4122                if (!zone_watermark_fast(zone, order, mark,
4123                                       ac->highest_zoneidx, alloc_flags,
4124                                       gfp_mask)) {
4125                        int ret;
4126
4127#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4128                        /*
4129                         * Watermark failed for this zone, but see if we can
4130                         * grow this zone if it contains deferred pages.
4131                         */
4132                        if (static_branch_unlikely(&deferred_pages)) {
4133                                if (_deferred_grow_zone(zone, order))
4134                                        goto try_this_zone;
4135                        }
4136#endif
4137                        /* Checked here to keep the fast path fast */
4138                        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4139                        if (alloc_flags & ALLOC_NO_WATERMARKS)
4140                                goto try_this_zone;
4141
4142                        if (!node_reclaim_enabled() ||
4143                            !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4144                                continue;
4145
4146                        ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4147                        switch (ret) {
4148                        case NODE_RECLAIM_NOSCAN:
4149                                /* did not scan */
4150                                continue;
4151                        case NODE_RECLAIM_FULL:
4152                                /* scanned but unreclaimable */
4153                                continue;
4154                        default:
4155                                /* did we reclaim enough */
4156                                if (zone_watermark_ok(zone, order, mark,
4157                                        ac->highest_zoneidx, alloc_flags))
4158                                        goto try_this_zone;
4159
4160                                continue;
4161                        }
4162                }
4163
4164try_this_zone:
4165                page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4166                                gfp_mask, alloc_flags, ac->migratetype);
4167                if (page) {
4168                        prep_new_page(page, order, gfp_mask, alloc_flags);
4169
4170                        /*
4171                         * If this is a high-order atomic allocation then check
4172                         * if the pageblock should be reserved for the future
4173                         */
4174                        if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4175                                reserve_highatomic_pageblock(page, zone, order);
4176
4177                        return page;
4178                } else {
4179#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4180                        /* Try again if zone has deferred pages */
4181                        if (static_branch_unlikely(&deferred_pages)) {
4182                                if (_deferred_grow_zone(zone, order))
4183                                        goto try_this_zone;
4184                        }
4185#endif
4186                }
4187        }
4188
4189        /*
4190         * It's possible on a UMA machine to get through all zones that are
4191         * fragmented. If avoiding fragmentation, reset and try again.
4192         */
4193        if (no_fallback) {
4194                alloc_flags &= ~ALLOC_NOFRAGMENT;
4195                goto retry;
4196        }
4197
4198        return NULL;
4199}
4200
4201static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4202{
4203        unsigned int filter = SHOW_MEM_FILTER_NODES;
4204
4205        /*
4206         * This documents exceptions given to allocations in certain
4207         * contexts that are allowed to allocate outside current's set
4208         * of allowed nodes.
4209         */
4210        if (!(gfp_mask & __GFP_NOMEMALLOC))
4211                if (tsk_is_oom_victim(current) ||
4212                    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4213                        filter &= ~SHOW_MEM_FILTER_NODES;
4214        if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4215                filter &= ~SHOW_MEM_FILTER_NODES;
4216
4217        show_mem(filter, nodemask);
4218}
4219
4220void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4221{
4222        struct va_format vaf;
4223        va_list args;
4224        static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4225
4226        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4227                return;
4228
4229        va_start(args, fmt);
4230        vaf.fmt = fmt;
4231        vaf.va = &args;
4232        pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4233                        current->comm, &vaf, gfp_mask, &gfp_mask,
4234                        nodemask_pr_args(nodemask));
4235        va_end(args);
4236
4237        cpuset_print_current_mems_allowed();
4238        pr_cont("\n");
4239        dump_stack();
4240        warn_alloc_show_mem(gfp_mask, nodemask);
4241}
4242
4243static inline struct page *
4244__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4245                              unsigned int alloc_flags,
4246                              const struct alloc_context *ac)
4247{
4248        struct page *page;
4249
4250        page = get_page_from_freelist(gfp_mask, order,
4251                        alloc_flags|ALLOC_CPUSET, ac);
4252        /*
4253         * fallback to ignore cpuset restriction if our nodes
4254         * are depleted
4255         */
4256        if (!page)
4257                page = get_page_from_freelist(gfp_mask, order,
4258                                alloc_flags, ac);
4259
4260        return page;
4261}
4262
4263static inline struct page *
4264__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4265        const struct alloc_context *ac, unsigned long *did_some_progress)
4266{
4267        struct oom_control oc = {
4268                .zonelist = ac->zonelist,
4269                .nodemask = ac->nodemask,
4270                .memcg = NULL,
4271                .gfp_mask = gfp_mask,
4272                .order = order,
4273        };
4274        struct page *page;
4275
4276        *did_some_progress = 0;
4277
4278        /*
4279         * Acquire the oom lock.  If that fails, somebody else is
4280         * making progress for us.
4281         */
4282        if (!mutex_trylock(&oom_lock)) {
4283                *did_some_progress = 1;
4284                schedule_timeout_uninterruptible(1);
4285                return NULL;
4286        }
4287
4288        /*
4289         * Go through the zonelist yet one more time, keep very high watermark
4290         * here, this is only to catch a parallel oom killing, we must fail if
4291         * we're still under heavy pressure. But make sure that this reclaim
4292         * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4293         * allocation which will never fail due to oom_lock already held.
4294         */
4295        page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4296                                      ~__GFP_DIRECT_RECLAIM, order,
4297                                      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4298        if (page)
4299                goto out;
4300
4301        /* Coredumps can quickly deplete all memory reserves */
4302        if (current->flags & PF_DUMPCORE)
4303                goto out;
4304        /* The OOM killer will not help higher order allocs */
4305        if (order > PAGE_ALLOC_COSTLY_ORDER)
4306                goto out;
4307        /*
4308         * We have already exhausted all our reclaim opportunities without any
4309         * success so it is time to admit defeat. We will skip the OOM killer
4310         * because it is very likely that the caller has a more reasonable
4311         * fallback than shooting a random task.
4312         *
4313         * The OOM killer may not free memory on a specific node.
4314         */
4315        if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4316                goto out;
4317        /* The OOM killer does not needlessly kill tasks for lowmem */
4318        if (ac->highest_zoneidx < ZONE_NORMAL)
4319                goto out;
4320        if (pm_suspended_storage())
4321                goto out;
4322        /*
4323         * XXX: GFP_NOFS allocations should rather fail than rely on
4324         * other request to make a forward progress.
4325         * We are in an unfortunate situation where out_of_memory cannot
4326         * do much for this context but let's try it to at least get
4327         * access to memory reserved if the current task is killed (see
4328         * out_of_memory). Once filesystems are ready to handle allocation
4329         * failures more gracefully we should just bail out here.
4330         */
4331
4332        /* Exhausted what can be done so it's blame time */
4333        if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4334                *did_some_progress = 1;
4335
4336                /*
4337                 * Help non-failing allocations by giving them access to memory
4338                 * reserves
4339                 */
4340                if (gfp_mask & __GFP_NOFAIL)
4341                        page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4342                                        ALLOC_NO_WATERMARKS, ac);
4343        }
4344out:
4345        mutex_unlock(&oom_lock);
4346        return page;
4347}
4348
4349/*
4350 * Maximum number of compaction retries with a progress before OOM
4351 * killer is consider as the only way to move forward.
4352 */
4353#define MAX_COMPACT_RETRIES 16
4354
4355#ifdef CONFIG_COMPACTION
4356/* Try memory compaction for high-order allocations before reclaim */
4357static struct page *
4358__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4359                unsigned int alloc_flags, const struct alloc_context *ac,
4360                enum compact_priority prio, enum compact_result *compact_result)
4361{
4362        struct page *page = NULL;
4363        unsigned long pflags;
4364        unsigned int noreclaim_flag;
4365
4366        if (!order)
4367                return NULL;
4368
4369        psi_memstall_enter(&pflags);
4370        noreclaim_flag = memalloc_noreclaim_save();
4371
4372        *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4373                                                                prio, &page);
4374
4375        memalloc_noreclaim_restore(noreclaim_flag);
4376        psi_memstall_leave(&pflags);
4377
4378        if (*compact_result == COMPACT_SKIPPED)
4379                return NULL;
4380        /*
4381         * At least in one zone compaction wasn't deferred or skipped, so let's
4382         * count a compaction stall
4383         */
4384        count_vm_event(COMPACTSTALL);
4385
4386        /* Prep a captured page if available */
4387        if (page)
4388                prep_new_page(page, order, gfp_mask, alloc_flags);
4389
4390        /* Try get a page from the freelist if available */
4391        if (!page)
4392                page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4393
4394        if (page) {
4395                struct zone *zone = page_zone(page);
4396
4397                zone->compact_blockskip_flush = false;
4398                compaction_defer_reset(zone, order, true);
4399                count_vm_event(COMPACTSUCCESS);
4400                return page;
4401        }
4402
4403        /*
4404         * It's bad if compaction run occurs and fails. The most likely reason
4405         * is that pages exist, but not enough to satisfy watermarks.
4406         */
4407        count_vm_event(COMPACTFAIL);
4408
4409        cond_resched();
4410
4411        return NULL;
4412}
4413
4414static inline bool
4415should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4416                     enum compact_result compact_result,
4417                     enum compact_priority *compact_priority,
4418                     int *compaction_retries)
4419{
4420        int max_retries = MAX_COMPACT_RETRIES;
4421        int min_priority;
4422        bool ret = false;
4423        int retries = *compaction_retries;
4424        enum compact_priority priority = *compact_priority;
4425
4426        if (!order)
4427                return false;
4428
4429        if (fatal_signal_pending(current))
4430                return false;
4431
4432        if (compaction_made_progress(compact_result))
4433                (*compaction_retries)++;
4434
4435        /*
4436         * compaction considers all the zone as desperately out of memory
4437         * so it doesn't really make much sense to retry except when the
4438         * failure could be caused by insufficient priority
4439         */
4440        if (compaction_failed(compact_result))
4441                goto check_priority;
4442
4443        /*
4444         * compaction was skipped because there are not enough order-0 pages
4445         * to work with, so we retry only if it looks like reclaim can help.
4446         */
4447        if (compaction_needs_reclaim(compact_result)) {
4448                ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4449                goto out;
4450        }
4451
4452        /*
4453         * make sure the compaction wasn't deferred or didn't bail out early
4454         * due to locks contention before we declare that we should give up.
4455         * But the next retry should use a higher priority if allowed, so
4456         * we don't just keep bailing out endlessly.
4457         */
4458        if (compaction_withdrawn(compact_result)) {
4459                goto check_priority;
4460        }
4461
4462        /*
4463         * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4464         * costly ones because they are de facto nofail and invoke OOM
4465         * killer to move on while costly can fail and users are ready
4466         * to cope with that. 1/4 retries is rather arbitrary but we
4467         * would need much more detailed feedback from compaction to
4468         * make a better decision.
4469         */
4470        if (order > PAGE_ALLOC_COSTLY_ORDER)
4471                max_retries /= 4;
4472        if (*compaction_retries <= max_retries) {
4473                ret = true;
4474                goto out;
4475        }
4476
4477        /*
4478         * Make sure there are attempts at the highest priority if we exhausted
4479         * all retries or failed at the lower priorities.
4480         */
4481check_priority:
4482        min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4483                        MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4484
4485        if (*compact_priority > min_priority) {
4486                (*compact_priority)--;
4487                *compaction_retries = 0;
4488                ret = true;
4489        }
4490out:
4491        trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4492        return ret;
4493}
4494#else
4495static inline struct page *
4496__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4497                unsigned int alloc_flags, const struct alloc_context *ac,
4498                enum compact_priority prio, enum compact_result *compact_result)
4499{
4500        *compact_result = COMPACT_SKIPPED;
4501        return NULL;
4502}
4503
4504static inline bool
4505should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4506                     enum compact_result compact_result,
4507                     enum compact_priority *compact_priority,
4508                     int *compaction_retries)
4509{
4510        struct zone *zone;
4511        struct zoneref *z;
4512
4513        if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4514                return false;
4515
4516        /*
4517         * There are setups with compaction disabled which would prefer to loop
4518         * inside the allocator rather than hit the oom killer prematurely.
4519         * Let's give them a good hope and keep retrying while the order-0
4520         * watermarks are OK.
4521         */
4522        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4523                                ac->highest_zoneidx, ac->nodemask) {
4524                if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4525                                        ac->highest_zoneidx, alloc_flags))
4526                        return true;
4527        }
4528        return false;
4529}
4530#endif /* CONFIG_COMPACTION */
4531
4532#ifdef CONFIG_LOCKDEP
4533static struct lockdep_map __fs_reclaim_map =
4534        STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4535
4536static bool __need_reclaim(gfp_t gfp_mask)
4537{
4538        /* no reclaim without waiting on it */
4539        if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4540                return false;
4541
4542        /* this guy won't enter reclaim */
4543        if (current->flags & PF_MEMALLOC)
4544                return false;
4545
4546        if (gfp_mask & __GFP_NOLOCKDEP)
4547                return false;
4548
4549        return true;
4550}
4551
4552void __fs_reclaim_acquire(void)
4553{
4554        lock_map_acquire(&__fs_reclaim_map);
4555}
4556
4557void __fs_reclaim_release(void)
4558{
4559        lock_map_release(&__fs_reclaim_map);
4560}
4561
4562void fs_reclaim_acquire(gfp_t gfp_mask)
4563{
4564        gfp_mask = current_gfp_context(gfp_mask);
4565
4566        if (__need_reclaim(gfp_mask)) {
4567                if (gfp_mask & __GFP_FS)
4568                        __fs_reclaim_acquire();
4569
4570#ifdef CONFIG_MMU_NOTIFIER
4571                lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4572                lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4573#endif
4574
4575        }
4576}
4577EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4578
4579void fs_reclaim_release(gfp_t gfp_mask)
4580{
4581        gfp_mask = current_gfp_context(gfp_mask);
4582
4583        if (__need_reclaim(gfp_mask)) {
4584                if (gfp_mask & __GFP_FS)
4585                        __fs_reclaim_release();
4586        }
4587}
4588EXPORT_SYMBOL_GPL(fs_reclaim_release);
4589#endif
4590
4591/* Perform direct synchronous page reclaim */
4592static unsigned long
4593__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4594                                        const struct alloc_context *ac)
4595{
4596        unsigned int noreclaim_flag;
4597        unsigned long pflags, progress;
4598
4599        cond_resched();
4600
4601        /* We now go into synchronous reclaim */
4602        cpuset_memory_pressure_bump();
4603        psi_memstall_enter(&pflags);
4604        fs_reclaim_acquire(gfp_mask);
4605        noreclaim_flag = memalloc_noreclaim_save();
4606
4607        progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4608                                                                ac->nodemask);
4609
4610        memalloc_noreclaim_restore(noreclaim_flag);
4611        fs_reclaim_release(gfp_mask);
4612        psi_memstall_leave(&pflags);
4613
4614        cond_resched();
4615
4616        return progress;
4617}
4618
4619/* The really slow allocator path where we enter direct reclaim */
4620static inline struct page *
4621__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4622                unsigned int alloc_flags, const struct alloc_context *ac,
4623                unsigned long *did_some_progress)
4624{
4625        struct page *page = NULL;
4626        bool drained = false;
4627
4628        *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4629        if (unlikely(!(*did_some_progress)))
4630                return NULL;
4631
4632retry:
4633        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4634
4635        /*
4636         * If an allocation failed after direct reclaim, it could be because
4637         * pages are pinned on the per-cpu lists or in high alloc reserves.
4638         * Shrink them and try again
4639         */
4640        if (!page && !drained) {
4641                unreserve_highatomic_pageblock(ac, false);
4642                drain_all_pages(NULL);
4643                drained = true;
4644                goto retry;
4645        }
4646
4647        return page;
4648}
4649
4650static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4651                             const struct alloc_context *ac)
4652{
4653        struct zoneref *z;
4654        struct zone *zone;
4655        pg_data_t *last_pgdat = NULL;
4656        enum zone_type highest_zoneidx = ac->highest_zoneidx;
4657
4658        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4659                                        ac->nodemask) {
4660                if (last_pgdat != zone->zone_pgdat)
4661                        wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4662                last_pgdat = zone->zone_pgdat;
4663        }
4664}
4665
4666static inline unsigned int
4667gfp_to_alloc_flags(gfp_t gfp_mask)
4668{
4669        unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4670
4671        /*
4672         * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4673         * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4674         * to save two branches.
4675         */
4676        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4677        BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4678
4679        /*
4680         * The caller may dip into page reserves a bit more if the caller
4681         * cannot run direct reclaim, or if the caller has realtime scheduling
4682         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4683         * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4684         */
4685        alloc_flags |= (__force int)
4686                (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4687
4688        if (gfp_mask & __GFP_ATOMIC) {
4689                /*
4690                 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4691                 * if it can't schedule.
4692                 */
4693                if (!(gfp_mask & __GFP_NOMEMALLOC))
4694                        alloc_flags |= ALLOC_HARDER;
4695                /*
4696                 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4697                 * comment for __cpuset_node_allowed().
4698                 */
4699                alloc_flags &= ~ALLOC_CPUSET;
4700        } else if (unlikely(rt_task(current)) && !in_interrupt())
4701                alloc_flags |= ALLOC_HARDER;
4702
4703        alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4704
4705        return alloc_flags;
4706}
4707
4708static bool oom_reserves_allowed(struct task_struct *tsk)
4709{
4710        if (!tsk_is_oom_victim(tsk))
4711                return false;
4712
4713        /*
4714         * !MMU doesn't have oom reaper so give access to memory reserves
4715         * only to the thread with TIF_MEMDIE set
4716         */
4717        if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4718                return false;
4719
4720        return true;
4721}
4722
4723/*
4724 * Distinguish requests which really need access to full memory
4725 * reserves from oom victims which can live with a portion of it
4726 */
4727static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4728{
4729        if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4730                return 0;
4731        if (gfp_mask & __GFP_MEMALLOC)
4732                return ALLOC_NO_WATERMARKS;
4733        if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4734                return ALLOC_NO_WATERMARKS;
4735        if (!in_interrupt()) {
4736                if (current->flags & PF_MEMALLOC)
4737                        return ALLOC_NO_WATERMARKS;
4738                else if (oom_reserves_allowed(current))
4739                        return ALLOC_OOM;
4740        }
4741
4742        return 0;
4743}
4744
4745bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4746{
4747        return !!__gfp_pfmemalloc_flags(gfp_mask);
4748}
4749
4750/*
4751 * Checks whether it makes sense to retry the reclaim to make a forward progress
4752 * for the given allocation request.
4753 *
4754 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4755 * without success, or when we couldn't even meet the watermark if we
4756 * reclaimed all remaining pages on the LRU lists.
4757 *
4758 * Returns true if a retry is viable or false to enter the oom path.
4759 */
4760static inline bool
4761should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4762                     struct alloc_context *ac, int alloc_flags,
4763                     bool did_some_progress, int *no_progress_loops)
4764{
4765        struct zone *zone;
4766        struct zoneref *z;
4767        bool ret = false;
4768
4769        /*
4770         * Costly allocations might have made a progress but this doesn't mean
4771         * their order will become available due to high fragmentation so
4772         * always increment the no progress counter for them
4773         */
4774        if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4775                *no_progress_loops = 0;
4776        else
4777                (*no_progress_loops)++;
4778
4779        /*
4780         * Make sure we converge to OOM if we cannot make any progress
4781         * several times in the row.
4782         */
4783        if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4784                /* Before OOM, exhaust highatomic_reserve */
4785                return unreserve_highatomic_pageblock(ac, true);
4786        }
4787
4788        /*
4789         * Keep reclaiming pages while there is a chance this will lead
4790         * somewhere.  If none of the target zones can satisfy our allocation
4791         * request even if all reclaimable pages are considered then we are
4792         * screwed and have to go OOM.
4793         */
4794        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4795                                ac->highest_zoneidx, ac->nodemask) {
4796                unsigned long available;
4797                unsigned long reclaimable;
4798                unsigned long min_wmark = min_wmark_pages(zone);
4799                bool wmark;
4800
4801                available = reclaimable = zone_reclaimable_pages(zone);
4802                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4803
4804                /*
4805                 * Would the allocation succeed if we reclaimed all
4806                 * reclaimable pages?
4807                 */
4808                wmark = __zone_watermark_ok(zone, order, min_wmark,
4809                                ac->highest_zoneidx, alloc_flags, available);
4810                trace_reclaim_retry_zone(z, order, reclaimable,
4811                                available, min_wmark, *no_progress_loops, wmark);
4812                if (wmark) {
4813                        /*
4814                         * If we didn't make any progress and have a lot of
4815                         * dirty + writeback pages then we should wait for
4816                         * an IO to complete to slow down the reclaim and
4817                         * prevent from pre mature OOM
4818                         */
4819                        if (!did_some_progress) {
4820                                unsigned long write_pending;
4821
4822                                write_pending = zone_page_state_snapshot(zone,
4823                                                        NR_ZONE_WRITE_PENDING);
4824
4825                                if (2 * write_pending > reclaimable) {
4826                                        congestion_wait(BLK_RW_ASYNC, HZ/10);
4827                                        return true;
4828                                }
4829                        }
4830
4831                        ret = true;
4832                        goto out;
4833                }
4834        }
4835
4836out:
4837        /*
4838         * Memory allocation/reclaim might be called from a WQ context and the
4839         * current implementation of the WQ concurrency control doesn't
4840         * recognize that a particular WQ is congested if the worker thread is
4841         * looping without ever sleeping. Therefore we have to do a short sleep
4842         * here rather than calling cond_resched().
