linux/net/core/filter.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *      Jay Schulist <jschlst@samba.org>
  13 *      Alexei Starovoitov <ast@plumgrid.com>
  14 *      Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <linux/atomic.h>
  21#include <linux/module.h>
  22#include <linux/types.h>
  23#include <linux/mm.h>
  24#include <linux/fcntl.h>
  25#include <linux/socket.h>
  26#include <linux/sock_diag.h>
  27#include <linux/in.h>
  28#include <linux/inet.h>
  29#include <linux/netdevice.h>
  30#include <linux/if_packet.h>
  31#include <linux/if_arp.h>
  32#include <linux/gfp.h>
  33#include <net/inet_common.h>
  34#include <net/ip.h>
  35#include <net/protocol.h>
  36#include <net/netlink.h>
  37#include <linux/skbuff.h>
  38#include <linux/skmsg.h>
  39#include <net/sock.h>
  40#include <net/flow_dissector.h>
  41#include <linux/errno.h>
  42#include <linux/timer.h>
  43#include <linux/uaccess.h>
  44#include <asm/unaligned.h>
  45#include <linux/filter.h>
  46#include <linux/ratelimit.h>
  47#include <linux/seccomp.h>
  48#include <linux/if_vlan.h>
  49#include <linux/bpf.h>
  50#include <linux/btf.h>
  51#include <net/sch_generic.h>
  52#include <net/cls_cgroup.h>
  53#include <net/dst_metadata.h>
  54#include <net/dst.h>
  55#include <net/sock_reuseport.h>
  56#include <net/busy_poll.h>
  57#include <net/tcp.h>
  58#include <net/xfrm.h>
  59#include <net/udp.h>
  60#include <linux/bpf_trace.h>
  61#include <net/xdp_sock.h>
  62#include <linux/inetdevice.h>
  63#include <net/inet_hashtables.h>
  64#include <net/inet6_hashtables.h>
  65#include <net/ip_fib.h>
  66#include <net/nexthop.h>
  67#include <net/flow.h>
  68#include <net/arp.h>
  69#include <net/ipv6.h>
  70#include <net/net_namespace.h>
  71#include <linux/seg6_local.h>
  72#include <net/seg6.h>
  73#include <net/seg6_local.h>
  74#include <net/lwtunnel.h>
  75#include <net/ipv6_stubs.h>
  76#include <net/bpf_sk_storage.h>
  77#include <net/transp_v6.h>
  78#include <linux/btf_ids.h>
  79#include <net/tls.h>
  80
  81static const struct bpf_func_proto *
  82bpf_sk_base_func_proto(enum bpf_func_id func_id);
  83
  84int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
  85{
  86        if (in_compat_syscall()) {
  87                struct compat_sock_fprog f32;
  88
  89                if (len != sizeof(f32))
  90                        return -EINVAL;
  91                if (copy_from_sockptr(&f32, src, sizeof(f32)))
  92                        return -EFAULT;
  93                memset(dst, 0, sizeof(*dst));
  94                dst->len = f32.len;
  95                dst->filter = compat_ptr(f32.filter);
  96        } else {
  97                if (len != sizeof(*dst))
  98                        return -EINVAL;
  99                if (copy_from_sockptr(dst, src, sizeof(*dst)))
 100                        return -EFAULT;
 101        }
 102
 103        return 0;
 104}
 105EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
 106
 107/**
 108 *      sk_filter_trim_cap - run a packet through a socket filter
 109 *      @sk: sock associated with &sk_buff
 110 *      @skb: buffer to filter
 111 *      @cap: limit on how short the eBPF program may trim the packet
 112 *
 113 * Run the eBPF program and then cut skb->data to correct size returned by
 114 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
 115 * than pkt_len we keep whole skb->data. This is the socket level
 116 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
 117 * be accepted or -EPERM if the packet should be tossed.
 118 *
 119 */
 120int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
 121{
 122        int err;
 123        struct sk_filter *filter;
 124
 125        /*
 126         * If the skb was allocated from pfmemalloc reserves, only
 127         * allow SOCK_MEMALLOC sockets to use it as this socket is
 128         * helping free memory
 129         */
 130        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
 131                NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
 132                return -ENOMEM;
 133        }
 134        err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
 135        if (err)
 136                return err;
 137
 138        err = security_sock_rcv_skb(sk, skb);
 139        if (err)
 140                return err;
 141
 142        rcu_read_lock();
 143        filter = rcu_dereference(sk->sk_filter);
 144        if (filter) {
 145                struct sock *save_sk = skb->sk;
 146                unsigned int pkt_len;
 147
 148                skb->sk = sk;
 149                pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
 150                skb->sk = save_sk;
 151                err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
 152        }
 153        rcu_read_unlock();
 154
 155        return err;
 156}
 157EXPORT_SYMBOL(sk_filter_trim_cap);
 158
 159BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
 160{
 161        return skb_get_poff(skb);
 162}
 163
 164BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
 165{
 166        struct nlattr *nla;
 167
 168        if (skb_is_nonlinear(skb))
 169                return 0;
 170
 171        if (skb->len < sizeof(struct nlattr))
 172                return 0;
 173
 174        if (a > skb->len - sizeof(struct nlattr))
 175                return 0;
 176
 177        nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
 178        if (nla)
 179                return (void *) nla - (void *) skb->data;
 180
 181        return 0;
 182}
 183
 184BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
 185{
 186        struct nlattr *nla;
 187
 188        if (skb_is_nonlinear(skb))
 189                return 0;
 190
 191        if (skb->len < sizeof(struct nlattr))
 192                return 0;
 193
 194        if (a > skb->len - sizeof(struct nlattr))
 195                return 0;
 196
 197        nla = (struct nlattr *) &skb->data[a];
 198        if (nla->nla_len > skb->len - a)
 199                return 0;
 200
 201        nla = nla_find_nested(nla, x);
 202        if (nla)
 203                return (void *) nla - (void *) skb->data;
 204
 205        return 0;
 206}
 207
 208BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
 209           data, int, headlen, int, offset)
 210{
 211        u8 tmp, *ptr;
 212        const int len = sizeof(tmp);
 213
 214        if (offset >= 0) {
 215                if (headlen - offset >= len)
 216                        return *(u8 *)(data + offset);
 217                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 218                        return tmp;
 219        } else {
 220                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 221                if (likely(ptr))
 222                        return *(u8 *)ptr;
 223        }
 224
 225        return -EFAULT;
 226}
 227
 228BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
 229           int, offset)
 230{
 231        return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
 232                                         offset);
 233}
 234
 235BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
 236           data, int, headlen, int, offset)
 237{
 238        u16 tmp, *ptr;
 239        const int len = sizeof(tmp);
 240
 241        if (offset >= 0) {
 242                if (headlen - offset >= len)
 243                        return get_unaligned_be16(data + offset);
 244                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 245                        return be16_to_cpu(tmp);
 246        } else {
 247                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 248                if (likely(ptr))
 249                        return get_unaligned_be16(ptr);
 250        }
 251
 252        return -EFAULT;
 253}
 254
 255BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
 256           int, offset)
 257{
 258        return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
 259                                          offset);
 260}
 261
 262BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
 263           data, int, headlen, int, offset)
 264{
 265        u32 tmp, *ptr;
 266        const int len = sizeof(tmp);
 267
 268        if (likely(offset >= 0)) {
 269                if (headlen - offset >= len)
 270                        return get_unaligned_be32(data + offset);
 271                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 272                        return be32_to_cpu(tmp);
 273        } else {
 274                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 275                if (likely(ptr))
 276                        return get_unaligned_be32(ptr);
 277        }
 278
 279        return -EFAULT;
 280}
 281
 282BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
 283           int, offset)
 284{
 285        return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
 286                                          offset);
 287}
 288
 289static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
 290                              struct bpf_insn *insn_buf)
 291{
 292        struct bpf_insn *insn = insn_buf;
 293
 294        switch (skb_field) {
 295        case SKF_AD_MARK:
 296                BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
 297
 298                *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
 299                                      offsetof(struct sk_buff, mark));
 300                break;
 301
 302        case SKF_AD_PKTTYPE:
 303                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
 304                *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
 305#ifdef __BIG_ENDIAN_BITFIELD
 306                *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
 307#endif
 308                break;
 309
 310        case SKF_AD_QUEUE:
 311                BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
 312
 313                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 314                                      offsetof(struct sk_buff, queue_mapping));
 315                break;
 316
 317        case SKF_AD_VLAN_TAG:
 318                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
 319
 320                /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
 321                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 322                                      offsetof(struct sk_buff, vlan_tci));
 323                break;
 324        case SKF_AD_VLAN_TAG_PRESENT:
 325                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
 326                if (PKT_VLAN_PRESENT_BIT)
 327                        *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
 328                if (PKT_VLAN_PRESENT_BIT < 7)
 329                        *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
 330                break;
 331        }
 332
 333        return insn - insn_buf;
 334}
 335
 336static bool convert_bpf_extensions(struct sock_filter *fp,
 337                                   struct bpf_insn **insnp)
 338{
 339        struct bpf_insn *insn = *insnp;
 340        u32 cnt;
 341
 342        switch (fp->k) {
 343        case SKF_AD_OFF + SKF_AD_PROTOCOL:
 344                BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
 345
 346                /* A = *(u16 *) (CTX + offsetof(protocol)) */
 347                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 348                                      offsetof(struct sk_buff, protocol));
 349                /* A = ntohs(A) [emitting a nop or swap16] */
 350                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 351                break;
 352
 353        case SKF_AD_OFF + SKF_AD_PKTTYPE:
 354                cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
 355                insn += cnt - 1;
 356                break;
 357
 358        case SKF_AD_OFF + SKF_AD_IFINDEX:
 359        case SKF_AD_OFF + SKF_AD_HATYPE:
 360                BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
 361                BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
 362
 363                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
 364                                      BPF_REG_TMP, BPF_REG_CTX,
 365                                      offsetof(struct sk_buff, dev));
 366                /* if (tmp != 0) goto pc + 1 */
 367                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
 368                *insn++ = BPF_EXIT_INSN();
 369                if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
 370                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
 371                                            offsetof(struct net_device, ifindex));
 372                else
 373                        *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
 374                                            offsetof(struct net_device, type));
 375                break;
 376
 377        case SKF_AD_OFF + SKF_AD_MARK:
 378                cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
 379                insn += cnt - 1;
 380                break;
 381
 382        case SKF_AD_OFF + SKF_AD_RXHASH:
 383                BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
 384
 385                *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
 386                                    offsetof(struct sk_buff, hash));
 387                break;
 388
 389        case SKF_AD_OFF + SKF_AD_QUEUE:
 390                cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
 391                insn += cnt - 1;
 392                break;
 393
 394        case SKF_AD_OFF + SKF_AD_VLAN_TAG:
 395                cnt = convert_skb_access(SKF_AD_VLAN_TAG,
 396                                         BPF_REG_A, BPF_REG_CTX, insn);
 397                insn += cnt - 1;
 398                break;
 399
 400        case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
 401                cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
 402                                         BPF_REG_A, BPF_REG_CTX, insn);
 403                insn += cnt - 1;
 404                break;
 405
 406        case SKF_AD_OFF + SKF_AD_VLAN_TPID:
 407                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
 408
 409                /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
 410                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 411                                      offsetof(struct sk_buff, vlan_proto));
 412                /* A = ntohs(A) [emitting a nop or swap16] */
 413                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 414                break;
 415
 416        case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 417        case SKF_AD_OFF + SKF_AD_NLATTR:
 418        case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 419        case SKF_AD_OFF + SKF_AD_CPU:
 420        case SKF_AD_OFF + SKF_AD_RANDOM:
 421                /* arg1 = CTX */
 422                *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 423                /* arg2 = A */
 424                *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
 425                /* arg3 = X */
 426                *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
 427                /* Emit call(arg1=CTX, arg2=A, arg3=X) */
 428                switch (fp->k) {
 429                case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 430                        *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
 431                        break;
 432                case SKF_AD_OFF + SKF_AD_NLATTR:
 433                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
 434                        break;
 435                case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 436                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
 437                        break;
 438                case SKF_AD_OFF + SKF_AD_CPU:
 439                        *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
 440                        break;
 441                case SKF_AD_OFF + SKF_AD_RANDOM:
 442                        *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
 443                        bpf_user_rnd_init_once();
 444                        break;
 445                }
 446                break;
 447
 448        case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
 449                /* A ^= X */
 450                *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
 451                break;
 452
 453        default:
 454                /* This is just a dummy call to avoid letting the compiler
 455                 * evict __bpf_call_base() as an optimization. Placed here
 456                 * where no-one bothers.
 457                 */
 458                BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
 459                return false;
 460        }
 461
 462        *insnp = insn;
 463        return true;
 464}
 465
 466static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
 467{
 468        const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
 469        int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
 470        bool endian = BPF_SIZE(fp->code) == BPF_H ||
 471                      BPF_SIZE(fp->code) == BPF_W;
 472        bool indirect = BPF_MODE(fp->code) == BPF_IND;
 473        const int ip_align = NET_IP_ALIGN;
 474        struct bpf_insn *insn = *insnp;
 475        int offset = fp->k;
 476
 477        if (!indirect &&
 478            ((unaligned_ok && offset >= 0) ||
 479             (!unaligned_ok && offset >= 0 &&
 480              offset + ip_align >= 0 &&
 481              offset + ip_align % size == 0))) {
 482                bool ldx_off_ok = offset <= S16_MAX;
 483
 484                *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
 485                if (offset)
 486                        *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
 487                *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
 488                                      size, 2 + endian + (!ldx_off_ok * 2));
 489                if (ldx_off_ok) {
 490                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 491                                              BPF_REG_D, offset);
 492                } else {
 493                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
 494                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
 495                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 496                                              BPF_REG_TMP, 0);
 497                }
 498                if (endian)
 499                        *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
 500                *insn++ = BPF_JMP_A(8);
 501        }
 502
 503        *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 504        *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
 505        *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
 506        if (!indirect) {
 507                *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
 508        } else {
 509                *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
 510                if (fp->k)
 511                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
 512        }
 513
 514        switch (BPF_SIZE(fp->code)) {
 515        case BPF_B:
 516                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
 517                break;
 518        case BPF_H:
 519                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
 520                break;
 521        case BPF_W:
 522                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
 523                break;
 524        default:
 525                return false;
 526        }
 527
 528        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
 529        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 530        *insn   = BPF_EXIT_INSN();
 531
 532        *insnp = insn;
 533        return true;
 534}
 535
 536/**
 537 *      bpf_convert_filter - convert filter program
 538 *      @prog: the user passed filter program
 539 *      @len: the length of the user passed filter program
 540 *      @new_prog: allocated 'struct bpf_prog' or NULL
 541 *      @new_len: pointer to store length of converted program
 542 *      @seen_ld_abs: bool whether we've seen ld_abs/ind
 543 *
 544 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 545 * style extended BPF (eBPF).
 546 * Conversion workflow:
 547 *
 548 * 1) First pass for calculating the new program length:
 549 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
 550 *
 551 * 2) 2nd pass to remap in two passes: 1st pass finds new
 552 *    jump offsets, 2nd pass remapping:
 553 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
 554 */
 555static int bpf_convert_filter(struct sock_filter *prog, int len,
 556                              struct bpf_prog *new_prog, int *new_len,
 557                              bool *seen_ld_abs)
 558{
 559        int new_flen = 0, pass = 0, target, i, stack_off;
 560        struct bpf_insn *new_insn, *first_insn = NULL;
 561        struct sock_filter *fp;
 562        int *addrs = NULL;
 563        u8 bpf_src;
 564
 565        BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
 566        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
 567
 568        if (len <= 0 || len > BPF_MAXINSNS)
 569                return -EINVAL;
 570
 571        if (new_prog) {
 572                first_insn = new_prog->insnsi;
 573                addrs = kcalloc(len, sizeof(*addrs),
 574                                GFP_KERNEL | __GFP_NOWARN);
 575                if (!addrs)
 576                        return -ENOMEM;
 577        }
 578
 579do_pass:
 580        new_insn = first_insn;
 581        fp = prog;
 582
 583        /* Classic BPF related prologue emission. */
 584        if (new_prog) {
 585                /* Classic BPF expects A and X to be reset first. These need
 586                 * to be guaranteed to be the first two instructions.
 587                 */
 588                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 589                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
 590
 591                /* All programs must keep CTX in callee saved BPF_REG_CTX.
 592                 * In eBPF case it's done by the compiler, here we need to
 593                 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
 594                 */
 595                *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
 596                if (*seen_ld_abs) {
 597                        /* For packet access in classic BPF, cache skb->data
 598                         * in callee-saved BPF R8 and skb->len - skb->data_len
 599                         * (headlen) in BPF R9. Since classic BPF is read-only
 600                         * on CTX, we only need to cache it once.
 601                         */
 602                        *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
 603                                                  BPF_REG_D, BPF_REG_CTX,
 604                                                  offsetof(struct sk_buff, data));
 605                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
 606                                                  offsetof(struct sk_buff, len));
 607                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
 608                                                  offsetof(struct sk_buff, data_len));
 609                        *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
 610                }
 611        } else {
 612                new_insn += 3;
 613        }
 614
 615        for (i = 0; i < len; fp++, i++) {
 616                struct bpf_insn tmp_insns[32] = { };
 617                struct bpf_insn *insn = tmp_insns;
 618
 619                if (addrs)
 620                        addrs[i] = new_insn - first_insn;
 621
 622                switch (fp->code) {
 623                /* All arithmetic insns and skb loads map as-is. */
 624                case BPF_ALU | BPF_ADD | BPF_X:
 625                case BPF_ALU | BPF_ADD | BPF_K:
 626                case BPF_ALU | BPF_SUB | BPF_X:
 627                case BPF_ALU | BPF_SUB | BPF_K:
 628                case BPF_ALU | BPF_AND | BPF_X:
 629                case BPF_ALU | BPF_AND | BPF_K:
 630                case BPF_ALU | BPF_OR | BPF_X:
 631                case BPF_ALU | BPF_OR | BPF_K:
 632                case BPF_ALU | BPF_LSH | BPF_X:
 633                case BPF_ALU | BPF_LSH | BPF_K:
 634                case BPF_ALU | BPF_RSH | BPF_X:
 635                case BPF_ALU | BPF_RSH | BPF_K:
 636                case BPF_ALU | BPF_XOR | BPF_X:
 637                case BPF_ALU | BPF_XOR | BPF_K:
 638                case BPF_ALU | BPF_MUL | BPF_X:
 639                case BPF_ALU | BPF_MUL | BPF_K:
 640                case BPF_ALU | BPF_DIV | BPF_X:
 641                case BPF_ALU | BPF_DIV | BPF_K:
 642                case BPF_ALU | BPF_MOD | BPF_X:
 643                case BPF_ALU | BPF_MOD | BPF_K:
 644                case BPF_ALU | BPF_NEG:
 645                case BPF_LD | BPF_ABS | BPF_W:
 646                case BPF_LD | BPF_ABS | BPF_H:
 647                case BPF_LD | BPF_ABS | BPF_B:
 648                case BPF_LD | BPF_IND | BPF_W:
 649                case BPF_LD | BPF_IND | BPF_H:
 650                case BPF_LD | BPF_IND | BPF_B:
 651                        /* Check for overloaded BPF extension and
 652                         * directly convert it if found, otherwise
 653                         * just move on with mapping.
 654                         */
 655                        if (BPF_CLASS(fp->code) == BPF_LD &&
 656                            BPF_MODE(fp->code) == BPF_ABS &&
 657                            convert_bpf_extensions(fp, &insn))
 658                                break;
 659                        if (BPF_CLASS(fp->code) == BPF_LD &&
 660                            convert_bpf_ld_abs(fp, &insn)) {
 661                                *seen_ld_abs = true;
 662                                break;
 663                        }
 664
 665                        if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
 666                            fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
 667                                *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
 668                                /* Error with exception code on div/mod by 0.
 669                                 * For cBPF programs, this was always return 0.
 670                                 */
 671                                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
 672                                *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 673                                *insn++ = BPF_EXIT_INSN();
 674                        }
 675
 676                        *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
 677                        break;
 678
 679                /* Jump transformation cannot use BPF block macros
 680                 * everywhere as offset calculation and target updates
 681                 * require a bit more work than the rest, i.e. jump
 682                 * opcodes map as-is, but offsets need adjustment.
 683                 */
 684
 685#define BPF_EMIT_JMP                                                    \
 686        do {                                                            \
 687                const s32 off_min = S16_MIN, off_max = S16_MAX;         \
 688                s32 off;                                                \
 689                                                                        \
 690                if (target >= len || target < 0)                        \
 691                        goto err;                                       \
 692                off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
 693                /* Adjust pc relative offset for 2nd or 3rd insn. */    \
 694                off -= insn - tmp_insns;                                \
 695                /* Reject anything not fitting into insn->off. */       \
 696                if (off < off_min || off > off_max)                     \
 697                        goto err;                                       \
 698                insn->off = off;                                        \
 699        } while (0)
 700
 701                case BPF_JMP | BPF_JA:
 702                        target = i + fp->k + 1;
 703                        insn->code = fp->code;
 704                        BPF_EMIT_JMP;
 705                        break;
 706
 707                case BPF_JMP | BPF_JEQ | BPF_K:
 708                case BPF_JMP | BPF_JEQ | BPF_X:
 709                case BPF_JMP | BPF_JSET | BPF_K:
 710                case BPF_JMP | BPF_JSET | BPF_X:
 711                case BPF_JMP | BPF_JGT | BPF_K:
 712                case BPF_JMP | BPF_JGT | BPF_X:
 713                case BPF_JMP | BPF_JGE | BPF_K:
 714                case BPF_JMP | BPF_JGE | BPF_X:
 715                        if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
 716                                /* BPF immediates are signed, zero extend
 717                                 * immediate into tmp register and use it
 718                                 * in compare insn.
 719                                 */
 720                                *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
 721
 722                                insn->dst_reg = BPF_REG_A;
 723                                insn->src_reg = BPF_REG_TMP;
 724                                bpf_src = BPF_X;
 725                        } else {
 726                                insn->dst_reg = BPF_REG_A;
 727                                insn->imm = fp->k;
 728                                bpf_src = BPF_SRC(fp->code);
 729                                insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
 730                        }
 731
 732                        /* Common case where 'jump_false' is next insn. */
 733                        if (fp->jf == 0) {
 734                                insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 735                                target = i + fp->jt + 1;
 736                                BPF_EMIT_JMP;
 737                                break;
 738                        }
 739
 740                        /* Convert some jumps when 'jump_true' is next insn. */
 741                        if (fp->jt == 0) {
 742                                switch (BPF_OP(fp->code)) {
 743                                case BPF_JEQ:
 744                                        insn->code = BPF_JMP | BPF_JNE | bpf_src;
 745                                        break;
 746                                case BPF_JGT:
 747                                        insn->code = BPF_JMP | BPF_JLE | bpf_src;
 748                                        break;
 749                                case BPF_JGE:
 750                                        insn->code = BPF_JMP | BPF_JLT | bpf_src;
 751                                        break;
 752                                default:
 753                                        goto jmp_rest;
 754                                }
 755
 756                                target = i + fp->jf + 1;
 757                                BPF_EMIT_JMP;
 758                                break;
 759                        }
 760jmp_rest:
 761                        /* Other jumps are mapped into two insns: Jxx and JA. */
 762                        target = i + fp->jt + 1;
 763                        insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 764                        BPF_EMIT_JMP;
 765                        insn++;
 766
 767                        insn->code = BPF_JMP | BPF_JA;
 768                        target = i + fp->jf + 1;
 769                        BPF_EMIT_JMP;
 770                        break;
 771
 772                /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
 773                case BPF_LDX | BPF_MSH | BPF_B: {
 774                        struct sock_filter tmp = {
 775                                .code   = BPF_LD | BPF_ABS | BPF_B,
 776                                .k      = fp->k,
 777                        };
 778
 779                        *seen_ld_abs = true;
 780
 781                        /* X = A */
 782                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 783                        /* A = BPF_R0 = *(u8 *) (skb->data + K) */
 784                        convert_bpf_ld_abs(&tmp, &insn);
 785                        insn++;
 786                        /* A &= 0xf */
 787                        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
 788                        /* A <<= 2 */
 789                        *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
 790                        /* tmp = X */
 791                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
 792                        /* X = A */
 793                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 794                        /* A = tmp */
 795                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
 796                        break;
 797                }
 798                /* RET_K is remaped into 2 insns. RET_A case doesn't need an
 799                 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
 800                 */
 801                case BPF_RET | BPF_A:
 802                case BPF_RET | BPF_K:
 803                        if (BPF_RVAL(fp->code) == BPF_K)
 804                                *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
 805                                                        0, fp->k);
 806                        *insn = BPF_EXIT_INSN();
 807                        break;
 808
 809                /* Store to stack. */
 810                case BPF_ST:
 811                case BPF_STX:
 812                        stack_off = fp->k * 4  + 4;
 813                        *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
 814                                            BPF_ST ? BPF_REG_A : BPF_REG_X,
 815                                            -stack_off);
 816                        /* check_load_and_stores() verifies that classic BPF can
 817                         * load from stack only after write, so tracking
 818                         * stack_depth for ST|STX insns is enough
 819                         */
 820                        if (new_prog && new_prog->aux->stack_depth < stack_off)
 821                                new_prog->aux->stack_depth = stack_off;
 822                        break;
 823
 824                /* Load from stack. */
 825                case BPF_LD | BPF_MEM:
 826                case BPF_LDX | BPF_MEM:
 827                        stack_off = fp->k * 4  + 4;
 828                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
 829                                            BPF_REG_A : BPF_REG_X, BPF_REG_FP,
 830                                            -stack_off);
 831                        break;
 832
 833                /* A = K or X = K */
 834                case BPF_LD | BPF_IMM:
 835                case BPF_LDX | BPF_IMM:
 836                        *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
 837                                              BPF_REG_A : BPF_REG_X, fp->k);
 838                        break;
 839
 840                /* X = A */
 841                case BPF_MISC | BPF_TAX:
 842                        *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 843                        break;
 844
 845                /* A = X */
 846                case BPF_MISC | BPF_TXA:
 847                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
 848                        break;
 849
 850                /* A = skb->len or X = skb->len */
 851                case BPF_LD | BPF_W | BPF_LEN:
 852                case BPF_LDX | BPF_W | BPF_LEN:
 853                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
 854                                            BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
 855                                            offsetof(struct sk_buff, len));
 856                        break;
 857
 858                /* Access seccomp_data fields. */
 859                case BPF_LDX | BPF_ABS | BPF_W:
 860                        /* A = *(u32 *) (ctx + K) */
 861                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
 862                        break;
 863
 864                /* Unknown instruction. */
 865                default:
 866                        goto err;
 867                }
 868
 869                insn++;
 870                if (new_prog)
 871                        memcpy(new_insn, tmp_insns,
 872                               sizeof(*insn) * (insn - tmp_insns));
 873                new_insn += insn - tmp_insns;
 874        }
 875
 876        if (!new_prog) {
 877                /* Only calculating new length. */
 878                *new_len = new_insn - first_insn;
 879                if (*seen_ld_abs)
 880                        *new_len += 4; /* Prologue bits. */
 881                return 0;
 882        }
 883
 884        pass++;
 885        if (new_flen != new_insn - first_insn) {
 886                new_flen = new_insn - first_insn;
 887                if (pass > 2)
 888                        goto err;
 889                goto do_pass;
 890        }
 891
 892        kfree(addrs);
 893        BUG_ON(*new_len != new_flen);
 894        return 0;
 895err:
 896        kfree(addrs);
 897        return -EINVAL;
 898}
 899
 900/* Security:
 901 *
 902 * As we dont want to clear mem[] array for each packet going through
 903 * __bpf_prog_run(), we check that filter loaded by user never try to read
 904 * a cell if not previously written, and we check all branches to be sure
 905 * a malicious user doesn't try to abuse us.
 906 */
 907static int check_load_and_stores(const struct sock_filter *filter, int flen)
 908{
 909        u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
 910        int pc, ret = 0;
 911
 912        BUILD_BUG_ON(BPF_MEMWORDS > 16);
 913
 914        masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
 915        if (!masks)
 916                return -ENOMEM;
 917
 918        memset(masks, 0xff, flen * sizeof(*masks));
 919
 920        for (pc = 0; pc < flen; pc++) {
 921                memvalid &= masks[pc];
 922
 923                switch (filter[pc].code) {
 924                case BPF_ST:
 925                case BPF_STX:
 926                        memvalid |= (1 << filter[pc].k);
 927                        break;
 928                case BPF_LD | BPF_MEM:
 929                case BPF_LDX | BPF_MEM:
 930                        if (!(memvalid & (1 << filter[pc].k))) {
 931                                ret = -EINVAL;
 932                                goto error;
 933                        }
 934                        break;
 935                case BPF_JMP | BPF_JA:
 936                        /* A jump must set masks on target */
 937                        masks[pc + 1 + filter[pc].k] &= memvalid;
 938                        memvalid = ~0;
 939                        break;
 940                case BPF_JMP | BPF_JEQ | BPF_K:
 941                case BPF_JMP | BPF_JEQ | BPF_X:
 942                case BPF_JMP | BPF_JGE | BPF_K:
 943                case BPF_JMP | BPF_JGE | BPF_X:
 944                case BPF_JMP | BPF_JGT | BPF_K:
 945                case BPF_JMP | BPF_JGT | BPF_X:
 946                case BPF_JMP | BPF_JSET | BPF_K:
 947                case BPF_JMP | BPF_JSET | BPF_X:
 948                        /* A jump must set masks on targets */
 949                        masks[pc + 1 + filter[pc].jt] &= memvalid;
 950                        masks[pc + 1 + filter[pc].jf] &= memvalid;
 951                        memvalid = ~0;
 952                        break;
 953                }
 954        }
 955error:
 956        kfree(masks);
 957        return ret;
 958}
 959
 960static bool chk_code_allowed(u16 code_to_probe)
 961{
 962        static const bool codes[] = {
 963                /* 32 bit ALU operations */
 964                [BPF_ALU | BPF_ADD | BPF_K] = true,
 965                [BPF_ALU | BPF_ADD | BPF_X] = true,
 966                [BPF_ALU | BPF_SUB | BPF_K] = true,
 967                [BPF_ALU | BPF_SUB | BPF_X] = true,
 968                [BPF_ALU | BPF_MUL | BPF_K] = true,
 969                [BPF_ALU | BPF_MUL | BPF_X] = true,
 970                [BPF_ALU | BPF_DIV | BPF_K] = true,
 971                [BPF_ALU | BPF_DIV | BPF_X] = true,
 972                [BPF_ALU | BPF_MOD | BPF_K] = true,
 973                [BPF_ALU | BPF_MOD | BPF_X] = true,
 974                [BPF_ALU | BPF_AND | BPF_K] = true,
 975                [BPF_ALU | BPF_AND | BPF_X] = true,
 976                [BPF_ALU | BPF_OR | BPF_K] = true,
 977                [BPF_ALU | BPF_OR | BPF_X] = true,
 978                [BPF_ALU | BPF_XOR | BPF_K] = true,
 979                [BPF_ALU | BPF_XOR | BPF_X] = true,
 980                [BPF_ALU | BPF_LSH | BPF_K] = true,
 981                [BPF_ALU | BPF_LSH | BPF_X] = true,
 982                [BPF_ALU | BPF_RSH | BPF_K] = true,
 983                [BPF_ALU | BPF_RSH | BPF_X] = true,
 984                [BPF_ALU | BPF_NEG] = true,
 985                /* Load instructions */
 986                [BPF_LD | BPF_W | BPF_ABS] = true,
 987                [BPF_LD | BPF_H | BPF_ABS] = true,
 988                [BPF_LD | BPF_B | BPF_ABS] = true,
 989                [BPF_LD | BPF_W | BPF_LEN] = true,
 990                [BPF_LD | BPF_W | BPF_IND] = true,
 991                [BPF_LD | BPF_H | BPF_IND] = true,
 992                [BPF_LD | BPF_B | BPF_IND] = true,
 993                [BPF_LD | BPF_IMM] = true,
 994                [BPF_LD | BPF_MEM] = true,
 995                [BPF_LDX | BPF_W | BPF_LEN] = true,
 996                [BPF_LDX | BPF_B | BPF_MSH] = true,
 997                [BPF_LDX | BPF_IMM] = true,
 998                [BPF_LDX | BPF_MEM] = true,
 999                /* Store instructions */
1000                [BPF_ST] = true,
1001                [BPF_STX] = true,
1002                /* Misc instructions */
1003                [BPF_MISC | BPF_TAX] = true,
1004                [BPF_MISC | BPF_TXA] = true,
1005                /* Return instructions */
1006                [BPF_RET | BPF_K] = true,
1007                [BPF_RET | BPF_A] = true,
1008                /* Jump instructions */
1009                [BPF_JMP | BPF_JA] = true,
1010                [BPF_JMP | BPF_JEQ | BPF_K] = true,
1011                [BPF_JMP | BPF_JEQ | BPF_X] = true,
1012                [BPF_JMP | BPF_JGE | BPF_K] = true,
1013                [BPF_JMP | BPF_JGE | BPF_X] = true,
1014                [BPF_JMP | BPF_JGT | BPF_K] = true,
1015                [BPF_JMP | BPF_JGT | BPF_X] = true,
1016                [BPF_JMP | BPF_JSET | BPF_K] = true,
1017                [BPF_JMP | BPF_JSET | BPF_X] = true,
1018        };
1019
1020        if (code_to_probe >= ARRAY_SIZE(codes))
1021                return false;
1022
1023        return codes[code_to_probe];
1024}
1025
1026static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027                                unsigned int flen)
1028{
1029        if (filter == NULL)
1030                return false;
1031        if (flen == 0 || flen > BPF_MAXINSNS)
1032                return false;
1033
1034        return true;
1035}
1036
1037/**
1038 *      bpf_check_classic - verify socket filter code
1039 *      @filter: filter to verify
1040 *      @flen: length of filter
1041 *
1042 * Check the user's filter code. If we let some ugly
1043 * filter code slip through kaboom! The filter must contain
1044 * no references or jumps that are out of range, no illegal
1045 * instructions, and must end with a RET instruction.
