linux/net/core/dev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      NET3    Protocol independent device support routines.
   4 *
   5 *      Derived from the non IP parts of dev.c 1.0.19
   6 *              Authors:        Ross Biro
   7 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   8 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
   9 *
  10 *      Additional Authors:
  11 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  12 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  13 *              David Hinds <dahinds@users.sourceforge.net>
  14 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  15 *              Adam Sulmicki <adam@cfar.umd.edu>
  16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  17 *
  18 *      Changes:
  19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  20 *                                      to 2 if register_netdev gets called
  21 *                                      before net_dev_init & also removed a
  22 *                                      few lines of code in the process.
  23 *              Alan Cox        :       device private ioctl copies fields back.
  24 *              Alan Cox        :       Transmit queue code does relevant
  25 *                                      stunts to keep the queue safe.
  26 *              Alan Cox        :       Fixed double lock.
  27 *              Alan Cox        :       Fixed promisc NULL pointer trap
  28 *              ????????        :       Support the full private ioctl range
  29 *              Alan Cox        :       Moved ioctl permission check into
  30 *                                      drivers
  31 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  32 *              Alan Cox        :       100 backlog just doesn't cut it when
  33 *                                      you start doing multicast video 8)
  34 *              Alan Cox        :       Rewrote net_bh and list manager.
  35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  36 *              Alan Cox        :       Took out transmit every packet pass
  37 *                                      Saved a few bytes in the ioctl handler
  38 *              Alan Cox        :       Network driver sets packet type before
  39 *                                      calling netif_rx. Saves a function
  40 *                                      call a packet.
  41 *              Alan Cox        :       Hashed net_bh()
  42 *              Richard Kooijman:       Timestamp fixes.
  43 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  44 *              Alan Cox        :       Device lock protection.
  45 *              Alan Cox        :       Fixed nasty side effect of device close
  46 *                                      changes.
  47 *              Rudi Cilibrasi  :       Pass the right thing to
  48 *                                      set_mac_address()
  49 *              Dave Miller     :       32bit quantity for the device lock to
  50 *                                      make it work out on a Sparc.
  51 *              Bjorn Ekwall    :       Added KERNELD hack.
  52 *              Alan Cox        :       Cleaned up the backlog initialise.
  53 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  54 *                                      1 device.
  55 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  56 *                                      is no device open function.
  57 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  58 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  59 *              Cyrus Durgin    :       Cleaned for KMOD
  60 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  61 *                                      A network device unload needs to purge
  62 *                                      the backlog queue.
  63 *      Paul Rusty Russell      :       SIOCSIFNAME
  64 *              Pekka Riikonen  :       Netdev boot-time settings code
  65 *              Andrew Morton   :       Make unregister_netdevice wait
  66 *                                      indefinitely on dev->refcnt
  67 *              J Hadi Salim    :       - Backlog queue sampling
  68 *                                      - netif_rx() feedback
  69 */
  70
  71#include <linux/uaccess.h>
  72#include <linux/bitops.h>
  73#include <linux/capability.h>
  74#include <linux/cpu.h>
  75#include <linux/types.h>
  76#include <linux/kernel.h>
  77#include <linux/hash.h>
  78#include <linux/slab.h>
  79#include <linux/sched.h>
  80#include <linux/sched/mm.h>
  81#include <linux/mutex.h>
  82#include <linux/rwsem.h>
  83#include <linux/string.h>
  84#include <linux/mm.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/errno.h>
  88#include <linux/interrupt.h>
  89#include <linux/if_ether.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/ethtool.h>
  93#include <linux/skbuff.h>
  94#include <linux/kthread.h>
  95#include <linux/bpf.h>
  96#include <linux/bpf_trace.h>
  97#include <net/net_namespace.h>
  98#include <net/sock.h>
  99#include <net/busy_poll.h>
 100#include <linux/rtnetlink.h>
 101#include <linux/stat.h>
 102#include <net/dsa.h>
 103#include <net/dst.h>
 104#include <net/dst_metadata.h>
 105#include <net/gro.h>
 106#include <net/pkt_sched.h>
 107#include <net/pkt_cls.h>
 108#include <net/checksum.h>
 109#include <net/xfrm.h>
 110#include <linux/highmem.h>
 111#include <linux/init.h>
 112#include <linux/module.h>
 113#include <linux/netpoll.h>
 114#include <linux/rcupdate.h>
 115#include <linux/delay.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 126#include <net/mpls.h>
 127#include <linux/ipv6.h>
 128#include <linux/in.h>
 129#include <linux/jhash.h>
 130#include <linux/random.h>
 131#include <trace/events/napi.h>
 132#include <trace/events/net.h>
 133#include <trace/events/skb.h>
 134#include <trace/events/qdisc.h>
 135#include <linux/inetdevice.h>
 136#include <linux/cpu_rmap.h>
 137#include <linux/static_key.h>
 138#include <linux/hashtable.h>
 139#include <linux/vmalloc.h>
 140#include <linux/if_macvlan.h>
 141#include <linux/errqueue.h>
 142#include <linux/hrtimer.h>
 143#include <linux/netfilter_ingress.h>
 144#include <linux/crash_dump.h>
 145#include <linux/sctp.h>
 146#include <net/udp_tunnel.h>
 147#include <linux/net_namespace.h>
 148#include <linux/indirect_call_wrapper.h>
 149#include <net/devlink.h>
 150#include <linux/pm_runtime.h>
 151#include <linux/prandom.h>
 152#include <linux/once_lite.h>
 153
 154#include "net-sysfs.h"
 155
 156#define MAX_GRO_SKBS 8
 157
 158/* This should be increased if a protocol with a bigger head is added. */
 159#define GRO_MAX_HEAD (MAX_HEADER + 128)
 160
 161static DEFINE_SPINLOCK(ptype_lock);
 162static DEFINE_SPINLOCK(offload_lock);
 163struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 164struct list_head ptype_all __read_mostly;       /* Taps */
 165static struct list_head offload_base __read_mostly;
 166
 167static int netif_rx_internal(struct sk_buff *skb);
 168static int call_netdevice_notifiers_info(unsigned long val,
 169                                         struct netdev_notifier_info *info);
 170static int call_netdevice_notifiers_extack(unsigned long val,
 171                                           struct net_device *dev,
 172                                           struct netlink_ext_ack *extack);
 173static struct napi_struct *napi_by_id(unsigned int napi_id);
 174
 175/*
 176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 177 * semaphore.
 178 *
 179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 180 *
 181 * Writers must hold the rtnl semaphore while they loop through the
 182 * dev_base_head list, and hold dev_base_lock for writing when they do the
 183 * actual updates.  This allows pure readers to access the list even
 184 * while a writer is preparing to update it.
 185 *
 186 * To put it another way, dev_base_lock is held for writing only to
 187 * protect against pure readers; the rtnl semaphore provides the
 188 * protection against other writers.
 189 *
 190 * See, for example usages, register_netdevice() and
 191 * unregister_netdevice(), which must be called with the rtnl
 192 * semaphore held.
 193 */
 194DEFINE_RWLOCK(dev_base_lock);
 195EXPORT_SYMBOL(dev_base_lock);
 196
 197static DEFINE_MUTEX(ifalias_mutex);
 198
 199/* protects napi_hash addition/deletion and napi_gen_id */
 200static DEFINE_SPINLOCK(napi_hash_lock);
 201
 202static unsigned int napi_gen_id = NR_CPUS;
 203static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 204
 205static DECLARE_RWSEM(devnet_rename_sem);
 206
 207static inline void dev_base_seq_inc(struct net *net)
 208{
 209        while (++net->dev_base_seq == 0)
 210                ;
 211}
 212
 213static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 214{
 215        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 216
 217        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 218}
 219
 220static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 221{
 222        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 223}
 224
 225static inline void rps_lock(struct softnet_data *sd)
 226{
 227#ifdef CONFIG_RPS
 228        spin_lock(&sd->input_pkt_queue.lock);
 229#endif
 230}
 231
 232static inline void rps_unlock(struct softnet_data *sd)
 233{
 234#ifdef CONFIG_RPS
 235        spin_unlock(&sd->input_pkt_queue.lock);
 236#endif
 237}
 238
 239static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
 240                                                       const char *name)
 241{
 242        struct netdev_name_node *name_node;
 243
 244        name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
 245        if (!name_node)
 246                return NULL;
 247        INIT_HLIST_NODE(&name_node->hlist);
 248        name_node->dev = dev;
 249        name_node->name = name;
 250        return name_node;
 251}
 252
 253static struct netdev_name_node *
 254netdev_name_node_head_alloc(struct net_device *dev)
 255{
 256        struct netdev_name_node *name_node;
 257
 258        name_node = netdev_name_node_alloc(dev, dev->name);
 259        if (!name_node)
 260                return NULL;
 261        INIT_LIST_HEAD(&name_node->list);
 262        return name_node;
 263}
 264
 265static void netdev_name_node_free(struct netdev_name_node *name_node)
 266{
 267        kfree(name_node);
 268}
 269
 270static void netdev_name_node_add(struct net *net,
 271                                 struct netdev_name_node *name_node)
 272{
 273        hlist_add_head_rcu(&name_node->hlist,
 274                           dev_name_hash(net, name_node->name));
 275}
 276
 277static void netdev_name_node_del(struct netdev_name_node *name_node)
 278{
 279        hlist_del_rcu(&name_node->hlist);
 280}
 281
 282static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
 283                                                        const char *name)
 284{
 285        struct hlist_head *head = dev_name_hash(net, name);
 286        struct netdev_name_node *name_node;
 287
 288        hlist_for_each_entry(name_node, head, hlist)
 289                if (!strcmp(name_node->name, name))
 290                        return name_node;
 291        return NULL;
 292}
 293
 294static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
 295                                                            const char *name)
 296{
 297        struct hlist_head *head = dev_name_hash(net, name);
 298        struct netdev_name_node *name_node;
 299
 300        hlist_for_each_entry_rcu(name_node, head, hlist)
 301                if (!strcmp(name_node->name, name))
 302                        return name_node;
 303        return NULL;
 304}
 305
 306int netdev_name_node_alt_create(struct net_device *dev, const char *name)
 307{
 308        struct netdev_name_node *name_node;
 309        struct net *net = dev_net(dev);
 310
 311        name_node = netdev_name_node_lookup(net, name);
 312        if (name_node)
 313                return -EEXIST;
 314        name_node = netdev_name_node_alloc(dev, name);
 315        if (!name_node)
 316                return -ENOMEM;
 317        netdev_name_node_add(net, name_node);
 318        /* The node that holds dev->name acts as a head of per-device list. */
 319        list_add_tail(&name_node->list, &dev->name_node->list);
 320
 321        return 0;
 322}
 323EXPORT_SYMBOL(netdev_name_node_alt_create);
 324
 325static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
 326{
 327        list_del(&name_node->list);
 328        netdev_name_node_del(name_node);
 329        kfree(name_node->name);
 330        netdev_name_node_free(name_node);
 331}
 332
 333int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
 334{
 335        struct netdev_name_node *name_node;
 336        struct net *net = dev_net(dev);
 337
 338        name_node = netdev_name_node_lookup(net, name);
 339        if (!name_node)
 340                return -ENOENT;
 341        /* lookup might have found our primary name or a name belonging
 342         * to another device.
 343         */
 344        if (name_node == dev->name_node || name_node->dev != dev)
 345                return -EINVAL;
 346
 347        __netdev_name_node_alt_destroy(name_node);
 348
 349        return 0;
 350}
 351EXPORT_SYMBOL(netdev_name_node_alt_destroy);
 352
 353static void netdev_name_node_alt_flush(struct net_device *dev)
 354{
 355        struct netdev_name_node *name_node, *tmp;
 356
 357        list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
 358                __netdev_name_node_alt_destroy(name_node);
 359}
 360
 361/* Device list insertion */
 362static void list_netdevice(struct net_device *dev)
 363{
 364        struct net *net = dev_net(dev);
 365
 366        ASSERT_RTNL();
 367
 368        write_lock_bh(&dev_base_lock);
 369        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 370        netdev_name_node_add(net, dev->name_node);
 371        hlist_add_head_rcu(&dev->index_hlist,
 372                           dev_index_hash(net, dev->ifindex));
 373        write_unlock_bh(&dev_base_lock);
 374
 375        dev_base_seq_inc(net);
 376}
 377
 378/* Device list removal
 379 * caller must respect a RCU grace period before freeing/reusing dev
 380 */
 381static void unlist_netdevice(struct net_device *dev)
 382{
 383        ASSERT_RTNL();
 384
 385        /* Unlink dev from the device chain */
 386        write_lock_bh(&dev_base_lock);
 387        list_del_rcu(&dev->dev_list);
 388        netdev_name_node_del(dev->name_node);
 389        hlist_del_rcu(&dev->index_hlist);
 390        write_unlock_bh(&dev_base_lock);
 391
 392        dev_base_seq_inc(dev_net(dev));
 393}
 394
 395/*
 396 *      Our notifier list
 397 */
 398
 399static RAW_NOTIFIER_HEAD(netdev_chain);
 400
 401/*
 402 *      Device drivers call our routines to queue packets here. We empty the
 403 *      queue in the local softnet handler.
 404 */
 405
 406DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 407EXPORT_PER_CPU_SYMBOL(softnet_data);
 408
 409#ifdef CONFIG_LOCKDEP
 410/*
 411 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 412 * according to dev->type
 413 */
 414static const unsigned short netdev_lock_type[] = {
 415         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 416         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 417         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 418         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 419         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 420         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 421         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 422         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 423         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 424         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 425         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 426         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 427         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 428         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 429         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 430
 431static const char *const netdev_lock_name[] = {
 432        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 433        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 434        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 435        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 436        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 437        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 438        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 439        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 440        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 441        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 442        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 443        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 444        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 445        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 446        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 447
 448static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 449static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 450
 451static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 452{
 453        int i;
 454
 455        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 456                if (netdev_lock_type[i] == dev_type)
 457                        return i;
 458        /* the last key is used by default */
 459        return ARRAY_SIZE(netdev_lock_type) - 1;
 460}
 461
 462static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 463                                                 unsigned short dev_type)
 464{
 465        int i;
 466
 467        i = netdev_lock_pos(dev_type);
 468        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 469                                   netdev_lock_name[i]);
 470}
 471
 472static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 473{
 474        int i;
 475
 476        i = netdev_lock_pos(dev->type);
 477        lockdep_set_class_and_name(&dev->addr_list_lock,
 478                                   &netdev_addr_lock_key[i],
 479                                   netdev_lock_name[i]);
 480}
 481#else
 482static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 483                                                 unsigned short dev_type)
 484{
 485}
 486
 487static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 488{
 489}
 490#endif
 491
 492/*******************************************************************************
 493 *
 494 *              Protocol management and registration routines
 495 *
 496 *******************************************************************************/
 497
 498
 499/*
 500 *      Add a protocol ID to the list. Now that the input handler is
 501 *      smarter we can dispense with all the messy stuff that used to be
 502 *      here.
 503 *
 504 *      BEWARE!!! Protocol handlers, mangling input packets,
 505 *      MUST BE last in hash buckets and checking protocol handlers
 506 *      MUST start from promiscuous ptype_all chain in net_bh.
 507 *      It is true now, do not change it.
 508 *      Explanation follows: if protocol handler, mangling packet, will
 509 *      be the first on list, it is not able to sense, that packet
 510 *      is cloned and should be copied-on-write, so that it will
 511 *      change it and subsequent readers will get broken packet.
 512 *                                                      --ANK (980803)
 513 */
 514
 515static inline struct list_head *ptype_head(const struct packet_type *pt)
 516{
 517        if (pt->type == htons(ETH_P_ALL))
 518                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 519        else
 520                return pt->dev ? &pt->dev->ptype_specific :
 521                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 522}
 523
 524/**
 525 *      dev_add_pack - add packet handler
 526 *      @pt: packet type declaration
 527 *
 528 *      Add a protocol handler to the networking stack. The passed &packet_type
 529 *      is linked into kernel lists and may not be freed until it has been
 530 *      removed from the kernel lists.
 531 *
 532 *      This call does not sleep therefore it can not
 533 *      guarantee all CPU's that are in middle of receiving packets
 534 *      will see the new packet type (until the next received packet).
 535 */
 536
 537void dev_add_pack(struct packet_type *pt)
 538{
 539        struct list_head *head = ptype_head(pt);
 540
 541        spin_lock(&ptype_lock);
 542        list_add_rcu(&pt->list, head);
 543        spin_unlock(&ptype_lock);
 544}
 545EXPORT_SYMBOL(dev_add_pack);
 546
 547/**
 548 *      __dev_remove_pack        - remove packet handler
 549 *      @pt: packet type declaration
 550 *
 551 *      Remove a protocol handler that was previously added to the kernel
 552 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 553 *      from the kernel lists and can be freed or reused once this function
 554 *      returns.
 555 *
 556 *      The packet type might still be in use by receivers
 557 *      and must not be freed until after all the CPU's have gone
 558 *      through a quiescent state.
 559 */
 560void __dev_remove_pack(struct packet_type *pt)
 561{
 562        struct list_head *head = ptype_head(pt);
 563        struct packet_type *pt1;
 564
 565        spin_lock(&ptype_lock);
 566
 567        list_for_each_entry(pt1, head, list) {
 568                if (pt == pt1) {
 569                        list_del_rcu(&pt->list);
 570                        goto out;
 571                }
 572        }
 573
 574        pr_warn("dev_remove_pack: %p not found\n", pt);
 575out:
 576        spin_unlock(&ptype_lock);
 577}
 578EXPORT_SYMBOL(__dev_remove_pack);
 579
 580/**
 581 *      dev_remove_pack  - remove packet handler
 582 *      @pt: packet type declaration
 583 *
 584 *      Remove a protocol handler that was previously added to the kernel
 585 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 586 *      from the kernel lists and can be freed or reused once this function
 587 *      returns.
 588 *
 589 *      This call sleeps to guarantee that no CPU is looking at the packet
 590 *      type after return.
 591 */
 592void dev_remove_pack(struct packet_type *pt)
 593{
 594        __dev_remove_pack(pt);
 595
 596        synchronize_net();
 597}
 598EXPORT_SYMBOL(dev_remove_pack);
 599
 600
 601/**
 602 *      dev_add_offload - register offload handlers
 603 *      @po: protocol offload declaration
 604 *
 605 *      Add protocol offload handlers to the networking stack. The passed
 606 *      &proto_offload is linked into kernel lists and may not be freed until
 607 *      it has been removed from the kernel lists.
 608 *
 609 *      This call does not sleep therefore it can not
 610 *      guarantee all CPU's that are in middle of receiving packets
 611 *      will see the new offload handlers (until the next received packet).
 612 */
 613void dev_add_offload(struct packet_offload *po)
 614{
 615        struct packet_offload *elem;
 616
 617        spin_lock(&offload_lock);
 618        list_for_each_entry(elem, &offload_base, list) {
 619                if (po->priority < elem->priority)
 620                        break;
 621        }
 622        list_add_rcu(&po->list, elem->list.prev);
 623        spin_unlock(&offload_lock);
 624}
 625EXPORT_SYMBOL(dev_add_offload);
 626
 627/**
 628 *      __dev_remove_offload     - remove offload handler
 629 *      @po: packet offload declaration
 630 *
 631 *      Remove a protocol offload handler that was previously added to the
 632 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 633 *      is removed from the kernel lists and can be freed or reused once this
 634 *      function returns.
 635 *
 636 *      The packet type might still be in use by receivers
 637 *      and must not be freed until after all the CPU's have gone
 638 *      through a quiescent state.
 639 */
 640static void __dev_remove_offload(struct packet_offload *po)
 641{
 642        struct list_head *head = &offload_base;
 643        struct packet_offload *po1;
 644
 645        spin_lock(&offload_lock);
 646
 647        list_for_each_entry(po1, head, list) {
 648                if (po == po1) {
 649                        list_del_rcu(&po->list);
 650                        goto out;
 651                }
 652        }
 653
 654        pr_warn("dev_remove_offload: %p not found\n", po);
 655out:
 656        spin_unlock(&offload_lock);
 657}
 658
 659/**
 660 *      dev_remove_offload       - remove packet offload handler
 661 *      @po: packet offload declaration
 662 *
 663 *      Remove a packet offload handler that was previously added to the kernel
 664 *      offload handlers by dev_add_offload(). The passed &offload_type is
 665 *      removed from the kernel lists and can be freed or reused once this
 666 *      function returns.
 667 *
 668 *      This call sleeps to guarantee that no CPU is looking at the packet
 669 *      type after return.
 670 */
 671void dev_remove_offload(struct packet_offload *po)
 672{
 673        __dev_remove_offload(po);
 674
 675        synchronize_net();
 676}
 677EXPORT_SYMBOL(dev_remove_offload);
 678
 679/******************************************************************************
 680 *
 681 *                    Device Boot-time Settings Routines
 682 *
 683 ******************************************************************************/
 684
 685/* Boot time configuration table */
 686static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 687
 688/**
 689 *      netdev_boot_setup_add   - add new setup entry
 690 *      @name: name of the device
 691 *      @map: configured settings for the device
 692 *
 693 *      Adds new setup entry to the dev_boot_setup list.  The function
 694 *      returns 0 on error and 1 on success.  This is a generic routine to
 695 *      all netdevices.
 696 */
 697static int netdev_boot_setup_add(char *name, struct ifmap *map)
 698{
 699        struct netdev_boot_setup *s;
 700        int i;
 701
 702        s = dev_boot_setup;
 703        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 704                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 705                        memset(s[i].name, 0, sizeof(s[i].name));
 706                        strlcpy(s[i].name, name, IFNAMSIZ);
 707                        memcpy(&s[i].map, map, sizeof(s[i].map));
 708                        break;
 709                }
 710        }
 711
 712        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 713}
 714
 715/**
 716 * netdev_boot_setup_check      - check boot time settings
 717 * @dev: the netdevice
 718 *
 719 * Check boot time settings for the device.
 720 * The found settings are set for the device to be used
 721 * later in the device probing.
 722 * Returns 0 if no settings found, 1 if they are.
 723 */
 724int netdev_boot_setup_check(struct net_device *dev)
 725{
 726        struct netdev_boot_setup *s = dev_boot_setup;
 727        int i;
 728
 729        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 730                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 731                    !strcmp(dev->name, s[i].name)) {
 732                        dev->irq = s[i].map.irq;
 733                        dev->base_addr = s[i].map.base_addr;
 734                        dev->mem_start = s[i].map.mem_start;
 735                        dev->mem_end = s[i].map.mem_end;
 736                        return 1;
 737                }
 738        }
 739        return 0;
 740}
 741EXPORT_SYMBOL(netdev_boot_setup_check);
 742
 743
 744/**
 745 * netdev_boot_base     - get address from boot time settings
 746 * @prefix: prefix for network device
 747 * @unit: id for network device
 748 *
 749 * Check boot time settings for the base address of device.
 750 * The found settings are set for the device to be used
 751 * later in the device probing.
 752 * Returns 0 if no settings found.
 753 */
 754unsigned long netdev_boot_base(const char *prefix, int unit)
 755{
 756        const struct netdev_boot_setup *s = dev_boot_setup;
 757        char name[IFNAMSIZ];
 758        int i;
 759
 760        sprintf(name, "%s%d", prefix, unit);
 761
 762        /*
 763         * If device already registered then return base of 1
 764         * to indicate not to probe for this interface
 765         */
 766        if (__dev_get_by_name(&init_net, name))
 767                return 1;
 768
 769        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 770                if (!strcmp(name, s[i].name))
 771                        return s[i].map.base_addr;
 772        return 0;
 773}
 774
 775/*
 776 * Saves at boot time configured settings for any netdevice.
 777 */
 778int __init netdev_boot_setup(char *str)
 779{
 780        int ints[5];
 781        struct ifmap map;
 782
 783        str = get_options(str, ARRAY_SIZE(ints), ints);
 784        if (!str || !*str)
 785                return 0;
 786
 787        /* Save settings */
 788        memset(&map, 0, sizeof(map));
 789        if (ints[0] > 0)
 790                map.irq = ints[1];
 791        if (ints[0] > 1)
 792                map.base_addr = ints[2];
 793        if (ints[0] > 2)
 794                map.mem_start = ints[3];
 795        if (ints[0] > 3)
 796                map.mem_end = ints[4];
 797
 798        /* Add new entry to the list */
 799        return netdev_boot_setup_add(str, &map);
 800}
 801
 802__setup("netdev=", netdev_boot_setup);
 803
 804/*******************************************************************************
 805 *
 806 *                          Device Interface Subroutines
 807 *
 808 *******************************************************************************/
 809
 810/**
 811 *      dev_get_iflink  - get 'iflink' value of a interface
 812 *      @dev: targeted interface
 813 *
 814 *      Indicates the ifindex the interface is linked to.
 815 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 816 */
 817
 818int dev_get_iflink(const struct net_device *dev)
 819{
 820        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 821                return dev->netdev_ops->ndo_get_iflink(dev);
 822
 823        return dev->ifindex;
 824}
 825EXPORT_SYMBOL(dev_get_iflink);
 826
 827/**
 828 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 829 *      @dev: targeted interface
 830 *      @skb: The packet.
 831 *
 832 *      For better visibility of tunnel traffic OVS needs to retrieve
 833 *      egress tunnel information for a packet. Following API allows
 834 *      user to get this info.
 835 */
 836int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 837{
 838        struct ip_tunnel_info *info;
 839
 840        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 841                return -EINVAL;
 842
 843        info = skb_tunnel_info_unclone(skb);
 844        if (!info)
 845                return -ENOMEM;
 846        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 847                return -EINVAL;
 848
 849        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 850}
 851EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 852
 853static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
 854{
 855        int k = stack->num_paths++;
 856
 857        if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
 858                return NULL;
 859
 860        return &stack->path[k];
 861}
 862
 863int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
 864                          struct net_device_path_stack *stack)
 865{
 866        const struct net_device *last_dev;
 867        struct net_device_path_ctx ctx = {
 868                .dev    = dev,
 869                .daddr  = daddr,
 870        };
 871        struct net_device_path *path;
 872        int ret = 0;
 873
 874        stack->num_paths = 0;
 875        while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
 876                last_dev = ctx.dev;
 877                path = dev_fwd_path(stack);
 878                if (!path)
 879                        return -1;
 880
 881                memset(path, 0, sizeof(struct net_device_path));
 882                ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
 883                if (ret < 0)
 884                        return -1;
 885
 886                if (WARN_ON_ONCE(last_dev == ctx.dev))
 887                        return -1;
 888        }
 889        path = dev_fwd_path(stack);
 890        if (!path)
 891                return -1;
 892        path->type = DEV_PATH_ETHERNET;
 893        path->dev = ctx.dev;
 894
 895        return ret;
 896}
 897EXPORT_SYMBOL_GPL(dev_fill_forward_path);
 898
 899/**
 900 *      __dev_get_by_name       - find a device by its name
 901 *      @net: the applicable net namespace
 902 *      @name: name to find
 903 *
 904 *      Find an interface by name. Must be called under RTNL semaphore
 905 *      or @dev_base_lock. If the name is found a pointer to the device
 906 *      is returned. If the name is not found then %NULL is returned. The
 907 *      reference counters are not incremented so the caller must be
 908 *      careful with locks.
 909 */
 910
 911struct net_device *__dev_get_by_name(struct net *net, const char *name)
 912{
 913        struct netdev_name_node *node_name;
 914
 915        node_name = netdev_name_node_lookup(net, name);
 916        return node_name ? node_name->dev : NULL;
 917}
 918EXPORT_SYMBOL(__dev_get_by_name);
 919
 920/**
 921 * dev_get_by_name_rcu  - find a device by its name
 922 * @net: the applicable net namespace
 923 * @name: name to find
 924 *
 925 * Find an interface by name.
 926 * If the name is found a pointer to the device is returned.
 927 * If the name is not found then %NULL is returned.
 928 * The reference counters are not incremented so the caller must be
 929 * careful with locks. The caller must hold RCU lock.
 930 */
 931
 932struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 933{
 934        struct netdev_name_node *node_name;
 935
 936        node_name = netdev_name_node_lookup_rcu(net, name);
 937        return node_name ? node_name->dev : NULL;
 938}
 939EXPORT_SYMBOL(dev_get_by_name_rcu);
 940
 941/**
 942 *      dev_get_by_name         - find a device by its name
 943 *      @net: the applicable net namespace
 944 *      @name: name to find
 945 *
 946 *      Find an interface by name. This can be called from any
 947 *      context and does its own locking. The returned handle has
 948 *      the usage count incremented and the caller must use dev_put() to
 949 *      release it when it is no longer needed. %NULL is returned if no
 950 *      matching device is found.
 951 */
 952
 953struct net_device *dev_get_by_name(struct net *net, const char *name)
 954{
 955        struct net_device *dev;
 956
 957        rcu_read_lock();
 958        dev = dev_get_by_name_rcu(net, name);
 959        if (dev)
 960                dev_hold(dev);
 961        rcu_read_unlock();
 962        return dev;
 963}
 964EXPORT_SYMBOL(dev_get_by_name);
 965
 966/**
 967 *      __dev_get_by_index - find a device by its ifindex
 968 *      @net: the applicable net namespace
 969 *      @ifindex: index of device
 970 *
 971 *      Search for an interface by index. Returns %NULL if the device
 972 *      is not found or a pointer to the device. The device has not
 973 *      had its reference counter increased so the caller must be careful
 974 *      about locking. The caller must hold either the RTNL semaphore
 975 *      or @dev_base_lock.
 976 */
 977
 978struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 979{
 980        struct net_device *dev;
 981        struct hlist_head *head = dev_index_hash(net, ifindex);
 982
 983        hlist_for_each_entry(dev, head, index_hlist)
 984                if (dev->ifindex == ifindex)
 985                        return dev;
 986
 987        return NULL;
 988}
 989EXPORT_SYMBOL(__dev_get_by_index);
 990
 991/**
 992 *      dev_get_by_index_rcu - find a device by its ifindex
 993 *      @net: the applicable net namespace
 994 *      @ifindex: index of device
 995 *
 996 *      Search for an interface by index. Returns %NULL if the device
 997 *      is not found or a pointer to the device. The device has not
 998 *      had its reference counter increased so the caller must be careful
 999 *      about locking. The caller must hold RCU lock.
1000 */
1001
1002struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1003{
1004        struct net_device *dev;
1005        struct hlist_head *head = dev_index_hash(net, ifindex);
1006
1007        hlist_for_each_entry_rcu(dev, head, index_hlist)
1008                if (dev->ifindex == ifindex)
1009                        return dev;
1010
1011        return NULL;
1012}
1013EXPORT_SYMBOL(dev_get_by_index_rcu);
1014
1015
1016/**
1017 *      dev_get_by_index - find a device by its ifindex
1018 *      @net: the applicable net namespace
1019 *      @ifindex: index of device
1020 *
1021 *      Search for an interface by index. Returns NULL if the device
1022 *      is not found or a pointer to the device. The device returned has
1023 *      had a reference added and the pointer is safe until the user calls
1024 *      dev_put to indicate they have finished with it.
1025 */
1026
1027struct net_device *dev_get_by_index(struct net *net, int ifindex)
1028{
1029        struct net_device *dev;
1030
1031        rcu_read_lock();
1032        dev = dev_get_by_index_rcu(net, ifindex);
1033        if (dev)
1034                dev_hold(dev);
1035        rcu_read_unlock();
1036        return dev;
1037}
1038EXPORT_SYMBOL(dev_get_by_index);
1039
1040/**
1041 *      dev_get_by_napi_id - find a device by napi_id
1042 *      @napi_id: ID of the NAPI struct
1043 *
1044 *      Search for an interface by NAPI ID. Returns %NULL if the device
1045 *      is not found or a pointer to the device. The device has not had
1046 *      its reference counter increased so the caller must be careful
1047 *      about locking. The caller must hold RCU lock.
1048 */
1049
1050struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1051{
1052        struct napi_struct *napi;
1053
1054        WARN_ON_ONCE(!rcu_read_lock_held());
1055
1056        if (napi_id < MIN_NAPI_ID)
1057                return NULL;
1058
1059        napi = napi_by_id(napi_id);
1060
1061        return napi ? napi->dev : NULL;
1062}
1063EXPORT_SYMBOL(dev_get_by_napi_id);
1064
1065/**
1066 *      netdev_get_name - get a netdevice name, knowing its ifindex.
1067 *      @net: network namespace
1068 *      @name: a pointer to the buffer where the name will be stored.
1069 *      @ifindex: the ifindex of the interface to get the name from.
1070 */
1071int netdev_get_name(struct net *net, char *name, int ifindex)
1072{
1073        struct net_device *dev;
1074        int ret;
1075
1076        down_read(&devnet_rename_sem);
1077        rcu_read_lock();
1078
1079        dev = dev_get_by_index_rcu(net, ifindex);
1080        if (!dev) {
1081                ret = -ENODEV;
1082                goto out;
1083        }
1084
1085        strcpy(name, dev->name);
1086
1087        ret = 0;
1088out:
1089        rcu_read_unlock();
1090        up_read(&devnet_rename_sem);
1091        return ret;
1092}
1093
1094/**
1095 *      dev_getbyhwaddr_rcu - find a device by its hardware address
1096 *      @net: the applicable net namespace
1097 *      @type: media type of device
1098 *      @ha: hardware address
1099 *
1100 *      Search for an interface by MAC address. Returns NULL if the device
1101 *      is not found or a pointer to the device.
1102 *      The caller must hold RCU or RTNL.
1103 *      The returned device has not had its ref count increased
1104 *      and the caller must therefore be careful about locking
1105 *
1106 */
1107
1108struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1109                                       const char *ha)
1110{
1111        struct net_device *dev;
1112
1113        for_each_netdev_rcu(net, dev)
1114                if (dev->type == type &&
1115                    !memcmp(dev->dev_addr, ha, dev->addr_len))
1116                        return dev;
1117
1118        return NULL;
1119}
1120EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1121
1122struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1123{
1124        struct net_device *dev, *ret = NULL;
1125
1126        rcu_read_lock();
1127        for_each_netdev_rcu(net, dev)
1128                if (dev->type == type) {
1129                        dev_hold(dev);
1130                        ret = dev;
1131                        break;
1132                }
1133        rcu_read_unlock();
1134        return ret;
1135}
1136EXPORT_SYMBOL(dev_getfirstbyhwtype);
1137
1138/**
1139 *      __dev_get_by_flags - find any device with given flags
1140 *      @net: the applicable net namespace
1141 *      @if_flags: IFF_* values
1142 *      @mask: bitmask of bits in if_flags to check
1143 *
1144 *      Search for any interface with the given flags. Returns NULL if a device
1145 *      is not found or a pointer to the device. Must be called inside
1146 *      rtnl_lock(), and result refcount is unchanged.
1147 */
1148
1149struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1150                                      unsigned short mask)
1151{
1152        struct net_device *dev, *ret;
1153
1154        ASSERT_RTNL();
1155
1156        ret = NULL;
1157        for_each_netdev(net, dev) {
1158                if (((dev->flags ^ if_flags) & mask) == 0) {
1159                        ret = dev;
1160                        break;
1161                }
1162        }
1163        return ret;
1164}
1165EXPORT_SYMBOL(__dev_get_by_flags);
1166
1167/**
1168 *      dev_valid_name - check if name is okay for network device
1169 *      @name: name string
1170 *
1171 *      Network device names need to be valid file names to
1172 *      allow sysfs to work.  We also disallow any kind of
1173 *      whitespace.
1174 */
1175bool dev_valid_name(const char *name)
1176{
1177        if (*name == '\0')
1178                return false;
1179        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1180                return false;
1181        if (!strcmp(name, ".") || !strcmp(name, ".."))
1182                return false;
1183
1184        while (*name) {
1185                if (*name == '/' || *name == ':' || isspace(*name))
1186                        return false;
1187                name++;
1188        }
1189        return true;
1190}
1191EXPORT_SYMBOL(dev_valid_name);
1192
1193/**
1194 *      __dev_alloc_name - allocate a name for a device
1195 *      @net: network namespace to allocate the device name in
1196 *      @name: name format string
1197 *      @buf:  scratch buffer and result name string
1198 *
1199 *      Passed a format string - eg "lt%d" it will try and find a suitable
1200 *      id. It scans list of devices to build up a free map, then chooses
1201 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1202 *      while allocating the name and adding the device in order to avoid
1203 *      duplicates.
1204 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1205 *      Returns the number of the unit assigned or a negative errno code.
1206 */
1207
1208static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1209{
1210        int i = 0;
1211        const char *p;
1212        const int max_netdevices = 8*PAGE_SIZE;
1213        unsigned long *inuse;
1214        struct net_device *d;
1215
1216        if (!dev_valid_name(name))
1217                return -EINVAL;
1218
1219        p = strchr(name, '%');
1220        if (p) {
1221                /*
1222                 * Verify the string as this thing may have come from
1223                 * the user.  There must be either one "%d" and no other "%"
1224                 * characters.
1225                 */
1226                if (p[1] != 'd' || strchr(p + 2, '%'))
1227                        return -EINVAL;
1228
1229                /* Use one page as a bit array of possible slots */
1230                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1231                if (!inuse)
1232                        return -ENOMEM;
1233
1234                for_each_netdev(net, d) {
1235                        struct netdev_name_node *name_node;
1236                        list_for_each_entry(name_node, &d->name_node->list, list) {
1237                                if (!sscanf(name_node->name, name, &i))
1238                                        continue;
1239                                if (i < 0 || i >= max_netdevices)
1240                                        continue;
1241
1242                                /*  avoid cases where sscanf is not exact inverse of printf */
1243                                snprintf(buf, IFNAMSIZ, name, i);
1244                                if (!strncmp(buf, name_node->name, IFNAMSIZ))
1245                                        set_bit(i, inuse);
1246                        }
1247                        if (!sscanf(d->name, name, &i))
1248                                continue;
1249                        if (i < 0 || i >= max_netdevices)
1250                                continue;
1251
1252                        /*  avoid cases where sscanf is not exact inverse of printf */
1253                        snprintf(buf, IFNAMSIZ, name, i);
1254                        if (!strncmp(buf, d->name, IFNAMSIZ))
1255                                set_bit(i, inuse);
1256                }
1257
1258                i = find_first_zero_bit(inuse, max_netdevices);
1259                free_page((unsigned long) inuse);
1260        }
1261
1262        snprintf(buf, IFNAMSIZ, name, i);
1263        if (!__dev_get_by_name(net, buf))
1264                return i;
1265
1266        /* It is possible to run out of possible slots
1267         * when the name is long and there isn't enough space left
1268         * for the digits, or if all bits are used.
1269         */
1270        return -ENFILE;
1271}
1272
1273static int dev_alloc_name_ns(struct net *net,
1274                             struct net_device *dev,
1275                             const char *name)
1276{
1277        char buf[IFNAMSIZ];
1278        int ret;
1279
1280        BUG_ON(!net);
1281        ret = __dev_alloc_name(net, name, buf);
1282        if (ret >= 0)
1283                strlcpy(dev->name, buf, IFNAMSIZ);
1284        return ret;
1285}
1286
1287/**
1288 *      dev_alloc_name - allocate a name for a device
1289 *      @dev: device
1290 *      @name: name format string
1291 *
1292 *      Passed a format string - eg "lt%d" it will try and find a suitable
1293 *      id. It scans list of devices to build up a free map, then chooses
1294 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1295 *      while allocating the name and adding the device in order to avoid
1296 *      duplicates.
1297 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1298 *      Returns the number of the unit assigned or a negative errno code.
1299 */
1300
1301int dev_alloc_name(struct net_device *dev, const char *name)
1302{
1303        return dev_alloc_name_ns(dev_net(dev), dev, name);
1304}
1305EXPORT_SYMBOL(dev_alloc_name);
1306
1307static int dev_get_valid_name(struct net *net, struct net_device *dev,
1308                              const char *name)
1309{
1310        BUG_ON(!net);
1311
1312        if (!dev_valid_name(name))
1313                return -EINVAL;
1314
1315        if (strchr(name, '%'))
1316                return dev_alloc_name_ns(net, dev, name);
1317        else if (__dev_get_by_name(net, name))
1318                return -EEXIST;
1319        else if (dev->name != name)
1320                strlcpy(dev->name, name, IFNAMSIZ);
1321
1322        return 0;
1323}
1324
1325/**
1326 *      dev_change_name - change name of a device
1327 *      @dev: device
1328 *      @newname: name (or format string) must be at least IFNAMSIZ
1329 *
1330 *      Change name of a device, can pass format strings "eth%d".
1331 *      for wildcarding.
1332 */
1333int dev_change_name(struct net_device *dev, const char *newname)
1334{
1335        unsigned char old_assign_type;
1336        char oldname[IFNAMSIZ];
1337        int err = 0;
1338        int ret;
1339        struct net *net;
1340
1341        ASSERT_RTNL();
1342        BUG_ON(!dev_net(dev));
1343
1344        net = dev_net(dev);
1345
1346        /* Some auto-enslaved devices e.g. failover slaves are
1347         * special, as userspace might rename the device after
1348         * the interface had been brought up and running since
1349         * the point kernel initiated auto-enslavement. Allow
1350         * live name change even when these slave devices are
1351         * up and running.
1352         *
1353         * Typically, users of these auto-enslaving devices
1354         * don't actually care about slave name change, as
1355         * they are supposed to operate on master interface
1356         * directly.
1357         */
1358        if (dev->flags & IFF_UP &&
1359            likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1360                return -EBUSY;
1361
1362        down_write(&devnet_rename_sem);
1363
1364        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1365                up_write(&devnet_rename_sem);
1366                return 0;
1367        }
1368
1369        memcpy(oldname, dev->name, IFNAMSIZ);
1370
1371        err = dev_get_valid_name(net, dev, newname);
1372        if (err < 0) {
1373                up_write(&devnet_rename_sem);
1374                return err;
1375        }
1376
1377        if (oldname[0] && !strchr(oldname, '%'))
1378                netdev_info(dev, "renamed from %s\n", oldname);
1379
1380        old_assign_type = dev->name_assign_type;
1381        dev->name_assign_type = NET_NAME_RENAMED;
1382
1383rollback:
1384        ret = device_rename(&dev->dev, dev->name);
1385        if (ret) {
1386                memcpy(dev->name, oldname, IFNAMSIZ);
1387                dev->name_assign_type = old_assign_type;
1388                up_write(&devnet_rename_sem);
1389                return ret;
1390        }
1391
1392        up_write(&devnet_rename_sem);
1393
1394        netdev_adjacent_rename_links(dev, oldname);
1395
1396        write_lock_bh(&dev_base_lock);
1397        netdev_name_node_del(dev->name_node);
1398        write_unlock_bh(&dev_base_lock);
1399
1400        synchronize_rcu();
1401
1402        write_lock_bh(&dev_base_lock);
1403        netdev_name_node_add(net, dev->name_node);
1404        write_unlock_bh(&dev_base_lock);
1405
1406        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1407        ret = notifier_to_errno(ret);
1408
1409        if (ret) {
1410                /* err >= 0 after dev_alloc_name() or stores the first errno */
1411                if (err >= 0) {
1412                        err = ret;
1413                        down_write(&devnet_rename_sem);
1414                        memcpy(dev->name, oldname, IFNAMSIZ);
1415                        memcpy(oldname, newname, IFNAMSIZ);
1416                        dev->name_assign_type = old_assign_type;
1417                        old_assign_type = NET_NAME_RENAMED;
1418                        goto rollback;
1419                } else {
1420                        pr_err("%s: name change rollback failed: %d\n",
1421                               dev->name, ret);
1422                }
1423        }
1424
1425        return err;
1426}
1427
1428/**
1429 *      dev_set_alias - change ifalias of a device
1430 *      @dev: device
1431 *      @alias: name up to IFALIASZ
1432 *      @len: limit of bytes to copy from info
1433 *
1434 *      Set ifalias for a device,
1435 */
1436int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1437{
1438        struct dev_ifalias *new_alias = NULL;
1439
1440        if (len >= IFALIASZ)
1441                return -EINVAL;
1442
1443        if (len) {
1444                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1445                if (!new_alias)
1446                        return -ENOMEM;
1447
1448                memcpy(new_alias->ifalias, alias, len);
1449                new_alias->ifalias[len] = 0;
1450        }
1451
1452        mutex_lock(&ifalias_mutex);
1453        new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1454                                        mutex_is_locked(&ifalias_mutex));
1455        mutex_unlock(&ifalias_mutex);
1456
1457        if (new_alias)
1458                kfree_rcu(new_alias, rcuhead);
1459
1460        return len;
1461}
1462EXPORT_SYMBOL(dev_set_alias);
1463
1464/**
1465 *      dev_get_alias - get ifalias of a device
1466 *      @dev: device
1467 *      @name: buffer to store name of ifalias
1468 *      @len: size of buffer
1469 *
1470 *      get ifalias for a device.  Caller must make sure dev cannot go
1471 *      away,  e.g. rcu read lock or own a reference count to device.