4843         */
4844        if (current->flags & PF_WQ_WORKER)
4845                schedule_timeout_uninterruptible(1);
4846        else
4847                cond_resched();
4848        return ret;
4849}
4850
4851static inline bool
4852check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4853{
4854        /*
4855         * It's possible that cpuset's mems_allowed and the nodemask from
4856         * mempolicy don't intersect. This should be normally dealt with by
4857         * policy_nodemask(), but it's possible to race with cpuset update in
4858         * such a way the check therein was true, and then it became false
4859         * before we got our cpuset_mems_cookie here.
4860         * This assumes that for all allocations, ac->nodemask can come only
4861         * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4862         * when it does not intersect with the cpuset restrictions) or the
4863         * caller can deal with a violated nodemask.
4864         */
4865        if (cpusets_enabled() && ac->nodemask &&
4866                        !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4867                ac->nodemask = NULL;
4868                return true;
4869        }
4870
4871        /*
4872         * When updating a task's mems_allowed or mempolicy nodemask, it is
4873         * possible to race with parallel threads in such a way that our
4874         * allocation can fail while the mask is being updated. If we are about
4875         * to fail, check if the cpuset changed during allocation and if so,
4876         * retry.
4877         */
4878        if (read_mems_allowed_retry(cpuset_mems_cookie))
4879                return true;
4880
4881        return false;
4882}
4883
4884static inline struct page *
4885__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4886                                                struct alloc_context *ac)
4887{
4888        bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4889        const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4890        struct page *page = NULL;
4891        unsigned int alloc_flags;
4892        unsigned long did_some_progress;
4893        enum compact_priority compact_priority;
4894        enum compact_result compact_result;
4895        int compaction_retries;
4896        int no_progress_loops;
4897        unsigned int cpuset_mems_cookie;
4898        int reserve_flags;
4899
4900        /*
4901         * We also sanity check to catch abuse of atomic reserves being used by
4902         * callers that are not in atomic context.
4903         */
4904        if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4905                                (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4906                gfp_mask &= ~__GFP_ATOMIC;
4907
4908retry_cpuset:
4909        compaction_retries = 0;
4910        no_progress_loops = 0;
4911        compact_priority = DEF_COMPACT_PRIORITY;
4912        cpuset_mems_cookie = read_mems_allowed_begin();
4913
4914        /*
4915         * The fast path uses conservative alloc_flags to succeed only until
4916         * kswapd needs to be woken up, and to avoid the cost of setting up
4917         * alloc_flags precisely. So we do that now.
4918         */
4919        alloc_flags = gfp_to_alloc_flags(gfp_mask);
4920
4921        /*
4922         * We need to recalculate the starting point for the zonelist iterator
4923         * because we might have used different nodemask in the fast path, or
4924         * there was a cpuset modification and we are retrying - otherwise we
4925         * could end up iterating over non-eligible zones endlessly.
4926         */
4927        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4928                                        ac->highest_zoneidx, ac->nodemask);
4929        if (!ac->preferred_zoneref->zone)
4930                goto nopage;
4931
4932        if (alloc_flags & ALLOC_KSWAPD)
4933                wake_all_kswapds(order, gfp_mask, ac);
4934
4935        /*
4936         * The adjusted alloc_flags might result in immediate success, so try
4937         * that first
4938         */
4939        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4940        if (page)
4941                goto got_pg;
4942
4943        /*
4944         * For costly allocations, try direct compaction first, as it's likely
4945         * that we have enough base pages and don't need to reclaim. For non-
4946         * movable high-order allocations, do that as well, as compaction will
4947         * try prevent permanent fragmentation by migrating from blocks of the
4948         * same migratetype.
4949         * Don't try this for allocations that are allowed to ignore
4950         * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4951         */
4952        if (can_direct_reclaim &&
4953                        (costly_order ||
4954                           (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4955                        && !gfp_pfmemalloc_allowed(gfp_mask)) {
4956                page = __alloc_pages_direct_compact(gfp_mask, order,
4957                                                alloc_flags, ac,
4958                                                INIT_COMPACT_PRIORITY,
4959                                                &compact_result);
4960                if (page)
4961                        goto got_pg;
4962
4963                /*
4964                 * Checks for costly allocations with __GFP_NORETRY, which
4965                 * includes some THP page fault allocations
4966                 */
4967                if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4968                        /*
4969                         * If allocating entire pageblock(s) and compaction
4970                         * failed because all zones are below low watermarks
4971                         * or is prohibited because it recently failed at this
4972                         * order, fail immediately unless the allocator has
4973                         * requested compaction and reclaim retry.
4974                         *
4975                         * Reclaim is
4976                         *  - potentially very expensive because zones are far
4977                         *    below their low watermarks or this is part of very
4978                         *    bursty high order allocations,
4979                         *  - not guaranteed to help because isolate_freepages()
4980                         *    may not iterate over freed pages as part of its
4981                         *    linear scan, and
4982                         *  - unlikely to make entire pageblocks free on its
4983                         *    own.
4984                         */
4985                        if (compact_result == COMPACT_SKIPPED ||
4986                            compact_result == COMPACT_DEFERRED)
4987                                goto nopage;
4988
4989                        /*
4990                         * Looks like reclaim/compaction is worth trying, but
4991                         * sync compaction could be very expensive, so keep
4992                         * using async compaction.
4993                         */
4994                        compact_priority = INIT_COMPACT_PRIORITY;
4995                }
4996        }
4997
4998retry:
4999        /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5000        if (alloc_flags & ALLOC_KSWAPD)
5001                wake_all_kswapds(order, gfp_mask, ac);
5002
5003        reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5004        if (reserve_flags)
5005                alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5006
5007        /*
5008         * Reset the nodemask and zonelist iterators if memory policies can be
5009         * ignored. These allocations are high priority and system rather than
5010         * user oriented.
5011         */
5012        if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5013                ac->nodemask = NULL;
5014                ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5015                                        ac->highest_zoneidx, ac->nodemask);
5016        }
5017
5018        /* Attempt with potentially adjusted zonelist and alloc_flags */
5019        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5020        if (page)
5021                goto got_pg;
5022
5023        /* Caller is not willing to reclaim, we can't balance anything */
5024        if (!can_direct_reclaim)
5025                goto nopage;
5026
5027        /* Avoid recursion of direct reclaim */
5028        if (current->flags & PF_MEMALLOC)
5029                goto nopage;
5030
5031        /* Try direct reclaim and then allocating */
5032        page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5033                                                        &did_some_progress);
5034        if (page)
5035                goto got_pg;
5036
5037        /* Try direct compaction and then allocating */
5038        page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5039                                        compact_priority, &compact_result);
5040        if (page)
5041                goto got_pg;
5042
5043        /* Do not loop if specifically requested */
5044        if (gfp_mask & __GFP_NORETRY)
5045                goto nopage;
5046
5047        /*
5048         * Do not retry costly high order allocations unless they are
5049         * __GFP_RETRY_MAYFAIL
5050         */
5051        if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5052                goto nopage;
5053
5054        if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5055                                 did_some_progress > 0, &no_progress_loops))
5056                goto retry;
5057
5058        /*
5059         * It doesn't make any sense to retry for the compaction if the order-0
5060         * reclaim is not able to make any progress because the current
5061         * implementation of the compaction depends on the sufficient amount
5062         * of free memory (see __compaction_suitable)
5063         */
5064        if (did_some_progress > 0 &&
5065                        should_compact_retry(ac, order, alloc_flags,
5066                                compact_result, &compact_priority,
5067                                &compaction_retries))
5068                goto retry;
5069
5070
5071        /* Deal with possible cpuset update races before we start OOM killing */
5072        if (check_retry_cpuset(cpuset_mems_cookie, ac))
5073                goto retry_cpuset;
5074
5075        /* Reclaim has failed us, start killing things */
5076        page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5077        if (page)
5078                goto got_pg;
5079
5080        /* Avoid allocations with no watermarks from looping endlessly */
5081        if (tsk_is_oom_victim(current) &&
5082            (alloc_flags & ALLOC_OOM ||
5083             (gfp_mask & __GFP_NOMEMALLOC)))
5084                goto nopage;
5085
5086        /* Retry as long as the OOM killer is making progress */
5087        if (did_some_progress) {
5088                no_progress_loops = 0;
5089                goto retry;
5090        }
5091
5092nopage:
5093        /* Deal with possible cpuset update races before we fail */
5094        if (check_retry_cpuset(cpuset_mems_cookie, ac))
5095                goto retry_cpuset;
5096
5097        /*
5098         * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5099         * we always retry
5100         */
5101        if (gfp_mask & __GFP_NOFAIL) {
5102                /*
5103                 * All existing users of the __GFP_NOFAIL are blockable, so warn
5104                 * of any new users that actually require GFP_NOWAIT
5105                 */
5106                if (WARN_ON_ONCE(!can_direct_reclaim))
5107                        goto fail;
5108
5109                /*
5110                 * PF_MEMALLOC request from this context is rather bizarre
5111                 * because we cannot reclaim anything and only can loop waiting
5112                 * for somebody to do a work for us
5113                 */
5114                WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5115
5116                /*
5117                 * non failing costly orders are a hard requirement which we
5118                 * are not prepared for much so let's warn about these users
5119                 * so that we can identify them and convert them to something
5120                 * else.
5121                 */
5122                WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5123
5124                /*
5125                 * Help non-failing allocations by giving them access to memory
5126                 * reserves but do not use ALLOC_NO_WATERMARKS because this
5127                 * could deplete whole memory reserves which would just make
5128                 * the situation worse
5129                 */
5130                page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5131                if (page)
5132                        goto got_pg;
5133
5134                cond_resched();
5135                goto retry;
5136        }
5137fail:
5138        warn_alloc(gfp_mask, ac->nodemask,
5139                        "page allocation failure: order:%u", order);
5140got_pg:
5141        return page;
5142}
5143
5144static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5145                int preferred_nid, nodemask_t *nodemask,
5146                struct alloc_context *ac, gfp_t *alloc_gfp,
5147                unsigned int *alloc_flags)
5148{
5149        ac->highest_zoneidx = gfp_zone(gfp_mask);
5150        ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5151        ac->nodemask = nodemask;
5152        ac->migratetype = gfp_migratetype(gfp_mask);
5153
5154        if (cpusets_enabled()) {
5155                *alloc_gfp |= __GFP_HARDWALL;
5156                /*
5157                 * When we are in the interrupt context, it is irrelevant
5158                 * to the current task context. It means that any node ok.
5159                 */
5160                if (!in_interrupt() && !ac->nodemask)
5161                        ac->nodemask = &cpuset_current_mems_allowed;
5162                else
5163                        *alloc_flags |= ALLOC_CPUSET;
5164        }
5165
5166        fs_reclaim_acquire(gfp_mask);
5167        fs_reclaim_release(gfp_mask);
5168
5169        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5170
5171        if (should_fail_alloc_page(gfp_mask, order))
5172                return false;
5173
5174        *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5175
5176        /* Dirty zone balancing only done in the fast path */
5177        ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5178
5179        /*
5180         * The preferred zone is used for statistics but crucially it is
5181         * also used as the starting point for the zonelist iterator. It
5182         * may get reset for allocations that ignore memory policies.
5183         */
5184        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5185                                        ac->highest_zoneidx, ac->nodemask);
5186
5187        return true;
5188}
5189
5190/*
5191 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5192 * @gfp: GFP flags for the allocation
5193 * @preferred_nid: The preferred NUMA node ID to allocate from
5194 * @nodemask: Set of nodes to allocate from, may be NULL
5195 * @nr_pages: The number of pages desired on the list or array
5196 * @page_list: Optional list to store the allocated pages
5197 * @page_array: Optional array to store the pages
5198 *
5199 * This is a batched version of the page allocator that attempts to
5200 * allocate nr_pages quickly. Pages are added to page_list if page_list
5201 * is not NULL, otherwise it is assumed that the page_array is valid.
5202 *
5203 * For lists, nr_pages is the number of pages that should be allocated.
5204 *
5205 * For arrays, only NULL elements are populated with pages and nr_pages
5206 * is the maximum number of pages that will be stored in the array.
5207 *
5208 * Returns the number of pages on the list or array.
5209 */
5210unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5211                        nodemask_t *nodemask, int nr_pages,
5212                        struct list_head *page_list,
5213                        struct page **page_array)
5214{
5215        struct page *page;
5216        unsigned long flags;
5217        struct zone *zone;
5218        struct zoneref *z;
5219        struct per_cpu_pages *pcp;
5220        struct list_head *pcp_list;
5221        struct alloc_context ac;
5222        gfp_t alloc_gfp;
5223        unsigned int alloc_flags = ALLOC_WMARK_LOW;
5224        int nr_populated = 0, nr_account = 0;
5225
5226        /*
5227         * Skip populated array elements to determine if any pages need
5228         * to be allocated before disabling IRQs.
5229         */
5230        while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5231                nr_populated++;
5232
5233        /* No pages requested? */
5234        if (unlikely(nr_pages <= 0))
5235                goto out;
5236
5237        /* Already populated array? */
5238        if (unlikely(page_array && nr_pages - nr_populated == 0))
5239                goto out;
5240
5241        /* Use the single page allocator for one page. */
5242        if (nr_pages - nr_populated == 1)
5243                goto failed;
5244
5245#ifdef CONFIG_PAGE_OWNER
5246        /*
5247         * PAGE_OWNER may recurse into the allocator to allocate space to
5248         * save the stack with pagesets.lock held. Releasing/reacquiring
5249         * removes much of the performance benefit of bulk allocation so
5250         * force the caller to allocate one page at a time as it'll have
5251         * similar performance to added complexity to the bulk allocator.
5252         */
5253        if (static_branch_unlikely(&page_owner_inited))
5254                goto failed;
5255#endif
5256
5257        /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5258        gfp &= gfp_allowed_mask;
5259        alloc_gfp = gfp;
5260        if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5261                goto out;
5262        gfp = alloc_gfp;
5263
5264        /* Find an allowed local zone that meets the low watermark. */
5265        for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5266                unsigned long mark;
5267
5268                if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5269                    !__cpuset_zone_allowed(zone, gfp)) {
5270                        continue;
5271                }
5272
5273                if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5274                    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5275                        goto failed;
5276                }
5277
5278                mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5279                if (zone_watermark_fast(zone, 0,  mark,
5280                                zonelist_zone_idx(ac.preferred_zoneref),
5281                                alloc_flags, gfp)) {
5282                        break;
5283                }
5284        }
5285
5286        /*
5287         * If there are no allowed local zones that meets the watermarks then
5288         * try to allocate a single page and reclaim if necessary.
5289         */
5290        if (unlikely(!zone))
5291                goto failed;
5292
5293        /* Attempt the batch allocation */
5294        local_lock_irqsave(&pagesets.lock, flags);
5295        pcp = this_cpu_ptr(zone->per_cpu_pageset);
5296        pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5297
5298        while (nr_populated < nr_pages) {
5299
5300                /* Skip existing pages */
5301                if (page_array && page_array[nr_populated]) {
5302                        nr_populated++;
5303                        continue;
5304                }
5305
5306                page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5307                                                                pcp, pcp_list);
5308                if (unlikely(!page)) {
5309                        /* Try and get at least one page */
5310                        if (!nr_populated)
5311                                goto failed_irq;
5312                        break;
5313                }
5314                nr_account++;
5315
5316                prep_new_page(page, 0, gfp, 0);
5317                if (page_list)
5318                        list_add(&page->lru, page_list);
5319                else
5320                        page_array[nr_populated] = page;
5321                nr_populated++;
5322        }
5323
5324        local_unlock_irqrestore(&pagesets.lock, flags);
5325
5326        __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5327        zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5328
5329out:
5330        return nr_populated;
5331
5332failed_irq:
5333        local_unlock_irqrestore(&pagesets.lock, flags);
5334
5335failed:
5336        page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5337        if (page) {
5338                if (page_list)
5339                        list_add(&page->lru, page_list);
5340                else
5341                        page_array[nr_populated] = page;
5342                nr_populated++;
5343        }
5344
5345        goto out;
5346}
5347EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5348
5349/*
5350 * This is the 'heart' of the zoned buddy allocator.
5351 */
5352struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5353                                                        nodemask_t *nodemask)
5354{
5355        struct page *page;
5356        unsigned int alloc_flags = ALLOC_WMARK_LOW;
5357        gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5358        struct alloc_context ac = { };
5359
5360        /*
5361         * There are several places where we assume that the order value is sane
5362         * so bail out early if the request is out of bound.
5363         */
5364        if (unlikely(order >= MAX_ORDER)) {
5365                WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5366                return NULL;
5367        }
5368
5369        gfp &= gfp_allowed_mask;
5370        /*
5371         * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5372         * resp. GFP_NOIO which has to be inherited for all allocation requests
5373         * from a particular context which has been marked by
5374         * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5375         * movable zones are not used during allocation.
5376         */
5377        gfp = current_gfp_context(gfp);
5378        alloc_gfp = gfp;
5379        if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5380                        &alloc_gfp, &alloc_flags))
5381                return NULL;
5382
5383        /*
5384         * Forbid the first pass from falling back to types that fragment
5385         * memory until all local zones are considered.
5386         */
5387        alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5388
5389        /* First allocation attempt */
5390        page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5391        if (likely(page))
5392                goto out;
5393
5394        alloc_gfp = gfp;
5395        ac.spread_dirty_pages = false;
5396
5397        /*
5398         * Restore the original nodemask if it was potentially replaced with
5399         * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5400         */
5401        ac.nodemask = nodemask;
5402
5403        page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5404
5405out:
5406        if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5407            unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5408                __free_pages(page, order);
5409                page = NULL;
5410        }
5411
5412        trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5413
5414        return page;
5415}
5416EXPORT_SYMBOL(__alloc_pages);
5417
5418/*
5419 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5420 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5421 * you need to access high mem.
5422 */
5423unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5424{
5425        struct page *page;
5426
5427        page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5428        if (!page)
5429                return 0;
5430        return (unsigned long) page_address(page);
5431}
5432EXPORT_SYMBOL(__get_free_pages);
5433
5434unsigned long get_zeroed_page(gfp_t gfp_mask)
5435{
5436        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5437}
5438EXPORT_SYMBOL(get_zeroed_page);
5439
5440/**
5441 * __free_pages - Free pages allocated with alloc_pages().
5442 * @page: The page pointer returned from alloc_pages().
5443 * @order: The order of the allocation.
5444 *
5445 * This function can free multi-page allocations that are not compound
5446 * pages.  It does not check that the @order passed in matches that of
5447 * the allocation, so it is easy to leak memory.  Freeing more memory
5448 * than was allocated will probably emit a warning.
5449 *
5450 * If the last reference to this page is speculative, it will be released
5451 * by put_page() which only frees the first page of a non-compound
5452 * allocation.  To prevent the remaining pages from being leaked, we free
5453 * the subsequent pages here.  If you want to use the page's reference
5454 * count to decide when to free the allocation, you should allocate a
5455 * compound page, and use put_page() instead of __free_pages().
5456 *
5457 * Context: May be called in interrupt context or while holding a normal
5458 * spinlock, but not in NMI context or while holding a raw spinlock.
5459 */
5460void __free_pages(struct page *page, unsigned int order)
5461{
5462        if (put_page_testzero(page))
5463                free_the_page(page, order);
5464        else if (!PageHead(page))
5465                while (order-- > 0)
5466                        free_the_page(page + (1 << order), order);
5467}
5468EXPORT_SYMBOL(__free_pages);
5469
5470void free_pages(unsigned long addr, unsigned int order)
5471{
5472        if (addr != 0) {
5473                VM_BUG_ON(!virt_addr_valid((void *)addr));
5474                __free_pages(virt_to_page((void *)addr), order);
5475        }
5476}
5477
5478EXPORT_SYMBOL(free_pages);
5479
5480/*
5481 * Page Fragment:
5482 *  An arbitrary-length arbitrary-offset area of memory which resides
5483 *  within a 0 or higher order page.  Multiple fragments within that page
5484 *  are individually refcounted, in the page's reference counter.