1046 *
1047 * All jumps are forward as they are not signed.
1048 *
1049 * Returns 0 if the rule set is legal or -EINVAL if not.
1050 */
1051static int bpf_check_classic(const struct sock_filter *filter,
1052                             unsigned int flen)
1053{
1054        bool anc_found;
1055        int pc;
1056
1057        /* Check the filter code now */
1058        for (pc = 0; pc < flen; pc++) {
1059                const struct sock_filter *ftest = &filter[pc];
1060
1061                /* May we actually operate on this code? */
1062                if (!chk_code_allowed(ftest->code))
1063                        return -EINVAL;
1064
1065                /* Some instructions need special checks */
1066                switch (ftest->code) {
1067                case BPF_ALU | BPF_DIV | BPF_K:
1068                case BPF_ALU | BPF_MOD | BPF_K:
1069                        /* Check for division by zero */
1070                        if (ftest->k == 0)
1071                                return -EINVAL;
1072                        break;
1073                case BPF_ALU | BPF_LSH | BPF_K:
1074                case BPF_ALU | BPF_RSH | BPF_K:
1075                        if (ftest->k >= 32)
1076                                return -EINVAL;
1077                        break;
1078                case BPF_LD | BPF_MEM:
1079                case BPF_LDX | BPF_MEM:
1080                case BPF_ST:
1081                case BPF_STX:
1082                        /* Check for invalid memory addresses */
1083                        if (ftest->k >= BPF_MEMWORDS)
1084                                return -EINVAL;
1085                        break;
1086                case BPF_JMP | BPF_JA:
1087                        /* Note, the large ftest->k might cause loops.
1088                         * Compare this with conditional jumps below,
1089                         * where offsets are limited. --ANK (981016)
1090                         */
1091                        if (ftest->k >= (unsigned int)(flen - pc - 1))
1092                                return -EINVAL;
1093                        break;
1094                case BPF_JMP | BPF_JEQ | BPF_K:
1095                case BPF_JMP | BPF_JEQ | BPF_X:
1096                case BPF_JMP | BPF_JGE | BPF_K:
1097                case BPF_JMP | BPF_JGE | BPF_X:
1098                case BPF_JMP | BPF_JGT | BPF_K:
1099                case BPF_JMP | BPF_JGT | BPF_X:
1100                case BPF_JMP | BPF_JSET | BPF_K:
1101                case BPF_JMP | BPF_JSET | BPF_X:
1102                        /* Both conditionals must be safe */
1103                        if (pc + ftest->jt + 1 >= flen ||
1104                            pc + ftest->jf + 1 >= flen)
1105                                return -EINVAL;
1106                        break;
1107                case BPF_LD | BPF_W | BPF_ABS:
1108                case BPF_LD | BPF_H | BPF_ABS:
1109                case BPF_LD | BPF_B | BPF_ABS:
1110                        anc_found = false;
1111                        if (bpf_anc_helper(ftest) & BPF_ANC)
1112                                anc_found = true;
1113                        /* Ancillary operation unknown or unsupported */
1114                        if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115                                return -EINVAL;
1116                }
1117        }
1118
1119        /* Last instruction must be a RET code */
1120        switch (filter[flen - 1].code) {
1121        case BPF_RET | BPF_K:
1122        case BPF_RET | BPF_A:
1123                return check_load_and_stores(filter, flen);
1124        }
1125
1126        return -EINVAL;
1127}
1128
1129static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130                                      const struct sock_fprog *fprog)
1131{
1132        unsigned int fsize = bpf_classic_proglen(fprog);
1133        struct sock_fprog_kern *fkprog;
1134
1135        fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136        if (!fp->orig_prog)
1137                return -ENOMEM;
1138
1139        fkprog = fp->orig_prog;
1140        fkprog->len = fprog->len;
1141
1142        fkprog->filter = kmemdup(fp->insns, fsize,
1143                                 GFP_KERNEL | __GFP_NOWARN);
1144        if (!fkprog->filter) {
1145                kfree(fp->orig_prog);
1146                return -ENOMEM;
1147        }
1148
1149        return 0;
1150}
1151
1152static void bpf_release_orig_filter(struct bpf_prog *fp)
1153{
1154        struct sock_fprog_kern *fprog = fp->orig_prog;
1155
1156        if (fprog) {
1157                kfree(fprog->filter);
1158                kfree(fprog);
1159        }
1160}
1161
1162static void __bpf_prog_release(struct bpf_prog *prog)
1163{
1164        if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165                bpf_prog_put(prog);
1166        } else {
1167                bpf_release_orig_filter(prog);
1168                bpf_prog_free(prog);
1169        }
1170}
1171
1172static void __sk_filter_release(struct sk_filter *fp)
1173{
1174        __bpf_prog_release(fp->prog);
1175        kfree(fp);
1176}
1177
1178/**
1179 *      sk_filter_release_rcu - Release a socket filter by rcu_head
1180 *      @rcu: rcu_head that contains the sk_filter to free
1181 */
1182static void sk_filter_release_rcu(struct rcu_head *rcu)
1183{
1184        struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185
1186        __sk_filter_release(fp);
1187}
1188
1189/**
1190 *      sk_filter_release - release a socket filter
1191 *      @fp: filter to remove
1192 *
1193 *      Remove a filter from a socket and release its resources.
1194 */
1195static void sk_filter_release(struct sk_filter *fp)
1196{
1197        if (refcount_dec_and_test(&fp->refcnt))
1198                call_rcu(&fp->rcu, sk_filter_release_rcu);
1199}
1200
1201void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202{
1203        u32 filter_size = bpf_prog_size(fp->prog->len);
1204
1205        atomic_sub(filter_size, &sk->sk_omem_alloc);
1206        sk_filter_release(fp);
1207}
1208
1209/* try to charge the socket memory if there is space available
1210 * return true on success
1211 */
1212static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213{
1214        u32 filter_size = bpf_prog_size(fp->prog->len);
1215
1216        /* same check as in sock_kmalloc() */
1217        if (filter_size <= sysctl_optmem_max &&
1218            atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219                atomic_add(filter_size, &sk->sk_omem_alloc);
1220                return true;
1221        }
1222        return false;
1223}
1224
1225bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226{
1227        if (!refcount_inc_not_zero(&fp->refcnt))
1228                return false;
1229
1230        if (!__sk_filter_charge(sk, fp)) {
1231                sk_filter_release(fp);
1232                return false;
1233        }
1234        return true;
1235}
1236
1237static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238{
1239        struct sock_filter *old_prog;
1240        struct bpf_prog *old_fp;
1241        int err, new_len, old_len = fp->len;
1242        bool seen_ld_abs = false;
1243
1244        /* We are free to overwrite insns et al right here as it
1245         * won't be used at this point in time anymore internally
1246         * after the migration to the internal BPF instruction
1247         * representation.
1248         */
1249        BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250                     sizeof(struct bpf_insn));
1251
1252        /* Conversion cannot happen on overlapping memory areas,
1253         * so we need to keep the user BPF around until the 2nd
1254         * pass. At this time, the user BPF is stored in fp->insns.
1255         */
1256        old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257                           GFP_KERNEL | __GFP_NOWARN);
1258        if (!old_prog) {
1259                err = -ENOMEM;
1260                goto out_err;
1261        }
1262
1263        /* 1st pass: calculate the new program length. */
1264        err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265                                 &seen_ld_abs);
1266        if (err)
1267                goto out_err_free;
1268
1269        /* Expand fp for appending the new filter representation. */
1270        old_fp = fp;
1271        fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272        if (!fp) {
1273                /* The old_fp is still around in case we couldn't
1274                 * allocate new memory, so uncharge on that one.
1275                 */
1276                fp = old_fp;
1277                err = -ENOMEM;
1278                goto out_err_free;
1279        }
1280
1281        fp->len = new_len;
1282
1283        /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284        err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285                                 &seen_ld_abs);
1286        if (err)
1287                /* 2nd bpf_convert_filter() can fail only if it fails
1288                 * to allocate memory, remapping must succeed. Note,
1289                 * that at this time old_fp has already been released
1290                 * by krealloc().
1291                 */
1292                goto out_err_free;
1293
1294        fp = bpf_prog_select_runtime(fp, &err);
1295        if (err)
1296                goto out_err_free;
1297
1298        kfree(old_prog);
1299        return fp;
1300
1301out_err_free:
1302        kfree(old_prog);
1303out_err:
1304        __bpf_prog_release(fp);
1305        return ERR_PTR(err);
1306}
1307
1308static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309                                           bpf_aux_classic_check_t trans)
1310{
1311        int err;
1312
1313        fp->bpf_func = NULL;
1314        fp->jited = 0;
1315
1316        err = bpf_check_classic(fp->insns, fp->len);
1317        if (err) {
1318                __bpf_prog_release(fp);
1319                return ERR_PTR(err);
1320        }
1321
1322        /* There might be additional checks and transformations
1323         * needed on classic filters, f.e. in case of seccomp.
1324         */
1325        if (trans) {
1326                err = trans(fp->insns, fp->len);
1327                if (err) {
1328                        __bpf_prog_release(fp);
1329                        return ERR_PTR(err);
1330                }
1331        }
1332
1333        /* Probe if we can JIT compile the filter and if so, do
1334         * the compilation of the filter.
1335         */
1336        bpf_jit_compile(fp);
1337
1338        /* JIT compiler couldn't process this filter, so do the
1339         * internal BPF translation for the optimized interpreter.
1340         */
1341        if (!fp->jited)
1342                fp = bpf_migrate_filter(fp);
1343
1344        return fp;
1345}
1346
1347/**
1348 *      bpf_prog_create - create an unattached filter
1349 *      @pfp: the unattached filter that is created
1350 *      @fprog: the filter program
1351 *
1352 * Create a filter independent of any socket. We first run some
1353 * sanity checks on it to make sure it does not explode on us later.
1354 * If an error occurs or there is insufficient memory for the filter
1355 * a negative errno code is returned. On success the return is zero.
1356 */
1357int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358{
1359        unsigned int fsize = bpf_classic_proglen(fprog);
1360        struct bpf_prog *fp;
1361
1362        /* Make sure new filter is there and in the right amounts. */
1363        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364                return -EINVAL;
1365
1366        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367        if (!fp)
1368                return -ENOMEM;
1369
1370        memcpy(fp->insns, fprog->filter, fsize);
1371
1372        fp->len = fprog->len;
1373        /* Since unattached filters are not copied back to user
1374         * space through sk_get_filter(), we do not need to hold
1375         * a copy here, and can spare us the work.
1376         */
1377        fp->orig_prog = NULL;
1378
1379        /* bpf_prepare_filter() already takes care of freeing
1380         * memory in case something goes wrong.
1381         */
1382        fp = bpf_prepare_filter(fp, NULL);
1383        if (IS_ERR(fp))
1384                return PTR_ERR(fp);
1385
1386        *pfp = fp;
1387        return 0;
1388}
1389EXPORT_SYMBOL_GPL(bpf_prog_create);
1390
1391/**
1392 *      bpf_prog_create_from_user - create an unattached filter from user buffer
1393 *      @pfp: the unattached filter that is created
1394 *      @fprog: the filter program
1395 *      @trans: post-classic verifier transformation handler
1396 *      @save_orig: save classic BPF program
1397 *
1398 * This function effectively does the same as bpf_prog_create(), only
1399 * that it builds up its insns buffer from user space provided buffer.
1400 * It also allows for passing a bpf_aux_classic_check_t handler.
1401 */
1402int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403                              bpf_aux_classic_check_t trans, bool save_orig)
1404{
1405        unsigned int fsize = bpf_classic_proglen(fprog);
1406        struct bpf_prog *fp;
1407        int err;
1408
1409        /* Make sure new filter is there and in the right amounts. */
1410        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411                return -EINVAL;
1412
1413        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414        if (!fp)
1415                return -ENOMEM;
1416
1417        if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418                __bpf_prog_free(fp);
1419                return -EFAULT;
1420        }
1421
1422        fp->len = fprog->len;
1423        fp->orig_prog = NULL;
1424
1425        if (save_orig) {
1426                err = bpf_prog_store_orig_filter(fp, fprog);
1427                if (err) {
1428                        __bpf_prog_free(fp);
1429                        return -ENOMEM;
1430                }
1431        }
1432
1433        /* bpf_prepare_filter() already takes care of freeing
1434         * memory in case something goes wrong.
1435         */
1436        fp = bpf_prepare_filter(fp, trans);
1437        if (IS_ERR(fp))
1438                return PTR_ERR(fp);
1439
1440        *pfp = fp;
1441        return 0;
1442}
1443EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444
1445void bpf_prog_destroy(struct bpf_prog *fp)
1446{
1447        __bpf_prog_release(fp);
1448}
1449EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450
1451static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452{
1453        struct sk_filter *fp, *old_fp;
1454
1455        fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456        if (!fp)
1457                return -ENOMEM;
1458
1459        fp->prog = prog;
1460
1461        if (!__sk_filter_charge(sk, fp)) {
1462                kfree(fp);
1463                return -ENOMEM;
1464        }
1465        refcount_set(&fp->refcnt, 1);
1466
1467        old_fp = rcu_dereference_protected(sk->sk_filter,
1468                                           lockdep_sock_is_held(sk));
1469        rcu_assign_pointer(sk->sk_filter, fp);
1470
1471        if (old_fp)
1472                sk_filter_uncharge(sk, old_fp);
1473
1474        return 0;
1475}
1476
1477static
1478struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479{
1480        unsigned int fsize = bpf_classic_proglen(fprog);
1481        struct bpf_prog *prog;
1482        int err;
1483
1484        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485                return ERR_PTR(-EPERM);
1486
1487        /* Make sure new filter is there and in the right amounts. */
1488        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489                return ERR_PTR(-EINVAL);
1490
1491        prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492        if (!prog)
1493                return ERR_PTR(-ENOMEM);
1494
1495        if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496                __bpf_prog_free(prog);
1497                return ERR_PTR(-EFAULT);
1498        }
1499
1500        prog->len = fprog->len;
1501
1502        err = bpf_prog_store_orig_filter(prog, fprog);
1503        if (err) {
1504                __bpf_prog_free(prog);
1505                return ERR_PTR(-ENOMEM);
1506        }
1507
1508        /* bpf_prepare_filter() already takes care of freeing
1509         * memory in case something goes wrong.
1510         */
1511        return bpf_prepare_filter(prog, NULL);
1512}
1513
1514/**
1515 *      sk_attach_filter - attach a socket filter
1516 *      @fprog: the filter program
1517 *      @sk: the socket to use
1518 *
1519 * Attach the user's filter code. We first run some sanity checks on
1520 * it to make sure it does not explode on us later. If an error
1521 * occurs or there is insufficient memory for the filter a negative
1522 * errno code is returned. On success the return is zero.
1523 */
1524int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525{
1526        struct bpf_prog *prog = __get_filter(fprog, sk);
1527        int err;
1528
1529        if (IS_ERR(prog))
1530                return PTR_ERR(prog);
1531
1532        err = __sk_attach_prog(prog, sk);
1533        if (err < 0) {
1534                __bpf_prog_release(prog);
1535                return err;
1536        }
1537
1538        return 0;
1539}
1540EXPORT_SYMBOL_GPL(sk_attach_filter);
1541
1542int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543{
1544        struct bpf_prog *prog = __get_filter(fprog, sk);
1545        int err;
1546
1547        if (IS_ERR(prog))
1548                return PTR_ERR(prog);
1549
1550        if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551                err = -ENOMEM;
1552        else
1553                err = reuseport_attach_prog(sk, prog);
1554
1555        if (err)
1556                __bpf_prog_release(prog);
1557
1558        return err;
1559}
1560
1561static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562{
1563        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564                return ERR_PTR(-EPERM);
1565
1566        return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567}
1568
1569int sk_attach_bpf(u32 ufd, struct sock *sk)
1570{
1571        struct bpf_prog *prog = __get_bpf(ufd, sk);
1572        int err;
1573
1574        if (IS_ERR(prog))
1575                return PTR_ERR(prog);
1576
1577        err = __sk_attach_prog(prog, sk);
1578        if (err < 0) {
1579                bpf_prog_put(prog);
1580                return err;
1581        }
1582
1583        return 0;
1584}
1585
1586int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587{
1588        struct bpf_prog *prog;
1589        int err;
1590
1591        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592                return -EPERM;
1593
1594        prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595        if (PTR_ERR(prog) == -EINVAL)
1596                prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597        if (IS_ERR(prog))
1598                return PTR_ERR(prog);
1599
1600        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601                /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602                 * bpf prog (e.g. sockmap).  It depends on the
1603                 * limitation imposed by bpf_prog_load().
1604                 * Hence, sysctl_optmem_max is not checked.
1605                 */
1606                if ((sk->sk_type != SOCK_STREAM &&
1607                     sk->sk_type != SOCK_DGRAM) ||
1608                    (sk->sk_protocol != IPPROTO_UDP &&
1609                     sk->sk_protocol != IPPROTO_TCP) ||
1610                    (sk->sk_family != AF_INET &&
1611                     sk->sk_family != AF_INET6)) {
1612                        err = -ENOTSUPP;
1613                        goto err_prog_put;
1614                }
1615        } else {
1616                /* BPF_PROG_TYPE_SOCKET_FILTER */
1617                if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618                        err = -ENOMEM;
1619                        goto err_prog_put;
1620                }
1621        }
1622
1623        err = reuseport_attach_prog(sk, prog);
1624err_prog_put:
1625        if (err)
1626                bpf_prog_put(prog);
1627
1628        return err;
1629}
1630
1631void sk_reuseport_prog_free(struct bpf_prog *prog)
1632{
1633        if (!prog)
1634                return;
1635
1636        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637                bpf_prog_put(prog);
1638        else
1639                bpf_prog_destroy(prog);
1640}
1641
1642struct bpf_scratchpad {
1643        union {
1644                __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645                u8     buff[MAX_BPF_STACK];
1646        };
1647};
1648
1649static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650
1651static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652                                          unsigned int write_len)
1653{
1654        return skb_ensure_writable(skb, write_len);
1655}
1656
1657static inline int bpf_try_make_writable(struct sk_buff *skb,
1658                                        unsigned int write_len)
1659{
1660        int err = __bpf_try_make_writable(skb, write_len);
1661
1662        bpf_compute_data_pointers(skb);
1663        return err;
1664}
1665
1666static int bpf_try_make_head_writable(struct sk_buff *skb)
1667{
1668        return bpf_try_make_writable(skb, skb_headlen(skb));
1669}
1670
1671static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672{
1673        if (skb_at_tc_ingress(skb))
1674                skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675}
1676
1677static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678{
1679        if (skb_at_tc_ingress(skb))
1680                skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681}
1682
1683BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684           const void *, from, u32, len, u64, flags)
1685{
1686        void *ptr;
1687
1688        if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689                return -EINVAL;
1690        if (unlikely(offset > 0xffff))
1691                return -EFAULT;
1692        if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693                return -EFAULT;
1694
1695        ptr = skb->data + offset;
1696        if (flags & BPF_F_RECOMPUTE_CSUM)
1697                __skb_postpull_rcsum(skb, ptr, len, offset);
1698
1699        memcpy(ptr, from, len);
1700
1701        if (flags & BPF_F_RECOMPUTE_CSUM)
1702                __skb_postpush_rcsum(skb, ptr, len, offset);
1703        if (flags & BPF_F_INVALIDATE_HASH)
1704                skb_clear_hash(skb);
1705
1706        return 0;
1707}
1708
1709static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710        .func           = bpf_skb_store_bytes,
1711        .gpl_only       = false,
1712        .ret_type       = RET_INTEGER,
1713        .arg1_type      = ARG_PTR_TO_CTX,
1714        .arg2_type      = ARG_ANYTHING,
1715        .arg3_type      = ARG_PTR_TO_MEM,
1716        .arg4_type      = ARG_CONST_SIZE,
1717        .arg5_type      = ARG_ANYTHING,
1718};
1719
1720BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721           void *, to, u32, len)
1722{
1723        void *ptr;
1724
1725        if (unlikely(offset > 0xffff))
1726                goto err_clear;
1727
1728        ptr = skb_header_pointer(skb, offset, len, to);
1729        if (unlikely(!ptr))
1730                goto err_clear;
1731        if (ptr != to)
1732                memcpy(to, ptr, len);
1733
1734        return 0;
1735err_clear:
1736        memset(to, 0, len);
1737        return -EFAULT;
1738}
1739
1740static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741        .func           = bpf_skb_load_bytes,
1742        .gpl_only       = false,
1743        .ret_type       = RET_INTEGER,
1744        .arg1_type      = ARG_PTR_TO_CTX,
1745        .arg2_type      = ARG_ANYTHING,
1746        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1747        .arg4_type      = ARG_CONST_SIZE,
1748};
1749
1750BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751           const struct bpf_flow_dissector *, ctx, u32, offset,
1752           void *, to, u32, len)
1753{
1754        void *ptr;
1755
1756        if (unlikely(offset > 0xffff))
1757                goto err_clear;
1758
1759        if (unlikely(!ctx->skb))
1760                goto err_clear;
1761
1762        ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763        if (unlikely(!ptr))
1764                goto err_clear;
1765        if (ptr != to)
1766                memcpy(to, ptr, len);
1767
1768        return 0;
1769err_clear:
1770        memset(to, 0, len);
1771        return -EFAULT;
1772}
1773
1774static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775        .func           = bpf_flow_dissector_load_bytes,
1776        .gpl_only       = false,
1777        .ret_type       = RET_INTEGER,
1778        .arg1_type      = ARG_PTR_TO_CTX,
1779        .arg2_type      = ARG_ANYTHING,
1780        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1781        .arg4_type      = ARG_CONST_SIZE,
1782};
1783
1784BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785           u32, offset, void *, to, u32, len, u32, start_header)
1786{
1787        u8 *end = skb_tail_pointer(skb);
1788        u8 *start, *ptr;
1789
1790        if (unlikely(offset > 0xffff))
1791                goto err_clear;
1792
1793        switch (start_header) {
1794        case BPF_HDR_START_MAC:
1795                if (unlikely(!skb_mac_header_was_set(skb)))
1796                        goto err_clear;
1797                start = skb_mac_header(skb);
1798                break;
1799        case BPF_HDR_START_NET:
1800                start = skb_network_header(skb);
1801                break;
1802        default:
1803                goto err_clear;
1804        }
1805
1806        ptr = start + offset;
1807
1808        if (likely(ptr + len <= end)) {
1809                memcpy(to, ptr, len);
1810                return 0;
1811        }
1812
1813err_clear:
1814        memset(to, 0, len);
1815        return -EFAULT;
1816}
1817
1818static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819        .func           = bpf_skb_load_bytes_relative,
1820        .gpl_only       = false,
1821        .ret_type       = RET_INTEGER,
1822        .arg1_type      = ARG_PTR_TO_CTX,
1823        .arg2_type      = ARG_ANYTHING,
1824        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1825        .arg4_type      = ARG_CONST_SIZE,
1826        .arg5_type      = ARG_ANYTHING,
1827};
1828
1829BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830{
1831        /* Idea is the following: should the needed direct read/write
1832         * test fail during runtime, we can pull in more data and redo
1833         * again, since implicitly, we invalidate previous checks here.
1834         *
1835         * Or, since we know how much we need to make read/writeable,
1836         * this can be done once at the program beginning for direct
1837         * access case. By this we overcome limitations of only current
1838         * headroom being accessible.
1839         */
1840        return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841}
1842
1843static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844        .func           = bpf_skb_pull_data,
1845        .gpl_only       = false,
1846        .ret_type       = RET_INTEGER,
1847        .arg1_type      = ARG_PTR_TO_CTX,
1848        .arg2_type      = ARG_ANYTHING,
1849};
1850
1851BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852{
1853        return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854}
1855
1856static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857        .func           = bpf_sk_fullsock,
1858        .gpl_only       = false,
1859        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1860        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1861};
1862
1863static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864                                           unsigned int write_len)
1865{
1866        return __bpf_try_make_writable(skb, write_len);
1867}
1868
1869BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1870{
1871        /* Idea is the following: should the needed direct read/write
1872         * test fail during runtime, we can pull in more data and redo
1873         * again, since implicitly, we invalidate previous checks here.
1874         *
1875         * Or, since we know how much we need to make read/writeable,
1876         * this can be done once at the program beginning for direct
1877         * access case. By this we overcome limitations of only current
1878         * headroom being accessible.
1879         */
1880        return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1881}
1882
1883static const struct bpf_func_proto sk_skb_pull_data_proto = {
1884        .func           = sk_skb_pull_data,
1885        .gpl_only       = false,
1886        .ret_type       = RET_INTEGER,
1887        .arg1_type      = ARG_PTR_TO_CTX,
1888        .arg2_type      = ARG_ANYTHING,
1889};
1890
1891BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1892           u64, from, u64, to, u64, flags)
1893{
1894        __sum16 *ptr;
1895
1896        if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1897                return -EINVAL;
1898        if (unlikely(offset > 0xffff || offset & 1))
1899                return -EFAULT;
1900        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1901                return -EFAULT;
1902
1903        ptr = (__sum16 *)(skb->data + offset);
1904        switch (flags & BPF_F_HDR_FIELD_MASK) {
1905        case 0:
1906                if (unlikely(from != 0))
1907                        return -EINVAL;
1908
1909                csum_replace_by_diff(ptr, to);
1910                break;
1911        case 2:
1912                csum_replace2(ptr, from, to);
1913                break;
1914        case 4:
1915                csum_replace4(ptr, from, to);
1916                break;
1917        default:
1918                return -EINVAL;
1919        }
1920
1921        return 0;
1922}
1923
1924static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1925        .func           = bpf_l3_csum_replace,
1926        .gpl_only       = false,
1927        .ret_type       = RET_INTEGER,
1928        .arg1_type      = ARG_PTR_TO_CTX,
1929        .arg2_type      = ARG_ANYTHING,
1930        .arg3_type      = ARG_ANYTHING,
1931        .arg4_type      = ARG_ANYTHING,
1932        .arg5_type      = ARG_ANYTHING,
1933};
1934
1935BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1936           u64, from, u64, to, u64, flags)
1937{
1938        bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1939        bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1940        bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1941        __sum16 *ptr;
1942
1943        if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1944                               BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1945                return -EINVAL;
1946        if (unlikely(offset > 0xffff || offset & 1))
1947                return -EFAULT;
1948        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1949                return -EFAULT;
1950
1951        ptr = (__sum16 *)(skb->data + offset);
1952        if (is_mmzero && !do_mforce && !*ptr)
1953                return 0;
1954
1955        switch (flags & BPF_F_HDR_FIELD_MASK) {
1956        case 0:
1957                if (unlikely(from != 0))
1958                        return -EINVAL;
1959
1960                inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1961                break;
1962        case 2:
1963                inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1964                break;
1965        case 4:
1966                inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1967                break;
1968        default:
1969                return -EINVAL;
1970        }
1971
1972        if (is_mmzero && !*ptr)
1973                *ptr = CSUM_MANGLED_0;
1974        return 0;
1975}
1976
1977static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1978        .func           = bpf_l4_csum_replace,
1979        .gpl_only       = false,
1980        .ret_type       = RET_INTEGER,
1981        .arg1_type      = ARG_PTR_TO_CTX,
1982        .arg2_type      = ARG_ANYTHING,
1983        .arg3_type      = ARG_ANYTHING,
1984        .arg4_type      = ARG_ANYTHING,
1985        .arg5_type      = ARG_ANYTHING,
1986};
1987
1988BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1989           __be32 *, to, u32, to_size, __wsum, seed)
1990{
1991        struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1992        u32 diff_size = from_size + to_size;
1993        int i, j = 0;
1994
1995        /* This is quite flexible, some examples:
1996         *
1997         * from_size == 0, to_size > 0,  seed := csum --> pushing data
1998         * from_size > 0,  to_size == 0, seed := csum --> pulling data
1999         * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2000         *
2001         * Even for diffing, from_size and to_size don't need to be equal.
2002         */
2003        if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2004                     diff_size > sizeof(sp->diff)))
2005                return -EINVAL;
2006
2007        for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2008                sp->diff[j] = ~from[i];
2009        for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2010                sp->diff[j] = to[i];
2011
2012        return csum_partial(sp->diff, diff_size, seed);
2013}
2014
2015static const struct bpf_func_proto bpf_csum_diff_proto = {
2016        .func           = bpf_csum_diff,
2017        .gpl_only       = false,
2018        .pkt_access     = true,
2019        .ret_type       = RET_INTEGER,
2020        .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2021        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2022        .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2023        .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2024        .arg5_type      = ARG_ANYTHING,
2025};
2026
2027BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2028{
2029        /* The interface is to be used in combination with bpf_csum_diff()
2030         * for direct packet writes. csum rotation for alignment as well
2031         * as emulating csum_sub() can be done from the eBPF program.
2032         */
2033        if (skb->ip_summed == CHECKSUM_COMPLETE)
2034                return (skb->csum = csum_add(skb->csum, csum));
2035
2036        return -ENOTSUPP;
2037}
2038
2039static const struct bpf_func_proto bpf_csum_update_proto = {
2040        .func           = bpf_csum_update,
2041        .gpl_only       = false,
2042        .ret_type       = RET_INTEGER,
2043        .arg1_type      = ARG_PTR_TO_CTX,
2044        .arg2_type      = ARG_ANYTHING,
2045};
2046
2047BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2048{
2049        /* The interface is to be used in combination with bpf_skb_adjust_room()
2050         * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2051         * is passed as flags, for example.
2052         */
2053        switch (level) {
2054        case BPF_CSUM_LEVEL_INC:
2055                __skb_incr_checksum_unnecessary(skb);
2056                break;
2057        case BPF_CSUM_LEVEL_DEC:
2058                __skb_decr_checksum_unnecessary(skb);
2059                break;
2060        case BPF_CSUM_LEVEL_RESET:
2061                __skb_reset_checksum_unnecessary(skb);
2062                break;
2063        case BPF_CSUM_LEVEL_QUERY:
2064                return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2065                       skb->csum_level : -EACCES;
2066        default:
2067                return -EINVAL;
2068        }
2069
2070        return 0;
2071}
2072
2073static const struct bpf_func_proto bpf_csum_level_proto = {
2074        .func           = bpf_csum_level,
2075        .gpl_only       = false,
2076        .ret_type       = RET_INTEGER,
2077        .arg1_type      = ARG_PTR_TO_CTX,
2078        .arg2_type      = ARG_ANYTHING,
2079};
2080
2081static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2082{
2083        return dev_forward_skb_nomtu(dev, skb);
2084}
2085
2086static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2087                                      struct sk_buff *skb)
2088{
2089        int ret = ____dev_forward_skb(dev, skb, false);
2090
2091        if (likely(!ret)) {
2092                skb->dev = dev;
2093                ret = netif_rx(skb);
2094        }
2095
2096        return ret;
2097}
2098
2099static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2100{
2101        int ret;
2102
2103        if (dev_xmit_recursion()) {
2104                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2105                kfree_skb(skb);
2106                return -ENETDOWN;
2107        }
2108
2109        skb->dev = dev;
2110        skb->tstamp = 0;
2111
2112        dev_xmit_recursion_inc();
2113        ret = dev_queue_xmit(skb);
2114        dev_xmit_recursion_dec();
2115
2116        return ret;
2117}
2118
2119static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2120                                 u32 flags)
2121{
2122        unsigned int mlen = skb_network_offset(skb);
2123
2124        if (mlen) {
2125                __skb_pull(skb, mlen);
2126
2127                /* At ingress, the mac header has already been pulled once.
2128                 * At egress, skb_pospull_rcsum has to be done in case that
2129                 * the skb is originated from ingress (i.e. a forwarded skb)
2130                 * to ensure that rcsum starts at net header.
2131                 */
2132                if (!skb_at_tc_ingress(skb))
2133                        skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2134        }
2135        skb_pop_mac_header(skb);
2136        skb_reset_mac_len(skb);
2137        return flags & BPF_F_INGRESS ?
2138               __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2139}
2140
2141static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2142                                 u32 flags)
2143{
2144        /* Verify that a link layer header is carried */
2145        if (unlikely(skb->mac_header >= skb->network_header)) {
2146                kfree_skb(skb);
2147                return -ERANGE;
2148        }
2149
2150        bpf_push_mac_rcsum(skb);
2151        return flags & BPF_F_INGRESS ?