1472 */
1473int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1474{
1475        const struct dev_ifalias *alias;
1476        int ret = 0;
1477
1478        rcu_read_lock();
1479        alias = rcu_dereference(dev->ifalias);
1480        if (alias)
1481                ret = snprintf(name, len, "%s", alias->ifalias);
1482        rcu_read_unlock();
1483
1484        return ret;
1485}
1486
1487/**
1488 *      netdev_features_change - device changes features
1489 *      @dev: device to cause notification
1490 *
1491 *      Called to indicate a device has changed features.
1492 */
1493void netdev_features_change(struct net_device *dev)
1494{
1495        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1496}
1497EXPORT_SYMBOL(netdev_features_change);
1498
1499/**
1500 *      netdev_state_change - device changes state
1501 *      @dev: device to cause notification
1502 *
1503 *      Called to indicate a device has changed state. This function calls
1504 *      the notifier chains for netdev_chain and sends a NEWLINK message
1505 *      to the routing socket.
1506 */
1507void netdev_state_change(struct net_device *dev)
1508{
1509        if (dev->flags & IFF_UP) {
1510                struct netdev_notifier_change_info change_info = {
1511                        .info.dev = dev,
1512                };
1513
1514                call_netdevice_notifiers_info(NETDEV_CHANGE,
1515                                              &change_info.info);
1516                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1517        }
1518}
1519EXPORT_SYMBOL(netdev_state_change);
1520
1521/**
1522 * __netdev_notify_peers - notify network peers about existence of @dev,
1523 * to be called when rtnl lock is already held.
1524 * @dev: network device
1525 *
1526 * Generate traffic such that interested network peers are aware of
1527 * @dev, such as by generating a gratuitous ARP. This may be used when
1528 * a device wants to inform the rest of the network about some sort of
1529 * reconfiguration such as a failover event or virtual machine
1530 * migration.
1531 */
1532void __netdev_notify_peers(struct net_device *dev)
1533{
1534        ASSERT_RTNL();
1535        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1536        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1537}
1538EXPORT_SYMBOL(__netdev_notify_peers);
1539
1540/**
1541 * netdev_notify_peers - notify network peers about existence of @dev
1542 * @dev: network device
1543 *
1544 * Generate traffic such that interested network peers are aware of
1545 * @dev, such as by generating a gratuitous ARP. This may be used when
1546 * a device wants to inform the rest of the network about some sort of
1547 * reconfiguration such as a failover event or virtual machine
1548 * migration.
1549 */
1550void netdev_notify_peers(struct net_device *dev)
1551{
1552        rtnl_lock();
1553        __netdev_notify_peers(dev);
1554        rtnl_unlock();
1555}
1556EXPORT_SYMBOL(netdev_notify_peers);
1557
1558static int napi_threaded_poll(void *data);
1559
1560static int napi_kthread_create(struct napi_struct *n)
1561{
1562        int err = 0;
1563
1564        /* Create and wake up the kthread once to put it in
1565         * TASK_INTERRUPTIBLE mode to avoid the blocked task
1566         * warning and work with loadavg.
1567         */
1568        n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1569                                n->dev->name, n->napi_id);
1570        if (IS_ERR(n->thread)) {
1571                err = PTR_ERR(n->thread);
1572                pr_err("kthread_run failed with err %d\n", err);
1573                n->thread = NULL;
1574        }
1575
1576        return err;
1577}
1578
1579static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1580{
1581        const struct net_device_ops *ops = dev->netdev_ops;
1582        int ret;
1583
1584        ASSERT_RTNL();
1585
1586        if (!netif_device_present(dev)) {
1587                /* may be detached because parent is runtime-suspended */
1588                if (dev->dev.parent)
1589                        pm_runtime_resume(dev->dev.parent);
1590                if (!netif_device_present(dev))
1591                        return -ENODEV;
1592        }
1593
1594        /* Block netpoll from trying to do any rx path servicing.
1595         * If we don't do this there is a chance ndo_poll_controller
1596         * or ndo_poll may be running while we open the device
1597         */
1598        netpoll_poll_disable(dev);
1599
1600        ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1601        ret = notifier_to_errno(ret);
1602        if (ret)
1603                return ret;
1604
1605        set_bit(__LINK_STATE_START, &dev->state);
1606
1607        if (ops->ndo_validate_addr)
1608                ret = ops->ndo_validate_addr(dev);
1609
1610        if (!ret && ops->ndo_open)
1611                ret = ops->ndo_open(dev);
1612
1613        netpoll_poll_enable(dev);
1614
1615        if (ret)
1616                clear_bit(__LINK_STATE_START, &dev->state);
1617        else {
1618                dev->flags |= IFF_UP;
1619                dev_set_rx_mode(dev);
1620                dev_activate(dev);
1621                add_device_randomness(dev->dev_addr, dev->addr_len);
1622        }
1623
1624        return ret;
1625}
1626
1627/**
1628 *      dev_open        - prepare an interface for use.
1629 *      @dev: device to open
1630 *      @extack: netlink extended ack
1631 *
1632 *      Takes a device from down to up state. The device's private open
1633 *      function is invoked and then the multicast lists are loaded. Finally
1634 *      the device is moved into the up state and a %NETDEV_UP message is
1635 *      sent to the netdev notifier chain.
1636 *
1637 *      Calling this function on an active interface is a nop. On a failure
1638 *      a negative errno code is returned.
1639 */
1640int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1641{
1642        int ret;
1643
1644        if (dev->flags & IFF_UP)
1645                return 0;
1646
1647        ret = __dev_open(dev, extack);
1648        if (ret < 0)
1649                return ret;
1650
1651        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1652        call_netdevice_notifiers(NETDEV_UP, dev);
1653
1654        return ret;
1655}
1656EXPORT_SYMBOL(dev_open);
1657
1658static void __dev_close_many(struct list_head *head)
1659{
1660        struct net_device *dev;
1661
1662        ASSERT_RTNL();
1663        might_sleep();
1664
1665        list_for_each_entry(dev, head, close_list) {
1666                /* Temporarily disable netpoll until the interface is down */
1667                netpoll_poll_disable(dev);
1668
1669                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1670
1671                clear_bit(__LINK_STATE_START, &dev->state);
1672
1673                /* Synchronize to scheduled poll. We cannot touch poll list, it
1674                 * can be even on different cpu. So just clear netif_running().
1675                 *
1676                 * dev->stop() will invoke napi_disable() on all of it's
1677                 * napi_struct instances on this device.
1678                 */
1679                smp_mb__after_atomic(); /* Commit netif_running(). */
1680        }
1681
1682        dev_deactivate_many(head);
1683
1684        list_for_each_entry(dev, head, close_list) {
1685                const struct net_device_ops *ops = dev->netdev_ops;
1686
1687                /*
1688                 *      Call the device specific close. This cannot fail.
1689                 *      Only if device is UP
1690                 *
1691                 *      We allow it to be called even after a DETACH hot-plug
1692                 *      event.
1693                 */
1694                if (ops->ndo_stop)
1695                        ops->ndo_stop(dev);
1696
1697                dev->flags &= ~IFF_UP;
1698                netpoll_poll_enable(dev);
1699        }
1700}
1701
1702static void __dev_close(struct net_device *dev)
1703{
1704        LIST_HEAD(single);
1705
1706        list_add(&dev->close_list, &single);
1707        __dev_close_many(&single);
1708        list_del(&single);
1709}
1710
1711void dev_close_many(struct list_head *head, bool unlink)
1712{
1713        struct net_device *dev, *tmp;
1714
1715        /* Remove the devices that don't need to be closed */
1716        list_for_each_entry_safe(dev, tmp, head, close_list)
1717                if (!(dev->flags & IFF_UP))
1718                        list_del_init(&dev->close_list);
1719
1720        __dev_close_many(head);
1721
1722        list_for_each_entry_safe(dev, tmp, head, close_list) {
1723                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1724                call_netdevice_notifiers(NETDEV_DOWN, dev);
1725                if (unlink)
1726                        list_del_init(&dev->close_list);
1727        }
1728}
1729EXPORT_SYMBOL(dev_close_many);
1730
1731/**
1732 *      dev_close - shutdown an interface.
1733 *      @dev: device to shutdown
1734 *
1735 *      This function moves an active device into down state. A
1736 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1737 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1738 *      chain.
1739 */
1740void dev_close(struct net_device *dev)
1741{
1742        if (dev->flags & IFF_UP) {
1743                LIST_HEAD(single);
1744
1745                list_add(&dev->close_list, &single);
1746                dev_close_many(&single, true);
1747                list_del(&single);
1748        }
1749}
1750EXPORT_SYMBOL(dev_close);
1751
1752
1753/**
1754 *      dev_disable_lro - disable Large Receive Offload on a device
1755 *      @dev: device
1756 *
1757 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1758 *      called under RTNL.  This is needed if received packets may be
1759 *      forwarded to another interface.
1760 */
1761void dev_disable_lro(struct net_device *dev)
1762{
1763        struct net_device *lower_dev;
1764        struct list_head *iter;
1765
1766        dev->wanted_features &= ~NETIF_F_LRO;
1767        netdev_update_features(dev);
1768
1769        if (unlikely(dev->features & NETIF_F_LRO))
1770                netdev_WARN(dev, "failed to disable LRO!\n");
1771
1772        netdev_for_each_lower_dev(dev, lower_dev, iter)
1773                dev_disable_lro(lower_dev);
1774}
1775EXPORT_SYMBOL(dev_disable_lro);
1776
1777/**
1778 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1779 *      @dev: device
1780 *
1781 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1782 *      called under RTNL.  This is needed if Generic XDP is installed on
1783 *      the device.
1784 */
1785static void dev_disable_gro_hw(struct net_device *dev)
1786{
1787        dev->wanted_features &= ~NETIF_F_GRO_HW;
1788        netdev_update_features(dev);
1789
1790        if (unlikely(dev->features & NETIF_F_GRO_HW))
1791                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1792}
1793
1794const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1795{
1796#define N(val)                                          \
1797        case NETDEV_##val:                              \
1798                return "NETDEV_" __stringify(val);
1799        switch (cmd) {
1800        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1801        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1802        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1803        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1804        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1805        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1806        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1807        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1808        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1809        N(PRE_CHANGEADDR)
1810        }
1811#undef N
1812        return "UNKNOWN_NETDEV_EVENT";
1813}
1814EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815
1816static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817                                   struct net_device *dev)
1818{
1819        struct netdev_notifier_info info = {
1820                .dev = dev,
1821        };
1822
1823        return nb->notifier_call(nb, val, &info);
1824}
1825
1826static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827                                             struct net_device *dev)
1828{
1829        int err;
1830
1831        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832        err = notifier_to_errno(err);
1833        if (err)
1834                return err;
1835
1836        if (!(dev->flags & IFF_UP))
1837                return 0;
1838
1839        call_netdevice_notifier(nb, NETDEV_UP, dev);
1840        return 0;
1841}
1842
1843static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844                                                struct net_device *dev)
1845{
1846        if (dev->flags & IFF_UP) {
1847                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848                                        dev);
1849                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850        }
1851        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852}
1853
1854static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855                                                 struct net *net)
1856{
1857        struct net_device *dev;
1858        int err;
1859
1860        for_each_netdev(net, dev) {
1861                err = call_netdevice_register_notifiers(nb, dev);
1862                if (err)
1863                        goto rollback;
1864        }
1865        return 0;
1866
1867rollback:
1868        for_each_netdev_continue_reverse(net, dev)
1869                call_netdevice_unregister_notifiers(nb, dev);
1870        return err;
1871}
1872
1873static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874                                                    struct net *net)
1875{
1876        struct net_device *dev;
1877
1878        for_each_netdev(net, dev)
1879                call_netdevice_unregister_notifiers(nb, dev);
1880}
1881
1882static int dev_boot_phase = 1;
1883
1884/**
1885 * register_netdevice_notifier - register a network notifier block
1886 * @nb: notifier
1887 *
1888 * Register a notifier to be called when network device events occur.
1889 * The notifier passed is linked into the kernel structures and must
1890 * not be reused until it has been unregistered. A negative errno code
1891 * is returned on a failure.
1892 *
1893 * When registered all registration and up events are replayed
1894 * to the new notifier to allow device to have a race free
1895 * view of the network device list.
1896 */
1897
1898int register_netdevice_notifier(struct notifier_block *nb)
1899{
1900        struct net *net;
1901        int err;
1902
1903        /* Close race with setup_net() and cleanup_net() */
1904        down_write(&pernet_ops_rwsem);
1905        rtnl_lock();
1906        err = raw_notifier_chain_register(&netdev_chain, nb);
1907        if (err)
1908                goto unlock;
1909        if (dev_boot_phase)
1910                goto unlock;
1911        for_each_net(net) {
1912                err = call_netdevice_register_net_notifiers(nb, net);
1913                if (err)
1914                        goto rollback;
1915        }
1916
1917unlock:
1918        rtnl_unlock();
1919        up_write(&pernet_ops_rwsem);
1920        return err;
1921
1922rollback:
1923        for_each_net_continue_reverse(net)
1924                call_netdevice_unregister_net_notifiers(nb, net);
1925
1926        raw_notifier_chain_unregister(&netdev_chain, nb);
1927        goto unlock;
1928}
1929EXPORT_SYMBOL(register_netdevice_notifier);
1930
1931/**
1932 * unregister_netdevice_notifier - unregister a network notifier block
1933 * @nb: notifier
1934 *
1935 * Unregister a notifier previously registered by
1936 * register_netdevice_notifier(). The notifier is unlinked into the
1937 * kernel structures and may then be reused. A negative errno code
1938 * is returned on a failure.
1939 *
1940 * After unregistering unregister and down device events are synthesized
1941 * for all devices on the device list to the removed notifier to remove
1942 * the need for special case cleanup code.
1943 */
1944
1945int unregister_netdevice_notifier(struct notifier_block *nb)
1946{
1947        struct net *net;
1948        int err;
1949
1950        /* Close race with setup_net() and cleanup_net() */
1951        down_write(&pernet_ops_rwsem);
1952        rtnl_lock();
1953        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1954        if (err)
1955                goto unlock;
1956
1957        for_each_net(net)
1958                call_netdevice_unregister_net_notifiers(nb, net);
1959
1960unlock:
1961        rtnl_unlock();
1962        up_write(&pernet_ops_rwsem);
1963        return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier);
1966
1967static int __register_netdevice_notifier_net(struct net *net,
1968                                             struct notifier_block *nb,
1969                                             bool ignore_call_fail)
1970{
1971        int err;
1972
1973        err = raw_notifier_chain_register(&net->netdev_chain, nb);
1974        if (err)
1975                return err;
1976        if (dev_boot_phase)
1977                return 0;
1978
1979        err = call_netdevice_register_net_notifiers(nb, net);
1980        if (err && !ignore_call_fail)
1981                goto chain_unregister;
1982
1983        return 0;
1984
1985chain_unregister:
1986        raw_notifier_chain_unregister(&net->netdev_chain, nb);
1987        return err;
1988}
1989
1990static int __unregister_netdevice_notifier_net(struct net *net,
1991                                               struct notifier_block *nb)
1992{
1993        int err;
1994
1995        err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1996        if (err)
1997                return err;
1998
1999        call_netdevice_unregister_net_notifiers(nb, net);
2000        return 0;
2001}
2002
2003/**
2004 * register_netdevice_notifier_net - register a per-netns network notifier block
2005 * @net: network namespace
2006 * @nb: notifier
2007 *
2008 * Register a notifier to be called when network device events occur.
2009 * The notifier passed is linked into the kernel structures and must
2010 * not be reused until it has been unregistered. A negative errno code
2011 * is returned on a failure.
2012 *
2013 * When registered all registration and up events are replayed
2014 * to the new notifier to allow device to have a race free
2015 * view of the network device list.
2016 */
2017
2018int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2019{
2020        int err;
2021
2022        rtnl_lock();
2023        err = __register_netdevice_notifier_net(net, nb, false);
2024        rtnl_unlock();
2025        return err;
2026}
2027EXPORT_SYMBOL(register_netdevice_notifier_net);
2028
2029/**
2030 * unregister_netdevice_notifier_net - unregister a per-netns
2031 *                                     network notifier block
2032 * @net: network namespace
2033 * @nb: notifier
2034 *
2035 * Unregister a notifier previously registered by
2036 * register_netdevice_notifier(). The notifier is unlinked into the
2037 * kernel structures and may then be reused. A negative errno code
2038 * is returned on a failure.
2039 *
2040 * After unregistering unregister and down device events are synthesized
2041 * for all devices on the device list to the removed notifier to remove
2042 * the need for special case cleanup code.
2043 */
2044
2045int unregister_netdevice_notifier_net(struct net *net,
2046                                      struct notifier_block *nb)
2047{
2048        int err;
2049
2050        rtnl_lock();
2051        err = __unregister_netdevice_notifier_net(net, nb);
2052        rtnl_unlock();
2053        return err;
2054}
2055EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2056
2057int register_netdevice_notifier_dev_net(struct net_device *dev,
2058                                        struct notifier_block *nb,
2059                                        struct netdev_net_notifier *nn)
2060{
2061        int err;
2062
2063        rtnl_lock();
2064        err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2065        if (!err) {
2066                nn->nb = nb;
2067                list_add(&nn->list, &dev->net_notifier_list);
2068        }
2069        rtnl_unlock();
2070        return err;
2071}
2072EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2073
2074int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2075                                          struct notifier_block *nb,
2076                                          struct netdev_net_notifier *nn)
2077{
2078        int err;
2079
2080        rtnl_lock();
2081        list_del(&nn->list);
2082        err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2083        rtnl_unlock();
2084        return err;
2085}
2086EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2087
2088static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2089                                             struct net *net)
2090{
2091        struct netdev_net_notifier *nn;
2092
2093        list_for_each_entry(nn, &dev->net_notifier_list, list) {
2094                __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2095                __register_netdevice_notifier_net(net, nn->nb, true);
2096        }
2097}
2098
2099/**
2100 *      call_netdevice_notifiers_info - call all network notifier blocks
2101 *      @val: value passed unmodified to notifier function
2102 *      @info: notifier information data
2103 *
2104 *      Call all network notifier blocks.  Parameters and return value
2105 *      are as for raw_notifier_call_chain().
2106 */
2107
2108static int call_netdevice_notifiers_info(unsigned long val,
2109                                         struct netdev_notifier_info *info)
2110{
2111        struct net *net = dev_net(info->dev);
2112        int ret;
2113
2114        ASSERT_RTNL();
2115
2116        /* Run per-netns notifier block chain first, then run the global one.
2117         * Hopefully, one day, the global one is going to be removed after
2118         * all notifier block registrators get converted to be per-netns.
2119         */
2120        ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2121        if (ret & NOTIFY_STOP_MASK)
2122                return ret;
2123        return raw_notifier_call_chain(&netdev_chain, val, info);
2124}
2125
2126static int call_netdevice_notifiers_extack(unsigned long val,
2127                                           struct net_device *dev,
2128                                           struct netlink_ext_ack *extack)
2129{
2130        struct netdev_notifier_info info = {
2131                .dev = dev,
2132                .extack = extack,
2133        };
2134
2135        return call_netdevice_notifiers_info(val, &info);
2136}
2137
2138/**
2139 *      call_netdevice_notifiers - call all network notifier blocks
2140 *      @val: value passed unmodified to notifier function
2141 *      @dev: net_device pointer passed unmodified to notifier function
2142 *
2143 *      Call all network notifier blocks.  Parameters and return value
2144 *      are as for raw_notifier_call_chain().
2145 */
2146
2147int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2148{
2149        return call_netdevice_notifiers_extack(val, dev, NULL);
2150}
2151EXPORT_SYMBOL(call_netdevice_notifiers);
2152
2153/**
2154 *      call_netdevice_notifiers_mtu - call all network notifier blocks
2155 *      @val: value passed unmodified to notifier function
2156 *      @dev: net_device pointer passed unmodified to notifier function
2157 *      @arg: additional u32 argument passed to the notifier function
2158 *
2159 *      Call all network notifier blocks.  Parameters and return value
2160 *      are as for raw_notifier_call_chain().
2161 */
2162static int call_netdevice_notifiers_mtu(unsigned long val,
2163                                        struct net_device *dev, u32 arg)
2164{
2165        struct netdev_notifier_info_ext info = {
2166                .info.dev = dev,
2167                .ext.mtu = arg,
2168        };
2169
2170        BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2171
2172        return call_netdevice_notifiers_info(val, &info.info);
2173}
2174
2175#ifdef CONFIG_NET_INGRESS
2176static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2177
2178void net_inc_ingress_queue(void)
2179{
2180        static_branch_inc(&ingress_needed_key);
2181}
2182EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2183
2184void net_dec_ingress_queue(void)
2185{
2186        static_branch_dec(&ingress_needed_key);
2187}
2188EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2189#endif
2190
2191#ifdef CONFIG_NET_EGRESS
2192static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2193
2194void net_inc_egress_queue(void)
2195{
2196        static_branch_inc(&egress_needed_key);
2197}
2198EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2199
2200void net_dec_egress_queue(void)
2201{
2202        static_branch_dec(&egress_needed_key);
2203}
2204EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2205#endif
2206
2207static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2208#ifdef CONFIG_JUMP_LABEL
2209static atomic_t netstamp_needed_deferred;
2210static atomic_t netstamp_wanted;
2211static void netstamp_clear(struct work_struct *work)
2212{
2213        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2214        int wanted;
2215
2216        wanted = atomic_add_return(deferred, &netstamp_wanted);
2217        if (wanted > 0)
2218                static_branch_enable(&netstamp_needed_key);
2219        else
2220                static_branch_disable(&netstamp_needed_key);
2221}
2222static DECLARE_WORK(netstamp_work, netstamp_clear);
2223#endif
2224
2225void net_enable_timestamp(void)
2226{
2227#ifdef CONFIG_JUMP_LABEL
2228        int wanted;
2229
2230        while (1) {
2231                wanted = atomic_read(&netstamp_wanted);
2232                if (wanted <= 0)
2233                        break;
2234                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2235                        return;
2236        }
2237        atomic_inc(&netstamp_needed_deferred);
2238        schedule_work(&netstamp_work);
2239#else
2240        static_branch_inc(&netstamp_needed_key);
2241#endif
2242}
2243EXPORT_SYMBOL(net_enable_timestamp);
2244
2245void net_disable_timestamp(void)
2246{
2247#ifdef CONFIG_JUMP_LABEL
2248        int wanted;
2249
2250        while (1) {
2251                wanted = atomic_read(&netstamp_wanted);
2252                if (wanted <= 1)
2253                        break;
2254                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2255                        return;
2256        }
2257        atomic_dec(&netstamp_needed_deferred);
2258        schedule_work(&netstamp_work);
2259#else
2260        static_branch_dec(&netstamp_needed_key);
2261#endif
2262}
2263EXPORT_SYMBOL(net_disable_timestamp);
2264
2265static inline void net_timestamp_set(struct sk_buff *skb)
2266{
2267        skb->tstamp = 0;
2268        if (static_branch_unlikely(&netstamp_needed_key))
2269                __net_timestamp(skb);
2270}
2271
2272#define net_timestamp_check(COND, SKB)                          \
2273        if (static_branch_unlikely(&netstamp_needed_key)) {     \
2274                if ((COND) && !(SKB)->tstamp)                   \
2275                        __net_timestamp(SKB);                   \
2276        }                                                       \
2277
2278bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2279{
2280        return __is_skb_forwardable(dev, skb, true);
2281}
2282EXPORT_SYMBOL_GPL(is_skb_forwardable);
2283
2284static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2285                              bool check_mtu)
2286{
2287        int ret = ____dev_forward_skb(dev, skb, check_mtu);
2288
2289        if (likely(!ret)) {
2290                skb->protocol = eth_type_trans(skb, dev);
2291                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2292        }
2293
2294        return ret;
2295}
2296
2297int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2298{
2299        return __dev_forward_skb2(dev, skb, true);
2300}
2301EXPORT_SYMBOL_GPL(__dev_forward_skb);
2302
2303/**
2304 * dev_forward_skb - loopback an skb to another netif
2305 *
2306 * @dev: destination network device
2307 * @skb: buffer to forward
2308 *
2309 * return values:
2310 *      NET_RX_SUCCESS  (no congestion)
2311 *      NET_RX_DROP     (packet was dropped, but freed)
2312 *
2313 * dev_forward_skb can be used for injecting an skb from the
2314 * start_xmit function of one device into the receive queue
2315 * of another device.
2316 *
2317 * The receiving device may be in another namespace, so
2318 * we have to clear all information in the skb that could
2319 * impact namespace isolation.
2320 */
2321int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2322{
2323        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2324}
2325EXPORT_SYMBOL_GPL(dev_forward_skb);
2326
2327int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2328{
2329        return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2330}
2331
2332static inline int deliver_skb(struct sk_buff *skb,
2333                              struct packet_type *pt_prev,
2334                              struct net_device *orig_dev)
2335{
2336        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2337                return -ENOMEM;
2338        refcount_inc(&skb->users);
2339        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2340}
2341
2342static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2343                                          struct packet_type **pt,
2344                                          struct net_device *orig_dev,
2345                                          __be16 type,
2346                                          struct list_head *ptype_list)
2347{
2348        struct packet_type *ptype, *pt_prev = *pt;
2349
2350        list_for_each_entry_rcu(ptype, ptype_list, list) {
2351                if (ptype->type != type)
2352                        continue;
2353                if (pt_prev)
2354                        deliver_skb(skb, pt_prev, orig_dev);
2355                pt_prev = ptype;
2356        }
2357        *pt = pt_prev;
2358}
2359
2360static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2361{
2362        if (!ptype->af_packet_priv || !skb->sk)
2363                return false;
2364
2365        if (ptype->id_match)
2366                return ptype->id_match(ptype, skb->sk);
2367        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2368                return true;
2369
2370        return false;
2371}
2372
2373/**
2374 * dev_nit_active - return true if any network interface taps are in use
2375 *
2376 * @dev: network device to check for the presence of taps
2377 */
2378bool dev_nit_active(struct net_device *dev)
2379{
2380        return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2381}
2382EXPORT_SYMBOL_GPL(dev_nit_active);
2383
2384/*
2385 *      Support routine. Sends outgoing frames to any network
2386 *      taps currently in use.
2387 */
2388
2389void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2390{
2391        struct packet_type *ptype;
2392        struct sk_buff *skb2 = NULL;
2393        struct packet_type *pt_prev = NULL;
2394        struct list_head *ptype_list = &ptype_all;
2395
2396        rcu_read_lock();
2397again:
2398        list_for_each_entry_rcu(ptype, ptype_list, list) {
2399                if (ptype->ignore_outgoing)
2400                        continue;
2401
2402                /* Never send packets back to the socket
2403                 * they originated from - MvS (miquels@drinkel.ow.org)
2404                 */
2405                if (skb_loop_sk(ptype, skb))
2406                        continue;
2407
2408                if (pt_prev) {
2409                        deliver_skb(skb2, pt_prev, skb->dev);
2410                        pt_prev = ptype;
2411                        continue;
2412                }
2413
2414                /* need to clone skb, done only once */
2415                skb2 = skb_clone(skb, GFP_ATOMIC);
2416                if (!skb2)
2417                        goto out_unlock;
2418
2419                net_timestamp_set(skb2);
2420
2421                /* skb->nh should be correctly
2422                 * set by sender, so that the second statement is
2423                 * just protection against buggy protocols.
2424                 */
2425                skb_reset_mac_header(skb2);
2426
2427                if (skb_network_header(skb2) < skb2->data ||
2428                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2429                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2430                                             ntohs(skb2->protocol),
2431                                             dev->name);
2432                        skb_reset_network_header(skb2);
2433                }
2434
2435                skb2->transport_header = skb2->network_header;
2436                skb2->pkt_type = PACKET_OUTGOING;
2437                pt_prev = ptype;
2438        }
2439
2440        if (ptype_list == &ptype_all) {
2441                ptype_list = &dev->ptype_all;
2442                goto again;
2443        }
2444out_unlock:
2445        if (pt_prev) {
2446                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2447                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2448                else
2449                        kfree_skb(skb2);
2450        }
2451        rcu_read_unlock();
2452}
2453EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2454
2455/**
2456 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2457 * @dev: Network device
2458 * @txq: number of queues available
2459 *
2460 * If real_num_tx_queues is changed the tc mappings may no longer be
2461 * valid. To resolve this verify the tc mapping remains valid and if
2462 * not NULL the mapping. With no priorities mapping to this
2463 * offset/count pair it will no longer be used. In the worst case TC0
2464 * is invalid nothing can be done so disable priority mappings. If is
2465 * expected that drivers will fix this mapping if they can before
2466 * calling netif_set_real_num_tx_queues.
2467 */
2468static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2469{
2470        int i;
2471        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2472
2473        /* If TC0 is invalidated disable TC mapping */
2474        if (tc->offset + tc->count > txq) {
2475                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2476                dev->num_tc = 0;
2477                return;
2478        }
2479
2480        /* Invalidated prio to tc mappings set to TC0 */
2481        for (i = 1; i < TC_BITMASK + 1; i++) {
2482                int q = netdev_get_prio_tc_map(dev, i);
2483
2484                tc = &dev->tc_to_txq[q];
2485                if (tc->offset + tc->count > txq) {
2486                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2487                                i, q);
2488                        netdev_set_prio_tc_map(dev, i, 0);
2489                }
2490        }
2491}
2492
2493int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2494{
2495        if (dev->num_tc) {
2496                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2497                int i;
2498
2499                /* walk through the TCs and see if it falls into any of them */
2500                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2501                        if ((txq - tc->offset) < tc->count)
2502                                return i;
2503                }
2504
2505                /* didn't find it, just return -1 to indicate no match */
2506                return -1;
2507        }
2508
2509        return 0;
2510}
2511EXPORT_SYMBOL(netdev_txq_to_tc);
2512
2513#ifdef CONFIG_XPS
2514static struct static_key xps_needed __read_mostly;
2515static struct static_key xps_rxqs_needed __read_mostly;
2516static DEFINE_MUTEX(xps_map_mutex);
2517#define xmap_dereference(P)             \
2518        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2519
2520static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2521                             struct xps_dev_maps *old_maps, int tci, u16 index)
2522{
2523        struct xps_map *map = NULL;
2524        int pos;
2525
2526        if (dev_maps)
2527                map = xmap_dereference(dev_maps->attr_map[tci]);
2528        if (!map)
2529                return false;
2530
2531        for (pos = map->len; pos--;) {
2532                if (map->queues[pos] != index)
2533                        continue;
2534
2535                if (map->len > 1) {
2536                        map->queues[pos] = map->queues[--map->len];
2537                        break;
2538                }
2539
2540                if (old_maps)
2541                        RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2542                RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2543                kfree_rcu(map, rcu);
2544                return false;
2545        }
2546
2547        return true;
2548}
2549
2550static bool remove_xps_queue_cpu(struct net_device *dev,
2551                                 struct xps_dev_maps *dev_maps,
2552                                 int cpu, u16 offset, u16 count)
2553{
2554        int num_tc = dev_maps->num_tc;
2555        bool active = false;
2556        int tci;
2557
2558        for (tci = cpu * num_tc; num_tc--; tci++) {
2559                int i, j;
2560
2561                for (i = count, j = offset; i--; j++) {
2562                        if (!remove_xps_queue(dev_maps, NULL, tci, j))
2563                                break;
2564                }
2565
2566                active |= i < 0;
2567        }
2568
2569        return active;
2570}
2571
2572static void reset_xps_maps(struct net_device *dev,
2573                           struct xps_dev_maps *dev_maps,
2574                           enum xps_map_type type)
2575{
2576        static_key_slow_dec_cpuslocked(&xps_needed);
2577        if (type == XPS_RXQS)
2578                static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2579
2580        RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2581
2582        kfree_rcu(dev_maps, rcu);
2583}
2584
2585static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2586                           u16 offset, u16 count)
2587{
2588        struct xps_dev_maps *dev_maps;
2589        bool active = false;
2590        int i, j;
2591
2592        dev_maps = xmap_dereference(dev->xps_maps[type]);
2593        if (!dev_maps)
2594                return;
2595
2596        for (j = 0; j < dev_maps->nr_ids; j++)
2597                active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2598        if (!active)
2599                reset_xps_maps(dev, dev_maps, type);
2600
2601        if (type == XPS_CPUS) {
2602                for (i = offset + (count - 1); count--; i--)
2603                        netdev_queue_numa_node_write(
2604                                netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2605        }
2606}
2607
2608static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2609                                   u16 count)
2610{
2611        if (!static_key_false(&xps_needed))
2612                return;
2613
2614        cpus_read_lock();
2615        mutex_lock(&xps_map_mutex);
2616
2617        if (static_key_false(&xps_rxqs_needed))
2618                clean_xps_maps(dev, XPS_RXQS, offset, count);
2619
2620        clean_xps_maps(dev, XPS_CPUS, offset, count);
2621
2622        mutex_unlock(&xps_map_mutex);
2623        cpus_read_unlock();
2624}
2625
2626static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2627{
2628        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2629}
2630
2631static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2632                                      u16 index, bool is_rxqs_map)
2633{
2634        struct xps_map *new_map;
2635        int alloc_len = XPS_MIN_MAP_ALLOC;
2636        int i, pos;
2637
2638        for (pos = 0; map && pos < map->len; pos++) {
2639                if (map->queues[pos] != index)
2640                        continue;
2641                return map;
2642        }
2643
2644        /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2645        if (map) {
2646                if (pos < map->alloc_len)
2647                        return map;
2648
2649                alloc_len = map->alloc_len * 2;
2650        }
2651
2652        /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2653         *  map
2654         */
2655        if (is_rxqs_map)
2656                new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2657        else
2658                new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2659                                       cpu_to_node(attr_index));
2660        if (!new_map)
2661                return NULL;
2662
2663        for (i = 0; i < pos; i++)
2664                new_map->queues[i] = map->queues[i];
2665        new_map->alloc_len = alloc_len;
2666        new_map->len = pos;
2667
2668        return new_map;
2669}
2670
2671/* Copy xps maps at a given index */
2672static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2673                              struct xps_dev_maps *new_dev_maps, int index,
2674                              int tc, bool skip_tc)
2675{
2676        int i, tci = index * dev_maps->num_tc;
2677        struct xps_map *map;
2678
2679        /* copy maps belonging to foreign traffic classes */
2680        for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2681                if (i == tc && skip_tc)
2682                        continue;
2683
2684                /* fill in the new device map from the old device map */
2685                map = xmap_dereference(dev_maps->attr_map[tci]);
2686                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2687        }
2688}
2689
2690/* Must be called under cpus_read_lock */
2691int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2692                          u16 index, enum xps_map_type type)
2693{
2694        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2695        const unsigned long *online_mask = NULL;
2696        bool active = false, copy = false;
2697        int i, j, tci, numa_node_id = -2;
2698        int maps_sz, num_tc = 1, tc = 0;
2699        struct xps_map *map, *new_map;
2700        unsigned int nr_ids;
2701
2702        if (dev->num_tc) {
2703                /* Do not allow XPS on subordinate device directly */
2704                num_tc = dev->num_tc;
2705                if (num_tc < 0)
2706                        return -EINVAL;
2707
2708                /* If queue belongs to subordinate dev use its map */
2709                dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2710
2711                tc = netdev_txq_to_tc(dev, index);
2712                if (tc < 0)
2713                        return -EINVAL;
2714        }
2715
2716        mutex_lock(&xps_map_mutex);
2717
2718        dev_maps = xmap_dereference(dev->xps_maps[type]);
2719        if (type == XPS_RXQS) {
2720                maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2721                nr_ids = dev->num_rx_queues;
2722        } else {
2723                maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2724                if (num_possible_cpus() > 1)
2725                        online_mask = cpumask_bits(cpu_online_mask);
2726                nr_ids = nr_cpu_ids;
2727        }
2728
2729        if (maps_sz < L1_CACHE_BYTES)
2730                maps_sz = L1_CACHE_BYTES;
2731
2732        /* The old dev_maps could be larger or smaller than the one we're
2733         * setting up now, as dev->num_tc or nr_ids could have been updated in
2734         * between. We could try to be smart, but let's be safe instead and only
2735         * copy foreign traffic classes if the two map sizes match.
2736         */
2737        if (dev_maps &&
2738            dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2739                copy = true;
2740
2741        /* allocate memory for queue storage */
2742        for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2743             j < nr_ids;) {
2744                if (!new_dev_maps) {
2745                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2746                        if (!new_dev_maps) {
2747                                mutex_unlock(&xps_map_mutex);
2748                                return -ENOMEM;
2749                        }
2750
2751                        new_dev_maps->nr_ids = nr_ids;
2752                        new_dev_maps->num_tc = num_tc;
2753                }
2754
2755                tci = j * num_tc + tc;
2756                map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2757
2758                map = expand_xps_map(map, j, index, type == XPS_RXQS);
2759                if (!map)
2760                        goto error;
2761
2762                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2763        }
2764
2765        if (!new_dev_maps)
2766                goto out_no_new_maps;
2767
2768        if (!dev_maps) {
2769                /* Increment static keys at most once per type */
2770                static_key_slow_inc_cpuslocked(&xps_needed);
2771                if (type == XPS_RXQS)
2772                        static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2773        }
2774
2775        for (j = 0; j < nr_ids; j++) {
2776                bool skip_tc = false;
2777
2778                tci = j * num_tc + tc;
2779                if (netif_attr_test_mask(j, mask, nr_ids) &&
2780                    netif_attr_test_online(j, online_mask, nr_ids)) {
2781                        /* add tx-queue to CPU/rx-queue maps */
2782                        int pos = 0;
2783
2784                        skip_tc = true;
2785
2786                        map = xmap_dereference(new_dev_maps->attr_map[tci]);
2787                        while ((pos < map->len) && (map->queues[pos] != index))
2788                                pos++;
2789
2790                        if (pos == map->len)
2791                                map->queues[map->len++] = index;
2792#ifdef CONFIG_NUMA
2793                        if (type == XPS_CPUS) {
2794                                if (numa_node_id == -2)
2795                                        numa_node_id = cpu_to_node(j);
2796                                else if (numa_node_id != cpu_to_node(j))
2797                                        numa_node_id = -1;
2798                        }
2799#endif
2800                }
2801
2802                if (copy)
2803                        xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2804                                          skip_tc);
2805        }
2806
2807        rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2808
2809        /* Cleanup old maps */
2810        if (!dev_maps)
2811                goto out_no_old_maps;
2812
2813        for (j = 0; j < dev_maps->nr_ids; j++) {
2814                for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2815                        map = xmap_dereference(dev_maps->attr_map[tci]);
2816                        if (!map)
2817                                continue;
2818
2819                        if (copy) {
2820                                new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2821                                if (map == new_map)
2822                                        continue;
2823                        }
2824
2825                        RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2826                        kfree_rcu(map, rcu);
2827                }
2828        }
2829
2830        old_dev_maps = dev_maps;
2831
2832out_no_old_maps:
2833        dev_maps = new_dev_maps;
2834        active = true;
2835
2836out_no_new_maps:
2837        if (type == XPS_CPUS)
2838                /* update Tx queue numa node */
2839                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2840                                             (numa_node_id >= 0) ?
2841                                             numa_node_id : NUMA_NO_NODE);
2842
2843        if (!dev_maps)
2844                goto out_no_maps;
2845
2846        /* removes tx-queue from unused CPUs/rx-queues */
2847        for (j = 0; j < dev_maps->nr_ids; j++) {
2848                tci = j * dev_maps->num_tc;
2849
2850                for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2851                        if (i == tc &&
2852                            netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2853                            netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2854                                continue;
2855
2856                        active |= remove_xps_queue(dev_maps,
2857                                                   copy ? old_dev_maps : NULL,
2858                                                   tci, index);
2859                }
2860        }
2861
2862        if (old_dev_maps)
2863                kfree_rcu(old_dev_maps, rcu);
2864
2865        /* free map if not active */
2866        if (!active)
2867                reset_xps_maps(dev, dev_maps, type);
2868
2869out_no_maps:
2870        mutex_unlock(&xps_map_mutex);
2871
2872        return 0;
2873error:
2874        /* remove any maps that we added */
2875        for (j = 0; j < nr_ids; j++) {
2876                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2877                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2878                        map = copy ?
2879                              xmap_dereference(dev_maps->attr_map[tci]) :
2880                              NULL;
2881                        if (new_map && new_map != map)
2882                                kfree(new_map);
2883                }
2884        }
2885
2886        mutex_unlock(&xps_map_mutex);
2887
2888        kfree(new_dev_maps);
2889        return -ENOMEM;
2890}
2891EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2892
2893int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2894                        u16 index)
2895{
2896        int ret;
2897
2898        cpus_read_lock();
2899        ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2900        cpus_read_unlock();
2901
2902        return ret;
2903}
2904EXPORT_SYMBOL(netif_set_xps_queue);
2905
2906#endif
2907static void netdev_unbind_all_sb_channels(struct net_device *dev)
2908{
2909        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2910
2911        /* Unbind any subordinate channels */
2912        while (txq-- != &dev->_tx[0]) {
2913                if (txq->sb_dev)
2914                        netdev_unbind_sb_channel(dev, txq->sb_dev);
2915        }
2916}
2917
2918void netdev_reset_tc(struct net_device *dev)
2919{
2920#ifdef CONFIG_XPS
2921        netif_reset_xps_queues_gt(dev, 0);
2922#endif
2923        netdev_unbind_all_sb_channels(dev);
2924
2925        /* Reset TC configuration of device */
2926        dev->num_tc = 0;
2927        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2928        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2929}
2930EXPORT_SYMBOL(netdev_reset_tc);
2931
2932int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2933{
2934        if (tc >= dev->num_tc)
2935                return -EINVAL;
2936
2937#ifdef CONFIG_XPS
2938        netif_reset_xps_queues(dev, offset, count);
2939#endif
2940        dev->tc_to_txq[tc].count = count;
2941        dev->tc_to_txq[tc].offset = offset;
2942        return 0;
2943}
2944EXPORT_SYMBOL(netdev_set_tc_queue);
2945
2946int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2947{
2948        if (num_tc > TC_MAX_QUEUE)
2949                return -EINVAL;
2950
2951#ifdef CONFIG_XPS
2952        netif_reset_xps_queues_gt(dev, 0);
2953#endif
2954        netdev_unbind_all_sb_channels(dev);
2955
2956        dev->num_tc = num_tc;
2957        return 0;
2958}
2959EXPORT_SYMBOL(netdev_set_num_tc);
2960
2961void netdev_unbind_sb_channel(struct net_device *dev,
2962                              struct net_device *sb_dev)
2963{
2964        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2965
2966#ifdef CONFIG_XPS
2967        netif_reset_xps_queues_gt(sb_dev, 0);
2968#endif
2969        memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2970        memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2971
2972        while (txq-- != &dev->_tx[0]) {
2973                if (txq->sb_dev == sb_dev)
2974                        txq->sb_dev = NULL;
2975        }
2976}
2977EXPORT_SYMBOL(netdev_unbind_sb_channel);
2978
2979int netdev_bind_sb_channel_queue(struct net_device *dev,
2980                                 struct net_device *sb_dev,
2981                                 u8 tc, u16 count, u16 offset)
2982{
2983        /* Make certain the sb_dev and dev are already configured */
2984        if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2985                return -EINVAL;
2986
2987        /* We cannot hand out queues we don't have */
2988        if ((offset + count) > dev->real_num_tx_queues)
2989                return -EINVAL;
2990
2991        /* Record the mapping */
2992        sb_dev->tc_to_txq[tc].count = count;
2993        sb_dev->tc_to_txq[tc].offset = offset;
2994
2995        /* Provide a way for Tx queue to find the tc_to_txq map or
2996         * XPS map for itself.
