linux/mm/swap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? */
  47int page_cluster;
  48
  49/* Protecting only lru_rotate.pvec which requires disabling interrupts */
  50struct lru_rotate {
  51        local_lock_t lock;
  52        struct pagevec pvec;
  53};
  54static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  55        .lock = INIT_LOCAL_LOCK(lock),
  56};
  57
  58/*
  59 * The following struct pagevec are grouped together because they are protected
  60 * by disabling preemption (and interrupts remain enabled).
  61 */
  62struct lru_pvecs {
  63        local_lock_t lock;
  64        struct pagevec lru_add;
  65        struct pagevec lru_deactivate_file;
  66        struct pagevec lru_deactivate;
  67        struct pagevec lru_lazyfree;
  68#ifdef CONFIG_SMP
  69        struct pagevec activate_page;
  70#endif
  71};
  72static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
  73        .lock = INIT_LOCAL_LOCK(lock),
  74};
  75
  76/*
  77 * This path almost never happens for VM activity - pages are normally
  78 * freed via pagevecs.  But it gets used by networking.
  79 */
  80static void __page_cache_release(struct page *page)
  81{
  82        if (PageLRU(page)) {
  83                struct lruvec *lruvec;
  84                unsigned long flags;
  85
  86                lruvec = lock_page_lruvec_irqsave(page, &flags);
  87                del_page_from_lru_list(page, lruvec);
  88                __clear_page_lru_flags(page);
  89                unlock_page_lruvec_irqrestore(lruvec, flags);
  90        }
  91        __ClearPageWaiters(page);
  92}
  93
  94static void __put_single_page(struct page *page)
  95{
  96        __page_cache_release(page);
  97        mem_cgroup_uncharge(page);
  98        free_unref_page(page, 0);
  99}
 100
 101static void __put_compound_page(struct page *page)
 102{
 103        /*
 104         * __page_cache_release() is supposed to be called for thp, not for
 105         * hugetlb. This is because hugetlb page does never have PageLRU set
 106         * (it's never listed to any LRU lists) and no memcg routines should
 107         * be called for hugetlb (it has a separate hugetlb_cgroup.)
 108         */
 109        if (!PageHuge(page))
 110                __page_cache_release(page);
 111        destroy_compound_page(page);
 112}
 113
 114void __put_page(struct page *page)
 115{
 116        if (is_zone_device_page(page)) {
 117                put_dev_pagemap(page->pgmap);
 118
 119                /*
 120                 * The page belongs to the device that created pgmap. Do
 121                 * not return it to page allocator.
 122                 */
 123                return;
 124        }
 125
 126        if (unlikely(PageCompound(page)))
 127                __put_compound_page(page);
 128        else
 129                __put_single_page(page);
 130}
 131EXPORT_SYMBOL(__put_page);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.  Currently
 138 * used by read_cache_pages() and related error recovery code.
 139 */
 140void put_pages_list(struct list_head *pages)
 141{
 142        while (!list_empty(pages)) {
 143                struct page *victim;
 144
 145                victim = lru_to_page(pages);
 146                list_del(&victim->lru);
 147                put_page(victim);
 148        }
 149}
 150EXPORT_SYMBOL(put_pages_list);
 151
 152/*
 153 * get_kernel_pages() - pin kernel pages in memory
 154 * @kiov:       An array of struct kvec structures
 155 * @nr_segs:    number of segments to pin
 156 * @write:      pinning for read/write, currently ignored
 157 * @pages:      array that receives pointers to the pages pinned.
 158 *              Should be at least nr_segs long.
 159 *
 160 * Returns number of pages pinned. This may be fewer than the number
 161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 162 * were pinned, returns -errno. Each page returned must be released
 163 * with a put_page() call when it is finished with.
 164 */
 165int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 166                struct page **pages)
 167{
 168        int seg;
 169
 170        for (seg = 0; seg < nr_segs; seg++) {
 171                if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 172                        return seg;
 173
 174                pages[seg] = kmap_to_page(kiov[seg].iov_base);
 175                get_page(pages[seg]);
 176        }
 177
 178        return seg;
 179}
 180EXPORT_SYMBOL_GPL(get_kernel_pages);
 181
 182/*
 183 * get_kernel_page() - pin a kernel page in memory
 184 * @start:      starting kernel address
 185 * @write:      pinning for read/write, currently ignored
 186 * @pages:      array that receives pointer to the page pinned.
 187 *              Must be at least nr_segs long.
 188 *
 189 * Returns 1 if page is pinned. If the page was not pinned, returns
 190 * -errno. The page returned must be released with a put_page() call
 191 * when it is finished with.