2152               __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2153}
2154
2155static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2156                          u32 flags)
2157{
2158        if (dev_is_mac_header_xmit(dev))
2159                return __bpf_redirect_common(skb, dev, flags);
2160        else
2161                return __bpf_redirect_no_mac(skb, dev, flags);
2162}
2163
2164#if IS_ENABLED(CONFIG_IPV6)
2165static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2166                            struct net_device *dev, struct bpf_nh_params *nh)
2167{
2168        u32 hh_len = LL_RESERVED_SPACE(dev);
2169        const struct in6_addr *nexthop;
2170        struct dst_entry *dst = NULL;
2171        struct neighbour *neigh;
2172
2173        if (dev_xmit_recursion()) {
2174                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2175                goto out_drop;
2176        }
2177
2178        skb->dev = dev;
2179        skb->tstamp = 0;
2180
2181        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2182                struct sk_buff *skb2;
2183
2184                skb2 = skb_realloc_headroom(skb, hh_len);
2185                if (unlikely(!skb2)) {
2186                        kfree_skb(skb);
2187                        return -ENOMEM;
2188                }
2189                if (skb->sk)
2190                        skb_set_owner_w(skb2, skb->sk);
2191                consume_skb(skb);
2192                skb = skb2;
2193        }
2194
2195        rcu_read_lock_bh();
2196        if (!nh) {
2197                dst = skb_dst(skb);
2198                nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2199                                      &ipv6_hdr(skb)->daddr);
2200        } else {
2201                nexthop = &nh->ipv6_nh;
2202        }
2203        neigh = ip_neigh_gw6(dev, nexthop);
2204        if (likely(!IS_ERR(neigh))) {
2205                int ret;
2206
2207                sock_confirm_neigh(skb, neigh);
2208                dev_xmit_recursion_inc();
2209                ret = neigh_output(neigh, skb, false);
2210                dev_xmit_recursion_dec();
2211                rcu_read_unlock_bh();
2212                return ret;
2213        }
2214        rcu_read_unlock_bh();
2215        if (dst)
2216                IP6_INC_STATS(dev_net(dst->dev),
2217                              ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2218out_drop:
2219        kfree_skb(skb);
2220        return -ENETDOWN;
2221}
2222
2223static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2224                                   struct bpf_nh_params *nh)
2225{
2226        const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2227        struct net *net = dev_net(dev);
2228        int err, ret = NET_XMIT_DROP;
2229
2230        if (!nh) {
2231                struct dst_entry *dst;
2232                struct flowi6 fl6 = {
2233                        .flowi6_flags = FLOWI_FLAG_ANYSRC,
2234                        .flowi6_mark  = skb->mark,
2235                        .flowlabel    = ip6_flowinfo(ip6h),
2236                        .flowi6_oif   = dev->ifindex,
2237                        .flowi6_proto = ip6h->nexthdr,
2238                        .daddr        = ip6h->daddr,
2239                        .saddr        = ip6h->saddr,
2240                };
2241
2242                dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2243                if (IS_ERR(dst))
2244                        goto out_drop;
2245
2246                skb_dst_set(skb, dst);
2247        } else if (nh->nh_family != AF_INET6) {
2248                goto out_drop;
2249        }
2250
2251        err = bpf_out_neigh_v6(net, skb, dev, nh);
2252        if (unlikely(net_xmit_eval(err)))
2253                dev->stats.tx_errors++;
2254        else
2255                ret = NET_XMIT_SUCCESS;
2256        goto out_xmit;
2257out_drop:
2258        dev->stats.tx_errors++;
2259        kfree_skb(skb);
2260out_xmit:
2261        return ret;
2262}
2263#else
2264static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2265                                   struct bpf_nh_params *nh)
2266{
2267        kfree_skb(skb);
2268        return NET_XMIT_DROP;
2269}
2270#endif /* CONFIG_IPV6 */
2271
2272#if IS_ENABLED(CONFIG_INET)
2273static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2274                            struct net_device *dev, struct bpf_nh_params *nh)
2275{
2276        u32 hh_len = LL_RESERVED_SPACE(dev);
2277        struct neighbour *neigh;
2278        bool is_v6gw = false;
2279
2280        if (dev_xmit_recursion()) {
2281                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2282                goto out_drop;
2283        }
2284
2285        skb->dev = dev;
2286        skb->tstamp = 0;
2287
2288        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2289                struct sk_buff *skb2;
2290
2291                skb2 = skb_realloc_headroom(skb, hh_len);
2292                if (unlikely(!skb2)) {
2293                        kfree_skb(skb);
2294                        return -ENOMEM;
2295                }
2296                if (skb->sk)
2297                        skb_set_owner_w(skb2, skb->sk);
2298                consume_skb(skb);
2299                skb = skb2;
2300        }
2301
2302        rcu_read_lock_bh();
2303        if (!nh) {
2304                struct dst_entry *dst = skb_dst(skb);
2305                struct rtable *rt = container_of(dst, struct rtable, dst);
2306
2307                neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2308        } else if (nh->nh_family == AF_INET6) {
2309                neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2310                is_v6gw = true;
2311        } else if (nh->nh_family == AF_INET) {
2312                neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2313        } else {
2314                rcu_read_unlock_bh();
2315                goto out_drop;
2316        }
2317
2318        if (likely(!IS_ERR(neigh))) {
2319                int ret;
2320
2321                sock_confirm_neigh(skb, neigh);
2322                dev_xmit_recursion_inc();
2323                ret = neigh_output(neigh, skb, is_v6gw);
2324                dev_xmit_recursion_dec();
2325                rcu_read_unlock_bh();
2326                return ret;
2327        }
2328        rcu_read_unlock_bh();
2329out_drop:
2330        kfree_skb(skb);
2331        return -ENETDOWN;
2332}
2333
2334static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2335                                   struct bpf_nh_params *nh)
2336{
2337        const struct iphdr *ip4h = ip_hdr(skb);
2338        struct net *net = dev_net(dev);
2339        int err, ret = NET_XMIT_DROP;
2340
2341        if (!nh) {
2342                struct flowi4 fl4 = {
2343                        .flowi4_flags = FLOWI_FLAG_ANYSRC,
2344                        .flowi4_mark  = skb->mark,
2345                        .flowi4_tos   = RT_TOS(ip4h->tos),
2346                        .flowi4_oif   = dev->ifindex,
2347                        .flowi4_proto = ip4h->protocol,
2348                        .daddr        = ip4h->daddr,
2349                        .saddr        = ip4h->saddr,
2350                };
2351                struct rtable *rt;
2352
2353                rt = ip_route_output_flow(net, &fl4, NULL);
2354                if (IS_ERR(rt))
2355                        goto out_drop;
2356                if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2357                        ip_rt_put(rt);
2358                        goto out_drop;
2359                }
2360
2361                skb_dst_set(skb, &rt->dst);
2362        }
2363
2364        err = bpf_out_neigh_v4(net, skb, dev, nh);
2365        if (unlikely(net_xmit_eval(err)))
2366                dev->stats.tx_errors++;
2367        else
2368                ret = NET_XMIT_SUCCESS;
2369        goto out_xmit;
2370out_drop:
2371        dev->stats.tx_errors++;
2372        kfree_skb(skb);
2373out_xmit:
2374        return ret;
2375}
2376#else
2377static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2378                                   struct bpf_nh_params *nh)
2379{
2380        kfree_skb(skb);
2381        return NET_XMIT_DROP;
2382}
2383#endif /* CONFIG_INET */
2384
2385static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2386                                struct bpf_nh_params *nh)
2387{
2388        struct ethhdr *ethh = eth_hdr(skb);
2389
2390        if (unlikely(skb->mac_header >= skb->network_header))
2391                goto out;
2392        bpf_push_mac_rcsum(skb);
2393        if (is_multicast_ether_addr(ethh->h_dest))
2394                goto out;
2395
2396        skb_pull(skb, sizeof(*ethh));
2397        skb_unset_mac_header(skb);
2398        skb_reset_network_header(skb);
2399
2400        if (skb->protocol == htons(ETH_P_IP))
2401                return __bpf_redirect_neigh_v4(skb, dev, nh);
2402        else if (skb->protocol == htons(ETH_P_IPV6))
2403                return __bpf_redirect_neigh_v6(skb, dev, nh);
2404out:
2405        kfree_skb(skb);
2406        return -ENOTSUPP;
2407}
2408
2409/* Internal, non-exposed redirect flags. */
2410enum {
2411        BPF_F_NEIGH     = (1ULL << 1),
2412        BPF_F_PEER      = (1ULL << 2),
2413        BPF_F_NEXTHOP   = (1ULL << 3),
2414#define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2415};
2416
2417BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2418{
2419        struct net_device *dev;
2420        struct sk_buff *clone;
2421        int ret;
2422
2423        if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2424                return -EINVAL;
2425
2426        dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2427        if (unlikely(!dev))
2428                return -EINVAL;
2429
2430        clone = skb_clone(skb, GFP_ATOMIC);
2431        if (unlikely(!clone))
2432                return -ENOMEM;
2433
2434        /* For direct write, we need to keep the invariant that the skbs
2435         * we're dealing with need to be uncloned. Should uncloning fail
2436         * here, we need to free the just generated clone to unclone once
2437         * again.
2438         */
2439        ret = bpf_try_make_head_writable(skb);
2440        if (unlikely(ret)) {
2441                kfree_skb(clone);
2442                return -ENOMEM;
2443        }
2444
2445        return __bpf_redirect(clone, dev, flags);
2446}
2447
2448static const struct bpf_func_proto bpf_clone_redirect_proto = {
2449        .func           = bpf_clone_redirect,
2450        .gpl_only       = false,
2451        .ret_type       = RET_INTEGER,
2452        .arg1_type      = ARG_PTR_TO_CTX,
2453        .arg2_type      = ARG_ANYTHING,
2454        .arg3_type      = ARG_ANYTHING,
2455};
2456
2457DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2458EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2459
2460int skb_do_redirect(struct sk_buff *skb)
2461{
2462        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2463        struct net *net = dev_net(skb->dev);
2464        struct net_device *dev;
2465        u32 flags = ri->flags;
2466
2467        dev = dev_get_by_index_rcu(net, ri->tgt_index);
2468        ri->tgt_index = 0;
2469        ri->flags = 0;
2470        if (unlikely(!dev))
2471                goto out_drop;
2472        if (flags & BPF_F_PEER) {
2473                const struct net_device_ops *ops = dev->netdev_ops;
2474
2475                if (unlikely(!ops->ndo_get_peer_dev ||
2476                             !skb_at_tc_ingress(skb)))
2477                        goto out_drop;
2478                dev = ops->ndo_get_peer_dev(dev);
2479                if (unlikely(!dev ||
2480                             !(dev->flags & IFF_UP) ||
2481                             net_eq(net, dev_net(dev))))
2482                        goto out_drop;
2483                skb->dev = dev;
2484                return -EAGAIN;
2485        }
2486        return flags & BPF_F_NEIGH ?
2487               __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2488                                    &ri->nh : NULL) :
2489               __bpf_redirect(skb, dev, flags);
2490out_drop:
2491        kfree_skb(skb);
2492        return -EINVAL;
2493}
2494
2495BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2496{
2497        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2498
2499        if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2500                return TC_ACT_SHOT;
2501
2502        ri->flags = flags;
2503        ri->tgt_index = ifindex;
2504
2505        return TC_ACT_REDIRECT;
2506}
2507
2508static const struct bpf_func_proto bpf_redirect_proto = {
2509        .func           = bpf_redirect,
2510        .gpl_only       = false,
2511        .ret_type       = RET_INTEGER,
2512        .arg1_type      = ARG_ANYTHING,
2513        .arg2_type      = ARG_ANYTHING,
2514};
2515
2516BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2517{
2518        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2519
2520        if (unlikely(flags))
2521                return TC_ACT_SHOT;
2522
2523        ri->flags = BPF_F_PEER;
2524        ri->tgt_index = ifindex;
2525
2526        return TC_ACT_REDIRECT;
2527}
2528
2529static const struct bpf_func_proto bpf_redirect_peer_proto = {
2530        .func           = bpf_redirect_peer,
2531        .gpl_only       = false,
2532        .ret_type       = RET_INTEGER,
2533        .arg1_type      = ARG_ANYTHING,
2534        .arg2_type      = ARG_ANYTHING,
2535};
2536
2537BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2538           int, plen, u64, flags)
2539{
2540        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2541
2542        if (unlikely((plen && plen < sizeof(*params)) || flags))
2543                return TC_ACT_SHOT;
2544
2545        ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2546        ri->tgt_index = ifindex;
2547
2548        BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2549        if (plen)
2550                memcpy(&ri->nh, params, sizeof(ri->nh));
2551
2552        return TC_ACT_REDIRECT;
2553}
2554
2555static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2556        .func           = bpf_redirect_neigh,
2557        .gpl_only       = false,
2558        .ret_type       = RET_INTEGER,
2559        .arg1_type      = ARG_ANYTHING,
2560        .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2561        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2562        .arg4_type      = ARG_ANYTHING,
2563};
2564
2565BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2566{
2567        msg->apply_bytes = bytes;
2568        return 0;
2569}
2570
2571static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2572        .func           = bpf_msg_apply_bytes,
2573        .gpl_only       = false,
2574        .ret_type       = RET_INTEGER,
2575        .arg1_type      = ARG_PTR_TO_CTX,
2576        .arg2_type      = ARG_ANYTHING,
2577};
2578
2579BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2580{
2581        msg->cork_bytes = bytes;
2582        return 0;
2583}
2584
2585static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2586        .func           = bpf_msg_cork_bytes,
2587        .gpl_only       = false,
2588        .ret_type       = RET_INTEGER,
2589        .arg1_type      = ARG_PTR_TO_CTX,
2590        .arg2_type      = ARG_ANYTHING,
2591};
2592
2593BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2594           u32, end, u64, flags)
2595{
2596        u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2597        u32 first_sge, last_sge, i, shift, bytes_sg_total;
2598        struct scatterlist *sge;
2599        u8 *raw, *to, *from;
2600        struct page *page;
2601
2602        if (unlikely(flags || end <= start))
2603                return -EINVAL;
2604
2605        /* First find the starting scatterlist element */
2606        i = msg->sg.start;
2607        do {
2608                offset += len;
2609                len = sk_msg_elem(msg, i)->length;
2610                if (start < offset + len)
2611                        break;
2612                sk_msg_iter_var_next(i);
2613        } while (i != msg->sg.end);
2614
2615        if (unlikely(start >= offset + len))
2616                return -EINVAL;
2617
2618        first_sge = i;
2619        /* The start may point into the sg element so we need to also
2620         * account for the headroom.
2621         */
2622        bytes_sg_total = start - offset + bytes;
2623        if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2624                goto out;
2625
2626        /* At this point we need to linearize multiple scatterlist
2627         * elements or a single shared page. Either way we need to
2628         * copy into a linear buffer exclusively owned by BPF. Then
2629         * place the buffer in the scatterlist and fixup the original
2630         * entries by removing the entries now in the linear buffer
2631         * and shifting the remaining entries. For now we do not try
2632         * to copy partial entries to avoid complexity of running out
2633         * of sg_entry slots. The downside is reading a single byte
2634         * will copy the entire sg entry.
2635         */
2636        do {
2637                copy += sk_msg_elem(msg, i)->length;
2638                sk_msg_iter_var_next(i);
2639                if (bytes_sg_total <= copy)
2640                        break;
2641        } while (i != msg->sg.end);
2642        last_sge = i;
2643
2644        if (unlikely(bytes_sg_total > copy))
2645                return -EINVAL;
2646
2647        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2648                           get_order(copy));
2649        if (unlikely(!page))
2650                return -ENOMEM;
2651
2652        raw = page_address(page);
2653        i = first_sge;
2654        do {
2655                sge = sk_msg_elem(msg, i);
2656                from = sg_virt(sge);
2657                len = sge->length;
2658                to = raw + poffset;
2659
2660                memcpy(to, from, len);
2661                poffset += len;
2662                sge->length = 0;
2663                put_page(sg_page(sge));
2664
2665                sk_msg_iter_var_next(i);
2666        } while (i != last_sge);
2667
2668        sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2669
2670        /* To repair sg ring we need to shift entries. If we only
2671         * had a single entry though we can just replace it and
2672         * be done. Otherwise walk the ring and shift the entries.
2673         */
2674        WARN_ON_ONCE(last_sge == first_sge);
2675        shift = last_sge > first_sge ?
2676                last_sge - first_sge - 1 :
2677                NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2678        if (!shift)
2679                goto out;
2680
2681        i = first_sge;
2682        sk_msg_iter_var_next(i);
2683        do {
2684                u32 move_from;
2685
2686                if (i + shift >= NR_MSG_FRAG_IDS)
2687                        move_from = i + shift - NR_MSG_FRAG_IDS;
2688                else
2689                        move_from = i + shift;
2690                if (move_from == msg->sg.end)
2691                        break;
2692
2693                msg->sg.data[i] = msg->sg.data[move_from];
2694                msg->sg.data[move_from].length = 0;
2695                msg->sg.data[move_from].page_link = 0;
2696                msg->sg.data[move_from].offset = 0;
2697                sk_msg_iter_var_next(i);
2698        } while (1);
2699
2700        msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2701                      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2702                      msg->sg.end - shift;
2703out:
2704        msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2705        msg->data_end = msg->data + bytes;
2706        return 0;
2707}
2708
2709static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2710        .func           = bpf_msg_pull_data,
2711        .gpl_only       = false,
2712        .ret_type       = RET_INTEGER,
2713        .arg1_type      = ARG_PTR_TO_CTX,
2714        .arg2_type      = ARG_ANYTHING,
2715        .arg3_type      = ARG_ANYTHING,
2716        .arg4_type      = ARG_ANYTHING,
2717};
2718
2719BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2720           u32, len, u64, flags)
2721{
2722        struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2723        u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2724        u8 *raw, *to, *from;
2725        struct page *page;
2726
2727        if (unlikely(flags))
2728                return -EINVAL;
2729
2730        /* First find the starting scatterlist element */
2731        i = msg->sg.start;
2732        do {
2733                offset += l;
2734                l = sk_msg_elem(msg, i)->length;
2735
2736                if (start < offset + l)
2737                        break;
2738                sk_msg_iter_var_next(i);
2739        } while (i != msg->sg.end);
2740
2741        if (start >= offset + l)
2742                return -EINVAL;
2743
2744        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2745
2746        /* If no space available will fallback to copy, we need at
2747         * least one scatterlist elem available to push data into
2748         * when start aligns to the beginning of an element or two
2749         * when it falls inside an element. We handle the start equals
2750         * offset case because its the common case for inserting a
2751         * header.
2752         */
2753        if (!space || (space == 1 && start != offset))
2754                copy = msg->sg.data[i].length;
2755
2756        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2757                           get_order(copy + len));
2758        if (unlikely(!page))
2759                return -ENOMEM;
2760
2761        if (copy) {
2762                int front, back;
2763
2764                raw = page_address(page);
2765
2766                psge = sk_msg_elem(msg, i);
2767                front = start - offset;
2768                back = psge->length - front;
2769                from = sg_virt(psge);
2770
2771                if (front)
2772                        memcpy(raw, from, front);
2773
2774                if (back) {
2775                        from += front;
2776                        to = raw + front + len;
2777
2778                        memcpy(to, from, back);
2779                }
2780
2781                put_page(sg_page(psge));
2782        } else if (start - offset) {
2783                psge = sk_msg_elem(msg, i);
2784                rsge = sk_msg_elem_cpy(msg, i);
2785
2786                psge->length = start - offset;
2787                rsge.length -= psge->length;
2788                rsge.offset += start;
2789
2790                sk_msg_iter_var_next(i);
2791                sg_unmark_end(psge);
2792                sg_unmark_end(&rsge);
2793                sk_msg_iter_next(msg, end);
2794        }
2795
2796        /* Slot(s) to place newly allocated data */
2797        new = i;
2798
2799        /* Shift one or two slots as needed */
2800        if (!copy) {
2801                sge = sk_msg_elem_cpy(msg, i);
2802
2803                sk_msg_iter_var_next(i);
2804                sg_unmark_end(&sge);
2805                sk_msg_iter_next(msg, end);
2806
2807                nsge = sk_msg_elem_cpy(msg, i);
2808                if (rsge.length) {
2809                        sk_msg_iter_var_next(i);
2810                        nnsge = sk_msg_elem_cpy(msg, i);
2811                }
2812
2813                while (i != msg->sg.end) {
2814                        msg->sg.data[i] = sge;
2815                        sge = nsge;
2816                        sk_msg_iter_var_next(i);
2817                        if (rsge.length) {
2818                                nsge = nnsge;
2819                                nnsge = sk_msg_elem_cpy(msg, i);
2820                        } else {
2821                                nsge = sk_msg_elem_cpy(msg, i);
2822                        }
2823                }
2824        }
2825
2826        /* Place newly allocated data buffer */
2827        sk_mem_charge(msg->sk, len);
2828        msg->sg.size += len;
2829        __clear_bit(new, &msg->sg.copy);
2830        sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2831        if (rsge.length) {
2832                get_page(sg_page(&rsge));
2833                sk_msg_iter_var_next(new);
2834                msg->sg.data[new] = rsge;
2835        }
2836
2837        sk_msg_compute_data_pointers(msg);
2838        return 0;
2839}
2840
2841static const struct bpf_func_proto bpf_msg_push_data_proto = {
2842        .func           = bpf_msg_push_data,
2843        .gpl_only       = false,
2844        .ret_type       = RET_INTEGER,
2845        .arg1_type      = ARG_PTR_TO_CTX,
2846        .arg2_type      = ARG_ANYTHING,
2847        .arg3_type      = ARG_ANYTHING,
2848        .arg4_type      = ARG_ANYTHING,
2849};
2850
2851static void sk_msg_shift_left(struct sk_msg *msg, int i)
2852{
2853        int prev;
2854
2855        do {
2856                prev = i;
2857                sk_msg_iter_var_next(i);
2858                msg->sg.data[prev] = msg->sg.data[i];
2859        } while (i != msg->sg.end);
2860
2861        sk_msg_iter_prev(msg, end);
2862}
2863
2864static void sk_msg_shift_right(struct sk_msg *msg, int i)
2865{
2866        struct scatterlist tmp, sge;
2867
2868        sk_msg_iter_next(msg, end);
2869        sge = sk_msg_elem_cpy(msg, i);
2870        sk_msg_iter_var_next(i);
2871        tmp = sk_msg_elem_cpy(msg, i);
2872
2873        while (i != msg->sg.end) {
2874                msg->sg.data[i] = sge;
2875                sk_msg_iter_var_next(i);
2876                sge = tmp;
2877                tmp = sk_msg_elem_cpy(msg, i);
2878        }
2879}
2880
2881BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2882           u32, len, u64, flags)
2883{
2884        u32 i = 0, l = 0, space, offset = 0;
2885        u64 last = start + len;
2886        int pop;
2887
2888        if (unlikely(flags))
2889                return -EINVAL;
2890
2891        /* First find the starting scatterlist element */
2892        i = msg->sg.start;
2893        do {
2894                offset += l;
2895                l = sk_msg_elem(msg, i)->length;
2896
2897                if (start < offset + l)
2898                        break;
2899                sk_msg_iter_var_next(i);
2900        } while (i != msg->sg.end);
2901
2902        /* Bounds checks: start and pop must be inside message */
2903        if (start >= offset + l || last >= msg->sg.size)
2904                return -EINVAL;
2905
2906        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2907
2908        pop = len;
2909        /* --------------| offset
2910         * -| start      |-------- len -------|
2911         *
2912         *  |----- a ----|-------- pop -------|----- b ----|
2913         *  |______________________________________________| length
2914         *
2915         *
2916         * a:   region at front of scatter element to save
2917         * b:   region at back of scatter element to save when length > A + pop
2918         * pop: region to pop from element, same as input 'pop' here will be
2919         *      decremented below per iteration.
2920         *
2921         * Two top-level cases to handle when start != offset, first B is non
2922         * zero and second B is zero corresponding to when a pop includes more
2923         * than one element.
2924         *
2925         * Then if B is non-zero AND there is no space allocate space and
2926         * compact A, B regions into page. If there is space shift ring to
2927         * the rigth free'ing the next element in ring to place B, leaving
2928         * A untouched except to reduce length.
2929         */
2930        if (start != offset) {
2931                struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2932                int a = start;
2933                int b = sge->length - pop - a;
2934
2935                sk_msg_iter_var_next(i);
2936
2937                if (pop < sge->length - a) {
2938                        if (space) {
2939                                sge->length = a;
2940                                sk_msg_shift_right(msg, i);
2941                                nsge = sk_msg_elem(msg, i);
2942                                get_page(sg_page(sge));
2943                                sg_set_page(nsge,
2944                                            sg_page(sge),
2945                                            b, sge->offset + pop + a);
2946                        } else {
2947                                struct page *page, *orig;
2948                                u8 *to, *from;
2949
2950                                page = alloc_pages(__GFP_NOWARN |
2951                                                   __GFP_COMP   | GFP_ATOMIC,
2952                                                   get_order(a + b));
2953                                if (unlikely(!page))
2954                                        return -ENOMEM;
2955
2956                                sge->length = a;
2957                                orig = sg_page(sge);
2958                                from = sg_virt(sge);
2959                                to = page_address(page);
2960                                memcpy(to, from, a);
2961                                memcpy(to + a, from + a + pop, b);
2962                                sg_set_page(sge, page, a + b, 0);
2963                                put_page(orig);
2964                        }
2965                        pop = 0;
2966                } else if (pop >= sge->length - a) {
2967                        pop -= (sge->length - a);
2968                        sge->length = a;
2969                }
2970        }
2971
2972        /* From above the current layout _must_ be as follows,
2973         *
2974         * -| offset
2975         * -| start
2976         *
2977         *  |---- pop ---|---------------- b ------------|
2978         *  |____________________________________________| length
2979         *
2980         * Offset and start of the current msg elem are equal because in the
2981         * previous case we handled offset != start and either consumed the
2982         * entire element and advanced to the next element OR pop == 0.
2983         *
2984         * Two cases to handle here are first pop is less than the length
2985         * leaving some remainder b above. Simply adjust the element's layout
2986         * in this case. Or pop >= length of the element so that b = 0. In this
2987         * case advance to next element decrementing pop.
2988         */
2989        while (pop) {
2990                struct scatterlist *sge = sk_msg_elem(msg, i);
2991
2992                if (pop < sge->length) {
2993                        sge->length -= pop;
2994                        sge->offset += pop;
2995                        pop = 0;
2996                } else {
2997                        pop -= sge->length;
2998                        sk_msg_shift_left(msg, i);
2999                }
3000                sk_msg_iter_var_next(i);
3001        }
3002
3003        sk_mem_uncharge(msg->sk, len - pop);
3004        msg->sg.size -= (len - pop);
3005        sk_msg_compute_data_pointers(msg);
3006        return 0;
3007}
3008
3009static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3010        .func           = bpf_msg_pop_data,
3011        .gpl_only       = false,
3012        .ret_type       = RET_INTEGER,
3013        .arg1_type      = ARG_PTR_TO_CTX,
3014        .arg2_type      = ARG_ANYTHING,
3015        .arg3_type      = ARG_ANYTHING,
3016        .arg4_type      = ARG_ANYTHING,
3017};
3018
3019#ifdef CONFIG_CGROUP_NET_CLASSID
3020BPF_CALL_0(bpf_get_cgroup_classid_curr)
3021{
3022        return __task_get_classid(current);
3023}
3024
3025static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3026        .func           = bpf_get_cgroup_classid_curr,
3027        .gpl_only       = false,
3028        .ret_type       = RET_INTEGER,
3029};
3030
3031BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3032{
3033        struct sock *sk = skb_to_full_sk(skb);
3034
3035        if (!sk || !sk_fullsock(sk))
3036                return 0;
3037
3038        return sock_cgroup_classid(&sk->sk_cgrp_data);
3039}
3040
3041static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3042        .func           = bpf_skb_cgroup_classid,
3043        .gpl_only       = false,
3044        .ret_type       = RET_INTEGER,
3045        .arg1_type      = ARG_PTR_TO_CTX,
3046};
3047#endif
3048
3049BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3050{
3051        return task_get_classid(skb);
3052}
3053
3054static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3055        .func           = bpf_get_cgroup_classid,
3056        .gpl_only       = false,
3057        .ret_type       = RET_INTEGER,
3058        .arg1_type      = ARG_PTR_TO_CTX,
3059};
3060
3061BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3062{
3063        return dst_tclassid(skb);
3064}
3065
3066static const struct bpf_func_proto bpf_get_route_realm_proto = {
3067        .func           = bpf_get_route_realm,
3068        .gpl_only       = false,
3069        .ret_type       = RET_INTEGER,
3070        .arg1_type      = ARG_PTR_TO_CTX,
3071};
3072
3073BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3074{
3075        /* If skb_clear_hash() was called due to mangling, we can
3076         * trigger SW recalculation here. Later access to hash
3077         * can then use the inline skb->hash via context directly
3078         * instead of calling this helper again.
3079         */
3080        return skb_get_hash(skb);
3081}
3082
3083static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3084        .func           = bpf_get_hash_recalc,
3085        .gpl_only       = false,
3086        .ret_type       = RET_INTEGER,
3087        .arg1_type      = ARG_PTR_TO_CTX,
3088};
3089
3090BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3091{
3092        /* After all direct packet write, this can be used once for
3093         * triggering a lazy recalc on next skb_get_hash() invocation.
3094         */
3095        skb_clear_hash(skb);
3096        return 0;
3097}
3098
3099static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3100        .func           = bpf_set_hash_invalid,
3101        .gpl_only       = false,
3102        .ret_type       = RET_INTEGER,
3103        .arg1_type      = ARG_PTR_TO_CTX,
3104};
3105
3106BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3107{
3108        /* Set user specified hash as L4(+), so that it gets returned
3109         * on skb_get_hash() call unless BPF prog later on triggers a
3110         * skb_clear_hash().
3111         */
3112        __skb_set_sw_hash(skb, hash, true);
3113        return 0;
3114}
3115
3116static const struct bpf_func_proto bpf_set_hash_proto = {
3117        .func           = bpf_set_hash,
3118        .gpl_only       = false,
3119        .ret_type       = RET_INTEGER,
3120        .arg1_type      = ARG_PTR_TO_CTX,
3121        .arg2_type      = ARG_ANYTHING,
3122};
3123
3124BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3125           u16, vlan_tci)
3126{
3127        int ret;
3128
3129        if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3130                     vlan_proto != htons(ETH_P_8021AD)))
3131                vlan_proto = htons(ETH_P_8021Q);
3132
3133        bpf_push_mac_rcsum(skb);
3134        ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3135        bpf_pull_mac_rcsum(skb);
3136
3137        bpf_compute_data_pointers(skb);
3138        return ret;
3139}
3140
3141static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3142        .func           = bpf_skb_vlan_push,
3143        .gpl_only       = false,
3144        .ret_type       = RET_INTEGER,
3145        .arg1_type      = ARG_PTR_TO_CTX,
3146        .arg2_type      = ARG_ANYTHING,
3147        .arg3_type      = ARG_ANYTHING,
3148};
3149
3150BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3151{
3152        int ret;
3153
3154        bpf_push_mac_rcsum(skb);
3155        ret = skb_vlan_pop(skb);
3156        bpf_pull_mac_rcsum(skb);
3157
3158        bpf_compute_data_pointers(skb);
3159        return ret;
3160}
3161
3162static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3163        .func           = bpf_skb_vlan_pop,
3164        .gpl_only       = false,
3165        .ret_type       = RET_INTEGER,
3166        .arg1_type      = ARG_PTR_TO_CTX,
3167};
3168
3169static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3170{
3171        /* Caller already did skb_cow() with len as headroom,
3172         * so no need to do it here.
3173         */
3174        skb_push(skb, len);
3175        memmove(skb->data, skb->data + len, off);
3176        memset(skb->data + off, 0, len);
3177
3178        /* No skb_postpush_rcsum(skb, skb->data + off, len)
3179         * needed here as it does not change the skb->csum
3180         * result for checksum complete when summing over
3181         * zeroed blocks.
3182         */
3183        return 0;
3184}
3185
3186static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3187{
3188        /* skb_ensure_writable() is not needed here, as we're
3189         * already working on an uncloned skb.
3190         */
3191        if (unlikely(!pskb_may_pull(skb, off + len)))
3192                return -ENOMEM;
3193
3194        skb_postpull_rcsum(skb, skb->data + off, len);
3195        memmove(skb->data + len, skb->data, off);
3196        __skb_pull(skb, len);
3197
3198        return 0;
3199}
3200
3201static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3202{
3203        bool trans_same = skb->transport_header == skb->network_header;
3204        int ret;
3205
3206        /* There's no need for __skb_push()/__skb_pull() pair to
3207         * get to the start of the mac header as we're guaranteed
3208         * to always start from here under eBPF.
3209         */
3210        ret = bpf_skb_generic_push(skb, off, len);
3211        if (likely(!ret)) {
3212                skb->mac_header -= len;
3213                skb->network_header -= len;
3214                if (trans_same)
3215                        skb->transport_header = skb->network_header;
3216        }
3217
3218        return ret;
3219}
3220
3221static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3222{
3223        bool trans_same = skb->transport_header == skb->network_header;
3224        int ret;
3225
3226        /* Same here, __skb_push()/__skb_pull() pair not needed. */
3227        ret = bpf_skb_generic_pop(skb, off, len);
3228        if (likely(!ret)) {
3229                skb->mac_header += len;
3230                skb->network_header += len;
3231                if (trans_same)
3232                        skb->transport_header = skb->network_header;
3233        }
3234
3235        return ret;
3236}
3237
3238static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3239{
3240        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3241        u32 off = skb_mac_header_len(skb);
3242        int ret;
3243
3244        ret = skb_cow(skb, len_diff);
3245        if (unlikely(ret < 0))
3246                return ret;
3247
3248        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3249        if (unlikely(ret < 0))
3250                return ret;
3251
3252        if (skb_is_gso(skb)) {
3253                struct skb_shared_info *shinfo = skb_shinfo(skb);
3254
3255                /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3256                if (shinfo->gso_type & SKB_GSO_TCPV4) {
3257                        shinfo->gso_type &= ~SKB_GSO_TCPV4;
3258                        shinfo->gso_type |=  SKB_GSO_TCPV6;
3259                }
3260        }
3261
3262        skb->protocol = htons(ETH_P_IPV6);
3263        skb_clear_hash(skb);
3264
3265        return 0;
3266}
3267
3268static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3269{
3270        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3271        u32 off = skb_mac_header_len(skb);
3272        int ret;
3273
3274        ret = skb_unclone(skb, GFP_ATOMIC);
3275        if (unlikely(ret < 0))
3276                return ret;
3277
3278        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3279        if (unlikely(ret < 0))
3280                return ret;
3281
3282        if (skb_is_gso(skb)) {
3283                struct skb_shared_info *shinfo = skb_shinfo(skb);
3284
3285                /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3286                if (shinfo->gso_type & SKB_GSO_TCPV6) {
3287                        shinfo->gso_type &= ~SKB_GSO_TCPV6;
3288                        shinfo->gso_type |=  SKB_GSO_TCPV4;
3289                }
3290        }
3291
3292        skb->protocol = htons(ETH_P_IP);
3293        skb_clear_hash(skb);
3294
3295        return 0;
3296}
3297
3298static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3299{
3300        __be16 from_proto = skb->protocol;
3301
3302        if (from_proto == htons(ETH_P_IP) &&
3303              to_proto == htons(ETH_P_IPV6))
3304                return bpf_skb_proto_4_to_6(skb);
3305
3306        if (from_proto == htons(ETH_P_IPV6) &&
3307              to_proto == htons(ETH_P_IP))
3308                return bpf_skb_proto_6_to_4(skb);
3309
3310        return -ENOTSUPP;
3311}
3312
3313BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3314           u64, flags)
3315{
3316        int ret;
3317
3318        if (unlikely(flags))
3319                return -EINVAL;
3320
3321        /* General idea is that this helper does the basic groundwork
3322         * needed for changing the protocol, and eBPF program fills the
3323         * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3324         * and other helpers, rather than passing a raw buffer here.