2997         */
2998        while (count--)
2999                netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3000
3001        return 0;
3002}
3003EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3004
3005int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3006{
3007        /* Do not use a multiqueue device to represent a subordinate channel */
3008        if (netif_is_multiqueue(dev))
3009                return -ENODEV;
3010
3011        /* We allow channels 1 - 32767 to be used for subordinate channels.
3012         * Channel 0 is meant to be "native" mode and used only to represent
3013         * the main root device. We allow writing 0 to reset the device back
3014         * to normal mode after being used as a subordinate channel.
3015         */
3016        if (channel > S16_MAX)
3017                return -EINVAL;
3018
3019        dev->num_tc = -channel;
3020
3021        return 0;
3022}
3023EXPORT_SYMBOL(netdev_set_sb_channel);
3024
3025/*
3026 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3027 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3028 */
3029int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3030{
3031        bool disabling;
3032        int rc;
3033
3034        disabling = txq < dev->real_num_tx_queues;
3035
3036        if (txq < 1 || txq > dev->num_tx_queues)
3037                return -EINVAL;
3038
3039        if (dev->reg_state == NETREG_REGISTERED ||
3040            dev->reg_state == NETREG_UNREGISTERING) {
3041                ASSERT_RTNL();
3042
3043                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3044                                                  txq);
3045                if (rc)
3046                        return rc;
3047
3048                if (dev->num_tc)
3049                        netif_setup_tc(dev, txq);
3050
3051                dev->real_num_tx_queues = txq;
3052
3053                if (disabling) {
3054                        synchronize_net();
3055                        qdisc_reset_all_tx_gt(dev, txq);
3056#ifdef CONFIG_XPS
3057                        netif_reset_xps_queues_gt(dev, txq);
3058#endif
3059                }
3060        } else {
3061                dev->real_num_tx_queues = txq;
3062        }
3063
3064        return 0;
3065}
3066EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3067
3068#ifdef CONFIG_SYSFS
3069/**
3070 *      netif_set_real_num_rx_queues - set actual number of RX queues used
3071 *      @dev: Network device
3072 *      @rxq: Actual number of RX queues
3073 *
3074 *      This must be called either with the rtnl_lock held or before
3075 *      registration of the net device.  Returns 0 on success, or a
3076 *      negative error code.  If called before registration, it always
3077 *      succeeds.
3078 */
3079int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3080{
3081        int rc;
3082
3083        if (rxq < 1 || rxq > dev->num_rx_queues)
3084                return -EINVAL;
3085
3086        if (dev->reg_state == NETREG_REGISTERED) {
3087                ASSERT_RTNL();
3088
3089                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3090                                                  rxq);
3091                if (rc)
3092                        return rc;
3093        }
3094
3095        dev->real_num_rx_queues = rxq;
3096        return 0;
3097}
3098EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3099#endif
3100
3101/**
3102 * netif_get_num_default_rss_queues - default number of RSS queues
3103 *
3104 * This routine should set an upper limit on the number of RSS queues
3105 * used by default by multiqueue devices.
3106 */
3107int netif_get_num_default_rss_queues(void)
3108{
3109        return is_kdump_kernel() ?
3110                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3111}
3112EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3113
3114static void __netif_reschedule(struct Qdisc *q)
3115{
3116        struct softnet_data *sd;
3117        unsigned long flags;
3118
3119        local_irq_save(flags);
3120        sd = this_cpu_ptr(&softnet_data);
3121        q->next_sched = NULL;
3122        *sd->output_queue_tailp = q;
3123        sd->output_queue_tailp = &q->next_sched;
3124        raise_softirq_irqoff(NET_TX_SOFTIRQ);
3125        local_irq_restore(flags);
3126}
3127
3128void __netif_schedule(struct Qdisc *q)
3129{
3130        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3131                __netif_reschedule(q);
3132}
3133EXPORT_SYMBOL(__netif_schedule);
3134
3135struct dev_kfree_skb_cb {
3136        enum skb_free_reason reason;
3137};
3138
3139static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3140{
3141        return (struct dev_kfree_skb_cb *)skb->cb;
3142}
3143
3144void netif_schedule_queue(struct netdev_queue *txq)
3145{
3146        rcu_read_lock();
3147        if (!netif_xmit_stopped(txq)) {
3148                struct Qdisc *q = rcu_dereference(txq->qdisc);
3149
3150                __netif_schedule(q);
3151        }
3152        rcu_read_unlock();
3153}
3154EXPORT_SYMBOL(netif_schedule_queue);
3155
3156void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3157{
3158        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3159                struct Qdisc *q;
3160
3161                rcu_read_lock();
3162                q = rcu_dereference(dev_queue->qdisc);
3163                __netif_schedule(q);
3164                rcu_read_unlock();
3165        }
3166}
3167EXPORT_SYMBOL(netif_tx_wake_queue);
3168
3169void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3170{
3171        unsigned long flags;
3172
3173        if (unlikely(!skb))
3174                return;
3175
3176        if (likely(refcount_read(&skb->users) == 1)) {
3177                smp_rmb();
3178                refcount_set(&skb->users, 0);
3179        } else if (likely(!refcount_dec_and_test(&skb->users))) {
3180                return;
3181        }
3182        get_kfree_skb_cb(skb)->reason = reason;
3183        local_irq_save(flags);
3184        skb->next = __this_cpu_read(softnet_data.completion_queue);
3185        __this_cpu_write(softnet_data.completion_queue, skb);
3186        raise_softirq_irqoff(NET_TX_SOFTIRQ);
3187        local_irq_restore(flags);
3188}
3189EXPORT_SYMBOL(__dev_kfree_skb_irq);
3190
3191void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3192{
3193        if (in_irq() || irqs_disabled())
3194                __dev_kfree_skb_irq(skb, reason);
3195        else
3196                dev_kfree_skb(skb);
3197}
3198EXPORT_SYMBOL(__dev_kfree_skb_any);
3199
3200
3201/**
3202 * netif_device_detach - mark device as removed
3203 * @dev: network device
3204 *
3205 * Mark device as removed from system and therefore no longer available.
3206 */
3207void netif_device_detach(struct net_device *dev)
3208{
3209        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3210            netif_running(dev)) {
3211                netif_tx_stop_all_queues(dev);
3212        }
3213}
3214EXPORT_SYMBOL(netif_device_detach);
3215
3216/**
3217 * netif_device_attach - mark device as attached
3218 * @dev: network device
3219 *
3220 * Mark device as attached from system and restart if needed.
3221 */
3222void netif_device_attach(struct net_device *dev)
3223{
3224        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3225            netif_running(dev)) {
3226                netif_tx_wake_all_queues(dev);
3227                __netdev_watchdog_up(dev);
3228        }
3229}
3230EXPORT_SYMBOL(netif_device_attach);
3231
3232/*
3233 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3234 * to be used as a distribution range.
3235 */
3236static u16 skb_tx_hash(const struct net_device *dev,
3237                       const struct net_device *sb_dev,
3238                       struct sk_buff *skb)
3239{
3240        u32 hash;
3241        u16 qoffset = 0;
3242        u16 qcount = dev->real_num_tx_queues;
3243
3244        if (dev->num_tc) {
3245                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3246
3247                qoffset = sb_dev->tc_to_txq[tc].offset;
3248                qcount = sb_dev->tc_to_txq[tc].count;
3249        }
3250
3251        if (skb_rx_queue_recorded(skb)) {
3252                hash = skb_get_rx_queue(skb);
3253                if (hash >= qoffset)
3254                        hash -= qoffset;
3255                while (unlikely(hash >= qcount))
3256                        hash -= qcount;
3257                return hash + qoffset;
3258        }
3259
3260        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3261}
3262
3263static void skb_warn_bad_offload(const struct sk_buff *skb)
3264{
3265        static const netdev_features_t null_features;
3266        struct net_device *dev = skb->dev;
3267        const char *name = "";
3268
3269        if (!net_ratelimit())
3270                return;
3271
3272        if (dev) {
3273                if (dev->dev.parent)
3274                        name = dev_driver_string(dev->dev.parent);
3275                else
3276                        name = netdev_name(dev);
3277        }
3278        skb_dump(KERN_WARNING, skb, false);
3279        WARN(1, "%s: caps=(%pNF, %pNF)\n",
3280             name, dev ? &dev->features : &null_features,
3281             skb->sk ? &skb->sk->sk_route_caps : &null_features);
3282}
3283
3284/*
3285 * Invalidate hardware checksum when packet is to be mangled, and
3286 * complete checksum manually on outgoing path.
3287 */
3288int skb_checksum_help(struct sk_buff *skb)
3289{
3290        __wsum csum;
3291        int ret = 0, offset;
3292
3293        if (skb->ip_summed == CHECKSUM_COMPLETE)
3294                goto out_set_summed;
3295
3296        if (unlikely(skb_is_gso(skb))) {
3297                skb_warn_bad_offload(skb);
3298                return -EINVAL;
3299        }
3300
3301        /* Before computing a checksum, we should make sure no frag could
3302         * be modified by an external entity : checksum could be wrong.
3303         */
3304        if (skb_has_shared_frag(skb)) {
3305                ret = __skb_linearize(skb);
3306                if (ret)
3307                        goto out;
3308        }
3309
3310        offset = skb_checksum_start_offset(skb);
3311        BUG_ON(offset >= skb_headlen(skb));
3312        csum = skb_checksum(skb, offset, skb->len - offset, 0);
3313
3314        offset += skb->csum_offset;
3315        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3316
3317        ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3318        if (ret)
3319                goto out;
3320
3321        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3322out_set_summed:
3323        skb->ip_summed = CHECKSUM_NONE;
3324out:
3325        return ret;
3326}
3327EXPORT_SYMBOL(skb_checksum_help);
3328
3329int skb_crc32c_csum_help(struct sk_buff *skb)
3330{
3331        __le32 crc32c_csum;
3332        int ret = 0, offset, start;
3333
3334        if (skb->ip_summed != CHECKSUM_PARTIAL)
3335                goto out;
3336
3337        if (unlikely(skb_is_gso(skb)))
3338                goto out;
3339
3340        /* Before computing a checksum, we should make sure no frag could
3341         * be modified by an external entity : checksum could be wrong.
3342         */
3343        if (unlikely(skb_has_shared_frag(skb))) {
3344                ret = __skb_linearize(skb);
3345                if (ret)
3346                        goto out;
3347        }
3348        start = skb_checksum_start_offset(skb);
3349        offset = start + offsetof(struct sctphdr, checksum);
3350        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3351                ret = -EINVAL;
3352                goto out;
3353        }
3354
3355        ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3356        if (ret)
3357                goto out;
3358
3359        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3360                                                  skb->len - start, ~(__u32)0,
3361                                                  crc32c_csum_stub));
3362        *(__le32 *)(skb->data + offset) = crc32c_csum;
3363        skb->ip_summed = CHECKSUM_NONE;
3364        skb->csum_not_inet = 0;
3365out:
3366        return ret;
3367}
3368
3369__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3370{
3371        __be16 type = skb->protocol;
3372
3373        /* Tunnel gso handlers can set protocol to ethernet. */
3374        if (type == htons(ETH_P_TEB)) {
3375                struct ethhdr *eth;
3376
3377                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3378                        return 0;
3379
3380                eth = (struct ethhdr *)skb->data;
3381                type = eth->h_proto;
3382        }
3383
3384        return __vlan_get_protocol(skb, type, depth);
3385}
3386
3387/**
3388 *      skb_mac_gso_segment - mac layer segmentation handler.
3389 *      @skb: buffer to segment
3390 *      @features: features for the output path (see dev->features)
3391 */
3392struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3393                                    netdev_features_t features)
3394{
3395        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3396        struct packet_offload *ptype;
3397        int vlan_depth = skb->mac_len;
3398        __be16 type = skb_network_protocol(skb, &vlan_depth);
3399
3400        if (unlikely(!type))
3401                return ERR_PTR(-EINVAL);
3402
3403        __skb_pull(skb, vlan_depth);
3404
3405        rcu_read_lock();
3406        list_for_each_entry_rcu(ptype, &offload_base, list) {
3407                if (ptype->type == type && ptype->callbacks.gso_segment) {
3408                        segs = ptype->callbacks.gso_segment(skb, features);
3409                        break;
3410                }
3411        }
3412        rcu_read_unlock();
3413
3414        __skb_push(skb, skb->data - skb_mac_header(skb));
3415
3416        return segs;
3417}
3418EXPORT_SYMBOL(skb_mac_gso_segment);
3419
3420
3421/* openvswitch calls this on rx path, so we need a different check.
3422 */
3423static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3424{
3425        if (tx_path)
3426                return skb->ip_summed != CHECKSUM_PARTIAL &&
3427                       skb->ip_summed != CHECKSUM_UNNECESSARY;
3428
3429        return skb->ip_summed == CHECKSUM_NONE;
3430}
3431
3432/**
3433 *      __skb_gso_segment - Perform segmentation on skb.
3434 *      @skb: buffer to segment
3435 *      @features: features for the output path (see dev->features)
3436 *      @tx_path: whether it is called in TX path
3437 *
3438 *      This function segments the given skb and returns a list of segments.
3439 *
3440 *      It may return NULL if the skb requires no segmentation.  This is
3441 *      only possible when GSO is used for verifying header integrity.
3442 *
3443 *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3444 */
3445struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3446                                  netdev_features_t features, bool tx_path)
3447{
3448        struct sk_buff *segs;
3449
3450        if (unlikely(skb_needs_check(skb, tx_path))) {
3451                int err;
3452
3453                /* We're going to init ->check field in TCP or UDP header */
3454                err = skb_cow_head(skb, 0);
3455                if (err < 0)
3456                        return ERR_PTR(err);
3457        }
3458
3459        /* Only report GSO partial support if it will enable us to
3460         * support segmentation on this frame without needing additional
3461         * work.
3462         */
3463        if (features & NETIF_F_GSO_PARTIAL) {
3464                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3465                struct net_device *dev = skb->dev;
3466
3467                partial_features |= dev->features & dev->gso_partial_features;
3468                if (!skb_gso_ok(skb, features | partial_features))
3469                        features &= ~NETIF_F_GSO_PARTIAL;
3470        }
3471
3472        BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3473                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3474
3475        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3476        SKB_GSO_CB(skb)->encap_level = 0;
3477
3478        skb_reset_mac_header(skb);
3479        skb_reset_mac_len(skb);
3480
3481        segs = skb_mac_gso_segment(skb, features);
3482
3483        if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3484                skb_warn_bad_offload(skb);
3485
3486        return segs;
3487}
3488EXPORT_SYMBOL(__skb_gso_segment);
3489
3490/* Take action when hardware reception checksum errors are detected. */
3491#ifdef CONFIG_BUG
3492static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3493{
3494        pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3495        skb_dump(KERN_ERR, skb, true);
3496        dump_stack();
3497}
3498
3499void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3500{
3501        DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3502}
3503EXPORT_SYMBOL(netdev_rx_csum_fault);
3504#endif
3505
3506/* XXX: check that highmem exists at all on the given machine. */
3507static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3508{
3509#ifdef CONFIG_HIGHMEM
3510        int i;
3511
3512        if (!(dev->features & NETIF_F_HIGHDMA)) {
3513                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3514                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3515
3516                        if (PageHighMem(skb_frag_page(frag)))
3517                                return 1;
3518                }
3519        }
3520#endif
3521        return 0;
3522}
3523
3524/* If MPLS offload request, verify we are testing hardware MPLS features
3525 * instead of standard features for the netdev.
3526 */
3527#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3528static netdev_features_t net_mpls_features(struct sk_buff *skb,
3529                                           netdev_features_t features,
3530                                           __be16 type)
3531{
3532        if (eth_p_mpls(type))
3533                features &= skb->dev->mpls_features;
3534
3535        return features;
3536}
3537#else
3538static netdev_features_t net_mpls_features(struct sk_buff *skb,
3539                                           netdev_features_t features,
3540                                           __be16 type)
3541{
3542        return features;
3543}
3544#endif
3545
3546static netdev_features_t harmonize_features(struct sk_buff *skb,
3547        netdev_features_t features)
3548{
3549        __be16 type;
3550
3551        type = skb_network_protocol(skb, NULL);
3552        features = net_mpls_features(skb, features, type);
3553
3554        if (skb->ip_summed != CHECKSUM_NONE &&
3555            !can_checksum_protocol(features, type)) {
3556                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3557        }
3558        if (illegal_highdma(skb->dev, skb))
3559                features &= ~NETIF_F_SG;
3560
3561        return features;
3562}
3563
3564netdev_features_t passthru_features_check(struct sk_buff *skb,
3565                                          struct net_device *dev,
3566                                          netdev_features_t features)
3567{
3568        return features;
3569}
3570EXPORT_SYMBOL(passthru_features_check);
3571
3572static netdev_features_t dflt_features_check(struct sk_buff *skb,
3573                                             struct net_device *dev,
3574                                             netdev_features_t features)
3575{
3576        return vlan_features_check(skb, features);
3577}
3578
3579static netdev_features_t gso_features_check(const struct sk_buff *skb,
3580                                            struct net_device *dev,
3581                                            netdev_features_t features)
3582{
3583        u16 gso_segs = skb_shinfo(skb)->gso_segs;
3584
3585        if (gso_segs > dev->gso_max_segs)
3586                return features & ~NETIF_F_GSO_MASK;
3587
3588        if (!skb_shinfo(skb)->gso_type) {
3589                skb_warn_bad_offload(skb);
3590                return features & ~NETIF_F_GSO_MASK;
3591        }
3592
3593        /* Support for GSO partial features requires software
3594         * intervention before we can actually process the packets
3595         * so we need to strip support for any partial features now
3596         * and we can pull them back in after we have partially
3597         * segmented the frame.
3598         */
3599        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3600                features &= ~dev->gso_partial_features;
3601
3602        /* Make sure to clear the IPv4 ID mangling feature if the
3603         * IPv4 header has the potential to be fragmented.
3604         */
3605        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3606                struct iphdr *iph = skb->encapsulation ?
3607                                    inner_ip_hdr(skb) : ip_hdr(skb);
3608
3609                if (!(iph->frag_off & htons(IP_DF)))
3610                        features &= ~NETIF_F_TSO_MANGLEID;
3611        }
3612
3613        return features;
3614}
3615
3616netdev_features_t netif_skb_features(struct sk_buff *skb)
3617{
3618        struct net_device *dev = skb->dev;
3619        netdev_features_t features = dev->features;
3620
3621        if (skb_is_gso(skb))
3622                features = gso_features_check(skb, dev, features);
3623
3624        /* If encapsulation offload request, verify we are testing
3625         * hardware encapsulation features instead of standard
3626         * features for the netdev
3627         */
3628        if (skb->encapsulation)
3629                features &= dev->hw_enc_features;
3630
3631        if (skb_vlan_tagged(skb))
3632                features = netdev_intersect_features(features,
3633                                                     dev->vlan_features |
3634                                                     NETIF_F_HW_VLAN_CTAG_TX |
3635                                                     NETIF_F_HW_VLAN_STAG_TX);
3636
3637        if (dev->netdev_ops->ndo_features_check)
3638                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3639                                                                features);
3640        else
3641                features &= dflt_features_check(skb, dev, features);
3642
3643        return harmonize_features(skb, features);
3644}
3645EXPORT_SYMBOL(netif_skb_features);
3646
3647static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3648                    struct netdev_queue *txq, bool more)
3649{
3650        unsigned int len;
3651        int rc;
3652
3653        if (dev_nit_active(dev))
3654                dev_queue_xmit_nit(skb, dev);
3655
3656        len = skb->len;
3657        PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3658        trace_net_dev_start_xmit(skb, dev);
3659        rc = netdev_start_xmit(skb, dev, txq, more);
3660        trace_net_dev_xmit(skb, rc, dev, len);
3661
3662        return rc;
3663}
3664
3665struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3666                                    struct netdev_queue *txq, int *ret)
3667{
3668        struct sk_buff *skb = first;
3669        int rc = NETDEV_TX_OK;
3670
3671        while (skb) {
3672                struct sk_buff *next = skb->next;
3673
3674                skb_mark_not_on_list(skb);
3675                rc = xmit_one(skb, dev, txq, next != NULL);
3676                if (unlikely(!dev_xmit_complete(rc))) {
3677                        skb->next = next;
3678                        goto out;
3679                }
3680
3681                skb = next;
3682                if (netif_tx_queue_stopped(txq) && skb) {
3683                        rc = NETDEV_TX_BUSY;
3684                        break;
3685                }
3686        }
3687
3688out:
3689        *ret = rc;
3690        return skb;
3691}
3692
3693static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3694                                          netdev_features_t features)
3695{
3696        if (skb_vlan_tag_present(skb) &&
3697            !vlan_hw_offload_capable(features, skb->vlan_proto))
3698                skb = __vlan_hwaccel_push_inside(skb);
3699        return skb;
3700}
3701
3702int skb_csum_hwoffload_help(struct sk_buff *skb,
3703                            const netdev_features_t features)
3704{
3705        if (unlikely(skb_csum_is_sctp(skb)))
3706                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3707                        skb_crc32c_csum_help(skb);
3708
3709        if (features & NETIF_F_HW_CSUM)
3710                return 0;
3711
3712        if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3713                switch (skb->csum_offset) {
3714                case offsetof(struct tcphdr, check):
3715                case offsetof(struct udphdr, check):
3716                        return 0;
3717                }
3718        }
3719
3720        return skb_checksum_help(skb);
3721}
3722EXPORT_SYMBOL(skb_csum_hwoffload_help);
3723
3724static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3725{
3726        netdev_features_t features;
3727
3728        features = netif_skb_features(skb);
3729        skb = validate_xmit_vlan(skb, features);
3730        if (unlikely(!skb))
3731                goto out_null;
3732
3733        skb = sk_validate_xmit_skb(skb, dev);
3734        if (unlikely(!skb))
3735                goto out_null;
3736
3737        if (netif_needs_gso(skb, features)) {
3738                struct sk_buff *segs;
3739
3740                segs = skb_gso_segment(skb, features);
3741                if (IS_ERR(segs)) {
3742                        goto out_kfree_skb;
3743                } else if (segs) {
3744                        consume_skb(skb);
3745                        skb = segs;
3746                }
3747        } else {
3748                if (skb_needs_linearize(skb, features) &&
3749                    __skb_linearize(skb))
3750                        goto out_kfree_skb;
3751
3752                /* If packet is not checksummed and device does not
3753                 * support checksumming for this protocol, complete
3754                 * checksumming here.
3755                 */
3756                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3757                        if (skb->encapsulation)
3758                                skb_set_inner_transport_header(skb,
3759                                                               skb_checksum_start_offset(skb));
3760                        else
3761                                skb_set_transport_header(skb,
3762                                                         skb_checksum_start_offset(skb));
3763                        if (skb_csum_hwoffload_help(skb, features))
3764                                goto out_kfree_skb;
3765                }
3766        }
3767
3768        skb = validate_xmit_xfrm(skb, features, again);
3769
3770        return skb;
3771
3772out_kfree_skb:
3773        kfree_skb(skb);
3774out_null:
3775        atomic_long_inc(&dev->tx_dropped);
3776        return NULL;
3777}
3778
3779struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3780{
3781        struct sk_buff *next, *head = NULL, *tail;
3782
3783        for (; skb != NULL; skb = next) {
3784                next = skb->next;
3785                skb_mark_not_on_list(skb);
3786
3787                /* in case skb wont be segmented, point to itself */
3788                skb->prev = skb;
3789
3790                skb = validate_xmit_skb(skb, dev, again);
3791                if (!skb)
3792                        continue;
3793
3794                if (!head)
3795                        head = skb;
3796                else
3797                        tail->next = skb;
3798                /* If skb was segmented, skb->prev points to
3799                 * the last segment. If not, it still contains skb.
3800                 */
3801                tail = skb->prev;
3802        }
3803        return head;
3804}
3805EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3806
3807static void qdisc_pkt_len_init(struct sk_buff *skb)
3808{
3809        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3810
3811        qdisc_skb_cb(skb)->pkt_len = skb->len;
3812
3813        /* To get more precise estimation of bytes sent on wire,
3814         * we add to pkt_len the headers size of all segments
3815         */
3816        if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3817                unsigned int hdr_len;
3818                u16 gso_segs = shinfo->gso_segs;
3819
3820                /* mac layer + network layer */
3821                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3822
3823                /* + transport layer */
3824                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3825                        const struct tcphdr *th;
3826                        struct tcphdr _tcphdr;
3827
3828                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3829                                                sizeof(_tcphdr), &_tcphdr);
3830                        if (likely(th))
3831                                hdr_len += __tcp_hdrlen(th);
3832                } else {
3833                        struct udphdr _udphdr;
3834
3835                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3836                                               sizeof(_udphdr), &_udphdr))
3837                                hdr_len += sizeof(struct udphdr);
3838                }
3839
3840                if (shinfo->gso_type & SKB_GSO_DODGY)
3841                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3842                                                shinfo->gso_size);
3843
3844                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3845        }
3846}
3847
3848static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3849                             struct sk_buff **to_free,
3850                             struct netdev_queue *txq)
3851{
3852        int rc;
3853
3854        rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3855        if (rc == NET_XMIT_SUCCESS)
3856                trace_qdisc_enqueue(q, txq, skb);
3857        return rc;
3858}
3859
3860static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3861                                 struct net_device *dev,
3862                                 struct netdev_queue *txq)
3863{
3864        spinlock_t *root_lock = qdisc_lock(q);
3865        struct sk_buff *to_free = NULL;
3866        bool contended;
3867        int rc;
3868
3869        qdisc_calculate_pkt_len(skb, q);
3870
3871        if (q->flags & TCQ_F_NOLOCK) {
3872                if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3873                    qdisc_run_begin(q)) {
3874                        /* Retest nolock_qdisc_is_empty() within the protection
3875                         * of q->seqlock to protect from racing with requeuing.
3876                         */
3877                        if (unlikely(!nolock_qdisc_is_empty(q))) {
3878                                rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3879                                __qdisc_run(q);
3880                                qdisc_run_end(q);
3881
3882                                goto no_lock_out;
3883                        }
3884
3885                        qdisc_bstats_cpu_update(q, skb);
3886                        if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3887                            !nolock_qdisc_is_empty(q))
3888                                __qdisc_run(q);
3889
3890                        qdisc_run_end(q);
3891                        return NET_XMIT_SUCCESS;
3892                }
3893
3894                rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3895                qdisc_run(q);
3896
3897no_lock_out:
3898                if (unlikely(to_free))
3899                        kfree_skb_list(to_free);
3900                return rc;
3901        }
3902
3903        /*
3904         * Heuristic to force contended enqueues to serialize on a
3905         * separate lock before trying to get qdisc main lock.
3906         * This permits qdisc->running owner to get the lock more
3907         * often and dequeue packets faster.
3908         */
3909        contended = qdisc_is_running(q);
3910        if (unlikely(contended))
3911                spin_lock(&q->busylock);
3912
3913        spin_lock(root_lock);
3914        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3915                __qdisc_drop(skb, &to_free);
3916                rc = NET_XMIT_DROP;
3917        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3918                   qdisc_run_begin(q)) {
3919                /*
3920                 * This is a work-conserving queue; there are no old skbs
3921                 * waiting to be sent out; and the qdisc is not running -
3922                 * xmit the skb directly.
3923                 */
3924
3925                qdisc_bstats_update(q, skb);
3926
3927                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3928                        if (unlikely(contended)) {
3929                                spin_unlock(&q->busylock);
3930                                contended = false;
3931                        }
3932                        __qdisc_run(q);
3933                }
3934
3935                qdisc_run_end(q);
3936                rc = NET_XMIT_SUCCESS;
3937        } else {
3938                rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3939                if (qdisc_run_begin(q)) {
3940                        if (unlikely(contended)) {
3941                                spin_unlock(&q->busylock);
3942                                contended = false;
3943                        }
3944                        __qdisc_run(q);
3945                        qdisc_run_end(q);
3946                }
3947        }
3948        spin_unlock(root_lock);
3949        if (unlikely(to_free))
3950                kfree_skb_list(to_free);
3951        if (unlikely(contended))
3952                spin_unlock(&q->busylock);
3953        return rc;
3954}
3955
3956#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3957static void skb_update_prio(struct sk_buff *skb)
3958{
3959        const struct netprio_map *map;
3960        const struct sock *sk;
3961        unsigned int prioidx;
3962
3963        if (skb->priority)
3964                return;
3965        map = rcu_dereference_bh(skb->dev->priomap);
3966        if (!map)
3967                return;
3968        sk = skb_to_full_sk(skb);
3969        if (!sk)
3970                return;
3971
3972        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3973
3974        if (prioidx < map->priomap_len)
3975                skb->priority = map->priomap[prioidx];
3976}
3977#else
3978#define skb_update_prio(skb)
3979#endif
3980
3981/**
3982 *      dev_loopback_xmit - loop back @skb
3983 *      @net: network namespace this loopback is happening in
3984 *      @sk:  sk needed to be a netfilter okfn
3985 *      @skb: buffer to transmit
3986 */
3987int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3988{
3989        skb_reset_mac_header(skb);
3990        __skb_pull(skb, skb_network_offset(skb));
3991        skb->pkt_type = PACKET_LOOPBACK;
3992        skb->ip_summed = CHECKSUM_UNNECESSARY;
3993        WARN_ON(!skb_dst(skb));
3994        skb_dst_force(skb);
3995        netif_rx_ni(skb);
3996        return 0;
3997}
3998EXPORT_SYMBOL(dev_loopback_xmit);
3999
4000#ifdef CONFIG_NET_EGRESS
4001static struct sk_buff *
4002sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4003{
4004        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
4005        struct tcf_result cl_res;
4006
4007        if (!miniq)
4008                return skb;
4009
4010        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
4011        qdisc_skb_cb(skb)->mru = 0;
4012        qdisc_skb_cb(skb)->post_ct = false;
4013        mini_qdisc_bstats_cpu_update(miniq, skb);
4014
4015        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4016        case TC_ACT_OK:
4017        case TC_ACT_RECLASSIFY:
4018                skb->tc_index = TC_H_MIN(cl_res.classid);
4019                break;
4020        case TC_ACT_SHOT:
4021                mini_qdisc_qstats_cpu_drop(miniq);
4022                *ret = NET_XMIT_DROP;
4023                kfree_skb(skb);
4024                return NULL;
4025        case TC_ACT_STOLEN:
4026        case TC_ACT_QUEUED:
4027        case TC_ACT_TRAP:
4028                *ret = NET_XMIT_SUCCESS;
4029                consume_skb(skb);
4030                return NULL;
4031        case TC_ACT_REDIRECT:
4032                /* No need to push/pop skb's mac_header here on egress! */
4033                skb_do_redirect(skb);
4034                *ret = NET_XMIT_SUCCESS;
4035                return NULL;
4036        default:
4037                break;
4038        }
4039
4040        return skb;
4041}
4042#endif /* CONFIG_NET_EGRESS */
4043
4044#ifdef CONFIG_XPS
4045static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4046                               struct xps_dev_maps *dev_maps, unsigned int tci)
4047{
4048        int tc = netdev_get_prio_tc_map(dev, skb->priority);
4049        struct xps_map *map;
4050        int queue_index = -1;
4051
4052        if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4053                return queue_index;
4054
4055        tci *= dev_maps->num_tc;
4056        tci += tc;
4057
4058        map = rcu_dereference(dev_maps->attr_map[tci]);
4059        if (map) {
4060                if (map->len == 1)
4061                        queue_index = map->queues[0];
4062                else
4063                        queue_index = map->queues[reciprocal_scale(
4064                                                skb_get_hash(skb), map->len)];
4065                if (unlikely(queue_index >= dev->real_num_tx_queues))
4066                        queue_index = -1;
4067        }
4068        return queue_index;
4069}
4070#endif
4071
4072static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4073                         struct sk_buff *skb)
4074{
4075#ifdef CONFIG_XPS
4076        struct xps_dev_maps *dev_maps;
4077        struct sock *sk = skb->sk;
4078        int queue_index = -1;
4079
4080        if (!static_key_false(&xps_needed))
4081                return -1;
4082
4083        rcu_read_lock();
4084        if (!static_key_false(&xps_rxqs_needed))
4085                goto get_cpus_map;
4086
4087        dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4088        if (dev_maps) {
4089                int tci = sk_rx_queue_get(sk);
4090
4091                if (tci >= 0)
4092                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4093                                                          tci);
4094        }
4095
4096get_cpus_map:
4097        if (queue_index < 0) {
4098                dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4099                if (dev_maps) {
4100                        unsigned int tci = skb->sender_cpu - 1;
4101
4102                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4103                                                          tci);
4104                }
4105        }
4106        rcu_read_unlock();
4107
4108        return queue_index;
4109#else
4110        return -1;
4111#endif
4112}
4113
4114u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4115                     struct net_device *sb_dev)
4116{
4117        return 0;
4118}
4119EXPORT_SYMBOL(dev_pick_tx_zero);
4120
4121u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4122                       struct net_device *sb_dev)
4123{
4124        return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4125}
4126EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4127
4128u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4129                     struct net_device *sb_dev)
4130{
4131        struct sock *sk = skb->sk;
4132        int queue_index = sk_tx_queue_get(sk);
4133
4134        sb_dev = sb_dev ? : dev;
4135
4136        if (queue_index < 0 || skb->ooo_okay ||
4137            queue_index >= dev->real_num_tx_queues) {
4138                int new_index = get_xps_queue(dev, sb_dev, skb);
4139
4140                if (new_index < 0)
4141                        new_index = skb_tx_hash(dev, sb_dev, skb);
4142
4143                if (queue_index != new_index && sk &&
4144                    sk_fullsock(sk) &&
4145                    rcu_access_pointer(sk->sk_dst_cache))
4146                        sk_tx_queue_set(sk, new_index);
4147
4148                queue_index = new_index;
4149        }
4150
4151        return queue_index;
4152}
4153EXPORT_SYMBOL(netdev_pick_tx);
4154
4155struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4156                                         struct sk_buff *skb,
4157                                         struct net_device *sb_dev)
4158{
4159        int queue_index = 0;
4160
4161#ifdef CONFIG_XPS
4162        u32 sender_cpu = skb->sender_cpu - 1;
4163
4164        if (sender_cpu >= (u32)NR_CPUS)
4165                skb->sender_cpu = raw_smp_processor_id() + 1;
4166#endif
4167
4168        if (dev->real_num_tx_queues != 1) {
4169                const struct net_device_ops *ops = dev->netdev_ops;
4170
4171                if (ops->ndo_select_queue)
4172                        queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4173                else
4174                        queue_index = netdev_pick_tx(dev, skb, sb_dev);
4175
4176                queue_index = netdev_cap_txqueue(dev, queue_index);
4177        }
4178
4179        skb_set_queue_mapping(skb, queue_index);
4180        return netdev_get_tx_queue(dev, queue_index);
4181}
4182
4183/**
4184 *      __dev_queue_xmit - transmit a buffer
4185 *      @skb: buffer to transmit
4186 *      @sb_dev: suboordinate device used for L2 forwarding offload
4187 *
4188 *      Queue a buffer for transmission to a network device. The caller must
4189 *      have set the device and priority and built the buffer before calling
4190 *      this function. The function can be called from an interrupt.
4191 *
4192 *      A negative errno code is returned on a failure. A success does not
4193 *      guarantee the frame will be transmitted as it may be dropped due
4194 *      to congestion or traffic shaping.
4195 *
4196 * -----------------------------------------------------------------------------------
4197 *      I notice this method can also return errors from the queue disciplines,
4198 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4199 *      be positive.
4200 *
4201 *      Regardless of the return value, the skb is consumed, so it is currently
4202 *      difficult to retry a send to this method.  (You can bump the ref count
4203 *      before sending to hold a reference for retry if you are careful.)
4204 *
4205 *      When calling this method, interrupts MUST be enabled.  This is because
4206 *      the BH enable code must have IRQs enabled so that it will not deadlock.
4207 *          --BLG
4208 */
4209static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4210{
4211        struct net_device *dev = skb->dev;
4212        struct netdev_queue *txq;
4213        struct Qdisc *q;
4214        int rc = -ENOMEM;
4215        bool again = false;
4216
4217        skb_reset_mac_header(skb);
4218
4219        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4220                __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4221
4222        /* Disable soft irqs for various locks below. Also
4223         * stops preemption for RCU.
4224         */
4225        rcu_read_lock_bh();
4226
4227        skb_update_prio(skb);
4228
4229        qdisc_pkt_len_init(skb);
4230#ifdef CONFIG_NET_CLS_ACT
4231        skb->tc_at_ingress = 0;
4232# ifdef CONFIG_NET_EGRESS
4233        if (static_branch_unlikely(&egress_needed_key)) {
4234                skb = sch_handle_egress(skb, &rc, dev);
4235                if (!skb)
4236                        goto out;
4237        }
4238# endif
4239#endif
4240        /* If device/qdisc don't need skb->dst, release it right now while
4241         * its hot in this cpu cache.
4242         */
4243        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4244                skb_dst_drop(skb);
4245        else
4246                skb_dst_force(skb);
4247
4248        txq = netdev_core_pick_tx(dev, skb, sb_dev);
4249        q = rcu_dereference_bh(txq->qdisc);
4250
4251        trace_net_dev_queue(skb);
4252        if (q->enqueue) {
4253                rc = __dev_xmit_skb(skb, q, dev, txq);
4254                goto out;
4255        }
4256
4257        /* The device has no queue. Common case for software devices:
4258         * loopback, all the sorts of tunnels...
4259
4260         * Really, it is unlikely that netif_tx_lock protection is necessary
4261         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4262         * counters.)
4263         * However, it is possible, that they rely on protection
4264         * made by us here.
4265
4266         * Check this and shot the lock. It is not prone from deadlocks.
4267         *Either shot noqueue qdisc, it is even simpler 8)
4268         */
4269        if (dev->flags & IFF_UP) {
4270                int cpu = smp_processor_id(); /* ok because BHs are off */
4271
4272                if (txq->xmit_lock_owner != cpu) {
4273                        if (dev_xmit_recursion())
4274                                goto recursion_alert;
4275
4276                        skb = validate_xmit_skb(skb, dev, &again);
4277                        if (!skb)
4278                                goto out;
4279
4280                        PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4281                        HARD_TX_LOCK(dev, txq, cpu);
4282
4283                        if (!netif_xmit_stopped(txq)) {
4284                                dev_xmit_recursion_inc();
4285                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4286                                dev_xmit_recursion_dec();
4287                                if (dev_xmit_complete(rc)) {
4288                                        HARD_TX_UNLOCK(dev, txq);
4289                                        goto out;
4290                                }
4291                        }
4292                        HARD_TX_UNLOCK(dev, txq);
4293                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4294                                             dev->name);
4295                } else {
4296                        /* Recursion is detected! It is possible,
4297                         * unfortunately
4298                         */
4299recursion_alert:
4300                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4301                                             dev->name);
4302                }
4303        }
4304
4305        rc = -ENETDOWN;
4306        rcu_read_unlock_bh();
4307
4308        atomic_long_inc(&dev->tx_dropped);
4309        kfree_skb_list(skb);
4310        return rc;
4311out:
4312        rcu_read_unlock_bh();
4313        return rc;
4314}
4315
4316int dev_queue_xmit(struct sk_buff *skb)
4317{
4318        return __dev_queue_xmit(skb, NULL);
4319}
4320EXPORT_SYMBOL(dev_queue_xmit);
4321
4322int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4323{
4324        return __dev_queue_xmit(skb, sb_dev);
4325}
4326EXPORT_SYMBOL(dev_queue_xmit_accel);
4327
4328int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4329{
4330        struct net_device *dev = skb->dev;
4331        struct sk_buff *orig_skb = skb;
4332        struct netdev_queue *txq;
4333        int ret = NETDEV_TX_BUSY;
4334        bool again = false;
4335
4336        if (unlikely(!netif_running(dev) ||
4337                     !netif_carrier_ok(dev)))
4338                goto drop;
4339
4340        skb = validate_xmit_skb_list(skb, dev, &again);
4341        if (skb != orig_skb)
4342                goto drop;
4343
4344        skb_set_queue_mapping(skb, queue_id);
4345        txq = skb_get_tx_queue(dev, skb);
4346        PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4347
4348        local_bh_disable();
4349
4350        dev_xmit_recursion_inc();
4351        HARD_TX_LOCK(dev, txq, smp_processor_id());
4352        if (!netif_xmit_frozen_or_drv_stopped(txq))
4353                ret = netdev_start_xmit(skb, dev, txq, false);
4354        HARD_TX_UNLOCK(dev, txq);
4355        dev_xmit_recursion_dec();
4356
4357        local_bh_enable();
4358        return ret;
4359drop:
4360        atomic_long_inc(&dev->tx_dropped);
4361        kfree_skb_list(skb);
4362        return NET_XMIT_DROP;
4363}
4364EXPORT_SYMBOL(__dev_direct_xmit);
4365
4366/*************************************************************************
4367 *                      Receiver routines
4368 *************************************************************************/
4369
4370int netdev_max_backlog __read_mostly = 1000;
4371EXPORT_SYMBOL(netdev_max_backlog);
4372
4373int netdev_tstamp_prequeue __read_mostly = 1;
4374int netdev_budget __read_mostly = 300;
4375/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4376unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4377int weight_p __read_mostly = 64;           /* old backlog weight */
4378int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4379int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4380int dev_rx_weight __read_mostly = 64;
4381int dev_tx_weight __read_mostly = 64;
4382/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4383int gro_normal_batch __read_mostly = 8;
4384
4385/* Called with irq disabled */
4386static inline void ____napi_schedule(struct softnet_data *sd,
4387                                     struct napi_struct *napi)
4388{
4389        struct task_struct *thread;
4390
4391        if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4392                /* Paired with smp_mb__before_atomic() in
4393                 * napi_enable()/dev_set_threaded().
4394                 * Use READ_ONCE() to guarantee a complete
4395                 * read on napi->thread. Only call
4396                 * wake_up_process() when it's not NULL.
4397                 */
4398                thread = READ_ONCE(napi->thread);
4399                if (thread) {
4400                        /* Avoid doing set_bit() if the thread is in
4401                         * INTERRUPTIBLE state, cause napi_thread_wait()
4402                         * makes sure to proceed with napi polling
4403                         * if the thread is explicitly woken from here.