5485 *
5486 * The page_frag functions below provide a simple allocation framework for
5487 * page fragments.  This is used by the network stack and network device
5488 * drivers to provide a backing region of memory for use as either an
5489 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5490 */
5491static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5492                                             gfp_t gfp_mask)
5493{
5494        struct page *page = NULL;
5495        gfp_t gfp = gfp_mask;
5496
5497#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5498        gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5499                    __GFP_NOMEMALLOC;
5500        page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5501                                PAGE_FRAG_CACHE_MAX_ORDER);
5502        nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5503#endif
5504        if (unlikely(!page))
5505                page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5506
5507        nc->va = page ? page_address(page) : NULL;
5508
5509        return page;
5510}
5511
5512void __page_frag_cache_drain(struct page *page, unsigned int count)
5513{
5514        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5515
5516        if (page_ref_sub_and_test(page, count))
5517                free_the_page(page, compound_order(page));
5518}
5519EXPORT_SYMBOL(__page_frag_cache_drain);
5520
5521void *page_frag_alloc_align(struct page_frag_cache *nc,
5522                      unsigned int fragsz, gfp_t gfp_mask,
5523                      unsigned int align_mask)
5524{
5525        unsigned int size = PAGE_SIZE;
5526        struct page *page;
5527        int offset;
5528
5529        if (unlikely(!nc->va)) {
5530refill:
5531                page = __page_frag_cache_refill(nc, gfp_mask);
5532                if (!page)
5533                        return NULL;
5534
5535#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5536                /* if size can vary use size else just use PAGE_SIZE */
5537                size = nc->size;
5538#endif
5539                /* Even if we own the page, we do not use atomic_set().
5540                 * This would break get_page_unless_zero() users.
5541                 */
5542                page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5543
5544                /* reset page count bias and offset to start of new frag */
5545                nc->pfmemalloc = page_is_pfmemalloc(page);
5546                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5547                nc->offset = size;
5548        }
5549
5550        offset = nc->offset - fragsz;
5551        if (unlikely(offset < 0)) {
5552                page = virt_to_page(nc->va);
5553
5554                if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5555                        goto refill;
5556
5557                if (unlikely(nc->pfmemalloc)) {
5558                        free_the_page(page, compound_order(page));
5559                        goto refill;
5560                }
5561
5562#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5563                /* if size can vary use size else just use PAGE_SIZE */
5564                size = nc->size;
5565#endif
5566                /* OK, page count is 0, we can safely set it */
5567                set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5568
5569                /* reset page count bias and offset to start of new frag */
5570                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5571                offset = size - fragsz;
5572        }
5573
5574        nc->pagecnt_bias--;
5575        offset &= align_mask;
5576        nc->offset = offset;
5577
5578        return nc->va + offset;
5579}
5580EXPORT_SYMBOL(page_frag_alloc_align);
5581
5582/*
5583 * Frees a page fragment allocated out of either a compound or order 0 page.
5584 */
5585void page_frag_free(void *addr)
5586{
5587        struct page *page = virt_to_head_page(addr);
5588
5589        if (unlikely(put_page_testzero(page)))
5590                free_the_page(page, compound_order(page));
5591}
5592EXPORT_SYMBOL(page_frag_free);
5593
5594static void *make_alloc_exact(unsigned long addr, unsigned int order,
5595                size_t size)
5596{
5597        if (addr) {
5598                unsigned long alloc_end = addr + (PAGE_SIZE << order);
5599                unsigned long used = addr + PAGE_ALIGN(size);
5600
5601                split_page(virt_to_page((void *)addr), order);
5602                while (used < alloc_end) {
5603                        free_page(used);
5604                        used += PAGE_SIZE;
5605                }
5606        }
5607        return (void *)addr;
5608}
5609
5610/**
5611 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5612 * @size: the number of bytes to allocate
5613 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5614 *
5615 * This function is similar to alloc_pages(), except that it allocates the
5616 * minimum number of pages to satisfy the request.  alloc_pages() can only
5617 * allocate memory in power-of-two pages.
5618 *
5619 * This function is also limited by MAX_ORDER.
5620 *
5621 * Memory allocated by this function must be released by free_pages_exact().
5622 *
5623 * Return: pointer to the allocated area or %NULL in case of error.
5624 */
5625void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5626{
5627        unsigned int order = get_order(size);
5628        unsigned long addr;
5629
5630        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5631                gfp_mask &= ~__GFP_COMP;
5632
5633        addr = __get_free_pages(gfp_mask, order);
5634        return make_alloc_exact(addr, order, size);
5635}
5636EXPORT_SYMBOL(alloc_pages_exact);
5637
5638/**
5639 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5640 *                         pages on a node.
5641 * @nid: the preferred node ID where memory should be allocated
5642 * @size: the number of bytes to allocate
5643 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5644 *
5645 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5646 * back.
5647 *
5648 * Return: pointer to the allocated area or %NULL in case of error.
5649 */
5650void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5651{
5652        unsigned int order = get_order(size);
5653        struct page *p;
5654
5655        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5656                gfp_mask &= ~__GFP_COMP;
5657
5658        p = alloc_pages_node(nid, gfp_mask, order);
5659        if (!p)
5660                return NULL;
5661        return make_alloc_exact((unsigned long)page_address(p), order, size);
5662}
5663
5664/**
5665 * free_pages_exact - release memory allocated via alloc_pages_exact()
5666 * @virt: the value returned by alloc_pages_exact.
5667 * @size: size of allocation, same value as passed to alloc_pages_exact().
5668 *
5669 * Release the memory allocated by a previous call to alloc_pages_exact.
5670 */
5671void free_pages_exact(void *virt, size_t size)
5672{
5673        unsigned long addr = (unsigned long)virt;
5674        unsigned long end = addr + PAGE_ALIGN(size);
5675
5676        while (addr < end) {
5677                free_page(addr);
5678                addr += PAGE_SIZE;
5679        }
5680}
5681EXPORT_SYMBOL(free_pages_exact);
5682
5683/**
5684 * nr_free_zone_pages - count number of pages beyond high watermark
5685 * @offset: The zone index of the highest zone
5686 *
5687 * nr_free_zone_pages() counts the number of pages which are beyond the
5688 * high watermark within all zones at or below a given zone index.  For each
5689 * zone, the number of pages is calculated as:
5690 *
5691 *     nr_free_zone_pages = managed_pages - high_pages
5692 *
5693 * Return: number of pages beyond high watermark.
5694 */
5695static unsigned long nr_free_zone_pages(int offset)
5696{
5697        struct zoneref *z;
5698        struct zone *zone;
5699
5700        /* Just pick one node, since fallback list is circular */
5701        unsigned long sum = 0;
5702
5703        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5704
5705        for_each_zone_zonelist(zone, z, zonelist, offset) {
5706                unsigned long size = zone_managed_pages(zone);
5707                unsigned long high = high_wmark_pages(zone);
5708                if (size > high)
5709                        sum += size - high;
5710        }
5711
5712        return sum;
5713}
5714
5715/**
5716 * nr_free_buffer_pages - count number of pages beyond high watermark
5717 *
5718 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5719 * watermark within ZONE_DMA and ZONE_NORMAL.
5720 *
5721 * Return: number of pages beyond high watermark within ZONE_DMA and
5722 * ZONE_NORMAL.
5723 */
5724unsigned long nr_free_buffer_pages(void)
5725{
5726        return nr_free_zone_pages(gfp_zone(GFP_USER));
5727}
5728EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5729
5730static inline void show_node(struct zone *zone)
5731{
5732        if (IS_ENABLED(CONFIG_NUMA))
5733                printk("Node %d ", zone_to_nid(zone));
5734}
5735
5736long si_mem_available(void)
5737{
5738        long available;
5739        unsigned long pagecache;
5740        unsigned long wmark_low = 0;
5741        unsigned long pages[NR_LRU_LISTS];
5742        unsigned long reclaimable;
5743        struct zone *zone;
5744        int lru;
5745
5746        for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5747                pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5748
5749        for_each_zone(zone)
5750                wmark_low += low_wmark_pages(zone);
5751
5752        /*
5753         * Estimate the amount of memory available for userspace allocations,
5754         * without causing swapping.
5755         */
5756        available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5757
5758        /*
5759         * Not all the page cache can be freed, otherwise the system will
5760         * start swapping. Assume at least half of the page cache, or the
5761         * low watermark worth of cache, needs to stay.
5762         */
5763        pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5764        pagecache -= min(pagecache / 2, wmark_low);
5765        available += pagecache;
5766
5767        /*
5768         * Part of the reclaimable slab and other kernel memory consists of
5769         * items that are in use, and cannot be freed. Cap this estimate at the
5770         * low watermark.
5771         */
5772        reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5773                global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5774        available += reclaimable - min(reclaimable / 2, wmark_low);
5775
5776        if (available < 0)
5777                available = 0;
5778        return available;
5779}
5780EXPORT_SYMBOL_GPL(si_mem_available);
5781
5782void si_meminfo(struct sysinfo *val)
5783{
5784        val->totalram = totalram_pages();
5785        val->sharedram = global_node_page_state(NR_SHMEM);
5786        val->freeram = global_zone_page_state(NR_FREE_PAGES);
5787        val->bufferram = nr_blockdev_pages();
5788        val->totalhigh = totalhigh_pages();
5789        val->freehigh = nr_free_highpages();
5790        val->mem_unit = PAGE_SIZE;
5791}
5792
5793EXPORT_SYMBOL(si_meminfo);
5794
5795#ifdef CONFIG_NUMA
5796void si_meminfo_node(struct sysinfo *val, int nid)
5797{
5798        int zone_type;          /* needs to be signed */
5799        unsigned long managed_pages = 0;
5800        unsigned long managed_highpages = 0;
5801        unsigned long free_highpages = 0;
5802        pg_data_t *pgdat = NODE_DATA(nid);
5803
5804        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5805                managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5806        val->totalram = managed_pages;
5807        val->sharedram = node_page_state(pgdat, NR_SHMEM);
5808        val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5809#ifdef CONFIG_HIGHMEM
5810        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5811                struct zone *zone = &pgdat->node_zones[zone_type];
5812
5813                if (is_highmem(zone)) {
5814                        managed_highpages += zone_managed_pages(zone);
5815                        free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5816                }
5817        }
5818        val->totalhigh = managed_highpages;
5819        val->freehigh = free_highpages;
5820#else
5821        val->totalhigh = managed_highpages;
5822        val->freehigh = free_highpages;
5823#endif
5824        val->mem_unit = PAGE_SIZE;
5825}
5826#endif
5827
5828/*
5829 * Determine whether the node should be displayed or not, depending on whether
5830 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5831 */
5832static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5833{
5834        if (!(flags & SHOW_MEM_FILTER_NODES))
5835                return false;
5836
5837        /*
5838         * no node mask - aka implicit memory numa policy. Do not bother with
5839         * the synchronization - read_mems_allowed_begin - because we do not
5840         * have to be precise here.
5841         */
5842        if (!nodemask)
5843                nodemask = &cpuset_current_mems_allowed;
5844
5845        return !node_isset(nid, *nodemask);
5846}
5847
5848#define K(x) ((x) << (PAGE_SHIFT-10))
5849
5850static void show_migration_types(unsigned char type)
5851{
5852        static const char types[MIGRATE_TYPES] = {
5853                [MIGRATE_UNMOVABLE]     = 'U',
5854                [MIGRATE_MOVABLE]       = 'M',
5855                [MIGRATE_RECLAIMABLE]   = 'E',
5856                [MIGRATE_HIGHATOMIC]    = 'H',
5857#ifdef CONFIG_CMA
5858                [MIGRATE_CMA]           = 'C',
5859#endif
5860#ifdef CONFIG_MEMORY_ISOLATION
5861                [MIGRATE_ISOLATE]       = 'I',
5862#endif
5863        };
5864        char tmp[MIGRATE_TYPES + 1];
5865        char *p = tmp;
5866        int i;
5867
5868        for (i = 0; i < MIGRATE_TYPES; i++) {
5869                if (type & (1 << i))
5870                        *p++ = types[i];
5871        }
5872
5873        *p = '\0';
5874        printk(KERN_CONT "(%s) ", tmp);
5875}
5876
5877/*
5878 * Show free area list (used inside shift_scroll-lock stuff)
5879 * We also calculate the percentage fragmentation. We do this by counting the
5880 * memory on each free list with the exception of the first item on the list.
5881 *
5882 * Bits in @filter:
5883 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5884 *   cpuset.
5885 */
5886void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5887{
5888        unsigned long free_pcp = 0;
5889        int cpu;
5890        struct zone *zone;
5891        pg_data_t *pgdat;
5892
5893        for_each_populated_zone(zone) {
5894                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5895                        continue;
5896
5897                for_each_online_cpu(cpu)
5898                        free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5899        }
5900
5901        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5902                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5903                " unevictable:%lu dirty:%lu writeback:%lu\n"
5904                " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5905                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5906                " free:%lu free_pcp:%lu free_cma:%lu\n",
5907                global_node_page_state(NR_ACTIVE_ANON),
5908                global_node_page_state(NR_INACTIVE_ANON),
5909                global_node_page_state(NR_ISOLATED_ANON),
5910                global_node_page_state(NR_ACTIVE_FILE),
5911                global_node_page_state(NR_INACTIVE_FILE),
5912                global_node_page_state(NR_ISOLATED_FILE),
5913                global_node_page_state(NR_UNEVICTABLE),
5914                global_node_page_state(NR_FILE_DIRTY),
5915                global_node_page_state(NR_WRITEBACK),
5916                global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5917                global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5918                global_node_page_state(NR_FILE_MAPPED),
5919                global_node_page_state(NR_SHMEM),
5920                global_node_page_state(NR_PAGETABLE),
5921                global_zone_page_state(NR_BOUNCE),
5922                global_zone_page_state(NR_FREE_PAGES),
5923                free_pcp,
5924                global_zone_page_state(NR_FREE_CMA_PAGES));
5925
5926        for_each_online_pgdat(pgdat) {
5927                if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5928                        continue;
5929
5930                printk("Node %d"
5931                        " active_anon:%lukB"
5932                        " inactive_anon:%lukB"
5933                        " active_file:%lukB"
5934                        " inactive_file:%lukB"
5935                        " unevictable:%lukB"
5936                        " isolated(anon):%lukB"
5937                        " isolated(file):%lukB"
5938                        " mapped:%lukB"
5939                        " dirty:%lukB"
5940                        " writeback:%lukB"
5941                        " shmem:%lukB"
5942#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943                        " shmem_thp: %lukB"
5944                        " shmem_pmdmapped: %lukB"
5945                        " anon_thp: %lukB"
5946#endif
5947                        " writeback_tmp:%lukB"
5948                        " kernel_stack:%lukB"
5949#ifdef CONFIG_SHADOW_CALL_STACK
5950                        " shadow_call_stack:%lukB"
5951#endif
5952                        " pagetables:%lukB"
5953                        " all_unreclaimable? %s"
5954                        "\n",
5955                        pgdat->node_id,
5956                        K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5957                        K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5958                        K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5959                        K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5960                        K(node_page_state(pgdat, NR_UNEVICTABLE)),
5961                        K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5962                        K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5963                        K(node_page_state(pgdat, NR_FILE_MAPPED)),
5964                        K(node_page_state(pgdat, NR_FILE_DIRTY)),
5965                        K(node_page_state(pgdat, NR_WRITEBACK)),
5966                        K(node_page_state(pgdat, NR_SHMEM)),
5967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5968                        K(node_page_state(pgdat, NR_SHMEM_THPS)),
5969                        K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5970                        K(node_page_state(pgdat, NR_ANON_THPS)),
5971#endif
5972                        K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5973                        node_page_state(pgdat, NR_KERNEL_STACK_KB),
5974#ifdef CONFIG_SHADOW_CALL_STACK
5975                        node_page_state(pgdat, NR_KERNEL_SCS_KB),
5976#endif
5977                        K(node_page_state(pgdat, NR_PAGETABLE)),
5978                        pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5979                                "yes" : "no");
5980        }
5981
5982        for_each_populated_zone(zone) {
5983                int i;
5984
5985                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5986                        continue;
5987
5988                free_pcp = 0;
5989                for_each_online_cpu(cpu)
5990                        free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5991
5992                show_node(zone);
5993                printk(KERN_CONT
5994                        "%s"
5995                        " free:%lukB"
5996                        " min:%lukB"
5997                        " low:%lukB"
5998                        " high:%lukB"
5999                        " reserved_highatomic:%luKB"
6000                        " active_anon:%lukB"
6001                        " inactive_anon:%lukB"
6002                        " active_file:%lukB"
6003                        " inactive_file:%lukB"
6004                        " unevictable:%lukB"
6005                        " writepending:%lukB"
6006                        " present:%lukB"
6007                        " managed:%lukB"
6008                        " mlocked:%lukB"
6009                        " bounce:%lukB"
6010                        " free_pcp:%lukB"
6011                        " local_pcp:%ukB"
6012                        " free_cma:%lukB"
6013                        "\n",
6014                        zone->name,
6015                        K(zone_page_state(zone, NR_FREE_PAGES)),
6016                        K(min_wmark_pages(zone)),
6017                        K(low_wmark_pages(zone)),
6018                        K(high_wmark_pages(zone)),
6019                        K(zone->nr_reserved_highatomic),
6020                        K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6021                        K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6022                        K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6023                        K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6024                        K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6025                        K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6026                        K(zone->present_pages),
6027                        K(zone_managed_pages(zone)),
6028                        K(zone_page_state(zone, NR_MLOCK)),
6029                        K(zone_page_state(zone, NR_BOUNCE)),
6030                        K(free_pcp),
6031                        K(this_cpu_read(zone->per_cpu_pageset->count)),
6032                        K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6033                printk("lowmem_reserve[]:");
6034                for (i = 0; i < MAX_NR_ZONES; i++)
6035                        printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6036                printk(KERN_CONT "\n");
6037        }
6038
6039        for_each_populated_zone(zone) {
6040                unsigned int order;
6041                unsigned long nr[MAX_ORDER], flags, total = 0;
6042                unsigned char types[MAX_ORDER];
6043
6044                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6045                        continue;
6046                show_node(zone);
6047                printk(KERN_CONT "%s: ", zone->name);
6048
6049                spin_lock_irqsave(&zone->lock, flags);
6050                for (order = 0; order < MAX_ORDER; order++) {
6051                        struct free_area *area = &zone->free_area[order];
6052                        int type;
6053
6054                        nr[order] = area->nr_free;
6055                        total += nr[order] << order;
6056
6057                        types[order] = 0;
6058                        for (type = 0; type < MIGRATE_TYPES; type++) {
6059                                if (!free_area_empty(area, type))
6060                                        types[order] |= 1 << type;
6061                        }
6062                }
6063                spin_unlock_irqrestore(&zone->lock, flags);
6064                for (order = 0; order < MAX_ORDER; order++) {
6065                        printk(KERN_CONT "%lu*%lukB ",
6066                               nr[order], K(1UL) << order);
6067                        if (nr[order])
6068                                show_migration_types(types[order]);
6069                }
6070                printk(KERN_CONT "= %lukB\n", K(total));
6071        }
6072
6073        hugetlb_show_meminfo();
6074
6075        printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6076
6077        show_swap_cache_info();
6078}
6079
6080static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6081{
6082        zoneref->zone = zone;
6083        zoneref->zone_idx = zone_idx(zone);
6084}
6085
6086/*
6087 * Builds allocation fallback zone lists.
6088 *
6089 * Add all populated zones of a node to the zonelist.
6090 */
6091static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6092{
6093        struct zone *zone;
6094        enum zone_type zone_type = MAX_NR_ZONES;
6095        int nr_zones = 0;
6096
6097        do {
6098                zone_type--;
6099                zone = pgdat->node_zones + zone_type;
6100                if (managed_zone(zone)) {
6101                        zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6102                        check_highest_zone(zone_type);
6103                }
6104        } while (zone_type);
6105
6106        return nr_zones;
6107}
6108
6109#ifdef CONFIG_NUMA
6110
6111static int __parse_numa_zonelist_order(char *s)
6112{
6113        /*
6114         * We used to support different zonelists modes but they turned
6115         * out to be just not useful. Let's keep the warning in place
6116         * if somebody still use the cmd line parameter so that we do
6117         * not fail it silently
6118         */
6119        if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6120                pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6121                return -EINVAL;
6122        }
6123        return 0;
6124}
6125
6126char numa_zonelist_order[] = "Node";
6127
6128/*
6129 * sysctl handler for numa_zonelist_order
6130 */
6131int numa_zonelist_order_handler(struct ctl_table *table, int write,
6132                void *buffer, size_t *length, loff_t *ppos)
6133{
6134        if (write)
6135                return __parse_numa_zonelist_order(buffer);
6136        return proc_dostring(table, write, buffer, length, ppos);
6137}
6138
6139
6140#define MAX_NODE_LOAD (nr_online_nodes)
6141static int node_load[MAX_NUMNODES];
6142
6143/**
6144 * find_next_best_node - find the next node that should appear in a given node's fallback list
6145 * @node: node whose fallback list we're appending
6146 * @used_node_mask: nodemask_t of already used nodes
6147 *
6148 * We use a number of factors to determine which is the next node that should
6149 * appear on a given node's fallback list.  The node should not have appeared
6150 * already in @node's fallback list, and it should be the next closest node
6151 * according to the distance array (which contains arbitrary distance values
6152 * from each node to each node in the system), and should also prefer nodes
6153 * with no CPUs, since presumably they'll have very little allocation pressure
6154 * on them otherwise.