3325         *
3326         * The rationale is to keep this minimal and without a need to
3327         * deal with raw packet data. F.e. even if we would pass buffers
3328         * here, the program still needs to call the bpf_lX_csum_replace()
3329         * helpers anyway. Plus, this way we keep also separation of
3330         * concerns, since f.e. bpf_skb_store_bytes() should only take
3331         * care of stores.
3332         *
3333         * Currently, additional options and extension header space are
3334         * not supported, but flags register is reserved so we can adapt
3335         * that. For offloads, we mark packet as dodgy, so that headers
3336         * need to be verified first.
3337         */
3338        ret = bpf_skb_proto_xlat(skb, proto);
3339        bpf_compute_data_pointers(skb);
3340        return ret;
3341}
3342
3343static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3344        .func           = bpf_skb_change_proto,
3345        .gpl_only       = false,
3346        .ret_type       = RET_INTEGER,
3347        .arg1_type      = ARG_PTR_TO_CTX,
3348        .arg2_type      = ARG_ANYTHING,
3349        .arg3_type      = ARG_ANYTHING,
3350};
3351
3352BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3353{
3354        /* We only allow a restricted subset to be changed for now. */
3355        if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3356                     !skb_pkt_type_ok(pkt_type)))
3357                return -EINVAL;
3358
3359        skb->pkt_type = pkt_type;
3360        return 0;
3361}
3362
3363static const struct bpf_func_proto bpf_skb_change_type_proto = {
3364        .func           = bpf_skb_change_type,
3365        .gpl_only       = false,
3366        .ret_type       = RET_INTEGER,
3367        .arg1_type      = ARG_PTR_TO_CTX,
3368        .arg2_type      = ARG_ANYTHING,
3369};
3370
3371static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3372{
3373        switch (skb->protocol) {
3374        case htons(ETH_P_IP):
3375                return sizeof(struct iphdr);
3376        case htons(ETH_P_IPV6):
3377                return sizeof(struct ipv6hdr);
3378        default:
3379                return ~0U;
3380        }
3381}
3382
3383#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3384                                         BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3385
3386#define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3387                                         BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3388                                         BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3389                                         BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3390                                         BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3391                                         BPF_F_ADJ_ROOM_ENCAP_L2( \
3392                                          BPF_ADJ_ROOM_ENCAP_L2_MASK))
3393
3394static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3395                            u64 flags)
3396{
3397        u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3398        bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3399        u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3400        unsigned int gso_type = SKB_GSO_DODGY;
3401        int ret;
3402
3403        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3404                /* udp gso_size delineates datagrams, only allow if fixed */
3405                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3406                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3407                        return -ENOTSUPP;
3408        }
3409
3410        ret = skb_cow_head(skb, len_diff);
3411        if (unlikely(ret < 0))
3412                return ret;
3413
3414        if (encap) {
3415                if (skb->protocol != htons(ETH_P_IP) &&
3416                    skb->protocol != htons(ETH_P_IPV6))
3417                        return -ENOTSUPP;
3418
3419                if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3420                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3421                        return -EINVAL;
3422
3423                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3424                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3425                        return -EINVAL;
3426
3427                if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3428                    inner_mac_len < ETH_HLEN)
3429                        return -EINVAL;
3430
3431                if (skb->encapsulation)
3432                        return -EALREADY;
3433
3434                mac_len = skb->network_header - skb->mac_header;
3435                inner_net = skb->network_header;
3436                if (inner_mac_len > len_diff)
3437                        return -EINVAL;
3438                inner_trans = skb->transport_header;
3439        }
3440
3441        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3442        if (unlikely(ret < 0))
3443                return ret;
3444
3445        if (encap) {
3446                skb->inner_mac_header = inner_net - inner_mac_len;
3447                skb->inner_network_header = inner_net;
3448                skb->inner_transport_header = inner_trans;
3449
3450                if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3451                        skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3452                else
3453                        skb_set_inner_protocol(skb, skb->protocol);
3454
3455                skb->encapsulation = 1;
3456                skb_set_network_header(skb, mac_len);
3457
3458                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3459                        gso_type |= SKB_GSO_UDP_TUNNEL;
3460                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3461                        gso_type |= SKB_GSO_GRE;
3462                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3463                        gso_type |= SKB_GSO_IPXIP6;
3464                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3465                        gso_type |= SKB_GSO_IPXIP4;
3466
3467                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3468                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3469                        int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3470                                        sizeof(struct ipv6hdr) :
3471                                        sizeof(struct iphdr);
3472
3473                        skb_set_transport_header(skb, mac_len + nh_len);
3474                }
3475
3476                /* Match skb->protocol to new outer l3 protocol */
3477                if (skb->protocol == htons(ETH_P_IP) &&
3478                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3479                        skb->protocol = htons(ETH_P_IPV6);
3480                else if (skb->protocol == htons(ETH_P_IPV6) &&
3481                         flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3482                        skb->protocol = htons(ETH_P_IP);
3483        }
3484
3485        if (skb_is_gso(skb)) {
3486                struct skb_shared_info *shinfo = skb_shinfo(skb);
3487
3488                /* Due to header grow, MSS needs to be downgraded. */
3489                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3490                        skb_decrease_gso_size(shinfo, len_diff);
3491
3492                /* Header must be checked, and gso_segs recomputed. */
3493                shinfo->gso_type |= gso_type;
3494                shinfo->gso_segs = 0;
3495        }
3496
3497        return 0;
3498}
3499
3500static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3501                              u64 flags)
3502{
3503        int ret;
3504
3505        if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3506                               BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3507                return -EINVAL;
3508
3509        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3510                /* udp gso_size delineates datagrams, only allow if fixed */
3511                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3512                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3513                        return -ENOTSUPP;
3514        }
3515
3516        ret = skb_unclone(skb, GFP_ATOMIC);
3517        if (unlikely(ret < 0))
3518                return ret;
3519
3520        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3521        if (unlikely(ret < 0))
3522                return ret;
3523
3524        if (skb_is_gso(skb)) {
3525                struct skb_shared_info *shinfo = skb_shinfo(skb);
3526
3527                /* Due to header shrink, MSS can be upgraded. */
3528                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3529                        skb_increase_gso_size(shinfo, len_diff);
3530
3531                /* Header must be checked, and gso_segs recomputed. */
3532                shinfo->gso_type |= SKB_GSO_DODGY;
3533                shinfo->gso_segs = 0;
3534        }
3535
3536        return 0;
3537}
3538
3539#define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3540
3541BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3542           u32, mode, u64, flags)
3543{
3544        u32 len_diff_abs = abs(len_diff);
3545        bool shrink = len_diff < 0;
3546        int ret = 0;
3547
3548        if (unlikely(flags || mode))
3549                return -EINVAL;
3550        if (unlikely(len_diff_abs > 0xfffU))
3551                return -EFAULT;
3552
3553        if (!shrink) {
3554                ret = skb_cow(skb, len_diff);
3555                if (unlikely(ret < 0))
3556                        return ret;
3557                __skb_push(skb, len_diff_abs);
3558                memset(skb->data, 0, len_diff_abs);
3559        } else {
3560                if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3561                        return -ENOMEM;
3562                __skb_pull(skb, len_diff_abs);
3563        }
3564        if (tls_sw_has_ctx_rx(skb->sk)) {
3565                struct strp_msg *rxm = strp_msg(skb);
3566
3567                rxm->full_len += len_diff;
3568        }
3569        return ret;
3570}
3571
3572static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3573        .func           = sk_skb_adjust_room,
3574        .gpl_only       = false,
3575        .ret_type       = RET_INTEGER,
3576        .arg1_type      = ARG_PTR_TO_CTX,
3577        .arg2_type      = ARG_ANYTHING,
3578        .arg3_type      = ARG_ANYTHING,
3579        .arg4_type      = ARG_ANYTHING,
3580};
3581
3582BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3583           u32, mode, u64, flags)
3584{
3585        u32 len_cur, len_diff_abs = abs(len_diff);
3586        u32 len_min = bpf_skb_net_base_len(skb);
3587        u32 len_max = BPF_SKB_MAX_LEN;
3588        __be16 proto = skb->protocol;
3589        bool shrink = len_diff < 0;
3590        u32 off;
3591        int ret;
3592
3593        if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3594                               BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3595                return -EINVAL;
3596        if (unlikely(len_diff_abs > 0xfffU))
3597                return -EFAULT;
3598        if (unlikely(proto != htons(ETH_P_IP) &&
3599                     proto != htons(ETH_P_IPV6)))
3600                return -ENOTSUPP;
3601
3602        off = skb_mac_header_len(skb);
3603        switch (mode) {
3604        case BPF_ADJ_ROOM_NET:
3605                off += bpf_skb_net_base_len(skb);
3606                break;
3607        case BPF_ADJ_ROOM_MAC:
3608                break;
3609        default:
3610                return -ENOTSUPP;
3611        }
3612
3613        len_cur = skb->len - skb_network_offset(skb);
3614        if ((shrink && (len_diff_abs >= len_cur ||
3615                        len_cur - len_diff_abs < len_min)) ||
3616            (!shrink && (skb->len + len_diff_abs > len_max &&
3617                         !skb_is_gso(skb))))
3618                return -ENOTSUPP;
3619
3620        ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3621                       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3622        if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3623                __skb_reset_checksum_unnecessary(skb);
3624
3625        bpf_compute_data_pointers(skb);
3626        return ret;
3627}
3628
3629static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3630        .func           = bpf_skb_adjust_room,
3631        .gpl_only       = false,
3632        .ret_type       = RET_INTEGER,
3633        .arg1_type      = ARG_PTR_TO_CTX,
3634        .arg2_type      = ARG_ANYTHING,
3635        .arg3_type      = ARG_ANYTHING,
3636        .arg4_type      = ARG_ANYTHING,
3637};
3638
3639static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3640{
3641        u32 min_len = skb_network_offset(skb);
3642
3643        if (skb_transport_header_was_set(skb))
3644                min_len = skb_transport_offset(skb);
3645        if (skb->ip_summed == CHECKSUM_PARTIAL)
3646                min_len = skb_checksum_start_offset(skb) +
3647                          skb->csum_offset + sizeof(__sum16);
3648        return min_len;
3649}
3650
3651static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3652{
3653        unsigned int old_len = skb->len;
3654        int ret;
3655
3656        ret = __skb_grow_rcsum(skb, new_len);
3657        if (!ret)
3658                memset(skb->data + old_len, 0, new_len - old_len);
3659        return ret;
3660}
3661
3662static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3663{
3664        return __skb_trim_rcsum(skb, new_len);
3665}
3666
3667static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3668                                        u64 flags)
3669{
3670        u32 max_len = BPF_SKB_MAX_LEN;
3671        u32 min_len = __bpf_skb_min_len(skb);
3672        int ret;
3673
3674        if (unlikely(flags || new_len > max_len || new_len < min_len))
3675                return -EINVAL;
3676        if (skb->encapsulation)
3677                return -ENOTSUPP;
3678
3679        /* The basic idea of this helper is that it's performing the
3680         * needed work to either grow or trim an skb, and eBPF program
3681         * rewrites the rest via helpers like bpf_skb_store_bytes(),
3682         * bpf_lX_csum_replace() and others rather than passing a raw
3683         * buffer here. This one is a slow path helper and intended
3684         * for replies with control messages.
3685         *
3686         * Like in bpf_skb_change_proto(), we want to keep this rather
3687         * minimal and without protocol specifics so that we are able
3688         * to separate concerns as in bpf_skb_store_bytes() should only
3689         * be the one responsible for writing buffers.
3690         *
3691         * It's really expected to be a slow path operation here for
3692         * control message replies, so we're implicitly linearizing,
3693         * uncloning and drop offloads from the skb by this.
3694         */
3695        ret = __bpf_try_make_writable(skb, skb->len);
3696        if (!ret) {
3697                if (new_len > skb->len)
3698                        ret = bpf_skb_grow_rcsum(skb, new_len);
3699                else if (new_len < skb->len)
3700                        ret = bpf_skb_trim_rcsum(skb, new_len);
3701                if (!ret && skb_is_gso(skb))
3702                        skb_gso_reset(skb);
3703        }
3704        return ret;
3705}
3706
3707BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3708           u64, flags)
3709{
3710        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3711
3712        bpf_compute_data_pointers(skb);
3713        return ret;
3714}
3715
3716static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3717        .func           = bpf_skb_change_tail,
3718        .gpl_only       = false,
3719        .ret_type       = RET_INTEGER,
3720        .arg1_type      = ARG_PTR_TO_CTX,
3721        .arg2_type      = ARG_ANYTHING,
3722        .arg3_type      = ARG_ANYTHING,
3723};
3724
3725BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3726           u64, flags)
3727{
3728        return __bpf_skb_change_tail(skb, new_len, flags);
3729}
3730
3731static const struct bpf_func_proto sk_skb_change_tail_proto = {
3732        .func           = sk_skb_change_tail,
3733        .gpl_only       = false,
3734        .ret_type       = RET_INTEGER,
3735        .arg1_type      = ARG_PTR_TO_CTX,
3736        .arg2_type      = ARG_ANYTHING,
3737        .arg3_type      = ARG_ANYTHING,
3738};
3739
3740static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3741                                        u64 flags)
3742{
3743        u32 max_len = BPF_SKB_MAX_LEN;
3744        u32 new_len = skb->len + head_room;
3745        int ret;
3746
3747        if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3748                     new_len < skb->len))
3749                return -EINVAL;
3750
3751        ret = skb_cow(skb, head_room);
3752        if (likely(!ret)) {
3753                /* Idea for this helper is that we currently only
3754                 * allow to expand on mac header. This means that
3755                 * skb->protocol network header, etc, stay as is.
3756                 * Compared to bpf_skb_change_tail(), we're more
3757                 * flexible due to not needing to linearize or
3758                 * reset GSO. Intention for this helper is to be
3759                 * used by an L3 skb that needs to push mac header
3760                 * for redirection into L2 device.
3761                 */
3762                __skb_push(skb, head_room);
3763                memset(skb->data, 0, head_room);
3764                skb_reset_mac_header(skb);
3765                skb_reset_mac_len(skb);
3766        }
3767
3768        return ret;
3769}
3770
3771BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3772           u64, flags)
3773{
3774        int ret = __bpf_skb_change_head(skb, head_room, flags);
3775
3776        bpf_compute_data_pointers(skb);
3777        return ret;
3778}
3779
3780static const struct bpf_func_proto bpf_skb_change_head_proto = {
3781        .func           = bpf_skb_change_head,
3782        .gpl_only       = false,
3783        .ret_type       = RET_INTEGER,
3784        .arg1_type      = ARG_PTR_TO_CTX,
3785        .arg2_type      = ARG_ANYTHING,
3786        .arg3_type      = ARG_ANYTHING,
3787};
3788
3789BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3790           u64, flags)
3791{
3792        return __bpf_skb_change_head(skb, head_room, flags);
3793}
3794
3795static const struct bpf_func_proto sk_skb_change_head_proto = {
3796        .func           = sk_skb_change_head,
3797        .gpl_only       = false,
3798        .ret_type       = RET_INTEGER,
3799        .arg1_type      = ARG_PTR_TO_CTX,
3800        .arg2_type      = ARG_ANYTHING,
3801        .arg3_type      = ARG_ANYTHING,
3802};
3803static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3804{
3805        return xdp_data_meta_unsupported(xdp) ? 0 :
3806               xdp->data - xdp->data_meta;
3807}
3808
3809BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3810{
3811        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3812        unsigned long metalen = xdp_get_metalen(xdp);
3813        void *data_start = xdp_frame_end + metalen;
3814        void *data = xdp->data + offset;
3815
3816        if (unlikely(data < data_start ||
3817                     data > xdp->data_end - ETH_HLEN))
3818                return -EINVAL;
3819
3820        if (metalen)
3821                memmove(xdp->data_meta + offset,
3822                        xdp->data_meta, metalen);
3823        xdp->data_meta += offset;
3824        xdp->data = data;
3825
3826        return 0;
3827}
3828
3829static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3830        .func           = bpf_xdp_adjust_head,
3831        .gpl_only       = false,
3832        .ret_type       = RET_INTEGER,
3833        .arg1_type      = ARG_PTR_TO_CTX,
3834        .arg2_type      = ARG_ANYTHING,
3835};
3836
3837BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3838{
3839        void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3840        void *data_end = xdp->data_end + offset;
3841
3842        /* Notice that xdp_data_hard_end have reserved some tailroom */
3843        if (unlikely(data_end > data_hard_end))
3844                return -EINVAL;
3845
3846        /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3847        if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3848                WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3849                return -EINVAL;
3850        }
3851
3852        if (unlikely(data_end < xdp->data + ETH_HLEN))
3853                return -EINVAL;
3854
3855        /* Clear memory area on grow, can contain uninit kernel memory */
3856        if (offset > 0)
3857                memset(xdp->data_end, 0, offset);
3858
3859        xdp->data_end = data_end;
3860
3861        return 0;
3862}
3863
3864static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3865        .func           = bpf_xdp_adjust_tail,
3866        .gpl_only       = false,
3867        .ret_type       = RET_INTEGER,
3868        .arg1_type      = ARG_PTR_TO_CTX,
3869        .arg2_type      = ARG_ANYTHING,
3870};
3871
3872BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3873{
3874        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3875        void *meta = xdp->data_meta + offset;
3876        unsigned long metalen = xdp->data - meta;
3877
3878        if (xdp_data_meta_unsupported(xdp))
3879                return -ENOTSUPP;
3880        if (unlikely(meta < xdp_frame_end ||
3881                     meta > xdp->data))
3882                return -EINVAL;
3883        if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3884                     (metalen > 32)))
3885                return -EACCES;
3886
3887        xdp->data_meta = meta;
3888
3889        return 0;
3890}
3891
3892static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3893        .func           = bpf_xdp_adjust_meta,
3894        .gpl_only       = false,
3895        .ret_type       = RET_INTEGER,
3896        .arg1_type      = ARG_PTR_TO_CTX,
3897        .arg2_type      = ARG_ANYTHING,
3898};
3899
3900/* XDP_REDIRECT works by a three-step process, implemented in the functions
3901 * below:
3902 *
3903 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3904 *    of the redirect and store it (along with some other metadata) in a per-CPU
3905 *    struct bpf_redirect_info.
3906 *
3907 * 2. When the program returns the XDP_REDIRECT return code, the driver will
3908 *    call xdp_do_redirect() which will use the information in struct
3909 *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3910 *    bulk queue structure.
3911 *
3912 * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3913 *    which will flush all the different bulk queues, thus completing the
3914 *    redirect.
3915 *
3916 * Pointers to the map entries will be kept around for this whole sequence of
3917 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3918 * the core code; instead, the RCU protection relies on everything happening
3919 * inside a single NAPI poll sequence, which means it's between a pair of calls
3920 * to local_bh_disable()/local_bh_enable().
3921 *
3922 * The map entries are marked as __rcu and the map code makes sure to
3923 * dereference those pointers with rcu_dereference_check() in a way that works
3924 * for both sections that to hold an rcu_read_lock() and sections that are
3925 * called from NAPI without a separate rcu_read_lock(). The code below does not
3926 * use RCU annotations, but relies on those in the map code.
3927 */
3928void xdp_do_flush(void)
3929{
3930        __dev_flush();
3931        __cpu_map_flush();
3932        __xsk_map_flush();
3933}
3934EXPORT_SYMBOL_GPL(xdp_do_flush);
3935
3936void bpf_clear_redirect_map(struct bpf_map *map)
3937{
3938        struct bpf_redirect_info *ri;
3939        int cpu;
3940
3941        for_each_possible_cpu(cpu) {
3942                ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3943                /* Avoid polluting remote cacheline due to writes if
3944                 * not needed. Once we pass this test, we need the
3945                 * cmpxchg() to make sure it hasn't been changed in
3946                 * the meantime by remote CPU.
3947                 */
3948                if (unlikely(READ_ONCE(ri->map) == map))
3949                        cmpxchg(&ri->map, map, NULL);
3950        }
3951}
3952
3953int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3954                    struct bpf_prog *xdp_prog)
3955{
3956        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3957        enum bpf_map_type map_type = ri->map_type;
3958        void *fwd = ri->tgt_value;
3959        u32 map_id = ri->map_id;
3960        struct bpf_map *map;
3961        int err;
3962
3963        ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3964        ri->map_type = BPF_MAP_TYPE_UNSPEC;
3965
3966        switch (map_type) {
3967        case BPF_MAP_TYPE_DEVMAP:
3968                fallthrough;
3969        case BPF_MAP_TYPE_DEVMAP_HASH:
3970                map = READ_ONCE(ri->map);
3971                if (unlikely(map)) {
3972                        WRITE_ONCE(ri->map, NULL);
3973                        err = dev_map_enqueue_multi(xdp, dev, map,
3974                                                    ri->flags & BPF_F_EXCLUDE_INGRESS);
3975                } else {
3976                        err = dev_map_enqueue(fwd, xdp, dev);
3977                }
3978                break;
3979        case BPF_MAP_TYPE_CPUMAP:
3980                err = cpu_map_enqueue(fwd, xdp, dev);
3981                break;
3982        case BPF_MAP_TYPE_XSKMAP:
3983                err = __xsk_map_redirect(fwd, xdp);
3984                break;
3985        case BPF_MAP_TYPE_UNSPEC:
3986                if (map_id == INT_MAX) {
3987                        fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3988                        if (unlikely(!fwd)) {
3989                                err = -EINVAL;
3990                                break;
3991                        }
3992                        err = dev_xdp_enqueue(fwd, xdp, dev);
3993                        break;
3994                }
3995                fallthrough;
3996        default:
3997                err = -EBADRQC;
3998        }
3999
4000        if (unlikely(err))
4001                goto err;
4002
4003        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4004        return 0;
4005err:
4006        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4007        return err;
4008}
4009EXPORT_SYMBOL_GPL(xdp_do_redirect);
4010
4011static int xdp_do_generic_redirect_map(struct net_device *dev,
4012                                       struct sk_buff *skb,
4013                                       struct xdp_buff *xdp,
4014                                       struct bpf_prog *xdp_prog,
4015                                       void *fwd,
4016                                       enum bpf_map_type map_type, u32 map_id)
4017{
4018        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4019        struct bpf_map *map;
4020        int err;
4021
4022        switch (map_type) {
4023        case BPF_MAP_TYPE_DEVMAP:
4024                fallthrough;
4025        case BPF_MAP_TYPE_DEVMAP_HASH:
4026                map = READ_ONCE(ri->map);
4027                if (unlikely(map)) {
4028                        WRITE_ONCE(ri->map, NULL);
4029                        err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4030                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4031                } else {
4032                        err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4033                }
4034                if (unlikely(err))
4035                        goto err;
4036                break;
4037        case BPF_MAP_TYPE_XSKMAP:
4038                err = xsk_generic_rcv(fwd, xdp);
4039                if (err)
4040                        goto err;
4041                consume_skb(skb);
4042                break;
4043        default:
4044                /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4045                err = -EBADRQC;
4046                goto err;
4047        }
4048
4049        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4050        return 0;
4051err:
4052        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4053        return err;
4054}
4055
4056int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4057                            struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4058{
4059        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4060        enum bpf_map_type map_type = ri->map_type;
4061        void *fwd = ri->tgt_value;
4062        u32 map_id = ri->map_id;
4063        int err;
4064
4065        ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4066        ri->map_type = BPF_MAP_TYPE_UNSPEC;
4067
4068        if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4069                fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4070                if (unlikely(!fwd)) {
4071                        err = -EINVAL;
4072                        goto err;
4073                }
4074
4075                err = xdp_ok_fwd_dev(fwd, skb->len);
4076                if (unlikely(err))
4077                        goto err;
4078
4079                skb->dev = fwd;
4080                _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4081                generic_xdp_tx(skb, xdp_prog);
4082                return 0;
4083        }
4084
4085        return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4086err:
4087        _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4088        return err;
4089}
4090
4091BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4092{
4093        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4094
4095        if (unlikely(flags))
4096                return XDP_ABORTED;
4097
4098        /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4099         * by map_idr) is used for ifindex based XDP redirect.
4100         */
4101        ri->tgt_index = ifindex;
4102        ri->map_id = INT_MAX;
4103        ri->map_type = BPF_MAP_TYPE_UNSPEC;
4104
4105        return XDP_REDIRECT;
4106}
4107
4108static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4109        .func           = bpf_xdp_redirect,
4110        .gpl_only       = false,
4111        .ret_type       = RET_INTEGER,
4112        .arg1_type      = ARG_ANYTHING,
4113        .arg2_type      = ARG_ANYTHING,
4114};
4115
4116BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4117           u64, flags)
4118{
4119        return map->ops->map_redirect(map, ifindex, flags);
4120}
4121
4122static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4123        .func           = bpf_xdp_redirect_map,
4124        .gpl_only       = false,
4125        .ret_type       = RET_INTEGER,
4126        .arg1_type      = ARG_CONST_MAP_PTR,
4127        .arg2_type      = ARG_ANYTHING,
4128        .arg3_type      = ARG_ANYTHING,
4129};
4130
4131static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4132                                  unsigned long off, unsigned long len)
4133{
4134        void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4135
4136        if (unlikely(!ptr))
4137                return len;
4138        if (ptr != dst_buff)
4139                memcpy(dst_buff, ptr, len);
4140
4141        return 0;
4142}
4143
4144BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4145           u64, flags, void *, meta, u64, meta_size)
4146{
4147        u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4148
4149        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4150                return -EINVAL;
4151        if (unlikely(!skb || skb_size > skb->len))
4152                return -EFAULT;
4153
4154        return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4155                                bpf_skb_copy);
4156}
4157
4158static const struct bpf_func_proto bpf_skb_event_output_proto = {
4159        .func           = bpf_skb_event_output,
4160        .gpl_only       = true,
4161        .ret_type       = RET_INTEGER,
4162        .arg1_type      = ARG_PTR_TO_CTX,
4163        .arg2_type      = ARG_CONST_MAP_PTR,
4164        .arg3_type      = ARG_ANYTHING,
4165        .arg4_type      = ARG_PTR_TO_MEM,
4166        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4167};
4168
4169BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4170
4171const struct bpf_func_proto bpf_skb_output_proto = {
4172        .func           = bpf_skb_event_output,
4173        .gpl_only       = true,
4174        .ret_type       = RET_INTEGER,
4175        .arg1_type      = ARG_PTR_TO_BTF_ID,
4176        .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4177        .arg2_type      = ARG_CONST_MAP_PTR,
4178        .arg3_type      = ARG_ANYTHING,
4179        .arg4_type      = ARG_PTR_TO_MEM,
4180        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4181};
4182
4183static unsigned short bpf_tunnel_key_af(u64 flags)
4184{
4185        return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4186}
4187
4188BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4189           u32, size, u64, flags)
4190{
4191        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4192        u8 compat[sizeof(struct bpf_tunnel_key)];
4193        void *to_orig = to;
4194        int err;
4195
4196        if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4197                err = -EINVAL;
4198                goto err_clear;
4199        }
4200        if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4201                err = -EPROTO;
4202                goto err_clear;
4203        }
4204        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4205                err = -EINVAL;
4206                switch (size) {
4207                case offsetof(struct bpf_tunnel_key, tunnel_label):
4208                case offsetof(struct bpf_tunnel_key, tunnel_ext):
4209                        goto set_compat;
4210                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4211                        /* Fixup deprecated structure layouts here, so we have
4212                         * a common path later on.
4213                         */
4214                        if (ip_tunnel_info_af(info) != AF_INET)
4215                                goto err_clear;
4216set_compat:
4217                        to = (struct bpf_tunnel_key *)compat;
4218                        break;
4219                default:
4220                        goto err_clear;
4221                }
4222        }
4223
4224        to->tunnel_id = be64_to_cpu(info->key.tun_id);
4225        to->tunnel_tos = info->key.tos;
4226        to->tunnel_ttl = info->key.ttl;
4227        to->tunnel_ext = 0;
4228
4229        if (flags & BPF_F_TUNINFO_IPV6) {
4230                memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4231                       sizeof(to->remote_ipv6));
4232                to->tunnel_label = be32_to_cpu(info->key.label);
4233        } else {
4234                to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4235                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4236                to->tunnel_label = 0;
4237        }
4238
4239        if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4240                memcpy(to_orig, to, size);
4241
4242        return 0;
4243err_clear:
4244        memset(to_orig, 0, size);
4245        return err;
4246}
4247
4248static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4249        .func           = bpf_skb_get_tunnel_key,
4250        .gpl_only       = false,
4251        .ret_type       = RET_INTEGER,
4252        .arg1_type      = ARG_PTR_TO_CTX,
4253        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4254        .arg3_type      = ARG_CONST_SIZE,
4255        .arg4_type      = ARG_ANYTHING,
4256};
4257
4258BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4259{
4260        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4261        int err;
4262
4263        if (unlikely(!info ||
4264                     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4265                err = -ENOENT;
4266                goto err_clear;
4267        }
4268        if (unlikely(size < info->options_len)) {
4269                err = -ENOMEM;
4270                goto err_clear;
4271        }
4272
4273        ip_tunnel_info_opts_get(to, info);
4274        if (size > info->options_len)
4275                memset(to + info->options_len, 0, size - info->options_len);
4276
4277        return info->options_len;
4278err_clear:
4279        memset(to, 0, size);
4280        return err;
4281}
4282
4283static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4284        .func           = bpf_skb_get_tunnel_opt,
4285        .gpl_only       = false,
4286        .ret_type       = RET_INTEGER,
4287        .arg1_type      = ARG_PTR_TO_CTX,
4288        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4289        .arg3_type      = ARG_CONST_SIZE,
4290};
4291
4292static struct metadata_dst __percpu *md_dst;
4293
4294BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4295           const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4296{
4297        struct metadata_dst *md = this_cpu_ptr(md_dst);
4298        u8 compat[sizeof(struct bpf_tunnel_key)];
4299        struct ip_tunnel_info *info;
4300
4301        if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4302                               BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4303                return -EINVAL;
4304        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4305                switch (size) {
4306                case offsetof(struct bpf_tunnel_key, tunnel_label):
4307                case offsetof(struct bpf_tunnel_key, tunnel_ext):
4308                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4309                        /* Fixup deprecated structure layouts here, so we have
4310                         * a common path later on.
