linux/mm/page_ext.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/mm.h>
   3#include <linux/mmzone.h>
   4#include <linux/memblock.h>
   5#include <linux/page_ext.h>
   6#include <linux/memory.h>
   7#include <linux/vmalloc.h>
   8#include <linux/kmemleak.h>
   9#include <linux/page_owner.h>
  10#include <linux/page_idle.h>
  11
  12/*
  13 * struct page extension
  14 *
  15 * This is the feature to manage memory for extended data per page.
  16 *
  17 * Until now, we must modify struct page itself to store extra data per page.
  18 * This requires rebuilding the kernel and it is really time consuming process.
  19 * And, sometimes, rebuild is impossible due to third party module dependency.
  20 * At last, enlarging struct page could cause un-wanted system behaviour change.
  21 *
  22 * This feature is intended to overcome above mentioned problems. This feature
  23 * allocates memory for extended data per page in certain place rather than
  24 * the struct page itself. This memory can be accessed by the accessor
  25 * functions provided by this code. During the boot process, it checks whether
  26 * allocation of huge chunk of memory is needed or not. If not, it avoids
  27 * allocating memory at all. With this advantage, we can include this feature
  28 * into the kernel in default and can avoid rebuild and solve related problems.
  29 *
  30 * To help these things to work well, there are two callbacks for clients. One
  31 * is the need callback which is mandatory if user wants to avoid useless
  32 * memory allocation at boot-time. The other is optional, init callback, which
  33 * is used to do proper initialization after memory is allocated.
  34 *
  35 * The need callback is used to decide whether extended memory allocation is
  36 * needed or not. Sometimes users want to deactivate some features in this
  37 * boot and extra memory would be unnecessary. In this case, to avoid
  38 * allocating huge chunk of memory, each clients represent their need of
  39 * extra memory through the need callback. If one of the need callbacks
  40 * returns true, it means that someone needs extra memory so that
  41 * page extension core should allocates memory for page extension. If
  42 * none of need callbacks return true, memory isn't needed at all in this boot
  43 * and page extension core can skip to allocate memory. As result,
  44 * none of memory is wasted.
  45 *
  46 * When need callback returns true, page_ext checks if there is a request for
  47 * extra memory through size in struct page_ext_operations. If it is non-zero,
  48 * extra space is allocated for each page_ext entry and offset is returned to
  49 * user through offset in struct page_ext_operations.
  50 *
  51 * The init callback is used to do proper initialization after page extension
  52 * is completely initialized. In sparse memory system, extra memory is
  53 * allocated some time later than memmap is allocated. In other words, lifetime
  54 * of memory for page extension isn't same with memmap for struct page.
  55 * Therefore, clients can't store extra data until page extension is
  56 * initialized, even if pages are allocated and used freely. This could
  57 * cause inadequate state of extra data per page, so, to prevent it, client
  58 * can utilize this callback to initialize the state of it correctly.
  59 */
  60
  61static struct page_ext_operations *page_ext_ops[] = {
  62#ifdef CONFIG_PAGE_OWNER
  63        &page_owner_ops,
  64#endif
  65#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  66        &page_idle_ops,
  67#endif
  68};
  69
  70unsigned long page_ext_size = sizeof(struct page_ext);
  71
  72static unsigned long total_usage;
  73
  74static bool __init invoke_need_callbacks(void)
  75{
  76        int i;
  77        int entries = ARRAY_SIZE(page_ext_ops);
  78        bool need = false;
  79
  80        for (i = 0; i < entries; i++) {
  81                if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  82                        page_ext_ops[i]->offset = page_ext_size;
  83                        page_ext_size += page_ext_ops[i]->size;
  84                        need = true;
  85                }
  86        }
  87
  88        return need;
  89}
  90
  91static void __init invoke_init_callbacks(void)
  92{
  93        int i;
  94        int entries = ARRAY_SIZE(page_ext_ops);
  95
  96        for (i = 0; i < entries; i++) {
  97                if (page_ext_ops[i]->init)
  98                        page_ext_ops[i]->init();
  99        }
 100}
 101
 102#ifndef CONFIG_SPARSEMEM
 103void __init page_ext_init_flatmem_late(void)
 104{
 105        invoke_init_callbacks();
 106}
 107#endif
 108
 109static inline struct page_ext *get_entry(void *base, unsigned long index)
 110{
 111        return base + page_ext_size * index;
 112}
 113
 114#ifndef CONFIG_SPARSEMEM
 115
 116
 117void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 118{
 119        pgdat->node_page_ext = NULL;
 120}
 121
 122struct page_ext *lookup_page_ext(const struct page *page)
 123{
 124        unsigned long pfn = page_to_pfn(page);
 125        unsigned long index;
 126        struct page_ext *base;
 127
 128        base = NODE_DATA(page_to_nid(page))->node_page_ext;
 129        /*
 130         * The sanity checks the page allocator does upon freeing a
 131         * page can reach here before the page_ext arrays are
 132         * allocated when feeding a range of pages to the allocator
 133         * for the first time during bootup or memory hotplug.