 192 */
 193int get_kernel_page(unsigned long start, int write, struct page **pages)
 194{
 195        const struct kvec kiov = {
 196                .iov_base = (void *)start,
 197                .iov_len = PAGE_SIZE
 198        };
 199
 200        return get_kernel_pages(&kiov, 1, write, pages);
 201}
 202EXPORT_SYMBOL_GPL(get_kernel_page);
 203
 204static void pagevec_lru_move_fn(struct pagevec *pvec,
 205        void (*move_fn)(struct page *page, struct lruvec *lruvec))
 206{
 207        int i;
 208        struct lruvec *lruvec = NULL;
 209        unsigned long flags = 0;
 210
 211        for (i = 0; i < pagevec_count(pvec); i++) {
 212                struct page *page = pvec->pages[i];
 213
 214                /* block memcg migration during page moving between lru */
 215                if (!TestClearPageLRU(page))
 216                        continue;
 217
 218                lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
 219                (*move_fn)(page, lruvec);
 220
 221                SetPageLRU(page);
 222        }
 223        if (lruvec)
 224                unlock_page_lruvec_irqrestore(lruvec, flags);
 225        release_pages(pvec->pages, pvec->nr);
 226        pagevec_reinit(pvec);
 227}
 228
 229static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
 230{
 231        if (!PageUnevictable(page)) {
 232                del_page_from_lru_list(page, lruvec);
 233                ClearPageActive(page);
 234                add_page_to_lru_list_tail(page, lruvec);
 235                __count_vm_events(PGROTATED, thp_nr_pages(page));
 236        }
 237}
 238
 239/* return true if pagevec needs to drain */
 240static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
 241{
 242        bool ret = false;
 243
 244        if (!pagevec_add(pvec, page) || PageCompound(page) ||
 245                        lru_cache_disabled())
 246                ret = true;
 247
 248        return ret;
 249}
 250
 251/*
 252 * Writeback is about to end against a page which has been marked for immediate
 253 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 254 * inactive list.
 255 *
 256 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
 257 */
 258void rotate_reclaimable_page(struct page *page)
 259{
 260        if (!PageLocked(page) && !PageDirty(page) &&
 261            !PageUnevictable(page) && PageLRU(page)) {
 262                struct pagevec *pvec;
 263                unsigned long flags;
 264
 265                get_page(page);
 266                local_lock_irqsave(&lru_rotate.lock, flags);
 267                pvec = this_cpu_ptr(&lru_rotate.pvec);
 268                if (pagevec_add_and_need_flush(pvec, page))
 269                        pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 270                local_unlock_irqrestore(&lru_rotate.lock, flags);
 271        }
 272}
 273
 274void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
 275{
 276        do {
 277                unsigned long lrusize;
 278
 279                /*
 280                 * Hold lruvec->lru_lock is safe here, since
 281                 * 1) The pinned lruvec in reclaim, or
 282                 * 2) From a pre-LRU page during refault (which also holds the
 283                 *    rcu lock, so would be safe even if the page was on the LRU
 284                 *    and could move simultaneously to a new lruvec).
 285                 */
 286                spin_lock_irq(&lruvec->lru_lock);
 287                /* Record cost event */
 288                if (file)
 289                        lruvec->file_cost += nr_pages;
 290                else
 291                        lruvec->anon_cost += nr_pages;
 292
 293                /*
 294                 * Decay previous events
 295                 *
 296                 * Because workloads change over time (and to avoid
 297                 * overflow) we keep these statistics as a floating
 298                 * average, which ends up weighing recent refaults
 299                 * more than old ones.