6155 *
6156 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6157 */
6158static int find_next_best_node(int node, nodemask_t *used_node_mask)
6159{
6160        int n, val;
6161        int min_val = INT_MAX;
6162        int best_node = NUMA_NO_NODE;
6163
6164        /* Use the local node if we haven't already */
6165        if (!node_isset(node, *used_node_mask)) {
6166                node_set(node, *used_node_mask);
6167                return node;
6168        }
6169
6170        for_each_node_state(n, N_MEMORY) {
6171
6172                /* Don't want a node to appear more than once */
6173                if (node_isset(n, *used_node_mask))
6174                        continue;
6175
6176                /* Use the distance array to find the distance */
6177                val = node_distance(node, n);
6178
6179                /* Penalize nodes under us ("prefer the next node") */
6180                val += (n < node);
6181
6182                /* Give preference to headless and unused nodes */
6183                if (!cpumask_empty(cpumask_of_node(n)))
6184                        val += PENALTY_FOR_NODE_WITH_CPUS;
6185
6186                /* Slight preference for less loaded node */
6187                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6188                val += node_load[n];
6189
6190                if (val < min_val) {
6191                        min_val = val;
6192                        best_node = n;
6193                }
6194        }
6195
6196        if (best_node >= 0)
6197                node_set(best_node, *used_node_mask);
6198
6199        return best_node;
6200}
6201
6202
6203/*
6204 * Build zonelists ordered by node and zones within node.
6205 * This results in maximum locality--normal zone overflows into local
6206 * DMA zone, if any--but risks exhausting DMA zone.
6207 */
6208static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6209                unsigned nr_nodes)
6210{
6211        struct zoneref *zonerefs;
6212        int i;
6213
6214        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6215
6216        for (i = 0; i < nr_nodes; i++) {
6217                int nr_zones;
6218
6219                pg_data_t *node = NODE_DATA(node_order[i]);
6220
6221                nr_zones = build_zonerefs_node(node, zonerefs);
6222                zonerefs += nr_zones;
6223        }
6224        zonerefs->zone = NULL;
6225        zonerefs->zone_idx = 0;
6226}
6227
6228/*
6229 * Build gfp_thisnode zonelists
6230 */
6231static void build_thisnode_zonelists(pg_data_t *pgdat)
6232{
6233        struct zoneref *zonerefs;
6234        int nr_zones;
6235
6236        zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6237        nr_zones = build_zonerefs_node(pgdat, zonerefs);
6238        zonerefs += nr_zones;
6239        zonerefs->zone = NULL;
6240        zonerefs->zone_idx = 0;
6241}
6242
6243/*
6244 * Build zonelists ordered by zone and nodes within zones.
6245 * This results in conserving DMA zone[s] until all Normal memory is
6246 * exhausted, but results in overflowing to remote node while memory
6247 * may still exist in local DMA zone.
6248 */
6249
6250static void build_zonelists(pg_data_t *pgdat)
6251{
6252        static int node_order[MAX_NUMNODES];
6253        int node, load, nr_nodes = 0;
6254        nodemask_t used_mask = NODE_MASK_NONE;
6255        int local_node, prev_node;
6256
6257        /* NUMA-aware ordering of nodes */
6258        local_node = pgdat->node_id;
6259        load = nr_online_nodes;
6260        prev_node = local_node;
6261
6262        memset(node_order, 0, sizeof(node_order));
6263        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6264                /*
6265                 * We don't want to pressure a particular node.
6266                 * So adding penalty to the first node in same
6267                 * distance group to make it round-robin.
6268                 */
6269                if (node_distance(local_node, node) !=
6270                    node_distance(local_node, prev_node))
6271                        node_load[node] = load;
6272
6273                node_order[nr_nodes++] = node;
6274                prev_node = node;
6275                load--;
6276        }
6277
6278        build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6279        build_thisnode_zonelists(pgdat);
6280}
6281
6282#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6283/*
6284 * Return node id of node used for "local" allocations.
6285 * I.e., first node id of first zone in arg node's generic zonelist.
6286 * Used for initializing percpu 'numa_mem', which is used primarily
6287 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6288 */
6289int local_memory_node(int node)
6290{
6291        struct zoneref *z;
6292
6293        z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6294                                   gfp_zone(GFP_KERNEL),
6295                                   NULL);
6296        return zone_to_nid(z->zone);
6297}
6298#endif
6299
6300static void setup_min_unmapped_ratio(void);
6301static void setup_min_slab_ratio(void);
6302#else   /* CONFIG_NUMA */
6303
6304static void build_zonelists(pg_data_t *pgdat)
6305{
6306        int node, local_node;
6307        struct zoneref *zonerefs;
6308        int nr_zones;
6309
6310        local_node = pgdat->node_id;
6311
6312        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6313        nr_zones = build_zonerefs_node(pgdat, zonerefs);
6314        zonerefs += nr_zones;
6315
6316        /*
6317         * Now we build the zonelist so that it contains the zones
6318         * of all the other nodes.
6319         * We don't want to pressure a particular node, so when
6320         * building the zones for node N, we make sure that the
6321         * zones coming right after the local ones are those from
6322         * node N+1 (modulo N)
6323         */
6324        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6325                if (!node_online(node))
6326                        continue;
6327                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6328                zonerefs += nr_zones;
6329        }
6330        for (node = 0; node < local_node; node++) {
6331                if (!node_online(node))
6332                        continue;
6333                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6334                zonerefs += nr_zones;
6335        }
6336
6337        zonerefs->zone = NULL;
6338        zonerefs->zone_idx = 0;
6339}
6340
6341#endif  /* CONFIG_NUMA */
6342
6343/*
6344 * Boot pageset table. One per cpu which is going to be used for all
6345 * zones and all nodes. The parameters will be set in such a way
6346 * that an item put on a list will immediately be handed over to
6347 * the buddy list. This is safe since pageset manipulation is done
6348 * with interrupts disabled.
6349 *
6350 * The boot_pagesets must be kept even after bootup is complete for
6351 * unused processors and/or zones. They do play a role for bootstrapping
6352 * hotplugged processors.
6353 *
6354 * zoneinfo_show() and maybe other functions do
6355 * not check if the processor is online before following the pageset pointer.
6356 * Other parts of the kernel may not check if the zone is available.
6357 */
6358static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6359/* These effectively disable the pcplists in the boot pageset completely */
6360#define BOOT_PAGESET_HIGH       0
6361#define BOOT_PAGESET_BATCH      1
6362static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6363static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6364static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6365
6366static void __build_all_zonelists(void *data)
6367{
6368        int nid;
6369        int __maybe_unused cpu;
6370        pg_data_t *self = data;
6371        static DEFINE_SPINLOCK(lock);
6372
6373        spin_lock(&lock);
6374
6375#ifdef CONFIG_NUMA
6376        memset(node_load, 0, sizeof(node_load));
6377#endif
6378
6379        /*
6380         * This node is hotadded and no memory is yet present.   So just
6381         * building zonelists is fine - no need to touch other nodes.
6382         */
6383        if (self && !node_online(self->node_id)) {
6384                build_zonelists(self);
6385        } else {
6386                for_each_online_node(nid) {
6387                        pg_data_t *pgdat = NODE_DATA(nid);
6388
6389                        build_zonelists(pgdat);
6390                }
6391
6392#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6393                /*
6394                 * We now know the "local memory node" for each node--
6395                 * i.e., the node of the first zone in the generic zonelist.
6396                 * Set up numa_mem percpu variable for on-line cpus.  During
6397                 * boot, only the boot cpu should be on-line;  we'll init the
6398                 * secondary cpus' numa_mem as they come on-line.  During
6399                 * node/memory hotplug, we'll fixup all on-line cpus.
6400                 */
6401                for_each_online_cpu(cpu)
6402                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6403#endif
6404        }
6405
6406        spin_unlock(&lock);
6407}
6408
6409static noinline void __init
6410build_all_zonelists_init(void)
6411{
6412        int cpu;
6413
6414        __build_all_zonelists(NULL);
6415
6416        /*
6417         * Initialize the boot_pagesets that are going to be used
6418         * for bootstrapping processors. The real pagesets for
6419         * each zone will be allocated later when the per cpu
6420         * allocator is available.
6421         *
6422         * boot_pagesets are used also for bootstrapping offline
6423         * cpus if the system is already booted because the pagesets
6424         * are needed to initialize allocators on a specific cpu too.
6425         * F.e. the percpu allocator needs the page allocator which
6426         * needs the percpu allocator in order to allocate its pagesets
6427         * (a chicken-egg dilemma).
6428         */
6429        for_each_possible_cpu(cpu)
6430                per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6431
6432        mminit_verify_zonelist();
6433        cpuset_init_current_mems_allowed();
6434}
6435
6436/*
6437 * unless system_state == SYSTEM_BOOTING.
6438 *
6439 * __ref due to call of __init annotated helper build_all_zonelists_init
6440 * [protected by SYSTEM_BOOTING].
6441 */
6442void __ref build_all_zonelists(pg_data_t *pgdat)
6443{
6444        unsigned long vm_total_pages;
6445
6446        if (system_state == SYSTEM_BOOTING) {
6447                build_all_zonelists_init();
6448        } else {
6449                __build_all_zonelists(pgdat);
6450                /* cpuset refresh routine should be here */
6451        }
6452        /* Get the number of free pages beyond high watermark in all zones. */
6453        vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6454        /*
6455         * Disable grouping by mobility if the number of pages in the
6456         * system is too low to allow the mechanism to work. It would be
6457         * more accurate, but expensive to check per-zone. This check is
6458         * made on memory-hotadd so a system can start with mobility
6459         * disabled and enable it later
6460         */
6461        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6462                page_group_by_mobility_disabled = 1;
6463        else
6464                page_group_by_mobility_disabled = 0;
6465
6466        pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6467                nr_online_nodes,
6468                page_group_by_mobility_disabled ? "off" : "on",
6469                vm_total_pages);
6470#ifdef CONFIG_NUMA
6471        pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6472#endif
6473}
6474
6475/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6476static bool __meminit
6477overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6478{
6479        static struct memblock_region *r;
6480
6481        if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6482                if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6483                        for_each_mem_region(r) {
6484                                if (*pfn < memblock_region_memory_end_pfn(r))
6485                                        break;
6486                        }
6487                }
6488                if (*pfn >= memblock_region_memory_base_pfn(r) &&
6489                    memblock_is_mirror(r)) {
6490                        *pfn = memblock_region_memory_end_pfn(r);
6491                        return true;
6492                }
6493        }
6494        return false;
6495}
6496
6497/*
6498 * Initially all pages are reserved - free ones are freed
6499 * up by memblock_free_all() once the early boot process is
6500 * done. Non-atomic initialization, single-pass.
6501 *
6502 * All aligned pageblocks are initialized to the specified migratetype
6503 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6504 * zone stats (e.g., nr_isolate_pageblock) are touched.
6505 */
6506void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6507                unsigned long start_pfn, unsigned long zone_end_pfn,
6508                enum meminit_context context,
6509                struct vmem_altmap *altmap, int migratetype)
6510{
6511        unsigned long pfn, end_pfn = start_pfn + size;
6512        struct page *page;
6513
6514        if (highest_memmap_pfn < end_pfn - 1)
6515                highest_memmap_pfn = end_pfn - 1;
6516
6517#ifdef CONFIG_ZONE_DEVICE
6518        /*
6519         * Honor reservation requested by the driver for this ZONE_DEVICE
6520         * memory. We limit the total number of pages to initialize to just
6521         * those that might contain the memory mapping. We will defer the
6522         * ZONE_DEVICE page initialization until after we have released
6523         * the hotplug lock.
6524         */
6525        if (zone == ZONE_DEVICE) {
6526                if (!altmap)
6527                        return;
6528
6529                if (start_pfn == altmap->base_pfn)
6530                        start_pfn += altmap->reserve;
6531                end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6532        }
6533#endif
6534
6535        for (pfn = start_pfn; pfn < end_pfn; ) {
6536                /*
6537                 * There can be holes in boot-time mem_map[]s handed to this
6538                 * function.  They do not exist on hotplugged memory.
6539                 */
6540                if (context == MEMINIT_EARLY) {
6541                        if (overlap_memmap_init(zone, &pfn))
6542                                continue;
6543                        if (defer_init(nid, pfn, zone_end_pfn))
6544                                break;
6545                }
6546
6547                page = pfn_to_page(pfn);
6548                __init_single_page(page, pfn, zone, nid);
6549                if (context == MEMINIT_HOTPLUG)
6550                        __SetPageReserved(page);
6551
6552                /*
6553                 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6554                 * such that unmovable allocations won't be scattered all
6555                 * over the place during system boot.
6556                 */
6557                if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6558                        set_pageblock_migratetype(page, migratetype);
6559                        cond_resched();
6560                }
6561                pfn++;
6562        }
6563}
6564
6565#ifdef CONFIG_ZONE_DEVICE
6566void __ref memmap_init_zone_device(struct zone *zone,
6567                                   unsigned long start_pfn,
6568                                   unsigned long nr_pages,
6569                                   struct dev_pagemap *pgmap)
6570{
6571        unsigned long pfn, end_pfn = start_pfn + nr_pages;
6572        struct pglist_data *pgdat = zone->zone_pgdat;
6573        struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6574        unsigned long zone_idx = zone_idx(zone);
6575        unsigned long start = jiffies;
6576        int nid = pgdat->node_id;
6577
6578        if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6579                return;
6580
6581        /*
6582         * The call to memmap_init should have already taken care
6583         * of the pages reserved for the memmap, so we can just jump to
6584         * the end of that region and start processing the device pages.
6585         */
6586        if (altmap) {
6587                start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6588                nr_pages = end_pfn - start_pfn;
6589        }
6590
6591        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6592                struct page *page = pfn_to_page(pfn);
6593
6594                __init_single_page(page, pfn, zone_idx, nid);
6595
6596                /*
6597                 * Mark page reserved as it will need to wait for onlining
6598                 * phase for it to be fully associated with a zone.
6599                 *
6600                 * We can use the non-atomic __set_bit operation for setting
6601                 * the flag as we are still initializing the pages.
6602                 */
6603                __SetPageReserved(page);
6604
6605                /*
6606                 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6607                 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6608                 * ever freed or placed on a driver-private list.
6609                 */
6610                page->pgmap = pgmap;
6611                page->zone_device_data = NULL;
6612
6613                /*
6614                 * Mark the block movable so that blocks are reserved for
6615                 * movable at startup. This will force kernel allocations
6616                 * to reserve their blocks rather than leaking throughout
6617                 * the address space during boot when many long-lived
6618                 * kernel allocations are made.
6619                 *
6620                 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6621                 * because this is done early in section_activate()
6622                 */
6623                if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6624                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6625                        cond_resched();
6626                }
6627        }
6628
6629        pr_info("%s initialised %lu pages in %ums\n", __func__,
6630                nr_pages, jiffies_to_msecs(jiffies - start));
6631}
6632
6633#endif
6634static void __meminit zone_init_free_lists(struct zone *zone)
6635{
6636        unsigned int order, t;
6637        for_each_migratetype_order(order, t) {
6638                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6639                zone->free_area[order].nr_free = 0;
6640        }
6641}
6642
6643#if !defined(CONFIG_FLATMEM)
6644/*
6645 * Only struct pages that correspond to ranges defined by memblock.memory
6646 * are zeroed and initialized by going through __init_single_page() during
6647 * memmap_init_zone_range().
6648 *
6649 * But, there could be struct pages that correspond to holes in
6650 * memblock.memory. This can happen because of the following reasons:
6651 * - physical memory bank size is not necessarily the exact multiple of the
6652 *   arbitrary section size
6653 * - early reserved memory may not be listed in memblock.memory
6654 * - memory layouts defined with memmap= kernel parameter may not align
6655 *   nicely with memmap sections
6656 *
6657 * Explicitly initialize those struct pages so that:
6658 * - PG_Reserved is set
6659 * - zone and node links point to zone and node that span the page if the
6660 *   hole is in the middle of a zone
6661 * - zone and node links point to adjacent zone/node if the hole falls on
6662 *   the zone boundary; the pages in such holes will be prepended to the
6663 *   zone/node above the hole except for the trailing pages in the last
6664 *   section that will be appended to the zone/node below.
6665 */
6666static void __init init_unavailable_range(unsigned long spfn,
6667                                          unsigned long epfn,
6668                                          int zone, int node)
6669{
6670        unsigned long pfn;
6671        u64 pgcnt = 0;
6672
6673        for (pfn = spfn; pfn < epfn; pfn++) {
6674                if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6675                        pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6676                                + pageblock_nr_pages - 1;
6677                        continue;
6678                }
6679                __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6680                __SetPageReserved(pfn_to_page(pfn));
6681                pgcnt++;
6682        }
6683
6684        if (pgcnt)
6685                pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6686                        node, zone_names[zone], pgcnt);
6687}
6688#else
6689static inline void init_unavailable_range(unsigned long spfn,
6690                                          unsigned long epfn,
6691                                          int zone, int node)
6692{
6693}
6694#endif
6695
6696static void __init memmap_init_zone_range(struct zone *zone,
6697                                          unsigned long start_pfn,
6698                                          unsigned long end_pfn,
6699                                          unsigned long *hole_pfn)
6700{
6701        unsigned long zone_start_pfn = zone->zone_start_pfn;
6702        unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6703        int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6704
6705        start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6706        end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6707
6708        if (start_pfn >= end_pfn)
6709                return;
6710
6711        memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6712                          zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6713
6714        if (*hole_pfn < start_pfn)
6715                init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6716
6717        *hole_pfn = end_pfn;
6718}
6719
6720static void __init memmap_init(void)
6721{
6722        unsigned long start_pfn, end_pfn;
6723        unsigned long hole_pfn = 0;
6724        int i, j, zone_id, nid;
6725
6726        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6727                struct pglist_data *node = NODE_DATA(nid);
6728
6729                for (j = 0; j < MAX_NR_ZONES; j++) {
6730                        struct zone *zone = node->node_zones + j;
6731
6732                        if (!populated_zone(zone))
6733                                continue;
6734
6735                        memmap_init_zone_range(zone, start_pfn, end_pfn,
6736                                               &hole_pfn);
6737                        zone_id = j;
6738                }
6739        }
6740
6741#ifdef CONFIG_SPARSEMEM
6742        /*
6743         * Initialize the memory map for hole in the range [memory_end,
6744         * section_end].
6745         * Append the pages in this hole to the highest zone in the last
6746         * node.
6747         * The call to init_unavailable_range() is outside the ifdef to
6748         * silence the compiler warining about zone_id set but not used;
6749         * for FLATMEM it is a nop anyway
6750         */
6751        end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6752        if (hole_pfn < end_pfn)
6753#endif
6754                init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6755}
6756
6757static int zone_batchsize(struct zone *zone)
6758{
6759#ifdef CONFIG_MMU
6760        int batch;
6761
6762        /*
6763         * The number of pages to batch allocate is either ~0.1%
6764         * of the zone or 1MB, whichever is smaller. The batch
6765         * size is striking a balance between allocation latency
6766         * and zone lock contention.
6767         */
6768        batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6769        batch /= 4;             /* We effectively *= 4 below */
6770        if (batch < 1)
6771                batch = 1;
6772
6773        /*
6774         * Clamp the batch to a 2^n - 1 value. Having a power
6775         * of 2 value was found to be more likely to have
6776         * suboptimal cache aliasing properties in some cases.
6777         *
6778         * For example if 2 tasks are alternately allocating
6779         * batches of pages, one task can end up with a lot
6780         * of pages of one half of the possible page colors
6781         * and the other with pages of the other colors.
6782         */
6783        batch = rounddown_pow_of_two(batch + batch/2) - 1;
6784
6785        return batch;
6786
6787#else
6788        /* The deferral and batching of frees should be suppressed under NOMMU
6789         * conditions.
6790         *
6791         * The problem is that NOMMU needs to be able to allocate large chunks
6792         * of contiguous memory as there's no hardware page translation to
6793         * assemble apparent contiguous memory from discontiguous pages.
6794         *
6795         * Queueing large contiguous runs of pages for batching, however,
6796         * causes the pages to actually be freed in smaller chunks.  As there
6797         * can be a significant delay between the individual batches being
6798         * recycled, this leads to the once large chunks of space being
6799         * fragmented and becoming unavailable for high-order allocations.
6800         */
6801        return 0;
6802#endif
6803}
6804
6805static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6806{
6807#ifdef CONFIG_MMU
6808        int high;
6809        int nr_split_cpus;
6810        unsigned long total_pages;
6811
6812        if (!percpu_pagelist_high_fraction) {
6813                /*
6814                 * By default, the high value of the pcp is based on the zone
6815                 * low watermark so that if they are full then background
6816                 * reclaim will not be started prematurely.
6817                 */
6818                total_pages = low_wmark_pages(zone);
6819        } else {
6820                /*
6821                 * If percpu_pagelist_high_fraction is configured, the high
6822                 * value is based on a fraction of the managed pages in the
6823                 * zone.
6824                 */
6825                total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6826        }
6827
6828        /*
6829         * Split the high value across all online CPUs local to the zone. Note
6830         * that early in boot that CPUs may not be online yet and that during
6831         * CPU hotplug that the cpumask is not yet updated when a CPU is being
6832         * onlined. For memory nodes that have no CPUs, split pcp->high across
6833         * all online CPUs to mitigate the risk that reclaim is triggered
6834         * prematurely due to pages stored on pcp lists.