4311                         */
4312                        memcpy(compat, from, size);
4313                        memset(compat + size, 0, sizeof(compat) - size);
4314                        from = (const struct bpf_tunnel_key *) compat;
4315                        break;
4316                default:
4317                        return -EINVAL;
4318                }
4319        }
4320        if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4321                     from->tunnel_ext))
4322                return -EINVAL;
4323
4324        skb_dst_drop(skb);
4325        dst_hold((struct dst_entry *) md);
4326        skb_dst_set(skb, (struct dst_entry *) md);
4327
4328        info = &md->u.tun_info;
4329        memset(info, 0, sizeof(*info));
4330        info->mode = IP_TUNNEL_INFO_TX;
4331
4332        info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4333        if (flags & BPF_F_DONT_FRAGMENT)
4334                info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4335        if (flags & BPF_F_ZERO_CSUM_TX)
4336                info->key.tun_flags &= ~TUNNEL_CSUM;
4337        if (flags & BPF_F_SEQ_NUMBER)
4338                info->key.tun_flags |= TUNNEL_SEQ;
4339
4340        info->key.tun_id = cpu_to_be64(from->tunnel_id);
4341        info->key.tos = from->tunnel_tos;
4342        info->key.ttl = from->tunnel_ttl;
4343
4344        if (flags & BPF_F_TUNINFO_IPV6) {
4345                info->mode |= IP_TUNNEL_INFO_IPV6;
4346                memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4347                       sizeof(from->remote_ipv6));
4348                info->key.label = cpu_to_be32(from->tunnel_label) &
4349                                  IPV6_FLOWLABEL_MASK;
4350        } else {
4351                info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4352        }
4353
4354        return 0;
4355}
4356
4357static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4358        .func           = bpf_skb_set_tunnel_key,
4359        .gpl_only       = false,
4360        .ret_type       = RET_INTEGER,
4361        .arg1_type      = ARG_PTR_TO_CTX,
4362        .arg2_type      = ARG_PTR_TO_MEM,
4363        .arg3_type      = ARG_CONST_SIZE,
4364        .arg4_type      = ARG_ANYTHING,
4365};
4366
4367BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4368           const u8 *, from, u32, size)
4369{
4370        struct ip_tunnel_info *info = skb_tunnel_info(skb);
4371        const struct metadata_dst *md = this_cpu_ptr(md_dst);
4372
4373        if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4374                return -EINVAL;
4375        if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4376                return -ENOMEM;
4377
4378        ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4379
4380        return 0;
4381}
4382
4383static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4384        .func           = bpf_skb_set_tunnel_opt,
4385        .gpl_only       = false,
4386        .ret_type       = RET_INTEGER,
4387        .arg1_type      = ARG_PTR_TO_CTX,
4388        .arg2_type      = ARG_PTR_TO_MEM,
4389        .arg3_type      = ARG_CONST_SIZE,
4390};
4391
4392static const struct bpf_func_proto *
4393bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4394{
4395        if (!md_dst) {
4396                struct metadata_dst __percpu *tmp;
4397
4398                tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4399                                                METADATA_IP_TUNNEL,
4400                                                GFP_KERNEL);
4401                if (!tmp)
4402                        return NULL;
4403                if (cmpxchg(&md_dst, NULL, tmp))
4404                        metadata_dst_free_percpu(tmp);
4405        }
4406
4407        switch (which) {
4408        case BPF_FUNC_skb_set_tunnel_key:
4409                return &bpf_skb_set_tunnel_key_proto;
4410        case BPF_FUNC_skb_set_tunnel_opt:
4411                return &bpf_skb_set_tunnel_opt_proto;
4412        default:
4413                return NULL;
4414        }
4415}
4416
4417BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4418           u32, idx)
4419{
4420        struct bpf_array *array = container_of(map, struct bpf_array, map);
4421        struct cgroup *cgrp;
4422        struct sock *sk;
4423
4424        sk = skb_to_full_sk(skb);
4425        if (!sk || !sk_fullsock(sk))
4426                return -ENOENT;
4427        if (unlikely(idx >= array->map.max_entries))
4428                return -E2BIG;
4429
4430        cgrp = READ_ONCE(array->ptrs[idx]);
4431        if (unlikely(!cgrp))
4432                return -EAGAIN;
4433
4434        return sk_under_cgroup_hierarchy(sk, cgrp);
4435}
4436
4437static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4438        .func           = bpf_skb_under_cgroup,
4439        .gpl_only       = false,
4440        .ret_type       = RET_INTEGER,
4441        .arg1_type      = ARG_PTR_TO_CTX,
4442        .arg2_type      = ARG_CONST_MAP_PTR,
4443        .arg3_type      = ARG_ANYTHING,
4444};
4445
4446#ifdef CONFIG_SOCK_CGROUP_DATA
4447static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4448{
4449        struct cgroup *cgrp;
4450
4451        sk = sk_to_full_sk(sk);
4452        if (!sk || !sk_fullsock(sk))
4453                return 0;
4454
4455        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4456        return cgroup_id(cgrp);
4457}
4458
4459BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4460{
4461        return __bpf_sk_cgroup_id(skb->sk);
4462}
4463
4464static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4465        .func           = bpf_skb_cgroup_id,
4466        .gpl_only       = false,
4467        .ret_type       = RET_INTEGER,
4468        .arg1_type      = ARG_PTR_TO_CTX,
4469};
4470
4471static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4472                                              int ancestor_level)
4473{
4474        struct cgroup *ancestor;
4475        struct cgroup *cgrp;
4476
4477        sk = sk_to_full_sk(sk);
4478        if (!sk || !sk_fullsock(sk))
4479                return 0;
4480
4481        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4482        ancestor = cgroup_ancestor(cgrp, ancestor_level);
4483        if (!ancestor)
4484                return 0;
4485
4486        return cgroup_id(ancestor);
4487}
4488
4489BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4490           ancestor_level)
4491{
4492        return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4493}
4494
4495static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4496        .func           = bpf_skb_ancestor_cgroup_id,
4497        .gpl_only       = false,
4498        .ret_type       = RET_INTEGER,
4499        .arg1_type      = ARG_PTR_TO_CTX,
4500        .arg2_type      = ARG_ANYTHING,
4501};
4502
4503BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4504{
4505        return __bpf_sk_cgroup_id(sk);
4506}
4507
4508static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4509        .func           = bpf_sk_cgroup_id,
4510        .gpl_only       = false,
4511        .ret_type       = RET_INTEGER,
4512        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4513};
4514
4515BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4516{
4517        return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4518}
4519
4520static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4521        .func           = bpf_sk_ancestor_cgroup_id,
4522        .gpl_only       = false,
4523        .ret_type       = RET_INTEGER,
4524        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4525        .arg2_type      = ARG_ANYTHING,
4526};
4527#endif
4528
4529static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4530                                  unsigned long off, unsigned long len)
4531{
4532        memcpy(dst_buff, src_buff + off, len);
4533        return 0;
4534}
4535
4536BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4537           u64, flags, void *, meta, u64, meta_size)
4538{
4539        u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4540
4541        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4542                return -EINVAL;
4543        if (unlikely(!xdp ||
4544                     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4545                return -EFAULT;
4546
4547        return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4548                                xdp_size, bpf_xdp_copy);
4549}
4550
4551static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4552        .func           = bpf_xdp_event_output,
4553        .gpl_only       = true,
4554        .ret_type       = RET_INTEGER,
4555        .arg1_type      = ARG_PTR_TO_CTX,
4556        .arg2_type      = ARG_CONST_MAP_PTR,
4557        .arg3_type      = ARG_ANYTHING,
4558        .arg4_type      = ARG_PTR_TO_MEM,
4559        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4560};
4561
4562BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4563
4564const struct bpf_func_proto bpf_xdp_output_proto = {
4565        .func           = bpf_xdp_event_output,
4566        .gpl_only       = true,
4567        .ret_type       = RET_INTEGER,
4568        .arg1_type      = ARG_PTR_TO_BTF_ID,
4569        .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4570        .arg2_type      = ARG_CONST_MAP_PTR,
4571        .arg3_type      = ARG_ANYTHING,
4572        .arg4_type      = ARG_PTR_TO_MEM,
4573        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4574};
4575
4576BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4577{
4578        return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4579}
4580
4581static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4582        .func           = bpf_get_socket_cookie,
4583        .gpl_only       = false,
4584        .ret_type       = RET_INTEGER,
4585        .arg1_type      = ARG_PTR_TO_CTX,
4586};
4587
4588BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4589{
4590        return __sock_gen_cookie(ctx->sk);
4591}
4592
4593static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4594        .func           = bpf_get_socket_cookie_sock_addr,
4595        .gpl_only       = false,
4596        .ret_type       = RET_INTEGER,
4597        .arg1_type      = ARG_PTR_TO_CTX,
4598};
4599
4600BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4601{
4602        return __sock_gen_cookie(ctx);
4603}
4604
4605static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4606        .func           = bpf_get_socket_cookie_sock,
4607        .gpl_only       = false,
4608        .ret_type       = RET_INTEGER,
4609        .arg1_type      = ARG_PTR_TO_CTX,
4610};
4611
4612BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4613{
4614        return sk ? sock_gen_cookie(sk) : 0;
4615}
4616
4617const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4618        .func           = bpf_get_socket_ptr_cookie,
4619        .gpl_only       = false,
4620        .ret_type       = RET_INTEGER,
4621        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4622};
4623
4624BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4625{
4626        return __sock_gen_cookie(ctx->sk);
4627}
4628
4629static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4630        .func           = bpf_get_socket_cookie_sock_ops,
4631        .gpl_only       = false,
4632        .ret_type       = RET_INTEGER,
4633        .arg1_type      = ARG_PTR_TO_CTX,
4634};
4635
4636static u64 __bpf_get_netns_cookie(struct sock *sk)
4637{
4638        const struct net *net = sk ? sock_net(sk) : &init_net;
4639
4640        return net->net_cookie;
4641}
4642
4643BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4644{
4645        return __bpf_get_netns_cookie(ctx);
4646}
4647
4648static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4649        .func           = bpf_get_netns_cookie_sock,
4650        .gpl_only       = false,
4651        .ret_type       = RET_INTEGER,
4652        .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4653};
4654
4655BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4656{
4657        return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4658}
4659
4660static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4661        .func           = bpf_get_netns_cookie_sock_addr,
4662        .gpl_only       = false,
4663        .ret_type       = RET_INTEGER,
4664        .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4665};
4666
4667BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4668{
4669        struct sock *sk = sk_to_full_sk(skb->sk);
4670        kuid_t kuid;
4671
4672        if (!sk || !sk_fullsock(sk))
4673                return overflowuid;
4674        kuid = sock_net_uid(sock_net(sk), sk);
4675        return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4676}
4677
4678static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4679        .func           = bpf_get_socket_uid,
4680        .gpl_only       = false,
4681        .ret_type       = RET_INTEGER,
4682        .arg1_type      = ARG_PTR_TO_CTX,
4683};
4684
4685static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4686                           char *optval, int optlen)
4687{
4688        char devname[IFNAMSIZ];
4689        int val, valbool;
4690        struct net *net;
4691        int ifindex;
4692        int ret = 0;
4693
4694        if (!sk_fullsock(sk))
4695                return -EINVAL;
4696
4697        sock_owned_by_me(sk);
4698
4699        if (level == SOL_SOCKET) {
4700                if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4701                        return -EINVAL;
4702                val = *((int *)optval);
4703                valbool = val ? 1 : 0;
4704
4705                /* Only some socketops are supported */
4706                switch (optname) {
4707                case SO_RCVBUF:
4708                        val = min_t(u32, val, sysctl_rmem_max);
4709                        sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4710                        WRITE_ONCE(sk->sk_rcvbuf,
4711                                   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4712                        break;
4713                case SO_SNDBUF:
4714                        val = min_t(u32, val, sysctl_wmem_max);
4715                        sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4716                        WRITE_ONCE(sk->sk_sndbuf,
4717                                   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4718                        break;
4719                case SO_MAX_PACING_RATE: /* 32bit version */
4720                        if (val != ~0U)
4721                                cmpxchg(&sk->sk_pacing_status,
4722                                        SK_PACING_NONE,
4723                                        SK_PACING_NEEDED);
4724                        sk->sk_max_pacing_rate = (val == ~0U) ?
4725                                                 ~0UL : (unsigned int)val;
4726                        sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4727                                                 sk->sk_max_pacing_rate);
4728                        break;
4729                case SO_PRIORITY:
4730                        sk->sk_priority = val;
4731                        break;
4732                case SO_RCVLOWAT:
4733                        if (val < 0)
4734                                val = INT_MAX;
4735                        WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4736                        break;
4737                case SO_MARK:
4738                        if (sk->sk_mark != val) {
4739                                sk->sk_mark = val;
4740                                sk_dst_reset(sk);
4741                        }
4742                        break;
4743                case SO_BINDTODEVICE:
4744                        optlen = min_t(long, optlen, IFNAMSIZ - 1);
4745                        strncpy(devname, optval, optlen);
4746                        devname[optlen] = 0;
4747
4748                        ifindex = 0;
4749                        if (devname[0] != '\0') {
4750                                struct net_device *dev;
4751
4752                                ret = -ENODEV;
4753
4754                                net = sock_net(sk);
4755                                dev = dev_get_by_name(net, devname);
4756                                if (!dev)
4757                                        break;
4758                                ifindex = dev->ifindex;
4759                                dev_put(dev);
4760                        }
4761                        fallthrough;
4762                case SO_BINDTOIFINDEX:
4763                        if (optname == SO_BINDTOIFINDEX)
4764                                ifindex = val;
4765                        ret = sock_bindtoindex(sk, ifindex, false);
4766                        break;
4767                case SO_KEEPALIVE:
4768                        if (sk->sk_prot->keepalive)
4769                                sk->sk_prot->keepalive(sk, valbool);
4770                        sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4771                        break;
4772                case SO_REUSEPORT:
4773                        sk->sk_reuseport = valbool;
4774                        break;
4775                default:
4776                        ret = -EINVAL;
4777                }
4778#ifdef CONFIG_INET
4779        } else if (level == SOL_IP) {
4780                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4781                        return -EINVAL;
4782
4783                val = *((int *)optval);
4784                /* Only some options are supported */
4785                switch (optname) {
4786                case IP_TOS:
4787                        if (val < -1 || val > 0xff) {
4788                                ret = -EINVAL;
4789                        } else {
4790                                struct inet_sock *inet = inet_sk(sk);
4791
4792                                if (val == -1)
4793                                        val = 0;
4794                                inet->tos = val;
4795                        }
4796                        break;
4797                default:
4798                        ret = -EINVAL;
4799                }
4800#if IS_ENABLED(CONFIG_IPV6)
4801        } else if (level == SOL_IPV6) {
4802                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4803                        return -EINVAL;
4804
4805                val = *((int *)optval);
4806                /* Only some options are supported */
4807                switch (optname) {
4808                case IPV6_TCLASS:
4809                        if (val < -1 || val > 0xff) {
4810                                ret = -EINVAL;
4811                        } else {
4812                                struct ipv6_pinfo *np = inet6_sk(sk);
4813
4814                                if (val == -1)
4815                                        val = 0;
4816                                np->tclass = val;
4817                        }
4818                        break;
4819                default:
4820                        ret = -EINVAL;
4821                }
4822#endif
4823        } else if (level == SOL_TCP &&
4824                   sk->sk_prot->setsockopt == tcp_setsockopt) {
4825                if (optname == TCP_CONGESTION) {
4826                        char name[TCP_CA_NAME_MAX];
4827
4828                        strncpy(name, optval, min_t(long, optlen,
4829                                                    TCP_CA_NAME_MAX-1));
4830                        name[TCP_CA_NAME_MAX-1] = 0;
4831                        ret = tcp_set_congestion_control(sk, name, false, true);
4832                } else {
4833                        struct inet_connection_sock *icsk = inet_csk(sk);
4834                        struct tcp_sock *tp = tcp_sk(sk);
4835                        unsigned long timeout;
4836
4837                        if (optlen != sizeof(int))
4838                                return -EINVAL;
4839
4840                        val = *((int *)optval);
4841                        /* Only some options are supported */
4842                        switch (optname) {
4843                        case TCP_BPF_IW:
4844                                if (val <= 0 || tp->data_segs_out > tp->syn_data)
4845                                        ret = -EINVAL;
4846                                else
4847                                        tp->snd_cwnd = val;
4848                                break;
4849                        case TCP_BPF_SNDCWND_CLAMP:
4850                                if (val <= 0) {
4851                                        ret = -EINVAL;
4852                                } else {
4853                                        tp->snd_cwnd_clamp = val;
4854                                        tp->snd_ssthresh = val;
4855                                }
4856                                break;
4857                        case TCP_BPF_DELACK_MAX:
4858                                timeout = usecs_to_jiffies(val);
4859                                if (timeout > TCP_DELACK_MAX ||
4860                                    timeout < TCP_TIMEOUT_MIN)
4861                                        return -EINVAL;
4862                                inet_csk(sk)->icsk_delack_max = timeout;
4863                                break;
4864                        case TCP_BPF_RTO_MIN:
4865                                timeout = usecs_to_jiffies(val);
4866                                if (timeout > TCP_RTO_MIN ||
4867                                    timeout < TCP_TIMEOUT_MIN)
4868                                        return -EINVAL;
4869                                inet_csk(sk)->icsk_rto_min = timeout;
4870                                break;
4871                        case TCP_SAVE_SYN:
4872                                if (val < 0 || val > 1)
4873                                        ret = -EINVAL;
4874                                else
4875                                        tp->save_syn = val;
4876                                break;
4877                        case TCP_KEEPIDLE:
4878                                ret = tcp_sock_set_keepidle_locked(sk, val);
4879                                break;
4880                        case TCP_KEEPINTVL:
4881                                if (val < 1 || val > MAX_TCP_KEEPINTVL)
4882                                        ret = -EINVAL;
4883                                else
4884                                        tp->keepalive_intvl = val * HZ;
4885                                break;
4886                        case TCP_KEEPCNT:
4887                                if (val < 1 || val > MAX_TCP_KEEPCNT)
4888                                        ret = -EINVAL;
4889                                else
4890                                        tp->keepalive_probes = val;
4891                                break;
4892                        case TCP_SYNCNT:
4893                                if (val < 1 || val > MAX_TCP_SYNCNT)
4894                                        ret = -EINVAL;
4895                                else
4896                                        icsk->icsk_syn_retries = val;
4897                                break;
4898                        case TCP_USER_TIMEOUT:
4899                                if (val < 0)
4900                                        ret = -EINVAL;
4901                                else
4902                                        icsk->icsk_user_timeout = val;
4903                                break;
4904                        case TCP_NOTSENT_LOWAT:
4905                                tp->notsent_lowat = val;
4906                                sk->sk_write_space(sk);
4907                                break;
4908                        case TCP_WINDOW_CLAMP:
4909                                ret = tcp_set_window_clamp(sk, val);
4910                                break;
4911                        default:
4912                                ret = -EINVAL;
4913                        }
4914                }
4915#endif
4916        } else {
4917                ret = -EINVAL;
4918        }
4919        return ret;
4920}
4921
4922static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4923                           char *optval, int optlen)
4924{
4925        if (!sk_fullsock(sk))
4926                goto err_clear;
4927
4928        sock_owned_by_me(sk);
4929
4930        if (level == SOL_SOCKET) {
4931                if (optlen != sizeof(int))
4932                        goto err_clear;
4933
4934                switch (optname) {
4935                case SO_MARK:
4936                        *((int *)optval) = sk->sk_mark;
4937                        break;
4938                case SO_PRIORITY:
4939                        *((int *)optval) = sk->sk_priority;
4940                        break;
4941                case SO_BINDTOIFINDEX:
4942                        *((int *)optval) = sk->sk_bound_dev_if;
4943                        break;
4944                case SO_REUSEPORT:
4945                        *((int *)optval) = sk->sk_reuseport;
4946                        break;
4947                default:
4948                        goto err_clear;
4949                }
4950#ifdef CONFIG_INET
4951        } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4952                struct inet_connection_sock *icsk;
4953                struct tcp_sock *tp;
4954
4955                switch (optname) {
4956                case TCP_CONGESTION:
4957                        icsk = inet_csk(sk);
4958
4959                        if (!icsk->icsk_ca_ops || optlen <= 1)
4960                                goto err_clear;
4961                        strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4962                        optval[optlen - 1] = 0;
4963                        break;
4964                case TCP_SAVED_SYN:
4965                        tp = tcp_sk(sk);
4966
4967                        if (optlen <= 0 || !tp->saved_syn ||
4968                            optlen > tcp_saved_syn_len(tp->saved_syn))
4969                                goto err_clear;
4970                        memcpy(optval, tp->saved_syn->data, optlen);
4971                        break;
4972                default:
4973                        goto err_clear;
4974                }
4975        } else if (level == SOL_IP) {
4976                struct inet_sock *inet = inet_sk(sk);
4977
4978                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4979                        goto err_clear;
4980
4981                /* Only some options are supported */
4982                switch (optname) {
4983                case IP_TOS:
4984                        *((int *)optval) = (int)inet->tos;
4985                        break;
4986                default:
4987                        goto err_clear;
4988                }
4989#if IS_ENABLED(CONFIG_IPV6)
4990        } else if (level == SOL_IPV6) {
4991                struct ipv6_pinfo *np = inet6_sk(sk);
4992
4993                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4994                        goto err_clear;
4995
4996                /* Only some options are supported */
4997                switch (optname) {
4998                case IPV6_TCLASS:
4999                        *((int *)optval) = (int)np->tclass;
5000                        break;
5001                default:
5002                        goto err_clear;
5003                }
5004#endif
5005#endif
5006        } else {
5007                goto err_clear;
5008        }
5009        return 0;
5010err_clear:
5011        memset(optval, 0, optlen);
5012        return -EINVAL;
5013}
5014
5015BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5016           int, level, int, optname, char *, optval, int, optlen)
5017{
5018        return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5019}
5020
5021static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5022        .func           = bpf_sock_addr_setsockopt,
5023        .gpl_only       = false,
5024        .ret_type       = RET_INTEGER,
5025        .arg1_type      = ARG_PTR_TO_CTX,
5026        .arg2_type      = ARG_ANYTHING,
5027        .arg3_type      = ARG_ANYTHING,
5028        .arg4_type      = ARG_PTR_TO_MEM,
5029        .arg5_type      = ARG_CONST_SIZE,
5030};
5031
5032BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5033           int, level, int, optname, char *, optval, int, optlen)
5034{
5035        return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5036}
5037
5038static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5039        .func           = bpf_sock_addr_getsockopt,
5040        .gpl_only       = false,
5041        .ret_type       = RET_INTEGER,
5042        .arg1_type      = ARG_PTR_TO_CTX,
5043        .arg2_type      = ARG_ANYTHING,
5044        .arg3_type      = ARG_ANYTHING,
5045        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5046        .arg5_type      = ARG_CONST_SIZE,
5047};
5048
5049BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5050           int, level, int, optname, char *, optval, int, optlen)
5051{
5052        return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5053}
5054
5055static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5056        .func           = bpf_sock_ops_setsockopt,
5057        .gpl_only       = false,
5058        .ret_type       = RET_INTEGER,
5059        .arg1_type      = ARG_PTR_TO_CTX,
5060        .arg2_type      = ARG_ANYTHING,
5061        .arg3_type      = ARG_ANYTHING,
5062        .arg4_type      = ARG_PTR_TO_MEM,
5063        .arg5_type      = ARG_CONST_SIZE,
5064};
5065
5066static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5067                                int optname, const u8 **start)
5068{
5069        struct sk_buff *syn_skb = bpf_sock->syn_skb;
5070        const u8 *hdr_start;
5071        int ret;
5072
5073        if (syn_skb) {
5074                /* sk is a request_sock here */
5075
5076                if (optname == TCP_BPF_SYN) {
5077                        hdr_start = syn_skb->data;
5078                        ret = tcp_hdrlen(syn_skb);
5079                } else if (optname == TCP_BPF_SYN_IP) {
5080                        hdr_start = skb_network_header(syn_skb);
5081                        ret = skb_network_header_len(syn_skb) +
5082                                tcp_hdrlen(syn_skb);
5083                } else {
5084                        /* optname == TCP_BPF_SYN_MAC */
5085                        hdr_start = skb_mac_header(syn_skb);
5086                        ret = skb_mac_header_len(syn_skb) +
5087                                skb_network_header_len(syn_skb) +
5088                                tcp_hdrlen(syn_skb);
5089                }
5090        } else {
5091                struct sock *sk = bpf_sock->sk;
5092                struct saved_syn *saved_syn;
5093
5094                if (sk->sk_state == TCP_NEW_SYN_RECV)
5095                        /* synack retransmit. bpf_sock->syn_skb will
5096                         * not be available.  It has to resort to
5097                         * saved_syn (if it is saved).
5098                         */
5099                        saved_syn = inet_reqsk(sk)->saved_syn;
5100                else
5101                        saved_syn = tcp_sk(sk)->saved_syn;
5102
5103                if (!saved_syn)
5104                        return -ENOENT;
5105
5106                if (optname == TCP_BPF_SYN) {
5107                        hdr_start = saved_syn->data +
5108                                saved_syn->mac_hdrlen +
5109                                saved_syn->network_hdrlen;
5110                        ret = saved_syn->tcp_hdrlen;
5111                } else if (optname == TCP_BPF_SYN_IP) {
5112                        hdr_start = saved_syn->data +
5113                                saved_syn->mac_hdrlen;
5114                        ret = saved_syn->network_hdrlen +
5115                                saved_syn->tcp_hdrlen;
5116                } else {
5117                        /* optname == TCP_BPF_SYN_MAC */
5118
5119                        /* TCP_SAVE_SYN may not have saved the mac hdr */
5120                        if (!saved_syn->mac_hdrlen)
5121                                return -ENOENT;
5122
5123                        hdr_start = saved_syn->data;
5124                        ret = saved_syn->mac_hdrlen +
5125                                saved_syn->network_hdrlen +
5126                                saved_syn->tcp_hdrlen;
5127                }
5128        }
5129
5130        *start = hdr_start;
5131        return ret;
5132}
5133
5134BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5135           int, level, int, optname, char *, optval, int, optlen)
5136{
5137        if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5138            optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5139                int ret, copy_len = 0;
5140                const u8 *start;
5141
5142                ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5143                if (ret > 0) {
5144                        copy_len = ret;
5145                        if (optlen < copy_len) {
5146                                copy_len = optlen;
5147                                ret = -ENOSPC;
5148                        }
5149
5150                        memcpy(optval, start, copy_len);
5151                }
5152
5153                /* Zero out unused buffer at the end */
5154                memset(optval + copy_len, 0, optlen - copy_len);
5155
5156                return ret;
5157        }
5158
5159        return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5160}
5161
5162static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5163        .func           = bpf_sock_ops_getsockopt,
5164        .gpl_only       = false,
5165        .ret_type       = RET_INTEGER,
5166        .arg1_type      = ARG_PTR_TO_CTX,
5167        .arg2_type      = ARG_ANYTHING,
5168        .arg3_type      = ARG_ANYTHING,
5169        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5170        .arg5_type      = ARG_CONST_SIZE,
5171};
5172
5173BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5174           int, argval)
5175{
5176        struct sock *sk = bpf_sock->sk;
5177        int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5178
5179        if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5180                return -EINVAL;
5181
5182        tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5183
5184        return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5185}
5186
5187static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5188        .func           = bpf_sock_ops_cb_flags_set,
5189        .gpl_only       = false,
5190        .ret_type       = RET_INTEGER,
5191        .arg1_type      = ARG_PTR_TO_CTX,
5192        .arg2_type      = ARG_ANYTHING,
5193};
5194
5195const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5196EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5197
5198BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5199           int, addr_len)
5200{
5201#ifdef CONFIG_INET
5202        struct sock *sk = ctx->sk;
5203        u32 flags = BIND_FROM_BPF;
5204        int err;
5205
5206        err = -EINVAL;
5207        if (addr_len < offsetofend(struct sockaddr, sa_family))
5208                return err;
5209        if (addr->sa_family == AF_INET) {
5210                if (addr_len < sizeof(struct sockaddr_in))
5211                        return err;
5212                if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5213                        flags |= BIND_FORCE_ADDRESS_NO_PORT;
5214                return __inet_bind(sk, addr, addr_len, flags);
5215#if IS_ENABLED(CONFIG_IPV6)
5216        } else if (addr->sa_family == AF_INET6) {
5217                if (addr_len < SIN6_LEN_RFC2133)
5218                        return err;
5219                if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5220                        flags |= BIND_FORCE_ADDRESS_NO_PORT;
5221                /* ipv6_bpf_stub cannot be NULL, since it's called from
5222                 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5223                 */
5224                return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5225#endif /* CONFIG_IPV6 */
5226        }
5227#endif /* CONFIG_INET */
5228
5229        return -EAFNOSUPPORT;
5230}
5231
5232static const struct bpf_func_proto bpf_bind_proto = {
5233        .func           = bpf_bind,
5234        .gpl_only       = false,
5235        .ret_type       = RET_INTEGER,
5236        .arg1_type      = ARG_PTR_TO_CTX,
5237        .arg2_type      = ARG_PTR_TO_MEM,
5238        .arg3_type      = ARG_CONST_SIZE,
5239};
5240
5241#ifdef CONFIG_XFRM
5242BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5243           struct bpf_xfrm_state *, to, u32, size, u64, flags)
5244{
5245        const struct sec_path *sp = skb_sec_path(skb);
5246        const struct xfrm_state *x;
5247
5248        if (!sp || unlikely(index >= sp->len || flags))
5249                goto err_clear;
5250
5251        x = sp->xvec[index];
5252
5253        if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5254                goto err_clear;
5255
5256        to->reqid = x->props.reqid;
5257        to->spi = x->id.spi;
5258        to->family = x->props.family;
5259        to->ext = 0;
5260
5261        if (to->family == AF_INET6) {
5262                memcpy(to->remote_ipv6, x->props.saddr.a6,
5263                       sizeof(to->remote_ipv6));
5264        } else {
5265                to->remote_ipv4 = x->props.saddr.a4;
5266                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5267        }
5268
5269        return 0;
5270err_clear:
5271        memset(to, 0, size);
5272        return -EINVAL;
5273}
5274
5275static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5276        .func           = bpf_skb_get_xfrm_state,
5277        .gpl_only       = false,
5278        .ret_type       = RET_INTEGER,
5279        .arg1_type      = ARG_PTR_TO_CTX,
5280        .arg2_type      = ARG_ANYTHING,
5281        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5282        .arg4_type      = ARG_CONST_SIZE,
5283        .arg5_type      = ARG_ANYTHING,
5284};
5285#endif
5286
5287#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5288static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5289                                  const struct neighbour *neigh,
5290                                  const struct net_device *dev, u32 mtu)
5291{
5292        memcpy(params->dmac, neigh->ha, ETH_ALEN);
5293        memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5294        params->h_vlan_TCI = 0;
5295        params->h_vlan_proto = 0;
5296        if (mtu)
5297                params->mtu_result = mtu; /* union with tot_len */
5298
5299        return 0;
5300}
5301#endif
5302
5303#if IS_ENABLED(CONFIG_INET)
5304static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5305                               u32 flags, bool check_mtu)
5306{
5307        struct fib_nh_common *nhc;
5308        struct in_device *in_dev;
5309        struct neighbour *neigh;
5310        struct net_device *dev;
5311        struct fib_result res;
5312        struct flowi4 fl4;
5313        u32 mtu = 0;
5314        int err;
5315
5316        dev = dev_get_by_index_rcu(net, params->ifindex);
5317        if (unlikely(!dev))
5318                return -ENODEV;
5319
5320        /* verify forwarding is enabled on this interface */
5321        in_dev = __in_dev_get_rcu(dev);
5322        if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5323                return BPF_FIB_LKUP_RET_FWD_DISABLED;
5324
5325        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5326                fl4.flowi4_iif = 1;
5327                fl4.flowi4_oif = params->ifindex;
5328        } else {
5329                fl4.flowi4_iif = params->ifindex;
5330                fl4.flowi4_oif = 0;
5331        }
5332        fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5333        fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5334        fl4.flowi4_flags = 0;
5335
5336        fl4.flowi4_proto = params->l4_protocol;
5337        fl4.daddr = params->ipv4_dst;
5338        fl4.saddr = params->ipv4_src;
5339        fl4.fl4_sport = params->sport;
5340        fl4.fl4_dport = params->dport;
5341        fl4.flowi4_multipath_hash = 0;
5342
5343        if (flags & BPF_FIB_LOOKUP_DIRECT) {
5344                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5345                struct fib_table *tb;
5346
5347                tb = fib_get_table(net, tbid);
5348                if (unlikely(!tb))
5349                        return BPF_FIB_LKUP_RET_NOT_FWDED;
5350
5351                err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5352        } else {
5353                fl4.flowi4_mark = 0;
5354                fl4.flowi4_secid = 0;
5355                fl4.flowi4_tun_key.tun_id = 0;
5356                fl4.flowi4_uid = sock_net_uid(net, NULL);
5357
5358                err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5359        }
5360
5361        if (err) {
5362                /* map fib lookup errors to RTN_ type */
5363                if (err == -EINVAL)
5364                        return BPF_FIB_LKUP_RET_BLACKHOLE;
5365                if (err == -EHOSTUNREACH)
5366                        return BPF_FIB_LKUP_RET_UNREACHABLE;
5367                if (err == -EACCES)
5368                        return BPF_FIB_LKUP_RET_PROHIBIT;
5369
5370                return BPF_FIB_LKUP_RET_NOT_FWDED;
5371        }
5372
5373        if (res.type != RTN_UNICAST)
5374                return BPF_FIB_LKUP_RET_NOT_FWDED;
5375
5376        if (fib_info_num_path(res.fi) > 1)
5377                fib_select_path(net, &res, &fl4, NULL);
5378
5379        if (check_mtu) {
5380                mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5381                if (params->tot_len > mtu) {
5382                        params->mtu_result = mtu; /* union with tot_len */
5383                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5384                }
5385        }
5386
5387        nhc = res.nhc;
5388
5389        /* do not handle lwt encaps right now */
5390        if (nhc->nhc_lwtstate)
5391                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5392
5393        dev = nhc->nhc_dev;
5394
5395        params->rt_metric = res.fi->fib_priority;
5396        params->ifindex = dev->ifindex;
5397
5398        /* xdp and cls_bpf programs are run in RCU-bh so
5399         * rcu_read_lock_bh is not needed here
5400         */
5401        if (likely(nhc->nhc_gw_family != AF_INET6)) {
5402                if (nhc->nhc_gw_family)
5403                        params->ipv4_dst = nhc->nhc_gw.ipv4;
5404
5405                neigh = __ipv4_neigh_lookup_noref(dev,
5406                                                 (__force u32)params->ipv4_dst);
5407        } else {
5408                struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5409
5410                params->family = AF_INET6;
5411                *dst = nhc->nhc_gw.ipv6;
5412                neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5413        }
5414
5415        if (!neigh)
5416                return BPF_FIB_LKUP_RET_NO_NEIGH;
5417
5418        return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5419}
5420#endif
5421
5422#if IS_ENABLED(CONFIG_IPV6)
5423static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5424                               u32 flags, bool check_mtu)
5425{
5426        struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5427        struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5428        struct fib6_result res = {};
5429        struct neighbour *neigh;
5430        struct net_device *dev;
5431        struct inet6_dev *idev;
5432        struct flowi6 fl6;
5433        int strict = 0;
5434        int oif, err;
5435        u32 mtu = 0;
5436
5437        /* link local addresses are never forwarded */
5438        if (rt6_need_strict(dst) || rt6_need_strict(src))
5439                return BPF_FIB_LKUP_RET_NOT_FWDED;
5440
5441        dev = dev_get_by_index_rcu(net, params->ifindex);
5442        if (unlikely(!dev))
5443                return -ENODEV;
5444
5445        idev = __in6_dev_get_safely(dev);
5446        if (unlikely(!idev || !idev->cnf.forwarding))
5447                return BPF_FIB_LKUP_RET_FWD_DISABLED;
5448
5449        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5450                fl6.flowi6_iif = 1;
5451                oif = fl6.flowi6_oif = params->ifindex;
5452        } else {
5453                oif = fl6.flowi6_iif = params->ifindex;
5454                fl6.flowi6_oif = 0;
5455                strict = RT6_LOOKUP_F_HAS_SADDR;
5456        }
5457        fl6.flowlabel = params->flowinfo;
5458        fl6.flowi6_scope = 0;
5459        fl6.flowi6_flags = 0;
5460        fl6.mp_hash = 0;
5461
5462        fl6.flowi6_proto = params->l4_protocol;
5463        fl6.daddr = *dst;
5464        fl6.saddr = *src;
5465        fl6.fl6_sport = params->sport;
5466        fl6.fl6_dport = params->dport;
5467
5468        if (flags & BPF_FIB_LOOKUP_DIRECT) {
5469                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5470                struct fib6_table *tb;
5471
5472                tb = ipv6_stub->fib6_get_table(net, tbid);
5473                if (unlikely(!tb))
5474                        return BPF_FIB_LKUP_RET_NOT_FWDED;
5475
5476                err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5477                                                   strict);
5478        } else {
5479                fl6.flowi6_mark = 0;
5480                fl6.flowi6_secid = 0;
5481                fl6.flowi6_tun_key.tun_id = 0;
5482                fl6.flowi6_uid = sock_net_uid(net, NULL);
5483
5484                err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5485        }
5486
5487        if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5488                     res.f6i == net->ipv6.fib6_null_entry))
5489                return BPF_FIB_LKUP_RET_NOT_FWDED;
5490
5491        switch (res.fib6_type) {
5492        /* only unicast is forwarded */
5493        case RTN_UNICAST:
5494                break;
5495        case RTN_BLACKHOLE:
5496                return BPF_FIB_LKUP_RET_BLACKHOLE;
5497        case RTN_UNREACHABLE:
5498                return BPF_FIB_LKUP_RET_UNREACHABLE;
5499        case RTN_PROHIBIT:
5500                return BPF_FIB_LKUP_RET_PROHIBIT;
5501        default:
5502                return BPF_FIB_LKUP_RET_NOT_FWDED;
5503        }
5504
5505        ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5506                                    fl6.flowi6_oif != 0, NULL, strict);
5507
5508        if (check_mtu) {
5509                mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5510                if (params->tot_len > mtu) {
5511                        params->mtu_result = mtu; /* union with tot_len */
5512                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5513                }
5514        }
5515
5516        if (res.nh->fib_nh_lws)
5517                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5518
5519        if (res.nh->fib_nh_gw_family)
5520                *dst = res.nh->fib_nh_gw6;
5521
5522        dev = res.nh->fib_nh_dev;
5523        params->rt_metric = res.f6i->fib6_metric;
5524        params->ifindex = dev->ifindex;
5525
5526        /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5527         * not needed here.