 300                 */
 301                lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 302                          lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 303                          lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 304                          lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 305
 306                if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 307                        lruvec->file_cost /= 2;
 308                        lruvec->anon_cost /= 2;
 309                }
 310                spin_unlock_irq(&lruvec->lru_lock);
 311        } while ((lruvec = parent_lruvec(lruvec)));
 312}
 313
 314void lru_note_cost_page(struct page *page)
 315{
 316        lru_note_cost(mem_cgroup_page_lruvec(page),
 317                      page_is_file_lru(page), thp_nr_pages(page));
 318}
 319
 320static void __activate_page(struct page *page, struct lruvec *lruvec)
 321{
 322        if (!PageActive(page) && !PageUnevictable(page)) {
 323                int nr_pages = thp_nr_pages(page);
 324
 325                del_page_from_lru_list(page, lruvec);
 326                SetPageActive(page);
 327                add_page_to_lru_list(page, lruvec);
 328                trace_mm_lru_activate(page);
 329
 330                __count_vm_events(PGACTIVATE, nr_pages);
 331                __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 332                                     nr_pages);
 333        }
 334}
 335
 336#ifdef CONFIG_SMP
 337static void activate_page_drain(int cpu)
 338{
 339        struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
 340
 341        if (pagevec_count(pvec))
 342                pagevec_lru_move_fn(pvec, __activate_page);
 343}
 344
 345static bool need_activate_page_drain(int cpu)
 346{
 347        return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
 348}
 349
 350static void activate_page(struct page *page)
 351{
 352        page = compound_head(page);
 353        if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 354                struct pagevec *pvec;
 355
 356                local_lock(&lru_pvecs.lock);
 357                pvec = this_cpu_ptr(&lru_pvecs.activate_page);
 358                get_page(page);
 359                if (pagevec_add_and_need_flush(pvec, page))
 360                        pagevec_lru_move_fn(pvec, __activate_page);
 361                local_unlock(&lru_pvecs.lock);
 362        }
 363}
 364
 365#else
 366static inline void activate_page_drain(int cpu)
 367{
 368}
 369
 370static void activate_page(struct page *page)
 371{
 372        struct lruvec *lruvec;
 373
 374        page = compound_head(page);
 375        if (TestClearPageLRU(page)) {
 376                lruvec = lock_page_lruvec_irq(page);
 377                __activate_page(page, lruvec);
 378                unlock_page_lruvec_irq(lruvec);
 379                SetPageLRU(page);
 380        }
 381}
 382#endif
 383
 384static void __lru_cache_activate_page(struct page *page)
 385{
 386        struct pagevec *pvec;
 387        int i;
 388
 389        local_lock(&lru_pvecs.lock);
 390        pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 391
 392        /*
 393         * Search backwards on the optimistic assumption that the page being
 394         * activated has just been added to this pagevec. Note that only
 395         * the local pagevec is examined as a !PageLRU page could be in the
 396         * process of being released, reclaimed, migrated or on a remote
 397         * pagevec that is currently being drained. Furthermore, marking
 398         * a remote pagevec's page PageActive potentially hits a race where
 399         * a page is marked PageActive just after it is added to the inactive
 400         * list causing accounting errors and BUG_ON checks to trigger.
 401         */
 402        for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 403                struct page *pagevec_page = pvec->pages[i];
 404
 405                if (pagevec_page == page) {
 406                        SetPageActive(page);
 407                        break;
 408                }
 409        }
 410
 411        local_unlock(&lru_pvecs.lock);
 412}
 413
 414/*
 415 * Mark a page as having seen activity.
 416 *
 417 * inactive,unreferenced        ->      inactive,referenced
 418 * inactive,referenced          ->      active,unreferenced
 419 * active,unreferenced          ->      active,referenced
 420 *
 421 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 422 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 423 */
 424void mark_page_accessed(struct page *page)
 425{
 426        page = compound_head(page);
 427
 428        if (!PageReferenced(page)) {
 429                SetPageReferenced(page);
 430        } else if (PageUnevictable(page)) {
 431                /*
 432                 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 433                 * this list is never rotated or maintained, so marking an
 434                 * evictable page accessed has no effect.
 435                 */
 436        } else if (!PageActive(page)) {
 437                /*
 438                 * If the page is on the LRU, queue it for activation via
 439                 * lru_pvecs.activate_page. Otherwise, assume the page is on a
 440                 * pagevec, mark it active and it'll be moved to the active
 441                 * LRU on the next drain.
 442                 */
 443                if (PageLRU(page))
 444                        activate_page(page);
 445                else
 446                        __lru_cache_activate_page(page);
 447                ClearPageReferenced(page);
 448                workingset_activation(page);
 449        }
 450        if (page_is_idle(page))
 451                clear_page_idle(page);
 452}
 453EXPORT_SYMBOL(mark_page_accessed);
 454
 455/**
 456 * lru_cache_add - add a page to a page list
 457 * @page: the page to be added to the LRU.
 458 *
 459 * Queue the page for addition to the LRU via pagevec. The decision on whether
 460 * to add the page to the [in]active [file|anon] list is deferred until the
 461 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 462 * have the page added to the active list using mark_page_accessed().
 463 */
 464void lru_cache_add(struct page *page)
 465{
 466        struct pagevec *pvec;
 467
 468        VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 469        VM_BUG_ON_PAGE(PageLRU(page), page);
 470
 471        get_page(page);
 472        local_lock(&lru_pvecs.lock);
 473        pvec = this_cpu_ptr(&lru_pvecs.lru_add);
 474        if (pagevec_add_and_need_flush(pvec, page))
 475                __pagevec_lru_add(pvec);
 476        local_unlock(&lru_pvecs.lock);
 477}
 478EXPORT_SYMBOL(lru_cache_add);
 479
 480/**
 481 * lru_cache_add_inactive_or_unevictable
 482 * @page:  the page to be added to LRU
 483 * @vma:   vma in which page is mapped for determining reclaimability
 484 *
 485 * Place @page on the inactive or unevictable LRU list, depending on its
 486 * evictability.