6835         */
6836        nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6837        if (!nr_split_cpus)
6838                nr_split_cpus = num_online_cpus();
6839        high = total_pages / nr_split_cpus;
6840
6841        /*
6842         * Ensure high is at least batch*4. The multiple is based on the
6843         * historical relationship between high and batch.
6844         */
6845        high = max(high, batch << 2);
6846
6847        return high;
6848#else
6849        return 0;
6850#endif
6851}
6852
6853/*
6854 * pcp->high and pcp->batch values are related and generally batch is lower
6855 * than high. They are also related to pcp->count such that count is lower
6856 * than high, and as soon as it reaches high, the pcplist is flushed.
6857 *
6858 * However, guaranteeing these relations at all times would require e.g. write
6859 * barriers here but also careful usage of read barriers at the read side, and
6860 * thus be prone to error and bad for performance. Thus the update only prevents
6861 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6862 * can cope with those fields changing asynchronously, and fully trust only the
6863 * pcp->count field on the local CPU with interrupts disabled.
6864 *
6865 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6866 * outside of boot time (or some other assurance that no concurrent updaters
6867 * exist).
6868 */
6869static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6870                unsigned long batch)
6871{
6872        WRITE_ONCE(pcp->batch, batch);
6873        WRITE_ONCE(pcp->high, high);
6874}
6875
6876static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6877{
6878        int pindex;
6879
6880        memset(pcp, 0, sizeof(*pcp));
6881        memset(pzstats, 0, sizeof(*pzstats));
6882
6883        for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6884                INIT_LIST_HEAD(&pcp->lists[pindex]);
6885
6886        /*
6887         * Set batch and high values safe for a boot pageset. A true percpu
6888         * pageset's initialization will update them subsequently. Here we don't
6889         * need to be as careful as pageset_update() as nobody can access the
6890         * pageset yet.
6891         */
6892        pcp->high = BOOT_PAGESET_HIGH;
6893        pcp->batch = BOOT_PAGESET_BATCH;
6894        pcp->free_factor = 0;
6895}
6896
6897static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6898                unsigned long batch)
6899{
6900        struct per_cpu_pages *pcp;
6901        int cpu;
6902
6903        for_each_possible_cpu(cpu) {
6904                pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6905                pageset_update(pcp, high, batch);
6906        }
6907}
6908
6909/*
6910 * Calculate and set new high and batch values for all per-cpu pagesets of a
6911 * zone based on the zone's size.
6912 */
6913static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6914{
6915        int new_high, new_batch;
6916
6917        new_batch = max(1, zone_batchsize(zone));
6918        new_high = zone_highsize(zone, new_batch, cpu_online);
6919
6920        if (zone->pageset_high == new_high &&
6921            zone->pageset_batch == new_batch)
6922                return;
6923
6924        zone->pageset_high = new_high;
6925        zone->pageset_batch = new_batch;
6926
6927        __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6928}
6929
6930void __meminit setup_zone_pageset(struct zone *zone)
6931{
6932        int cpu;
6933
6934        /* Size may be 0 on !SMP && !NUMA */
6935        if (sizeof(struct per_cpu_zonestat) > 0)
6936                zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6937
6938        zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6939        for_each_possible_cpu(cpu) {
6940                struct per_cpu_pages *pcp;
6941                struct per_cpu_zonestat *pzstats;
6942
6943                pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6944                pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6945                per_cpu_pages_init(pcp, pzstats);
6946        }
6947
6948        zone_set_pageset_high_and_batch(zone, 0);
6949}
6950
6951/*
6952 * Allocate per cpu pagesets and initialize them.
6953 * Before this call only boot pagesets were available.
6954 */
6955void __init setup_per_cpu_pageset(void)
6956{
6957        struct pglist_data *pgdat;
6958        struct zone *zone;
6959        int __maybe_unused cpu;
6960
6961        for_each_populated_zone(zone)
6962                setup_zone_pageset(zone);
6963
6964#ifdef CONFIG_NUMA
6965        /*
6966         * Unpopulated zones continue using the boot pagesets.
6967         * The numa stats for these pagesets need to be reset.
6968         * Otherwise, they will end up skewing the stats of
6969         * the nodes these zones are associated with.
6970         */
6971        for_each_possible_cpu(cpu) {
6972                struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6973                memset(pzstats->vm_numa_event, 0,
6974                       sizeof(pzstats->vm_numa_event));
6975        }
6976#endif
6977
6978        for_each_online_pgdat(pgdat)
6979                pgdat->per_cpu_nodestats =
6980                        alloc_percpu(struct per_cpu_nodestat);
6981}
6982
6983static __meminit void zone_pcp_init(struct zone *zone)
6984{
6985        /*
6986         * per cpu subsystem is not up at this point. The following code
6987         * relies on the ability of the linker to provide the
6988         * offset of a (static) per cpu variable into the per cpu area.
6989         */
6990        zone->per_cpu_pageset = &boot_pageset;
6991        zone->per_cpu_zonestats = &boot_zonestats;
6992        zone->pageset_high = BOOT_PAGESET_HIGH;
6993        zone->pageset_batch = BOOT_PAGESET_BATCH;
6994
6995        if (populated_zone(zone))
6996                pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6997                         zone->present_pages, zone_batchsize(zone));
6998}
6999
7000void __meminit init_currently_empty_zone(struct zone *zone,
7001                                        unsigned long zone_start_pfn,
7002                                        unsigned long size)
7003{
7004        struct pglist_data *pgdat = zone->zone_pgdat;
7005        int zone_idx = zone_idx(zone) + 1;
7006
7007        if (zone_idx > pgdat->nr_zones)
7008                pgdat->nr_zones = zone_idx;
7009
7010        zone->zone_start_pfn = zone_start_pfn;
7011
7012        mminit_dprintk(MMINIT_TRACE, "memmap_init",
7013                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7014                        pgdat->node_id,
7015                        (unsigned long)zone_idx(zone),
7016                        zone_start_pfn, (zone_start_pfn + size));
7017
7018        zone_init_free_lists(zone);
7019        zone->initialized = 1;
7020}
7021
7022/**
7023 * get_pfn_range_for_nid - Return the start and end page frames for a node
7024 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7025 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7026 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7027 *
7028 * It returns the start and end page frame of a node based on information
7029 * provided by memblock_set_node(). If called for a node
7030 * with no available memory, a warning is printed and the start and end
7031 * PFNs will be 0.
7032 */
7033void __init get_pfn_range_for_nid(unsigned int nid,
7034                        unsigned long *start_pfn, unsigned long *end_pfn)
7035{
7036        unsigned long this_start_pfn, this_end_pfn;
7037        int i;
7038
7039        *start_pfn = -1UL;
7040        *end_pfn = 0;
7041
7042        for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7043                *start_pfn = min(*start_pfn, this_start_pfn);
7044                *end_pfn = max(*end_pfn, this_end_pfn);
7045        }
7046
7047        if (*start_pfn == -1UL)
7048                *start_pfn = 0;
7049}
7050
7051/*
7052 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7053 * assumption is made that zones within a node are ordered in monotonic
7054 * increasing memory addresses so that the "highest" populated zone is used
7055 */
7056static void __init find_usable_zone_for_movable(void)
7057{
7058        int zone_index;
7059        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7060                if (zone_index == ZONE_MOVABLE)
7061                        continue;
7062
7063                if (arch_zone_highest_possible_pfn[zone_index] >
7064                                arch_zone_lowest_possible_pfn[zone_index])
7065                        break;
7066        }
7067
7068        VM_BUG_ON(zone_index == -1);
7069        movable_zone = zone_index;
7070}
7071
7072/*
7073 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7074 * because it is sized independent of architecture. Unlike the other zones,
7075 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7076 * in each node depending on the size of each node and how evenly kernelcore
7077 * is distributed. This helper function adjusts the zone ranges
7078 * provided by the architecture for a given node by using the end of the
7079 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7080 * zones within a node are in order of monotonic increases memory addresses
7081 */
7082static void __init adjust_zone_range_for_zone_movable(int nid,
7083                                        unsigned long zone_type,
7084                                        unsigned long node_start_pfn,
7085                                        unsigned long node_end_pfn,
7086                                        unsigned long *zone_start_pfn,
7087                                        unsigned long *zone_end_pfn)
7088{
7089        /* Only adjust if ZONE_MOVABLE is on this node */
7090        if (zone_movable_pfn[nid]) {
7091                /* Size ZONE_MOVABLE */
7092                if (zone_type == ZONE_MOVABLE) {
7093                        *zone_start_pfn = zone_movable_pfn[nid];
7094                        *zone_end_pfn = min(node_end_pfn,
7095                                arch_zone_highest_possible_pfn[movable_zone]);
7096
7097                /* Adjust for ZONE_MOVABLE starting within this range */
7098                } else if (!mirrored_kernelcore &&
7099                        *zone_start_pfn < zone_movable_pfn[nid] &&
7100                        *zone_end_pfn > zone_movable_pfn[nid]) {
7101                        *zone_end_pfn = zone_movable_pfn[nid];
7102
7103                /* Check if this whole range is within ZONE_MOVABLE */
7104                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7105                        *zone_start_pfn = *zone_end_pfn;
7106        }
7107}
7108
7109/*
7110 * Return the number of pages a zone spans in a node, including holes
7111 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7112 */
7113static unsigned long __init zone_spanned_pages_in_node(int nid,
7114                                        unsigned long zone_type,
7115                                        unsigned long node_start_pfn,
7116                                        unsigned long node_end_pfn,
7117                                        unsigned long *zone_start_pfn,
7118                                        unsigned long *zone_end_pfn)
7119{
7120        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7121        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7122        /* When hotadd a new node from cpu_up(), the node should be empty */
7123        if (!node_start_pfn && !node_end_pfn)
7124                return 0;
7125
7126        /* Get the start and end of the zone */
7127        *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7128        *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7129        adjust_zone_range_for_zone_movable(nid, zone_type,
7130                                node_start_pfn, node_end_pfn,
7131                                zone_start_pfn, zone_end_pfn);
7132
7133        /* Check that this node has pages within the zone's required range */
7134        if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7135                return 0;
7136
7137        /* Move the zone boundaries inside the node if necessary */
7138        *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7139        *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7140
7141        /* Return the spanned pages */
7142        return *zone_end_pfn - *zone_start_pfn;
7143}
7144
7145/*
7146 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7147 * then all holes in the requested range will be accounted for.
7148 */
7149unsigned long __init __absent_pages_in_range(int nid,
7150                                unsigned long range_start_pfn,
7151                                unsigned long range_end_pfn)
7152{
7153        unsigned long nr_absent = range_end_pfn - range_start_pfn;
7154        unsigned long start_pfn, end_pfn;
7155        int i;
7156
7157        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7158                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7159                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7160                nr_absent -= end_pfn - start_pfn;
7161        }
7162        return nr_absent;
7163}
7164
7165/**
7166 * absent_pages_in_range - Return number of page frames in holes within a range
7167 * @start_pfn: The start PFN to start searching for holes
7168 * @end_pfn: The end PFN to stop searching for holes
7169 *
7170 * Return: the number of pages frames in memory holes within a range.
7171 */
7172unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7173                                                        unsigned long end_pfn)
7174{
7175        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7176}
7177
7178/* Return the number of page frames in holes in a zone on a node */
7179static unsigned long __init zone_absent_pages_in_node(int nid,
7180                                        unsigned long zone_type,
7181                                        unsigned long node_start_pfn,
7182                                        unsigned long node_end_pfn)
7183{
7184        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7185        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7186        unsigned long zone_start_pfn, zone_end_pfn;
7187        unsigned long nr_absent;
7188
7189        /* When hotadd a new node from cpu_up(), the node should be empty */
7190        if (!node_start_pfn && !node_end_pfn)
7191                return 0;
7192
7193        zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7194        zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7195
7196        adjust_zone_range_for_zone_movable(nid, zone_type,
7197                        node_start_pfn, node_end_pfn,
7198                        &zone_start_pfn, &zone_end_pfn);
7199        nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7200
7201        /*
7202         * ZONE_MOVABLE handling.
7203         * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7204         * and vice versa.
7205         */
7206        if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7207                unsigned long start_pfn, end_pfn;
7208                struct memblock_region *r;
7209
7210                for_each_mem_region(r) {
7211                        start_pfn = clamp(memblock_region_memory_base_pfn(r),
7212                                          zone_start_pfn, zone_end_pfn);
7213                        end_pfn = clamp(memblock_region_memory_end_pfn(r),
7214                                        zone_start_pfn, zone_end_pfn);
7215
7216                        if (zone_type == ZONE_MOVABLE &&
7217                            memblock_is_mirror(r))
7218                                nr_absent += end_pfn - start_pfn;
7219
7220                        if (zone_type == ZONE_NORMAL &&
7221                            !memblock_is_mirror(r))
7222                                nr_absent += end_pfn - start_pfn;
7223                }
7224        }
7225
7226        return nr_absent;
7227}
7228
7229static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7230                                                unsigned long node_start_pfn,
7231                                                unsigned long node_end_pfn)
7232{
7233        unsigned long realtotalpages = 0, totalpages = 0;
7234        enum zone_type i;
7235
7236        for (i = 0; i < MAX_NR_ZONES; i++) {
7237                struct zone *zone = pgdat->node_zones + i;
7238                unsigned long zone_start_pfn, zone_end_pfn;
7239                unsigned long spanned, absent;
7240                unsigned long size, real_size;
7241
7242                spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7243                                                     node_start_pfn,
7244                                                     node_end_pfn,
7245                                                     &zone_start_pfn,
7246                                                     &zone_end_pfn);
7247                absent = zone_absent_pages_in_node(pgdat->node_id, i,
7248                                                   node_start_pfn,
7249                                                   node_end_pfn);
7250
7251                size = spanned;
7252                real_size = size - absent;
7253
7254                if (size)
7255                        zone->zone_start_pfn = zone_start_pfn;
7256                else
7257                        zone->zone_start_pfn = 0;
7258                zone->spanned_pages = size;
7259                zone->present_pages = real_size;
7260
7261                totalpages += size;
7262                realtotalpages += real_size;
7263        }
7264
7265        pgdat->node_spanned_pages = totalpages;
7266        pgdat->node_present_pages = realtotalpages;
7267        pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7268}
7269
7270#ifndef CONFIG_SPARSEMEM
7271/*
7272 * Calculate the size of the zone->blockflags rounded to an unsigned long
7273 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7274 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7275 * round what is now in bits to nearest long in bits, then return it in
7276 * bytes.
7277 */
7278static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7279{
7280        unsigned long usemapsize;
7281
7282        zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7283        usemapsize = roundup(zonesize, pageblock_nr_pages);
7284        usemapsize = usemapsize >> pageblock_order;
7285        usemapsize *= NR_PAGEBLOCK_BITS;
7286        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7287
7288        return usemapsize / 8;
7289}
7290
7291static void __ref setup_usemap(struct zone *zone)
7292{
7293        unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7294                                               zone->spanned_pages);
7295        zone->pageblock_flags = NULL;
7296        if (usemapsize) {
7297                zone->pageblock_flags =
7298                        memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7299                                            zone_to_nid(zone));
7300                if (!zone->pageblock_flags)
7301                        panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7302                              usemapsize, zone->name, zone_to_nid(zone));
7303        }
7304}
7305#else
7306static inline void setup_usemap(struct zone *zone) {}
7307#endif /* CONFIG_SPARSEMEM */
7308
7309#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7310
7311/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7312void __init set_pageblock_order(void)
7313{
7314        unsigned int order;
7315
7316        /* Check that pageblock_nr_pages has not already been setup */
7317        if (pageblock_order)
7318                return;
7319
7320        if (HPAGE_SHIFT > PAGE_SHIFT)
7321                order = HUGETLB_PAGE_ORDER;
7322        else
7323                order = MAX_ORDER - 1;
7324
7325        /*
7326         * Assume the largest contiguous order of interest is a huge page.
7327         * This value may be variable depending on boot parameters on IA64 and
7328         * powerpc.
7329         */
7330        pageblock_order = order;
7331}
7332#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7333
7334/*
7335 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7336 * is unused as pageblock_order is set at compile-time. See
7337 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7338 * the kernel config
7339 */
7340void __init set_pageblock_order(void)
7341{
7342}
7343
7344#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7345
7346static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7347                                                unsigned long present_pages)
7348{
7349        unsigned long pages = spanned_pages;
7350
7351        /*
7352         * Provide a more accurate estimation if there are holes within
7353         * the zone and SPARSEMEM is in use. If there are holes within the
7354         * zone, each populated memory region may cost us one or two extra
7355         * memmap pages due to alignment because memmap pages for each
7356         * populated regions may not be naturally aligned on page boundary.
7357         * So the (present_pages >> 4) heuristic is a tradeoff for that.
7358         */
7359        if (spanned_pages > present_pages + (present_pages >> 4) &&
7360            IS_ENABLED(CONFIG_SPARSEMEM))
7361                pages = present_pages;
7362
7363        return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7364}
7365
7366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7367static void pgdat_init_split_queue(struct pglist_data *pgdat)
7368{
7369        struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7370
7371        spin_lock_init(&ds_queue->split_queue_lock);
7372        INIT_LIST_HEAD(&ds_queue->split_queue);
7373        ds_queue->split_queue_len = 0;
7374}
7375#else
7376static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7377#endif
7378
7379#ifdef CONFIG_COMPACTION
7380static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7381{
7382        init_waitqueue_head(&pgdat->kcompactd_wait);
7383}
7384#else
7385static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7386#endif
7387
7388static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7389{
7390        pgdat_resize_init(pgdat);
7391
7392        pgdat_init_split_queue(pgdat);
7393        pgdat_init_kcompactd(pgdat);
7394
7395        init_waitqueue_head(&pgdat->kswapd_wait);
7396        init_waitqueue_head(&pgdat->pfmemalloc_wait);
7397
7398        pgdat_page_ext_init(pgdat);
7399        lruvec_init(&pgdat->__lruvec);
7400}
7401
7402static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7403                                                        unsigned long remaining_pages)
7404{
7405        atomic_long_set(&zone->managed_pages, remaining_pages);
7406        zone_set_nid(zone, nid);
7407        zone->name = zone_names[idx];
7408        zone->zone_pgdat = NODE_DATA(nid);
7409        spin_lock_init(&zone->lock);
7410        zone_seqlock_init(zone);
7411        zone_pcp_init(zone);
7412}
7413
7414/*
7415 * Set up the zone data structures
7416 * - init pgdat internals
7417 * - init all zones belonging to this node
7418 *
7419 * NOTE: this function is only called during memory hotplug
7420 */
7421#ifdef CONFIG_MEMORY_HOTPLUG
7422void __ref free_area_init_core_hotplug(int nid)
7423{
7424        enum zone_type z;
7425        pg_data_t *pgdat = NODE_DATA(nid);
7426
7427        pgdat_init_internals(pgdat);
7428        for (z = 0; z < MAX_NR_ZONES; z++)
7429                zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7430}
7431#endif
7432
7433/*
7434 * Set up the zone data structures:
7435 *   - mark all pages reserved
7436 *   - mark all memory queues empty
7437 *   - clear the memory bitmaps
7438 *
7439 * NOTE: pgdat should get zeroed by caller.
7440 * NOTE: this function is only called during early init.
7441 */
7442static void __init free_area_init_core(struct pglist_data *pgdat)
7443{
7444        enum zone_type j;
7445        int nid = pgdat->node_id;
7446
7447        pgdat_init_internals(pgdat);
7448        pgdat->per_cpu_nodestats = &boot_nodestats;
7449
7450        for (j = 0; j < MAX_NR_ZONES; j++) {
7451                struct zone *zone = pgdat->node_zones + j;
7452                unsigned long size, freesize, memmap_pages;
7453
7454                size = zone->spanned_pages;
7455                freesize = zone->present_pages;
7456
7457                /*
7458                 * Adjust freesize so that it accounts for how much memory
7459                 * is used by this zone for memmap. This affects the watermark
7460                 * and per-cpu initialisations
7461                 */
7462                memmap_pages = calc_memmap_size(size, freesize);
7463                if (!is_highmem_idx(j)) {
7464                        if (freesize >= memmap_pages) {
7465                                freesize -= memmap_pages;
7466                                if (memmap_pages)
7467                                        pr_debug("  %s zone: %lu pages used for memmap\n",
7468                                                 zone_names[j], memmap_pages);
7469                        } else
7470                                pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7471                                        zone_names[j], memmap_pages, freesize);
7472                }
7473
7474                /* Account for reserved pages */
7475                if (j == 0 && freesize > dma_reserve) {
7476                        freesize -= dma_reserve;
7477                        pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7478                }
7479
7480                if (!is_highmem_idx(j))
7481                        nr_kernel_pages += freesize;
7482                /* Charge for highmem memmap if there are enough kernel pages */
7483                else if (nr_kernel_pages > memmap_pages * 2)
7484                        nr_kernel_pages -= memmap_pages;
7485                nr_all_pages += freesize;
7486
7487                /*
7488                 * Set an approximate value for lowmem here, it will be adjusted
7489                 * when the bootmem allocator frees pages into the buddy system.