 134         */
 135        if (unlikely(!base))
 136                return NULL;
 137        index = pfn - round_down(node_start_pfn(page_to_nid(page)),
 138                                        MAX_ORDER_NR_PAGES);
 139        return get_entry(base, index);
 140}
 141
 142static int __init alloc_node_page_ext(int nid)
 143{
 144        struct page_ext *base;
 145        unsigned long table_size;
 146        unsigned long nr_pages;
 147
 148        nr_pages = NODE_DATA(nid)->node_spanned_pages;
 149        if (!nr_pages)
 150                return 0;
 151
 152        /*
 153         * Need extra space if node range is not aligned with
 154         * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
 155         * checks buddy's status, range could be out of exact node range.
 156         */
 157        if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
 158                !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
 159                nr_pages += MAX_ORDER_NR_PAGES;
 160
 161        table_size = page_ext_size * nr_pages;
 162
 163        base = memblock_alloc_try_nid(
 164                        table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 165                        MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 166        if (!base)
 167                return -ENOMEM;
 168        NODE_DATA(nid)->node_page_ext = base;
 169        total_usage += table_size;
 170        return 0;
 171}
 172
 173void __init page_ext_init_flatmem(void)
 174{
 175
 176        int nid, fail;
 177
 178        if (!invoke_need_callbacks())
 179                return;
 180
 181        for_each_online_node(nid)  {
 182                fail = alloc_node_page_ext(nid);
 183                if (fail)
 184                        goto fail;
 185        }
 186        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 187        return;
 188
 189fail:
 190        pr_crit("allocation of page_ext failed.\n");
 191        panic("Out of memory");
 192}
 193
 194#else /* CONFIG_FLATMEM */
 195
 196struct page_ext *lookup_page_ext(const struct page *page)
 197{
 198        unsigned long pfn = page_to_pfn(page);
 199        struct mem_section *section = __pfn_to_section(pfn);
 200        /*
 201         * The sanity checks the page allocator does upon freeing a
 202         * page can reach here before the page_ext arrays are
 203         * allocated when feeding a range of pages to the allocator
 204         * for the first time during bootup or memory hotplug.
 205         */
 206        if (!section->page_ext)
 207                return NULL;
 208        return get_entry(section->page_ext, pfn);
 209}
 210
 211static void *__meminit alloc_page_ext(size_t size, int nid)
 212{
 213        gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
 214        void *addr = NULL;
 215
 216        addr = alloc_pages_exact_nid(nid, size, flags);
 217        if (addr) {
 218                kmemleak_alloc(addr, size, 1, flags);
 219                return addr;
 220        }
 221
 222        addr = vzalloc_node(size, nid);
 223
 224        return addr;
 225}
 226
 227static int __meminit init_section_page_ext(unsigned long pfn, int nid)
 228{
 229        struct mem_section *section;
 230        struct page_ext *base;
 231        unsigned long table_size;
 232
 233        section = __pfn_to_section(pfn);
 234
 235        if (section->page_ext)
 236                return 0;
 237
 238        table_size = page_ext_size * PAGES_PER_SECTION;
 239        base = alloc_page_ext(table_size, nid);
 240
 241        /*
 242         * The value stored in section->page_ext is (base - pfn)
 243         * and it does not point to the memory block allocated above,
 244         * causing kmemleak false positives.
 245         */
 246        kmemleak_not_leak(base);
 247
 248        if (!base) {
 249                pr_err("page ext allocation failure\n");
 250                return -ENOMEM;
 251        }
 252
 253        /*
 254         * The passed "pfn" may not be aligned to SECTION.  For the calculation
 255         * we need to apply a mask.