 487 */
 488void lru_cache_add_inactive_or_unevictable(struct page *page,
 489                                         struct vm_area_struct *vma)
 490{
 491        bool unevictable;
 492
 493        VM_BUG_ON_PAGE(PageLRU(page), page);
 494
 495        unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
 496        if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
 497                int nr_pages = thp_nr_pages(page);
 498                /*
 499                 * We use the irq-unsafe __mod_zone_page_state because this
 500                 * counter is not modified from interrupt context, and the pte
 501                 * lock is held(spinlock), which implies preemption disabled.
 502                 */
 503                __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
 504                count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
 505        }
 506        lru_cache_add(page);
 507}
 508
 509/*
 510 * If the page can not be invalidated, it is moved to the
 511 * inactive list to speed up its reclaim.  It is moved to the
 512 * head of the list, rather than the tail, to give the flusher
 513 * threads some time to write it out, as this is much more
 514 * effective than the single-page writeout from reclaim.
 515 *
 516 * If the page isn't page_mapped and dirty/writeback, the page
 517 * could reclaim asap using PG_reclaim.
 518 *
 519 * 1. active, mapped page -> none
 520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 521 * 3. inactive, mapped page -> none
 522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 523 * 5. inactive, clean -> inactive, tail
 524 * 6. Others -> none
 525 *
 526 * In 4, why it moves inactive's head, the VM expects the page would
 527 * be write it out by flusher threads as this is much more effective
 528 * than the single-page writeout from reclaim.
 529 */
 530static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
 531{
 532        bool active = PageActive(page);
 533        int nr_pages = thp_nr_pages(page);
 534
 535        if (PageUnevictable(page))
 536                return;
 537
 538        /* Some processes are using the page */
 539        if (page_mapped(page))
 540                return;
 541
 542        del_page_from_lru_list(page, lruvec);
 543        ClearPageActive(page);
 544        ClearPageReferenced(page);
 545
 546        if (PageWriteback(page) || PageDirty(page)) {
 547                /*
 548                 * PG_reclaim could be raced with end_page_writeback
 549                 * It can make readahead confusing.  But race window
 550                 * is _really_ small and  it's non-critical problem.
 551                 */
 552                add_page_to_lru_list(page, lruvec);
 553                SetPageReclaim(page);
 554        } else {
 555                /*
 556                 * The page's writeback ends up during pagevec
 557                 * We move that page into tail of inactive.
 558                 */
 559                add_page_to_lru_list_tail(page, lruvec);
 560                __count_vm_events(PGROTATED, nr_pages);
 561        }
 562
 563        if (active) {
 564                __count_vm_events(PGDEACTIVATE, nr_pages);
 565                __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 566                                     nr_pages);
 567        }
 568}
 569
 570static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
 571{
 572        if (PageActive(page) && !PageUnevictable(page)) {
 573                int nr_pages = thp_nr_pages(page);
 574
 575                del_page_from_lru_list(page, lruvec);
 576                ClearPageActive(page);
 577                ClearPageReferenced(page);
 578                add_page_to_lru_list(page, lruvec);
 579
 580                __count_vm_events(PGDEACTIVATE, nr_pages);
 581                __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 582                                     nr_pages);
 583        }
 584}
 585
 586static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
 587{
 588        if (PageAnon(page) && PageSwapBacked(page) &&
 589            !PageSwapCache(page) && !PageUnevictable(page)) {
 590                int nr_pages = thp_nr_pages(page);
 591
 592                del_page_from_lru_list(page, lruvec);
 593                ClearPageActive(page);
 594                ClearPageReferenced(page);
 595                /*
 596                 * Lazyfree pages are clean anonymous pages.  They have
 597                 * PG_swapbacked flag cleared, to distinguish them from normal
 598                 * anonymous pages
 599                 */
 600                ClearPageSwapBacked(page);
 601                add_page_to_lru_list(page, lruvec);
 602
 603                __count_vm_events(PGLAZYFREE, nr_pages);
 604                __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 605                                     nr_pages);
 606        }
 607}
 608
 609/*
 610 * Drain pages out of the cpu's pagevecs.