7490                 * And all highmem pages will be managed by the buddy system.
7491                 */
7492                zone_init_internals(zone, j, nid, freesize);
7493
7494                if (!size)
7495                        continue;
7496
7497                set_pageblock_order();
7498                setup_usemap(zone);
7499                init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7500        }
7501}
7502
7503#ifdef CONFIG_FLATMEM
7504static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7505{
7506        unsigned long __maybe_unused start = 0;
7507        unsigned long __maybe_unused offset = 0;
7508
7509        /* Skip empty nodes */
7510        if (!pgdat->node_spanned_pages)
7511                return;
7512
7513        start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7514        offset = pgdat->node_start_pfn - start;
7515        /* ia64 gets its own node_mem_map, before this, without bootmem */
7516        if (!pgdat->node_mem_map) {
7517                unsigned long size, end;
7518                struct page *map;
7519
7520                /*
7521                 * The zone's endpoints aren't required to be MAX_ORDER
7522                 * aligned but the node_mem_map endpoints must be in order
7523                 * for the buddy allocator to function correctly.
7524                 */
7525                end = pgdat_end_pfn(pgdat);
7526                end = ALIGN(end, MAX_ORDER_NR_PAGES);
7527                size =  (end - start) * sizeof(struct page);
7528                map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7529                                          pgdat->node_id);
7530                if (!map)
7531                        panic("Failed to allocate %ld bytes for node %d memory map\n",
7532                              size, pgdat->node_id);
7533                pgdat->node_mem_map = map + offset;
7534        }
7535        pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7536                                __func__, pgdat->node_id, (unsigned long)pgdat,
7537                                (unsigned long)pgdat->node_mem_map);
7538#ifndef CONFIG_NUMA
7539        /*
7540         * With no DISCONTIG, the global mem_map is just set as node 0's
7541         */
7542        if (pgdat == NODE_DATA(0)) {
7543                mem_map = NODE_DATA(0)->node_mem_map;
7544                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7545                        mem_map -= offset;
7546        }
7547#endif
7548}
7549#else
7550static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7551#endif /* CONFIG_FLATMEM */
7552
7553#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7554static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7555{
7556        pgdat->first_deferred_pfn = ULONG_MAX;
7557}
7558#else
7559static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7560#endif
7561
7562static void __init free_area_init_node(int nid)
7563{
7564        pg_data_t *pgdat = NODE_DATA(nid);
7565        unsigned long start_pfn = 0;
7566        unsigned long end_pfn = 0;
7567
7568        /* pg_data_t should be reset to zero when it's allocated */
7569        WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7570
7571        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7572
7573        pgdat->node_id = nid;
7574        pgdat->node_start_pfn = start_pfn;
7575        pgdat->per_cpu_nodestats = NULL;
7576
7577        pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7578                (u64)start_pfn << PAGE_SHIFT,
7579                end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7580        calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7581
7582        alloc_node_mem_map(pgdat);
7583        pgdat_set_deferred_range(pgdat);
7584
7585        free_area_init_core(pgdat);
7586}
7587
7588void __init free_area_init_memoryless_node(int nid)
7589{
7590        free_area_init_node(nid);
7591}
7592
7593#if MAX_NUMNODES > 1
7594/*
7595 * Figure out the number of possible node ids.
7596 */
7597void __init setup_nr_node_ids(void)
7598{
7599        unsigned int highest;
7600
7601        highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7602        nr_node_ids = highest + 1;
7603}
7604#endif
7605
7606/**
7607 * node_map_pfn_alignment - determine the maximum internode alignment
7608 *
7609 * This function should be called after node map is populated and sorted.
7610 * It calculates the maximum power of two alignment which can distinguish
7611 * all the nodes.
7612 *
7613 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7614 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7615 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7616 * shifted, 1GiB is enough and this function will indicate so.
7617 *
7618 * This is used to test whether pfn -> nid mapping of the chosen memory
7619 * model has fine enough granularity to avoid incorrect mapping for the
7620 * populated node map.
7621 *
7622 * Return: the determined alignment in pfn's.  0 if there is no alignment
7623 * requirement (single node).
7624 */
7625unsigned long __init node_map_pfn_alignment(void)
7626{
7627        unsigned long accl_mask = 0, last_end = 0;
7628        unsigned long start, end, mask;
7629        int last_nid = NUMA_NO_NODE;
7630        int i, nid;
7631
7632        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7633                if (!start || last_nid < 0 || last_nid == nid) {
7634                        last_nid = nid;
7635                        last_end = end;
7636                        continue;
7637                }
7638
7639                /*
7640                 * Start with a mask granular enough to pin-point to the
7641                 * start pfn and tick off bits one-by-one until it becomes
7642                 * too coarse to separate the current node from the last.
7643                 */
7644                mask = ~((1 << __ffs(start)) - 1);
7645                while (mask && last_end <= (start & (mask << 1)))
7646                        mask <<= 1;
7647
7648                /* accumulate all internode masks */
7649                accl_mask |= mask;
7650        }
7651
7652        /* convert mask to number of pages */
7653        return ~accl_mask + 1;
7654}
7655
7656/**
7657 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7658 *
7659 * Return: the minimum PFN based on information provided via
7660 * memblock_set_node().
7661 */
7662unsigned long __init find_min_pfn_with_active_regions(void)
7663{
7664        return PHYS_PFN(memblock_start_of_DRAM());
7665}
7666
7667/*
7668 * early_calculate_totalpages()
7669 * Sum pages in active regions for movable zone.
7670 * Populate N_MEMORY for calculating usable_nodes.
7671 */
7672static unsigned long __init early_calculate_totalpages(void)
7673{
7674        unsigned long totalpages = 0;
7675        unsigned long start_pfn, end_pfn;
7676        int i, nid;
7677
7678        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7679                unsigned long pages = end_pfn - start_pfn;
7680
7681                totalpages += pages;
7682                if (pages)
7683                        node_set_state(nid, N_MEMORY);
7684        }
7685        return totalpages;
7686}
7687
7688/*
7689 * Find the PFN the Movable zone begins in each node. Kernel memory
7690 * is spread evenly between nodes as long as the nodes have enough
7691 * memory. When they don't, some nodes will have more kernelcore than
7692 * others
7693 */
7694static void __init find_zone_movable_pfns_for_nodes(void)
7695{
7696        int i, nid;
7697        unsigned long usable_startpfn;
7698        unsigned long kernelcore_node, kernelcore_remaining;
7699        /* save the state before borrow the nodemask */
7700        nodemask_t saved_node_state = node_states[N_MEMORY];
7701        unsigned long totalpages = early_calculate_totalpages();
7702        int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7703        struct memblock_region *r;
7704
7705        /* Need to find movable_zone earlier when movable_node is specified. */
7706        find_usable_zone_for_movable();
7707
7708        /*
7709         * If movable_node is specified, ignore kernelcore and movablecore
7710         * options.
7711         */
7712        if (movable_node_is_enabled()) {
7713                for_each_mem_region(r) {
7714                        if (!memblock_is_hotpluggable(r))
7715                                continue;
7716
7717                        nid = memblock_get_region_node(r);
7718
7719                        usable_startpfn = PFN_DOWN(r->base);
7720                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7721                                min(usable_startpfn, zone_movable_pfn[nid]) :
7722                                usable_startpfn;
7723                }
7724
7725                goto out2;
7726        }
7727
7728        /*
7729         * If kernelcore=mirror is specified, ignore movablecore option
7730         */
7731        if (mirrored_kernelcore) {
7732                bool mem_below_4gb_not_mirrored = false;
7733
7734                for_each_mem_region(r) {
7735                        if (memblock_is_mirror(r))
7736                                continue;
7737
7738                        nid = memblock_get_region_node(r);
7739
7740                        usable_startpfn = memblock_region_memory_base_pfn(r);
7741
7742                        if (usable_startpfn < 0x100000) {
7743                                mem_below_4gb_not_mirrored = true;
7744                                continue;
7745                        }
7746
7747                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7748                                min(usable_startpfn, zone_movable_pfn[nid]) :
7749                                usable_startpfn;
7750                }
7751
7752                if (mem_below_4gb_not_mirrored)
7753                        pr_warn("This configuration results in unmirrored kernel memory.\n");
7754
7755                goto out2;
7756        }
7757
7758        /*
7759         * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7760         * amount of necessary memory.
7761         */
7762        if (required_kernelcore_percent)
7763                required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7764                                       10000UL;
7765        if (required_movablecore_percent)
7766                required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7767                                        10000UL;
7768
7769        /*
7770         * If movablecore= was specified, calculate what size of
7771         * kernelcore that corresponds so that memory usable for
7772         * any allocation type is evenly spread. If both kernelcore
7773         * and movablecore are specified, then the value of kernelcore
7774         * will be used for required_kernelcore if it's greater than
7775         * what movablecore would have allowed.
7776         */
7777        if (required_movablecore) {
7778                unsigned long corepages;
7779
7780                /*
7781                 * Round-up so that ZONE_MOVABLE is at least as large as what
7782                 * was requested by the user
7783                 */
7784                required_movablecore =
7785                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7786                required_movablecore = min(totalpages, required_movablecore);
7787                corepages = totalpages - required_movablecore;
7788
7789                required_kernelcore = max(required_kernelcore, corepages);
7790        }
7791
7792        /*
7793         * If kernelcore was not specified or kernelcore size is larger
7794         * than totalpages, there is no ZONE_MOVABLE.
7795         */
7796        if (!required_kernelcore || required_kernelcore >= totalpages)
7797                goto out;
7798
7799        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7800        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7801
7802restart:
7803        /* Spread kernelcore memory as evenly as possible throughout nodes */
7804        kernelcore_node = required_kernelcore / usable_nodes;
7805        for_each_node_state(nid, N_MEMORY) {
7806                unsigned long start_pfn, end_pfn;
7807
7808                /*
7809                 * Recalculate kernelcore_node if the division per node
7810                 * now exceeds what is necessary to satisfy the requested
7811                 * amount of memory for the kernel
7812                 */
7813                if (required_kernelcore < kernelcore_node)
7814                        kernelcore_node = required_kernelcore / usable_nodes;
7815
7816                /*
7817                 * As the map is walked, we track how much memory is usable
7818                 * by the kernel using kernelcore_remaining. When it is
7819                 * 0, the rest of the node is usable by ZONE_MOVABLE
7820                 */
7821                kernelcore_remaining = kernelcore_node;
7822
7823                /* Go through each range of PFNs within this node */
7824                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7825                        unsigned long size_pages;
7826
7827                        start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7828                        if (start_pfn >= end_pfn)
7829                                continue;
7830
7831                        /* Account for what is only usable for kernelcore */
7832                        if (start_pfn < usable_startpfn) {
7833                                unsigned long kernel_pages;
7834                                kernel_pages = min(end_pfn, usable_startpfn)
7835                                                                - start_pfn;
7836
7837                                kernelcore_remaining -= min(kernel_pages,
7838                                                        kernelcore_remaining);
7839                                required_kernelcore -= min(kernel_pages,
7840                                                        required_kernelcore);
7841
7842                                /* Continue if range is now fully accounted */
7843                                if (end_pfn <= usable_startpfn) {
7844
7845                                        /*
7846                                         * Push zone_movable_pfn to the end so
7847                                         * that if we have to rebalance
7848                                         * kernelcore across nodes, we will
7849                                         * not double account here
7850                                         */
7851                                        zone_movable_pfn[nid] = end_pfn;
7852                                        continue;
7853                                }
7854                                start_pfn = usable_startpfn;
7855                        }
7856
7857                        /*
7858                         * The usable PFN range for ZONE_MOVABLE is from
7859                         * start_pfn->end_pfn. Calculate size_pages as the
7860                         * number of pages used as kernelcore
7861                         */
7862                        size_pages = end_pfn - start_pfn;
7863                        if (size_pages > kernelcore_remaining)
7864                                size_pages = kernelcore_remaining;
7865                        zone_movable_pfn[nid] = start_pfn + size_pages;
7866
7867                        /*
7868                         * Some kernelcore has been met, update counts and
7869                         * break if the kernelcore for this node has been
7870                         * satisfied
7871                         */
7872                        required_kernelcore -= min(required_kernelcore,
7873                                                                size_pages);
7874                        kernelcore_remaining -= size_pages;
7875                        if (!kernelcore_remaining)
7876                                break;
7877                }
7878        }
7879
7880        /*
7881         * If there is still required_kernelcore, we do another pass with one
7882         * less node in the count. This will push zone_movable_pfn[nid] further
7883         * along on the nodes that still have memory until kernelcore is
7884         * satisfied
7885         */
7886        usable_nodes--;
7887        if (usable_nodes && required_kernelcore > usable_nodes)
7888                goto restart;
7889
7890out2:
7891        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7892        for (nid = 0; nid < MAX_NUMNODES; nid++)
7893                zone_movable_pfn[nid] =
7894                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7895
7896out:
7897        /* restore the node_state */
7898        node_states[N_MEMORY] = saved_node_state;
7899}
7900
7901/* Any regular or high memory on that node ? */
7902static void check_for_memory(pg_data_t *pgdat, int nid)
7903{
7904        enum zone_type zone_type;
7905
7906        for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7907                struct zone *zone = &pgdat->node_zones[zone_type];
7908                if (populated_zone(zone)) {
7909                        if (IS_ENABLED(CONFIG_HIGHMEM))
7910                                node_set_state(nid, N_HIGH_MEMORY);
7911                        if (zone_type <= ZONE_NORMAL)
7912                                node_set_state(nid, N_NORMAL_MEMORY);
7913                        break;
7914                }
7915        }
7916}
7917
7918/*
7919 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7920 * such cases we allow max_zone_pfn sorted in the descending order
7921 */
7922bool __weak arch_has_descending_max_zone_pfns(void)
7923{
7924        return false;
7925}
7926
7927/**
7928 * free_area_init - Initialise all pg_data_t and zone data
7929 * @max_zone_pfn: an array of max PFNs for each zone
7930 *
7931 * This will call free_area_init_node() for each active node in the system.
7932 * Using the page ranges provided by memblock_set_node(), the size of each
7933 * zone in each node and their holes is calculated. If the maximum PFN
7934 * between two adjacent zones match, it is assumed that the zone is empty.
7935 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7936 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7937 * starts where the previous one ended. For example, ZONE_DMA32 starts
7938 * at arch_max_dma_pfn.
7939 */
7940void __init free_area_init(unsigned long *max_zone_pfn)
7941{
7942        unsigned long start_pfn, end_pfn;
7943        int i, nid, zone;
7944        bool descending;
7945
7946        /* Record where the zone boundaries are */
7947        memset(arch_zone_lowest_possible_pfn, 0,
7948                                sizeof(arch_zone_lowest_possible_pfn));
7949        memset(arch_zone_highest_possible_pfn, 0,
7950                                sizeof(arch_zone_highest_possible_pfn));
7951
7952        start_pfn = find_min_pfn_with_active_regions();
7953        descending = arch_has_descending_max_zone_pfns();
7954
7955        for (i = 0; i < MAX_NR_ZONES; i++) {
7956                if (descending)
7957                        zone = MAX_NR_ZONES - i - 1;
7958                else
7959                        zone = i;
7960
7961                if (zone == ZONE_MOVABLE)
7962                        continue;
7963
7964                end_pfn = max(max_zone_pfn[zone], start_pfn);
7965                arch_zone_lowest_possible_pfn[zone] = start_pfn;
7966                arch_zone_highest_possible_pfn[zone] = end_pfn;
7967
7968                start_pfn = end_pfn;
7969        }
7970
7971        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7972        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7973        find_zone_movable_pfns_for_nodes();
7974
7975        /* Print out the zone ranges */
7976        pr_info("Zone ranges:\n");
7977        for (i = 0; i < MAX_NR_ZONES; i++) {
7978                if (i == ZONE_MOVABLE)
7979                        continue;
7980                pr_info("  %-8s ", zone_names[i]);
7981                if (arch_zone_lowest_possible_pfn[i] ==
7982                                arch_zone_highest_possible_pfn[i])
7983                        pr_cont("empty\n");
7984                else
7985                        pr_cont("[mem %#018Lx-%#018Lx]\n",
7986                                (u64)arch_zone_lowest_possible_pfn[i]
7987                                        << PAGE_SHIFT,
7988                                ((u64)arch_zone_highest_possible_pfn[i]
7989                                        << PAGE_SHIFT) - 1);
7990        }
7991
7992        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7993        pr_info("Movable zone start for each node\n");
7994        for (i = 0; i < MAX_NUMNODES; i++) {
7995                if (zone_movable_pfn[i])
7996                        pr_info("  Node %d: %#018Lx\n", i,
7997                               (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7998        }
7999
8000        /*
8001         * Print out the early node map, and initialize the
8002         * subsection-map relative to active online memory ranges to
8003         * enable future "sub-section" extensions of the memory map.
8004         */
8005        pr_info("Early memory node ranges\n");
8006        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8007                pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8008                        (u64)start_pfn << PAGE_SHIFT,
8009                        ((u64)end_pfn << PAGE_SHIFT) - 1);
8010                subsection_map_init(start_pfn, end_pfn - start_pfn);
8011        }
8012
8013        /* Initialise every node */
8014        mminit_verify_pageflags_layout();
8015        setup_nr_node_ids();
8016        for_each_online_node(nid) {
8017                pg_data_t *pgdat = NODE_DATA(nid);
8018                free_area_init_node(nid);
8019
8020                /* Any memory on that node */
8021                if (pgdat->node_present_pages)
8022                        node_set_state(nid, N_MEMORY);
8023                check_for_memory(pgdat, nid);
8024        }
8025
8026        memmap_init();
8027}
8028
8029static int __init cmdline_parse_core(char *p, unsigned long *core,
8030                                     unsigned long *percent)
8031{
8032        unsigned long long coremem;
8033        char *endptr;
8034
8035        if (!p)
8036                return -EINVAL;
8037
8038        /* Value may be a percentage of total memory, otherwise bytes */
8039        coremem = simple_strtoull(p, &endptr, 0);
8040        if (*endptr == '%') {
8041                /* Paranoid check for percent values greater than 100 */
8042                WARN_ON(coremem > 100);
8043
8044                *percent = coremem;
8045        } else {
8046                coremem = memparse(p, &p);
8047                /* Paranoid check that UL is enough for the coremem value */
8048                WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8049
8050                *core = coremem >> PAGE_SHIFT;
8051                *percent = 0UL;
8052        }
8053        return 0;
8054}
8055
8056/*
8057 * kernelcore=size sets the amount of memory for use for allocations that
8058 * cannot be reclaimed or migrated.
8059 */
8060static int __init cmdline_parse_kernelcore(char *p)
8061{
8062        /* parse kernelcore=mirror */
8063        if (parse_option_str(p, "mirror")) {
8064                mirrored_kernelcore = true;
8065                return 0;
8066        }
8067
8068        return cmdline_parse_core(p, &required_kernelcore,
8069                                  &required_kernelcore_percent);
8070}
8071
8072/*
8073 * movablecore=size sets the amount of memory for use for allocations that
8074 * can be reclaimed or migrated.
8075 */
8076static int __init cmdline_parse_movablecore(char *p)
8077{
8078        return cmdline_parse_core(p, &required_movablecore,
8079                                  &required_movablecore_percent);
8080}
8081
8082early_param("kernelcore", cmdline_parse_kernelcore);
8083early_param("movablecore", cmdline_parse_movablecore);
8084
8085void adjust_managed_page_count(struct page *page, long count)
8086{
8087        atomic_long_add(count, &page_zone(page)->managed_pages);
8088        totalram_pages_add(count);
8089#ifdef CONFIG_HIGHMEM
8090        if (PageHighMem(page))
8091                totalhigh_pages_add(count);
8092#endif
8093}
8094EXPORT_SYMBOL(adjust_managed_page_count);
8095
8096unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8097{
8098        void *pos;
8099        unsigned long pages = 0;
8100
8101        start = (void *)PAGE_ALIGN((unsigned long)start);
8102        end = (void *)((unsigned long)end & PAGE_MASK);
8103        for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8104                struct page *page = virt_to_page(pos);
8105                void *direct_map_addr;
8106
8107                /*
8108                 * 'direct_map_addr' might be different from 'pos'
8109                 * because some architectures' virt_to_page()
8110                 * work with aliases.  Getting the direct map
8111                 * address ensures that we get a _writeable_
8112                 * alias for the memset().
8113                 */
8114                direct_map_addr = page_address(page);
8115                /*
8116                 * Perform a kasan-unchecked memset() since this memory
8117                 * has not been initialized.