5528         */
5529        neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5530        if (!neigh)
5531                return BPF_FIB_LKUP_RET_NO_NEIGH;
5532
5533        return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5534}
5535#endif
5536
5537BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5538           struct bpf_fib_lookup *, params, int, plen, u32, flags)
5539{
5540        if (plen < sizeof(*params))
5541                return -EINVAL;
5542
5543        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5544                return -EINVAL;
5545
5546        switch (params->family) {
5547#if IS_ENABLED(CONFIG_INET)
5548        case AF_INET:
5549                return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5550                                           flags, true);
5551#endif
5552#if IS_ENABLED(CONFIG_IPV6)
5553        case AF_INET6:
5554                return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5555                                           flags, true);
5556#endif
5557        }
5558        return -EAFNOSUPPORT;
5559}
5560
5561static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5562        .func           = bpf_xdp_fib_lookup,
5563        .gpl_only       = true,
5564        .ret_type       = RET_INTEGER,
5565        .arg1_type      = ARG_PTR_TO_CTX,
5566        .arg2_type      = ARG_PTR_TO_MEM,
5567        .arg3_type      = ARG_CONST_SIZE,
5568        .arg4_type      = ARG_ANYTHING,
5569};
5570
5571BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5572           struct bpf_fib_lookup *, params, int, plen, u32, flags)
5573{
5574        struct net *net = dev_net(skb->dev);
5575        int rc = -EAFNOSUPPORT;
5576        bool check_mtu = false;
5577
5578        if (plen < sizeof(*params))
5579                return -EINVAL;
5580
5581        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5582                return -EINVAL;
5583
5584        if (params->tot_len)
5585                check_mtu = true;
5586
5587        switch (params->family) {
5588#if IS_ENABLED(CONFIG_INET)
5589        case AF_INET:
5590                rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5591                break;
5592#endif
5593#if IS_ENABLED(CONFIG_IPV6)
5594        case AF_INET6:
5595                rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5596                break;
5597#endif
5598        }
5599
5600        if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5601                struct net_device *dev;
5602
5603                /* When tot_len isn't provided by user, check skb
5604                 * against MTU of FIB lookup resulting net_device
5605                 */
5606                dev = dev_get_by_index_rcu(net, params->ifindex);
5607                if (!is_skb_forwardable(dev, skb))
5608                        rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5609
5610                params->mtu_result = dev->mtu; /* union with tot_len */
5611        }
5612
5613        return rc;
5614}
5615
5616static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5617        .func           = bpf_skb_fib_lookup,
5618        .gpl_only       = true,
5619        .ret_type       = RET_INTEGER,
5620        .arg1_type      = ARG_PTR_TO_CTX,
5621        .arg2_type      = ARG_PTR_TO_MEM,
5622        .arg3_type      = ARG_CONST_SIZE,
5623        .arg4_type      = ARG_ANYTHING,
5624};
5625
5626static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5627                                            u32 ifindex)
5628{
5629        struct net *netns = dev_net(dev_curr);
5630
5631        /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5632        if (ifindex == 0)
5633                return dev_curr;
5634
5635        return dev_get_by_index_rcu(netns, ifindex);
5636}
5637
5638BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5639           u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5640{
5641        int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5642        struct net_device *dev = skb->dev;
5643        int skb_len, dev_len;
5644        int mtu;
5645
5646        if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5647                return -EINVAL;
5648
5649        if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5650                return -EINVAL;
5651
5652        dev = __dev_via_ifindex(dev, ifindex);
5653        if (unlikely(!dev))
5654                return -ENODEV;
5655
5656        mtu = READ_ONCE(dev->mtu);
5657
5658        dev_len = mtu + dev->hard_header_len;
5659
5660        /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5661        skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5662
5663        skb_len += len_diff; /* minus result pass check */
5664        if (skb_len <= dev_len) {
5665                ret = BPF_MTU_CHK_RET_SUCCESS;
5666                goto out;
5667        }
5668        /* At this point, skb->len exceed MTU, but as it include length of all
5669         * segments, it can still be below MTU.  The SKB can possibly get
5670         * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5671         * must choose if segs are to be MTU checked.
5672         */
5673        if (skb_is_gso(skb)) {
5674                ret = BPF_MTU_CHK_RET_SUCCESS;
5675
5676                if (flags & BPF_MTU_CHK_SEGS &&
5677                    !skb_gso_validate_network_len(skb, mtu))
5678                        ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5679        }
5680out:
5681        /* BPF verifier guarantees valid pointer */
5682        *mtu_len = mtu;
5683
5684        return ret;
5685}
5686
5687BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5688           u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5689{
5690        struct net_device *dev = xdp->rxq->dev;
5691        int xdp_len = xdp->data_end - xdp->data;
5692        int ret = BPF_MTU_CHK_RET_SUCCESS;
5693        int mtu, dev_len;
5694
5695        /* XDP variant doesn't support multi-buffer segment check (yet) */
5696        if (unlikely(flags))
5697                return -EINVAL;
5698
5699        dev = __dev_via_ifindex(dev, ifindex);
5700        if (unlikely(!dev))
5701                return -ENODEV;
5702
5703        mtu = READ_ONCE(dev->mtu);
5704
5705        /* Add L2-header as dev MTU is L3 size */
5706        dev_len = mtu + dev->hard_header_len;
5707
5708        /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5709        if (*mtu_len)
5710                xdp_len = *mtu_len + dev->hard_header_len;
5711
5712        xdp_len += len_diff; /* minus result pass check */
5713        if (xdp_len > dev_len)
5714                ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5715
5716        /* BPF verifier guarantees valid pointer */
5717        *mtu_len = mtu;
5718
5719        return ret;
5720}
5721
5722static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5723        .func           = bpf_skb_check_mtu,
5724        .gpl_only       = true,
5725        .ret_type       = RET_INTEGER,
5726        .arg1_type      = ARG_PTR_TO_CTX,
5727        .arg2_type      = ARG_ANYTHING,
5728        .arg3_type      = ARG_PTR_TO_INT,
5729        .arg4_type      = ARG_ANYTHING,
5730        .arg5_type      = ARG_ANYTHING,
5731};
5732
5733static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5734        .func           = bpf_xdp_check_mtu,
5735        .gpl_only       = true,
5736        .ret_type       = RET_INTEGER,
5737        .arg1_type      = ARG_PTR_TO_CTX,
5738        .arg2_type      = ARG_ANYTHING,
5739        .arg3_type      = ARG_PTR_TO_INT,
5740        .arg4_type      = ARG_ANYTHING,
5741        .arg5_type      = ARG_ANYTHING,
5742};
5743
5744#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5745static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5746{
5747        int err;
5748        struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5749
5750        if (!seg6_validate_srh(srh, len, false))
5751                return -EINVAL;
5752
5753        switch (type) {
5754        case BPF_LWT_ENCAP_SEG6_INLINE:
5755                if (skb->protocol != htons(ETH_P_IPV6))
5756                        return -EBADMSG;
5757
5758                err = seg6_do_srh_inline(skb, srh);
5759                break;
5760        case BPF_LWT_ENCAP_SEG6:
5761                skb_reset_inner_headers(skb);
5762                skb->encapsulation = 1;
5763                err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5764                break;
5765        default:
5766                return -EINVAL;
5767        }
5768
5769        bpf_compute_data_pointers(skb);
5770        if (err)
5771                return err;
5772
5773        ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5774        skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5775
5776        return seg6_lookup_nexthop(skb, NULL, 0);
5777}
5778#endif /* CONFIG_IPV6_SEG6_BPF */
5779
5780#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5781static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5782                             bool ingress)
5783{
5784        return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5785}
5786#endif
5787
5788BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5789           u32, len)
5790{
5791        switch (type) {
5792#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5793        case BPF_LWT_ENCAP_SEG6:
5794        case BPF_LWT_ENCAP_SEG6_INLINE:
5795                return bpf_push_seg6_encap(skb, type, hdr, len);
5796#endif
5797#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5798        case BPF_LWT_ENCAP_IP:
5799                return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5800#endif
5801        default:
5802                return -EINVAL;
5803        }
5804}
5805
5806BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5807           void *, hdr, u32, len)
5808{
5809        switch (type) {
5810#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5811        case BPF_LWT_ENCAP_IP:
5812                return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5813#endif
5814        default:
5815                return -EINVAL;
5816        }
5817}
5818
5819static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5820        .func           = bpf_lwt_in_push_encap,
5821        .gpl_only       = false,
5822        .ret_type       = RET_INTEGER,
5823        .arg1_type      = ARG_PTR_TO_CTX,
5824        .arg2_type      = ARG_ANYTHING,
5825        .arg3_type      = ARG_PTR_TO_MEM,
5826        .arg4_type      = ARG_CONST_SIZE
5827};
5828
5829static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5830        .func           = bpf_lwt_xmit_push_encap,
5831        .gpl_only       = false,
5832        .ret_type       = RET_INTEGER,
5833        .arg1_type      = ARG_PTR_TO_CTX,
5834        .arg2_type      = ARG_ANYTHING,
5835        .arg3_type      = ARG_PTR_TO_MEM,
5836        .arg4_type      = ARG_CONST_SIZE
5837};
5838
5839#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5840BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5841           const void *, from, u32, len)
5842{
5843        struct seg6_bpf_srh_state *srh_state =
5844                this_cpu_ptr(&seg6_bpf_srh_states);
5845        struct ipv6_sr_hdr *srh = srh_state->srh;
5846        void *srh_tlvs, *srh_end, *ptr;
5847        int srhoff = 0;
5848
5849        if (srh == NULL)
5850                return -EINVAL;
5851
5852        srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5853        srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5854
5855        ptr = skb->data + offset;
5856        if (ptr >= srh_tlvs && ptr + len <= srh_end)
5857                srh_state->valid = false;
5858        else if (ptr < (void *)&srh->flags ||
5859                 ptr + len > (void *)&srh->segments)
5860                return -EFAULT;
5861
5862        if (unlikely(bpf_try_make_writable(skb, offset + len)))
5863                return -EFAULT;
5864        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5865                return -EINVAL;
5866        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5867
5868        memcpy(skb->data + offset, from, len);
5869        return 0;
5870}
5871
5872static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5873        .func           = bpf_lwt_seg6_store_bytes,
5874        .gpl_only       = false,
5875        .ret_type       = RET_INTEGER,
5876        .arg1_type      = ARG_PTR_TO_CTX,
5877        .arg2_type      = ARG_ANYTHING,
5878        .arg3_type      = ARG_PTR_TO_MEM,
5879        .arg4_type      = ARG_CONST_SIZE
5880};
5881
5882static void bpf_update_srh_state(struct sk_buff *skb)
5883{
5884        struct seg6_bpf_srh_state *srh_state =
5885                this_cpu_ptr(&seg6_bpf_srh_states);
5886        int srhoff = 0;
5887
5888        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5889                srh_state->srh = NULL;
5890        } else {
5891                srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5892                srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5893                srh_state->valid = true;
5894        }
5895}
5896
5897BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5898           u32, action, void *, param, u32, param_len)
5899{
5900        struct seg6_bpf_srh_state *srh_state =
5901                this_cpu_ptr(&seg6_bpf_srh_states);
5902        int hdroff = 0;
5903        int err;
5904
5905        switch (action) {
5906        case SEG6_LOCAL_ACTION_END_X:
5907                if (!seg6_bpf_has_valid_srh(skb))
5908                        return -EBADMSG;
5909                if (param_len != sizeof(struct in6_addr))
5910                        return -EINVAL;
5911                return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5912        case SEG6_LOCAL_ACTION_END_T:
5913                if (!seg6_bpf_has_valid_srh(skb))
5914                        return -EBADMSG;
5915                if (param_len != sizeof(int))
5916                        return -EINVAL;
5917                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5918        case SEG6_LOCAL_ACTION_END_DT6:
5919                if (!seg6_bpf_has_valid_srh(skb))
5920                        return -EBADMSG;
5921                if (param_len != sizeof(int))
5922                        return -EINVAL;
5923
5924                if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5925                        return -EBADMSG;
5926                if (!pskb_pull(skb, hdroff))
5927                        return -EBADMSG;
5928
5929                skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5930                skb_reset_network_header(skb);
5931                skb_reset_transport_header(skb);
5932                skb->encapsulation = 0;
5933
5934                bpf_compute_data_pointers(skb);
5935                bpf_update_srh_state(skb);
5936                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5937        case SEG6_LOCAL_ACTION_END_B6:
5938                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5939                        return -EBADMSG;
5940                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5941                                          param, param_len);
5942                if (!err)
5943                        bpf_update_srh_state(skb);
5944
5945                return err;
5946        case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5947                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5948                        return -EBADMSG;
5949                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5950                                          param, param_len);
5951                if (!err)
5952                        bpf_update_srh_state(skb);
5953
5954                return err;
5955        default:
5956                return -EINVAL;
5957        }
5958}
5959
5960static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5961        .func           = bpf_lwt_seg6_action,
5962        .gpl_only       = false,
5963        .ret_type       = RET_INTEGER,
5964        .arg1_type      = ARG_PTR_TO_CTX,
5965        .arg2_type      = ARG_ANYTHING,
5966        .arg3_type      = ARG_PTR_TO_MEM,
5967        .arg4_type      = ARG_CONST_SIZE
5968};
5969
5970BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5971           s32, len)
5972{
5973        struct seg6_bpf_srh_state *srh_state =
5974                this_cpu_ptr(&seg6_bpf_srh_states);
5975        struct ipv6_sr_hdr *srh = srh_state->srh;
5976        void *srh_end, *srh_tlvs, *ptr;
5977        struct ipv6hdr *hdr;
5978        int srhoff = 0;
5979        int ret;
5980
5981        if (unlikely(srh == NULL))
5982                return -EINVAL;
5983
5984        srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5985                        ((srh->first_segment + 1) << 4));
5986        srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5987                        srh_state->hdrlen);
5988        ptr = skb->data + offset;
5989
5990        if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5991                return -EFAULT;
5992        if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5993                return -EFAULT;
5994
5995        if (len > 0) {
5996                ret = skb_cow_head(skb, len);
5997                if (unlikely(ret < 0))
5998                        return ret;
5999
6000                ret = bpf_skb_net_hdr_push(skb, offset, len);
6001        } else {
6002                ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6003        }
6004
6005        bpf_compute_data_pointers(skb);
6006        if (unlikely(ret < 0))
6007                return ret;
6008
6009        hdr = (struct ipv6hdr *)skb->data;
6010        hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6011
6012        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6013                return -EINVAL;
6014        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6015        srh_state->hdrlen += len;
6016        srh_state->valid = false;
6017        return 0;
6018}
6019
6020static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6021        .func           = bpf_lwt_seg6_adjust_srh,
6022        .gpl_only       = false,
6023        .ret_type       = RET_INTEGER,
6024        .arg1_type      = ARG_PTR_TO_CTX,
6025        .arg2_type      = ARG_ANYTHING,
6026        .arg3_type      = ARG_ANYTHING,
6027};
6028#endif /* CONFIG_IPV6_SEG6_BPF */
6029
6030#ifdef CONFIG_INET
6031static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6032                              int dif, int sdif, u8 family, u8 proto)
6033{
6034        bool refcounted = false;
6035        struct sock *sk = NULL;
6036
6037        if (family == AF_INET) {
6038                __be32 src4 = tuple->ipv4.saddr;
6039                __be32 dst4 = tuple->ipv4.daddr;
6040
6041                if (proto == IPPROTO_TCP)
6042                        sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6043                                           src4, tuple->ipv4.sport,
6044                                           dst4, tuple->ipv4.dport,
6045                                           dif, sdif, &refcounted);
6046                else
6047                        sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6048                                               dst4, tuple->ipv4.dport,
6049                                               dif, sdif, &udp_table, NULL);
6050#if IS_ENABLED(CONFIG_IPV6)
6051        } else {
6052                struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6053                struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6054
6055                if (proto == IPPROTO_TCP)
6056                        sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6057                                            src6, tuple->ipv6.sport,
6058                                            dst6, ntohs(tuple->ipv6.dport),
6059                                            dif, sdif, &refcounted);
6060                else if (likely(ipv6_bpf_stub))
6061                        sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6062                                                            src6, tuple->ipv6.sport,
6063                                                            dst6, tuple->ipv6.dport,
6064                                                            dif, sdif,
6065                                                            &udp_table, NULL);
6066#endif
6067        }
6068
6069        if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6070                WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6071                sk = NULL;
6072        }
6073        return sk;
6074}
6075
6076/* bpf_skc_lookup performs the core lookup for different types of sockets,
6077 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6078 * Returns the socket as an 'unsigned long' to simplify the casting in the
6079 * callers to satisfy BPF_CALL declarations.
6080 */
6081static struct sock *
6082__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6083                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6084                 u64 flags)
6085{
6086        struct sock *sk = NULL;
6087        u8 family = AF_UNSPEC;
6088        struct net *net;
6089        int sdif;
6090
6091        if (len == sizeof(tuple->ipv4))
6092                family = AF_INET;
6093        else if (len == sizeof(tuple->ipv6))
6094                family = AF_INET6;
6095        else
6096                return NULL;
6097
6098        if (unlikely(family == AF_UNSPEC || flags ||
6099                     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6100                goto out;
6101
6102        if (family == AF_INET)
6103                sdif = inet_sdif(skb);
6104        else
6105                sdif = inet6_sdif(skb);
6106
6107        if ((s32)netns_id < 0) {
6108                net = caller_net;
6109                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6110        } else {
6111                net = get_net_ns_by_id(caller_net, netns_id);
6112                if (unlikely(!net))
6113                        goto out;
6114                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6115                put_net(net);
6116        }
6117
6118out:
6119        return sk;
6120}
6121
6122static struct sock *
6123__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6124                struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6125                u64 flags)
6126{
6127        struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6128                                           ifindex, proto, netns_id, flags);
6129
6130        if (sk) {
6131                sk = sk_to_full_sk(sk);
6132                if (!sk_fullsock(sk)) {
6133                        sock_gen_put(sk);
6134                        return NULL;
6135                }
6136        }
6137
6138        return sk;
6139}
6140
6141static struct sock *
6142bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6143               u8 proto, u64 netns_id, u64 flags)
6144{
6145        struct net *caller_net;
6146        int ifindex;
6147
6148        if (skb->dev) {
6149                caller_net = dev_net(skb->dev);
6150                ifindex = skb->dev->ifindex;
6151        } else {
6152                caller_net = sock_net(skb->sk);
6153                ifindex = 0;
6154        }
6155
6156        return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6157                                netns_id, flags);
6158}
6159
6160static struct sock *
6161bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6162              u8 proto, u64 netns_id, u64 flags)
6163{
6164        struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6165                                         flags);
6166
6167        if (sk) {
6168                sk = sk_to_full_sk(sk);
6169                if (!sk_fullsock(sk)) {
6170                        sock_gen_put(sk);
6171                        return NULL;
6172                }
6173        }
6174
6175        return sk;
6176}
6177
6178BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6179           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6180{
6181        return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6182                                             netns_id, flags);
6183}
6184
6185static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6186        .func           = bpf_skc_lookup_tcp,
6187        .gpl_only       = false,
6188        .pkt_access     = true,
6189        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6190        .arg1_type      = ARG_PTR_TO_CTX,
6191        .arg2_type      = ARG_PTR_TO_MEM,
6192        .arg3_type      = ARG_CONST_SIZE,
6193        .arg4_type      = ARG_ANYTHING,
6194        .arg5_type      = ARG_ANYTHING,
6195};
6196
6197BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6198           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6199{
6200        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6201                                            netns_id, flags);
6202}
6203
6204static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6205        .func           = bpf_sk_lookup_tcp,
6206        .gpl_only       = false,
6207        .pkt_access     = true,
6208        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6209        .arg1_type      = ARG_PTR_TO_CTX,
6210        .arg2_type      = ARG_PTR_TO_MEM,
6211        .arg3_type      = ARG_CONST_SIZE,
6212        .arg4_type      = ARG_ANYTHING,
6213        .arg5_type      = ARG_ANYTHING,
6214};
6215
6216BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6217           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6218{
6219        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6220                                            netns_id, flags);
6221}
6222
6223static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6224        .func           = bpf_sk_lookup_udp,
6225        .gpl_only       = false,
6226        .pkt_access     = true,
6227        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6228        .arg1_type      = ARG_PTR_TO_CTX,
6229        .arg2_type      = ARG_PTR_TO_MEM,
6230        .arg3_type      = ARG_CONST_SIZE,
6231        .arg4_type      = ARG_ANYTHING,
6232        .arg5_type      = ARG_ANYTHING,
6233};
6234
6235BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6236{
6237        if (sk && sk_is_refcounted(sk))
6238                sock_gen_put(sk);
6239        return 0;
6240}
6241
6242static const struct bpf_func_proto bpf_sk_release_proto = {
6243        .func           = bpf_sk_release,
6244        .gpl_only       = false,
6245        .ret_type       = RET_INTEGER,
6246        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6247};
6248
6249BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6250           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6251{
6252        struct net *caller_net = dev_net(ctx->rxq->dev);
6253        int ifindex = ctx->rxq->dev->ifindex;
6254
6255        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6256                                              ifindex, IPPROTO_UDP, netns_id,
6257                                              flags);
6258}
6259
6260static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6261        .func           = bpf_xdp_sk_lookup_udp,
6262        .gpl_only       = false,
6263        .pkt_access     = true,
6264        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6265        .arg1_type      = ARG_PTR_TO_CTX,
6266        .arg2_type      = ARG_PTR_TO_MEM,
6267        .arg3_type      = ARG_CONST_SIZE,
6268        .arg4_type      = ARG_ANYTHING,
6269        .arg5_type      = ARG_ANYTHING,
6270};
6271
6272BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6273           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6274{
6275        struct net *caller_net = dev_net(ctx->rxq->dev);
6276        int ifindex = ctx->rxq->dev->ifindex;
6277
6278        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6279                                               ifindex, IPPROTO_TCP, netns_id,
6280                                               flags);
6281}
6282
6283static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6284        .func           = bpf_xdp_skc_lookup_tcp,
6285        .gpl_only       = false,
6286        .pkt_access     = true,
6287        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6288        .arg1_type      = ARG_PTR_TO_CTX,
6289        .arg2_type      = ARG_PTR_TO_MEM,
6290        .arg3_type      = ARG_CONST_SIZE,
6291        .arg4_type      = ARG_ANYTHING,
6292        .arg5_type      = ARG_ANYTHING,
6293};
6294
6295BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6296           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6297{
6298        struct net *caller_net = dev_net(ctx->rxq->dev);
6299        int ifindex = ctx->rxq->dev->ifindex;
6300
6301        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6302                                              ifindex, IPPROTO_TCP, netns_id,
6303                                              flags);
6304}
6305
6306static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6307        .func           = bpf_xdp_sk_lookup_tcp,
6308        .gpl_only       = false,
6309        .pkt_access     = true,
6310        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6311        .arg1_type      = ARG_PTR_TO_CTX,
6312        .arg2_type      = ARG_PTR_TO_MEM,
6313        .arg3_type      = ARG_CONST_SIZE,
6314        .arg4_type      = ARG_ANYTHING,
6315        .arg5_type      = ARG_ANYTHING,
6316};
6317
6318BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6319           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6320{
6321        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6322                                               sock_net(ctx->sk), 0,
6323                                               IPPROTO_TCP, netns_id, flags);
6324}
6325
6326static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6327        .func           = bpf_sock_addr_skc_lookup_tcp,
6328        .gpl_only       = false,
6329        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6330        .arg1_type      = ARG_PTR_TO_CTX,
6331        .arg2_type      = ARG_PTR_TO_MEM,
6332        .arg3_type      = ARG_CONST_SIZE,
6333        .arg4_type      = ARG_ANYTHING,
6334        .arg5_type      = ARG_ANYTHING,
6335};
6336
6337BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6338           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6339{
6340        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6341                                              sock_net(ctx->sk), 0, IPPROTO_TCP,
6342                                              netns_id, flags);
6343}
6344
6345static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6346        .func           = bpf_sock_addr_sk_lookup_tcp,
6347        .gpl_only       = false,
6348        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6349        .arg1_type      = ARG_PTR_TO_CTX,
6350        .arg2_type      = ARG_PTR_TO_MEM,
6351        .arg3_type      = ARG_CONST_SIZE,
6352        .arg4_type      = ARG_ANYTHING,
6353        .arg5_type      = ARG_ANYTHING,
6354};
6355
6356BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6357           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6358{
6359        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6360                                              sock_net(ctx->sk), 0, IPPROTO_UDP,
6361                                              netns_id, flags);
6362}
6363
6364static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6365        .func           = bpf_sock_addr_sk_lookup_udp,
6366        .gpl_only       = false,
6367        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6368        .arg1_type      = ARG_PTR_TO_CTX,
6369        .arg2_type      = ARG_PTR_TO_MEM,
6370        .arg3_type      = ARG_CONST_SIZE,
6371        .arg4_type      = ARG_ANYTHING,
6372        .arg5_type      = ARG_ANYTHING,
6373};
6374
6375bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6376                                  struct bpf_insn_access_aux *info)
6377{
6378        if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6379                                          icsk_retransmits))
6380                return false;
6381
6382        if (off % size != 0)
6383                return false;
6384
6385        switch (off) {
6386        case offsetof(struct bpf_tcp_sock, bytes_received):
6387        case offsetof(struct bpf_tcp_sock, bytes_acked):
6388                return size == sizeof(__u64);
6389        default:
6390                return size == sizeof(__u32);
6391        }
6392}
6393
6394u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6395                                    const struct bpf_insn *si,
6396                                    struct bpf_insn *insn_buf,
6397                                    struct bpf_prog *prog, u32 *target_size)
6398{
6399        struct bpf_insn *insn = insn_buf;
6400
6401#define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6402        do {                                                            \
6403                BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6404                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
6405                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6406                                      si->dst_reg, si->src_reg,         \
6407                                      offsetof(struct tcp_sock, FIELD)); \
6408        } while (0)
6409
6410#define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6411        do {                                                            \
6412                BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6413                                          FIELD) >                      \
6414                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
6415                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6416                                        struct inet_connection_sock,    \
6417                                        FIELD),                         \
6418                                      si->dst_reg, si->src_reg,         \
6419                                      offsetof(                         \
6420                                        struct inet_connection_sock,    \
6421                                        FIELD));                        \
6422        } while (0)
6423
6424        if (insn > insn_buf)
6425                return insn - insn_buf;
6426
6427        switch (si->off) {
6428        case offsetof(struct bpf_tcp_sock, rtt_min):
6429                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6430                             sizeof(struct minmax));
6431                BUILD_BUG_ON(sizeof(struct minmax) <
6432                             sizeof(struct minmax_sample));
6433
6434                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6435                                      offsetof(struct tcp_sock, rtt_min) +
6436                                      offsetof(struct minmax_sample, v));
6437                break;
6438        case offsetof(struct bpf_tcp_sock, snd_cwnd):
6439                BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6440                break;
6441        case offsetof(struct bpf_tcp_sock, srtt_us):
6442                BPF_TCP_SOCK_GET_COMMON(srtt_us);
6443                break;
6444        case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6445                BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6446                break;
6447        case offsetof(struct bpf_tcp_sock, rcv_nxt):
6448                BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6449                break;
6450        case offsetof(struct bpf_tcp_sock, snd_nxt):
6451                BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6452                break;
6453        case offsetof(struct bpf_tcp_sock, snd_una):
6454                BPF_TCP_SOCK_GET_COMMON(snd_una);
6455                break;
6456        case offsetof(struct bpf_tcp_sock, mss_cache):
6457                BPF_TCP_SOCK_GET_COMMON(mss_cache);
6458                break;
6459        case offsetof(struct bpf_tcp_sock, ecn_flags):
6460                BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6461                break;
6462        case offsetof(struct bpf_tcp_sock, rate_delivered):
6463                BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6464                break;
6465        case offsetof(struct bpf_tcp_sock, rate_interval_us):
6466                BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6467                break;
6468        case offsetof(struct bpf_tcp_sock, packets_out):
6469                BPF_TCP_SOCK_GET_COMMON(packets_out);
6470                break;
6471        case offsetof(struct bpf_tcp_sock, retrans_out):
6472                BPF_TCP_SOCK_GET_COMMON(retrans_out);
6473                break;
6474        case offsetof(struct bpf_tcp_sock, total_retrans):
6475                BPF_TCP_SOCK_GET_COMMON(total_retrans);
6476                break;
6477        case offsetof(struct bpf_tcp_sock, segs_in):
6478                BPF_TCP_SOCK_GET_COMMON(segs_in);
6479                break;
6480        case offsetof(struct bpf_tcp_sock, data_segs_in):
6481                BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6482                break;
6483        case offsetof(struct bpf_tcp_sock, segs_out):
6484                BPF_TCP_SOCK_GET_COMMON(segs_out);
6485                break;
6486        case offsetof(struct bpf_tcp_sock, data_segs_out):
6487                BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6488                break;
6489        case offsetof(struct bpf_tcp_sock, lost_out):
6490                BPF_TCP_SOCK_GET_COMMON(lost_out);
6491                break;
6492        case offsetof(struct bpf_tcp_sock, sacked_out):
6493                BPF_TCP_SOCK_GET_COMMON(sacked_out);
6494                break;
6495        case offsetof(struct bpf_tcp_sock, bytes_received):
6496                BPF_TCP_SOCK_GET_COMMON(bytes_received);
6497                break;
6498        case offsetof(struct bpf_tcp_sock, bytes_acked):
6499                BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6500                break;
6501        case offsetof(struct bpf_tcp_sock, dsack_dups):
6502                BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6503                break;
6504        case offsetof(struct bpf_tcp_sock, delivered):
6505                BPF_TCP_SOCK_GET_COMMON(delivered);
6506                break;
6507        case offsetof(struct bpf_tcp_sock, delivered_ce):
6508                BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6509                break;
6510        case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6511                BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6512                break;
6513        }
6514
6515        return insn - insn_buf;
6516}
6517
6518BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6519{
6520        if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6521                return (unsigned long)sk;
6522
6523        return (unsigned long)NULL;
6524}
6525
6526const struct bpf_func_proto bpf_tcp_sock_proto = {
6527        .func           = bpf_tcp_sock,
6528        .gpl_only       = false,
6529        .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6530        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6531};
6532
6533BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6534{
6535        sk = sk_to_full_sk(sk);
6536
6537        if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6538                return (unsigned long)sk;
6539
6540        return (unsigned long)NULL;
6541}
6542
6543static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6544        .func           = bpf_get_listener_sock,
6545        .gpl_only       = false,
6546        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6547        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6548};
6549
6550BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6551{
6552        unsigned int iphdr_len;
6553
6554        switch (skb_protocol(skb, true)) {
6555        case cpu_to_be16(ETH_P_IP):
6556                iphdr_len = sizeof(struct iphdr);
6557                break;
6558        case cpu_to_be16(ETH_P_IPV6):
6559                iphdr_len = sizeof(struct ipv6hdr);
6560                break;
6561        default:
6562                return 0;
6563        }
6564
6565        if (skb_headlen(skb) < iphdr_len)
6566                return 0;
6567
6568        if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6569                return 0;
6570
6571        return INET_ECN_set_ce(skb);
6572}
6573
6574bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6575                                  struct bpf_insn_access_aux *info)
6576{
6577        if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6578                return false;
6579
6580        if (off % size != 0)
6581                return false;
6582
6583        switch (off) {
6584        default:
6585                return size == sizeof(__u32);
6586        }
6587}
6588
6589u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6590                                    const struct bpf_insn *si,
6591                                    struct bpf_insn *insn_buf,
6592                                    struct bpf_prog *prog, u32 *target_size)
6593{
6594        struct bpf_insn *insn = insn_buf;
6595
6596#define BPF_XDP_SOCK_GET(FIELD)                                         \
6597        do {                                                            \
6598                BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6599                             sizeof_field(struct bpf_xdp_sock, FIELD)); \
6600                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6601                                      si->dst_reg, si->src_reg,         \
6602                                      offsetof(struct xdp_sock, FIELD)); \
6603        } while (0)
6604
6605        switch (si->off) {
6606        case offsetof(struct bpf_xdp_sock, queue_id):
6607                BPF_XDP_SOCK_GET(queue_id);
6608                break;
6609        }
6610
6611        return insn - insn_buf;
6612}
6613
6614static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6615        .func           = bpf_skb_ecn_set_ce,
6616        .gpl_only       = false,
6617        .ret_type       = RET_INTEGER,
6618        .arg1_type      = ARG_PTR_TO_CTX,
6619};
6620
6621BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6622           struct tcphdr *, th, u32, th_len)
6623{
6624#ifdef CONFIG_SYN_COOKIES
6625        u32 cookie;
6626        int ret;
6627
6628        if (unlikely(!sk || th_len < sizeof(*th)))
6629                return -EINVAL;
6630
6631        /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6632        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6633                return -EINVAL;
6634
6635        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6636                return -EINVAL;
6637
6638        if (!th->ack || th->rst || th->syn)
6639                return -ENOENT;
6640
6641        if (tcp_synq_no_recent_overflow(sk))
6642                return -ENOENT;
6643
6644        cookie = ntohl(th->ack_seq) - 1;
6645
6646        switch (sk->sk_family) {
6647        case AF_INET:
6648                if (unlikely(iph_len < sizeof(struct iphdr)))
6649                        return -EINVAL;
6650
6651                ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6652                break;
6653
6654#if IS_BUILTIN(CONFIG_IPV6)
6655        case AF_INET6:
6656                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6657                        return -EINVAL;
6658
6659                ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6660                break;
6661#endif /* CONFIG_IPV6 */
6662
6663        default:
6664                return -EPROTONOSUPPORT;
6665        }
6666
6667        if (ret > 0)
6668                return 0;
6669
6670        return -ENOENT;
6671#else
6672        return -ENOTSUPP;
6673#endif
6674}
6675
6676static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6677        .func           = bpf_tcp_check_syncookie,
6678        .gpl_only       = true,
6679        .pkt_access     = true,
6680        .ret_type       = RET_INTEGER,
6681        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6682        .arg2_type      = ARG_PTR_TO_MEM,
6683        .arg3_type      = ARG_CONST_SIZE,
6684        .arg4_type      = ARG_PTR_TO_MEM,
6685        .arg5_type      = ARG_CONST_SIZE,
6686};
6687
6688BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6689           struct tcphdr *, th, u32, th_len)
6690{
6691#ifdef CONFIG_SYN_COOKIES
6692        u32 cookie;
6693        u16 mss;
6694
6695        if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6696                return -EINVAL;
6697
6698        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6699                return -EINVAL;
6700
6701        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6702                return -ENOENT;
6703
6704        if (!th->syn || th->ack || th->fin || th->rst)
6705                return -EINVAL;
6706
6707        if (unlikely(iph_len < sizeof(struct iphdr)))
6708                return -EINVAL;
6709
6710        /* Both struct iphdr and struct ipv6hdr have the version field at the
6711         * same offset so we can cast to the shorter header (struct iphdr).