 611 * Either "cpu" is the current CPU, and preemption has already been
 612 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 613 */
 614void lru_add_drain_cpu(int cpu)
 615{
 616        struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
 617
 618        if (pagevec_count(pvec))
 619                __pagevec_lru_add(pvec);
 620
 621        pvec = &per_cpu(lru_rotate.pvec, cpu);
 622        /* Disabling interrupts below acts as a compiler barrier. */
 623        if (data_race(pagevec_count(pvec))) {
 624                unsigned long flags;
 625
 626                /* No harm done if a racing interrupt already did this */
 627                local_lock_irqsave(&lru_rotate.lock, flags);
 628                pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
 629                local_unlock_irqrestore(&lru_rotate.lock, flags);
 630        }
 631
 632        pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
 633        if (pagevec_count(pvec))
 634                pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 635
 636        pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
 637        if (pagevec_count(pvec))
 638                pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 639
 640        pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
 641        if (pagevec_count(pvec))
 642                pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 643
 644        activate_page_drain(cpu);
 645        invalidate_bh_lrus_cpu(cpu);
 646}
 647
 648/**
 649 * deactivate_file_page - forcefully deactivate a file page
 650 * @page: page to deactivate
 651 *
 652 * This function hints the VM that @page is a good reclaim candidate,
 653 * for example if its invalidation fails due to the page being dirty
 654 * or under writeback.
 655 */
 656void deactivate_file_page(struct page *page)
 657{
 658        /*
 659         * In a workload with many unevictable page such as mprotect,
 660         * unevictable page deactivation for accelerating reclaim is pointless.
 661         */
 662        if (PageUnevictable(page))
 663                return;
 664
 665        if (likely(get_page_unless_zero(page))) {
 666                struct pagevec *pvec;
 667
 668                local_lock(&lru_pvecs.lock);
 669                pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
 670
 671                if (pagevec_add_and_need_flush(pvec, page))
 672                        pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
 673                local_unlock(&lru_pvecs.lock);
 674        }
 675}
 676
 677/*
 678 * deactivate_page - deactivate a page
 679 * @page: page to deactivate
 680 *
 681 * deactivate_page() moves @page to the inactive list if @page was on the active
 682 * list and was not an unevictable page.  This is done to accelerate the reclaim
 683 * of @page.
 684 */
 685void deactivate_page(struct page *page)
 686{
 687        if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
 688                struct pagevec *pvec;
 689
 690                local_lock(&lru_pvecs.lock);
 691                pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
 692                get_page(page);
 693                if (pagevec_add_and_need_flush(pvec, page))
 694                        pagevec_lru_move_fn(pvec, lru_deactivate_fn);
 695                local_unlock(&lru_pvecs.lock);
 696        }
 697}
 698
 699/**
 700 * mark_page_lazyfree - make an anon page lazyfree
 701 * @page: page to deactivate
 702 *
 703 * mark_page_lazyfree() moves @page to the inactive file list.
 704 * This is done to accelerate the reclaim of @page.
 705 */
 706void mark_page_lazyfree(struct page *page)
 707{
 708        if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
 709            !PageSwapCache(page) && !PageUnevictable(page)) {
 710                struct pagevec *pvec;
 711
 712                local_lock(&lru_pvecs.lock);
 713                pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
 714                get_page(page);
 715                if (pagevec_add_and_need_flush(pvec, page))
 716                        pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
 717                local_unlock(&lru_pvecs.lock);
 718        }
 719}
 720
 721void lru_add_drain(void)
 722{
 723        local_lock(&lru_pvecs.lock);
 724        lru_add_drain_cpu(smp_processor_id());
 725        local_unlock(&lru_pvecs.lock);
 726}
 727
 728void lru_add_drain_cpu_zone(struct zone *zone)
 729{
 730        local_lock(&lru_pvecs.lock);
 731        lru_add_drain_cpu(smp_processor_id());
 732        drain_local_pages(zone);
 733        local_unlock(&lru_pvecs.lock);
 734}
 735
 736#ifdef CONFIG_SMP
 737
 738static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 739
 740static void lru_add_drain_per_cpu(struct work_struct *dummy)
 741{
 742        lru_add_drain();
 743}
 744
 745/*
 746 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 747 * kworkers being shut down before our page_alloc_cpu_dead callback is
 748 * executed on the offlined cpu.
 749 * Calling this function with cpu hotplug locks held can actually lead
 750 * to obscure indirect dependencies via WQ context.
 751 */
 752inline void __lru_add_drain_all(bool force_all_cpus)
 753{
 754        /*
 755         * lru_drain_gen - Global pages generation number
 756         *
 757         * (A) Definition: global lru_drain_gen = x implies that all generations
 758         *     0 < n <= x are already *scheduled* for draining.