8118                 */
8119                direct_map_addr = kasan_reset_tag(direct_map_addr);
8120                if ((unsigned int)poison <= 0xFF)
8121                        memset(direct_map_addr, poison, PAGE_SIZE);
8122
8123                free_reserved_page(page);
8124        }
8125
8126        if (pages && s)
8127                pr_info("Freeing %s memory: %ldK\n",
8128                        s, pages << (PAGE_SHIFT - 10));
8129
8130        return pages;
8131}
8132
8133void __init mem_init_print_info(void)
8134{
8135        unsigned long physpages, codesize, datasize, rosize, bss_size;
8136        unsigned long init_code_size, init_data_size;
8137
8138        physpages = get_num_physpages();
8139        codesize = _etext - _stext;
8140        datasize = _edata - _sdata;
8141        rosize = __end_rodata - __start_rodata;
8142        bss_size = __bss_stop - __bss_start;
8143        init_data_size = __init_end - __init_begin;
8144        init_code_size = _einittext - _sinittext;
8145
8146        /*
8147         * Detect special cases and adjust section sizes accordingly:
8148         * 1) .init.* may be embedded into .data sections
8149         * 2) .init.text.* may be out of [__init_begin, __init_end],
8150         *    please refer to arch/tile/kernel/vmlinux.lds.S.
8151         * 3) .rodata.* may be embedded into .text or .data sections.
8152         */
8153#define adj_init_size(start, end, size, pos, adj) \
8154        do { \
8155                if (start <= pos && pos < end && size > adj) \
8156                        size -= adj; \
8157        } while (0)
8158
8159        adj_init_size(__init_begin, __init_end, init_data_size,
8160                     _sinittext, init_code_size);
8161        adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8162        adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8163        adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8164        adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8165
8166#undef  adj_init_size
8167
8168        pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8169#ifdef  CONFIG_HIGHMEM
8170                ", %luK highmem"
8171#endif
8172                ")\n",
8173                nr_free_pages() << (PAGE_SHIFT - 10),
8174                physpages << (PAGE_SHIFT - 10),
8175                codesize >> 10, datasize >> 10, rosize >> 10,
8176                (init_data_size + init_code_size) >> 10, bss_size >> 10,
8177                (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8178                totalcma_pages << (PAGE_SHIFT - 10)
8179#ifdef  CONFIG_HIGHMEM
8180                , totalhigh_pages() << (PAGE_SHIFT - 10)
8181#endif
8182                );
8183}
8184
8185/**
8186 * set_dma_reserve - set the specified number of pages reserved in the first zone
8187 * @new_dma_reserve: The number of pages to mark reserved
8188 *
8189 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8190 * In the DMA zone, a significant percentage may be consumed by kernel image
8191 * and other unfreeable allocations which can skew the watermarks badly. This
8192 * function may optionally be used to account for unfreeable pages in the
8193 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8194 * smaller per-cpu batchsize.
8195 */
8196void __init set_dma_reserve(unsigned long new_dma_reserve)
8197{
8198        dma_reserve = new_dma_reserve;
8199}
8200
8201static int page_alloc_cpu_dead(unsigned int cpu)
8202{
8203        struct zone *zone;
8204
8205        lru_add_drain_cpu(cpu);
8206        drain_pages(cpu);
8207
8208        /*
8209         * Spill the event counters of the dead processor
8210         * into the current processors event counters.
8211         * This artificially elevates the count of the current
8212         * processor.
8213         */
8214        vm_events_fold_cpu(cpu);
8215
8216        /*
8217         * Zero the differential counters of the dead processor
8218         * so that the vm statistics are consistent.
8219         *
8220         * This is only okay since the processor is dead and cannot
8221         * race with what we are doing.
8222         */
8223        cpu_vm_stats_fold(cpu);
8224
8225        for_each_populated_zone(zone)
8226                zone_pcp_update(zone, 0);
8227
8228        return 0;
8229}
8230
8231static int page_alloc_cpu_online(unsigned int cpu)
8232{
8233        struct zone *zone;
8234
8235        for_each_populated_zone(zone)
8236                zone_pcp_update(zone, 1);
8237        return 0;
8238}
8239
8240#ifdef CONFIG_NUMA
8241int hashdist = HASHDIST_DEFAULT;
8242
8243static int __init set_hashdist(char *str)
8244{
8245        if (!str)
8246                return 0;
8247        hashdist = simple_strtoul(str, &str, 0);
8248        return 1;
8249}
8250__setup("hashdist=", set_hashdist);
8251#endif
8252
8253void __init page_alloc_init(void)
8254{
8255        int ret;
8256
8257#ifdef CONFIG_NUMA
8258        if (num_node_state(N_MEMORY) == 1)
8259                hashdist = 0;
8260#endif
8261
8262        ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8263                                        "mm/page_alloc:pcp",
8264                                        page_alloc_cpu_online,
8265                                        page_alloc_cpu_dead);
8266        WARN_ON(ret < 0);
8267}
8268
8269/*
8270 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8271 *      or min_free_kbytes changes.
8272 */
8273static void calculate_totalreserve_pages(void)
8274{
8275        struct pglist_data *pgdat;
8276        unsigned long reserve_pages = 0;
8277        enum zone_type i, j;
8278
8279        for_each_online_pgdat(pgdat) {
8280
8281                pgdat->totalreserve_pages = 0;
8282
8283                for (i = 0; i < MAX_NR_ZONES; i++) {
8284                        struct zone *zone = pgdat->node_zones + i;
8285                        long max = 0;
8286                        unsigned long managed_pages = zone_managed_pages(zone);
8287
8288                        /* Find valid and maximum lowmem_reserve in the zone */
8289                        for (j = i; j < MAX_NR_ZONES; j++) {
8290                                if (zone->lowmem_reserve[j] > max)
8291                                        max = zone->lowmem_reserve[j];
8292                        }
8293
8294                        /* we treat the high watermark as reserved pages. */
8295                        max += high_wmark_pages(zone);
8296
8297                        if (max > managed_pages)
8298                                max = managed_pages;
8299
8300                        pgdat->totalreserve_pages += max;
8301
8302                        reserve_pages += max;
8303                }
8304        }
8305        totalreserve_pages = reserve_pages;
8306}
8307
8308/*
8309 * setup_per_zone_lowmem_reserve - called whenever
8310 *      sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8311 *      has a correct pages reserved value, so an adequate number of
8312 *      pages are left in the zone after a successful __alloc_pages().
8313 */
8314static void setup_per_zone_lowmem_reserve(void)
8315{
8316        struct pglist_data *pgdat;
8317        enum zone_type i, j;
8318
8319        for_each_online_pgdat(pgdat) {
8320                for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8321                        struct zone *zone = &pgdat->node_zones[i];
8322                        int ratio = sysctl_lowmem_reserve_ratio[i];
8323                        bool clear = !ratio || !zone_managed_pages(zone);
8324                        unsigned long managed_pages = 0;
8325
8326                        for (j = i + 1; j < MAX_NR_ZONES; j++) {
8327                                struct zone *upper_zone = &pgdat->node_zones[j];
8328
8329                                managed_pages += zone_managed_pages(upper_zone);
8330
8331                                if (clear)
8332                                        zone->lowmem_reserve[j] = 0;
8333                                else
8334                                        zone->lowmem_reserve[j] = managed_pages / ratio;
8335                        }
8336                }
8337        }
8338
8339        /* update totalreserve_pages */
8340        calculate_totalreserve_pages();
8341}
8342
8343static void __setup_per_zone_wmarks(void)
8344{
8345        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8346        unsigned long lowmem_pages = 0;
8347        struct zone *zone;
8348        unsigned long flags;
8349
8350        /* Calculate total number of !ZONE_HIGHMEM pages */
8351        for_each_zone(zone) {
8352                if (!is_highmem(zone))
8353                        lowmem_pages += zone_managed_pages(zone);
8354        }
8355
8356        for_each_zone(zone) {
8357                u64 tmp;
8358
8359                spin_lock_irqsave(&zone->lock, flags);
8360                tmp = (u64)pages_min * zone_managed_pages(zone);
8361                do_div(tmp, lowmem_pages);
8362                if (is_highmem(zone)) {
8363                        /*
8364                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8365                         * need highmem pages, so cap pages_min to a small
8366                         * value here.
8367                         *
8368                         * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8369                         * deltas control async page reclaim, and so should
8370                         * not be capped for highmem.
8371                         */
8372                        unsigned long min_pages;
8373
8374                        min_pages = zone_managed_pages(zone) / 1024;
8375                        min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8376                        zone->_watermark[WMARK_MIN] = min_pages;
8377                } else {
8378                        /*
8379                         * If it's a lowmem zone, reserve a number of pages
8380                         * proportionate to the zone's size.
8381                         */
8382                        zone->_watermark[WMARK_MIN] = tmp;
8383                }
8384
8385                /*
8386                 * Set the kswapd watermarks distance according to the
8387                 * scale factor in proportion to available memory, but
8388                 * ensure a minimum size on small systems.
8389                 */
8390                tmp = max_t(u64, tmp >> 2,
8391                            mult_frac(zone_managed_pages(zone),
8392                                      watermark_scale_factor, 10000));
8393
8394                zone->watermark_boost = 0;
8395                zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8396                zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8397
8398                spin_unlock_irqrestore(&zone->lock, flags);
8399        }
8400
8401        /* update totalreserve_pages */
8402        calculate_totalreserve_pages();
8403}
8404
8405/**
8406 * setup_per_zone_wmarks - called when min_free_kbytes changes
8407 * or when memory is hot-{added|removed}
8408 *
8409 * Ensures that the watermark[min,low,high] values for each zone are set
8410 * correctly with respect to min_free_kbytes.
8411 */
8412void setup_per_zone_wmarks(void)
8413{
8414        struct zone *zone;
8415        static DEFINE_SPINLOCK(lock);
8416
8417        spin_lock(&lock);
8418        __setup_per_zone_wmarks();
8419        spin_unlock(&lock);
8420
8421        /*
8422         * The watermark size have changed so update the pcpu batch
8423         * and high limits or the limits may be inappropriate.
8424         */
8425        for_each_zone(zone)
8426                zone_pcp_update(zone, 0);
8427}
8428
8429/*
8430 * Initialise min_free_kbytes.
8431 *
8432 * For small machines we want it small (128k min).  For large machines
8433 * we want it large (256MB max).  But it is not linear, because network
8434 * bandwidth does not increase linearly with machine size.  We use
8435 *
8436 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8437 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
8438 *
8439 * which yields
8440 *
8441 * 16MB:        512k
8442 * 32MB:        724k
8443 * 64MB:        1024k
8444 * 128MB:       1448k
8445 * 256MB:       2048k
8446 * 512MB:       2896k
8447 * 1024MB:      4096k
8448 * 2048MB:      5792k
8449 * 4096MB:      8192k
8450 * 8192MB:      11584k
8451 * 16384MB:     16384k
8452 */
8453int __meminit init_per_zone_wmark_min(void)
8454{
8455        unsigned long lowmem_kbytes;
8456        int new_min_free_kbytes;
8457
8458        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8459        new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8460
8461        if (new_min_free_kbytes > user_min_free_kbytes) {
8462                min_free_kbytes = new_min_free_kbytes;
8463                if (min_free_kbytes < 128)
8464                        min_free_kbytes = 128;
8465                if (min_free_kbytes > 262144)
8466                        min_free_kbytes = 262144;
8467        } else {
8468                pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8469                                new_min_free_kbytes, user_min_free_kbytes);
8470        }
8471        setup_per_zone_wmarks();
8472        refresh_zone_stat_thresholds();
8473        setup_per_zone_lowmem_reserve();
8474
8475#ifdef CONFIG_NUMA
8476        setup_min_unmapped_ratio();
8477        setup_min_slab_ratio();
8478#endif
8479
8480        khugepaged_min_free_kbytes_update();
8481
8482        return 0;
8483}
8484postcore_initcall(init_per_zone_wmark_min)
8485
8486/*
8487 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8488 *      that we can call two helper functions whenever min_free_kbytes
8489 *      changes.
8490 */
8491int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8492                void *buffer, size_t *length, loff_t *ppos)
8493{
8494        int rc;
8495
8496        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8497        if (rc)
8498                return rc;
8499
8500        if (write) {
8501                user_min_free_kbytes = min_free_kbytes;
8502                setup_per_zone_wmarks();
8503        }
8504        return 0;
8505}
8506
8507int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8508                void *buffer, size_t *length, loff_t *ppos)
8509{
8510        int rc;
8511
8512        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8513        if (rc)
8514                return rc;
8515
8516        if (write)
8517                setup_per_zone_wmarks();
8518
8519        return 0;
8520}
8521
8522#ifdef CONFIG_NUMA
8523static void setup_min_unmapped_ratio(void)
8524{
8525        pg_data_t *pgdat;
8526        struct zone *zone;
8527
8528        for_each_online_pgdat(pgdat)
8529                pgdat->min_unmapped_pages = 0;
8530
8531        for_each_zone(zone)
8532                zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8533                                                         sysctl_min_unmapped_ratio) / 100;
8534}
8535
8536
8537int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8538                void *buffer, size_t *length, loff_t *ppos)
8539{
8540        int rc;
8541
8542        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8543        if (rc)
8544                return rc;
8545
8546        setup_min_unmapped_ratio();
8547
8548        return 0;
8549}
8550
8551static void setup_min_slab_ratio(void)
8552{
8553        pg_data_t *pgdat;
8554        struct zone *zone;
8555
8556        for_each_online_pgdat(pgdat)
8557                pgdat->min_slab_pages = 0;
8558
8559        for_each_zone(zone)
8560                zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8561                                                     sysctl_min_slab_ratio) / 100;
8562}
8563
8564int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8565                void *buffer, size_t *length, loff_t *ppos)
8566{
8567        int rc;
8568
8569        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8570        if (rc)
8571                return rc;
8572
8573        setup_min_slab_ratio();
8574
8575        return 0;
8576}
8577#endif
8578
8579/*
8580 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8581 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8582 *      whenever sysctl_lowmem_reserve_ratio changes.
8583 *
8584 * The reserve ratio obviously has absolutely no relation with the
8585 * minimum watermarks. The lowmem reserve ratio can only make sense
8586 * if in function of the boot time zone sizes.
8587 */
8588int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8589                void *buffer, size_t *length, loff_t *ppos)
8590{
8591        int i;
8592
8593        proc_dointvec_minmax(table, write, buffer, length, ppos);
8594
8595        for (i = 0; i < MAX_NR_ZONES; i++) {
8596                if (sysctl_lowmem_reserve_ratio[i] < 1)
8597                        sysctl_lowmem_reserve_ratio[i] = 0;
8598        }
8599
8600        setup_per_zone_lowmem_reserve();
8601        return 0;
8602}
8603
8604/*
8605 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8606 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8607 * pagelist can have before it gets flushed back to buddy allocator.
8608 */
8609int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8610                int write, void *buffer, size_t *length, loff_t *ppos)
8611{
8612        struct zone *zone;
8613        int old_percpu_pagelist_high_fraction;
8614        int ret;
8615
8616        mutex_lock(&pcp_batch_high_lock);
8617        old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8618
8619        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8620        if (!write || ret < 0)
8621                goto out;
8622
8623        /* Sanity checking to avoid pcp imbalance */
8624        if (percpu_pagelist_high_fraction &&
8625            percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8626                percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8627                ret = -EINVAL;
8628                goto out;
8629        }
8630
8631        /* No change? */
8632        if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8633                goto out;
8634
8635        for_each_populated_zone(zone)
8636                zone_set_pageset_high_and_batch(zone, 0);
8637out:
8638        mutex_unlock(&pcp_batch_high_lock);
8639        return ret;
8640}
8641
8642#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8643/*
8644 * Returns the number of pages that arch has reserved but
8645 * is not known to alloc_large_system_hash().
8646 */
8647static unsigned long __init arch_reserved_kernel_pages(void)
8648{
8649        return 0;
8650}
8651#endif
8652
8653/*
8654 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8655 * machines. As memory size is increased the scale is also increased but at
8656 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8657 * quadruples the scale is increased by one, which means the size of hash table
8658 * only doubles, instead of quadrupling as well.
8659 * Because 32-bit systems cannot have large physical memory, where this scaling
8660 * makes sense, it is disabled on such platforms.
8661 */
8662#if __BITS_PER_LONG > 32
8663#define ADAPT_SCALE_BASE        (64ul << 30)
8664#define ADAPT_SCALE_SHIFT       2
8665#define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8666#endif
8667
8668/*
8669 * allocate a large system hash table from bootmem
8670 * - it is assumed that the hash table must contain an exact power-of-2
8671 *   quantity of entries
8672 * - limit is the number of hash buckets, not the total allocation size
8673 */
8674void *__init alloc_large_system_hash(const char *tablename,
8675                                     unsigned long bucketsize,
8676                                     unsigned long numentries,
8677                                     int scale,
8678                                     int flags,
8679                                     unsigned int *_hash_shift,
8680                                     unsigned int *_hash_mask,
8681                                     unsigned long low_limit,
8682                                     unsigned long high_limit)
8683{
8684        unsigned long long max = high_limit;
8685        unsigned long log2qty, size;
8686        void *table = NULL;
8687        gfp_t gfp_flags;
8688        bool virt;
8689        bool huge;
8690
8691        /* allow the kernel cmdline to have a say */
8692        if (!numentries) {
8693                /* round applicable memory size up to nearest megabyte */
8694                numentries = nr_kernel_pages;
8695                numentries -= arch_reserved_kernel_pages();
8696
8697                /* It isn't necessary when PAGE_SIZE >= 1MB */
8698                if (PAGE_SHIFT < 20)
8699                        numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8700
8701#if __BITS_PER_LONG > 32
8702                if (!high_limit) {
8703                        unsigned long adapt;
8704
8705                        for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8706                             adapt <<= ADAPT_SCALE_SHIFT)
8707                                scale++;
8708                }
8709#endif
8710
8711                /* limit to 1 bucket per 2^scale bytes of low memory */
8712                if (scale > PAGE_SHIFT)
8713                        numentries >>= (scale - PAGE_SHIFT);
8714                else
8715                        numentries <<= (PAGE_SHIFT - scale);
8716
8717                /* Make sure we've got at least a 0-order allocation.. */
8718                if (unlikely(flags & HASH_SMALL)) {
8719                        /* Makes no sense without HASH_EARLY */
8720                        WARN_ON(!(flags & HASH_EARLY));
8721                        if (!(numentries >> *_hash_shift)) {
8722                                numentries = 1UL << *_hash_shift;
8723                                BUG_ON(!numentries);
8724                        }
8725                } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8726                        numentries = PAGE_SIZE / bucketsize;
8727        }
8728        numentries = roundup_pow_of_two(numentries);
8729
8730        /* limit allocation size to 1/16 total memory by default */
8731        if (max == 0) {
8732                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8733                do_div(max, bucketsize);
8734        }
8735        max = min(max, 0x80000000ULL);
8736
8737        if (numentries < low_limit)
8738                numentries = low_limit;
8739        if (numentries > max)
8740                numentries = max;
8741
8742        log2qty = ilog2(numentries);
8743
8744        gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8745        do {
8746                virt = false;
8747                size = bucketsize << log2qty;
8748                if (flags & HASH_EARLY) {
8749                        if (flags & HASH_ZERO)
8750                                table = memblock_alloc(size, SMP_CACHE_BYTES);
8751                        else
8752                                table = memblock_alloc_raw(size,
8753                                                           SMP_CACHE_BYTES);
8754                } else if (get_order(size) >= MAX_ORDER || hashdist) {
8755                        table = __vmalloc(size, gfp_flags);
8756                        virt = true;
8757                        huge = is_vm_area_hugepages(table);
8758                } else {
8759                        /*
8760                         * If bucketsize is not a power-of-two, we may free
8761                         * some pages at the end of hash table which
8762                         * alloc_pages_exact() automatically does
8763                         */
8764                        table = alloc_pages_exact(size, gfp_flags);
8765                        kmemleak_alloc(table, size, 1, gfp_flags);
8766                }
8767        } while (!table && size > PAGE_SIZE && --log2qty);
8768
8769        if (!table)
8770                panic("Failed to allocate %s hash table\n", tablename);
8771
8772        pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8773                tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8774                virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8775
8776        if (_hash_shift)
8777                *_hash_shift = log2qty;
8778        if (_hash_mask)
8779                *_hash_mask = (1 << log2qty) - 1;
8780
8781        return table;
8782}
8783
8784/*
8785 * This function checks whether pageblock includes unmovable pages or not.
8786 *
8787 * PageLRU check without isolation or lru_lock could race so that
8788 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8789 * check without lock_page also may miss some movable non-lru pages at
8790 * race condition. So you can't expect this function should be exact.
8791 *
8792 * Returns a page without holding a reference. If the caller wants to
8793 * dereference that page (e.g., dumping), it has to make sure that it
8794 * cannot get removed (e.g., via memory unplug) concurrently.
8795 *
8796 */
8797struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8798                                 int migratetype, int flags)
8799{
8800        unsigned long iter = 0;
8801        unsigned long pfn = page_to_pfn(page);
8802        unsigned long offset = pfn % pageblock_nr_pages;
8803
8804        if (is_migrate_cma_page(page)) {
8805                /*
8806                 * CMA allocations (alloc_contig_range) really need to mark
8807                 * isolate CMA pageblocks even when they are not movable in fact
8808                 * so consider them movable here.