4404                         */
4405                        if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4406                                set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4407                        wake_up_process(thread);
4408                        return;
4409                }
4410        }
4411
4412        list_add_tail(&napi->poll_list, &sd->poll_list);
4413        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4414}
4415
4416#ifdef CONFIG_RPS
4417
4418/* One global table that all flow-based protocols share. */
4419struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4420EXPORT_SYMBOL(rps_sock_flow_table);
4421u32 rps_cpu_mask __read_mostly;
4422EXPORT_SYMBOL(rps_cpu_mask);
4423
4424struct static_key_false rps_needed __read_mostly;
4425EXPORT_SYMBOL(rps_needed);
4426struct static_key_false rfs_needed __read_mostly;
4427EXPORT_SYMBOL(rfs_needed);
4428
4429static struct rps_dev_flow *
4430set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4431            struct rps_dev_flow *rflow, u16 next_cpu)
4432{
4433        if (next_cpu < nr_cpu_ids) {
4434#ifdef CONFIG_RFS_ACCEL
4435                struct netdev_rx_queue *rxqueue;
4436                struct rps_dev_flow_table *flow_table;
4437                struct rps_dev_flow *old_rflow;
4438                u32 flow_id;
4439                u16 rxq_index;
4440                int rc;
4441
4442                /* Should we steer this flow to a different hardware queue? */
4443                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4444                    !(dev->features & NETIF_F_NTUPLE))
4445                        goto out;
4446                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4447                if (rxq_index == skb_get_rx_queue(skb))
4448                        goto out;
4449
4450                rxqueue = dev->_rx + rxq_index;
4451                flow_table = rcu_dereference(rxqueue->rps_flow_table);
4452                if (!flow_table)
4453                        goto out;
4454                flow_id = skb_get_hash(skb) & flow_table->mask;
4455                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4456                                                        rxq_index, flow_id);
4457                if (rc < 0)
4458                        goto out;
4459                old_rflow = rflow;
4460                rflow = &flow_table->flows[flow_id];
4461                rflow->filter = rc;
4462                if (old_rflow->filter == rflow->filter)
4463                        old_rflow->filter = RPS_NO_FILTER;
4464        out:
4465#endif
4466                rflow->last_qtail =
4467                        per_cpu(softnet_data, next_cpu).input_queue_head;
4468        }
4469
4470        rflow->cpu = next_cpu;
4471        return rflow;
4472}
4473
4474/*
4475 * get_rps_cpu is called from netif_receive_skb and returns the target
4476 * CPU from the RPS map of the receiving queue for a given skb.
4477 * rcu_read_lock must be held on entry.
4478 */
4479static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4480                       struct rps_dev_flow **rflowp)
4481{
4482        const struct rps_sock_flow_table *sock_flow_table;
4483        struct netdev_rx_queue *rxqueue = dev->_rx;
4484        struct rps_dev_flow_table *flow_table;
4485        struct rps_map *map;
4486        int cpu = -1;
4487        u32 tcpu;
4488        u32 hash;
4489
4490        if (skb_rx_queue_recorded(skb)) {
4491                u16 index = skb_get_rx_queue(skb);
4492
4493                if (unlikely(index >= dev->real_num_rx_queues)) {
4494                        WARN_ONCE(dev->real_num_rx_queues > 1,
4495                                  "%s received packet on queue %u, but number "
4496                                  "of RX queues is %u\n",
4497                                  dev->name, index, dev->real_num_rx_queues);
4498                        goto done;
4499                }
4500                rxqueue += index;
4501        }
4502
4503        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4504
4505        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4506        map = rcu_dereference(rxqueue->rps_map);
4507        if (!flow_table && !map)
4508                goto done;
4509
4510        skb_reset_network_header(skb);
4511        hash = skb_get_hash(skb);
4512        if (!hash)
4513                goto done;
4514
4515        sock_flow_table = rcu_dereference(rps_sock_flow_table);
4516        if (flow_table && sock_flow_table) {
4517                struct rps_dev_flow *rflow;
4518                u32 next_cpu;
4519                u32 ident;
4520
4521                /* First check into global flow table if there is a match */
4522                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4523                if ((ident ^ hash) & ~rps_cpu_mask)
4524                        goto try_rps;
4525
4526                next_cpu = ident & rps_cpu_mask;
4527
4528                /* OK, now we know there is a match,
4529                 * we can look at the local (per receive queue) flow table
4530                 */
4531                rflow = &flow_table->flows[hash & flow_table->mask];
4532                tcpu = rflow->cpu;
4533
4534                /*
4535                 * If the desired CPU (where last recvmsg was done) is
4536                 * different from current CPU (one in the rx-queue flow
4537                 * table entry), switch if one of the following holds:
4538                 *   - Current CPU is unset (>= nr_cpu_ids).
4539                 *   - Current CPU is offline.
4540                 *   - The current CPU's queue tail has advanced beyond the
4541                 *     last packet that was enqueued using this table entry.
4542                 *     This guarantees that all previous packets for the flow
4543                 *     have been dequeued, thus preserving in order delivery.
4544                 */
4545                if (unlikely(tcpu != next_cpu) &&
4546                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4547                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4548                      rflow->last_qtail)) >= 0)) {
4549                        tcpu = next_cpu;
4550                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4551                }
4552
4553                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4554                        *rflowp = rflow;
4555                        cpu = tcpu;
4556                        goto done;
4557                }
4558        }
4559
4560try_rps:
4561
4562        if (map) {
4563                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4564                if (cpu_online(tcpu)) {
4565                        cpu = tcpu;
4566                        goto done;
4567                }
4568        }
4569
4570done:
4571        return cpu;
4572}
4573
4574#ifdef CONFIG_RFS_ACCEL
4575
4576/**
4577 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4578 * @dev: Device on which the filter was set
4579 * @rxq_index: RX queue index
4580 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4581 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4582 *
4583 * Drivers that implement ndo_rx_flow_steer() should periodically call
4584 * this function for each installed filter and remove the filters for
4585 * which it returns %true.
4586 */
4587bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4588                         u32 flow_id, u16 filter_id)
4589{
4590        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4591        struct rps_dev_flow_table *flow_table;
4592        struct rps_dev_flow *rflow;
4593        bool expire = true;
4594        unsigned int cpu;
4595
4596        rcu_read_lock();
4597        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4598        if (flow_table && flow_id <= flow_table->mask) {
4599                rflow = &flow_table->flows[flow_id];
4600                cpu = READ_ONCE(rflow->cpu);
4601                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4602                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4603                           rflow->last_qtail) <
4604                     (int)(10 * flow_table->mask)))
4605                        expire = false;
4606        }
4607        rcu_read_unlock();
4608        return expire;
4609}
4610EXPORT_SYMBOL(rps_may_expire_flow);
4611
4612#endif /* CONFIG_RFS_ACCEL */
4613
4614/* Called from hardirq (IPI) context */
4615static void rps_trigger_softirq(void *data)
4616{
4617        struct softnet_data *sd = data;
4618
4619        ____napi_schedule(sd, &sd->backlog);
4620        sd->received_rps++;
4621}
4622
4623#endif /* CONFIG_RPS */
4624
4625/*
4626 * Check if this softnet_data structure is another cpu one
4627 * If yes, queue it to our IPI list and return 1
4628 * If no, return 0
4629 */
4630static int rps_ipi_queued(struct softnet_data *sd)
4631{
4632#ifdef CONFIG_RPS
4633        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4634
4635        if (sd != mysd) {
4636                sd->rps_ipi_next = mysd->rps_ipi_list;
4637                mysd->rps_ipi_list = sd;
4638
4639                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4640                return 1;
4641        }
4642#endif /* CONFIG_RPS */
4643        return 0;
4644}
4645
4646#ifdef CONFIG_NET_FLOW_LIMIT
4647int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4648#endif
4649
4650static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4651{
4652#ifdef CONFIG_NET_FLOW_LIMIT
4653        struct sd_flow_limit *fl;
4654        struct softnet_data *sd;
4655        unsigned int old_flow, new_flow;
4656
4657        if (qlen < (netdev_max_backlog >> 1))
4658                return false;
4659
4660        sd = this_cpu_ptr(&softnet_data);
4661
4662        rcu_read_lock();
4663        fl = rcu_dereference(sd->flow_limit);
4664        if (fl) {
4665                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4666                old_flow = fl->history[fl->history_head];
4667                fl->history[fl->history_head] = new_flow;
4668
4669                fl->history_head++;
4670                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4671
4672                if (likely(fl->buckets[old_flow]))
4673                        fl->buckets[old_flow]--;
4674
4675                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4676                        fl->count++;
4677                        rcu_read_unlock();
4678                        return true;
4679                }
4680        }
4681        rcu_read_unlock();
4682#endif
4683        return false;
4684}
4685
4686/*
4687 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4688 * queue (may be a remote CPU queue).
4689 */
4690static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4691                              unsigned int *qtail)
4692{
4693        struct softnet_data *sd;
4694        unsigned long flags;
4695        unsigned int qlen;
4696
4697        sd = &per_cpu(softnet_data, cpu);
4698
4699        local_irq_save(flags);
4700
4701        rps_lock(sd);
4702        if (!netif_running(skb->dev))
4703                goto drop;
4704        qlen = skb_queue_len(&sd->input_pkt_queue);
4705        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4706                if (qlen) {
4707enqueue:
4708                        __skb_queue_tail(&sd->input_pkt_queue, skb);
4709                        input_queue_tail_incr_save(sd, qtail);
4710                        rps_unlock(sd);
4711                        local_irq_restore(flags);
4712                        return NET_RX_SUCCESS;
4713                }
4714
4715                /* Schedule NAPI for backlog device
4716                 * We can use non atomic operation since we own the queue lock
4717                 */
4718                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4719                        if (!rps_ipi_queued(sd))
4720                                ____napi_schedule(sd, &sd->backlog);
4721                }
4722                goto enqueue;
4723        }
4724
4725drop:
4726        sd->dropped++;
4727        rps_unlock(sd);
4728
4729        local_irq_restore(flags);
4730
4731        atomic_long_inc(&skb->dev->rx_dropped);
4732        kfree_skb(skb);
4733        return NET_RX_DROP;
4734}
4735
4736static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4737{
4738        struct net_device *dev = skb->dev;
4739        struct netdev_rx_queue *rxqueue;
4740
4741        rxqueue = dev->_rx;
4742
4743        if (skb_rx_queue_recorded(skb)) {
4744                u16 index = skb_get_rx_queue(skb);
4745
4746                if (unlikely(index >= dev->real_num_rx_queues)) {
4747                        WARN_ONCE(dev->real_num_rx_queues > 1,
4748                                  "%s received packet on queue %u, but number "
4749                                  "of RX queues is %u\n",
4750                                  dev->name, index, dev->real_num_rx_queues);
4751
4752                        return rxqueue; /* Return first rxqueue */
4753                }
4754                rxqueue += index;
4755        }
4756        return rxqueue;
4757}
4758
4759static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4760                                     struct xdp_buff *xdp,
4761                                     struct bpf_prog *xdp_prog)
4762{
4763        void *orig_data, *orig_data_end, *hard_start;
4764        struct netdev_rx_queue *rxqueue;
4765        u32 metalen, act = XDP_DROP;
4766        bool orig_bcast, orig_host;
4767        u32 mac_len, frame_sz;
4768        __be16 orig_eth_type;
4769        struct ethhdr *eth;
4770        int off;
4771
4772        /* Reinjected packets coming from act_mirred or similar should
4773         * not get XDP generic processing.
4774         */
4775        if (skb_is_redirected(skb))
4776                return XDP_PASS;
4777
4778        /* XDP packets must be linear and must have sufficient headroom
4779         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4780         * native XDP provides, thus we need to do it here as well.
4781         */
4782        if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4783            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4784                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4785                int troom = skb->tail + skb->data_len - skb->end;
4786
4787                /* In case we have to go down the path and also linearize,
4788                 * then lets do the pskb_expand_head() work just once here.
4789                 */
4790                if (pskb_expand_head(skb,
4791                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4792                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4793                        goto do_drop;
4794                if (skb_linearize(skb))
4795                        goto do_drop;
4796        }
4797
4798        /* The XDP program wants to see the packet starting at the MAC
4799         * header.
4800         */
4801        mac_len = skb->data - skb_mac_header(skb);
4802        hard_start = skb->data - skb_headroom(skb);
4803
4804        /* SKB "head" area always have tailroom for skb_shared_info */
4805        frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4806        frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4807
4808        rxqueue = netif_get_rxqueue(skb);
4809        xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4810        xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4811                         skb_headlen(skb) + mac_len, true);
4812
4813        orig_data_end = xdp->data_end;
4814        orig_data = xdp->data;
4815        eth = (struct ethhdr *)xdp->data;
4816        orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4817        orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4818        orig_eth_type = eth->h_proto;
4819
4820        act = bpf_prog_run_xdp(xdp_prog, xdp);
4821
4822        /* check if bpf_xdp_adjust_head was used */
4823        off = xdp->data - orig_data;
4824        if (off) {
4825                if (off > 0)
4826                        __skb_pull(skb, off);
4827                else if (off < 0)
4828                        __skb_push(skb, -off);
4829
4830                skb->mac_header += off;
4831                skb_reset_network_header(skb);
4832        }
4833
4834        /* check if bpf_xdp_adjust_tail was used */
4835        off = xdp->data_end - orig_data_end;
4836        if (off != 0) {
4837                skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4838                skb->len += off; /* positive on grow, negative on shrink */
4839        }
4840
4841        /* check if XDP changed eth hdr such SKB needs update */
4842        eth = (struct ethhdr *)xdp->data;
4843        if ((orig_eth_type != eth->h_proto) ||
4844            (orig_host != ether_addr_equal_64bits(eth->h_dest,
4845                                                  skb->dev->dev_addr)) ||
4846            (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4847                __skb_push(skb, ETH_HLEN);
4848                skb->pkt_type = PACKET_HOST;
4849                skb->protocol = eth_type_trans(skb, skb->dev);
4850        }
4851
4852        switch (act) {
4853        case XDP_REDIRECT:
4854        case XDP_TX:
4855                __skb_push(skb, mac_len);
4856                break;
4857        case XDP_PASS:
4858                metalen = xdp->data - xdp->data_meta;
4859                if (metalen)
4860                        skb_metadata_set(skb, metalen);
4861                break;
4862        default:
4863                bpf_warn_invalid_xdp_action(act);
4864                fallthrough;
4865        case XDP_ABORTED:
4866                trace_xdp_exception(skb->dev, xdp_prog, act);
4867                fallthrough;
4868        case XDP_DROP:
4869        do_drop:
4870                kfree_skb(skb);
4871                break;
4872        }
4873
4874        return act;
4875}
4876
4877/* When doing generic XDP we have to bypass the qdisc layer and the
4878 * network taps in order to match in-driver-XDP behavior.
4879 */
4880void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4881{
4882        struct net_device *dev = skb->dev;
4883        struct netdev_queue *txq;
4884        bool free_skb = true;
4885        int cpu, rc;
4886
4887        txq = netdev_core_pick_tx(dev, skb, NULL);
4888        cpu = smp_processor_id();
4889        HARD_TX_LOCK(dev, txq, cpu);
4890        if (!netif_xmit_stopped(txq)) {
4891                rc = netdev_start_xmit(skb, dev, txq, 0);
4892                if (dev_xmit_complete(rc))
4893                        free_skb = false;
4894        }
4895        HARD_TX_UNLOCK(dev, txq);
4896        if (free_skb) {
4897                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4898                kfree_skb(skb);
4899        }
4900}
4901
4902static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4903
4904int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4905{
4906        if (xdp_prog) {
4907                struct xdp_buff xdp;
4908                u32 act;
4909                int err;
4910
4911                act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4912                if (act != XDP_PASS) {
4913                        switch (act) {
4914                        case XDP_REDIRECT:
4915                                err = xdp_do_generic_redirect(skb->dev, skb,
4916                                                              &xdp, xdp_prog);
4917                                if (err)
4918                                        goto out_redir;
4919                                break;
4920                        case XDP_TX:
4921                                generic_xdp_tx(skb, xdp_prog);
4922                                break;
4923                        }
4924                        return XDP_DROP;
4925                }
4926        }
4927        return XDP_PASS;
4928out_redir:
4929        kfree_skb(skb);
4930        return XDP_DROP;
4931}
4932EXPORT_SYMBOL_GPL(do_xdp_generic);
4933
4934static int netif_rx_internal(struct sk_buff *skb)
4935{
4936        int ret;
4937
4938        net_timestamp_check(netdev_tstamp_prequeue, skb);
4939
4940        trace_netif_rx(skb);
4941
4942#ifdef CONFIG_RPS
4943        if (static_branch_unlikely(&rps_needed)) {
4944                struct rps_dev_flow voidflow, *rflow = &voidflow;
4945                int cpu;
4946
4947                preempt_disable();
4948                rcu_read_lock();
4949
4950                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4951                if (cpu < 0)
4952                        cpu = smp_processor_id();
4953
4954                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4955
4956                rcu_read_unlock();
4957                preempt_enable();
4958        } else
4959#endif
4960        {
4961                unsigned int qtail;
4962
4963                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4964                put_cpu();
4965        }
4966        return ret;
4967}
4968
4969/**
4970 *      netif_rx        -       post buffer to the network code
4971 *      @skb: buffer to post
4972 *
4973 *      This function receives a packet from a device driver and queues it for
4974 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4975 *      may be dropped during processing for congestion control or by the
4976 *      protocol layers.
4977 *
4978 *      return values:
4979 *      NET_RX_SUCCESS  (no congestion)
4980 *      NET_RX_DROP     (packet was dropped)
4981 *
4982 */
4983
4984int netif_rx(struct sk_buff *skb)
4985{
4986        int ret;
4987
4988        trace_netif_rx_entry(skb);
4989
4990        ret = netif_rx_internal(skb);
4991        trace_netif_rx_exit(ret);
4992
4993        return ret;
4994}
4995EXPORT_SYMBOL(netif_rx);
4996
4997int netif_rx_ni(struct sk_buff *skb)
4998{
4999        int err;
5000
5001        trace_netif_rx_ni_entry(skb);
5002
5003        preempt_disable();
5004        err = netif_rx_internal(skb);
5005        if (local_softirq_pending())
5006                do_softirq();
5007        preempt_enable();
5008        trace_netif_rx_ni_exit(err);
5009
5010        return err;
5011}
5012EXPORT_SYMBOL(netif_rx_ni);
5013
5014int netif_rx_any_context(struct sk_buff *skb)
5015{
5016        /*
5017         * If invoked from contexts which do not invoke bottom half
5018         * processing either at return from interrupt or when softrqs are
5019         * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5020         * directly.
5021         */
5022        if (in_interrupt())
5023                return netif_rx(skb);
5024        else
5025                return netif_rx_ni(skb);
5026}
5027EXPORT_SYMBOL(netif_rx_any_context);
5028
5029static __latent_entropy void net_tx_action(struct softirq_action *h)
5030{
5031        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5032
5033        if (sd->completion_queue) {
5034                struct sk_buff *clist;
5035
5036                local_irq_disable();
5037                clist = sd->completion_queue;
5038                sd->completion_queue = NULL;
5039                local_irq_enable();
5040
5041                while (clist) {
5042                        struct sk_buff *skb = clist;
5043
5044                        clist = clist->next;
5045
5046                        WARN_ON(refcount_read(&skb->users));
5047                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5048                                trace_consume_skb(skb);
5049                        else
5050                                trace_kfree_skb(skb, net_tx_action);
5051
5052                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5053                                __kfree_skb(skb);
5054                        else
5055                                __kfree_skb_defer(skb);
5056                }
5057        }
5058
5059        if (sd->output_queue) {
5060                struct Qdisc *head;
5061
5062                local_irq_disable();
5063                head = sd->output_queue;
5064                sd->output_queue = NULL;
5065                sd->output_queue_tailp = &sd->output_queue;
5066                local_irq_enable();
5067
5068                rcu_read_lock();
5069
5070                while (head) {
5071                        struct Qdisc *q = head;
5072                        spinlock_t *root_lock = NULL;
5073
5074                        head = head->next_sched;
5075
5076                        /* We need to make sure head->next_sched is read
5077                         * before clearing __QDISC_STATE_SCHED
5078                         */
5079                        smp_mb__before_atomic();
5080
5081                        if (!(q->flags & TCQ_F_NOLOCK)) {
5082                                root_lock = qdisc_lock(q);
5083                                spin_lock(root_lock);
5084                        } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5085                                                     &q->state))) {
5086                                /* There is a synchronize_net() between
5087                                 * STATE_DEACTIVATED flag being set and
5088                                 * qdisc_reset()/some_qdisc_is_busy() in
5089                                 * dev_deactivate(), so we can safely bail out
5090                                 * early here to avoid data race between
5091                                 * qdisc_deactivate() and some_qdisc_is_busy()
5092                                 * for lockless qdisc.
5093                                 */
5094                                clear_bit(__QDISC_STATE_SCHED, &q->state);
5095                                continue;
5096                        }
5097
5098                        clear_bit(__QDISC_STATE_SCHED, &q->state);
5099                        qdisc_run(q);
5100                        if (root_lock)
5101                                spin_unlock(root_lock);
5102                }
5103
5104                rcu_read_unlock();
5105        }
5106
5107        xfrm_dev_backlog(sd);
5108}
5109
5110#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5111/* This hook is defined here for ATM LANE */
5112int (*br_fdb_test_addr_hook)(struct net_device *dev,
5113                             unsigned char *addr) __read_mostly;
5114EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5115#endif
5116
5117static inline struct sk_buff *
5118sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5119                   struct net_device *orig_dev, bool *another)
5120{
5121#ifdef CONFIG_NET_CLS_ACT
5122        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5123        struct tcf_result cl_res;
5124
5125        /* If there's at least one ingress present somewhere (so
5126         * we get here via enabled static key), remaining devices
5127         * that are not configured with an ingress qdisc will bail
5128         * out here.
5129         */
5130        if (!miniq)
5131                return skb;
5132
5133        if (*pt_prev) {
5134                *ret = deliver_skb(skb, *pt_prev, orig_dev);
5135                *pt_prev = NULL;
5136        }
5137
5138        qdisc_skb_cb(skb)->pkt_len = skb->len;
5139        qdisc_skb_cb(skb)->mru = 0;
5140        qdisc_skb_cb(skb)->post_ct = false;
5141        skb->tc_at_ingress = 1;
5142        mini_qdisc_bstats_cpu_update(miniq, skb);
5143
5144        switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5145                                     &cl_res, false)) {
5146        case TC_ACT_OK:
5147        case TC_ACT_RECLASSIFY:
5148                skb->tc_index = TC_H_MIN(cl_res.classid);
5149                break;
5150        case TC_ACT_SHOT:
5151                mini_qdisc_qstats_cpu_drop(miniq);
5152                kfree_skb(skb);
5153                return NULL;
5154        case TC_ACT_STOLEN:
5155        case TC_ACT_QUEUED:
5156        case TC_ACT_TRAP:
5157                consume_skb(skb);
5158                return NULL;
5159        case TC_ACT_REDIRECT:
5160                /* skb_mac_header check was done by cls/act_bpf, so
5161                 * we can safely push the L2 header back before
5162                 * redirecting to another netdev
5163                 */
5164                __skb_push(skb, skb->mac_len);
5165                if (skb_do_redirect(skb) == -EAGAIN) {
5166                        __skb_pull(skb, skb->mac_len);
5167                        *another = true;
5168                        break;
5169                }
5170                return NULL;
5171        case TC_ACT_CONSUMED:
5172                return NULL;
5173        default:
5174                break;
5175        }
5176#endif /* CONFIG_NET_CLS_ACT */
5177        return skb;
5178}
5179
5180/**
5181 *      netdev_is_rx_handler_busy - check if receive handler is registered
5182 *      @dev: device to check
5183 *
5184 *      Check if a receive handler is already registered for a given device.
5185 *      Return true if there one.
5186 *
5187 *      The caller must hold the rtnl_mutex.
5188 */
5189bool netdev_is_rx_handler_busy(struct net_device *dev)
5190{
5191        ASSERT_RTNL();
5192        return dev && rtnl_dereference(dev->rx_handler);
5193}
5194EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5195
5196/**
5197 *      netdev_rx_handler_register - register receive handler
5198 *      @dev: device to register a handler for
5199 *      @rx_handler: receive handler to register
5200 *      @rx_handler_data: data pointer that is used by rx handler
5201 *
5202 *      Register a receive handler for a device. This handler will then be
5203 *      called from __netif_receive_skb. A negative errno code is returned
5204 *      on a failure.
5205 *
5206 *      The caller must hold the rtnl_mutex.
5207 *
5208 *      For a general description of rx_handler, see enum rx_handler_result.
5209 */
5210int netdev_rx_handler_register(struct net_device *dev,
5211                               rx_handler_func_t *rx_handler,
5212                               void *rx_handler_data)
5213{
5214        if (netdev_is_rx_handler_busy(dev))
5215                return -EBUSY;
5216
5217        if (dev->priv_flags & IFF_NO_RX_HANDLER)
5218                return -EINVAL;
5219
5220        /* Note: rx_handler_data must be set before rx_handler */
5221        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5222        rcu_assign_pointer(dev->rx_handler, rx_handler);
5223
5224        return 0;
5225}
5226EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5227
5228/**
5229 *      netdev_rx_handler_unregister - unregister receive handler
5230 *      @dev: device to unregister a handler from
5231 *
5232 *      Unregister a receive handler from a device.
5233 *
5234 *      The caller must hold the rtnl_mutex.
5235 */
5236void netdev_rx_handler_unregister(struct net_device *dev)
5237{
5238
5239        ASSERT_RTNL();
5240        RCU_INIT_POINTER(dev->rx_handler, NULL);
5241        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5242         * section has a guarantee to see a non NULL rx_handler_data
5243         * as well.
5244         */
5245        synchronize_net();
5246        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5247}
5248EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5249
5250/*
5251 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5252 * the special handling of PFMEMALLOC skbs.
5253 */
5254static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5255{
5256        switch (skb->protocol) {
5257        case htons(ETH_P_ARP):
5258        case htons(ETH_P_IP):
5259        case htons(ETH_P_IPV6):
5260        case htons(ETH_P_8021Q):
5261        case htons(ETH_P_8021AD):
5262                return true;
5263        default:
5264                return false;
5265        }
5266}
5267
5268static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5269                             int *ret, struct net_device *orig_dev)
5270{
5271        if (nf_hook_ingress_active(skb)) {
5272                int ingress_retval;
5273
5274                if (*pt_prev) {
5275                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
5276                        *pt_prev = NULL;
5277                }
5278
5279                rcu_read_lock();
5280                ingress_retval = nf_hook_ingress(skb);
5281                rcu_read_unlock();
5282                return ingress_retval;
5283        }
5284        return 0;
5285}
5286
5287static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5288                                    struct packet_type **ppt_prev)
5289{
5290        struct packet_type *ptype, *pt_prev;
5291        rx_handler_func_t *rx_handler;
5292        struct sk_buff *skb = *pskb;
5293        struct net_device *orig_dev;
5294        bool deliver_exact = false;
5295        int ret = NET_RX_DROP;
5296        __be16 type;
5297
5298        net_timestamp_check(!netdev_tstamp_prequeue, skb);
5299
5300        trace_netif_receive_skb(skb);
5301
5302        orig_dev = skb->dev;
5303
5304        skb_reset_network_header(skb);
5305        if (!skb_transport_header_was_set(skb))
5306                skb_reset_transport_header(skb);
5307        skb_reset_mac_len(skb);
5308
5309        pt_prev = NULL;
5310
5311another_round:
5312        skb->skb_iif = skb->dev->ifindex;
5313
5314        __this_cpu_inc(softnet_data.processed);
5315
5316        if (static_branch_unlikely(&generic_xdp_needed_key)) {
5317                int ret2;
5318
5319                migrate_disable();
5320                ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5321                migrate_enable();
5322
5323                if (ret2 != XDP_PASS) {
5324                        ret = NET_RX_DROP;
5325                        goto out;
5326                }
5327                skb_reset_mac_len(skb);
5328        }
5329
5330        if (eth_type_vlan(skb->protocol)) {
5331                skb = skb_vlan_untag(skb);
5332                if (unlikely(!skb))
5333                        goto out;
5334        }
5335
5336        if (skb_skip_tc_classify(skb))
5337                goto skip_classify;
5338
5339        if (pfmemalloc)
5340                goto skip_taps;
5341
5342        list_for_each_entry_rcu(ptype, &ptype_all, list) {
5343                if (pt_prev)
5344                        ret = deliver_skb(skb, pt_prev, orig_dev);
5345                pt_prev = ptype;
5346        }
5347
5348        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5349                if (pt_prev)
5350                        ret = deliver_skb(skb, pt_prev, orig_dev);
5351                pt_prev = ptype;
5352        }
5353
5354skip_taps:
5355#ifdef CONFIG_NET_INGRESS
5356        if (static_branch_unlikely(&ingress_needed_key)) {
5357                bool another = false;
5358
5359                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5360                                         &another);
5361                if (another)
5362                        goto another_round;
5363                if (!skb)
5364                        goto out;
5365
5366                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5367                        goto out;
5368        }
5369#endif
5370        skb_reset_redirect(skb);
5371skip_classify:
5372        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5373                goto drop;
5374
5375        if (skb_vlan_tag_present(skb)) {
5376                if (pt_prev) {
5377                        ret = deliver_skb(skb, pt_prev, orig_dev);
5378                        pt_prev = NULL;
5379                }
5380                if (vlan_do_receive(&skb))
5381                        goto another_round;
5382                else if (unlikely(!skb))
5383                        goto out;
5384        }
5385
5386        rx_handler = rcu_dereference(skb->dev->rx_handler);
5387        if (rx_handler) {
5388                if (pt_prev) {
5389                        ret = deliver_skb(skb, pt_prev, orig_dev);
5390                        pt_prev = NULL;
5391                }
5392                switch (rx_handler(&skb)) {
5393                case RX_HANDLER_CONSUMED:
5394                        ret = NET_RX_SUCCESS;
5395                        goto out;
5396                case RX_HANDLER_ANOTHER:
5397                        goto another_round;
5398                case RX_HANDLER_EXACT:
5399                        deliver_exact = true;
5400                        break;
5401                case RX_HANDLER_PASS:
5402                        break;
5403                default:
5404                        BUG();
5405                }
5406        }
5407
5408        if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5409check_vlan_id:
5410                if (skb_vlan_tag_get_id(skb)) {
5411                        /* Vlan id is non 0 and vlan_do_receive() above couldn't
5412                         * find vlan device.
5413                         */
5414                        skb->pkt_type = PACKET_OTHERHOST;
5415                } else if (eth_type_vlan(skb->protocol)) {
5416                        /* Outer header is 802.1P with vlan 0, inner header is
5417                         * 802.1Q or 802.1AD and vlan_do_receive() above could
5418                         * not find vlan dev for vlan id 0.
5419                         */
5420                        __vlan_hwaccel_clear_tag(skb);
5421                        skb = skb_vlan_untag(skb);
5422                        if (unlikely(!skb))
5423                                goto out;
5424                        if (vlan_do_receive(&skb))
5425                                /* After stripping off 802.1P header with vlan 0
5426                                 * vlan dev is found for inner header.
5427                                 */
5428                                goto another_round;
5429                        else if (unlikely(!skb))
5430                                goto out;
5431                        else
5432                                /* We have stripped outer 802.1P vlan 0 header.
5433                                 * But could not find vlan dev.
5434                                 * check again for vlan id to set OTHERHOST.
5435                                 */
5436                                goto check_vlan_id;
5437                }
5438                /* Note: we might in the future use prio bits
5439                 * and set skb->priority like in vlan_do_receive()
5440                 * For the time being, just ignore Priority Code Point
5441                 */
5442                __vlan_hwaccel_clear_tag(skb);
5443        }
5444
5445        type = skb->protocol;
5446
5447        /* deliver only exact match when indicated */
5448        if (likely(!deliver_exact)) {
5449                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5450                                       &ptype_base[ntohs(type) &
5451                                                   PTYPE_HASH_MASK]);
5452        }
5453
5454        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5455                               &orig_dev->ptype_specific);
5456
5457        if (unlikely(skb->dev != orig_dev)) {
5458                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5459                                       &skb->dev->ptype_specific);
5460        }
5461
5462        if (pt_prev) {
5463                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5464                        goto drop;
5465                *ppt_prev = pt_prev;
5466        } else {
5467drop:
5468                if (!deliver_exact)
5469                        atomic_long_inc(&skb->dev->rx_dropped);
5470                else
5471                        atomic_long_inc(&skb->dev->rx_nohandler);
5472                kfree_skb(skb);
5473                /* Jamal, now you will not able to escape explaining
5474                 * me how you were going to use this. :-)
5475                 */
5476                ret = NET_RX_DROP;
5477        }
5478
5479out:
5480        /* The invariant here is that if *ppt_prev is not NULL
5481         * then skb should also be non-NULL.
5482         *
5483         * Apparently *ppt_prev assignment above holds this invariant due to
5484         * skb dereferencing near it.
5485         */
5486        *pskb = skb;
5487        return ret;
5488}
5489
5490static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5491{
5492        struct net_device *orig_dev = skb->dev;
5493        struct packet_type *pt_prev = NULL;
5494        int ret;
5495
5496        ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5497        if (pt_prev)
5498                ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5499                                         skb->dev, pt_prev, orig_dev);
5500        return ret;
5501}
5502
5503/**
5504 *      netif_receive_skb_core - special purpose version of netif_receive_skb
5505 *      @skb: buffer to process
5506 *
5507 *      More direct receive version of netif_receive_skb().  It should
5508 *      only be used by callers that have a need to skip RPS and Generic XDP.
5509 *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5510 *
5511 *      This function may only be called from softirq context and interrupts
5512 *      should be enabled.
5513 *
5514 *      Return values (usually ignored):
5515 *      NET_RX_SUCCESS: no congestion
5516 *      NET_RX_DROP: packet was dropped
5517 */
5518int netif_receive_skb_core(struct sk_buff *skb)
5519{
5520        int ret;
5521
5522        rcu_read_lock();
5523        ret = __netif_receive_skb_one_core(skb, false);
5524        rcu_read_unlock();
5525
5526        return ret;
5527}
5528EXPORT_SYMBOL(netif_receive_skb_core);
5529
5530static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5531                                                  struct packet_type *pt_prev,
5532                                                  struct net_device *orig_dev)
5533{
5534        struct sk_buff *skb, *next;
5535
5536        if (!pt_prev)
5537                return;
5538        if (list_empty(head))
5539                return;
5540        if (pt_prev->list_func != NULL)
5541                INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5542                                   ip_list_rcv, head, pt_prev, orig_dev);
5543        else
5544                list_for_each_entry_safe(skb, next, head, list) {
5545                        skb_list_del_init(skb);
5546                        pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5547                }
5548}
5549
5550static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5551{
5552        /* Fast-path assumptions:
5553         * - There is no RX handler.
5554         * - Only one packet_type matches.
5555         * If either of these fails, we will end up doing some per-packet
5556         * processing in-line, then handling the 'last ptype' for the whole
5557         * sublist.  This can't cause out-of-order delivery to any single ptype,
5558         * because the 'last ptype' must be constant across the sublist, and all
5559         * other ptypes are handled per-packet.
5560         */
5561        /* Current (common) ptype of sublist */
5562        struct packet_type *pt_curr = NULL;
5563        /* Current (common) orig_dev of sublist */
5564        struct net_device *od_curr = NULL;
5565        struct list_head sublist;
5566        struct sk_buff *skb, *next;
5567
5568        INIT_LIST_HEAD(&sublist);
5569        list_for_each_entry_safe(skb, next, head, list) {
5570                struct net_device *orig_dev = skb->dev;
5571                struct packet_type *pt_prev = NULL;
5572
5573                skb_list_del_init(skb);
5574                __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5575                if (!pt_prev)
5576                        continue;
5577                if (pt_curr != pt_prev || od_curr != orig_dev) {
5578                        /* dispatch old sublist */
5579                        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5580                        /* start new sublist */
5581                        INIT_LIST_HEAD(&sublist);
5582                        pt_curr = pt_prev;
5583                        od_curr = orig_dev;
5584                }
5585                list_add_tail(&skb->list, &sublist);
5586        }
5587
5588        /* dispatch final sublist */
5589        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5590}
5591
5592static int __netif_receive_skb(struct sk_buff *skb)
5593{
5594        int ret;
5595
5596        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5597                unsigned int noreclaim_flag;
5598
5599                /*
5600                 * PFMEMALLOC skbs are special, they should
5601                 * - be delivered to SOCK_MEMALLOC sockets only
5602                 * - stay away from userspace
5603                 * - have bounded memory usage
5604                 *
5605                 * Use PF_MEMALLOC as this saves us from propagating the allocation
5606                 * context down to all allocation sites.
5607                 */
5608                noreclaim_flag = memalloc_noreclaim_save();
5609                ret = __netif_receive_skb_one_core(skb, true);
5610                memalloc_noreclaim_restore(noreclaim_flag);
5611        } else
5612                ret = __netif_receive_skb_one_core(skb, false);
5613
5614        return ret;
5615}
5616
5617static void __netif_receive_skb_list(struct list_head *head)
5618{
5619        unsigned long noreclaim_flag = 0;
5620        struct sk_buff *skb, *next;
5621        bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5622
5623        list_for_each_entry_safe(skb, next, head, list) {
5624                if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5625                        struct list_head sublist;
5626
5627                        /* Handle the previous sublist */
5628                        list_cut_before(&sublist, head, &skb->list);
5629                        if (!list_empty(&sublist))
5630                                __netif_receive_skb_list_core(&sublist, pfmemalloc);
5631                        pfmemalloc = !pfmemalloc;
5632                        /* See comments in __netif_receive_skb */
5633                        if (pfmemalloc)
5634                                noreclaim_flag = memalloc_noreclaim_save();
5635                        else
5636                                memalloc_noreclaim_restore(noreclaim_flag);
5637                }
5638        }
5639        /* Handle the remaining sublist */
5640        if (!list_empty(head))
5641                __netif_receive_skb_list_core(head, pfmemalloc);
5642        /* Restore pflags */
5643        if (pfmemalloc)
5644                memalloc_noreclaim_restore(noreclaim_flag);
5645}
5646
5647static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5648{
5649        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5650        struct bpf_prog *new = xdp->prog;
5651        int ret = 0;
5652
5653        if (new) {
5654                u32 i;
5655
5656                mutex_lock(&new->aux->used_maps_mutex);
5657
5658                /* generic XDP does not work with DEVMAPs that can
5659                 * have a bpf_prog installed on an entry
5660                 */
5661                for (i = 0; i < new->aux->used_map_cnt; i++) {
5662                        if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5663                            cpu_map_prog_allowed(new->aux->used_maps[i])) {
5664                                mutex_unlock(&new->aux->used_maps_mutex);
5665                                return -EINVAL;
5666                        }
5667                }
5668
5669                mutex_unlock(&new->aux->used_maps_mutex);
5670        }
5671
5672        switch (xdp->command) {
5673        case XDP_SETUP_PROG:
5674                rcu_assign_pointer(dev->xdp_prog, new);
5675                if (old)
5676                        bpf_prog_put(old);
5677
5678                if (old && !new) {
5679                        static_branch_dec(&generic_xdp_needed_key);
5680                } else if (new && !old) {
5681                        static_branch_inc(&generic_xdp_needed_key);
5682                        dev_disable_lro(dev);
5683                        dev_disable_gro_hw(dev);
5684                }
5685                break;
5686
5687        default:
5688                ret = -EINVAL;
5689                break;
5690        }
5691
5692        return ret;
5693}
5694
5695static int netif_receive_skb_internal(struct sk_buff *skb)
5696{
5697        int ret;
5698
5699        net_timestamp_check(netdev_tstamp_prequeue, skb);
5700
5701        if (skb_defer_rx_timestamp(skb))
5702                return NET_RX_SUCCESS;
5703
5704        rcu_read_lock();
5705#ifdef CONFIG_RPS
5706        if (static_branch_unlikely(&rps_needed)) {
5707                struct rps_dev_flow voidflow, *rflow = &voidflow;
5708                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709
5710                if (cpu >= 0) {
5711                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712                        rcu_read_unlock();
5713                        return ret;
5714                }
5715        }
5716#endif
5717        ret = __netif_receive_skb(skb);
5718        rcu_read_unlock();
5719        return ret;
5720}
5721
5722static void netif_receive_skb_list_internal(struct list_head *head)
5723{
5724        struct sk_buff *skb, *next;
5725        struct list_head sublist;
5726
5727        INIT_LIST_HEAD(&sublist);
5728        list_for_each_entry_safe(skb, next, head, list) {
5729                net_timestamp_check(netdev_tstamp_prequeue, skb);
5730                skb_list_del_init(skb);
5731                if (!skb_defer_rx_timestamp(skb))
5732                        list_add_tail(&skb->list, &sublist);
5733        }
5734        list_splice_init(&sublist, head);
5735
5736        rcu_read_lock();
5737#ifdef CONFIG_RPS
5738        if (static_branch_unlikely(&rps_needed)) {
5739                list_for_each_entry_safe(skb, next, head, list) {
5740                        struct rps_dev_flow voidflow, *rflow = &voidflow;
5741                        int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5742
5743                        if (cpu >= 0) {
5744                                /* Will be handled, remove from list */
5745                                skb_list_del_init(skb);
5746                                enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5747                        }
5748                }
5749        }
5750#endif
5751        __netif_receive_skb_list(head);
5752        rcu_read_unlock();
5753}
5754
5755/**
5756 *      netif_receive_skb - process receive buffer from network
5757 *      @skb: buffer to process
5758 *
5759 *      netif_receive_skb() is the main receive data processing function.
5760 *      It always succeeds. The buffer may be dropped during processing
5761 *      for congestion control or by the protocol layers.
5762 *
5763 *      This function may only be called from softirq context and interrupts
5764 *      should be enabled.
5765 *
5766 *      Return values (usually ignored):
5767 *      NET_RX_SUCCESS: no congestion
5768 *      NET_RX_DROP: packet was dropped
5769 */
5770int netif_receive_skb(struct sk_buff *skb)
5771{
5772        int ret;
5773
5774        trace_netif_receive_skb_entry(skb);
5775
5776        ret = netif_receive_skb_internal(skb);
5777        trace_netif_receive_skb_exit(ret);
5778
5779        return ret;
5780}
5781EXPORT_SYMBOL(netif_receive_skb);
5782
5783/**
5784 *      netif_receive_skb_list - process many receive buffers from network
5785 *      @head: list of skbs to process.
5786 *
5787 *      Since return value of netif_receive_skb() is normally ignored, and
5788 *      wouldn't be meaningful for a list, this function returns void.
5789 *
5790 *      This function may only be called from softirq context and interrupts
5791 *      should be enabled.
5792 */
5793void netif_receive_skb_list(struct list_head *head)
5794{
5795        struct sk_buff *skb;
5796
5797        if (list_empty(head))
5798                return;
5799        if (trace_netif_receive_skb_list_entry_enabled()) {
5800                list_for_each_entry(skb, head, list)
5801                        trace_netif_receive_skb_list_entry(skb);
5802        }
5803        netif_receive_skb_list_internal(head);
5804        trace_netif_receive_skb_list_exit(0);
5805}
5806EXPORT_SYMBOL(netif_receive_skb_list);
5807
5808static DEFINE_PER_CPU(struct work_struct, flush_works);
5809
5810/* Network device is going away, flush any packets still pending */
5811static void flush_backlog(struct work_struct *work)
5812{
5813        struct sk_buff *skb, *tmp;
5814        struct softnet_data *sd;
5815
5816        local_bh_disable();
5817        sd = this_cpu_ptr(&softnet_data);
5818
5819        local_irq_disable();
5820        rps_lock(sd);
5821        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5822                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5823                        __skb_unlink(skb, &sd->input_pkt_queue);
5824                        dev_kfree_skb_irq(skb);
5825                        input_queue_head_incr(sd);
5826                }
5827        }
5828        rps_unlock(sd);
5829        local_irq_enable();
5830
5831        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5832                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5833                        __skb_unlink(skb, &sd->process_queue);
5834                        kfree_skb(skb);
5835                        input_queue_head_incr(sd);
5836                }
5837        }
5838        local_bh_enable();
5839}
5840
5841static bool flush_required(int cpu)
5842{
5843#if IS_ENABLED(CONFIG_RPS)
5844        struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5845        bool do_flush;
5846
5847        local_irq_disable();
5848        rps_lock(sd);
5849
5850        /* as insertion into process_queue happens with the rps lock held,
5851         * process_queue access may race only with dequeue
5852         */
5853        do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5854                   !skb_queue_empty_lockless(&sd->process_queue);
5855        rps_unlock(sd);
5856        local_irq_enable();
5857
5858        return do_flush;
5859#endif
5860        /* without RPS we can't safely check input_pkt_queue: during a
5861         * concurrent remote skb_queue_splice() we can detect as empty both
5862         * input_pkt_queue and process_queue even if the latter could end-up
5863         * containing a lot of packets.