 759         *
 760         * This is an optimization for the highly-contended use case where a
 761         * user space workload keeps constantly generating a flow of pages for
 762         * each CPU.
 763         */
 764        static unsigned int lru_drain_gen;
 765        static struct cpumask has_work;
 766        static DEFINE_MUTEX(lock);
 767        unsigned cpu, this_gen;
 768
 769        /*
 770         * Make sure nobody triggers this path before mm_percpu_wq is fully
 771         * initialized.
 772         */
 773        if (WARN_ON(!mm_percpu_wq))
 774                return;
 775
 776        /*
 777         * Guarantee pagevec counter stores visible by this CPU are visible to
 778         * other CPUs before loading the current drain generation.
 779         */
 780        smp_mb();
 781
 782        /*
 783         * (B) Locally cache global LRU draining generation number
 784         *
 785         * The read barrier ensures that the counter is loaded before the mutex
 786         * is taken. It pairs with smp_mb() inside the mutex critical section
 787         * at (D).
 788         */
 789        this_gen = smp_load_acquire(&lru_drain_gen);
 790
 791        mutex_lock(&lock);
 792
 793        /*
 794         * (C) Exit the draining operation if a newer generation, from another
 795         * lru_add_drain_all(), was already scheduled for draining. Check (A).
 796         */
 797        if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 798                goto done;
 799
 800        /*
 801         * (D) Increment global generation number
 802         *
 803         * Pairs with smp_load_acquire() at (B), outside of the critical
 804         * section. Use a full memory barrier to guarantee that the new global
 805         * drain generation number is stored before loading pagevec counters.
 806         *
 807         * This pairing must be done here, before the for_each_online_cpu loop
 808         * below which drains the page vectors.
 809         *
 810         * Let x, y, and z represent some system CPU numbers, where x < y < z.
 811         * Assume CPU #z is in the middle of the for_each_online_cpu loop
 812         * below and has already reached CPU #y's per-cpu data. CPU #x comes
 813         * along, adds some pages to its per-cpu vectors, then calls
 814         * lru_add_drain_all().
 815         *
 816         * If the paired barrier is done at any later step, e.g. after the
 817         * loop, CPU #x will just exit at (C) and miss flushing out all of its
 818         * added pages.
 819         */
 820        WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 821        smp_mb();
 822
 823        cpumask_clear(&has_work);
 824        for_each_online_cpu(cpu) {
 825                struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 826
 827                if (force_all_cpus ||
 828                    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
 829                    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
 830                    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
 831                    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
 832                    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
 833                    need_activate_page_drain(cpu) ||
 834                    has_bh_in_lru(cpu, NULL)) {
 835                        INIT_WORK(work, lru_add_drain_per_cpu);
 836                        queue_work_on(cpu, mm_percpu_wq, work);
 837                        __cpumask_set_cpu(cpu, &has_work);
 838                }
 839        }
 840
 841        for_each_cpu(cpu, &has_work)
 842                flush_work(&per_cpu(lru_add_drain_work, cpu));
 843
 844done:
 845        mutex_unlock(&lock);
 846}
 847
 848void lru_add_drain_all(void)
 849{
 850        __lru_add_drain_all(false);
 851}
 852#else
 853void lru_add_drain_all(void)
 854{
 855        lru_add_drain();
 856}
 857#endif /* CONFIG_SMP */
 858
 859atomic_t lru_disable_count = ATOMIC_INIT(0);
 860
 861/*
 862 * lru_cache_disable() needs to be called before we start compiling
 863 * a list of pages to be migrated using isolate_lru_page().
 864 * It drains pages on LRU cache and then disable on all cpus until
 865 * lru_cache_enable is called.
 866 *
 867 * Must be paired with a call to lru_cache_enable().
 868 */
 869void lru_cache_disable(void)
 870{
 871        atomic_inc(&lru_disable_count);
 872#ifdef CONFIG_SMP
 873        /*
 874         * lru_add_drain_all in the force mode will schedule draining on
 875         * all online CPUs so any calls of lru_cache_disabled wrapped by
 876         * local_lock or preemption disabled would be ordered by that.
 877         * The atomic operation doesn't need to have stronger ordering
 878         * requirements because that is enforeced by the scheduling
 879         * guarantees.
 880         */
 881        __lru_add_drain_all(true);
 882#else
 883        lru_add_drain();
 884#endif
 885}
 886
 887/**
 888 * release_pages - batched put_page()
 889 * @pages: array of pages to release
 890 * @nr: number of pages
 891 *
 892 * Decrement the reference count on all the pages in @pages.  If it
 893 * fell to zero, remove the page from the LRU and free it.