8809                 */
8810                if (is_migrate_cma(migratetype))
8811                        return NULL;
8812
8813                return page;
8814        }
8815
8816        for (; iter < pageblock_nr_pages - offset; iter++) {
8817                if (!pfn_valid_within(pfn + iter))
8818                        continue;
8819
8820                page = pfn_to_page(pfn + iter);
8821
8822                /*
8823                 * Both, bootmem allocations and memory holes are marked
8824                 * PG_reserved and are unmovable. We can even have unmovable
8825                 * allocations inside ZONE_MOVABLE, for example when
8826                 * specifying "movablecore".
8827                 */
8828                if (PageReserved(page))
8829                        return page;
8830
8831                /*
8832                 * If the zone is movable and we have ruled out all reserved
8833                 * pages then it should be reasonably safe to assume the rest
8834                 * is movable.
8835                 */
8836                if (zone_idx(zone) == ZONE_MOVABLE)
8837                        continue;
8838
8839                /*
8840                 * Hugepages are not in LRU lists, but they're movable.
8841                 * THPs are on the LRU, but need to be counted as #small pages.
8842                 * We need not scan over tail pages because we don't
8843                 * handle each tail page individually in migration.
8844                 */
8845                if (PageHuge(page) || PageTransCompound(page)) {
8846                        struct page *head = compound_head(page);
8847                        unsigned int skip_pages;
8848
8849                        if (PageHuge(page)) {
8850                                if (!hugepage_migration_supported(page_hstate(head)))
8851                                        return page;
8852                        } else if (!PageLRU(head) && !__PageMovable(head)) {
8853                                return page;
8854                        }
8855
8856                        skip_pages = compound_nr(head) - (page - head);
8857                        iter += skip_pages - 1;
8858                        continue;
8859                }
8860
8861                /*
8862                 * We can't use page_count without pin a page
8863                 * because another CPU can free compound page.
8864                 * This check already skips compound tails of THP
8865                 * because their page->_refcount is zero at all time.
8866                 */
8867                if (!page_ref_count(page)) {
8868                        if (PageBuddy(page))
8869                                iter += (1 << buddy_order(page)) - 1;
8870                        continue;
8871                }
8872
8873                /*
8874                 * The HWPoisoned page may be not in buddy system, and
8875                 * page_count() is not 0.
8876                 */
8877                if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8878                        continue;
8879
8880                /*
8881                 * We treat all PageOffline() pages as movable when offlining
8882                 * to give drivers a chance to decrement their reference count
8883                 * in MEM_GOING_OFFLINE in order to indicate that these pages
8884                 * can be offlined as there are no direct references anymore.
8885                 * For actually unmovable PageOffline() where the driver does
8886                 * not support this, we will fail later when trying to actually
8887                 * move these pages that still have a reference count > 0.
8888                 * (false negatives in this function only)
8889                 */
8890                if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8891                        continue;
8892
8893                if (__PageMovable(page) || PageLRU(page))
8894                        continue;
8895
8896                /*
8897                 * If there are RECLAIMABLE pages, we need to check
8898                 * it.  But now, memory offline itself doesn't call
8899                 * shrink_node_slabs() and it still to be fixed.
8900                 */
8901                return page;
8902        }
8903        return NULL;
8904}
8905
8906#ifdef CONFIG_CONTIG_ALLOC
8907static unsigned long pfn_max_align_down(unsigned long pfn)
8908{
8909        return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8910                             pageblock_nr_pages) - 1);
8911}
8912
8913static unsigned long pfn_max_align_up(unsigned long pfn)
8914{
8915        return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8916                                pageblock_nr_pages));
8917}
8918
8919#if defined(CONFIG_DYNAMIC_DEBUG) || \
8920        (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8921/* Usage: See admin-guide/dynamic-debug-howto.rst */
8922static void alloc_contig_dump_pages(struct list_head *page_list)
8923{
8924        DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8925
8926        if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8927                struct page *page;
8928
8929                dump_stack();
8930                list_for_each_entry(page, page_list, lru)
8931                        dump_page(page, "migration failure");
8932        }
8933}
8934#else
8935static inline void alloc_contig_dump_pages(struct list_head *page_list)
8936{
8937}
8938#endif
8939
8940/* [start, end) must belong to a single zone. */
8941static int __alloc_contig_migrate_range(struct compact_control *cc,
8942                                        unsigned long start, unsigned long end)
8943{
8944        /* This function is based on compact_zone() from compaction.c. */
8945        unsigned int nr_reclaimed;
8946        unsigned long pfn = start;
8947        unsigned int tries = 0;
8948        int ret = 0;
8949        struct migration_target_control mtc = {
8950                .nid = zone_to_nid(cc->zone),
8951                .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8952        };
8953
8954        lru_cache_disable();
8955
8956        while (pfn < end || !list_empty(&cc->migratepages)) {
8957                if (fatal_signal_pending(current)) {
8958                        ret = -EINTR;
8959                        break;
8960                }
8961
8962                if (list_empty(&cc->migratepages)) {
8963                        cc->nr_migratepages = 0;
8964                        ret = isolate_migratepages_range(cc, pfn, end);
8965                        if (ret && ret != -EAGAIN)
8966                                break;
8967                        pfn = cc->migrate_pfn;
8968                        tries = 0;
8969                } else if (++tries == 5) {
8970                        ret = -EBUSY;
8971                        break;
8972                }
8973
8974                nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8975                                                        &cc->migratepages);
8976                cc->nr_migratepages -= nr_reclaimed;
8977
8978                ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8979                                NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8980
8981                /*
8982                 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8983                 * to retry again over this error, so do the same here.
8984                 */
8985                if (ret == -ENOMEM)
8986                        break;
8987        }
8988
8989        lru_cache_enable();
8990        if (ret < 0) {
8991                if (ret == -EBUSY)
8992                        alloc_contig_dump_pages(&cc->migratepages);
8993                putback_movable_pages(&cc->migratepages);
8994                return ret;
8995        }
8996        return 0;
8997}
8998
8999/**
9000 * alloc_contig_range() -- tries to allocate given range of pages
9001 * @start:      start PFN to allocate
9002 * @end:        one-past-the-last PFN to allocate
9003 * @migratetype:        migratetype of the underlying pageblocks (either
9004 *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9005 *                      in range must have the same migratetype and it must
9006 *                      be either of the two.
9007 * @gfp_mask:   GFP mask to use during compaction
9008 *
9009 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9010 * aligned.  The PFN range must belong to a single zone.
9011 *
9012 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9013 * pageblocks in the range.  Once isolated, the pageblocks should not
9014 * be modified by others.
9015 *
9016 * Return: zero on success or negative error code.  On success all
9017 * pages which PFN is in [start, end) are allocated for the caller and
9018 * need to be freed with free_contig_range().
9019 */
9020int alloc_contig_range(unsigned long start, unsigned long end,
9021                       unsigned migratetype, gfp_t gfp_mask)
9022{
9023        unsigned long outer_start, outer_end;
9024        unsigned int order;
9025        int ret = 0;
9026
9027        struct compact_control cc = {
9028                .nr_migratepages = 0,
9029                .order = -1,
9030                .zone = page_zone(pfn_to_page(start)),
9031                .mode = MIGRATE_SYNC,
9032                .ignore_skip_hint = true,
9033                .no_set_skip_hint = true,
9034                .gfp_mask = current_gfp_context(gfp_mask),
9035                .alloc_contig = true,
9036        };
9037        INIT_LIST_HEAD(&cc.migratepages);
9038
9039        /*
9040         * What we do here is we mark all pageblocks in range as
9041         * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9042         * have different sizes, and due to the way page allocator
9043         * work, we align the range to biggest of the two pages so
9044         * that page allocator won't try to merge buddies from
9045         * different pageblocks and change MIGRATE_ISOLATE to some
9046         * other migration type.
9047         *
9048         * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9049         * migrate the pages from an unaligned range (ie. pages that
9050         * we are interested in).  This will put all the pages in
9051         * range back to page allocator as MIGRATE_ISOLATE.
9052         *
9053         * When this is done, we take the pages in range from page
9054         * allocator removing them from the buddy system.  This way
9055         * page allocator will never consider using them.
9056         *
9057         * This lets us mark the pageblocks back as
9058         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9059         * aligned range but not in the unaligned, original range are
9060         * put back to page allocator so that buddy can use them.
9061         */
9062
9063        ret = start_isolate_page_range(pfn_max_align_down(start),
9064                                       pfn_max_align_up(end), migratetype, 0);
9065        if (ret)
9066                return ret;
9067
9068        drain_all_pages(cc.zone);
9069
9070        /*
9071         * In case of -EBUSY, we'd like to know which page causes problem.
9072         * So, just fall through. test_pages_isolated() has a tracepoint
9073         * which will report the busy page.
9074         *
9075         * It is possible that busy pages could become available before
9076         * the call to test_pages_isolated, and the range will actually be
9077         * allocated.  So, if we fall through be sure to clear ret so that
9078         * -EBUSY is not accidentally used or returned to caller.
9079         */
9080        ret = __alloc_contig_migrate_range(&cc, start, end);
9081        if (ret && ret != -EBUSY)
9082                goto done;
9083        ret = 0;
9084
9085        /*
9086         * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9087         * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9088         * more, all pages in [start, end) are free in page allocator.
9089         * What we are going to do is to allocate all pages from
9090         * [start, end) (that is remove them from page allocator).
9091         *
9092         * The only problem is that pages at the beginning and at the
9093         * end of interesting range may be not aligned with pages that
9094         * page allocator holds, ie. they can be part of higher order
9095         * pages.  Because of this, we reserve the bigger range and
9096         * once this is done free the pages we are not interested in.
9097         *
9098         * We don't have to hold zone->lock here because the pages are
9099         * isolated thus they won't get removed from buddy.
9100         */
9101
9102        order = 0;
9103        outer_start = start;
9104        while (!PageBuddy(pfn_to_page(outer_start))) {
9105                if (++order >= MAX_ORDER) {
9106                        outer_start = start;
9107                        break;
9108                }
9109                outer_start &= ~0UL << order;
9110        }
9111
9112        if (outer_start != start) {
9113                order = buddy_order(pfn_to_page(outer_start));
9114
9115                /*
9116                 * outer_start page could be small order buddy page and
9117                 * it doesn't include start page. Adjust outer_start
9118                 * in this case to report failed page properly
9119                 * on tracepoint in test_pages_isolated()
9120                 */
9121                if (outer_start + (1UL << order) <= start)
9122                        outer_start = start;
9123        }
9124
9125        /* Make sure the range is really isolated. */
9126        if (test_pages_isolated(outer_start, end, 0)) {
9127                ret = -EBUSY;
9128                goto done;
9129        }
9130
9131        /* Grab isolated pages from freelists. */
9132        outer_end = isolate_freepages_range(&cc, outer_start, end);
9133        if (!outer_end) {
9134                ret = -EBUSY;
9135                goto done;
9136        }
9137
9138        /* Free head and tail (if any) */
9139        if (start != outer_start)
9140                free_contig_range(outer_start, start - outer_start);
9141        if (end != outer_end)
9142                free_contig_range(end, outer_end - end);
9143
9144done:
9145        undo_isolate_page_range(pfn_max_align_down(start),
9146                                pfn_max_align_up(end), migratetype);
9147        return ret;
9148}
9149EXPORT_SYMBOL(alloc_contig_range);
9150
9151static int __alloc_contig_pages(unsigned long start_pfn,
9152                                unsigned long nr_pages, gfp_t gfp_mask)
9153{
9154        unsigned long end_pfn = start_pfn + nr_pages;
9155
9156        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9157                                  gfp_mask);
9158}
9159
9160static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9161                                   unsigned long nr_pages)
9162{
9163        unsigned long i, end_pfn = start_pfn + nr_pages;
9164        struct page *page;
9165
9166        for (i = start_pfn; i < end_pfn; i++) {
9167                page = pfn_to_online_page(i);
9168                if (!page)
9169                        return false;
9170
9171                if (page_zone(page) != z)
9172                        return false;
9173
9174                if (PageReserved(page))
9175                        return false;
9176        }
9177        return true;
9178}
9179
9180static bool zone_spans_last_pfn(const struct zone *zone,
9181                                unsigned long start_pfn, unsigned long nr_pages)
9182{
9183        unsigned long last_pfn = start_pfn + nr_pages - 1;
9184
9185        return zone_spans_pfn(zone, last_pfn);
9186}
9187
9188/**
9189 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9190 * @nr_pages:   Number of contiguous pages to allocate
9191 * @gfp_mask:   GFP mask to limit search and used during compaction
9192 * @nid:        Target node
9193 * @nodemask:   Mask for other possible nodes
9194 *
9195 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9196 * on an applicable zonelist to find a contiguous pfn range which can then be
9197 * tried for allocation with alloc_contig_range(). This routine is intended
9198 * for allocation requests which can not be fulfilled with the buddy allocator.
9199 *
9200 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9201 * power of two then the alignment is guaranteed to be to the given nr_pages
9202 * (e.g. 1GB request would be aligned to 1GB).
9203 *
9204 * Allocated pages can be freed with free_contig_range() or by manually calling
9205 * __free_page() on each allocated page.
9206 *
9207 * Return: pointer to contiguous pages on success, or NULL if not successful.
9208 */
9209struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9210                                int nid, nodemask_t *nodemask)
9211{
9212        unsigned long ret, pfn, flags;
9213        struct zonelist *zonelist;
9214        struct zone *zone;
9215        struct zoneref *z;
9216
9217        zonelist = node_zonelist(nid, gfp_mask);
9218        for_each_zone_zonelist_nodemask(zone, z, zonelist,
9219                                        gfp_zone(gfp_mask), nodemask) {
9220                spin_lock_irqsave(&zone->lock, flags);
9221
9222                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9223                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9224                        if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9225                                /*
9226                                 * We release the zone lock here because
9227                                 * alloc_contig_range() will also lock the zone
9228                                 * at some point. If there's an allocation
9229                                 * spinning on this lock, it may win the race
9230                                 * and cause alloc_contig_range() to fail...
9231                                 */
9232                                spin_unlock_irqrestore(&zone->lock, flags);
9233                                ret = __alloc_contig_pages(pfn, nr_pages,
9234                                                        gfp_mask);
9235                                if (!ret)
9236                                        return pfn_to_page(pfn);
9237                                spin_lock_irqsave(&zone->lock, flags);
9238                        }
9239                        pfn += nr_pages;
9240                }
9241                spin_unlock_irqrestore(&zone->lock, flags);
9242        }
9243        return NULL;
9244}
9245#endif /* CONFIG_CONTIG_ALLOC */
9246
9247void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9248{
9249        unsigned long count = 0;
9250
9251        for (; nr_pages--; pfn++) {
9252                struct page *page = pfn_to_page(pfn);
9253
9254                count += page_count(page) != 1;
9255                __free_page(page);
9256        }
9257        WARN(count != 0, "%lu pages are still in use!\n", count);
9258}
9259EXPORT_SYMBOL(free_contig_range);
9260
9261/*
9262 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9263 * page high values need to be recalculated.
9264 */
9265void zone_pcp_update(struct zone *zone, int cpu_online)
9266{
9267        mutex_lock(&pcp_batch_high_lock);
9268        zone_set_pageset_high_and_batch(zone, cpu_online);
9269        mutex_unlock(&pcp_batch_high_lock);
9270}
9271
9272/*
9273 * Effectively disable pcplists for the zone by setting the high limit to 0
9274 * and draining all cpus. A concurrent page freeing on another CPU that's about
9275 * to put the page on pcplist will either finish before the drain and the page
9276 * will be drained, or observe the new high limit and skip the pcplist.
9277 *
9278 * Must be paired with a call to zone_pcp_enable().
9279 */
9280void zone_pcp_disable(struct zone *zone)
9281{
9282        mutex_lock(&pcp_batch_high_lock);
9283        __zone_set_pageset_high_and_batch(zone, 0, 1);
9284        __drain_all_pages(zone, true);
9285}
9286
9287void zone_pcp_enable(struct zone *zone)
9288{
9289        __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9290        mutex_unlock(&pcp_batch_high_lock);
9291}
9292
9293void zone_pcp_reset(struct zone *zone)
9294{
9295        int cpu;
9296        struct per_cpu_zonestat *pzstats;
9297
9298        if (zone->per_cpu_pageset != &boot_pageset) {
9299                for_each_online_cpu(cpu) {
9300                        pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9301                        drain_zonestat(zone, pzstats);
9302                }
9303                free_percpu(zone->per_cpu_pageset);
9304                free_percpu(zone->per_cpu_zonestats);
9305                zone->per_cpu_pageset = &boot_pageset;
9306                zone->per_cpu_zonestats = &boot_zonestats;
9307        }
9308}
9309
9310#ifdef CONFIG_MEMORY_HOTREMOVE
9311/*
9312 * All pages in the range must be in a single zone, must not contain holes,
9313 * must span full sections, and must be isolated before calling this function.
9314 */
9315void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9316{
9317        unsigned long pfn = start_pfn;
9318        struct page *page;
9319        struct zone *zone;
9320        unsigned int order;
9321        unsigned long flags;
9322
9323        offline_mem_sections(pfn, end_pfn);
9324        zone = page_zone(pfn_to_page(pfn));
9325        spin_lock_irqsave(&zone->lock, flags);
9326        while (pfn < end_pfn) {
9327                page = pfn_to_page(pfn);
9328                /*
9329                 * The HWPoisoned page may be not in buddy system, and
9330                 * page_count() is not 0.
9331                 */
9332                if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9333                        pfn++;
9334                        continue;
9335                }
9336                /*
9337                 * At this point all remaining PageOffline() pages have a
9338                 * reference count of 0 and can simply be skipped.
9339                 */
9340                if (PageOffline(page)) {
9341                        BUG_ON(page_count(page));
9342                        BUG_ON(PageBuddy(page));
9343                        pfn++;
9344                        continue;
9345                }
9346
9347                BUG_ON(page_count(page));
9348                BUG_ON(!PageBuddy(page));
9349                order = buddy_order(page);
9350                del_page_from_free_list(page, zone, order);
9351                pfn += (1 << order);
9352        }
9353        spin_unlock_irqrestore(&zone->lock, flags);
9354}
9355#endif
9356
9357bool is_free_buddy_page(struct page *page)
9358{
9359        struct zone *zone = page_zone(page);
9360        unsigned long pfn = page_to_pfn(page);
9361        unsigned long flags;
9362        unsigned int order;
9363
9364        spin_lock_irqsave(&zone->lock, flags);
9365        for (order = 0; order < MAX_ORDER; order++) {
9366                struct page *page_head = page - (pfn & ((1 << order) - 1));
9367
9368                if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9369                        break;
9370        }
9371        spin_unlock_irqrestore(&zone->lock, flags);
9372
9373        return order < MAX_ORDER;
9374}
9375
9376#ifdef CONFIG_MEMORY_FAILURE
9377/*
9378 * Break down a higher-order page in sub-pages, and keep our target out of
9379 * buddy allocator.
9380 */
9381static void break_down_buddy_pages(struct zone *zone, struct page *page,
9382                                   struct page *target, int low, int high,
9383                                   int migratetype)
9384{
9385        unsigned long size = 1 << high;
9386        struct page *current_buddy, *next_page;
9387
9388        while (high > low) {
9389                high--;
9390                size >>= 1;
9391
9392                if (target >= &page[size]) {
9393                        next_page = page + size;
9394                        current_buddy = page;
9395                } else {
9396                        next_page = page;
9397                        current_buddy = page + size;
9398                }
9399
9400                if (set_page_guard(zone, current_buddy, high, migratetype))
9401                        continue;
9402
9403                if (current_buddy != target) {
9404                        add_to_free_list(current_buddy, zone, high, migratetype);
9405                        set_buddy_order(current_buddy, high);
9406                        page = next_page;
9407                }
9408        }
9409}
9410
9411/*
9412 * Take a page that will be marked as poisoned off the buddy allocator.
9413 */
9414bool take_page_off_buddy(struct page *page)
9415{
9416        struct zone *zone = page_zone(page);
9417        unsigned long pfn = page_to_pfn(page);
9418        unsigned long flags;
9419        unsigned int order;
9420        bool ret = false;
9421
9422        spin_lock_irqsave(&zone->lock, flags);
9423        for (order = 0; order < MAX_ORDER; order++) {
9424                struct page *page_head = page - (pfn & ((1 << order) - 1));
9425                int page_order = buddy_order(page_head);
9426
9427                if (PageBuddy(page_head) && page_order >= order) {
9428                        unsigned long pfn_head = page_to_pfn(page_head);
9429                        int migratetype = get_pfnblock_migratetype(page_head,
9430                                                                   pfn_head);
9431
9432                        del_page_from_free_list(page_head, zone, page_order);
9433                        break_down_buddy_pages(zone, page_head, page, 0,
9434                                                page_order, migratetype);
9435                        if (!is_migrate_isolate(migratetype))
9436                                __mod_zone_freepage_state(zone, -1, migratetype);
9437                        ret = true;
9438                        break;
9439                }
9440                if (page_count(page_head) > 0)
9441                        break;
9442        }
9443        spin_unlock_irqrestore(&zone->lock, flags);
9444        return ret;
9445}
9446#endif
9447