6712         */
6713        switch (((struct iphdr *)iph)->version) {
6714        case 4:
6715                if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6716                        return -EINVAL;
6717
6718                mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6719                break;
6720
6721#if IS_BUILTIN(CONFIG_IPV6)
6722        case 6:
6723                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6724                        return -EINVAL;
6725
6726                if (sk->sk_family != AF_INET6)
6727                        return -EINVAL;
6728
6729                mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6730                break;
6731#endif /* CONFIG_IPV6 */
6732
6733        default:
6734                return -EPROTONOSUPPORT;
6735        }
6736        if (mss == 0)
6737                return -ENOENT;
6738
6739        return cookie | ((u64)mss << 32);
6740#else
6741        return -EOPNOTSUPP;
6742#endif /* CONFIG_SYN_COOKIES */
6743}
6744
6745static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6746        .func           = bpf_tcp_gen_syncookie,
6747        .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6748        .pkt_access     = true,
6749        .ret_type       = RET_INTEGER,
6750        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6751        .arg2_type      = ARG_PTR_TO_MEM,
6752        .arg3_type      = ARG_CONST_SIZE,
6753        .arg4_type      = ARG_PTR_TO_MEM,
6754        .arg5_type      = ARG_CONST_SIZE,
6755};
6756
6757BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6758{
6759        if (!sk || flags != 0)
6760                return -EINVAL;
6761        if (!skb_at_tc_ingress(skb))
6762                return -EOPNOTSUPP;
6763        if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6764                return -ENETUNREACH;
6765        if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6766                return -ESOCKTNOSUPPORT;
6767        if (sk_is_refcounted(sk) &&
6768            unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6769                return -ENOENT;
6770
6771        skb_orphan(skb);
6772        skb->sk = sk;
6773        skb->destructor = sock_pfree;
6774
6775        return 0;
6776}
6777
6778static const struct bpf_func_proto bpf_sk_assign_proto = {
6779        .func           = bpf_sk_assign,
6780        .gpl_only       = false,
6781        .ret_type       = RET_INTEGER,
6782        .arg1_type      = ARG_PTR_TO_CTX,
6783        .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6784        .arg3_type      = ARG_ANYTHING,
6785};
6786
6787static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6788                                    u8 search_kind, const u8 *magic,
6789                                    u8 magic_len, bool *eol)
6790{
6791        u8 kind, kind_len;
6792
6793        *eol = false;
6794
6795        while (op < opend) {
6796                kind = op[0];
6797
6798                if (kind == TCPOPT_EOL) {
6799                        *eol = true;
6800                        return ERR_PTR(-ENOMSG);
6801                } else if (kind == TCPOPT_NOP) {
6802                        op++;
6803                        continue;
6804                }
6805
6806                if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6807                        /* Something is wrong in the received header.
6808                         * Follow the TCP stack's tcp_parse_options()
6809                         * and just bail here.
6810                         */
6811                        return ERR_PTR(-EFAULT);
6812
6813                kind_len = op[1];
6814                if (search_kind == kind) {
6815                        if (!magic_len)
6816                                return op;
6817
6818                        if (magic_len > kind_len - 2)
6819                                return ERR_PTR(-ENOMSG);
6820
6821                        if (!memcmp(&op[2], magic, magic_len))
6822                                return op;
6823                }
6824
6825                op += kind_len;
6826        }
6827
6828        return ERR_PTR(-ENOMSG);
6829}
6830
6831BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6832           void *, search_res, u32, len, u64, flags)
6833{
6834        bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6835        const u8 *op, *opend, *magic, *search = search_res;
6836        u8 search_kind, search_len, copy_len, magic_len;
6837        int ret;
6838
6839        /* 2 byte is the minimal option len except TCPOPT_NOP and
6840         * TCPOPT_EOL which are useless for the bpf prog to learn
6841         * and this helper disallow loading them also.
6842         */
6843        if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6844                return -EINVAL;
6845
6846        search_kind = search[0];
6847        search_len = search[1];
6848
6849        if (search_len > len || search_kind == TCPOPT_NOP ||
6850            search_kind == TCPOPT_EOL)
6851                return -EINVAL;
6852
6853        if (search_kind == TCPOPT_EXP || search_kind == 253) {
6854                /* 16 or 32 bit magic.  +2 for kind and kind length */
6855                if (search_len != 4 && search_len != 6)
6856                        return -EINVAL;
6857                magic = &search[2];
6858                magic_len = search_len - 2;
6859        } else {
6860                if (search_len)
6861                        return -EINVAL;
6862                magic = NULL;
6863                magic_len = 0;
6864        }
6865
6866        if (load_syn) {
6867                ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6868                if (ret < 0)
6869                        return ret;
6870
6871                opend = op + ret;
6872                op += sizeof(struct tcphdr);
6873        } else {
6874                if (!bpf_sock->skb ||
6875                    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6876                        /* This bpf_sock->op cannot call this helper */
6877                        return -EPERM;
6878
6879                opend = bpf_sock->skb_data_end;
6880                op = bpf_sock->skb->data + sizeof(struct tcphdr);
6881        }
6882
6883        op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6884                                &eol);
6885        if (IS_ERR(op))
6886                return PTR_ERR(op);
6887
6888        copy_len = op[1];
6889        ret = copy_len;
6890        if (copy_len > len) {
6891                ret = -ENOSPC;
6892                copy_len = len;
6893        }
6894
6895        memcpy(search_res, op, copy_len);
6896        return ret;
6897}
6898
6899static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6900        .func           = bpf_sock_ops_load_hdr_opt,
6901        .gpl_only       = false,
6902        .ret_type       = RET_INTEGER,
6903        .arg1_type      = ARG_PTR_TO_CTX,
6904        .arg2_type      = ARG_PTR_TO_MEM,
6905        .arg3_type      = ARG_CONST_SIZE,
6906        .arg4_type      = ARG_ANYTHING,
6907};
6908
6909BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6910           const void *, from, u32, len, u64, flags)
6911{
6912        u8 new_kind, new_kind_len, magic_len = 0, *opend;
6913        const u8 *op, *new_op, *magic = NULL;
6914        struct sk_buff *skb;
6915        bool eol;
6916
6917        if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6918                return -EPERM;
6919
6920        if (len < 2 || flags)
6921                return -EINVAL;
6922
6923        new_op = from;
6924        new_kind = new_op[0];
6925        new_kind_len = new_op[1];
6926
6927        if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6928            new_kind == TCPOPT_EOL)
6929                return -EINVAL;
6930
6931        if (new_kind_len > bpf_sock->remaining_opt_len)
6932                return -ENOSPC;
6933
6934        /* 253 is another experimental kind */
6935        if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6936                if (new_kind_len < 4)
6937                        return -EINVAL;
6938                /* Match for the 2 byte magic also.
6939                 * RFC 6994: the magic could be 2 or 4 bytes.
6940                 * Hence, matching by 2 byte only is on the
6941                 * conservative side but it is the right
6942                 * thing to do for the 'search-for-duplication'
6943                 * purpose.
6944                 */
6945                magic = &new_op[2];
6946                magic_len = 2;
6947        }
6948
6949        /* Check for duplication */
6950        skb = bpf_sock->skb;
6951        op = skb->data + sizeof(struct tcphdr);
6952        opend = bpf_sock->skb_data_end;
6953
6954        op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6955                                &eol);
6956        if (!IS_ERR(op))
6957                return -EEXIST;
6958
6959        if (PTR_ERR(op) != -ENOMSG)
6960                return PTR_ERR(op);
6961
6962        if (eol)
6963                /* The option has been ended.  Treat it as no more
6964                 * header option can be written.
6965                 */
6966                return -ENOSPC;
6967
6968        /* No duplication found.  Store the header option. */
6969        memcpy(opend, from, new_kind_len);
6970
6971        bpf_sock->remaining_opt_len -= new_kind_len;
6972        bpf_sock->skb_data_end += new_kind_len;
6973
6974        return 0;
6975}
6976
6977static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6978        .func           = bpf_sock_ops_store_hdr_opt,
6979        .gpl_only       = false,
6980        .ret_type       = RET_INTEGER,
6981        .arg1_type      = ARG_PTR_TO_CTX,
6982        .arg2_type      = ARG_PTR_TO_MEM,
6983        .arg3_type      = ARG_CONST_SIZE,
6984        .arg4_type      = ARG_ANYTHING,
6985};
6986
6987BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6988           u32, len, u64, flags)
6989{
6990        if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6991                return -EPERM;
6992
6993        if (flags || len < 2)
6994                return -EINVAL;
6995
6996        if (len > bpf_sock->remaining_opt_len)
6997                return -ENOSPC;
6998
6999        bpf_sock->remaining_opt_len -= len;
7000
7001        return 0;
7002}
7003
7004static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7005        .func           = bpf_sock_ops_reserve_hdr_opt,
7006        .gpl_only       = false,
7007        .ret_type       = RET_INTEGER,
7008        .arg1_type      = ARG_PTR_TO_CTX,
7009        .arg2_type      = ARG_ANYTHING,
7010        .arg3_type      = ARG_ANYTHING,
7011};
7012
7013#endif /* CONFIG_INET */
7014
7015bool bpf_helper_changes_pkt_data(void *func)
7016{
7017        if (func == bpf_skb_vlan_push ||
7018            func == bpf_skb_vlan_pop ||
7019            func == bpf_skb_store_bytes ||
7020            func == bpf_skb_change_proto ||
7021            func == bpf_skb_change_head ||
7022            func == sk_skb_change_head ||
7023            func == bpf_skb_change_tail ||
7024            func == sk_skb_change_tail ||
7025            func == bpf_skb_adjust_room ||
7026            func == sk_skb_adjust_room ||
7027            func == bpf_skb_pull_data ||
7028            func == sk_skb_pull_data ||
7029            func == bpf_clone_redirect ||
7030            func == bpf_l3_csum_replace ||
7031            func == bpf_l4_csum_replace ||
7032            func == bpf_xdp_adjust_head ||
7033            func == bpf_xdp_adjust_meta ||
7034            func == bpf_msg_pull_data ||
7035            func == bpf_msg_push_data ||
7036            func == bpf_msg_pop_data ||
7037            func == bpf_xdp_adjust_tail ||
7038#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7039            func == bpf_lwt_seg6_store_bytes ||
7040            func == bpf_lwt_seg6_adjust_srh ||
7041            func == bpf_lwt_seg6_action ||
7042#endif
7043#ifdef CONFIG_INET
7044            func == bpf_sock_ops_store_hdr_opt ||
7045#endif
7046            func == bpf_lwt_in_push_encap ||
7047            func == bpf_lwt_xmit_push_encap)
7048                return true;
7049
7050        return false;
7051}
7052
7053const struct bpf_func_proto bpf_event_output_data_proto __weak;
7054const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7055
7056static const struct bpf_func_proto *
7057sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7058{
7059        switch (func_id) {
7060        /* inet and inet6 sockets are created in a process
7061         * context so there is always a valid uid/gid
7062         */
7063        case BPF_FUNC_get_current_uid_gid:
7064                return &bpf_get_current_uid_gid_proto;
7065        case BPF_FUNC_get_local_storage:
7066                return &bpf_get_local_storage_proto;
7067        case BPF_FUNC_get_socket_cookie:
7068                return &bpf_get_socket_cookie_sock_proto;
7069        case BPF_FUNC_get_netns_cookie:
7070                return &bpf_get_netns_cookie_sock_proto;
7071        case BPF_FUNC_perf_event_output:
7072                return &bpf_event_output_data_proto;
7073        case BPF_FUNC_get_current_pid_tgid:
7074                return &bpf_get_current_pid_tgid_proto;
7075        case BPF_FUNC_get_current_comm:
7076                return &bpf_get_current_comm_proto;
7077#ifdef CONFIG_CGROUPS
7078        case BPF_FUNC_get_current_cgroup_id:
7079                return &bpf_get_current_cgroup_id_proto;
7080        case BPF_FUNC_get_current_ancestor_cgroup_id:
7081                return &bpf_get_current_ancestor_cgroup_id_proto;
7082#endif
7083#ifdef CONFIG_CGROUP_NET_CLASSID
7084        case BPF_FUNC_get_cgroup_classid:
7085                return &bpf_get_cgroup_classid_curr_proto;
7086#endif
7087        case BPF_FUNC_sk_storage_get:
7088                return &bpf_sk_storage_get_cg_sock_proto;
7089        default:
7090                return bpf_base_func_proto(func_id);
7091        }
7092}
7093
7094static const struct bpf_func_proto *
7095sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7096{
7097        switch (func_id) {
7098        /* inet and inet6 sockets are created in a process
7099         * context so there is always a valid uid/gid
7100         */
7101        case BPF_FUNC_get_current_uid_gid:
7102                return &bpf_get_current_uid_gid_proto;
7103        case BPF_FUNC_bind:
7104                switch (prog->expected_attach_type) {
7105                case BPF_CGROUP_INET4_CONNECT:
7106                case BPF_CGROUP_INET6_CONNECT:
7107                        return &bpf_bind_proto;
7108                default:
7109                        return NULL;
7110                }
7111        case BPF_FUNC_get_socket_cookie:
7112                return &bpf_get_socket_cookie_sock_addr_proto;
7113        case BPF_FUNC_get_netns_cookie:
7114                return &bpf_get_netns_cookie_sock_addr_proto;
7115        case BPF_FUNC_get_local_storage:
7116                return &bpf_get_local_storage_proto;
7117        case BPF_FUNC_perf_event_output:
7118                return &bpf_event_output_data_proto;
7119        case BPF_FUNC_get_current_pid_tgid:
7120                return &bpf_get_current_pid_tgid_proto;
7121        case BPF_FUNC_get_current_comm:
7122                return &bpf_get_current_comm_proto;
7123#ifdef CONFIG_CGROUPS
7124        case BPF_FUNC_get_current_cgroup_id:
7125                return &bpf_get_current_cgroup_id_proto;
7126        case BPF_FUNC_get_current_ancestor_cgroup_id:
7127                return &bpf_get_current_ancestor_cgroup_id_proto;
7128#endif
7129#ifdef CONFIG_CGROUP_NET_CLASSID
7130        case BPF_FUNC_get_cgroup_classid:
7131                return &bpf_get_cgroup_classid_curr_proto;
7132#endif
7133#ifdef CONFIG_INET
7134        case BPF_FUNC_sk_lookup_tcp:
7135                return &bpf_sock_addr_sk_lookup_tcp_proto;
7136        case BPF_FUNC_sk_lookup_udp:
7137                return &bpf_sock_addr_sk_lookup_udp_proto;
7138        case BPF_FUNC_sk_release:
7139                return &bpf_sk_release_proto;
7140        case BPF_FUNC_skc_lookup_tcp:
7141                return &bpf_sock_addr_skc_lookup_tcp_proto;
7142#endif /* CONFIG_INET */
7143        case BPF_FUNC_sk_storage_get:
7144                return &bpf_sk_storage_get_proto;
7145        case BPF_FUNC_sk_storage_delete:
7146                return &bpf_sk_storage_delete_proto;
7147        case BPF_FUNC_setsockopt:
7148                switch (prog->expected_attach_type) {
7149                case BPF_CGROUP_INET4_BIND:
7150                case BPF_CGROUP_INET6_BIND:
7151                case BPF_CGROUP_INET4_CONNECT:
7152                case BPF_CGROUP_INET6_CONNECT:
7153                case BPF_CGROUP_UDP4_RECVMSG:
7154                case BPF_CGROUP_UDP6_RECVMSG:
7155                case BPF_CGROUP_UDP4_SENDMSG:
7156                case BPF_CGROUP_UDP6_SENDMSG:
7157                case BPF_CGROUP_INET4_GETPEERNAME:
7158                case BPF_CGROUP_INET6_GETPEERNAME:
7159                case BPF_CGROUP_INET4_GETSOCKNAME:
7160                case BPF_CGROUP_INET6_GETSOCKNAME:
7161                        return &bpf_sock_addr_setsockopt_proto;
7162                default:
7163                        return NULL;
7164                }
7165        case BPF_FUNC_getsockopt:
7166                switch (prog->expected_attach_type) {
7167                case BPF_CGROUP_INET4_BIND:
7168                case BPF_CGROUP_INET6_BIND:
7169                case BPF_CGROUP_INET4_CONNECT:
7170                case BPF_CGROUP_INET6_CONNECT:
7171                case BPF_CGROUP_UDP4_RECVMSG:
7172                case BPF_CGROUP_UDP6_RECVMSG:
7173                case BPF_CGROUP_UDP4_SENDMSG:
7174                case BPF_CGROUP_UDP6_SENDMSG:
7175                case BPF_CGROUP_INET4_GETPEERNAME:
7176                case BPF_CGROUP_INET6_GETPEERNAME:
7177                case BPF_CGROUP_INET4_GETSOCKNAME:
7178                case BPF_CGROUP_INET6_GETSOCKNAME:
7179                        return &bpf_sock_addr_getsockopt_proto;
7180                default:
7181                        return NULL;
7182                }
7183        default:
7184                return bpf_sk_base_func_proto(func_id);
7185        }
7186}
7187
7188static const struct bpf_func_proto *
7189sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7190{
7191        switch (func_id) {
7192        case BPF_FUNC_skb_load_bytes:
7193                return &bpf_skb_load_bytes_proto;
7194        case BPF_FUNC_skb_load_bytes_relative:
7195                return &bpf_skb_load_bytes_relative_proto;
7196        case BPF_FUNC_get_socket_cookie:
7197                return &bpf_get_socket_cookie_proto;
7198        case BPF_FUNC_get_socket_uid:
7199                return &bpf_get_socket_uid_proto;
7200        case BPF_FUNC_perf_event_output:
7201                return &bpf_skb_event_output_proto;
7202        default:
7203                return bpf_sk_base_func_proto(func_id);
7204        }
7205}
7206
7207const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7208const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7209
7210static const struct bpf_func_proto *
7211cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7212{
7213        switch (func_id) {
7214        case BPF_FUNC_get_local_storage:
7215                return &bpf_get_local_storage_proto;
7216        case BPF_FUNC_sk_fullsock:
7217                return &bpf_sk_fullsock_proto;
7218        case BPF_FUNC_sk_storage_get:
7219                return &bpf_sk_storage_get_proto;
7220        case BPF_FUNC_sk_storage_delete:
7221                return &bpf_sk_storage_delete_proto;
7222        case BPF_FUNC_perf_event_output:
7223                return &bpf_skb_event_output_proto;
7224#ifdef CONFIG_SOCK_CGROUP_DATA
7225        case BPF_FUNC_skb_cgroup_id:
7226                return &bpf_skb_cgroup_id_proto;
7227        case BPF_FUNC_skb_ancestor_cgroup_id:
7228                return &bpf_skb_ancestor_cgroup_id_proto;
7229        case BPF_FUNC_sk_cgroup_id:
7230                return &bpf_sk_cgroup_id_proto;
7231        case BPF_FUNC_sk_ancestor_cgroup_id:
7232                return &bpf_sk_ancestor_cgroup_id_proto;
7233#endif
7234#ifdef CONFIG_INET
7235        case BPF_FUNC_sk_lookup_tcp:
7236                return &bpf_sk_lookup_tcp_proto;
7237        case BPF_FUNC_sk_lookup_udp:
7238                return &bpf_sk_lookup_udp_proto;
7239        case BPF_FUNC_sk_release:
7240                return &bpf_sk_release_proto;
7241        case BPF_FUNC_skc_lookup_tcp:
7242                return &bpf_skc_lookup_tcp_proto;
7243        case BPF_FUNC_tcp_sock:
7244                return &bpf_tcp_sock_proto;
7245        case BPF_FUNC_get_listener_sock:
7246                return &bpf_get_listener_sock_proto;
7247        case BPF_FUNC_skb_ecn_set_ce:
7248                return &bpf_skb_ecn_set_ce_proto;
7249#endif
7250        default:
7251                return sk_filter_func_proto(func_id, prog);
7252        }
7253}
7254
7255static const struct bpf_func_proto *
7256tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7257{
7258        switch (func_id) {
7259        case BPF_FUNC_skb_store_bytes:
7260                return &bpf_skb_store_bytes_proto;
7261        case BPF_FUNC_skb_load_bytes:
7262                return &bpf_skb_load_bytes_proto;
7263        case BPF_FUNC_skb_load_bytes_relative:
7264                return &bpf_skb_load_bytes_relative_proto;
7265        case BPF_FUNC_skb_pull_data:
7266                return &bpf_skb_pull_data_proto;
7267        case BPF_FUNC_csum_diff:
7268                return &bpf_csum_diff_proto;
7269        case BPF_FUNC_csum_update:
7270                return &bpf_csum_update_proto;
7271        case BPF_FUNC_csum_level:
7272                return &bpf_csum_level_proto;
7273        case BPF_FUNC_l3_csum_replace:
7274                return &bpf_l3_csum_replace_proto;
7275        case BPF_FUNC_l4_csum_replace:
7276                return &bpf_l4_csum_replace_proto;
7277        case BPF_FUNC_clone_redirect:
7278                return &bpf_clone_redirect_proto;
7279        case BPF_FUNC_get_cgroup_classid:
7280                return &bpf_get_cgroup_classid_proto;
7281        case BPF_FUNC_skb_vlan_push:
7282                return &bpf_skb_vlan_push_proto;
7283        case BPF_FUNC_skb_vlan_pop:
7284                return &bpf_skb_vlan_pop_proto;
7285        case BPF_FUNC_skb_change_proto:
7286                return &bpf_skb_change_proto_proto;
7287        case BPF_FUNC_skb_change_type:
7288                return &bpf_skb_change_type_proto;
7289        case BPF_FUNC_skb_adjust_room:
7290                return &bpf_skb_adjust_room_proto;
7291        case BPF_FUNC_skb_change_tail:
7292                return &bpf_skb_change_tail_proto;
7293        case BPF_FUNC_skb_change_head:
7294                return &bpf_skb_change_head_proto;
7295        case BPF_FUNC_skb_get_tunnel_key:
7296                return &bpf_skb_get_tunnel_key_proto;
7297        case BPF_FUNC_skb_set_tunnel_key:
7298                return bpf_get_skb_set_tunnel_proto(func_id);
7299        case BPF_FUNC_skb_get_tunnel_opt:
7300                return &bpf_skb_get_tunnel_opt_proto;
7301        case BPF_FUNC_skb_set_tunnel_opt:
7302                return bpf_get_skb_set_tunnel_proto(func_id);
7303        case BPF_FUNC_redirect:
7304                return &bpf_redirect_proto;
7305        case BPF_FUNC_redirect_neigh:
7306                return &bpf_redirect_neigh_proto;
7307        case BPF_FUNC_redirect_peer:
7308                return &bpf_redirect_peer_proto;
7309        case BPF_FUNC_get_route_realm:
7310                return &bpf_get_route_realm_proto;
7311        case BPF_FUNC_get_hash_recalc:
7312                return &bpf_get_hash_recalc_proto;
7313        case BPF_FUNC_set_hash_invalid:
7314                return &bpf_set_hash_invalid_proto;
7315        case BPF_FUNC_set_hash:
7316                return &bpf_set_hash_proto;
7317        case BPF_FUNC_perf_event_output:
7318                return &bpf_skb_event_output_proto;
7319        case BPF_FUNC_get_smp_processor_id:
7320                return &bpf_get_smp_processor_id_proto;
7321        case BPF_FUNC_skb_under_cgroup:
7322                return &bpf_skb_under_cgroup_proto;
7323        case BPF_FUNC_get_socket_cookie:
7324                return &bpf_get_socket_cookie_proto;
7325        case BPF_FUNC_get_socket_uid:
7326                return &bpf_get_socket_uid_proto;
7327        case BPF_FUNC_fib_lookup:
7328                return &bpf_skb_fib_lookup_proto;
7329        case BPF_FUNC_check_mtu:
7330                return &bpf_skb_check_mtu_proto;
7331        case BPF_FUNC_sk_fullsock:
7332                return &bpf_sk_fullsock_proto;
7333        case BPF_FUNC_sk_storage_get:
7334                return &bpf_sk_storage_get_proto;
7335        case BPF_FUNC_sk_storage_delete:
7336                return &bpf_sk_storage_delete_proto;
7337#ifdef CONFIG_XFRM
7338        case BPF_FUNC_skb_get_xfrm_state:
7339                return &bpf_skb_get_xfrm_state_proto;
7340#endif
7341#ifdef CONFIG_CGROUP_NET_CLASSID
7342        case BPF_FUNC_skb_cgroup_classid:
7343                return &bpf_skb_cgroup_classid_proto;
7344#endif
7345#ifdef CONFIG_SOCK_CGROUP_DATA
7346        case BPF_FUNC_skb_cgroup_id:
7347                return &bpf_skb_cgroup_id_proto;
7348        case BPF_FUNC_skb_ancestor_cgroup_id:
7349                return &bpf_skb_ancestor_cgroup_id_proto;
7350#endif
7351#ifdef CONFIG_INET
7352        case BPF_FUNC_sk_lookup_tcp:
7353                return &bpf_sk_lookup_tcp_proto;
7354        case BPF_FUNC_sk_lookup_udp:
7355                return &bpf_sk_lookup_udp_proto;
7356        case BPF_FUNC_sk_release:
7357                return &bpf_sk_release_proto;
7358        case BPF_FUNC_tcp_sock:
7359                return &bpf_tcp_sock_proto;
7360        case BPF_FUNC_get_listener_sock:
7361                return &bpf_get_listener_sock_proto;
7362        case BPF_FUNC_skc_lookup_tcp:
7363                return &bpf_skc_lookup_tcp_proto;
7364        case BPF_FUNC_tcp_check_syncookie:
7365                return &bpf_tcp_check_syncookie_proto;
7366        case BPF_FUNC_skb_ecn_set_ce:
7367                return &bpf_skb_ecn_set_ce_proto;
7368        case BPF_FUNC_tcp_gen_syncookie:
7369                return &bpf_tcp_gen_syncookie_proto;
7370        case BPF_FUNC_sk_assign:
7371                return &bpf_sk_assign_proto;
7372#endif
7373        default:
7374                return bpf_sk_base_func_proto(func_id);
7375        }
7376}
7377
7378static const struct bpf_func_proto *
7379xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7380{
7381        switch (func_id) {
7382        case BPF_FUNC_perf_event_output:
7383                return &bpf_xdp_event_output_proto;
7384        case BPF_FUNC_get_smp_processor_id:
7385                return &bpf_get_smp_processor_id_proto;
7386        case BPF_FUNC_csum_diff:
7387                return &bpf_csum_diff_proto;
7388        case BPF_FUNC_xdp_adjust_head:
7389                return &bpf_xdp_adjust_head_proto;
7390        case BPF_FUNC_xdp_adjust_meta:
7391                return &bpf_xdp_adjust_meta_proto;
7392        case BPF_FUNC_redirect:
7393                return &bpf_xdp_redirect_proto;
7394        case BPF_FUNC_redirect_map:
7395                return &bpf_xdp_redirect_map_proto;
7396        case BPF_FUNC_xdp_adjust_tail:
7397                return &bpf_xdp_adjust_tail_proto;
7398        case BPF_FUNC_fib_lookup:
7399                return &bpf_xdp_fib_lookup_proto;
7400        case BPF_FUNC_check_mtu:
7401                return &bpf_xdp_check_mtu_proto;
7402#ifdef CONFIG_INET
7403        case BPF_FUNC_sk_lookup_udp:
7404                return &bpf_xdp_sk_lookup_udp_proto;
7405        case BPF_FUNC_sk_lookup_tcp:
7406                return &bpf_xdp_sk_lookup_tcp_proto;
7407        case BPF_FUNC_sk_release:
7408                return &bpf_sk_release_proto;
7409        case BPF_FUNC_skc_lookup_tcp:
7410                return &bpf_xdp_skc_lookup_tcp_proto;
7411        case BPF_FUNC_tcp_check_syncookie:
7412                return &bpf_tcp_check_syncookie_proto;
7413        case BPF_FUNC_tcp_gen_syncookie:
7414                return &bpf_tcp_gen_syncookie_proto;
7415#endif
7416        default:
7417                return bpf_sk_base_func_proto(func_id);
7418        }
7419}
7420
7421const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7422const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7423
7424static const struct bpf_func_proto *
7425sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7426{
7427        switch (func_id) {
7428        case BPF_FUNC_setsockopt:
7429                return &bpf_sock_ops_setsockopt_proto;
7430        case BPF_FUNC_getsockopt:
7431                return &bpf_sock_ops_getsockopt_proto;
7432        case BPF_FUNC_sock_ops_cb_flags_set:
7433                return &bpf_sock_ops_cb_flags_set_proto;
7434        case BPF_FUNC_sock_map_update:
7435                return &bpf_sock_map_update_proto;
7436        case BPF_FUNC_sock_hash_update:
7437                return &bpf_sock_hash_update_proto;
7438        case BPF_FUNC_get_socket_cookie:
7439                return &bpf_get_socket_cookie_sock_ops_proto;
7440        case BPF_FUNC_get_local_storage:
7441                return &bpf_get_local_storage_proto;
7442        case BPF_FUNC_perf_event_output:
7443                return &bpf_event_output_data_proto;
7444        case BPF_FUNC_sk_storage_get:
7445                return &bpf_sk_storage_get_proto;
7446        case BPF_FUNC_sk_storage_delete:
7447                return &bpf_sk_storage_delete_proto;
7448#ifdef CONFIG_INET
7449        case BPF_FUNC_load_hdr_opt:
7450                return &bpf_sock_ops_load_hdr_opt_proto;
7451        case BPF_FUNC_store_hdr_opt:
7452                return &bpf_sock_ops_store_hdr_opt_proto;
7453        case BPF_FUNC_reserve_hdr_opt:
7454                return &bpf_sock_ops_reserve_hdr_opt_proto;
7455        case BPF_FUNC_tcp_sock:
7456                return &bpf_tcp_sock_proto;
7457#endif /* CONFIG_INET */
7458        default:
7459                return bpf_sk_base_func_proto(func_id);
7460        }
7461}
7462
7463const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7464const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7465
7466static const struct bpf_func_proto *
7467sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7468{
7469        switch (func_id) {
7470        case BPF_FUNC_msg_redirect_map:
7471                return &bpf_msg_redirect_map_proto;
7472        case BPF_FUNC_msg_redirect_hash:
7473                return &bpf_msg_redirect_hash_proto;
7474        case BPF_FUNC_msg_apply_bytes:
7475                return &bpf_msg_apply_bytes_proto;
7476        case BPF_FUNC_msg_cork_bytes:
7477                return &bpf_msg_cork_bytes_proto;
7478        case BPF_FUNC_msg_pull_data:
7479                return &bpf_msg_pull_data_proto;
7480        case BPF_FUNC_msg_push_data:
7481                return &bpf_msg_push_data_proto;
7482        case BPF_FUNC_msg_pop_data:
7483                return &bpf_msg_pop_data_proto;
7484        case BPF_FUNC_perf_event_output:
7485                return &bpf_event_output_data_proto;
7486        case BPF_FUNC_get_current_uid_gid:
7487                return &bpf_get_current_uid_gid_proto;
7488        case BPF_FUNC_get_current_pid_tgid:
7489                return &bpf_get_current_pid_tgid_proto;
7490        case BPF_FUNC_sk_storage_get:
7491                return &bpf_sk_storage_get_proto;
7492        case BPF_FUNC_sk_storage_delete:
7493                return &bpf_sk_storage_delete_proto;
7494#ifdef CONFIG_CGROUPS
7495        case BPF_FUNC_get_current_cgroup_id:
7496                return &bpf_get_current_cgroup_id_proto;
7497        case BPF_FUNC_get_current_ancestor_cgroup_id:
7498                return &bpf_get_current_ancestor_cgroup_id_proto;
7499#endif
7500#ifdef CONFIG_CGROUP_NET_CLASSID
7501        case BPF_FUNC_get_cgroup_classid:
7502                return &bpf_get_cgroup_classid_curr_proto;
7503#endif
7504        default:
7505                return bpf_sk_base_func_proto(func_id);
7506        }
7507}
7508
7509const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7510const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7511
7512static const struct bpf_func_proto *
7513sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7514{
7515        switch (func_id) {
7516        case BPF_FUNC_skb_store_bytes:
7517                return &bpf_skb_store_bytes_proto;
7518        case BPF_FUNC_skb_load_bytes:
7519                return &bpf_skb_load_bytes_proto;
7520        case BPF_FUNC_skb_pull_data:
7521                return &sk_skb_pull_data_proto;
7522        case BPF_FUNC_skb_change_tail:
7523                return &sk_skb_change_tail_proto;
7524        case BPF_FUNC_skb_change_head:
7525                return &sk_skb_change_head_proto;
7526        case BPF_FUNC_skb_adjust_room:
7527                return &sk_skb_adjust_room_proto;
7528        case BPF_FUNC_get_socket_cookie:
7529                return &bpf_get_socket_cookie_proto;
7530        case BPF_FUNC_get_socket_uid:
7531                return &bpf_get_socket_uid_proto;
7532        case BPF_FUNC_sk_redirect_map:
7533                return &bpf_sk_redirect_map_proto;
7534        case BPF_FUNC_sk_redirect_hash:
7535                return &bpf_sk_redirect_hash_proto;
7536        case BPF_FUNC_perf_event_output:
7537                return &bpf_skb_event_output_proto;
7538#ifdef CONFIG_INET
7539        case BPF_FUNC_sk_lookup_tcp:
7540                return &bpf_sk_lookup_tcp_proto;
7541        case BPF_FUNC_sk_lookup_udp:
7542                return &bpf_sk_lookup_udp_proto;
7543        case BPF_FUNC_sk_release:
7544                return &bpf_sk_release_proto;
7545        case BPF_FUNC_skc_lookup_tcp:
7546                return &bpf_skc_lookup_tcp_proto;
7547#endif
7548        default:
7549                return bpf_sk_base_func_proto(func_id);
7550        }
7551}
7552
7553static const struct bpf_func_proto *
7554flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7555{
7556        switch (func_id) {
7557        case BPF_FUNC_skb_load_bytes:
7558                return &bpf_flow_dissector_load_bytes_proto;
7559        default:
7560                return bpf_sk_base_func_proto(func_id);
7561        }
7562}
7563
7564static const struct bpf_func_proto *
7565lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7566{
7567        switch (func_id) {
7568        case BPF_FUNC_skb_load_bytes:
7569                return &bpf_skb_load_bytes_proto;
7570        case BPF_FUNC_skb_pull_data:
7571                return &bpf_skb_pull_data_proto;
7572        case BPF_FUNC_csum_diff:
7573                return &bpf_csum_diff_proto;
7574        case BPF_FUNC_get_cgroup_classid:
7575                return &bpf_get_cgroup_classid_proto;
7576        case BPF_FUNC_get_route_realm:
7577                return &bpf_get_route_realm_proto;
7578        case BPF_FUNC_get_hash_recalc:
7579                return &bpf_get_hash_recalc_proto;
7580        case BPF_FUNC_perf_event_output:
7581                return &bpf_skb_event_output_proto;
7582        case BPF_FUNC_get_smp_processor_id:
7583                return &bpf_get_smp_processor_id_proto;
7584        case BPF_FUNC_skb_under_cgroup:
7585                return &bpf_skb_under_cgroup_proto;
7586        default:
7587                return bpf_sk_base_func_proto(func_id);
7588        }
7589}
7590
7591static const struct bpf_func_proto *
7592lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7593{
7594        switch (func_id) {
7595        case BPF_FUNC_lwt_push_encap:
7596                return &bpf_lwt_in_push_encap_proto;
7597        default:
7598                return lwt_out_func_proto(func_id, prog);
7599        }
7600}
7601
7602static const struct bpf_func_proto *
7603lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7604{
7605        switch (func_id) {
7606        case BPF_FUNC_skb_get_tunnel_key:
7607                return &bpf_skb_get_tunnel_key_proto;
7608        case BPF_FUNC_skb_set_tunnel_key:
7609                return bpf_get_skb_set_tunnel_proto(func_id);
7610        case BPF_FUNC_skb_get_tunnel_opt:
7611                return &bpf_skb_get_tunnel_opt_proto;
7612        case BPF_FUNC_skb_set_tunnel_opt:
7613                return bpf_get_skb_set_tunnel_proto(func_id);
7614        case BPF_FUNC_redirect:
7615                return &bpf_redirect_proto;
7616        case BPF_FUNC_clone_redirect:
7617                return &bpf_clone_redirect_proto;
7618        case BPF_FUNC_skb_change_tail:
7619                return &bpf_skb_change_tail_proto;
7620        case BPF_FUNC_skb_change_head:
7621                return &bpf_skb_change_head_proto;
7622        case BPF_FUNC_skb_store_bytes:
7623                return &bpf_skb_store_bytes_proto;
7624        case BPF_FUNC_csum_update:
7625                return &bpf_csum_update_proto;
7626        case BPF_FUNC_csum_level:
7627                return &bpf_csum_level_proto;
7628        case BPF_FUNC_l3_csum_replace:
7629                return &bpf_l3_csum_replace_proto;
7630        case BPF_FUNC_l4_csum_replace:
7631                return &bpf_l4_csum_replace_proto;
7632        case BPF_FUNC_set_hash_invalid:
7633                return &bpf_set_hash_invalid_proto;
7634        case BPF_FUNC_lwt_push_encap:
7635                return &bpf_lwt_xmit_push_encap_proto;
7636        default:
7637                return lwt_out_func_proto(func_id, prog);
7638        }
7639}
7640
7641static const struct bpf_func_proto *
7642lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7643{
7644        switch (func_id) {
7645#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7646        case BPF_FUNC_lwt_seg6_store_bytes:
7647                return &bpf_lwt_seg6_store_bytes_proto;
7648        case BPF_FUNC_lwt_seg6_action:
7649                return &bpf_lwt_seg6_action_proto;
7650        case BPF_FUNC_lwt_seg6_adjust_srh:
7651                return &bpf_lwt_seg6_adjust_srh_proto;
7652#endif
7653        default:
7654                return lwt_out_func_proto(func_id, prog);
7655        }
7656}
7657
7658static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7659                                    const struct bpf_prog *prog,
7660                                    struct bpf_insn_access_aux *info)
7661{
7662        const int size_default = sizeof(__u32);
7663