5864         */
5865        return true;
5866}
5867
5868static void flush_all_backlogs(void)
5869{
5870        static cpumask_t flush_cpus;
5871        unsigned int cpu;
5872
5873        /* since we are under rtnl lock protection we can use static data
5874         * for the cpumask and avoid allocating on stack the possibly
5875         * large mask
5876         */
5877        ASSERT_RTNL();
5878
5879        get_online_cpus();
5880
5881        cpumask_clear(&flush_cpus);
5882        for_each_online_cpu(cpu) {
5883                if (flush_required(cpu)) {
5884                        queue_work_on(cpu, system_highpri_wq,
5885                                      per_cpu_ptr(&flush_works, cpu));
5886                        cpumask_set_cpu(cpu, &flush_cpus);
5887                }
5888        }
5889
5890        /* we can have in flight packet[s] on the cpus we are not flushing,
5891         * synchronize_net() in unregister_netdevice_many() will take care of
5892         * them
5893         */
5894        for_each_cpu(cpu, &flush_cpus)
5895                flush_work(per_cpu_ptr(&flush_works, cpu));
5896
5897        put_online_cpus();
5898}
5899
5900/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5901static void gro_normal_list(struct napi_struct *napi)
5902{
5903        if (!napi->rx_count)
5904                return;
5905        netif_receive_skb_list_internal(&napi->rx_list);
5906        INIT_LIST_HEAD(&napi->rx_list);
5907        napi->rx_count = 0;
5908}
5909
5910/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5911 * pass the whole batch up to the stack.
5912 */
5913static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5914{
5915        list_add_tail(&skb->list, &napi->rx_list);
5916        napi->rx_count += segs;
5917        if (napi->rx_count >= gro_normal_batch)
5918                gro_normal_list(napi);
5919}
5920
5921static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5922{
5923        struct packet_offload *ptype;
5924        __be16 type = skb->protocol;
5925        struct list_head *head = &offload_base;
5926        int err = -ENOENT;
5927
5928        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5929
5930        if (NAPI_GRO_CB(skb)->count == 1) {
5931                skb_shinfo(skb)->gso_size = 0;
5932                goto out;
5933        }
5934
5935        rcu_read_lock();
5936        list_for_each_entry_rcu(ptype, head, list) {
5937                if (ptype->type != type || !ptype->callbacks.gro_complete)
5938                        continue;
5939
5940                err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5941                                         ipv6_gro_complete, inet_gro_complete,
5942                                         skb, 0);
5943                break;
5944        }
5945        rcu_read_unlock();
5946
5947        if (err) {
5948                WARN_ON(&ptype->list == head);
5949                kfree_skb(skb);
5950                return NET_RX_SUCCESS;
5951        }
5952
5953out:
5954        gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5955        return NET_RX_SUCCESS;
5956}
5957
5958static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5959                                   bool flush_old)
5960{
5961        struct list_head *head = &napi->gro_hash[index].list;
5962        struct sk_buff *skb, *p;
5963
5964        list_for_each_entry_safe_reverse(skb, p, head, list) {
5965                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5966                        return;
5967                skb_list_del_init(skb);
5968                napi_gro_complete(napi, skb);
5969                napi->gro_hash[index].count--;
5970        }
5971
5972        if (!napi->gro_hash[index].count)
5973                __clear_bit(index, &napi->gro_bitmask);
5974}
5975
5976/* napi->gro_hash[].list contains packets ordered by age.
5977 * youngest packets at the head of it.
5978 * Complete skbs in reverse order to reduce latencies.
5979 */
5980void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5981{
5982        unsigned long bitmask = napi->gro_bitmask;
5983        unsigned int i, base = ~0U;
5984
5985        while ((i = ffs(bitmask)) != 0) {
5986                bitmask >>= i;
5987                base += i;
5988                __napi_gro_flush_chain(napi, base, flush_old);
5989        }
5990}
5991EXPORT_SYMBOL(napi_gro_flush);
5992
5993static void gro_list_prepare(const struct list_head *head,
5994                             const struct sk_buff *skb)
5995{
5996        unsigned int maclen = skb->dev->hard_header_len;
5997        u32 hash = skb_get_hash_raw(skb);
5998        struct sk_buff *p;
5999
6000        list_for_each_entry(p, head, list) {
6001                unsigned long diffs;
6002
6003                NAPI_GRO_CB(p)->flush = 0;
6004
6005                if (hash != skb_get_hash_raw(p)) {
6006                        NAPI_GRO_CB(p)->same_flow = 0;
6007                        continue;
6008                }
6009
6010                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
6011                diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6012                if (skb_vlan_tag_present(p))
6013                        diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
6014                diffs |= skb_metadata_dst_cmp(p, skb);
6015                diffs |= skb_metadata_differs(p, skb);
6016                if (maclen == ETH_HLEN)
6017                        diffs |= compare_ether_header(skb_mac_header(p),
6018                                                      skb_mac_header(skb));
6019                else if (!diffs)
6020                        diffs = memcmp(skb_mac_header(p),
6021                                       skb_mac_header(skb),
6022                                       maclen);
6023
6024                diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
6025#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
6026                if (!diffs) {
6027                        struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6028                        struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
6029
6030                        diffs |= (!!p_ext) ^ (!!skb_ext);
6031                        if (!diffs && unlikely(skb_ext))
6032                                diffs |= p_ext->chain ^ skb_ext->chain;
6033                }
6034#endif
6035
6036                NAPI_GRO_CB(p)->same_flow = !diffs;
6037        }
6038}
6039
6040static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6041{
6042        const struct skb_shared_info *pinfo = skb_shinfo(skb);
6043        const skb_frag_t *frag0 = &pinfo->frags[0];
6044
6045        NAPI_GRO_CB(skb)->data_offset = 0;
6046        NAPI_GRO_CB(skb)->frag0 = NULL;
6047        NAPI_GRO_CB(skb)->frag0_len = 0;
6048
6049        if (!skb_headlen(skb) && pinfo->nr_frags &&
6050            !PageHighMem(skb_frag_page(frag0)) &&
6051            (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6052                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6053                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6054                                                    skb_frag_size(frag0),
6055                                                    skb->end - skb->tail);
6056        }
6057}
6058
6059static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6060{
6061        struct skb_shared_info *pinfo = skb_shinfo(skb);
6062
6063        BUG_ON(skb->end - skb->tail < grow);
6064
6065        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6066
6067        skb->data_len -= grow;
6068        skb->tail += grow;
6069
6070        skb_frag_off_add(&pinfo->frags[0], grow);
6071        skb_frag_size_sub(&pinfo->frags[0], grow);
6072
6073        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6074                skb_frag_unref(skb, 0);
6075                memmove(pinfo->frags, pinfo->frags + 1,
6076                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6077        }
6078}
6079
6080static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6081{
6082        struct sk_buff *oldest;
6083
6084        oldest = list_last_entry(head, struct sk_buff, list);
6085
6086        /* We are called with head length >= MAX_GRO_SKBS, so this is
6087         * impossible.
6088         */
6089        if (WARN_ON_ONCE(!oldest))
6090                return;
6091
6092        /* Do not adjust napi->gro_hash[].count, caller is adding a new
6093         * SKB to the chain.
6094         */
6095        skb_list_del_init(oldest);
6096        napi_gro_complete(napi, oldest);
6097}
6098
6099static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6100{
6101        u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6102        struct gro_list *gro_list = &napi->gro_hash[bucket];
6103        struct list_head *head = &offload_base;
6104        struct packet_offload *ptype;
6105        __be16 type = skb->protocol;
6106        struct sk_buff *pp = NULL;
6107        enum gro_result ret;
6108        int same_flow;
6109        int grow;
6110
6111        if (netif_elide_gro(skb->dev))
6112                goto normal;
6113
6114        gro_list_prepare(&gro_list->list, skb);
6115
6116        rcu_read_lock();
6117        list_for_each_entry_rcu(ptype, head, list) {
6118                if (ptype->type != type || !ptype->callbacks.gro_receive)
6119                        continue;
6120
6121                skb_set_network_header(skb, skb_gro_offset(skb));
6122                skb_reset_mac_len(skb);
6123                NAPI_GRO_CB(skb)->same_flow = 0;
6124                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6125                NAPI_GRO_CB(skb)->free = 0;
6126                NAPI_GRO_CB(skb)->encap_mark = 0;
6127                NAPI_GRO_CB(skb)->recursion_counter = 0;
6128                NAPI_GRO_CB(skb)->is_fou = 0;
6129                NAPI_GRO_CB(skb)->is_atomic = 1;
6130                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6131
6132                /* Setup for GRO checksum validation */
6133                switch (skb->ip_summed) {
6134                case CHECKSUM_COMPLETE:
6135                        NAPI_GRO_CB(skb)->csum = skb->csum;
6136                        NAPI_GRO_CB(skb)->csum_valid = 1;
6137                        NAPI_GRO_CB(skb)->csum_cnt = 0;
6138                        break;
6139                case CHECKSUM_UNNECESSARY:
6140                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6141                        NAPI_GRO_CB(skb)->csum_valid = 0;
6142                        break;
6143                default:
6144                        NAPI_GRO_CB(skb)->csum_cnt = 0;
6145                        NAPI_GRO_CB(skb)->csum_valid = 0;
6146                }
6147
6148                pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6149                                        ipv6_gro_receive, inet_gro_receive,
6150                                        &gro_list->list, skb);
6151                break;
6152        }
6153        rcu_read_unlock();
6154
6155        if (&ptype->list == head)
6156                goto normal;
6157
6158        if (PTR_ERR(pp) == -EINPROGRESS) {
6159                ret = GRO_CONSUMED;
6160                goto ok;
6161        }
6162
6163        same_flow = NAPI_GRO_CB(skb)->same_flow;
6164        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6165
6166        if (pp) {
6167                skb_list_del_init(pp);
6168                napi_gro_complete(napi, pp);
6169                gro_list->count--;
6170        }
6171
6172        if (same_flow)
6173                goto ok;
6174
6175        if (NAPI_GRO_CB(skb)->flush)
6176                goto normal;
6177
6178        if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6179                gro_flush_oldest(napi, &gro_list->list);
6180        else
6181                gro_list->count++;
6182
6183        NAPI_GRO_CB(skb)->count = 1;
6184        NAPI_GRO_CB(skb)->age = jiffies;
6185        NAPI_GRO_CB(skb)->last = skb;
6186        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6187        list_add(&skb->list, &gro_list->list);
6188        ret = GRO_HELD;
6189
6190pull:
6191        grow = skb_gro_offset(skb) - skb_headlen(skb);
6192        if (grow > 0)
6193                gro_pull_from_frag0(skb, grow);
6194ok:
6195        if (gro_list->count) {
6196                if (!test_bit(bucket, &napi->gro_bitmask))
6197                        __set_bit(bucket, &napi->gro_bitmask);
6198        } else if (test_bit(bucket, &napi->gro_bitmask)) {
6199                __clear_bit(bucket, &napi->gro_bitmask);
6200        }
6201
6202        return ret;
6203
6204normal:
6205        ret = GRO_NORMAL;
6206        goto pull;
6207}
6208
6209struct packet_offload *gro_find_receive_by_type(__be16 type)
6210{
6211        struct list_head *offload_head = &offload_base;
6212        struct packet_offload *ptype;
6213
6214        list_for_each_entry_rcu(ptype, offload_head, list) {
6215                if (ptype->type != type || !ptype->callbacks.gro_receive)
6216                        continue;
6217                return ptype;
6218        }
6219        return NULL;
6220}
6221EXPORT_SYMBOL(gro_find_receive_by_type);
6222
6223struct packet_offload *gro_find_complete_by_type(__be16 type)
6224{
6225        struct list_head *offload_head = &offload_base;
6226        struct packet_offload *ptype;
6227
6228        list_for_each_entry_rcu(ptype, offload_head, list) {
6229                if (ptype->type != type || !ptype->callbacks.gro_complete)
6230                        continue;
6231                return ptype;
6232        }
6233        return NULL;
6234}
6235EXPORT_SYMBOL(gro_find_complete_by_type);
6236
6237static gro_result_t napi_skb_finish(struct napi_struct *napi,
6238                                    struct sk_buff *skb,
6239                                    gro_result_t ret)
6240{
6241        switch (ret) {
6242        case GRO_NORMAL:
6243                gro_normal_one(napi, skb, 1);
6244                break;
6245
6246        case GRO_MERGED_FREE:
6247                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6248                        napi_skb_free_stolen_head(skb);
6249                else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6250                        __kfree_skb(skb);
6251                else
6252                        __kfree_skb_defer(skb);
6253                break;
6254
6255        case GRO_HELD:
6256        case GRO_MERGED:
6257        case GRO_CONSUMED:
6258                break;
6259        }
6260
6261        return ret;
6262}
6263
6264gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6265{
6266        gro_result_t ret;
6267
6268        skb_mark_napi_id(skb, napi);
6269        trace_napi_gro_receive_entry(skb);
6270
6271        skb_gro_reset_offset(skb, 0);
6272
6273        ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6274        trace_napi_gro_receive_exit(ret);
6275
6276        return ret;
6277}
6278EXPORT_SYMBOL(napi_gro_receive);
6279
6280static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6281{
6282        if (unlikely(skb->pfmemalloc)) {
6283                consume_skb(skb);
6284                return;
6285        }
6286        __skb_pull(skb, skb_headlen(skb));
6287        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6288        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6289        __vlan_hwaccel_clear_tag(skb);
6290        skb->dev = napi->dev;
6291        skb->skb_iif = 0;
6292
6293        /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6294        skb->pkt_type = PACKET_HOST;
6295
6296        skb->encapsulation = 0;
6297        skb_shinfo(skb)->gso_type = 0;
6298        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6299        skb_ext_reset(skb);
6300        nf_reset_ct(skb);
6301
6302        napi->skb = skb;
6303}
6304
6305struct sk_buff *napi_get_frags(struct napi_struct *napi)
6306{
6307        struct sk_buff *skb = napi->skb;
6308
6309        if (!skb) {
6310                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6311                if (skb) {
6312                        napi->skb = skb;
6313                        skb_mark_napi_id(skb, napi);
6314                }
6315        }
6316        return skb;
6317}
6318EXPORT_SYMBOL(napi_get_frags);
6319
6320static gro_result_t napi_frags_finish(struct napi_struct *napi,
6321                                      struct sk_buff *skb,
6322                                      gro_result_t ret)
6323{
6324        switch (ret) {
6325        case GRO_NORMAL:
6326        case GRO_HELD:
6327                __skb_push(skb, ETH_HLEN);
6328                skb->protocol = eth_type_trans(skb, skb->dev);
6329                if (ret == GRO_NORMAL)
6330                        gro_normal_one(napi, skb, 1);
6331                break;
6332
6333        case GRO_MERGED_FREE:
6334                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6335                        napi_skb_free_stolen_head(skb);
6336                else
6337                        napi_reuse_skb(napi, skb);
6338                break;
6339
6340        case GRO_MERGED:
6341        case GRO_CONSUMED:
6342                break;
6343        }
6344
6345        return ret;
6346}
6347
6348/* Upper GRO stack assumes network header starts at gro_offset=0
6349 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6350 * We copy ethernet header into skb->data to have a common layout.
6351 */
6352static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6353{
6354        struct sk_buff *skb = napi->skb;
6355        const struct ethhdr *eth;
6356        unsigned int hlen = sizeof(*eth);
6357
6358        napi->skb = NULL;
6359
6360        skb_reset_mac_header(skb);
6361        skb_gro_reset_offset(skb, hlen);
6362
6363        if (unlikely(skb_gro_header_hard(skb, hlen))) {
6364                eth = skb_gro_header_slow(skb, hlen, 0);
6365                if (unlikely(!eth)) {
6366                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6367                                             __func__, napi->dev->name);
6368                        napi_reuse_skb(napi, skb);
6369                        return NULL;
6370                }
6371        } else {
6372                eth = (const struct ethhdr *)skb->data;
6373                gro_pull_from_frag0(skb, hlen);
6374                NAPI_GRO_CB(skb)->frag0 += hlen;
6375                NAPI_GRO_CB(skb)->frag0_len -= hlen;
6376        }
6377        __skb_pull(skb, hlen);
6378
6379        /*
6380         * This works because the only protocols we care about don't require
6381         * special handling.
6382         * We'll fix it up properly in napi_frags_finish()
6383         */
6384        skb->protocol = eth->h_proto;
6385
6386        return skb;
6387}
6388
6389gro_result_t napi_gro_frags(struct napi_struct *napi)
6390{
6391        gro_result_t ret;
6392        struct sk_buff *skb = napi_frags_skb(napi);
6393
6394        trace_napi_gro_frags_entry(skb);
6395
6396        ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6397        trace_napi_gro_frags_exit(ret);
6398
6399        return ret;
6400}
6401EXPORT_SYMBOL(napi_gro_frags);
6402
6403/* Compute the checksum from gro_offset and return the folded value
6404 * after adding in any pseudo checksum.
6405 */
6406__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6407{
6408        __wsum wsum;
6409        __sum16 sum;
6410
6411        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6412
6413        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6414        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6415        /* See comments in __skb_checksum_complete(). */
6416        if (likely(!sum)) {
6417                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6418                    !skb->csum_complete_sw)
6419                        netdev_rx_csum_fault(skb->dev, skb);
6420        }
6421
6422        NAPI_GRO_CB(skb)->csum = wsum;
6423        NAPI_GRO_CB(skb)->csum_valid = 1;
6424
6425        return sum;
6426}
6427EXPORT_SYMBOL(__skb_gro_checksum_complete);
6428
6429static void net_rps_send_ipi(struct softnet_data *remsd)
6430{
6431#ifdef CONFIG_RPS
6432        while (remsd) {
6433                struct softnet_data *next = remsd->rps_ipi_next;
6434
6435                if (cpu_online(remsd->cpu))
6436                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
6437                remsd = next;
6438        }
6439#endif
6440}
6441
6442/*
6443 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6444 * Note: called with local irq disabled, but exits with local irq enabled.
6445 */
6446static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6447{
6448#ifdef CONFIG_RPS
6449        struct softnet_data *remsd = sd->rps_ipi_list;
6450
6451        if (remsd) {
6452                sd->rps_ipi_list = NULL;
6453
6454                local_irq_enable();
6455
6456                /* Send pending IPI's to kick RPS processing on remote cpus. */
6457                net_rps_send_ipi(remsd);
6458        } else
6459#endif
6460                local_irq_enable();
6461}
6462
6463static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6464{
6465#ifdef CONFIG_RPS
6466        return sd->rps_ipi_list != NULL;
6467#else
6468        return false;
6469#endif
6470}
6471
6472static int process_backlog(struct napi_struct *napi, int quota)
6473{
6474        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6475        bool again = true;
6476        int work = 0;
6477
6478        /* Check if we have pending ipi, its better to send them now,
6479         * not waiting net_rx_action() end.
6480         */
6481        if (sd_has_rps_ipi_waiting(sd)) {
6482                local_irq_disable();
6483                net_rps_action_and_irq_enable(sd);
6484        }
6485
6486        napi->weight = dev_rx_weight;
6487        while (again) {
6488                struct sk_buff *skb;
6489
6490                while ((skb = __skb_dequeue(&sd->process_queue))) {
6491                        rcu_read_lock();
6492                        __netif_receive_skb(skb);
6493                        rcu_read_unlock();
6494                        input_queue_head_incr(sd);
6495                        if (++work >= quota)
6496                                return work;
6497
6498                }
6499
6500                local_irq_disable();
6501                rps_lock(sd);
6502                if (skb_queue_empty(&sd->input_pkt_queue)) {
6503                        /*
6504                         * Inline a custom version of __napi_complete().
6505                         * only current cpu owns and manipulates this napi,
6506                         * and NAPI_STATE_SCHED is the only possible flag set
6507                         * on backlog.
6508                         * We can use a plain write instead of clear_bit(),
6509                         * and we dont need an smp_mb() memory barrier.
6510                         */
6511                        napi->state = 0;
6512                        again = false;
6513                } else {
6514                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
6515                                                   &sd->process_queue);
6516                }
6517                rps_unlock(sd);
6518                local_irq_enable();
6519        }
6520
6521        return work;
6522}
6523
6524/**
6525 * __napi_schedule - schedule for receive
6526 * @n: entry to schedule
6527 *
6528 * The entry's receive function will be scheduled to run.
6529 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6530 */
6531void __napi_schedule(struct napi_struct *n)
6532{
6533        unsigned long flags;
6534
6535        local_irq_save(flags);
6536        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6537        local_irq_restore(flags);
6538}
6539EXPORT_SYMBOL(__napi_schedule);
6540
6541/**
6542 *      napi_schedule_prep - check if napi can be scheduled
6543 *      @n: napi context
6544 *
6545 * Test if NAPI routine is already running, and if not mark
6546 * it as running.  This is used as a condition variable to
6547 * insure only one NAPI poll instance runs.  We also make
6548 * sure there is no pending NAPI disable.
6549 */
6550bool napi_schedule_prep(struct napi_struct *n)
6551{
6552        unsigned long val, new;
6553
6554        do {
6555                val = READ_ONCE(n->state);
6556                if (unlikely(val & NAPIF_STATE_DISABLE))
6557                        return false;
6558                new = val | NAPIF_STATE_SCHED;
6559
6560                /* Sets STATE_MISSED bit if STATE_SCHED was already set
6561                 * This was suggested by Alexander Duyck, as compiler
6562                 * emits better code than :
6563                 * if (val & NAPIF_STATE_SCHED)
6564                 *     new |= NAPIF_STATE_MISSED;
6565                 */
6566                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6567                                                   NAPIF_STATE_MISSED;
6568        } while (cmpxchg(&n->state, val, new) != val);
6569
6570        return !(val & NAPIF_STATE_SCHED);
6571}
6572EXPORT_SYMBOL(napi_schedule_prep);
6573
6574/**
6575 * __napi_schedule_irqoff - schedule for receive
6576 * @n: entry to schedule
6577 *
6578 * Variant of __napi_schedule() assuming hard irqs are masked.
6579 *
6580 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6581 * because the interrupt disabled assumption might not be true
6582 * due to force-threaded interrupts and spinlock substitution.
6583 */
6584void __napi_schedule_irqoff(struct napi_struct *n)
6585{
6586        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6587                ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6588        else
6589                __napi_schedule(n);
6590}
6591EXPORT_SYMBOL(__napi_schedule_irqoff);
6592
6593bool napi_complete_done(struct napi_struct *n, int work_done)
6594{
6595        unsigned long flags, val, new, timeout = 0;
6596        bool ret = true;
6597
6598        /*
6599         * 1) Don't let napi dequeue from the cpu poll list
6600         *    just in case its running on a different cpu.
6601         * 2) If we are busy polling, do nothing here, we have
6602         *    the guarantee we will be called later.
6603         */
6604        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6605                                 NAPIF_STATE_IN_BUSY_POLL)))
6606                return false;
6607
6608        if (work_done) {
6609                if (n->gro_bitmask)
6610                        timeout = READ_ONCE(n->dev->gro_flush_timeout);
6611                n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6612        }
6613        if (n->defer_hard_irqs_count > 0) {
6614                n->defer_hard_irqs_count--;
6615                timeout = READ_ONCE(n->dev->gro_flush_timeout);
6616                if (timeout)
6617                        ret = false;
6618        }
6619        if (n->gro_bitmask) {
6620                /* When the NAPI instance uses a timeout and keeps postponing
6621                 * it, we need to bound somehow the time packets are kept in
6622                 * the GRO layer
6623                 */
6624                napi_gro_flush(n, !!timeout);
6625        }
6626
6627        gro_normal_list(n);
6628
6629        if (unlikely(!list_empty(&n->poll_list))) {
6630                /* If n->poll_list is not empty, we need to mask irqs */
6631                local_irq_save(flags);
6632                list_del_init(&n->poll_list);
6633                local_irq_restore(flags);
6634        }
6635
6636        do {
6637                val = READ_ONCE(n->state);
6638
6639                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6640
6641                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6642                              NAPIF_STATE_SCHED_THREADED |
6643                              NAPIF_STATE_PREFER_BUSY_POLL);
6644
6645                /* If STATE_MISSED was set, leave STATE_SCHED set,
6646                 * because we will call napi->poll() one more time.
6647                 * This C code was suggested by Alexander Duyck to help gcc.
6648                 */
6649                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6650                                                    NAPIF_STATE_SCHED;
6651        } while (cmpxchg(&n->state, val, new) != val);
6652
6653        if (unlikely(val & NAPIF_STATE_MISSED)) {
6654                __napi_schedule(n);
6655                return false;
6656        }
6657
6658        if (timeout)
6659                hrtimer_start(&n->timer, ns_to_ktime(timeout),
6660                              HRTIMER_MODE_REL_PINNED);
6661        return ret;
6662}
6663EXPORT_SYMBOL(napi_complete_done);
6664
6665/* must be called under rcu_read_lock(), as we dont take a reference */
6666static struct napi_struct *napi_by_id(unsigned int napi_id)
6667{
6668        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6669        struct napi_struct *napi;
6670
6671        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6672                if (napi->napi_id == napi_id)
6673                        return napi;
6674
6675        return NULL;
6676}
6677
6678#if defined(CONFIG_NET_RX_BUSY_POLL)
6679
6680static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6681{
6682        if (!skip_schedule) {
6683                gro_normal_list(napi);
6684                __napi_schedule(napi);
6685                return;
6686        }
6687
6688        if (napi->gro_bitmask) {
6689                /* flush too old packets
6690                 * If HZ < 1000, flush all packets.
6691                 */
6692                napi_gro_flush(napi, HZ >= 1000);
6693        }
6694
6695        gro_normal_list(napi);
6696        clear_bit(NAPI_STATE_SCHED, &napi->state);
6697}
6698
6699static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6700                           u16 budget)
6701{
6702        bool skip_schedule = false;
6703        unsigned long timeout;
6704        int rc;
6705
6706        /* Busy polling means there is a high chance device driver hard irq
6707         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6708         * set in napi_schedule_prep().
6709         * Since we are about to call napi->poll() once more, we can safely
6710         * clear NAPI_STATE_MISSED.
6711         *
6712         * Note: x86 could use a single "lock and ..." instruction
6713         * to perform these two clear_bit()
6714         */
6715        clear_bit(NAPI_STATE_MISSED, &napi->state);
6716        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6717
6718        local_bh_disable();
6719
6720        if (prefer_busy_poll) {
6721                napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6722                timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6723                if (napi->defer_hard_irqs_count && timeout) {
6724                        hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6725                        skip_schedule = true;
6726                }
6727        }
6728
6729        /* All we really want here is to re-enable device interrupts.
6730         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6731         */
6732        rc = napi->poll(napi, budget);
6733        /* We can't gro_normal_list() here, because napi->poll() might have
6734         * rearmed the napi (napi_complete_done()) in which case it could
6735         * already be running on another CPU.
6736         */
6737        trace_napi_poll(napi, rc, budget);
6738        netpoll_poll_unlock(have_poll_lock);
6739        if (rc == budget)
6740                __busy_poll_stop(napi, skip_schedule);
6741        local_bh_enable();
6742}
6743
6744void napi_busy_loop(unsigned int napi_id,
6745                    bool (*loop_end)(void *, unsigned long),
6746                    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6747{
6748        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6749        int (*napi_poll)(struct napi_struct *napi, int budget);
6750        void *have_poll_lock = NULL;
6751        struct napi_struct *napi;
6752
6753restart:
6754        napi_poll = NULL;
6755
6756        rcu_read_lock();
6757
6758        napi = napi_by_id(napi_id);
6759        if (!napi)
6760                goto out;
6761
6762        preempt_disable();
6763        for (;;) {
6764                int work = 0;
6765
6766                local_bh_disable();
6767                if (!napi_poll) {
6768                        unsigned long val = READ_ONCE(napi->state);
6769
6770                        /* If multiple threads are competing for this napi,
6771                         * we avoid dirtying napi->state as much as we can.
6772                         */
6773                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6774                                   NAPIF_STATE_IN_BUSY_POLL)) {
6775                                if (prefer_busy_poll)
6776                                        set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6777                                goto count;
6778                        }
6779                        if (cmpxchg(&napi->state, val,
6780                                    val | NAPIF_STATE_IN_BUSY_POLL |
6781                                          NAPIF_STATE_SCHED) != val) {
6782                                if (prefer_busy_poll)
6783                                        set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6784                                goto count;
6785                        }
6786                        have_poll_lock = netpoll_poll_lock(napi);
6787                        napi_poll = napi->poll;
6788                }
6789                work = napi_poll(napi, budget);
6790                trace_napi_poll(napi, work, budget);
6791                gro_normal_list(napi);
6792count:
6793                if (work > 0)
6794                        __NET_ADD_STATS(dev_net(napi->dev),
6795                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
6796                local_bh_enable();
6797
6798                if (!loop_end || loop_end(loop_end_arg, start_time))
6799                        break;
6800
6801                if (unlikely(need_resched())) {
6802                        if (napi_poll)
6803                                busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6804                        preempt_enable();
6805                        rcu_read_unlock();
6806                        cond_resched();
6807                        if (loop_end(loop_end_arg, start_time))
6808                                return;
6809                        goto restart;
6810                }
6811                cpu_relax();
6812        }
6813        if (napi_poll)
6814                busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6815        preempt_enable();
6816out:
6817        rcu_read_unlock();
6818}
6819EXPORT_SYMBOL(napi_busy_loop);
6820
6821#endif /* CONFIG_NET_RX_BUSY_POLL */
6822
6823static void napi_hash_add(struct napi_struct *napi)
6824{
6825        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6826                return;
6827
6828        spin_lock(&napi_hash_lock);
6829
6830        /* 0..NR_CPUS range is reserved for sender_cpu use */
6831        do {
6832                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6833                        napi_gen_id = MIN_NAPI_ID;
6834        } while (napi_by_id(napi_gen_id));
6835        napi->napi_id = napi_gen_id;
6836
6837        hlist_add_head_rcu(&napi->napi_hash_node,
6838                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6839
6840        spin_unlock(&napi_hash_lock);
6841}
6842
6843/* Warning : caller is responsible to make sure rcu grace period
6844 * is respected before freeing memory containing @napi
6845 */
6846static void napi_hash_del(struct napi_struct *napi)
6847{
6848        spin_lock(&napi_hash_lock);
6849
6850        hlist_del_init_rcu(&napi->napi_hash_node);
6851
6852        spin_unlock(&napi_hash_lock);
6853}
6854
6855static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6856{
6857        struct napi_struct *napi;
6858
6859        napi = container_of(timer, struct napi_struct, timer);
6860
6861        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6862         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6863         */
6864        if (!napi_disable_pending(napi) &&
6865            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6866                clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6867                __napi_schedule_irqoff(napi);
6868        }
6869
6870        return HRTIMER_NORESTART;
6871}
6872
6873static void init_gro_hash(struct napi_struct *napi)
6874{
6875        int i;
6876
6877        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6878                INIT_LIST_HEAD(&napi->gro_hash[i].list);
6879                napi->gro_hash[i].count = 0;
6880        }
6881        napi->gro_bitmask = 0;
6882}
6883
6884int dev_set_threaded(struct net_device *dev, bool threaded)
6885{
6886        struct napi_struct *napi;
6887        int err = 0;
6888
6889        if (dev->threaded == threaded)
6890                return 0;
6891
6892        if (threaded) {
6893                list_for_each_entry(napi, &dev->napi_list, dev_list) {
6894                        if (!napi->thread) {
6895                                err = napi_kthread_create(napi);
6896                                if (err) {
6897                                        threaded = false;
6898                                        break;
6899                                }
6900                        }
6901                }
6902        }
6903
6904        dev->threaded = threaded;
6905
6906        /* Make sure kthread is created before THREADED bit
6907         * is set.
6908         */
6909        smp_mb__before_atomic();
6910
6911        /* Setting/unsetting threaded mode on a napi might not immediately
6912         * take effect, if the current napi instance is actively being
6913         * polled. In this case, the switch between threaded mode and
6914         * softirq mode will happen in the next round of napi_schedule().
6915         * This should not cause hiccups/stalls to the live traffic.
6916         */
6917        list_for_each_entry(napi, &dev->napi_list, dev_list) {
6918                if (threaded)
6919                        set_bit(NAPI_STATE_THREADED, &napi->state);
6920                else
6921                        clear_bit(NAPI_STATE_THREADED, &napi->state);
6922        }
6923
6924        return err;
6925}
6926EXPORT_SYMBOL(dev_set_threaded);
6927
6928void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6929                    int (*poll)(struct napi_struct *, int), int weight)
6930{
6931        if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6932                return;
6933
6934        INIT_LIST_HEAD(&napi->poll_list);
6935        INIT_HLIST_NODE(&napi->napi_hash_node);
6936        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6937        napi->timer.function = napi_watchdog;
6938        init_gro_hash(napi);
6939        napi->skb = NULL;
6940        INIT_LIST_HEAD(&napi->rx_list);
6941        napi->rx_count = 0;
6942        napi->poll = poll;
6943        if (weight > NAPI_POLL_WEIGHT)
6944                netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6945                                weight);
6946        napi->weight = weight;
6947        napi->dev = dev;
6948#ifdef CONFIG_NETPOLL
6949        napi->poll_owner = -1;
6950#endif
6951        set_bit(NAPI_STATE_SCHED, &napi->state);
6952        set_bit(NAPI_STATE_NPSVC, &napi->state);
6953        list_add_rcu(&napi->dev_list, &dev->napi_list);
6954        napi_hash_add(napi);
6955        /* Create kthread for this napi if dev->threaded is set.
6956         * Clear dev->threaded if kthread creation failed so that
6957         * threaded mode will not be enabled in napi_enable().
6958         */
6959        if (dev->threaded && napi_kthread_create(napi))
6960                dev->threaded = 0;
6961}
6962EXPORT_SYMBOL(netif_napi_add);
6963
6964void napi_disable(struct napi_struct *n)
6965{
6966        might_sleep();
6967        set_bit(NAPI_STATE_DISABLE, &n->state);
6968
6969        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6970                msleep(1);
6971        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6972                msleep(1);
6973
6974        hrtimer_cancel(&n->timer);
6975
6976        clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6977        clear_bit(NAPI_STATE_DISABLE, &n->state);
6978        clear_bit(NAPI_STATE_THREADED, &n->state);
6979}
6980EXPORT_SYMBOL(napi_disable);
6981
6982/**
6983 *      napi_enable - enable NAPI scheduling
6984 *      @n: NAPI context
6985 *
6986 * Resume NAPI from being scheduled on this context.
6987 * Must be paired with napi_disable.
6988 */
6989void napi_enable(struct napi_struct *n)
6990{
6991        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6992        smp_mb__before_atomic();
6993        clear_bit(NAPI_STATE_SCHED, &n->state);
6994        clear_bit(NAPI_STATE_NPSVC, &n->state);
6995        if (n->dev->threaded && n->thread)
6996                set_bit(NAPI_STATE_THREADED, &n->state);
6997}
6998EXPORT_SYMBOL(napi_enable);
6999
7000static void flush_gro_hash(struct napi_struct *napi)
7001{
7002        int i;
7003
7004        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7005                struct sk_buff *skb, *n;
7006
7007                list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7008                        kfree_skb(skb);
7009                napi->gro_hash[i].count = 0;
7010        }
7011}
7012
7013/* Must be called in process context */
7014void __netif_napi_del(struct napi_struct *napi)
7015{
7016        if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7017                return;
7018
7019        napi_hash_del(napi);
7020        list_del_rcu(&napi->dev_list);
7021        napi_free_frags(napi);
7022
7023        flush_gro_hash(napi);
7024        napi->gro_bitmask = 0;
7025
7026        if (napi->thread) {
7027                kthread_stop(napi->thread);
7028                napi->thread = NULL;
7029        }
7030}
7031EXPORT_SYMBOL(__netif_napi_del);
7032
7033static int __napi_poll(struct napi_struct *n, bool *repoll)
7034{
7035        int work, weight;
7036
7037        weight = n->weight;
7038
7039        /* This NAPI_STATE_SCHED test is for avoiding a race
7040         * with netpoll's poll_napi().  Only the entity which
7041         * obtains the lock and sees NAPI_STATE_SCHED set will
7042         * actually make the ->poll() call.  Therefore we avoid
7043         * accidentally calling ->poll() when NAPI is not scheduled.
7044         */
7045        work = 0;
7046        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7047                work = n->poll(n, weight);
7048                trace_napi_poll(n, work, weight);
7049        }
7050
7051        if (unlikely(work > weight))
7052                pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7053                            n->poll, work, weight);
7054
7055        if (likely(work < weight))
7056                return work;
7057
7058        /* Drivers must not modify the NAPI state if they
7059         * consume the entire weight.  In such cases this code
7060         * still "owns" the NAPI instance and therefore can
7061         * move the instance around on the list at-will.
7062         */
7063        if (unlikely(napi_disable_pending(n))) {
7064                napi_complete(n);
7065                return work;
7066        }
7067
7068        /* The NAPI context has more processing work, but busy-polling
7069         * is preferred. Exit early.
7070         */
7071        if (napi_prefer_busy_poll(n)) {
7072                if (napi_complete_done(n, work)) {
7073                        /* If timeout is not set, we need to make sure
7074                         * that the NAPI is re-scheduled.
7075                         */
7076                        napi_schedule(n);
7077                }
7078                return work;
7079        }
7080
7081        if (n->gro_bitmask) {
7082                /* flush too old packets
7083                 * If HZ < 1000, flush all packets.
7084                 */
7085                napi_gro_flush(n, HZ >= 1000);
7086        }
7087
7088        gro_normal_list(n);
7089
7090        /* Some drivers may have called napi_schedule
7091         * prior to exhausting their budget.
7092         */
7093        if (unlikely(!list_empty(&n->poll_list))) {
7094                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7095                             n->dev ? n->dev->name : "backlog");
7096                return work;
7097        }
7098
7099        *repoll = true;
7100
7101        return work;
7102}
7103
7104static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7105{
7106        bool do_repoll = false;
7107        void *have;
7108        int work;
7109
7110        list_del_init(&n->poll_list);
7111
7112        have = netpoll_poll_lock(n);
7113
7114        work = __napi_poll(n, &do_repoll);
7115
7116        if (do_repoll)
7117                list_add_tail(&n->poll_list, repoll);
7118
7119        netpoll_poll_unlock(have);
7120
7121        return work;
7122}
7123
7124static int napi_thread_wait(struct napi_struct *napi)
7125{
7126        bool woken = false;
7127
7128        set_current_state(TASK_INTERRUPTIBLE);
7129
7130        while (!kthread_should_stop()) {
7131                /* Testing SCHED_THREADED bit here to make sure the current
7132                 * kthread owns this napi and could poll on this napi.
7133                 * Testing SCHED bit is not enough because SCHED bit might be
7134                 * set by some other busy poll thread or by napi_disable().
7135                 */
7136                if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7137                        WARN_ON(!list_empty(&napi->poll_list));
7138                        __set_current_state(TASK_RUNNING);
7139                        return 0;
7140                }
7141
7142                schedule();
7143                /* woken being true indicates this thread owns this napi. */
7144                woken = true;
7145                set_current_state(TASK_INTERRUPTIBLE);
7146        }
7147        __set_current_state(TASK_RUNNING);
7148
7149        return -1;
7150}
7151
7152static int napi_threaded_poll(void *data)
7153{
7154        struct napi_struct *napi = data;
7155        void *have;
7156
7157        while (!napi_thread_wait(napi)) {
7158                for (;;) {
7159                        bool repoll = false;
7160
7161                        local_bh_disable();
7162
7163                        have = netpoll_poll_lock(napi);
7164                        __napi_poll(napi, &repoll);
7165                        netpoll_poll_unlock(have);
7166
7167                        local_bh_enable();
7168
7169                        if (!repoll)
7170                                break;
7171
7172                        cond_resched();
7173                }
7174        }
7175        return 0;
7176}
7177
7178static __latent_entropy void net_rx_action(struct softirq_action *h)
7179{
7180        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7181        unsigned long time_limit = jiffies +
7182                usecs_to_jiffies(netdev_budget_usecs);
7183        int budget = netdev_budget;
7184        LIST_HEAD(list);
7185        LIST_HEAD(repoll);
7186
7187        local_irq_disable();
7188        list_splice_init(&sd->poll_list, &list);
7189        local_irq_enable();
7190
7191        for (;;) {
7192                struct napi_struct *n;
7193
7194                if (list_empty(&list)) {
7195                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7196                                return;
7197                        break;
7198                }
7199
7200                n = list_first_entry(&list, struct napi_struct, poll_list);
7201                budget -= napi_poll(n, &repoll);
7202
7203                /* If softirq window is exhausted then punt.
7204                 * Allow this to run for 2 jiffies since which will allow
7205                 * an average latency of 1.5/HZ.
7206                 */
7207                if (unlikely(budget <= 0 ||
7208                             time_after_eq(jiffies, time_limit))) {
7209                        sd->time_squeeze++;
7210                        break;
7211                }
7212        }
7213
7214        local_irq_disable();
7215
7216        list_splice_tail_init(&sd->poll_list, &list);
7217        list_splice_tail(&repoll, &list);
7218        list_splice(&list, &sd->poll_list);
7219        if (!list_empty(&sd->poll_list))
7220                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7221
7222        net_rps_action_and_irq_enable(sd);
7223}
7224
7225struct netdev_adjacent {
7226        struct net_device *dev;
7227
7228        /* upper master flag, there can only be one master device per list */
7229        bool master;
7230
7231        /* lookup ignore flag */
7232        bool ignore;
7233
7234        /* counter for the number of times this device was added to us */
7235        u16 ref_nr;
7236
7237        /* private field for the users */
7238        void *private;
7239
7240        struct list_head list;
7241        struct rcu_head rcu;
7242};
7243
7244static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7245                                                 struct list_head *adj_list)
7246{
7247        struct netdev_adjacent *adj;
7248
7249        list_for_each_entry(adj, adj_list, list) {
7250                if (adj->dev == adj_dev)
7251                        return adj;
7252        }
7253        return NULL;
7254}
7255
7256static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7257                                    struct netdev_nested_priv *priv)
7258{
7259        struct net_device *dev = (struct net_device *)priv->data;
7260
7261        return upper_dev == dev;
7262}
7263
7264/**
7265 * netdev_has_upper_dev - Check if device is linked to an upper device
7266 * @dev: device
7267 * @upper_dev: upper device to check
7268 *
7269 * Find out if a device is linked to specified upper device and return true
7270 * in case it is. Note that this checks only immediate upper device,
7271 * not through a complete stack of devices. The caller must hold the RTNL lock.
7272 */
7273bool netdev_has_upper_dev(struct net_device *dev,
7274                          struct net_device *upper_dev)
7275{
7276        struct netdev_nested_priv priv = {
7277                .data = (void *)upper_dev,
7278        };
7279
7280        ASSERT_RTNL();
7281
7282        return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7283                                             &priv);
7284}
7285EXPORT_SYMBOL(netdev_has_upper_dev);
7286
7287/**
7288 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7289 * @dev: device
7290 * @upper_dev: upper device to check
7291 *
7292 * Find out if a device is linked to specified upper device and return true
7293 * in case it is. Note that this checks the entire upper device chain.