 256         */
 257        pfn &= PAGE_SECTION_MASK;
 258        section->page_ext = (void *)base - page_ext_size * pfn;
 259        total_usage += table_size;
 260        return 0;
 261}
 262#ifdef CONFIG_MEMORY_HOTPLUG
 263static void free_page_ext(void *addr)
 264{
 265        if (is_vmalloc_addr(addr)) {
 266                vfree(addr);
 267        } else {
 268                struct page *page = virt_to_page(addr);
 269                size_t table_size;
 270
 271                table_size = page_ext_size * PAGES_PER_SECTION;
 272
 273                BUG_ON(PageReserved(page));
 274                kmemleak_free(addr);
 275                free_pages_exact(addr, table_size);
 276        }
 277}
 278
 279static void __free_page_ext(unsigned long pfn)
 280{
 281        struct mem_section *ms;
 282        struct page_ext *base;
 283
 284        ms = __pfn_to_section(pfn);
 285        if (!ms || !ms->page_ext)
 286                return;
 287        base = get_entry(ms->page_ext, pfn);
 288        free_page_ext(base);
 289        ms->page_ext = NULL;
 290}
 291
 292static int __meminit online_page_ext(unsigned long start_pfn,
 293                                unsigned long nr_pages,
 294                                int nid)
 295{
 296        unsigned long start, end, pfn;
 297        int fail = 0;
 298
 299        start = SECTION_ALIGN_DOWN(start_pfn);
 300        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 301
 302        if (nid == NUMA_NO_NODE) {
 303                /*
 304                 * In this case, "nid" already exists and contains valid memory.
 305                 * "start_pfn" passed to us is a pfn which is an arg for
 306                 * online__pages(), and start_pfn should exist.
 307                 */
 308                nid = pfn_to_nid(start_pfn);
 309                VM_BUG_ON(!node_state(nid, N_ONLINE));
 310        }
 311
 312        for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
 313                fail = init_section_page_ext(pfn, nid);
 314        if (!fail)
 315                return 0;
 316
 317        /* rollback */
 318        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 319                __free_page_ext(pfn);
 320
 321        return -ENOMEM;
 322}
 323
 324static int __meminit offline_page_ext(unsigned long start_pfn,
 325                                unsigned long nr_pages, int nid)
 326{
 327        unsigned long start, end, pfn;
 328
 329        start = SECTION_ALIGN_DOWN(start_pfn);
 330        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 331
 332        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 333                __free_page_ext(pfn);
 334        return 0;
 335
 336}
 337
 338static int __meminit page_ext_callback(struct notifier_block *self,
 339                               unsigned long action, void *arg)
 340{
 341        struct memory_notify *mn = arg;
 342        int ret = 0;
 343
 344        switch (action) {
 345        case MEM_GOING_ONLINE:
 346                ret = online_page_ext(mn->start_pfn,
 347                                   mn->nr_pages, mn->status_change_nid);
 348                break;
 349        case MEM_OFFLINE:
 350                offline_page_ext(mn->start_pfn,
 351                                mn->nr_pages, mn->status_change_nid);
 352                break;
 353        case MEM_CANCEL_ONLINE:
 354                offline_page_ext(mn->start_pfn,
 355                                mn->nr_pages, mn->status_change_nid);
 356                break;
 357        case MEM_GOING_OFFLINE:
 358                break;
 359        case MEM_ONLINE:
 360        case MEM_CANCEL_OFFLINE:
 361                break;
 362        }
 363
 364        return notifier_from_errno(ret);
 365}
 366
 367#endif
 368
 369void __init page_ext_init(void)
 370{
 371        unsigned long pfn;
 372        int nid;
 373
 374        if (!invoke_need_callbacks())
 375                return;
 376
 377        for_each_node_state(nid, N_MEMORY) {
 378                unsigned long start_pfn, end_pfn;
 379
 380                start_pfn = node_start_pfn(nid);
 381                end_pfn = node_end_pfn(nid);
 382                /*
 383                 * start_pfn and end_pfn may not be aligned to SECTION and the
 384                 * page->flags of out of node pages are not initialized.  So we
 385                 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
 386                 */
 387                for (pfn = start_pfn; pfn < end_pfn;
 388                        pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
 389
 390                        if (!pfn_valid(pfn))
 391                                continue;
 392                        /*
 393                         * Nodes's pfns can be overlapping.
 394                         * We know some arch can have a nodes layout such as
 395                         * -------------pfn-------------->
 396                         * N0 | N1 | N2 | N0 | N1 | N2|....
 397                         */
 398                        if (pfn_to_nid(pfn) != nid)
 399                                continue;
 400                        if (init_section_page_ext(pfn, nid))
 401                                goto oom;
 402                        cond_resched();
 403                }
 404        }
 405        hotplug_memory_notifier(page_ext_callback, 0);
 406        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 407        invoke_init_callbacks();
 408        return;
 409
 410oom:
 411        panic("Out of memory");
 412}
 413
 414void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 415{
 416}
 417
 418#endif
 419