 894 */
 895void release_pages(struct page **pages, int nr)
 896{
 897        int i;
 898        LIST_HEAD(pages_to_free);
 899        struct lruvec *lruvec = NULL;
 900        unsigned long flags;
 901        unsigned int lock_batch;
 902
 903        for (i = 0; i < nr; i++) {
 904                struct page *page = pages[i];
 905
 906                /*
 907                 * Make sure the IRQ-safe lock-holding time does not get
 908                 * excessive with a continuous string of pages from the
 909                 * same lruvec. The lock is held only if lruvec != NULL.
 910                 */
 911                if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
 912                        unlock_page_lruvec_irqrestore(lruvec, flags);
 913                        lruvec = NULL;
 914                }
 915
 916                page = compound_head(page);
 917                if (is_huge_zero_page(page))
 918                        continue;
 919
 920                if (is_zone_device_page(page)) {
 921                        if (lruvec) {
 922                                unlock_page_lruvec_irqrestore(lruvec, flags);
 923                                lruvec = NULL;
 924                        }
 925                        /*
 926                         * ZONE_DEVICE pages that return 'false' from
 927                         * page_is_devmap_managed() do not require special
 928                         * processing, and instead, expect a call to
 929                         * put_page_testzero().
 930                         */
 931                        if (page_is_devmap_managed(page)) {
 932                                put_devmap_managed_page(page);
 933                                continue;
 934                        }
 935                        if (put_page_testzero(page))
 936                                put_dev_pagemap(page->pgmap);
 937                        continue;
 938                }
 939
 940                if (!put_page_testzero(page))
 941                        continue;
 942
 943                if (PageCompound(page)) {
 944                        if (lruvec) {
 945                                unlock_page_lruvec_irqrestore(lruvec, flags);
 946                                lruvec = NULL;
 947                        }
 948                        __put_compound_page(page);
 949                        continue;
 950                }
 951
 952                if (PageLRU(page)) {
 953                        struct lruvec *prev_lruvec = lruvec;
 954
 955                        lruvec = relock_page_lruvec_irqsave(page, lruvec,
 956                                                                        &flags);
 957                        if (prev_lruvec != lruvec)
 958                                lock_batch = 0;
 959
 960                        del_page_from_lru_list(page, lruvec);
 961                        __clear_page_lru_flags(page);
 962                }
 963
 964                __ClearPageWaiters(page);
 965
 966                list_add(&page->lru, &pages_to_free);
 967        }
 968        if (lruvec)
 969                unlock_page_lruvec_irqrestore(lruvec, flags);
 970
 971        mem_cgroup_uncharge_list(&pages_to_free);
 972        free_unref_page_list(&pages_to_free);
 973}
 974EXPORT_SYMBOL(release_pages);
 975
 976/*
 977 * The pages which we're about to release may be in the deferred lru-addition
 978 * queues.  That would prevent them from really being freed right now.  That's
 979 * OK from a correctness point of view but is inefficient - those pages may be
 980 * cache-warm and we want to give them back to the page allocator ASAP.
 981 *
 982 * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 983 * and __pagevec_lru_add_active() call release_pages() directly to avoid
 984 * mutual recursion.
 985 */
 986void __pagevec_release(struct pagevec *pvec)
 987{
 988        if (!pvec->percpu_pvec_drained) {
 989                lru_add_drain();
 990                pvec->percpu_pvec_drained = true;
 991        }
 992        release_pages(pvec->pages, pagevec_count(pvec));
 993        pagevec_reinit(pvec);
 994}
 995EXPORT_SYMBOL(__pagevec_release);
 996
 997static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
 998{
 999        int was_unevictable = TestClearPageUnevictable(page);
1000        int nr_pages = thp_nr_pages(page);
1001
1002        VM_BUG_ON_PAGE(PageLRU(page), page);
1003
1004        /*
1005         * Page becomes evictable in two ways:
1006         * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1007         * 2) Before acquiring LRU lock to put the page to correct LRU and then
1008         *   a) do PageLRU check with lock [check_move_unevictable_pages]
1009         *   b) do PageLRU check before lock [clear_page_mlock]
1010         *
1011         * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1012         * following strict ordering:
1013         *
1014         * #0: __pagevec_lru_add_fn             #1: clear_page_mlock
1015         *
1016         * SetPageLRU()                         TestClearPageMlocked()
1017         * smp_mb() // explicit ordering        // above provides strict
1018         *                                      // ordering
1019         * PageMlocked()                        PageLRU()
1020         *
1021         *
1022         * if '#1' does not observe setting of PG_lru by '#0' and fails
1023         * isolation, the explicit barrier will make sure that page_evictable
1024         * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1025         * can be reordered after PageMlocked check and can make '#1' to fail
1026         * the isolation of the page whose Mlocked bit is cleared (#0 is also
1027         * looking at the same page) and the evictable page will be stranded
1028         * in an unevictable LRU.