7294 * The caller must hold rcu lock.
7295 */
7296
7297bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7298                                  struct net_device *upper_dev)
7299{
7300        struct netdev_nested_priv priv = {
7301                .data = (void *)upper_dev,
7302        };
7303
7304        return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7305                                               &priv);
7306}
7307EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7308
7309/**
7310 * netdev_has_any_upper_dev - Check if device is linked to some device
7311 * @dev: device
7312 *
7313 * Find out if a device is linked to an upper device and return true in case
7314 * it is. The caller must hold the RTNL lock.
7315 */
7316bool netdev_has_any_upper_dev(struct net_device *dev)
7317{
7318        ASSERT_RTNL();
7319
7320        return !list_empty(&dev->adj_list.upper);
7321}
7322EXPORT_SYMBOL(netdev_has_any_upper_dev);
7323
7324/**
7325 * netdev_master_upper_dev_get - Get master upper device
7326 * @dev: device
7327 *
7328 * Find a master upper device and return pointer to it or NULL in case
7329 * it's not there. The caller must hold the RTNL lock.
7330 */
7331struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7332{
7333        struct netdev_adjacent *upper;
7334
7335        ASSERT_RTNL();
7336
7337        if (list_empty(&dev->adj_list.upper))
7338                return NULL;
7339
7340        upper = list_first_entry(&dev->adj_list.upper,
7341                                 struct netdev_adjacent, list);
7342        if (likely(upper->master))
7343                return upper->dev;
7344        return NULL;
7345}
7346EXPORT_SYMBOL(netdev_master_upper_dev_get);
7347
7348static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7349{
7350        struct netdev_adjacent *upper;
7351
7352        ASSERT_RTNL();
7353
7354        if (list_empty(&dev->adj_list.upper))
7355                return NULL;
7356
7357        upper = list_first_entry(&dev->adj_list.upper,
7358                                 struct netdev_adjacent, list);
7359        if (likely(upper->master) && !upper->ignore)
7360                return upper->dev;
7361        return NULL;
7362}
7363
7364/**
7365 * netdev_has_any_lower_dev - Check if device is linked to some device
7366 * @dev: device
7367 *
7368 * Find out if a device is linked to a lower device and return true in case
7369 * it is. The caller must hold the RTNL lock.
7370 */
7371static bool netdev_has_any_lower_dev(struct net_device *dev)
7372{
7373        ASSERT_RTNL();
7374
7375        return !list_empty(&dev->adj_list.lower);
7376}
7377
7378void *netdev_adjacent_get_private(struct list_head *adj_list)
7379{
7380        struct netdev_adjacent *adj;
7381
7382        adj = list_entry(adj_list, struct netdev_adjacent, list);
7383
7384        return adj->private;
7385}
7386EXPORT_SYMBOL(netdev_adjacent_get_private);
7387
7388/**
7389 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7390 * @dev: device
7391 * @iter: list_head ** of the current position
7392 *
7393 * Gets the next device from the dev's upper list, starting from iter
7394 * position. The caller must hold RCU read lock.
7395 */
7396struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7397                                                 struct list_head **iter)
7398{
7399        struct netdev_adjacent *upper;
7400
7401        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7402
7403        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7404
7405        if (&upper->list == &dev->adj_list.upper)
7406                return NULL;
7407
7408        *iter = &upper->list;
7409
7410        return upper->dev;
7411}
7412EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7413
7414static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7415                                                  struct list_head **iter,
7416                                                  bool *ignore)
7417{
7418        struct netdev_adjacent *upper;
7419
7420        upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7421
7422        if (&upper->list == &dev->adj_list.upper)
7423                return NULL;
7424
7425        *iter = &upper->list;
7426        *ignore = upper->ignore;
7427
7428        return upper->dev;
7429}
7430
7431static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7432                                                    struct list_head **iter)
7433{
7434        struct netdev_adjacent *upper;
7435
7436        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7437
7438        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7439
7440        if (&upper->list == &dev->adj_list.upper)
7441                return NULL;
7442
7443        *iter = &upper->list;
7444
7445        return upper->dev;
7446}
7447
7448static int __netdev_walk_all_upper_dev(struct net_device *dev,
7449                                       int (*fn)(struct net_device *dev,
7450                                         struct netdev_nested_priv *priv),
7451                                       struct netdev_nested_priv *priv)
7452{
7453        struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7454        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7455        int ret, cur = 0;
7456        bool ignore;
7457
7458        now = dev;
7459        iter = &dev->adj_list.upper;
7460
7461        while (1) {
7462                if (now != dev) {
7463                        ret = fn(now, priv);
7464                        if (ret)
7465                                return ret;
7466                }
7467
7468                next = NULL;
7469                while (1) {
7470                        udev = __netdev_next_upper_dev(now, &iter, &ignore);
7471                        if (!udev)
7472                                break;
7473                        if (ignore)
7474                                continue;
7475
7476                        next = udev;
7477                        niter = &udev->adj_list.upper;
7478                        dev_stack[cur] = now;
7479                        iter_stack[cur++] = iter;
7480                        break;
7481                }
7482
7483                if (!next) {
7484                        if (!cur)
7485                                return 0;
7486                        next = dev_stack[--cur];
7487                        niter = iter_stack[cur];
7488                }
7489
7490                now = next;
7491                iter = niter;
7492        }
7493
7494        return 0;
7495}
7496
7497int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7498                                  int (*fn)(struct net_device *dev,
7499                                            struct netdev_nested_priv *priv),
7500                                  struct netdev_nested_priv *priv)
7501{
7502        struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7503        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7504        int ret, cur = 0;
7505
7506        now = dev;
7507        iter = &dev->adj_list.upper;
7508
7509        while (1) {
7510                if (now != dev) {
7511                        ret = fn(now, priv);
7512                        if (ret)
7513                                return ret;
7514                }
7515
7516                next = NULL;
7517                while (1) {
7518                        udev = netdev_next_upper_dev_rcu(now, &iter);
7519                        if (!udev)
7520                                break;
7521
7522                        next = udev;
7523                        niter = &udev->adj_list.upper;
7524                        dev_stack[cur] = now;
7525                        iter_stack[cur++] = iter;
7526                        break;
7527                }
7528
7529                if (!next) {
7530                        if (!cur)
7531                                return 0;
7532                        next = dev_stack[--cur];
7533                        niter = iter_stack[cur];
7534                }
7535
7536                now = next;
7537                iter = niter;
7538        }
7539
7540        return 0;
7541}
7542EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7543
7544static bool __netdev_has_upper_dev(struct net_device *dev,
7545                                   struct net_device *upper_dev)
7546{
7547        struct netdev_nested_priv priv = {
7548                .flags = 0,
7549                .data = (void *)upper_dev,
7550        };
7551
7552        ASSERT_RTNL();
7553
7554        return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7555                                           &priv);
7556}
7557
7558/**
7559 * netdev_lower_get_next_private - Get the next ->private from the
7560 *                                 lower neighbour list
7561 * @dev: device
7562 * @iter: list_head ** of the current position
7563 *
7564 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7565 * list, starting from iter position. The caller must hold either hold the
7566 * RTNL lock or its own locking that guarantees that the neighbour lower
7567 * list will remain unchanged.
7568 */
7569void *netdev_lower_get_next_private(struct net_device *dev,
7570                                    struct list_head **iter)
7571{
7572        struct netdev_adjacent *lower;
7573
7574        lower = list_entry(*iter, struct netdev_adjacent, list);
7575
7576        if (&lower->list == &dev->adj_list.lower)
7577                return NULL;
7578
7579        *iter = lower->list.next;
7580
7581        return lower->private;
7582}
7583EXPORT_SYMBOL(netdev_lower_get_next_private);
7584
7585/**
7586 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7587 *                                     lower neighbour list, RCU
7588 *                                     variant
7589 * @dev: device
7590 * @iter: list_head ** of the current position
7591 *
7592 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7593 * list, starting from iter position. The caller must hold RCU read lock.
7594 */
7595void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7596                                        struct list_head **iter)
7597{
7598        struct netdev_adjacent *lower;
7599
7600        WARN_ON_ONCE(!rcu_read_lock_held());
7601
7602        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7603
7604        if (&lower->list == &dev->adj_list.lower)
7605                return NULL;
7606
7607        *iter = &lower->list;
7608
7609        return lower->private;
7610}
7611EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7612
7613/**
7614 * netdev_lower_get_next - Get the next device from the lower neighbour
7615 *                         list
7616 * @dev: device
7617 * @iter: list_head ** of the current position
7618 *
7619 * Gets the next netdev_adjacent from the dev's lower neighbour
7620 * list, starting from iter position. The caller must hold RTNL lock or
7621 * its own locking that guarantees that the neighbour lower
7622 * list will remain unchanged.
7623 */
7624void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7625{
7626        struct netdev_adjacent *lower;
7627
7628        lower = list_entry(*iter, struct netdev_adjacent, list);
7629
7630        if (&lower->list == &dev->adj_list.lower)
7631                return NULL;
7632
7633        *iter = lower->list.next;
7634
7635        return lower->dev;
7636}
7637EXPORT_SYMBOL(netdev_lower_get_next);
7638
7639static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7640                                                struct list_head **iter)
7641{
7642        struct netdev_adjacent *lower;
7643
7644        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7645
7646        if (&lower->list == &dev->adj_list.lower)
7647                return NULL;
7648
7649        *iter = &lower->list;
7650
7651        return lower->dev;
7652}
7653
7654static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7655                                                  struct list_head **iter,
7656                                                  bool *ignore)
7657{
7658        struct netdev_adjacent *lower;
7659
7660        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7661
7662        if (&lower->list == &dev->adj_list.lower)
7663                return NULL;
7664
7665        *iter = &lower->list;
7666        *ignore = lower->ignore;
7667
7668        return lower->dev;
7669}
7670
7671int netdev_walk_all_lower_dev(struct net_device *dev,
7672                              int (*fn)(struct net_device *dev,
7673                                        struct netdev_nested_priv *priv),
7674                              struct netdev_nested_priv *priv)
7675{
7676        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7677        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7678        int ret, cur = 0;
7679
7680        now = dev;
7681        iter = &dev->adj_list.lower;
7682
7683        while (1) {
7684                if (now != dev) {
7685                        ret = fn(now, priv);
7686                        if (ret)
7687                                return ret;
7688                }
7689
7690                next = NULL;
7691                while (1) {
7692                        ldev = netdev_next_lower_dev(now, &iter);
7693                        if (!ldev)
7694                                break;
7695
7696                        next = ldev;
7697                        niter = &ldev->adj_list.lower;
7698                        dev_stack[cur] = now;
7699                        iter_stack[cur++] = iter;
7700                        break;
7701                }
7702
7703                if (!next) {
7704                        if (!cur)
7705                                return 0;
7706                        next = dev_stack[--cur];
7707                        niter = iter_stack[cur];
7708                }
7709
7710                now = next;
7711                iter = niter;
7712        }
7713
7714        return 0;
7715}
7716EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7717
7718static int __netdev_walk_all_lower_dev(struct net_device *dev,
7719                                       int (*fn)(struct net_device *dev,
7720                                         struct netdev_nested_priv *priv),
7721                                       struct netdev_nested_priv *priv)
7722{
7723        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7724        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7725        int ret, cur = 0;
7726        bool ignore;
7727
7728        now = dev;
7729        iter = &dev->adj_list.lower;
7730
7731        while (1) {
7732                if (now != dev) {
7733                        ret = fn(now, priv);
7734                        if (ret)
7735                                return ret;
7736                }
7737
7738                next = NULL;
7739                while (1) {
7740                        ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7741                        if (!ldev)
7742                                break;
7743                        if (ignore)
7744                                continue;
7745
7746                        next = ldev;
7747                        niter = &ldev->adj_list.lower;
7748                        dev_stack[cur] = now;
7749                        iter_stack[cur++] = iter;
7750                        break;
7751                }
7752
7753                if (!next) {
7754                        if (!cur)
7755                                return 0;
7756                        next = dev_stack[--cur];
7757                        niter = iter_stack[cur];
7758                }
7759
7760                now = next;
7761                iter = niter;
7762        }
7763
7764        return 0;
7765}
7766
7767struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7768                                             struct list_head **iter)
7769{
7770        struct netdev_adjacent *lower;
7771
7772        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7773        if (&lower->list == &dev->adj_list.lower)
7774                return NULL;
7775
7776        *iter = &lower->list;
7777
7778        return lower->dev;
7779}
7780EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7781
7782static u8 __netdev_upper_depth(struct net_device *dev)
7783{
7784        struct net_device *udev;
7785        struct list_head *iter;
7786        u8 max_depth = 0;
7787        bool ignore;
7788
7789        for (iter = &dev->adj_list.upper,
7790             udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7791             udev;
7792             udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7793                if (ignore)
7794                        continue;
7795                if (max_depth < udev->upper_level)
7796                        max_depth = udev->upper_level;
7797        }
7798
7799        return max_depth;
7800}
7801
7802static u8 __netdev_lower_depth(struct net_device *dev)
7803{
7804        struct net_device *ldev;
7805        struct list_head *iter;
7806        u8 max_depth = 0;
7807        bool ignore;
7808
7809        for (iter = &dev->adj_list.lower,
7810             ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7811             ldev;
7812             ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7813                if (ignore)
7814                        continue;
7815                if (max_depth < ldev->lower_level)
7816                        max_depth = ldev->lower_level;
7817        }
7818
7819        return max_depth;
7820}
7821
7822static int __netdev_update_upper_level(struct net_device *dev,
7823                                       struct netdev_nested_priv *__unused)
7824{
7825        dev->upper_level = __netdev_upper_depth(dev) + 1;
7826        return 0;
7827}
7828
7829static int __netdev_update_lower_level(struct net_device *dev,
7830                                       struct netdev_nested_priv *priv)
7831{
7832        dev->lower_level = __netdev_lower_depth(dev) + 1;
7833
7834#ifdef CONFIG_LOCKDEP
7835        if (!priv)
7836                return 0;
7837
7838        if (priv->flags & NESTED_SYNC_IMM)
7839                dev->nested_level = dev->lower_level - 1;
7840        if (priv->flags & NESTED_SYNC_TODO)
7841                net_unlink_todo(dev);
7842#endif
7843        return 0;
7844}
7845
7846int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7847                                  int (*fn)(struct net_device *dev,
7848                                            struct netdev_nested_priv *priv),
7849                                  struct netdev_nested_priv *priv)
7850{
7851        struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7852        struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7853        int ret, cur = 0;
7854
7855        now = dev;
7856        iter = &dev->adj_list.lower;
7857
7858        while (1) {
7859                if (now != dev) {
7860                        ret = fn(now, priv);
7861                        if (ret)
7862                                return ret;
7863                }
7864
7865                next = NULL;
7866                while (1) {
7867                        ldev = netdev_next_lower_dev_rcu(now, &iter);
7868                        if (!ldev)
7869                                break;
7870
7871                        next = ldev;
7872                        niter = &ldev->adj_list.lower;
7873                        dev_stack[cur] = now;
7874                        iter_stack[cur++] = iter;
7875                        break;
7876                }
7877
7878                if (!next) {
7879                        if (!cur)
7880                                return 0;
7881                        next = dev_stack[--cur];
7882                        niter = iter_stack[cur];
7883                }
7884
7885                now = next;
7886                iter = niter;
7887        }
7888
7889        return 0;
7890}
7891EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7892
7893/**
7894 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7895 *                                     lower neighbour list, RCU
7896 *                                     variant
7897 * @dev: device
7898 *
7899 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7900 * list. The caller must hold RCU read lock.
7901 */
7902void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7903{
7904        struct netdev_adjacent *lower;
7905
7906        lower = list_first_or_null_rcu(&dev->adj_list.lower,
7907                        struct netdev_adjacent, list);
7908        if (lower)
7909                return lower->private;
7910        return NULL;
7911}
7912EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7913
7914/**
7915 * netdev_master_upper_dev_get_rcu - Get master upper device
7916 * @dev: device
7917 *
7918 * Find a master upper device and return pointer to it or NULL in case
7919 * it's not there. The caller must hold the RCU read lock.
7920 */
7921struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7922{
7923        struct netdev_adjacent *upper;
7924
7925        upper = list_first_or_null_rcu(&dev->adj_list.upper,
7926                                       struct netdev_adjacent, list);
7927        if (upper && likely(upper->master))
7928                return upper->dev;
7929        return NULL;
7930}
7931EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7932
7933static int netdev_adjacent_sysfs_add(struct net_device *dev,
7934                              struct net_device *adj_dev,
7935                              struct list_head *dev_list)
7936{
7937        char linkname[IFNAMSIZ+7];
7938
7939        sprintf(linkname, dev_list == &dev->adj_list.upper ?
7940                "upper_%s" : "lower_%s", adj_dev->name);
7941        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7942                                 linkname);
7943}
7944static void netdev_adjacent_sysfs_del(struct net_device *dev,
7945                               char *name,
7946                               struct list_head *dev_list)
7947{
7948        char linkname[IFNAMSIZ+7];
7949
7950        sprintf(linkname, dev_list == &dev->adj_list.upper ?
7951                "upper_%s" : "lower_%s", name);
7952        sysfs_remove_link(&(dev->dev.kobj), linkname);
7953}
7954
7955static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7956                                                 struct net_device *adj_dev,
7957                                                 struct list_head *dev_list)
7958{
7959        return (dev_list == &dev->adj_list.upper ||
7960                dev_list == &dev->adj_list.lower) &&
7961                net_eq(dev_net(dev), dev_net(adj_dev));
7962}
7963
7964static int __netdev_adjacent_dev_insert(struct net_device *dev,
7965                                        struct net_device *adj_dev,
7966                                        struct list_head *dev_list,
7967                                        void *private, bool master)
7968{
7969        struct netdev_adjacent *adj;
7970        int ret;
7971
7972        adj = __netdev_find_adj(adj_dev, dev_list);
7973
7974        if (adj) {
7975                adj->ref_nr += 1;
7976                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7977                         dev->name, adj_dev->name, adj->ref_nr);
7978
7979                return 0;
7980        }
7981
7982        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7983        if (!adj)
7984                return -ENOMEM;
7985
7986        adj->dev = adj_dev;
7987        adj->master = master;
7988        adj->ref_nr = 1;
7989        adj->private = private;
7990        adj->ignore = false;
7991        dev_hold(adj_dev);
7992
7993        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7994                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7995
7996        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7997                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7998                if (ret)
7999                        goto free_adj;
8000        }
8001
8002        /* Ensure that master link is always the first item in list. */
8003        if (master) {
8004                ret = sysfs_create_link(&(dev->dev.kobj),
8005                                        &(adj_dev->dev.kobj), "master");
8006                if (ret)
8007                        goto remove_symlinks;
8008
8009                list_add_rcu(&adj->list, dev_list);
8010        } else {
8011                list_add_tail_rcu(&adj->list, dev_list);
8012        }
8013
8014        return 0;
8015
8016remove_symlinks:
8017        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8018                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8019free_adj:
8020        kfree(adj);
8021        dev_put(adj_dev);
8022
8023        return ret;
8024}
8025
8026static void __netdev_adjacent_dev_remove(struct net_device *dev,
8027                                         struct net_device *adj_dev,
8028                                         u16 ref_nr,
8029                                         struct list_head *dev_list)
8030{
8031        struct netdev_adjacent *adj;
8032
8033        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8034                 dev->name, adj_dev->name, ref_nr);
8035
8036        adj = __netdev_find_adj(adj_dev, dev_list);
8037
8038        if (!adj) {
8039                pr_err("Adjacency does not exist for device %s from %s\n",
8040                       dev->name, adj_dev->name);
8041                WARN_ON(1);
8042                return;
8043        }
8044
8045        if (adj->ref_nr > ref_nr) {
8046                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8047                         dev->name, adj_dev->name, ref_nr,
8048                         adj->ref_nr - ref_nr);
8049                adj->ref_nr -= ref_nr;
8050                return;
8051        }
8052
8053        if (adj->master)
8054                sysfs_remove_link(&(dev->dev.kobj), "master");
8055
8056        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8057                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8058
8059        list_del_rcu(&adj->list);
8060        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8061                 adj_dev->name, dev->name, adj_dev->name);
8062        dev_put(adj_dev);
8063        kfree_rcu(adj, rcu);
8064}
8065
8066static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8067                                            struct net_device *upper_dev,
8068                                            struct list_head *up_list,
8069                                            struct list_head *down_list,
8070                                            void *private, bool master)
8071{
8072        int ret;
8073
8074        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8075                                           private, master);
8076        if (ret)
8077                return ret;
8078
8079        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8080                                           private, false);
8081        if (ret) {
8082                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8083                return ret;
8084        }
8085
8086        return 0;
8087}
8088
8089static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8090                                               struct net_device *upper_dev,
8091                                               u16 ref_nr,
8092                                               struct list_head *up_list,
8093                                               struct list_head *down_list)
8094{
8095        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8096        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8097}
8098
8099static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8100                                                struct net_device *upper_dev,
8101                                                void *private, bool master)
8102{
8103        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8104                                                &dev->adj_list.upper,
8105                                                &upper_dev->adj_list.lower,
8106                                                private, master);
8107}
8108
8109static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8110                                                   struct net_device *upper_dev)
8111{
8112        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8113                                           &dev->adj_list.upper,
8114                                           &upper_dev->adj_list.lower);
8115}
8116
8117static int __netdev_upper_dev_link(struct net_device *dev,
8118                                   struct net_device *upper_dev, bool master,
8119                                   void *upper_priv, void *upper_info,
8120                                   struct netdev_nested_priv *priv,
8121                                   struct netlink_ext_ack *extack)
8122{
8123        struct netdev_notifier_changeupper_info changeupper_info = {
8124                .info = {
8125                        .dev = dev,
8126                        .extack = extack,
8127                },
8128                .upper_dev = upper_dev,
8129                .master = master,
8130                .linking = true,
8131                .upper_info = upper_info,
8132        };
8133        struct net_device *master_dev;
8134        int ret = 0;
8135
8136        ASSERT_RTNL();
8137
8138        if (dev == upper_dev)
8139                return -EBUSY;
8140
8141        /* To prevent loops, check if dev is not upper device to upper_dev. */
8142        if (__netdev_has_upper_dev(upper_dev, dev))
8143                return -EBUSY;
8144
8145        if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8146                return -EMLINK;
8147
8148        if (!master) {
8149                if (__netdev_has_upper_dev(dev, upper_dev))
8150                        return -EEXIST;
8151        } else {
8152                master_dev = __netdev_master_upper_dev_get(dev);
8153                if (master_dev)
8154                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
8155        }
8156
8157        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8158                                            &changeupper_info.info);
8159        ret = notifier_to_errno(ret);
8160        if (ret)
8161                return ret;
8162
8163        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8164                                                   master);
8165        if (ret)
8166                return ret;
8167
8168        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8169                                            &changeupper_info.info);
8170        ret = notifier_to_errno(ret);
8171        if (ret)
8172                goto rollback;
8173
8174        __netdev_update_upper_level(dev, NULL);
8175        __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8176
8177        __netdev_update_lower_level(upper_dev, priv);
8178        __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8179                                    priv);
8180
8181        return 0;
8182
8183rollback:
8184        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8185
8186        return ret;
8187}
8188
8189/**
8190 * netdev_upper_dev_link - Add a link to the upper device
8191 * @dev: device
8192 * @upper_dev: new upper device
8193 * @extack: netlink extended ack
8194 *
8195 * Adds a link to device which is upper to this one. The caller must hold
8196 * the RTNL lock. On a failure a negative errno code is returned.
8197 * On success the reference counts are adjusted and the function
8198 * returns zero.
8199 */
8200int netdev_upper_dev_link(struct net_device *dev,
8201                          struct net_device *upper_dev,
8202                          struct netlink_ext_ack *extack)
8203{
8204        struct netdev_nested_priv priv = {
8205                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8206                .data = NULL,
8207        };
8208
8209        return __netdev_upper_dev_link(dev, upper_dev, false,
8210                                       NULL, NULL, &priv, extack);
8211}
8212EXPORT_SYMBOL(netdev_upper_dev_link);
8213
8214/**
8215 * netdev_master_upper_dev_link - Add a master link to the upper device
8216 * @dev: device
8217 * @upper_dev: new upper device
8218 * @upper_priv: upper device private
8219 * @upper_info: upper info to be passed down via notifier
8220 * @extack: netlink extended ack
8221 *
8222 * Adds a link to device which is upper to this one. In this case, only
8223 * one master upper device can be linked, although other non-master devices
8224 * might be linked as well. The caller must hold the RTNL lock.
8225 * On a failure a negative errno code is returned. On success the reference
8226 * counts are adjusted and the function returns zero.
8227 */
8228int netdev_master_upper_dev_link(struct net_device *dev,
8229                                 struct net_device *upper_dev,
8230                                 void *upper_priv, void *upper_info,
8231                                 struct netlink_ext_ack *extack)
8232{
8233        struct netdev_nested_priv priv = {
8234                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8235                .data = NULL,
8236        };
8237
8238        return __netdev_upper_dev_link(dev, upper_dev, true,
8239                                       upper_priv, upper_info, &priv, extack);
8240}
8241EXPORT_SYMBOL(netdev_master_upper_dev_link);
8242
8243static void __netdev_upper_dev_unlink(struct net_device *dev,
8244                                      struct net_device *upper_dev,
8245                                      struct netdev_nested_priv *priv)
8246{
8247        struct netdev_notifier_changeupper_info changeupper_info = {
8248                .info = {
8249                        .dev = dev,
8250                },
8251                .upper_dev = upper_dev,
8252                .linking = false,
8253        };
8254
8255        ASSERT_RTNL();
8256
8257        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8258
8259        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8260                                      &changeupper_info.info);
8261
8262        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8263
8264        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8265                                      &changeupper_info.info);
8266
8267        __netdev_update_upper_level(dev, NULL);
8268        __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8269
8270        __netdev_update_lower_level(upper_dev, priv);
8271        __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8272                                    priv);
8273}
8274
8275/**
8276 * netdev_upper_dev_unlink - Removes a link to upper device
8277 * @dev: device
8278 * @upper_dev: new upper device
8279 *
8280 * Removes a link to device which is upper to this one. The caller must hold
8281 * the RTNL lock.
8282 */
8283void netdev_upper_dev_unlink(struct net_device *dev,
8284                             struct net_device *upper_dev)
8285{
8286        struct netdev_nested_priv priv = {
8287                .flags = NESTED_SYNC_TODO,
8288                .data = NULL,
8289        };
8290
8291        __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8292}
8293EXPORT_SYMBOL(netdev_upper_dev_unlink);
8294
8295static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8296                                      struct net_device *lower_dev,
8297                                      bool val)
8298{
8299        struct netdev_adjacent *adj;
8300
8301        adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8302        if (adj)
8303                adj->ignore = val;
8304
8305        adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8306        if (adj)
8307                adj->ignore = val;
8308}
8309
8310static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8311                                        struct net_device *lower_dev)
8312{
8313        __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8314}
8315
8316static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8317                                       struct net_device *lower_dev)
8318{
8319        __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8320}
8321
8322int netdev_adjacent_change_prepare(struct net_device *old_dev,
8323                                   struct net_device *new_dev,
8324                                   struct net_device *dev,
8325                                   struct netlink_ext_ack *extack)
8326{
8327        struct netdev_nested_priv priv = {
8328                .flags = 0,
8329                .data = NULL,
8330        };
8331        int err;
8332
8333        if (!new_dev)
8334                return 0;
8335
8336        if (old_dev && new_dev != old_dev)
8337                netdev_adjacent_dev_disable(dev, old_dev);
8338        err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8339                                      extack);
8340        if (err) {
8341                if (old_dev && new_dev != old_dev)
8342                        netdev_adjacent_dev_enable(dev, old_dev);
8343                return err;
8344        }
8345
8346        return 0;
8347}
8348EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8349
8350void netdev_adjacent_change_commit(struct net_device *old_dev,
8351                                   struct net_device *new_dev,
8352                                   struct net_device *dev)
8353{
8354        struct netdev_nested_priv priv = {
8355                .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8356                .data = NULL,
8357        };
8358
8359        if (!new_dev || !old_dev)
8360                return;
8361
8362        if (new_dev == old_dev)
8363                return;
8364
8365        netdev_adjacent_dev_enable(dev, old_dev);
8366        __netdev_upper_dev_unlink(old_dev, dev, &priv);
8367}
8368EXPORT_SYMBOL(netdev_adjacent_change_commit);
8369
8370void netdev_adjacent_change_abort(struct net_device *old_dev,
8371                                  struct net_device *new_dev,
8372                                  struct net_device *dev)
8373{
8374        struct netdev_nested_priv priv = {
8375                .flags = 0,
8376                .data = NULL,
8377        };
8378
8379        if (!new_dev)
8380                return;
8381
8382        if (old_dev && new_dev != old_dev)
8383                netdev_adjacent_dev_enable(dev, old_dev);
8384
8385        __netdev_upper_dev_unlink(new_dev, dev, &priv);
8386}
8387EXPORT_SYMBOL(netdev_adjacent_change_abort);
8388
8389/**
8390 * netdev_bonding_info_change - Dispatch event about slave change
8391 * @dev: device
8392 * @bonding_info: info to dispatch
8393 *
8394 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8395 * The caller must hold the RTNL lock.
8396 */
8397void netdev_bonding_info_change(struct net_device *dev,
8398                                struct netdev_bonding_info *bonding_info)
8399{
8400        struct netdev_notifier_bonding_info info = {
8401                .info.dev = dev,
8402        };
8403
8404        memcpy(&info.bonding_info, bonding_info,
8405               sizeof(struct netdev_bonding_info));
8406        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8407                                      &info.info);
8408}
8409EXPORT_SYMBOL(netdev_bonding_info_change);
8410
8411/**
8412 * netdev_get_xmit_slave - Get the xmit slave of master device
8413 * @dev: device
8414 * @skb: The packet
8415 * @all_slaves: assume all the slaves are active
8416 *
8417 * The reference counters are not incremented so the caller must be
8418 * careful with locks. The caller must hold RCU lock.
8419 * %NULL is returned if no slave is found.
8420 */
8421
8422struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8423                                         struct sk_buff *skb,
8424                                         bool all_slaves)
8425{
8426        const struct net_device_ops *ops = dev->netdev_ops;
8427
8428        if (!ops->ndo_get_xmit_slave)
8429                return NULL;
8430        return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8431}
8432EXPORT_SYMBOL(netdev_get_xmit_slave);
8433
8434static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8435                                                  struct sock *sk)
8436{
8437        const struct net_device_ops *ops = dev->netdev_ops;
8438
8439        if (!ops->ndo_sk_get_lower_dev)
8440                return NULL;
8441        return ops->ndo_sk_get_lower_dev(dev, sk);
8442}
8443
8444/**
8445 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8446 * @dev: device
8447 * @sk: the socket
8448 *
8449 * %NULL is returned if no lower device is found.
8450 */
8451
8452struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8453                                            struct sock *sk)
8454{
8455        struct net_device *lower;
8456
8457        lower = netdev_sk_get_lower_dev(dev, sk);
8458        while (lower) {
8459                dev = lower;
8460                lower = netdev_sk_get_lower_dev(dev, sk);
8461        }
8462
8463        return dev;
8464}
8465EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8466
8467static void netdev_adjacent_add_links(struct net_device *dev)
8468{
8469        struct netdev_adjacent *iter;
8470
8471        struct net *net = dev_net(dev);
8472
8473        list_for_each_entry(iter, &dev->adj_list.upper, list) {
8474                if (!net_eq(net, dev_net(iter->dev)))
8475                        continue;
8476                netdev_adjacent_sysfs_add(iter->dev, dev,
8477                                          &iter->dev->adj_list.lower);
8478                netdev_adjacent_sysfs_add(dev, iter->dev,
8479                                          &dev->adj_list.upper);
8480        }
8481
8482        list_for_each_entry(iter, &dev->adj_list.lower, list) {
8483                if (!net_eq(net, dev_net(iter->dev)))
8484                        continue;
8485                netdev_adjacent_sysfs_add(iter->dev, dev,
8486                                          &iter->dev->adj_list.upper);
8487                netdev_adjacent_sysfs_add(dev, iter->dev,
8488                                          &dev->adj_list.lower);
8489        }
8490}
8491
8492static void netdev_adjacent_del_links(struct net_device *dev)
8493{
8494        struct netdev_adjacent *iter;
8495
8496        struct net *net = dev_net(dev);
8497
8498        list_for_each_entry(iter, &dev->adj_list.upper, list) {
8499                if (!net_eq(net, dev_net(iter->dev)))
8500                        continue;
8501                netdev_adjacent_sysfs_del(iter->dev, dev->name,
8502                                          &iter->dev->adj_list.lower);
8503                netdev_adjacent_sysfs_del(dev, iter->dev->name,
8504                                          &dev->adj_list.upper);
8505        }
8506
8507        list_for_each_entry(iter, &dev->adj_list.lower, list) {
8508                if (!net_eq(net, dev_net(iter->dev)))
8509                        continue;
8510                netdev_adjacent_sysfs_del(iter->dev, dev->name,
8511                                          &iter->dev->adj_list.upper);
8512                netdev_adjacent_sysfs_del(dev, iter->dev->name,
8513                                          &dev->adj_list.lower);
8514        }
8515}
8516
8517void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8518{
8519        struct netdev_adjacent *iter;
8520
8521        struct net *net = dev_net(dev);
8522
8523        list_for_each_entry(iter, &dev->adj_list.upper, list) {
8524                if (!net_eq(net, dev_net(iter->dev)))
8525                        continue;
8526                netdev_adjacent_sysfs_del(iter->dev, oldname,
8527                                          &iter->dev->adj_list.lower);
8528                netdev_adjacent_sysfs_add(iter->dev, dev,
8529                                          &iter->dev->adj_list.lower);
8530        }
8531
8532        list_for_each_entry(iter, &dev->adj_list.lower, list) {
8533                if (!net_eq(net, dev_net(iter->dev)))
8534                        continue;
8535                netdev_adjacent_sysfs_del(iter->dev, oldname,
8536                                          &iter->dev->adj_list.upper);
8537                netdev_adjacent_sysfs_add(iter->dev, dev,
8538                                          &iter->dev->adj_list.upper);
8539        }
8540}
8541
8542void *netdev_lower_dev_get_private(struct net_device *dev,
8543                                   struct net_device *lower_dev)
8544{
8545        struct netdev_adjacent *lower;
8546
8547        if (!lower_dev)
8548                return NULL;
8549        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8550        if (!lower)
8551                return NULL;
8552
8553        return lower->private;
8554}
8555EXPORT_SYMBOL(netdev_lower_dev_get_private);
8556
8557
8558/**
8559 * netdev_lower_state_changed - Dispatch event about lower device state change
8560 * @lower_dev: device
8561 * @lower_state_info: state to dispatch
8562 *
8563 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8564 * The caller must hold the RTNL lock.
8565 */
8566void netdev_lower_state_changed(struct net_device *lower_dev,
8567                                void *lower_state_info)
8568{
8569        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8570                .info.dev = lower_dev,
8571        };
8572
8573        ASSERT_RTNL();
8574        changelowerstate_info.lower_state_info = lower_state_info;
8575        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8576                                      &changelowerstate_info.info);
8577}
8578EXPORT_SYMBOL(netdev_lower_state_changed);
8579
8580static void dev_change_rx_flags(struct net_device *dev, int flags)
8581{
8582        const struct net_device_ops *ops = dev->netdev_ops;
8583
8584        if (ops->ndo_change_rx_flags)
8585                ops->ndo_change_rx_flags(dev, flags);
8586}
8587
8588static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8589{
8590        unsigned int old_flags = dev->flags;
8591        kuid_t uid;
8592        kgid_t gid;
8593
8594        ASSERT_RTNL();
8595
8596        dev->flags |= IFF_PROMISC;
8597        dev->promiscuity += inc;
8598        if (dev->promiscuity == 0) {
8599                /*
8600                 * Avoid overflow.
8601                 * If inc causes overflow, untouch promisc and return error.
8602                 */
8603                if (inc < 0)
8604                        dev->flags &= ~IFF_PROMISC;
8605                else {
8606                        dev->promiscuity -= inc;
8607                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8608                                dev->name);
8609                        return -EOVERFLOW;
8610                }
8611        }
8612        if (dev->flags != old_flags) {
8613                pr_info("device %s %s promiscuous mode\n",
8614                        dev->name,
8615                        dev->flags & IFF_PROMISC ? "entered" : "left");
8616                if (audit_enabled) {
8617                        current_uid_gid(&uid, &gid);
8618                        audit_log(audit_context(), GFP_ATOMIC,
8619                                  AUDIT_ANOM_PROMISCUOUS,
8620                                  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8621                                  dev->name, (dev->flags & IFF_PROMISC),
8622                                  (old_flags & IFF_PROMISC),
8623                                  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8624                                  from_kuid(&init_user_ns, uid),
8625                                  from_kgid(&init_user_ns, gid),
8626                                  audit_get_sessionid(current));
8627                }
8628
8629                dev_change_rx_flags(dev, IFF_PROMISC);
8630        }
8631        if (notify)
8632                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8633        return 0;
8634}
8635
8636/**
8637 *      dev_set_promiscuity     - update promiscuity count on a device
8638 *      @dev: device
8639 *      @inc: modifier
8640 *
8641 *      Add or remove promiscuity from a device. While the count in the device
8642 *      remains above zero the interface remains promiscuous. Once it hits zero
8643 *      the device reverts back to normal filtering operation. A negative inc
8644 *      value is used to drop promiscuity on the device.
8645 *      Return 0 if successful or a negative errno code on error.
8646 */
8647int dev_set_promiscuity(struct net_device *dev, int inc)
8648{
8649        unsigned int old_flags = dev->flags;
8650        int err;
8651
8652        err = __dev_set_promiscuity(dev, inc, true);
8653        if (err < 0)
8654                return err;
8655        if (dev->flags != old_flags)
8656                dev_set_rx_mode(dev);
8657        return err;
8658}
8659EXPORT_SYMBOL(dev_set_promiscuity);
8660
8661static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8662{
8663        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8664
8665        ASSERT_RTNL();
8666
8667        dev->flags |= IFF_ALLMULTI;
8668        dev->allmulti += inc;
8669        if (dev->allmulti == 0) {
8670                /*
8671                 * Avoid overflow.
8672                 * If inc causes overflow, untouch allmulti and return error.
8673                 */
8674                if (inc < 0)
8675                        dev->flags &= ~IFF_ALLMULTI;
8676                else {
8677                        dev->allmulti -= inc;
8678                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8679                                dev->name);
8680                        return -EOVERFLOW;
8681                }
8682        }
8683        if (dev->flags ^ old_flags) {
8684                dev_change_rx_flags(dev, IFF_ALLMULTI);
8685                dev_set_rx_mode(dev);
8686                if (notify)
8687                        __dev_notify_flags(dev, old_flags,
8688                                           dev->gflags ^ old_gflags);
8689        }
8690        return 0;
8691}
8692
8693/**
8694 *      dev_set_allmulti        - update allmulti count on a device
8695 *      @dev: device
8696 *      @inc: modifier
8697 *
8698 *      Add or remove reception of all multicast frames to a device. While the
8699 *      count in the device remains above zero the interface remains listening
8700 *      to all interfaces. Once it hits zero the device reverts back to normal
8701 *      filtering operation. A negative @inc value is used to drop the counter
8702 *      when releasing a resource needing all multicasts.
8703 *      Return 0 if successful or a negative errno code on error.
8704 */
8705
8706int dev_set_allmulti(struct net_device *dev, int inc)
8707{
8708        return __dev_set_allmulti(dev, inc, true);
8709}
8710EXPORT_SYMBOL(dev_set_allmulti);
8711
8712/*
8713 *      Upload unicast and multicast address lists to device and
8714 *      configure RX filtering. When the device doesn't support unicast
8715 *      filtering it is put in promiscuous mode while unicast addresses
8716 *      are present.
8717 */
8718void __dev_set_rx_mode(struct net_device *dev)
8719{
8720        const struct net_device_ops *ops = dev->netdev_ops;
8721
8722        /* dev_open will call this function so the list will stay sane. */
8723        if (!(dev->flags&IFF_UP))
8724                return;
8725
8726        if (!netif_device_present(dev))
8727                return;
8728
8729        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8730                /* Unicast addresses changes may only happen under the rtnl,
8731                 * therefore calling __dev_set_promiscuity here is safe.
8732                 */
8733                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8734                        __dev_set_promiscuity(dev, 1, false);
8735                        dev->uc_promisc = true;
8736                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8737                        __dev_set_promiscuity(dev, -1, false);
8738                        dev->uc_promisc = false;
8739                }
8740        }
8741
8742        if (ops->ndo_set_rx_mode)
8743                ops->ndo_set_rx_mode(dev);
8744}
8745
8746void dev_set_rx_mode(struct net_device *dev)
8747{
8748        netif_addr_lock_bh(dev);
8749        __dev_set_rx_mode(dev);
8750        netif_addr_unlock_bh(dev);
8751}
8752
8753/**
8754 *      dev_get_flags - get flags reported to userspace
8755 *      @dev: device
8756 *
8757 *      Get the combination of flag bits exported through APIs to userspace.
8758 */
8759unsigned int dev_get_flags(const struct net_device *dev)
8760{
8761        unsigned int flags;
8762
8763        flags = (dev->flags & ~(IFF_PROMISC |
8764                                IFF_ALLMULTI |
8765                                IFF_RUNNING |
8766                                IFF_LOWER_UP |
8767                                IFF_DORMANT)) |
8768                (dev->gflags & (IFF_PROMISC |
8769                                IFF_ALLMULTI));
8770
8771        if (netif_running(dev)) {
8772                if (netif_oper_up(dev))
8773                        flags |= IFF_RUNNING;
8774                if (netif_carrier_ok(dev))
8775                        flags |= IFF_LOWER_UP;
8776                if (netif_dormant(dev))
8777                        flags |= IFF_DORMANT;
8778        }
8779
8780        return flags;
8781}
8782EXPORT_SYMBOL(dev_get_flags);
8783
8784int __dev_change_flags(struct net_device *dev, unsigned int flags,
8785                       struct netlink_ext_ack *extack)
8786{
8787        unsigned int old_flags = dev->flags;
8788        int ret;
8789
8790        ASSERT_RTNL();
8791
8792        /*
8793         *      Set the flags on our device.
8794         */
8795
8796        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8797                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8798                               IFF_AUTOMEDIA)) |
8799                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8800                                    IFF_ALLMULTI));
8801
8802        /*
8803         *      Load in the correct multicast list now the flags have changed.
8804         */
8805
8806        if ((old_flags ^ flags) & IFF_MULTICAST)
8807                dev_change_rx_flags(dev, IFF_MULTICAST);
8808
8809        dev_set_rx_mode(dev);
8810
8811        /*
8812         *      Have we downed the interface. We handle IFF_UP ourselves
8813         *      according to user attempts to set it, rather than blindly
8814         *      setting it.
8815         */
8816
8817        ret = 0;
8818        if ((old_flags ^ flags) & IFF_UP) {
8819                if (old_flags & IFF_UP)
8820                        __dev_close(dev);
8821                else
8822                        ret = __dev_open(dev, extack);
8823        }
8824
8825        if ((flags ^ dev->gflags) & IFF_PROMISC) {
8826                int inc = (flags & IFF_PROMISC) ? 1 : -1;
8827                unsigned int old_flags = dev->flags;
8828
8829                dev->gflags ^= IFF_PROMISC;
8830
8831                if (__dev_set_promiscuity(dev, inc, false) >= 0)
8832                        if (dev->flags != old_flags)
8833                                dev_set_rx_mode(dev);
8834        }
8835
8836        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8837         * is important. Some (broken) drivers set IFF_PROMISC, when
8838         * IFF_ALLMULTI is requested not asking us and not reporting.