1029         */
1030        SetPageLRU(page);
1031        smp_mb__after_atomic();
1032
1033        if (page_evictable(page)) {
1034                if (was_unevictable)
1035                        __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1036        } else {
1037                ClearPageActive(page);
1038                SetPageUnevictable(page);
1039                if (!was_unevictable)
1040                        __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1041        }
1042
1043        add_page_to_lru_list(page, lruvec);
1044        trace_mm_lru_insertion(page);
1045}
1046
1047/*
1048 * Add the passed pages to the LRU, then drop the caller's refcount
1049 * on them.  Reinitialises the caller's pagevec.
1050 */
1051void __pagevec_lru_add(struct pagevec *pvec)
1052{
1053        int i;
1054        struct lruvec *lruvec = NULL;
1055        unsigned long flags = 0;
1056
1057        for (i = 0; i < pagevec_count(pvec); i++) {
1058                struct page *page = pvec->pages[i];
1059
1060                lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1061                __pagevec_lru_add_fn(page, lruvec);
1062        }
1063        if (lruvec)
1064                unlock_page_lruvec_irqrestore(lruvec, flags);
1065        release_pages(pvec->pages, pvec->nr);
1066        pagevec_reinit(pvec);
1067}
1068
1069/**
1070 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1071 * @pvec:       The pagevec to prune
1072 *
1073 * find_get_entries() fills both pages and XArray value entries (aka
1074 * exceptional entries) into the pagevec.  This function prunes all
1075 * exceptionals from @pvec without leaving holes, so that it can be
1076 * passed on to page-only pagevec operations.
1077 */
1078void pagevec_remove_exceptionals(struct pagevec *pvec)
1079{
1080        int i, j;
1081
1082        for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1083                struct page *page = pvec->pages[i];
1084                if (!xa_is_value(page))
1085                        pvec->pages[j++] = page;
1086        }
1087        pvec->nr = j;
1088}
1089
1090/**
1091 * pagevec_lookup_range - gang pagecache lookup
1092 * @pvec:       Where the resulting pages are placed
1093 * @mapping:    The address_space to search
1094 * @start:      The starting page index
1095 * @end:        The final page index
1096 *
1097 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1098 * pages in the mapping starting from index @start and upto index @end
1099 * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1100 * reference against the pages in @pvec.
1101 *
1102 * The search returns a group of mapping-contiguous pages with ascending
1103 * indexes.  There may be holes in the indices due to not-present pages. We
1104 * also update @start to index the next page for the traversal.
1105 *
1106 * pagevec_lookup_range() returns the number of pages which were found. If this
1107 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1108 * reached.
1109 */
1110unsigned pagevec_lookup_range(struct pagevec *pvec,
1111                struct address_space *mapping, pgoff_t *start, pgoff_t end)
1112{
1113        pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1114                                        pvec->pages);
1115        return pagevec_count(pvec);
1116}
1117EXPORT_SYMBOL(pagevec_lookup_range);
1118
1119unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1120                struct address_space *mapping, pgoff_t *index, pgoff_t end,
1121                xa_mark_t tag)
1122{
1123        pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1124                                        PAGEVEC_SIZE, pvec->pages);
1125        return pagevec_count(pvec);
1126}
1127EXPORT_SYMBOL(pagevec_lookup_range_tag);
1128
1129/*
1130 * Perform any setup for the swap system
1131 */
1132void __init swap_setup(void)
1133{
1134        unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1135
1136        /* Use a smaller cluster for small-memory machines */
1137        if (megs < 16)
1138                page_cluster = 2;
1139        else
1140                page_cluster = 3;
1141        /*
1142         * Right now other parts of the system means that we
1143         * _really_ don't want to cluster much more
1144         */
1145}
1146
1147#ifdef CONFIG_DEV_PAGEMAP_OPS
1148void put_devmap_managed_page(struct page *page)
1149{
1150        int count;
1151
1152        if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1153                return;
1154
1155        count = page_ref_dec_return(page);
1156
1157        /*
1158         * devmap page refcounts are 1-based, rather than 0-based: if
1159         * refcount is 1, then the page is free and the refcount is
1160         * stable because nobody holds a reference on the page.
1161         */
1162        if (count == 1)
1163                free_devmap_managed_page(page);
1164        else if (!count)
1165                __put_page(page);
1166}
1167EXPORT_SYMBOL(put_devmap_managed_page);
1168#endif
1169