8839         */
8840        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8841                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8842
8843                dev->gflags ^= IFF_ALLMULTI;
8844                __dev_set_allmulti(dev, inc, false);
8845        }
8846
8847        return ret;
8848}
8849
8850void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8851                        unsigned int gchanges)
8852{
8853        unsigned int changes = dev->flags ^ old_flags;
8854
8855        if (gchanges)
8856                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8857
8858        if (changes & IFF_UP) {
8859                if (dev->flags & IFF_UP)
8860                        call_netdevice_notifiers(NETDEV_UP, dev);
8861                else
8862                        call_netdevice_notifiers(NETDEV_DOWN, dev);
8863        }
8864
8865        if (dev->flags & IFF_UP &&
8866            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8867                struct netdev_notifier_change_info change_info = {
8868                        .info = {
8869                                .dev = dev,
8870                        },
8871                        .flags_changed = changes,
8872                };
8873
8874                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8875        }
8876}
8877
8878/**
8879 *      dev_change_flags - change device settings
8880 *      @dev: device
8881 *      @flags: device state flags
8882 *      @extack: netlink extended ack
8883 *
8884 *      Change settings on device based state flags. The flags are
8885 *      in the userspace exported format.
8886 */
8887int dev_change_flags(struct net_device *dev, unsigned int flags,
8888                     struct netlink_ext_ack *extack)
8889{
8890        int ret;
8891        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8892
8893        ret = __dev_change_flags(dev, flags, extack);
8894        if (ret < 0)
8895                return ret;
8896
8897        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8898        __dev_notify_flags(dev, old_flags, changes);
8899        return ret;
8900}
8901EXPORT_SYMBOL(dev_change_flags);
8902
8903int __dev_set_mtu(struct net_device *dev, int new_mtu)
8904{
8905        const struct net_device_ops *ops = dev->netdev_ops;
8906
8907        if (ops->ndo_change_mtu)
8908                return ops->ndo_change_mtu(dev, new_mtu);
8909
8910        /* Pairs with all the lockless reads of dev->mtu in the stack */
8911        WRITE_ONCE(dev->mtu, new_mtu);
8912        return 0;
8913}
8914EXPORT_SYMBOL(__dev_set_mtu);
8915
8916int dev_validate_mtu(struct net_device *dev, int new_mtu,
8917                     struct netlink_ext_ack *extack)
8918{
8919        /* MTU must be positive, and in range */
8920        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8921                NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8922                return -EINVAL;
8923        }
8924
8925        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8926                NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8927                return -EINVAL;
8928        }
8929        return 0;
8930}
8931
8932/**
8933 *      dev_set_mtu_ext - Change maximum transfer unit
8934 *      @dev: device
8935 *      @new_mtu: new transfer unit
8936 *      @extack: netlink extended ack
8937 *
8938 *      Change the maximum transfer size of the network device.
8939 */
8940int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8941                    struct netlink_ext_ack *extack)
8942{
8943        int err, orig_mtu;
8944
8945        if (new_mtu == dev->mtu)
8946                return 0;
8947
8948        err = dev_validate_mtu(dev, new_mtu, extack);
8949        if (err)
8950                return err;
8951
8952        if (!netif_device_present(dev))
8953                return -ENODEV;
8954
8955        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8956        err = notifier_to_errno(err);
8957        if (err)
8958                return err;
8959
8960        orig_mtu = dev->mtu;
8961        err = __dev_set_mtu(dev, new_mtu);
8962
8963        if (!err) {
8964                err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8965                                                   orig_mtu);
8966                err = notifier_to_errno(err);
8967                if (err) {
8968                        /* setting mtu back and notifying everyone again,
8969                         * so that they have a chance to revert changes.
8970                         */
8971                        __dev_set_mtu(dev, orig_mtu);
8972                        call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8973                                                     new_mtu);
8974                }
8975        }
8976        return err;
8977}
8978
8979int dev_set_mtu(struct net_device *dev, int new_mtu)
8980{
8981        struct netlink_ext_ack extack;
8982        int err;
8983
8984        memset(&extack, 0, sizeof(extack));
8985        err = dev_set_mtu_ext(dev, new_mtu, &extack);
8986        if (err && extack._msg)
8987                net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8988        return err;
8989}
8990EXPORT_SYMBOL(dev_set_mtu);
8991
8992/**
8993 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8994 *      @dev: device
8995 *      @new_len: new tx queue length
8996 */
8997int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8998{
8999        unsigned int orig_len = dev->tx_queue_len;
9000        int res;
9001
9002        if (new_len != (unsigned int)new_len)
9003                return -ERANGE;
9004
9005        if (new_len != orig_len) {
9006                dev->tx_queue_len = new_len;
9007                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9008                res = notifier_to_errno(res);
9009                if (res)
9010                        goto err_rollback;
9011                res = dev_qdisc_change_tx_queue_len(dev);
9012                if (res)
9013                        goto err_rollback;
9014        }
9015
9016        return 0;
9017
9018err_rollback:
9019        netdev_err(dev, "refused to change device tx_queue_len\n");
9020        dev->tx_queue_len = orig_len;
9021        return res;
9022}
9023
9024/**
9025 *      dev_set_group - Change group this device belongs to
9026 *      @dev: device
9027 *      @new_group: group this device should belong to
9028 */
9029void dev_set_group(struct net_device *dev, int new_group)
9030{
9031        dev->group = new_group;
9032}
9033EXPORT_SYMBOL(dev_set_group);
9034
9035/**
9036 *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9037 *      @dev: device
9038 *      @addr: new address
9039 *      @extack: netlink extended ack
9040 */
9041int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9042                              struct netlink_ext_ack *extack)
9043{
9044        struct netdev_notifier_pre_changeaddr_info info = {
9045                .info.dev = dev,
9046                .info.extack = extack,
9047                .dev_addr = addr,
9048        };
9049        int rc;
9050
9051        rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9052        return notifier_to_errno(rc);
9053}
9054EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9055
9056/**
9057 *      dev_set_mac_address - Change Media Access Control Address
9058 *      @dev: device
9059 *      @sa: new address
9060 *      @extack: netlink extended ack
9061 *
9062 *      Change the hardware (MAC) address of the device
9063 */
9064int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9065                        struct netlink_ext_ack *extack)
9066{
9067        const struct net_device_ops *ops = dev->netdev_ops;
9068        int err;
9069
9070        if (!ops->ndo_set_mac_address)
9071                return -EOPNOTSUPP;
9072        if (sa->sa_family != dev->type)
9073                return -EINVAL;
9074        if (!netif_device_present(dev))
9075                return -ENODEV;
9076        err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9077        if (err)
9078                return err;
9079        err = ops->ndo_set_mac_address(dev, sa);
9080        if (err)
9081                return err;
9082        dev->addr_assign_type = NET_ADDR_SET;
9083        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9084        add_device_randomness(dev->dev_addr, dev->addr_len);
9085        return 0;
9086}
9087EXPORT_SYMBOL(dev_set_mac_address);
9088
9089static DECLARE_RWSEM(dev_addr_sem);
9090
9091int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9092                             struct netlink_ext_ack *extack)
9093{
9094        int ret;
9095
9096        down_write(&dev_addr_sem);
9097        ret = dev_set_mac_address(dev, sa, extack);
9098        up_write(&dev_addr_sem);
9099        return ret;
9100}
9101EXPORT_SYMBOL(dev_set_mac_address_user);
9102
9103int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9104{
9105        size_t size = sizeof(sa->sa_data);
9106        struct net_device *dev;
9107        int ret = 0;
9108
9109        down_read(&dev_addr_sem);
9110        rcu_read_lock();
9111
9112        dev = dev_get_by_name_rcu(net, dev_name);
9113        if (!dev) {
9114                ret = -ENODEV;
9115                goto unlock;
9116        }
9117        if (!dev->addr_len)
9118                memset(sa->sa_data, 0, size);
9119        else
9120                memcpy(sa->sa_data, dev->dev_addr,
9121                       min_t(size_t, size, dev->addr_len));
9122        sa->sa_family = dev->type;
9123
9124unlock:
9125        rcu_read_unlock();
9126        up_read(&dev_addr_sem);
9127        return ret;
9128}
9129EXPORT_SYMBOL(dev_get_mac_address);
9130
9131/**
9132 *      dev_change_carrier - Change device carrier
9133 *      @dev: device
9134 *      @new_carrier: new value
9135 *
9136 *      Change device carrier
9137 */
9138int dev_change_carrier(struct net_device *dev, bool new_carrier)
9139{
9140        const struct net_device_ops *ops = dev->netdev_ops;
9141
9142        if (!ops->ndo_change_carrier)
9143                return -EOPNOTSUPP;
9144        if (!netif_device_present(dev))
9145                return -ENODEV;
9146        return ops->ndo_change_carrier(dev, new_carrier);
9147}
9148EXPORT_SYMBOL(dev_change_carrier);
9149
9150/**
9151 *      dev_get_phys_port_id - Get device physical port ID
9152 *      @dev: device
9153 *      @ppid: port ID
9154 *
9155 *      Get device physical port ID
9156 */
9157int dev_get_phys_port_id(struct net_device *dev,
9158                         struct netdev_phys_item_id *ppid)
9159{
9160        const struct net_device_ops *ops = dev->netdev_ops;
9161
9162        if (!ops->ndo_get_phys_port_id)
9163                return -EOPNOTSUPP;
9164        return ops->ndo_get_phys_port_id(dev, ppid);
9165}
9166EXPORT_SYMBOL(dev_get_phys_port_id);
9167
9168/**
9169 *      dev_get_phys_port_name - Get device physical port name
9170 *      @dev: device
9171 *      @name: port name
9172 *      @len: limit of bytes to copy to name
9173 *
9174 *      Get device physical port name
9175 */
9176int dev_get_phys_port_name(struct net_device *dev,
9177                           char *name, size_t len)
9178{
9179        const struct net_device_ops *ops = dev->netdev_ops;
9180        int err;
9181
9182        if (ops->ndo_get_phys_port_name) {
9183                err = ops->ndo_get_phys_port_name(dev, name, len);
9184                if (err != -EOPNOTSUPP)
9185                        return err;
9186        }
9187        return devlink_compat_phys_port_name_get(dev, name, len);
9188}
9189EXPORT_SYMBOL(dev_get_phys_port_name);
9190
9191/**
9192 *      dev_get_port_parent_id - Get the device's port parent identifier
9193 *      @dev: network device
9194 *      @ppid: pointer to a storage for the port's parent identifier
9195 *      @recurse: allow/disallow recursion to lower devices
9196 *
9197 *      Get the devices's port parent identifier
9198 */
9199int dev_get_port_parent_id(struct net_device *dev,
9200                           struct netdev_phys_item_id *ppid,
9201                           bool recurse)
9202{
9203        const struct net_device_ops *ops = dev->netdev_ops;
9204        struct netdev_phys_item_id first = { };
9205        struct net_device *lower_dev;
9206        struct list_head *iter;
9207        int err;
9208
9209        if (ops->ndo_get_port_parent_id) {
9210                err = ops->ndo_get_port_parent_id(dev, ppid);
9211                if (err != -EOPNOTSUPP)
9212                        return err;
9213        }
9214
9215        err = devlink_compat_switch_id_get(dev, ppid);
9216        if (!err || err != -EOPNOTSUPP)
9217                return err;
9218
9219        if (!recurse)
9220                return -EOPNOTSUPP;
9221
9222        netdev_for_each_lower_dev(dev, lower_dev, iter) {
9223                err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9224                if (err)
9225                        break;
9226                if (!first.id_len)
9227                        first = *ppid;
9228                else if (memcmp(&first, ppid, sizeof(*ppid)))
9229                        return -EOPNOTSUPP;
9230        }
9231
9232        return err;
9233}
9234EXPORT_SYMBOL(dev_get_port_parent_id);
9235
9236/**
9237 *      netdev_port_same_parent_id - Indicate if two network devices have
9238 *      the same port parent identifier
9239 *      @a: first network device
9240 *      @b: second network device
9241 */
9242bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9243{
9244        struct netdev_phys_item_id a_id = { };
9245        struct netdev_phys_item_id b_id = { };
9246
9247        if (dev_get_port_parent_id(a, &a_id, true) ||
9248            dev_get_port_parent_id(b, &b_id, true))
9249                return false;
9250
9251        return netdev_phys_item_id_same(&a_id, &b_id);
9252}
9253EXPORT_SYMBOL(netdev_port_same_parent_id);
9254
9255/**
9256 *      dev_change_proto_down - update protocol port state information
9257 *      @dev: device
9258 *      @proto_down: new value
9259 *
9260 *      This info can be used by switch drivers to set the phys state of the
9261 *      port.
9262 */
9263int dev_change_proto_down(struct net_device *dev, bool proto_down)
9264{
9265        const struct net_device_ops *ops = dev->netdev_ops;
9266
9267        if (!ops->ndo_change_proto_down)
9268                return -EOPNOTSUPP;
9269        if (!netif_device_present(dev))
9270                return -ENODEV;
9271        return ops->ndo_change_proto_down(dev, proto_down);
9272}
9273EXPORT_SYMBOL(dev_change_proto_down);
9274
9275/**
9276 *      dev_change_proto_down_generic - generic implementation for
9277 *      ndo_change_proto_down that sets carrier according to
9278 *      proto_down.
9279 *
9280 *      @dev: device
9281 *      @proto_down: new value
9282 */
9283int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9284{
9285        if (proto_down)
9286                netif_carrier_off(dev);
9287        else
9288                netif_carrier_on(dev);
9289        dev->proto_down = proto_down;
9290        return 0;
9291}
9292EXPORT_SYMBOL(dev_change_proto_down_generic);
9293
9294/**
9295 *      dev_change_proto_down_reason - proto down reason
9296 *
9297 *      @dev: device
9298 *      @mask: proto down mask
9299 *      @value: proto down value
9300 */
9301void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9302                                  u32 value)
9303{
9304        int b;
9305
9306        if (!mask) {
9307                dev->proto_down_reason = value;
9308        } else {
9309                for_each_set_bit(b, &mask, 32) {
9310                        if (value & (1 << b))
9311                                dev->proto_down_reason |= BIT(b);
9312                        else
9313                                dev->proto_down_reason &= ~BIT(b);
9314                }
9315        }
9316}
9317EXPORT_SYMBOL(dev_change_proto_down_reason);
9318
9319struct bpf_xdp_link {
9320        struct bpf_link link;
9321        struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9322        int flags;
9323};
9324
9325static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9326{
9327        if (flags & XDP_FLAGS_HW_MODE)
9328                return XDP_MODE_HW;
9329        if (flags & XDP_FLAGS_DRV_MODE)
9330                return XDP_MODE_DRV;
9331        if (flags & XDP_FLAGS_SKB_MODE)
9332                return XDP_MODE_SKB;
9333        return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9334}
9335
9336static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9337{
9338        switch (mode) {
9339        case XDP_MODE_SKB:
9340                return generic_xdp_install;
9341        case XDP_MODE_DRV:
9342        case XDP_MODE_HW:
9343                return dev->netdev_ops->ndo_bpf;
9344        default:
9345                return NULL;
9346        }
9347}
9348
9349static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9350                                         enum bpf_xdp_mode mode)
9351{
9352        return dev->xdp_state[mode].link;
9353}
9354
9355static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9356                                     enum bpf_xdp_mode mode)
9357{
9358        struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9359
9360        if (link)
9361                return link->link.prog;
9362        return dev->xdp_state[mode].prog;
9363}
9364
9365static u8 dev_xdp_prog_count(struct net_device *dev)
9366{
9367        u8 count = 0;
9368        int i;
9369
9370        for (i = 0; i < __MAX_XDP_MODE; i++)
9371                if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9372                        count++;
9373        return count;
9374}
9375
9376u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9377{
9378        struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9379
9380        return prog ? prog->aux->id : 0;
9381}
9382
9383static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9384                             struct bpf_xdp_link *link)
9385{
9386        dev->xdp_state[mode].link = link;
9387        dev->xdp_state[mode].prog = NULL;
9388}
9389
9390static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9391                             struct bpf_prog *prog)
9392{
9393        dev->xdp_state[mode].link = NULL;
9394        dev->xdp_state[mode].prog = prog;
9395}
9396
9397static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9398                           bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9399                           u32 flags, struct bpf_prog *prog)
9400{
9401        struct netdev_bpf xdp;
9402        int err;
9403
9404        memset(&xdp, 0, sizeof(xdp));
9405        xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9406        xdp.extack = extack;
9407        xdp.flags = flags;
9408        xdp.prog = prog;
9409
9410        /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9411         * "moved" into driver), so they don't increment it on their own, but
9412         * they do decrement refcnt when program is detached or replaced.
9413         * Given net_device also owns link/prog, we need to bump refcnt here
9414         * to prevent drivers from underflowing it.
9415         */
9416        if (prog)
9417                bpf_prog_inc(prog);
9418        err = bpf_op(dev, &xdp);
9419        if (err) {
9420                if (prog)
9421                        bpf_prog_put(prog);
9422                return err;
9423        }
9424
9425        if (mode != XDP_MODE_HW)
9426                bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9427
9428        return 0;
9429}
9430
9431static void dev_xdp_uninstall(struct net_device *dev)
9432{
9433        struct bpf_xdp_link *link;
9434        struct bpf_prog *prog;
9435        enum bpf_xdp_mode mode;
9436        bpf_op_t bpf_op;
9437
9438        ASSERT_RTNL();
9439
9440        for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9441                prog = dev_xdp_prog(dev, mode);
9442                if (!prog)
9443                        continue;
9444
9445                bpf_op = dev_xdp_bpf_op(dev, mode);
9446                if (!bpf_op)
9447                        continue;
9448
9449                WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9450
9451                /* auto-detach link from net device */
9452                link = dev_xdp_link(dev, mode);
9453                if (link)
9454                        link->dev = NULL;
9455                else
9456                        bpf_prog_put(prog);
9457
9458                dev_xdp_set_link(dev, mode, NULL);
9459        }
9460}
9461
9462static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9463                          struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9464                          struct bpf_prog *old_prog, u32 flags)
9465{
9466        unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9467        struct bpf_prog *cur_prog;
9468        enum bpf_xdp_mode mode;
9469        bpf_op_t bpf_op;
9470        int err;
9471
9472        ASSERT_RTNL();
9473
9474        /* either link or prog attachment, never both */
9475        if (link && (new_prog || old_prog))
9476                return -EINVAL;
9477        /* link supports only XDP mode flags */
9478        if (link && (flags & ~XDP_FLAGS_MODES)) {
9479                NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9480                return -EINVAL;
9481        }
9482        /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9483        if (num_modes > 1) {
9484                NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9485                return -EINVAL;
9486        }
9487        /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9488        if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9489                NL_SET_ERR_MSG(extack,
9490                               "More than one program loaded, unset mode is ambiguous");
9491                return -EINVAL;
9492        }
9493        /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9494        if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9495                NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9496                return -EINVAL;
9497        }
9498
9499        mode = dev_xdp_mode(dev, flags);
9500        /* can't replace attached link */
9501        if (dev_xdp_link(dev, mode)) {
9502                NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9503                return -EBUSY;
9504        }
9505
9506        cur_prog = dev_xdp_prog(dev, mode);
9507        /* can't replace attached prog with link */
9508        if (link && cur_prog) {
9509                NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9510                return -EBUSY;
9511        }
9512        if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9513                NL_SET_ERR_MSG(extack, "Active program does not match expected");
9514                return -EEXIST;
9515        }
9516
9517        /* put effective new program into new_prog */
9518        if (link)
9519                new_prog = link->link.prog;
9520
9521        if (new_prog) {
9522                bool offload = mode == XDP_MODE_HW;
9523                enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9524                                               ? XDP_MODE_DRV : XDP_MODE_SKB;
9525
9526                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9527                        NL_SET_ERR_MSG(extack, "XDP program already attached");
9528                        return -EBUSY;
9529                }
9530                if (!offload && dev_xdp_prog(dev, other_mode)) {
9531                        NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9532                        return -EEXIST;
9533                }
9534                if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9535                        NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9536                        return -EINVAL;
9537                }
9538                if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9539                        NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9540                        return -EINVAL;
9541                }
9542                if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9543                        NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9544                        return -EINVAL;
9545                }
9546        }
9547
9548        /* don't call drivers if the effective program didn't change */
9549        if (new_prog != cur_prog) {
9550                bpf_op = dev_xdp_bpf_op(dev, mode);
9551                if (!bpf_op) {
9552                        NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9553                        return -EOPNOTSUPP;
9554                }
9555
9556                err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9557                if (err)
9558                        return err;
9559        }
9560
9561        if (link)
9562                dev_xdp_set_link(dev, mode, link);
9563        else
9564                dev_xdp_set_prog(dev, mode, new_prog);
9565        if (cur_prog)
9566                bpf_prog_put(cur_prog);
9567
9568        return 0;
9569}
9570
9571static int dev_xdp_attach_link(struct net_device *dev,
9572                               struct netlink_ext_ack *extack,
9573                               struct bpf_xdp_link *link)
9574{
9575        return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9576}
9577
9578static int dev_xdp_detach_link(struct net_device *dev,
9579                               struct netlink_ext_ack *extack,
9580                               struct bpf_xdp_link *link)
9581{
9582        enum bpf_xdp_mode mode;
9583        bpf_op_t bpf_op;
9584
9585        ASSERT_RTNL();
9586
9587        mode = dev_xdp_mode(dev, link->flags);
9588        if (dev_xdp_link(dev, mode) != link)
9589                return -EINVAL;
9590
9591        bpf_op = dev_xdp_bpf_op(dev, mode);
9592        WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9593        dev_xdp_set_link(dev, mode, NULL);
9594        return 0;
9595}
9596
9597static void bpf_xdp_link_release(struct bpf_link *link)
9598{
9599        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9600
9601        rtnl_lock();
9602
9603        /* if racing with net_device's tear down, xdp_link->dev might be
9604         * already NULL, in which case link was already auto-detached
9605         */
9606        if (xdp_link->dev) {
9607                WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9608                xdp_link->dev = NULL;
9609        }
9610
9611        rtnl_unlock();
9612}
9613
9614static int bpf_xdp_link_detach(struct bpf_link *link)
9615{
9616        bpf_xdp_link_release(link);
9617        return 0;
9618}
9619
9620static void bpf_xdp_link_dealloc(struct bpf_link *link)
9621{
9622        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9623
9624        kfree(xdp_link);
9625}
9626
9627static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9628                                     struct seq_file *seq)
9629{
9630        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9631        u32 ifindex = 0;
9632
9633        rtnl_lock();
9634        if (xdp_link->dev)
9635                ifindex = xdp_link->dev->ifindex;
9636        rtnl_unlock();
9637
9638        seq_printf(seq, "ifindex:\t%u\n", ifindex);
9639}
9640
9641static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9642                                       struct bpf_link_info *info)
9643{
9644        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9645        u32 ifindex = 0;
9646
9647        rtnl_lock();
9648        if (xdp_link->dev)
9649                ifindex = xdp_link->dev->ifindex;
9650        rtnl_unlock();
9651
9652        info->xdp.ifindex = ifindex;
9653        return 0;
9654}
9655
9656static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9657                               struct bpf_prog *old_prog)
9658{
9659        struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9660        enum bpf_xdp_mode mode;
9661        bpf_op_t bpf_op;
9662        int err = 0;
9663
9664        rtnl_lock();
9665
9666        /* link might have been auto-released already, so fail */
9667        if (!xdp_link->dev) {
9668                err = -ENOLINK;
9669                goto out_unlock;
9670        }
9671
9672        if (old_prog && link->prog != old_prog) {
9673                err = -EPERM;
9674                goto out_unlock;
9675        }
9676        old_prog = link->prog;
9677        if (old_prog == new_prog) {
9678                /* no-op, don't disturb drivers */
9679                bpf_prog_put(new_prog);
9680                goto out_unlock;
9681        }
9682
9683        mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9684        bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9685        err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9686                              xdp_link->flags, new_prog);
9687        if (err)
9688                goto out_unlock;
9689
9690        old_prog = xchg(&link->prog, new_prog);
9691        bpf_prog_put(old_prog);
9692
9693out_unlock:
9694        rtnl_unlock();
9695        return err;
9696}
9697
9698static const struct bpf_link_ops bpf_xdp_link_lops = {
9699        .release = bpf_xdp_link_release,
9700        .dealloc = bpf_xdp_link_dealloc,
9701        .detach = bpf_xdp_link_detach,
9702        .show_fdinfo = bpf_xdp_link_show_fdinfo,
9703        .fill_link_info = bpf_xdp_link_fill_link_info,
9704        .update_prog = bpf_xdp_link_update,
9705};
9706
9707int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9708{
9709        struct net *net = current->nsproxy->net_ns;
9710        struct bpf_link_primer link_primer;
9711        struct bpf_xdp_link *link;
9712        struct net_device *dev;
9713        int err, fd;
9714
9715        rtnl_lock();
9716        dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9717        if (!dev) {
9718                rtnl_unlock();
9719                return -EINVAL;
9720        }
9721
9722        link = kzalloc(sizeof(*link), GFP_USER);
9723        if (!link) {
9724                err = -ENOMEM;
9725                goto unlock;
9726        }
9727
9728        bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9729        link->dev = dev;
9730        link->flags = attr->link_create.flags;
9731
9732        err = bpf_link_prime(&link->link, &link_primer);
9733        if (err) {
9734                kfree(link);
9735                goto unlock;
9736        }
9737
9738        err = dev_xdp_attach_link(dev, NULL, link);
9739        rtnl_unlock();
9740
9741        if (err) {
9742                link->dev = NULL;
9743                bpf_link_cleanup(&link_primer);
9744                goto out_put_dev;
9745        }
9746
9747        fd = bpf_link_settle(&link_primer);
9748        /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9749        dev_put(dev);
9750        return fd;
9751
9752unlock:
9753        rtnl_unlock();
9754
9755out_put_dev:
9756        dev_put(dev);
9757        return err;
9758}
9759
9760/**
9761 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9762 *      @dev: device
9763 *      @extack: netlink extended ack
9764 *      @fd: new program fd or negative value to clear
9765 *      @expected_fd: old program fd that userspace expects to replace or clear
9766 *      @flags: xdp-related flags
9767 *
9768 *      Set or clear a bpf program for a device
9769 */
9770int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9771                      int fd, int expected_fd, u32 flags)
9772{
9773        enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9774        struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9775        int err;
9776
9777        ASSERT_RTNL();
9778
9779        if (fd >= 0) {
9780                new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9781                                                 mode != XDP_MODE_SKB);
9782                if (IS_ERR(new_prog))
9783                        return PTR_ERR(new_prog);
9784        }
9785
9786        if (expected_fd >= 0) {
9787                old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9788                                                 mode != XDP_MODE_SKB);
9789                if (IS_ERR(old_prog)) {
9790                        err = PTR_ERR(old_prog);
9791                        old_prog = NULL;
9792                        goto err_out;
9793                }
9794        }
9795
9796        err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9797
9798err_out:
9799        if (err && new_prog)
9800                bpf_prog_put(new_prog);
9801        if (old_prog)
9802                bpf_prog_put(old_prog);
9803        return err;
9804}
9805
9806/**
9807 *      dev_new_index   -       allocate an ifindex
9808 *      @net: the applicable net namespace
9809 *
9810 *      Returns a suitable unique value for a new device interface
9811 *      number.  The caller must hold the rtnl semaphore or the
9812 *      dev_base_lock to be sure it remains unique.
9813 */
9814static int dev_new_index(struct net *net)
9815{
9816        int ifindex = net->ifindex;
9817
9818        for (;;) {
9819                if (++ifindex <= 0)
9820                        ifindex = 1;
9821                if (!__dev_get_by_index(net, ifindex))
9822                        return net->ifindex = ifindex;
9823        }
9824}
9825
9826/* Delayed registration/unregisteration */
9827static LIST_HEAD(net_todo_list);
9828DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9829
9830static void net_set_todo(struct net_device *dev)
9831{
9832        list_add_tail(&dev->todo_list, &net_todo_list);
9833        dev_net(dev)->dev_unreg_count++;
9834}
9835
9836static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9837        struct net_device *upper, netdev_features_t features)
9838{
9839        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9840        netdev_features_t feature;
9841        int feature_bit;
9842
9843        for_each_netdev_feature(upper_disables, feature_bit) {
9844                feature = __NETIF_F_BIT(feature_bit);
9845                if (!(upper->wanted_features & feature)
9846                    && (features & feature)) {
9847                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9848                                   &feature, upper->name);
9849                        features &= ~feature;
9850                }
9851        }
9852
9853        return features;
9854}
9855
9856static void netdev_sync_lower_features(struct net_device *upper,
9857        struct net_device *lower, netdev_features_t features)
9858{
9859        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9860        netdev_features_t feature;
9861        int feature_bit;
9862
9863        for_each_netdev_feature(upper_disables, feature_bit) {
9864                feature = __NETIF_F_BIT(feature_bit);
9865                if (!(features & feature) && (lower->features & feature)) {
9866                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9867                                   &feature, lower->name);
9868                        lower->wanted_features &= ~feature;
9869                        __netdev_update_features(lower);
9870
9871                        if (unlikely(lower->features & feature))
9872                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9873                                            &feature, lower->name);
9874                        else
9875                                netdev_features_change(lower);
9876                }
9877        }
9878}
9879
9880static netdev_features_t netdev_fix_features(struct net_device *dev,
9881        netdev_features_t features)
9882{
9883        /* Fix illegal checksum combinations */
9884        if ((features & NETIF_F_HW_CSUM) &&
9885            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9886                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9887                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9888        }
9889
9890        /* TSO requires that SG is present as well. */
9891        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9892                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9893                features &= ~NETIF_F_ALL_TSO;
9894        }
9895
9896        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9897                                        !(features & NETIF_F_IP_CSUM)) {
9898                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9899                features &= ~NETIF_F_TSO;
9900                features &= ~NETIF_F_TSO_ECN;
9901        }
9902
9903        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9904                                         !(features & NETIF_F_IPV6_CSUM)) {
9905                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9906                features &= ~NETIF_F_TSO6;
9907        }
9908
9909        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9910        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9911                features &= ~NETIF_F_TSO_MANGLEID;
9912
9913        /* TSO ECN requires that TSO is present as well. */
9914        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9915                features &= ~NETIF_F_TSO_ECN;
9916
9917        /* Software GSO depends on SG. */
9918        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9919                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9920                features &= ~NETIF_F_GSO;
9921        }
9922
9923        /* GSO partial features require GSO partial be set */
9924        if ((features & dev->gso_partial_features) &&
9925            !(features & NETIF_F_GSO_PARTIAL)) {
9926                netdev_dbg(dev,
9927                           "Dropping partially supported GSO features since no GSO partial.\n");
9928                features &= ~dev->gso_partial_features;
9929        }
9930
9931        if (!(features & NETIF_F_RXCSUM)) {
9932                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9933                 * successfully merged by hardware must also have the
9934                 * checksum verified by hardware.  If the user does not
9935                 * want to enable RXCSUM, logically, we should disable GRO_HW.
9936                 */
9937                if (features & NETIF_F_GRO_HW) {
9938                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9939                        features &= ~NETIF_F_GRO_HW;
9940                }
9941        }
9942
9943        /* LRO/HW-GRO features cannot be combined with RX-FCS */
9944        if (features & NETIF_F_RXFCS) {
9945                if (features & NETIF_F_LRO) {
9946                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9947                        features &= ~NETIF_F_LRO;
9948                }
9949
9950                if (features & NETIF_F_GRO_HW) {
9951                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9952                        features &= ~NETIF_F_GRO_HW;
9953                }
9954        }
9955
9956        if (features & NETIF_F_HW_TLS_TX) {
9957                bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9958                        (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9959                bool hw_csum = features & NETIF_F_HW_CSUM;
9960
9961                if (!ip_csum && !hw_csum) {
9962                        netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9963                        features &= ~NETIF_F_HW_TLS_TX;
9964                }
9965        }
9966
9967        if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9968                netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9969                features &= ~NETIF_F_HW_TLS_RX;
9970        }
9971
9972        return features;
9973}
9974
9975int __netdev_update_features(struct net_device *dev)
9976{
9977        struct net_device *upper, *lower;
9978        netdev_features_t features;
9979        struct list_head *iter;
9980        int err = -1;
9981
9982        ASSERT_RTNL();
9983
9984        features = netdev_get_wanted_features(dev);
9985
9986        if (dev->netdev_ops->ndo_fix_features)
9987                features = dev->netdev_ops->ndo_fix_features(dev, features);
9988
9989        /* driver might be less strict about feature dependencies */
9990        features = netdev_fix_features(dev, features);
9991
9992        /* some features can't be enabled if they're off on an upper device */
9993        netdev_for_each_upper_dev_rcu(dev, upper, iter)
9994                features = netdev_sync_upper_features(dev, upper, features);
9995
9996        if (dev->features == features)
9997                goto sync_lower;
9998
9999        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10000                &dev->features, &features);
10001
10002        if (dev->netdev_ops->ndo_set_features)
10003                err = dev->netdev_ops->ndo_set_features(dev, features);
10004        else
10005                err = 0;
10006
10007        if (unlikely(err < 0)) {
10008                netdev_err(dev,
10009                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
10010                        err, &features, &dev->features);
10011                /* return non-0 since some features might have changed and
10012                 * it's better to fire a spurious notification than miss it
10013                 */
10014                return -1;
10015        }
10016
10017sync_lower:
10018        /* some features must be disabled on lower devices when disabled
10019         * on an upper device (think: bonding master or bridge)
10020         */
10021        netdev_for_each_lower_dev(dev, lower, iter)
10022                netdev_sync_lower_features(dev, lower, features);
10023
10024        if (!err) {
10025                netdev_features_t diff = features ^ dev->features;
10026
10027                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10028                        /* udp_tunnel_{get,drop}_rx_info both need
10029                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10030                         * device, or they won't do anything.
10031                         * Thus we need to update dev->features
10032                         * *before* calling udp_tunnel_get_rx_info,
10033                         * but *after* calling udp_tunnel_drop_rx_info.
10034                         */
10035                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10036                                dev->features = features;
10037                                udp_tunnel_get_rx_info(dev);
10038                        } else {
10039                                udp_tunnel_drop_rx_info(dev);
10040                        }
10041                }
10042
10043                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10044                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10045                                dev->features = features;
10046                                err |= vlan_get_rx_ctag_filter_info(dev);
10047                        } else {
10048                                vlan_drop_rx_ctag_filter_info(dev);
10049                        }
10050                }
10051
10052                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10053                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10054                                dev->features = features;
10055                                err |= vlan_get_rx_stag_filter_info(dev);
10056                        } else {
10057                                vlan_drop_rx_stag_filter_info(dev);
10058                        }
10059                }
10060
10061                dev->features = features;
10062        }
10063
10064        return err < 0 ? 0 : 1;
10065}
10066
10067/**
10068 *      netdev_update_features - recalculate device features
10069 *      @dev: the device to check
10070 *
10071 *      Recalculate dev->features set and send notifications if it
10072 *      has changed. Should be called after driver or hardware dependent
10073 *      conditions might have changed that influence the features.
10074 */
10075void netdev_update_features(struct net_device *dev)
10076{
10077        if (__netdev_update_features(dev))
10078                netdev_features_change(dev);
10079}
10080EXPORT_SYMBOL(netdev_update_features);
10081
10082/**
10083 *      netdev_change_features - recalculate device features
10084 *      @dev: the device to check
10085 *
10086 *      Recalculate dev->features set and send notifications even
10087 *      if they have not changed. Should be called instead of
10088 *      netdev_update_features() if also dev->vlan_features might
10089 *      have changed to allow the changes to be propagated to stacked
10090 *      VLAN devices.
10091 */
10092void netdev_change_features(struct net_device *dev)
10093{
10094        __netdev_update_features(dev);
10095        netdev_features_change(dev);
10096}
10097EXPORT_SYMBOL(netdev_change_features);
10098
10099/**
10100 *      netif_stacked_transfer_operstate -      transfer operstate
10101 *      @rootdev: the root or lower level device to transfer state from
10102 *      @dev: the device to transfer operstate to
10103 *
10104 *      Transfer operational state from root to device. This is normally
10105 *      called when a stacking relationship exists between the root
10106 *      device and the device(a leaf device).
10107 */
10108void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10109                                        struct net_device *dev)
10110{
10111        if (rootdev->operstate == IF_OPER_DORMANT)
10112                netif_dormant_on(dev);
10113        else
10114                netif_dormant_off(dev);
10115
10116        if (rootdev->operstate == IF_OPER_TESTING)
10117                netif_testing_on(dev);
10118        else
10119                netif_testing_off(dev);
10120
10121        if (netif_carrier_ok(rootdev))
10122                netif_carrier_on(dev);
10123        else
10124                netif_carrier_off(dev);
10125}
10126EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10127
10128static int netif_alloc_rx_queues(struct net_device *dev)
10129{
10130        unsigned int i, count = dev->num_rx_queues;
10131        struct netdev_rx_queue *rx;
10132        size_t sz = count * sizeof(*rx);
10133        int err = 0;
10134
10135        BUG_ON(count < 1);
10136
10137        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10138        if (!rx)
10139                return -ENOMEM;
10140
10141        dev->_rx = rx;
10142
10143        for (i = 0; i < count; i++) {
10144                rx[i].dev = dev;
10145
10146                /* XDP RX-queue setup */
10147                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10148                if (err < 0)
10149                        goto err_rxq_info;
10150        }
10151        return 0;
10152
10153err_rxq_info:
10154        /* Rollback successful reg's and free other resources */
10155        while (i--)
10156                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10157        kvfree(dev->_rx);
10158        dev->_rx = NULL;
10159        return err;
10160}
10161
10162static void netif_free_rx_queues(struct net_device *dev)
10163{
10164        unsigned int i, count = dev->num_rx_queues;
10165
10166        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10167        if (!dev->_rx)
10168                return;
10169
10170        for (i = 0; i < count; i++)
10171                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10172
10173        kvfree(dev->_rx);
10174}
10175
10176static void netdev_init_one_queue(struct net_device *dev,
10177                                  struct netdev_queue *queue, void *_unused)
10178{
10179        /* Initialize queue lock */
10180        spin_lock_init(&queue->_xmit_lock);
10181        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10182        queue->xmit_lock_owner = -1;
10183        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10184        queue->dev = dev;
10185#ifdef CONFIG_BQL
10186        dql_init(&queue->dql, HZ);
10187#endif
10188}
10189
10190static void netif_free_tx_queues(struct net_device *dev)
10191{
10192        kvfree(dev->_tx);
10193}
10194
10195static int netif_alloc_netdev_queues(struct net_device *dev)
10196{
10197        unsigned int count = dev->num_tx_queues;
10198        struct netdev_queue *tx;
10199        size_t sz = count * sizeof(*tx);
10200
10201        if (count < 1 || count > 0xffff)
10202                return -EINVAL;
10203
10204        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10205        if (!tx)
10206                return -ENOMEM;
10207
10208        dev->_tx = tx;
10209
10210        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10211        spin_lock_init(&dev->tx_global_lock);
10212
10213        return 0;
10214}
10215
10216void netif_tx_stop_all_queues(struct net_device *dev)
10217{
10218        unsigned int i;
10219
10220        for (i = 0; i < dev->num_tx_queues; i++) {
10221                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10222
10223                netif_tx_stop_queue(txq);
10224        }
10225}
10226EXPORT_SYMBOL(netif_tx_stop_all_queues);
10227
10228/**
10229 *      register_netdevice      - register a network device
10230 *      @dev: device to register
10231 *
10232 *      Take a completed network device structure and add it to the kernel
10233 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10234 *      chain. 0 is returned on success. A negative errno code is returned
10235 *      on a failure to set up the device, or if the name is a duplicate.
10236 *
10237 *      Callers must hold the rtnl semaphore. You may want
10238 *      register_netdev() instead of this.
10239 *
10240 *      BUGS:
10241 *      The locking appears insufficient to guarantee two parallel registers
10242 *      will not get the same name.
10243 */
10244
10245int register_netdevice(struct net_device *dev)
10246{
10247        int ret;
10248        struct net *net = dev_net(dev);
10249
10250        BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10251                     NETDEV_FEATURE_COUNT);
10252        BUG_ON(dev_boot_phase);
10253        ASSERT_RTNL();
10254
10255        might_sleep();
10256
10257        /* When net_device's are persistent, this will be fatal. */
10258        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10259        BUG_ON(!net);
10260
10261        ret = ethtool_check_ops(dev->ethtool_ops);
10262        if (ret)
10263                return ret;
10264
10265        spin_lock_init(&dev->addr_list_lock);
10266        netdev_set_addr_lockdep_class(dev);
10267
10268        ret = dev_get_valid_name(net, dev, dev->name);
10269        if (ret < 0)
10270                goto out;
10271
10272        ret = -ENOMEM;
10273        dev->name_node = netdev_name_node_head_alloc(dev);
10274        if (!dev->name_node)
10275                goto out;
10276
10277        /* Init, if this function is available */
10278        if (dev->netdev_ops->ndo_init) {
10279                ret = dev->netdev_ops->ndo_init(dev);
10280                if (ret) {
10281                        if (ret > 0)
10282                                ret = -EIO;
10283                        goto err_free_name;
10284                }
10285        }
10286
10287        if (((dev->hw_features | dev->features) &
10288             NETIF_F_HW_VLAN_CTAG_FILTER) &&
10289            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10290             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10291                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10292                ret = -EINVAL;
10293                goto err_uninit;
10294        }
10295
10296        ret = -EBUSY;
10297        if (!dev->ifindex)
10298                dev->ifindex = dev_new_index(net);
10299        else if (__dev_get_by_index(net, dev->ifindex))
10300                goto err_uninit;
10301
10302        /* Transfer changeable features to wanted_features and enable
10303         * software offloads (GSO and GRO).
10304         */
10305        dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10306        dev->features |= NETIF_F_SOFT_FEATURES;
10307
10308        if (dev->udp_tunnel_nic_info) {
10309                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10310                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10311        }
10312
10313        dev->wanted_features = dev->features & dev->hw_features;
10314
10315        if (!(dev->flags & IFF_LOOPBACK))
10316                dev->hw_features |= NETIF_F_NOCACHE_COPY;
10317
10318        /* If IPv4 TCP segmentation offload is supported we should also
10319         * allow the device to enable segmenting the frame with the option
10320         * of ignoring a static IP ID value.  This doesn't enable the
10321         * feature itself but allows the user to enable it later.
10322         */
10323        if (dev->hw_features & NETIF_F_TSO)
10324                dev->hw_features |= NETIF_F_TSO_MANGLEID;
10325        if (dev->vlan_features & NETIF_F_TSO)
10326                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10327        if (dev->mpls_features & NETIF_F_TSO)
10328                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10329        if (dev->hw_enc_features & NETIF_F_TSO)
10330                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10331
10332        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10333         */
10334        dev->vlan_features |= NETIF_F_HIGHDMA;
10335
10336        /* Make NETIF_F_SG inheritable to tunnel devices.
10337         */
10338        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10339
10340        /* Make NETIF_F_SG inheritable to MPLS.
10341         */
10342        dev->mpls_features |= NETIF_F_SG;
10343
10344        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10345        ret = notifier_to_errno(ret);
10346        if (ret)
10347                goto err_uninit;
10348
10349        ret = netdev_register_kobject(dev);
10350        if (ret) {
10351                dev->reg_state = NETREG_UNREGISTERED;
10352                goto err_uninit;
10353        }
10354        dev->reg_state = NETREG_REGISTERED;
10355
10356        __netdev_update_features(dev);
10357
10358        /*
10359         *      Default initial state at registry is that the
10360         *      device is present.
10361         */
10362
10363        set_bit(__LINK_STATE_PRESENT, &dev->state);
10364
10365        linkwatch_init_dev(dev);
10366
10367        dev_init_scheduler(dev);
10368        dev_hold(dev);
10369        list_netdevice(dev);
10370        add_device_randomness(dev->dev_addr, dev->addr_len);
10371
10372        /* If the device has permanent device address, driver should
10373         * set dev_addr and also addr_assign_type should be set to
10374         * NET_ADDR_PERM (default value).
10375         */
10376        if (dev->addr_assign_type == NET_ADDR_PERM)
10377                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10378
10379        /* Notify protocols, that a new device appeared. */
10380        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10381        ret = notifier_to_errno(ret);
10382        if (ret) {
10383                /* Expect explicit free_netdev() on failure */
10384                dev->needs_free_netdev = false;
10385                unregister_netdevice_queue(dev, NULL);
10386                goto out;
10387        }
10388        /*
10389         *      Prevent userspace races by waiting until the network
10390         *      device is fully setup before sending notifications.
10391         */
10392        if (!dev->rtnl_link_ops ||
10393            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10394                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10395
10396out:
10397        return ret;
10398
10399err_uninit:
10400        if (dev->netdev_ops->ndo_uninit)
10401                dev->netdev_ops->ndo_uninit(dev);
10402        if (dev->priv_destructor)
10403                dev->priv_destructor(dev);
10404err_free_name:
10405        netdev_name_node_free(dev->name_node);
10406        goto out;
10407}
10408EXPORT_SYMBOL(register_netdevice);
10409
10410/**
10411 *      init_dummy_netdev       - init a dummy network device for NAPI
10412 *      @dev: device to init
10413 *
10414 *      This takes a network device structure and initialize the minimum
10415 *      amount of fields so it can be used to schedule NAPI polls without
10416 *      registering a full blown interface. This is to be used by drivers
10417 *      that need to tie several hardware interfaces to a single NAPI
10418 *      poll scheduler due to HW limitations.
10419 */
10420int init_dummy_netdev(struct net_device *dev)
10421{
10422        /* Clear everything. Note we don't initialize spinlocks
10423         * are they aren't supposed to be taken by any of the
10424         * NAPI code and this dummy netdev is supposed to be
10425         * only ever used for NAPI polls
10426         */
10427        memset(dev, 0, sizeof(struct net_device));
10428
10429        /* make sure we BUG if trying to hit standard
10430         * register/unregister code path
10431         */
10432        dev->reg_state = NETREG_DUMMY;
10433
10434        /* NAPI wants this */
10435        INIT_LIST_HEAD(&dev->napi_list);
10436
10437        /* a dummy interface is started by default */
10438        set_bit(__LINK_STATE_PRESENT, &dev->state);
10439        set_bit(__LINK_STATE_START, &dev->state);
10440
10441        /* napi_busy_loop stats accounting wants this */
10442        dev_net_set(dev, &init_net);
10443
10444        /* Note : We dont allocate pcpu_refcnt for dummy devices,
10445         * because users of this 'device' dont need to change
10446         * its refcount.
10447         */
10448
10449        return 0;
10450}
10451EXPORT_SYMBOL_GPL(init_dummy_netdev);
10452
10453
10454/**
10455 *      register_netdev - register a network device
10456 *      @dev: device to register
10457 *
10458 *      Take a completed network device structure and add it to the kernel
10459 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10460 *      chain. 0 is returned on success. A negative errno code is returned
10461 *      on a failure to set up the device, or if the name is a duplicate.
10462 *
10463 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10464 *      and expands the device name if you passed a format string to
10465 *      alloc_netdev.
10466 */
10467int register_netdev(struct net_device *dev)
10468{
10469        int err;
10470
10471        if (rtnl_lock_killable())
10472                return -EINTR;
10473        err = register_netdevice(dev);
10474        rtnl_unlock();
10475        return err;
10476}
10477EXPORT_SYMBOL(register_netdev);
10478
10479int netdev_refcnt_read(const struct net_device *dev)
10480{
10481#ifdef CONFIG_PCPU_DEV_REFCNT
10482        int i, refcnt = 0;
10483
10484        for_each_possible_cpu(i)
10485                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10486        return refcnt;
10487#else
10488        return refcount_read(&dev->dev_refcnt);
10489#endif
10490}
10491EXPORT_SYMBOL(netdev_refcnt_read);
10492
10493int netdev_unregister_timeout_secs __read_mostly = 10;
10494
10495#define WAIT_REFS_MIN_MSECS 1
10496#define WAIT_REFS_MAX_MSECS 250
10497/**
10498 * netdev_wait_allrefs - wait until all references are gone.
10499 * @dev: target net_device
10500 *
10501 * This is called when unregistering network devices.
10502 *
10503 * Any protocol or device that holds a reference should register
10504 * for netdevice notification, and cleanup and put back the
10505 * reference if they receive an UNREGISTER event.
10506 * We can get stuck here if buggy protocols don't correctly
10507 * call dev_put.
10508 */
10509static void netdev_wait_allrefs(struct net_device *dev)
10510{
10511        unsigned long rebroadcast_time, warning_time;
10512        int wait = 0, refcnt;
10513
10514        linkwatch_forget_dev(dev);
10515
10516        rebroadcast_time = warning_time = jiffies;
10517        refcnt = netdev_refcnt_read(dev);
10518
10519        while (refcnt != 1) {
10520                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10521                        rtnl_lock();
10522
10523                        /* Rebroadcast unregister notification */
10524                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10525
10526                        __rtnl_unlock();
10527                        rcu_barrier();
10528                        rtnl_lock();
10529
10530                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10531                                     &dev->state)) {
10532                                /* We must not have linkwatch events
10533                                 * pending on unregister. If this
10534                                 * happens, we simply run the queue
10535                                 * unscheduled, resulting in a noop
10536                                 * for this device.
10537                                 */
10538                                linkwatch_run_queue();
10539                        }
10540
10541                        __rtnl_unlock();
10542
10543                        rebroadcast_time = jiffies;
10544                }
10545
10546                if (!wait) {
10547                        rcu_barrier();
10548                        wait = WAIT_REFS_MIN_MSECS;
10549                } else {
10550                        msleep(wait);
10551                        wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10552                }
10553
10554                refcnt = netdev_refcnt_read(dev);
10555
10556                if (refcnt != 1 &&
10557                    time_after(jiffies, warning_time +
10558                               netdev_unregister_timeout_secs * HZ)) {
10559                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10560                                 dev->name, refcnt);
10561                        warning_time = jiffies;
10562                }
10563        }
10564}
10565
10566/* The sequence is:
10567 *
10568 *      rtnl_lock();
10569 *      ...
10570 *      register_netdevice(x1);
10571 *      register_netdevice(x2);
10572 *      ...
10573 *      unregister_netdevice(y1);
10574 *      unregister_netdevice(y2);
10575 *      ...
10576 *      rtnl_unlock();
10577 *      free_netdev(y1);
10578 *      free_netdev(y2);
10579 *
10580 * We are invoked by rtnl_unlock().
10581 * This allows us to deal with problems:
10582 * 1) We can delete sysfs objects which invoke hotplug
10583 *    without deadlocking with linkwatch via keventd.
10584 * 2) Since we run with the RTNL semaphore not held, we can sleep
10585 *    safely in order to wait for the netdev refcnt to drop to zero.
10586 *
10587 * We must not return until all unregister events added during
10588 * the interval the lock was held have been completed.
10589 */
10590void netdev_run_todo(void)
10591{
10592        struct list_head list;
10593#ifdef CONFIG_LOCKDEP
10594        struct list_head unlink_list;
10595
10596        list_replace_init(&net_unlink_list, &unlink_list);
10597
10598        while (!list_empty(&unlink_list)) {
10599                struct net_device *dev = list_first_entry(&unlink_list,
10600                                                          struct net_device,
10601                                                          unlink_list);
10602                list_del_init(&dev->unlink_list);
10603                dev->nested_level = dev->lower_level - 1;
10604        }
10605#endif
10606
10607        /* Snapshot list, allow later requests */
10608        list_replace_init(&net_todo_list, &list);
10609
10610        __rtnl_unlock();
10611
10612
10613        /* Wait for rcu callbacks to finish before next phase */
10614        if (!list_empty(&list))
10615                rcu_barrier();
10616
10617        while (!list_empty(&list)) {
10618                struct net_device *dev
10619                        = list_first_entry(&list, struct net_device, todo_list);
10620                list_del(&dev->todo_list);
10621
10622                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10623                        pr_err("network todo '%s' but state %d\n",
10624                               dev->name, dev->reg_state);
10625                        dump_stack();
10626                        continue;
10627                }
10628
10629                dev->reg_state = NETREG_UNREGISTERED;
10630
10631                netdev_wait_allrefs(dev);
10632
10633                /* paranoia */
10634                BUG_ON(netdev_refcnt_read(dev) != 1);
10635                BUG_ON(!list_empty(&dev->ptype_all));
10636                BUG_ON(!list_empty(&dev->ptype_specific));
10637                WARN_ON(rcu_access_pointer(dev->ip_ptr));
10638                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10639#if IS_ENABLED(CONFIG_DECNET)
10640                WARN_ON(dev->dn_ptr);
10641#endif
10642                if (dev->priv_destructor)
10643                        dev->priv_destructor(dev);
10644                if (dev->needs_free_netdev)
10645                        free_netdev(dev);
10646
10647                /* Report a network device has been unregistered */
10648                rtnl_lock();
10649                dev_net(dev)->dev_unreg_count--;
10650                __rtnl_unlock();
10651                wake_up(&netdev_unregistering_wq);
10652
10653                /* Free network device */
10654                kobject_put(&dev->dev.kobj);
10655        }
10656}
10657
10658/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10659 * all the same fields in the same order as net_device_stats, with only
10660 * the type differing, but rtnl_link_stats64 may have additional fields
10661 * at the end for newer counters.
10662 */
10663void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10664                             const struct net_device_stats *netdev_stats)
10665{
10666#if BITS_PER_LONG == 64
10667        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10668        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10669        /* zero out counters that only exist in rtnl_link_stats64 */
10670        memset((char *)stats64 + sizeof(*netdev_stats), 0,
10671               sizeof(*stats64) - sizeof(*netdev_stats));
10672#else
10673        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10674        const unsigned long *src = (const unsigned long *)netdev_stats;
10675        u64 *dst = (u64 *)stats64;
10676
10677        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10678        for (i = 0; i < n; i++)
10679                dst[i] = src[i];
10680        /* zero out counters that only exist in rtnl_link_stats64 */
10681        memset((char *)stats64 + n * sizeof(u64), 0,
10682               sizeof(*stats64) - n * sizeof(u64));
10683#endif
10684}
10685EXPORT_SYMBOL(netdev_stats_to_stats64);
10686
10687/**
10688 *      dev_get_stats   - get network device statistics
10689 *      @dev: device to get statistics from
10690 *      @storage: place to store stats
10691 *
10692 *      Get network statistics from device. Return @storage.
10693 *      The device driver may provide its own method by setting
10694 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10695 *      otherwise the internal statistics structure is used.
10696 */
10697struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10698                                        struct rtnl_link_stats64 *storage)
10699{
10700        const struct net_device_ops *ops = dev->netdev_ops;
10701
10702        if (ops->ndo_get_stats64) {
10703                memset(storage, 0, sizeof(*storage));
10704                ops->ndo_get_stats64(dev, storage);
10705        } else if (ops->ndo_get_stats) {
10706                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10707        } else {
10708                netdev_stats_to_stats64(storage, &dev->stats);
10709        }
10710        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10711        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10712        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10713        return storage;
10714}
10715EXPORT_SYMBOL(dev_get_stats);
10716
10717/**
10718 *      dev_fetch_sw_netstats - get per-cpu network device statistics
10719 *      @s: place to store stats
10720 *      @netstats: per-cpu network stats to read from
10721 *
10722 *      Read per-cpu network statistics and populate the related fields in @s.
10723 */
10724void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10725                           const struct pcpu_sw_netstats __percpu *netstats)
10726{
10727        int cpu;
10728
10729        for_each_possible_cpu(cpu) {
10730                const struct pcpu_sw_netstats *stats;
10731                struct pcpu_sw_netstats tmp;
10732                unsigned int start;
10733
10734                stats = per_cpu_ptr(netstats, cpu);
10735                do {
10736                        start = u64_stats_fetch_begin_irq(&stats->syncp);
10737                        tmp.rx_packets = stats->rx_packets;
10738                        tmp.rx_bytes   = stats->rx_bytes;
10739                        tmp.tx_packets = stats->tx_packets;
10740                        tmp.tx_bytes   = stats->tx_bytes;
10741                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10742
10743                s->rx_packets += tmp.rx_packets;
10744                s->rx_bytes   += tmp.rx_bytes;
10745                s->tx_packets += tmp.tx_packets;
10746                s->tx_bytes   += tmp.tx_bytes;
10747        }
10748}
10749EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10750
10751/**
10752 *      dev_get_tstats64 - ndo_get_stats64 implementation
10753 *      @dev: device to get statistics from
10754 *      @s: place to store stats
10755 *
10756 *      Populate @s from dev->stats and dev->tstats. Can be used as
10757 *      ndo_get_stats64() callback.
10758 */
10759void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10760{
10761        netdev_stats_to_stats64(s, &dev->stats);
10762        dev_fetch_sw_netstats(s, dev->tstats);
10763}
10764EXPORT_SYMBOL_GPL(dev_get_tstats64);
10765
10766struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10767{
10768        struct netdev_queue *queue = dev_ingress_queue(dev);
10769
10770#ifdef CONFIG_NET_CLS_ACT
10771        if (queue)
10772                return queue;
10773        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10774        if (!queue)
10775                return NULL;
10776        netdev_init_one_queue(dev, queue, NULL);
10777        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10778        queue->qdisc_sleeping = &noop_qdisc;
10779        rcu_assign_pointer(dev->ingress_queue, queue);
10780#endif
10781        return queue;
10782}
10783
10784static const struct ethtool_ops default_ethtool_ops;
10785
10786void netdev_set_default_ethtool_ops(struct net_device *dev,
10787                                    const struct ethtool_ops *ops)
10788{
10789        if (dev->ethtool_ops == &default_ethtool_ops)
10790                dev->ethtool_ops = ops;
10791}
10792EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10793
10794void netdev_freemem(struct net_device *dev)
10795{
10796        char *addr = (char *)dev - dev->padded;
10797
10798        kvfree(addr);
10799}
10800
10801/**
10802 * alloc_netdev_mqs - allocate network device
10803 * @sizeof_priv: size of private data to allocate space for
10804 * @name: device name format string
10805 * @name_assign_type: origin of device name
10806 * @setup: callback to initialize device
10807 * @txqs: the number of TX subqueues to allocate
10808 * @rxqs: the number of RX subqueues to allocate
10809 *
10810 * Allocates a struct net_device with private data area for driver use
10811 * and performs basic initialization.  Also allocates subqueue structs
10812 * for each queue on the device.
10813 */
10814struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10815                unsigned char name_assign_type,
10816                void (*setup)(struct net_device *),
10817                unsigned int txqs, unsigned int rxqs)
10818{
10819        struct net_device *dev;
10820        unsigned int alloc_size;
10821        struct net_device *p;
10822
10823        BUG_ON(strlen(name) >= sizeof(dev->name));
10824
10825        if (txqs < 1) {
10826                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10827                return NULL;
10828        }
10829
10830        if (rxqs < 1) {
10831                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10832                return NULL;
10833        }
10834
10835        alloc_size = sizeof(struct net_device);
10836        if (sizeof_priv) {
10837                /* ensure 32-byte alignment of private area */
10838                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10839                alloc_size += sizeof_priv;
10840        }
10841        /* ensure 32-byte alignment of whole construct */
10842        alloc_size += NETDEV_ALIGN - 1;
10843
10844        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10845        if (!p)
10846                return NULL;
10847
10848        dev = PTR_ALIGN(p, NETDEV_ALIGN);
10849        dev->padded = (char *)dev - (char *)p;
10850
10851#ifdef CONFIG_PCPU_DEV_REFCNT
10852        dev->pcpu_refcnt = alloc_percpu(int);
10853        if (!dev->pcpu_refcnt)
10854                goto free_dev;
10855        dev_hold(dev);
10856#else
10857        refcount_set(&dev->dev_refcnt, 1);
10858#endif
10859
10860        if (dev_addr_init(dev))
10861                goto free_pcpu;
10862
10863        dev_mc_init(dev);
10864        dev_uc_init(dev);
10865
10866        dev_net_set(dev, &init_net);
10867
10868        dev->gso_max_size = GSO_MAX_SIZE;
10869        dev->gso_max_segs = GSO_MAX_SEGS;
10870        dev->upper_level = 1;
10871        dev->lower_level = 1;
10872#ifdef CONFIG_LOCKDEP
10873        dev->nested_level = 0;
10874        INIT_LIST_HEAD(&dev->unlink_list);
10875#endif
10876
10877        INIT_LIST_HEAD(&dev->napi_list);
10878        INIT_LIST_HEAD(&dev->unreg_list);
10879        INIT_LIST_HEAD(&dev->close_list);
10880        INIT_LIST_HEAD(&dev->link_watch_list);
10881        INIT_LIST_HEAD(&dev->adj_list.upper);
10882        INIT_LIST_HEAD(&dev->adj_list.lower);
10883        INIT_LIST_HEAD(&dev->ptype_all);
10884        INIT_LIST_HEAD(&dev->ptype_specific);
10885        INIT_LIST_HEAD(&dev->net_notifier_list);
10886#ifdef CONFIG_NET_SCHED
10887        hash_init(dev->qdisc_hash);
10888#endif
10889        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10890        setup(dev);
10891
10892        if (!dev->tx_queue_len) {
10893                dev->priv_flags |= IFF_NO_QUEUE;
10894                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10895        }
10896
10897        dev->num_tx_queues = txqs;
10898        dev->real_num_tx_queues = txqs;
10899        if (netif_alloc_netdev_queues(dev))
10900                goto free_all;
10901
10902        dev->num_rx_queues = rxqs;
10903        dev->real_num_rx_queues = rxqs;
10904        if (netif_alloc_rx_queues(dev))
10905                goto free_all;
10906
10907        strcpy(dev->name, name);
10908        dev->name_assign_type = name_assign_type;
10909        dev->group = INIT_NETDEV_GROUP;
10910        if (!dev->ethtool_ops)
10911                dev->ethtool_ops = &default_ethtool_ops;
10912
10913        nf_hook_ingress_init(dev);
10914
10915        return dev;
10916
10917free_all:
10918        free_netdev(dev);
10919        return NULL;
10920
10921free_pcpu:
10922#ifdef CONFIG_PCPU_DEV_REFCNT
10923        free_percpu(dev->pcpu_refcnt);
10924free_dev:
10925#endif
10926        netdev_freemem(dev);
10927        return NULL;
10928}
10929EXPORT_SYMBOL(alloc_netdev_mqs);
10930
10931/**
10932 * free_netdev - free network device
10933 * @dev: device
10934 *
10935 * This function does the last stage of destroying an allocated device
10936 * interface. The reference to the device object is released. If this
10937 * is the last reference then it will be freed.Must be called in process
10938 * context.
10939 */
10940void free_netdev(struct net_device *dev)
10941{
10942        struct napi_struct *p, *n;
10943
10944        might_sleep();
10945
10946        /* When called immediately after register_netdevice() failed the unwind
10947         * handling may still be dismantling the device. Handle that case by
10948         * deferring the free.
10949         */
10950        if (dev->reg_state == NETREG_UNREGISTERING) {
10951                ASSERT_RTNL();
10952                dev->needs_free_netdev = true;
10953                return;
10954        }
10955
10956        netif_free_tx_queues(dev);
10957        netif_free_rx_queues(dev);
10958
10959        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10960
10961        /* Flush device addresses */
10962        dev_addr_flush(dev);
10963
10964        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10965                netif_napi_del(p);
10966
10967#ifdef CONFIG_PCPU_DEV_REFCNT
10968        free_percpu(dev->pcpu_refcnt);
10969        dev->pcpu_refcnt = NULL;
10970#endif
10971        free_percpu(dev->xdp_bulkq);
10972        dev->xdp_bulkq = NULL;
10973
10974        /*  Compatibility with error handling in drivers */
10975        if (dev->reg_state == NETREG_UNINITIALIZED) {
10976                netdev_freemem(dev);
10977                return;
10978        }
10979
10980        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10981        dev->reg_state = NETREG_RELEASED;
10982
10983        /* will free via device release */
10984        put_device(&dev->dev);
10985}
10986EXPORT_SYMBOL(free_netdev);
10987
10988/**
10989 *      synchronize_net -  Synchronize with packet receive processing
10990 *
10991 *      Wait for packets currently being received to be done.
10992 *      Does not block later packets from starting.
10993 */
10994void synchronize_net(void)
10995{
10996        might_sleep();
10997        if (rtnl_is_locked())
10998                synchronize_rcu_expedited();
10999        else
11000                synchronize_rcu();
11001}
11002EXPORT_SYMBOL(synchronize_net);
11003
11004/**
11005 *      unregister_netdevice_queue - remove device from the kernel
11006 *      @dev: device
11007 *      @head: list
11008 *
11009 *      This function shuts down a device interface and removes it
11010 *      from the kernel tables.
11011 *      If head not NULL, device is queued to be unregistered later.
11012 *
11013 *      Callers must hold the rtnl semaphore.  You may want
11014 *      unregister_netdev() instead of this.
11015 */
11016
11017void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11018{
11019        ASSERT_RTNL();
11020
11021        if (head) {
11022                list_move_tail(&dev->unreg_list, head);
11023        } else {
11024                LIST_HEAD(single);
11025
11026                list_add(&dev->unreg_list, &single);
11027                unregister_netdevice_many(&single);
11028        }
11029}
11030EXPORT_SYMBOL(unregister_netdevice_queue);
11031
11032/**
11033 *      unregister_netdevice_many - unregister many devices
11034 *      @head: list of devices
11035 *
11036 *  Note: As most callers use a stack allocated list_head,
11037 *  we force a list_del() to make sure stack wont be corrupted later.
11038 */
11039void unregister_netdevice_many(struct list_head *head)
11040{
11041        struct net_device *dev, *tmp;
11042        LIST_HEAD(close_head);
11043
11044        BUG_ON(dev_boot_phase);
11045        ASSERT_RTNL();
11046
11047        if (list_empty(head))
11048                return;
11049
11050        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11051                /* Some devices call without registering
11052                 * for initialization unwind. Remove those
11053                 * devices and proceed with the remaining.
11054                 */
11055                if (dev->reg_state == NETREG_UNINITIALIZED) {
11056                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11057                                 dev->name, dev);
11058
11059                        WARN_ON(1);
11060                        list_del(&dev->unreg_list);
11061                        continue;
11062                }
11063                dev->dismantle = true;
11064                BUG_ON(dev->reg_state != NETREG_REGISTERED);
11065        }
11066
11067        /* If device is running, close it first. */
11068        list_for_each_entry(dev, head, unreg_list)
11069                list_add_tail(&dev->close_list, &close_head);
11070        dev_close_many(&close_head, true);
11071
11072        list_for_each_entry(dev, head, unreg_list) {
11073                /* And unlink it from device chain. */
11074                unlist_netdevice(dev);
11075
11076                dev->reg_state = NETREG_UNREGISTERING;
11077        }
11078        flush_all_backlogs();
11079
11080        synchronize_net();
11081
11082        list_for_each_entry(dev, head, unreg_list) {
11083                struct sk_buff *skb = NULL;
11084
11085                /* Shutdown queueing discipline. */
11086                dev_shutdown(dev);
11087
11088                dev_xdp_uninstall(dev);
11089
11090                /* Notify protocols, that we are about to destroy
11091                 * this device. They should clean all the things.
11092                 */
11093                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11094
11095                if (!dev->rtnl_link_ops ||
11096                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11097                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11098                                                     GFP_KERNEL, NULL, 0);
11099
11100                /*
11101                 *      Flush the unicast and multicast chains
11102                 */
11103                dev_uc_flush(dev);
11104                dev_mc_flush(dev);
11105
11106                netdev_name_node_alt_flush(dev);
11107                netdev_name_node_free(dev->name_node);
11108
11109                if (dev->netdev_ops->ndo_uninit)
11110                        dev->netdev_ops->ndo_uninit(dev);
11111
11112                if (skb)
11113                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11114
11115                /* Notifier chain MUST detach us all upper devices. */
11116                WARN_ON(netdev_has_any_upper_dev(dev));
11117                WARN_ON(netdev_has_any_lower_dev(dev));
11118
11119                /* Remove entries from kobject tree */
11120                netdev_unregister_kobject(dev);
11121#ifdef CONFIG_XPS
11122                /* Remove XPS queueing entries */
11123                netif_reset_xps_queues_gt(dev, 0);
11124#endif
11125        }
11126
11127        synchronize_net();
11128
11129        list_for_each_entry(dev, head, unreg_list) {
11130                dev_put(dev);
11131                net_set_todo(dev);
11132        }
11133
11134        list_del(head);
11135}
11136EXPORT_SYMBOL(unregister_netdevice_many);
11137
11138/**
11139 *      unregister_netdev - remove device from the kernel
11140 *      @dev: device
11141 *
11142 *      This function shuts down a device interface and removes it
11143 *      from the kernel tables.
11144 *
11145 *      This is just a wrapper for unregister_netdevice that takes
11146 *      the rtnl semaphore.  In general you want to use this and not
11147 *      unregister_netdevice.
11148 */
11149void unregister_netdev(struct net_device *dev)
11150{
11151        rtnl_lock();
11152        unregister_netdevice(dev);
11153        rtnl_unlock();
11154}
11155EXPORT_SYMBOL(unregister_netdev);
11156
11157/**
11158 *      __dev_change_net_namespace - move device to different nethost namespace
11159 *      @dev: device
11160 *      @net: network namespace
11161 *      @pat: If not NULL name pattern to try if the current device name
11162 *            is already taken in the destination network namespace.
11163 *      @new_ifindex: If not zero, specifies device index in the target
11164 *                    namespace.
11165 *
11166 *      This function shuts down a device interface and moves it
11167 *      to a new network namespace. On success 0 is returned, on
11168 *      a failure a netagive errno code is returned.
11169 *
11170 *      Callers must hold the rtnl semaphore.
11171 */
11172
11173int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11174                               const char *pat, int new_ifindex)
11175{
11176        struct net *net_old = dev_net(dev);
11177        int err, new_nsid;
11178
11179        ASSERT_RTNL();
11180
11181        /* Don't allow namespace local devices to be moved. */
11182        err = -EINVAL;
11183        if (dev->features & NETIF_F_NETNS_LOCAL)
11184                goto out;
11185
11186        /* Ensure the device has been registrered */
11187        if (dev->reg_state != NETREG_REGISTERED)
11188                goto out;
11189
11190        /* Get out if there is nothing todo */
11191        err = 0;
11192        if (net_eq(net_old, net))
11193                goto out;
11194
11195        /* Pick the destination device name, and ensure
11196         * we can use it in the destination network namespace.
11197         */
11198        err = -EEXIST;
11199        if (__dev_get_by_name(net, dev->name)) {
11200                /* We get here if we can't use the current device name */
11201                if (!pat)
11202                        goto out;
11203                err = dev_get_valid_name(net, dev, pat);
11204                if (err < 0)
11205                        goto out;
11206        }
11207
11208        /* Check that new_ifindex isn't used yet. */
11209        err = -EBUSY;
11210        if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11211                goto out;
11212
11213        /*
11214         * And now a mini version of register_netdevice unregister_netdevice.
11215         */
11216
11217        /* If device is running close it first. */
11218        dev_close(dev);
11219
11220        /* And unlink it from device chain */
11221        unlist_netdevice(dev);
11222
11223        synchronize_net();
11224
11225        /* Shutdown queueing discipline. */
11226        dev_shutdown(dev);
11227
11228        /* Notify protocols, that we are about to destroy
11229         * this device. They should clean all the things.
11230         *
11231         * Note that dev->reg_state stays at NETREG_REGISTERED.
11232         * This is wanted because this way 8021q and macvlan know
11233         * the device is just moving and can keep their slaves up.
11234         */
11235        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11236        rcu_barrier();
11237
11238        new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11239        /* If there is an ifindex conflict assign a new one */
11240        if (!new_ifindex) {
11241                if (__dev_get_by_index(net, dev->ifindex))
11242                        new_ifindex = dev_new_index(net);
11243                else
11244                        new_ifindex = dev->ifindex;
11245        }
11246
11247        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11248                            new_ifindex);
11249
11250        /*
11251         *      Flush the unicast and multicast chains
11252         */
11253        dev_uc_flush(dev);
11254        dev_mc_flush(dev);
11255
11256        /* Send a netdev-removed uevent to the old namespace */
11257        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11258        netdev_adjacent_del_links(dev);
11259
11260        /* Move per-net netdevice notifiers that are following the netdevice */
11261        move_netdevice_notifiers_dev_net(dev, net);
11262
11263        /* Actually switch the network namespace */
11264        dev_net_set(dev, net);
11265        dev->ifindex = new_ifindex;
11266
11267        /* Send a netdev-add uevent to the new namespace */
11268        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11269        netdev_adjacent_add_links(dev);
11270
11271        /* Fixup kobjects */
11272        err = device_rename(&dev->dev, dev->name);
11273        WARN_ON(err);
11274
11275        /* Adapt owner in case owning user namespace of target network
11276         * namespace is different from the original one.
11277         */
11278        err = netdev_change_owner(dev, net_old, net);
11279        WARN_ON(err);
11280
11281        /* Add the device back in the hashes */
11282        list_netdevice(dev);
11283
11284        /* Notify protocols, that a new device appeared. */
11285        call_netdevice_notifiers(NETDEV_REGISTER, dev);
11286
11287        /*
11288         *      Prevent userspace races by waiting until the network
11289         *      device is fully setup before sending notifications.
11290         */
11291        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11292
11293        synchronize_net();
11294        err = 0;
11295out:
11296        return err;
11297}
11298EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11299
11300static int dev_cpu_dead(unsigned int oldcpu)
11301{
11302        struct sk_buff **list_skb;
11303        struct sk_buff *skb;
11304        unsigned int cpu;
11305        struct softnet_data *sd, *oldsd, *remsd = NULL;
11306
11307        local_irq_disable();
11308        cpu = smp_processor_id();
11309        sd = &per_cpu(softnet_data, cpu);
11310        oldsd = &per_cpu(softnet_data, oldcpu);
11311
11312        /* Find end of our completion_queue. */
11313        list_skb = &sd->completion_queue;
11314        while (*list_skb)
11315                list_skb = &(*list_skb)->next;
11316        /* Append completion queue from offline CPU. */
11317        *list_skb = oldsd->completion_queue;
11318        oldsd->completion_queue = NULL;
11319
11320        /* Append output queue from offline CPU. */
11321        if (oldsd->output_queue) {
11322                *sd->output_queue_tailp = oldsd->output_queue;
11323                sd->output_queue_tailp = oldsd->output_queue_tailp;
11324                oldsd->output_queue = NULL;
11325                oldsd->output_queue_tailp = &oldsd->output_queue;
11326        }
11327        /* Append NAPI poll list from offline CPU, with one exception :
11328         * process_backlog() must be called by cpu owning percpu backlog.
11329         * We properly handle process_queue & input_pkt_queue later.
11330         */
11331        while (!list_empty(&oldsd->poll_list)) {
11332                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11333                                                            struct napi_struct,
11334                                                            poll_list);
11335
11336                list_del_init(&napi->poll_list);
11337                if (napi->poll == process_backlog)
11338                        napi->state = 0;
11339                else
11340                        ____napi_schedule(sd, napi);
11341        }
11342
11343        raise_softirq_irqoff(NET_TX_SOFTIRQ);
11344        local_irq_enable();
11345
11346#ifdef CONFIG_RPS
11347        remsd = oldsd->rps_ipi_list;
11348        oldsd->rps_ipi_list = NULL;
11349#endif
11350        /* send out pending IPI's on offline CPU */
11351        net_rps_send_ipi(remsd);
11352
11353        /* Process offline CPU's input_pkt_queue */
11354        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11355                netif_rx_ni(skb);
11356                input_queue_head_incr(oldsd);
11357        }
11358        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11359                netif_rx_ni(skb);
11360                input_queue_head_incr(oldsd);
11361        }
11362
11363        return 0;
11364}
11365
11366/**
11367 *      netdev_increment_features - increment feature set by one
11368 *      @all: current feature set
11369 *      @one: new feature set
11370 *      @mask: mask feature set
11371 *
11372 *      Computes a new feature set after adding a device with feature set
11373 *      @one to the master device with current feature set @all.  Will not
11374 *      enable anything that is off in @mask. Returns the new feature set.
11375 */
11376netdev_features_t netdev_increment_features(netdev_features_t all,
11377        netdev_features_t one, netdev_features_t mask)
11378{
11379        if (mask & NETIF_F_HW_CSUM)
11380                mask |= NETIF_F_CSUM_MASK;
11381        mask |= NETIF_F_VLAN_CHALLENGED;
11382
11383        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11384        all &= one | ~NETIF_F_ALL_FOR_ALL;
11385
11386        /* If one device supports hw checksumming, set for all. */
11387        if (all & NETIF_F_HW_CSUM)
11388                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11389
11390        return all;
11391}
11392EXPORT_SYMBOL(netdev_increment_features);
11393
11394static struct hlist_head * __net_init netdev_create_hash(void)
11395{
11396        int i;
11397        struct hlist_head *hash;
11398
11399        hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11400        if (hash != NULL)
11401                for (i = 0; i < NETDEV_HASHENTRIES; i++)
11402                        INIT_HLIST_HEAD(&hash[i]);
11403
11404        return hash;
11405}
11406
11407/* Initialize per network namespace state */
11408static int __net_init netdev_init(struct net *net)
11409{
11410        BUILD_BUG_ON(GRO_HASH_BUCKETS >
11411                     8 * sizeof_field(struct napi_struct, gro_bitmask));
11412
11413        if (net != &init_net)
11414                INIT_LIST_HEAD(&net->dev_base_head);
11415
11416        net->dev_name_head = netdev_create_hash();
11417        if (net->dev_name_head == NULL)
11418                goto err_name;
11419
11420        net->dev_index_head = netdev_create_hash();
11421        if (net->dev_index_head == NULL)
11422                goto err_idx;
11423
11424        RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11425
11426        return 0;
11427
11428err_idx:
11429        kfree(net->dev_name_head);
11430err_name:
11431        return -ENOMEM;
11432}
11433
11434/**
11435 *      netdev_drivername - network driver for the device
11436 *      @dev: network device
11437 *
11438 *      Determine network driver for device.
11439 */
11440const char *netdev_drivername(const struct net_device *dev)
11441{
11442        const struct device_driver *driver;
11443        const struct device *parent;
11444        const char *empty = "";
11445
11446        parent = dev->dev.parent;
11447        if (!parent)
11448                return empty;
11449
11450        driver = parent->driver;
11451        if (driver && driver->name)
11452                return driver->name;
11453        return empty;
11454}
11455
11456static void __netdev_printk(const char *level, const struct net_device *dev,
11457                            struct va_format *vaf)
11458{
11459        if (dev && dev->dev.parent) {
11460                dev_printk_emit(level[1] - '0',
11461                                dev->dev.parent,
11462                                "%s %s %s%s: %pV",
11463                                dev_driver_string(dev->dev.parent),
11464                                dev_name(dev->dev.parent),
11465                                netdev_name(dev), netdev_reg_state(dev),
11466                                vaf);
11467        } else if (dev) {
11468                printk("%s%s%s: %pV",
11469                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11470        } else {
11471                printk("%s(NULL net_device): %pV", level, vaf);
11472        }
11473}
11474
11475void netdev_printk(const char *level, const struct net_device *dev,
11476                   const char *format, ...)
11477{
11478        struct va_format vaf;
11479        va_list args;
11480
11481        va_start(args, format);
11482
11483        vaf.fmt = format;
11484        vaf.va = &args;
11485
11486        __netdev_printk(level, dev, &vaf);
11487
11488        va_end(args);
11489}
11490EXPORT_SYMBOL(netdev_printk);
11491
11492#define define_netdev_printk_level(func, level)                 \
11493void func(const struct net_device *dev, const char *fmt, ...)   \
11494{                                                               \
11495        struct va_format vaf;                                   \
11496        va_list args;                                           \
11497                                                                \
11498        va_start(args, fmt);                                    \
11499                                                                \
11500        vaf.fmt = fmt;                                          \
11501        vaf.va = &args;                                         \
11502                                                                \
11503        __netdev_printk(level, dev, &vaf);                      \
11504                                                                \
11505        va_end(args);                                           \
11506}                                                               \
11507EXPORT_SYMBOL(func);
11508
11509define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11510define_netdev_printk_level(netdev_alert, KERN_ALERT);
11511define_netdev_printk_level(netdev_crit, KERN_CRIT);
11512define_netdev_printk_level(netdev_err, KERN_ERR);
11513define_netdev_printk_level(netdev_warn, KERN_WARNING);
11514define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11515define_netdev_printk_level(netdev_info, KERN_INFO);
11516
11517static void __net_exit netdev_exit(struct net *net)
11518{
11519        kfree(net->dev_name_head);
11520        kfree(net->dev_index_head);
11521        if (net != &init_net)
11522                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11523}
11524
11525static struct pernet_operations __net_initdata netdev_net_ops = {
11526        .init = netdev_init,
11527        .exit = netdev_exit,
11528};
11529
11530static void __net_exit default_device_exit(struct net *net)
11531{
11532        struct net_device *dev, *aux;
11533        /*
11534         * Push all migratable network devices back to the
11535         * initial network namespace
11536         */
11537        rtnl_lock();
11538        for_each_netdev_safe(net, dev, aux) {
11539                int err;
11540                char fb_name[IFNAMSIZ];
11541
11542                /* Ignore unmoveable devices (i.e. loopback) */
11543                if (dev->features & NETIF_F_NETNS_LOCAL)
11544                        continue;
11545
11546                /* Leave virtual devices for the generic cleanup */
11547                if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11548                        continue;
11549
11550                /* Push remaining network devices to init_net */
11551                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11552                if (__dev_get_by_name(&init_net, fb_name))
11553                        snprintf(fb_name, IFNAMSIZ, "dev%%d");
11554                err = dev_change_net_namespace(dev, &init_net, fb_name);
11555                if (err) {
11556                        pr_emerg("%s: failed to move %s to init_net: %d\n",
11557                                 __func__, dev->name, err);
11558                        BUG();
11559                }
11560        }
11561        rtnl_unlock();
11562}
11563
11564static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11565{
11566        /* Return with the rtnl_lock held when there are no network
11567         * devices unregistering in any network namespace in net_list.
11568         */
11569        struct net *net;
11570        bool unregistering;
11571        DEFINE_WAIT_FUNC(wait, woken_wake_function);
11572
11573        add_wait_queue(&netdev_unregistering_wq, &wait);
11574        for (;;) {
11575                unregistering = false;
11576                rtnl_lock();
11577                list_for_each_entry(net, net_list, exit_list) {
11578                        if (net->dev_unreg_count > 0) {
11579                                unregistering = true;
11580                                break;
11581                        }
11582                }
11583                if (!unregistering)
11584                        break;
11585                __rtnl_unlock();
11586
11587                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11588        }
11589        remove_wait_queue(&netdev_unregistering_wq, &wait);
11590}
11591
11592static void __net_exit default_device_exit_batch(struct list_head *net_list)
11593{
11594        /* At exit all network devices most be removed from a network
11595         * namespace.  Do this in the reverse order of registration.
11596         * Do this across as many network namespaces as possible to
11597         * improve batching efficiency.
11598         */
11599        struct net_device *dev;
11600        struct net *net;
11601        LIST_HEAD(dev_kill_list);
11602
11603        /* To prevent network device cleanup code from dereferencing
11604         * loopback devices or network devices that have been freed
11605         * wait here for all pending unregistrations to complete,
11606         * before unregistring the loopback device and allowing the
11607         * network namespace be freed.
11608         *
11609         * The netdev todo list containing all network devices
11610         * unregistrations that happen in default_device_exit_batch
11611         * will run in the rtnl_unlock() at the end of
11612         * default_device_exit_batch.
11613         */
11614        rtnl_lock_unregistering(net_list);
11615        list_for_each_entry(net, net_list, exit_list) {
11616                for_each_netdev_reverse(net, dev) {
11617                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11618                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11619                        else
11620                                unregister_netdevice_queue(dev, &dev_kill_list);
11621                }
11622        }
11623        unregister_netdevice_many(&dev_kill_list);
11624        rtnl_unlock();
11625}
11626
11627static struct pernet_operations __net_initdata default_device_ops = {
11628        .exit = default_device_exit,
11629        .exit_batch = default_device_exit_batch,
11630};
11631
11632/*
11633 *      Initialize the DEV module. At boot time this walks the device list and
11634 *      unhooks any devices that fail to initialise (normally hardware not
11635 *      present) and leaves us with a valid list of present and active devices.
11636 *
11637 */
11638
11639/*
11640 *       This is called single threaded during boot, so no need
11641 *       to take the rtnl semaphore.
11642 */
11643static int __init net_dev_init(void)
11644{
11645        int i, rc = -ENOMEM;
11646
11647        BUG_ON(!dev_boot_phase);
11648
11649        if (dev_proc_init())
11650                goto out;
11651
11652        if (netdev_kobject_init())
11653                goto out;
11654
11655        INIT_LIST_HEAD(&ptype_all);
11656        for (i = 0; i < PTYPE_HASH_SIZE; i++)
11657                INIT_LIST_HEAD(&ptype_base[i]);
11658
11659        INIT_LIST_HEAD(&offload_base);
11660
11661        if (register_pernet_subsys(&netdev_net_ops))
11662                goto out;
11663
11664        /*
11665         *      Initialise the packet receive queues.
11666         */
11667
11668        for_each_possible_cpu(i) {
11669                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11670                struct softnet_data *sd = &per_cpu(softnet_data, i);
11671
11672                INIT_WORK(flush, flush_backlog);
11673
11674                skb_queue_head_init(&sd->input_pkt_queue);
11675                skb_queue_head_init(&sd->process_queue);
11676#ifdef CONFIG_XFRM_OFFLOAD
11677                skb_queue_head_init(&sd->xfrm_backlog);
11678#endif
11679                INIT_LIST_HEAD(&sd->poll_list);
11680                sd->output_queue_tailp = &sd->output_queue;
11681#ifdef CONFIG_RPS
11682                INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11683                sd->cpu = i;
11684#endif
11685
11686                init_gro_hash(&sd->backlog);
11687                sd->backlog.poll = process_backlog;
11688                sd->backlog.weight = weight_p;
11689        }
11690
11691        dev_boot_phase = 0;
11692
11693        /* The loopback device is special if any other network devices
11694         * is present in a network namespace the loopback device must
11695         * be present. Since we now dynamically allocate and free the
11696         * loopback device ensure this invariant is maintained by
11697         * keeping the loopback device as the first device on the
11698         * list of network devices.  Ensuring the loopback devices
11699         * is the first device that appears and the last network device
11700         * that disappears.
11701         */
11702        if (register_pernet_device(&loopback_net_ops))
11703                goto out;
11704
11705        if (register_pernet_device(&default_device_ops))
11706                goto out;
11707
11708        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11709        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11710
11711        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11712                                       NULL, dev_cpu_dead);
11713        WARN_ON(rc < 0);
11714        rc = 0;
11715out:
11716        return rc;
11717}
11718
11719subsys_initcall(net_dev_init);
11720