7664        if (off < 0 || off >= sizeof(struct __sk_buff))
7665                return false;
7666
7667        /* The verifier guarantees that size > 0. */
7668        if (off % size != 0)
7669                return false;
7670
7671        switch (off) {
7672        case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7673                if (off + size > offsetofend(struct __sk_buff, cb[4]))
7674                        return false;
7675                break;
7676        case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7677        case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7678        case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7679        case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7680        case bpf_ctx_range(struct __sk_buff, data):
7681        case bpf_ctx_range(struct __sk_buff, data_meta):
7682        case bpf_ctx_range(struct __sk_buff, data_end):
7683                if (size != size_default)
7684                        return false;
7685                break;
7686        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7687                return false;
7688        case bpf_ctx_range(struct __sk_buff, tstamp):
7689                if (size != sizeof(__u64))
7690                        return false;
7691                break;
7692        case offsetof(struct __sk_buff, sk):
7693                if (type == BPF_WRITE || size != sizeof(__u64))
7694                        return false;
7695                info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7696                break;
7697        default:
7698                /* Only narrow read access allowed for now. */
7699                if (type == BPF_WRITE) {
7700                        if (size != size_default)
7701                                return false;
7702                } else {
7703                        bpf_ctx_record_field_size(info, size_default);
7704                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7705                                return false;
7706                }
7707        }
7708
7709        return true;
7710}
7711
7712static bool sk_filter_is_valid_access(int off, int size,
7713                                      enum bpf_access_type type,
7714                                      const struct bpf_prog *prog,
7715                                      struct bpf_insn_access_aux *info)
7716{
7717        switch (off) {
7718        case bpf_ctx_range(struct __sk_buff, tc_classid):
7719        case bpf_ctx_range(struct __sk_buff, data):
7720        case bpf_ctx_range(struct __sk_buff, data_meta):
7721        case bpf_ctx_range(struct __sk_buff, data_end):
7722        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7723        case bpf_ctx_range(struct __sk_buff, tstamp):
7724        case bpf_ctx_range(struct __sk_buff, wire_len):
7725                return false;
7726        }
7727
7728        if (type == BPF_WRITE) {
7729                switch (off) {
7730                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7731                        break;
7732                default:
7733                        return false;
7734                }
7735        }
7736
7737        return bpf_skb_is_valid_access(off, size, type, prog, info);
7738}
7739
7740static bool cg_skb_is_valid_access(int off, int size,
7741                                   enum bpf_access_type type,
7742                                   const struct bpf_prog *prog,
7743                                   struct bpf_insn_access_aux *info)
7744{
7745        switch (off) {
7746        case bpf_ctx_range(struct __sk_buff, tc_classid):
7747        case bpf_ctx_range(struct __sk_buff, data_meta):
7748        case bpf_ctx_range(struct __sk_buff, wire_len):
7749                return false;
7750        case bpf_ctx_range(struct __sk_buff, data):
7751        case bpf_ctx_range(struct __sk_buff, data_end):
7752                if (!bpf_capable())
7753                        return false;
7754                break;
7755        }
7756
7757        if (type == BPF_WRITE) {
7758                switch (off) {
7759                case bpf_ctx_range(struct __sk_buff, mark):
7760                case bpf_ctx_range(struct __sk_buff, priority):
7761                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7762                        break;
7763                case bpf_ctx_range(struct __sk_buff, tstamp):
7764                        if (!bpf_capable())
7765                                return false;
7766                        break;
7767                default:
7768                        return false;
7769                }
7770        }
7771
7772        switch (off) {
7773        case bpf_ctx_range(struct __sk_buff, data):
7774                info->reg_type = PTR_TO_PACKET;
7775                break;
7776        case bpf_ctx_range(struct __sk_buff, data_end):
7777                info->reg_type = PTR_TO_PACKET_END;
7778                break;
7779        }
7780
7781        return bpf_skb_is_valid_access(off, size, type, prog, info);
7782}
7783
7784static bool lwt_is_valid_access(int off, int size,
7785                                enum bpf_access_type type,
7786                                const struct bpf_prog *prog,
7787                                struct bpf_insn_access_aux *info)
7788{
7789        switch (off) {
7790        case bpf_ctx_range(struct __sk_buff, tc_classid):
7791        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7792        case bpf_ctx_range(struct __sk_buff, data_meta):
7793        case bpf_ctx_range(struct __sk_buff, tstamp):
7794        case bpf_ctx_range(struct __sk_buff, wire_len):
7795                return false;
7796        }
7797
7798        if (type == BPF_WRITE) {
7799                switch (off) {
7800                case bpf_ctx_range(struct __sk_buff, mark):
7801                case bpf_ctx_range(struct __sk_buff, priority):
7802                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7803                        break;
7804                default:
7805                        return false;
7806                }
7807        }
7808
7809        switch (off) {
7810        case bpf_ctx_range(struct __sk_buff, data):
7811                info->reg_type = PTR_TO_PACKET;
7812                break;
7813        case bpf_ctx_range(struct __sk_buff, data_end):
7814                info->reg_type = PTR_TO_PACKET_END;
7815                break;
7816        }
7817
7818        return bpf_skb_is_valid_access(off, size, type, prog, info);
7819}
7820
7821/* Attach type specific accesses */
7822static bool __sock_filter_check_attach_type(int off,
7823                                            enum bpf_access_type access_type,
7824                                            enum bpf_attach_type attach_type)
7825{
7826        switch (off) {
7827        case offsetof(struct bpf_sock, bound_dev_if):
7828        case offsetof(struct bpf_sock, mark):
7829        case offsetof(struct bpf_sock, priority):
7830                switch (attach_type) {
7831                case BPF_CGROUP_INET_SOCK_CREATE:
7832                case BPF_CGROUP_INET_SOCK_RELEASE:
7833                        goto full_access;
7834                default:
7835                        return false;
7836                }
7837        case bpf_ctx_range(struct bpf_sock, src_ip4):
7838                switch (attach_type) {
7839                case BPF_CGROUP_INET4_POST_BIND:
7840                        goto read_only;
7841                default:
7842                        return false;
7843                }
7844        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7845                switch (attach_type) {
7846                case BPF_CGROUP_INET6_POST_BIND:
7847                        goto read_only;
7848                default:
7849                        return false;
7850                }
7851        case bpf_ctx_range(struct bpf_sock, src_port):
7852                switch (attach_type) {
7853                case BPF_CGROUP_INET4_POST_BIND:
7854                case BPF_CGROUP_INET6_POST_BIND:
7855                        goto read_only;
7856                default:
7857                        return false;
7858                }
7859        }
7860read_only:
7861        return access_type == BPF_READ;
7862full_access:
7863        return true;
7864}
7865
7866bool bpf_sock_common_is_valid_access(int off, int size,
7867                                     enum bpf_access_type type,
7868                                     struct bpf_insn_access_aux *info)
7869{
7870        switch (off) {
7871        case bpf_ctx_range_till(struct bpf_sock, type, priority):
7872                return false;
7873        default:
7874                return bpf_sock_is_valid_access(off, size, type, info);
7875        }
7876}
7877
7878bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7879                              struct bpf_insn_access_aux *info)
7880{
7881        const int size_default = sizeof(__u32);
7882
7883        if (off < 0 || off >= sizeof(struct bpf_sock))
7884                return false;
7885        if (off % size != 0)
7886                return false;
7887
7888        switch (off) {
7889        case offsetof(struct bpf_sock, state):
7890        case offsetof(struct bpf_sock, family):
7891        case offsetof(struct bpf_sock, type):
7892        case offsetof(struct bpf_sock, protocol):
7893        case offsetof(struct bpf_sock, dst_port):
7894        case offsetof(struct bpf_sock, src_port):
7895        case offsetof(struct bpf_sock, rx_queue_mapping):
7896        case bpf_ctx_range(struct bpf_sock, src_ip4):
7897        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7898        case bpf_ctx_range(struct bpf_sock, dst_ip4):
7899        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7900                bpf_ctx_record_field_size(info, size_default);
7901                return bpf_ctx_narrow_access_ok(off, size, size_default);
7902        }
7903
7904        return size == size_default;
7905}
7906
7907static bool sock_filter_is_valid_access(int off, int size,
7908                                        enum bpf_access_type type,
7909                                        const struct bpf_prog *prog,
7910                                        struct bpf_insn_access_aux *info)
7911{
7912        if (!bpf_sock_is_valid_access(off, size, type, info))
7913                return false;
7914        return __sock_filter_check_attach_type(off, type,
7915                                               prog->expected_attach_type);
7916}
7917
7918static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7919                             const struct bpf_prog *prog)
7920{
7921        /* Neither direct read nor direct write requires any preliminary
7922         * action.
7923         */
7924        return 0;
7925}
7926
7927static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7928                                const struct bpf_prog *prog, int drop_verdict)
7929{
7930        struct bpf_insn *insn = insn_buf;
7931
7932        if (!direct_write)
7933                return 0;
7934
7935        /* if (!skb->cloned)
7936         *       goto start;
7937         *
7938         * (Fast-path, otherwise approximation that we might be
7939         *  a clone, do the rest in helper.)
7940         */
7941        *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7942        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7943        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7944
7945        /* ret = bpf_skb_pull_data(skb, 0); */
7946        *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7947        *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7948        *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7949                               BPF_FUNC_skb_pull_data);
7950        /* if (!ret)
7951         *      goto restore;
7952         * return TC_ACT_SHOT;
7953         */
7954        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7955        *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7956        *insn++ = BPF_EXIT_INSN();
7957
7958        /* restore: */
7959        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7960        /* start: */
7961        *insn++ = prog->insnsi[0];
7962
7963        return insn - insn_buf;
7964}
7965
7966static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7967                          struct bpf_insn *insn_buf)
7968{
7969        bool indirect = BPF_MODE(orig->code) == BPF_IND;
7970        struct bpf_insn *insn = insn_buf;
7971
7972        if (!indirect) {
7973                *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7974        } else {
7975                *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7976                if (orig->imm)
7977                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7978        }
7979        /* We're guaranteed here that CTX is in R6. */
7980        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7981
7982        switch (BPF_SIZE(orig->code)) {
7983        case BPF_B:
7984                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7985                break;
7986        case BPF_H:
7987                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7988                break;
7989        case BPF_W:
7990                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7991                break;
7992        }
7993
7994        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7995        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7996        *insn++ = BPF_EXIT_INSN();
7997
7998        return insn - insn_buf;
7999}
8000
8001static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8002                               const struct bpf_prog *prog)
8003{
8004        return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8005}
8006
8007static bool tc_cls_act_is_valid_access(int off, int size,
8008                                       enum bpf_access_type type,
8009                                       const struct bpf_prog *prog,
8010                                       struct bpf_insn_access_aux *info)
8011{
8012        if (type == BPF_WRITE) {
8013                switch (off) {
8014                case bpf_ctx_range(struct __sk_buff, mark):
8015                case bpf_ctx_range(struct __sk_buff, tc_index):
8016                case bpf_ctx_range(struct __sk_buff, priority):
8017                case bpf_ctx_range(struct __sk_buff, tc_classid):
8018                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8019                case bpf_ctx_range(struct __sk_buff, tstamp):
8020                case bpf_ctx_range(struct __sk_buff, queue_mapping):
8021                        break;
8022                default:
8023                        return false;
8024                }
8025        }
8026
8027        switch (off) {
8028        case bpf_ctx_range(struct __sk_buff, data):
8029                info->reg_type = PTR_TO_PACKET;
8030                break;
8031        case bpf_ctx_range(struct __sk_buff, data_meta):
8032                info->reg_type = PTR_TO_PACKET_META;
8033                break;
8034        case bpf_ctx_range(struct __sk_buff, data_end):
8035                info->reg_type = PTR_TO_PACKET_END;
8036                break;
8037        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8038                return false;
8039        }
8040
8041        return bpf_skb_is_valid_access(off, size, type, prog, info);
8042}
8043
8044static bool __is_valid_xdp_access(int off, int size)
8045{
8046        if (off < 0 || off >= sizeof(struct xdp_md))
8047                return false;
8048        if (off % size != 0)
8049                return false;
8050        if (size != sizeof(__u32))
8051                return false;
8052
8053        return true;
8054}
8055
8056static bool xdp_is_valid_access(int off, int size,
8057                                enum bpf_access_type type,
8058                                const struct bpf_prog *prog,
8059                                struct bpf_insn_access_aux *info)
8060{
8061        if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8062                switch (off) {
8063                case offsetof(struct xdp_md, egress_ifindex):
8064                        return false;
8065                }
8066        }
8067
8068        if (type == BPF_WRITE) {
8069                if (bpf_prog_is_dev_bound(prog->aux)) {
8070                        switch (off) {
8071                        case offsetof(struct xdp_md, rx_queue_index):
8072                                return __is_valid_xdp_access(off, size);
8073                        }
8074                }
8075                return false;
8076        }
8077
8078        switch (off) {
8079        case offsetof(struct xdp_md, data):
8080                info->reg_type = PTR_TO_PACKET;
8081                break;
8082        case offsetof(struct xdp_md, data_meta):
8083                info->reg_type = PTR_TO_PACKET_META;
8084                break;
8085        case offsetof(struct xdp_md, data_end):
8086                info->reg_type = PTR_TO_PACKET_END;
8087                break;
8088        }
8089
8090        return __is_valid_xdp_access(off, size);
8091}
8092
8093void bpf_warn_invalid_xdp_action(u32 act)
8094{
8095        const u32 act_max = XDP_REDIRECT;
8096
8097        WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8098                  act > act_max ? "Illegal" : "Driver unsupported",
8099                  act);
8100}
8101EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8102
8103static bool sock_addr_is_valid_access(int off, int size,
8104                                      enum bpf_access_type type,
8105                                      const struct bpf_prog *prog,
8106                                      struct bpf_insn_access_aux *info)
8107{
8108        const int size_default = sizeof(__u32);
8109
8110        if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8111                return false;
8112        if (off % size != 0)
8113                return false;
8114
8115        /* Disallow access to IPv6 fields from IPv4 contex and vise
8116         * versa.
8117         */
8118        switch (off) {
8119        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8120                switch (prog->expected_attach_type) {
8121                case BPF_CGROUP_INET4_BIND:
8122                case BPF_CGROUP_INET4_CONNECT:
8123                case BPF_CGROUP_INET4_GETPEERNAME:
8124                case BPF_CGROUP_INET4_GETSOCKNAME:
8125                case BPF_CGROUP_UDP4_SENDMSG:
8126                case BPF_CGROUP_UDP4_RECVMSG:
8127                        break;
8128                default:
8129                        return false;
8130                }
8131                break;
8132        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8133                switch (prog->expected_attach_type) {
8134                case BPF_CGROUP_INET6_BIND:
8135                case BPF_CGROUP_INET6_CONNECT:
8136                case BPF_CGROUP_INET6_GETPEERNAME:
8137                case BPF_CGROUP_INET6_GETSOCKNAME:
8138                case BPF_CGROUP_UDP6_SENDMSG:
8139                case BPF_CGROUP_UDP6_RECVMSG:
8140                        break;
8141                default:
8142                        return false;
8143                }
8144                break;
8145        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8146                switch (prog->expected_attach_type) {
8147                case BPF_CGROUP_UDP4_SENDMSG:
8148                        break;
8149                default:
8150                        return false;
8151                }
8152                break;
8153        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8154                                msg_src_ip6[3]):
8155                switch (prog->expected_attach_type) {
8156                case BPF_CGROUP_UDP6_SENDMSG:
8157                        break;
8158                default:
8159                        return false;
8160                }
8161                break;
8162        }
8163
8164        switch (off) {
8165        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8166        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8167        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8168        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8169                                msg_src_ip6[3]):
8170        case bpf_ctx_range(struct bpf_sock_addr, user_port):
8171                if (type == BPF_READ) {
8172                        bpf_ctx_record_field_size(info, size_default);
8173
8174                        if (bpf_ctx_wide_access_ok(off, size,
8175                                                   struct bpf_sock_addr,
8176                                                   user_ip6))
8177                                return true;
8178
8179                        if (bpf_ctx_wide_access_ok(off, size,
8180                                                   struct bpf_sock_addr,
8181                                                   msg_src_ip6))
8182                                return true;
8183
8184                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8185                                return false;
8186                } else {
8187                        if (bpf_ctx_wide_access_ok(off, size,
8188                                                   struct bpf_sock_addr,
8189                                                   user_ip6))
8190                                return true;
8191
8192                        if (bpf_ctx_wide_access_ok(off, size,
8193                                                   struct bpf_sock_addr,
8194                                                   msg_src_ip6))
8195                                return true;
8196
8197                        if (size != size_default)
8198                                return false;
8199                }
8200                break;
8201        case offsetof(struct bpf_sock_addr, sk):
8202                if (type != BPF_READ)
8203                        return false;
8204                if (size != sizeof(__u64))
8205                        return false;
8206                info->reg_type = PTR_TO_SOCKET;
8207                break;
8208        default:
8209                if (type == BPF_READ) {
8210                        if (size != size_default)
8211                                return false;
8212                } else {
8213                        return false;
8214                }
8215        }
8216
8217        return true;
8218}
8219
8220static bool sock_ops_is_valid_access(int off, int size,
8221                                     enum bpf_access_type type,
8222                                     const struct bpf_prog *prog,
8223                                     struct bpf_insn_access_aux *info)
8224{
8225        const int size_default = sizeof(__u32);
8226
8227        if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8228                return false;
8229
8230        /* The verifier guarantees that size > 0. */
8231        if (off % size != 0)
8232                return false;
8233
8234        if (type == BPF_WRITE) {
8235                switch (off) {
8236                case offsetof(struct bpf_sock_ops, reply):
8237                case offsetof(struct bpf_sock_ops, sk_txhash):
8238                        if (size != size_default)
8239                                return false;
8240                        break;
8241                default:
8242                        return false;
8243                }
8244        } else {
8245                switch (off) {
8246                case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8247                                        bytes_acked):
8248                        if (size != sizeof(__u64))
8249                                return false;
8250                        break;
8251                case offsetof(struct bpf_sock_ops, sk):
8252                        if (size != sizeof(__u64))
8253                                return false;
8254                        info->reg_type = PTR_TO_SOCKET_OR_NULL;
8255                        break;
8256                case offsetof(struct bpf_sock_ops, skb_data):
8257                        if (size != sizeof(__u64))
8258                                return false;
8259                        info->reg_type = PTR_TO_PACKET;
8260                        break;
8261                case offsetof(struct bpf_sock_ops, skb_data_end):
8262                        if (size != sizeof(__u64))
8263                                return false;
8264                        info->reg_type = PTR_TO_PACKET_END;
8265                        break;
8266                case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8267                        bpf_ctx_record_field_size(info, size_default);
8268                        return bpf_ctx_narrow_access_ok(off, size,
8269                                                        size_default);
8270                default:
8271                        if (size != size_default)
8272                                return false;
8273                        break;
8274                }
8275        }
8276
8277        return true;
8278}
8279
8280static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8281                           const struct bpf_prog *prog)
8282{
8283        return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8284}
8285
8286static bool sk_skb_is_valid_access(int off, int size,
8287                                   enum bpf_access_type type,
8288                                   const struct bpf_prog *prog,
8289                                   struct bpf_insn_access_aux *info)
8290{
8291        switch (off) {
8292        case bpf_ctx_range(struct __sk_buff, tc_classid):
8293        case bpf_ctx_range(struct __sk_buff, data_meta):
8294        case bpf_ctx_range(struct __sk_buff, tstamp):
8295        case bpf_ctx_range(struct __sk_buff, wire_len):
8296                return false;
8297        }
8298
8299        if (type == BPF_WRITE) {
8300                switch (off) {
8301                case bpf_ctx_range(struct __sk_buff, tc_index):
8302                case bpf_ctx_range(struct __sk_buff, priority):
8303                        break;
8304                default:
8305                        return false;
8306                }
8307        }
8308
8309        switch (off) {
8310        case bpf_ctx_range(struct __sk_buff, mark):
8311                return false;
8312        case bpf_ctx_range(struct __sk_buff, data):
8313                info->reg_type = PTR_TO_PACKET;
8314                break;
8315        case bpf_ctx_range(struct __sk_buff, data_end):
8316                info->reg_type = PTR_TO_PACKET_END;
8317                break;
8318        }
8319
8320        return bpf_skb_is_valid_access(off, size, type, prog, info);
8321}
8322
8323static bool sk_msg_is_valid_access(int off, int size,
8324                                   enum bpf_access_type type,
8325                                   const struct bpf_prog *prog,
8326                                   struct bpf_insn_access_aux *info)
8327{
8328        if (type == BPF_WRITE)
8329                return false;
8330
8331        if (off % size != 0)
8332                return false;
8333
8334        switch (off) {
8335        case offsetof(struct sk_msg_md, data):
8336                info->reg_type = PTR_TO_PACKET;
8337                if (size != sizeof(__u64))
8338                        return false;
8339                break;
8340        case offsetof(struct sk_msg_md, data_end):
8341                info->reg_type = PTR_TO_PACKET_END;
8342                if (size != sizeof(__u64))
8343                        return false;
8344                break;
8345        case offsetof(struct sk_msg_md, sk):
8346                if (size != sizeof(__u64))
8347                        return false;
8348                info->reg_type = PTR_TO_SOCKET;
8349                break;
8350        case bpf_ctx_range(struct sk_msg_md, family):
8351        case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8352        case bpf_ctx_range(struct sk_msg_md, local_ip4):
8353        case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8354        case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8355        case bpf_ctx_range(struct sk_msg_md, remote_port):
8356        case bpf_ctx_range(struct sk_msg_md, local_port):
8357        case bpf_ctx_range(struct sk_msg_md, size):
8358                if (size != sizeof(__u32))
8359                        return false;
8360                break;
8361        default:
8362                return false;
8363        }
8364        return true;
8365}
8366
8367static bool flow_dissector_is_valid_access(int off, int size,
8368                                           enum bpf_access_type type,
8369                                           const struct bpf_prog *prog,
8370                                           struct bpf_insn_access_aux *info)
8371{
8372        const int size_default = sizeof(__u32);
8373
8374        if (off < 0 || off >= sizeof(struct __sk_buff))
8375                return false;
8376
8377        if (type == BPF_WRITE)
8378                return false;
8379
8380        switch (off) {
8381        case bpf_ctx_range(struct __sk_buff, data):
8382                if (size != size_default)
8383                        return false;
8384                info->reg_type = PTR_TO_PACKET;
8385                return true;
8386        case bpf_ctx_range(struct __sk_buff, data_end):
8387                if (size != size_default)
8388                        return false;
8389                info->reg_type = PTR_TO_PACKET_END;
8390                return true;
8391        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8392                if (size != sizeof(__u64))
8393                        return false;
8394                info->reg_type = PTR_TO_FLOW_KEYS;
8395                return true;
8396        default:
8397                return false;
8398        }
8399}
8400
8401static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8402                                             const struct bpf_insn *si,
8403                                             struct bpf_insn *insn_buf,
8404                                             struct bpf_prog *prog,
8405                                             u32 *target_size)
8406
8407{
8408        struct bpf_insn *insn = insn_buf;
8409
8410        switch (si->off) {
8411        case offsetof(struct __sk_buff, data):
8412                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8413                                      si->dst_reg, si->src_reg,
8414                                      offsetof(struct bpf_flow_dissector, data));
8415                break;
8416
8417        case offsetof(struct __sk_buff, data_end):
8418                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8419                                      si->dst_reg, si->src_reg,
8420                                      offsetof(struct bpf_flow_dissector, data_end));
8421                break;
8422
8423        case offsetof(struct __sk_buff, flow_keys):
8424                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8425                                      si->dst_reg, si->src_reg,
8426                                      offsetof(struct bpf_flow_dissector, flow_keys));
8427                break;
8428        }
8429
8430        return insn - insn_buf;
8431}
8432
8433static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8434                                                  struct bpf_insn *insn)
8435{
8436        /* si->dst_reg = skb_shinfo(SKB); */
8437#ifdef NET_SKBUFF_DATA_USES_OFFSET
8438        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8439                              BPF_REG_AX, si->src_reg,
8440                              offsetof(struct sk_buff, end));
8441        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8442                              si->dst_reg, si->src_reg,
8443                              offsetof(struct sk_buff, head));
8444        *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8445#else
8446        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8447                              si->dst_reg, si->src_reg,
8448                              offsetof(struct sk_buff, end));
8449#endif
8450
8451        return insn;
8452}
8453
8454static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8455                                  const struct bpf_insn *si,
8456                                  struct bpf_insn *insn_buf,
8457                                  struct bpf_prog *prog, u32 *target_size)
8458{
8459        struct bpf_insn *insn = insn_buf;
8460        int off;
8461
8462        switch (si->off) {
8463        case offsetof(struct __sk_buff, len):
8464                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8465                                      bpf_target_off(struct sk_buff, len, 4,
8466                                                     target_size));
8467                break;
8468
8469        case offsetof(struct __sk_buff, protocol):
8470                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8471                                      bpf_target_off(struct sk_buff, protocol, 2,
8472                                                     target_size));
8473                break;
8474
8475        case offsetof(struct __sk_buff, vlan_proto):
8476                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8477                                      bpf_target_off(struct sk_buff, vlan_proto, 2,
8478                                                     target_size));
8479                break;
8480
8481        case offsetof(struct __sk_buff, priority):
8482                if (type == BPF_WRITE)
8483                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8484                                              bpf_target_off(struct sk_buff, priority, 4,
8485                                                             target_size));
8486                else
8487                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8488                                              bpf_target_off(struct sk_buff, priority, 4,
8489                                                             target_size));
8490                break;
8491
8492        case offsetof(struct __sk_buff, ingress_ifindex):
8493                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8494                                      bpf_target_off(struct sk_buff, skb_iif, 4,
8495                                                     target_size));
8496                break;
8497
8498        case offsetof(struct __sk_buff, ifindex):
8499                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8500                                      si->dst_reg, si->src_reg,
8501                                      offsetof(struct sk_buff, dev));
8502                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8503                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8504                                      bpf_target_off(struct net_device, ifindex, 4,
8505                                                     target_size));
8506                break;
8507
8508        case offsetof(struct __sk_buff, hash):
8509                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8510                                      bpf_target_off(struct sk_buff, hash, 4,
8511                                                     target_size));
8512                break;
8513
8514        case offsetof(struct __sk_buff, mark):
8515                if (type == BPF_WRITE)
8516                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8517                                              bpf_target_off(struct sk_buff, mark, 4,
8518                                                             target_size));
8519                else
8520                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8521                                              bpf_target_off(struct sk_buff, mark, 4,
8522                                                             target_size));
8523                break;
8524
8525        case offsetof(struct __sk_buff, pkt_type):
8526                *target_size = 1;
8527                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8528                                      PKT_TYPE_OFFSET());
8529                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8530#ifdef __BIG_ENDIAN_BITFIELD
8531                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8532#endif
8533                break;
8534
8535        case offsetof(struct __sk_buff, queue_mapping):
8536                if (type == BPF_WRITE) {
8537                        *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8538                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8539                                              bpf_target_off(struct sk_buff,
8540                                                             queue_mapping,
8541                                                             2, target_size));
8542                } else {
8543                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8544                                              bpf_target_off(struct sk_buff,
8545                                                             queue_mapping,
8546                                                             2, target_size));
8547                }
8548                break;
8549
8550        case offsetof(struct __sk_buff, vlan_present):
8551                *target_size = 1;
8552                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8553                                      PKT_VLAN_PRESENT_OFFSET());
8554                if (PKT_VLAN_PRESENT_BIT)
8555                        *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8556                if (PKT_VLAN_PRESENT_BIT < 7)
8557                        *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8558                break;
8559
8560        case offsetof(struct __sk_buff, vlan_tci):
8561                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8562                                      bpf_target_off(struct sk_buff, vlan_tci, 2,
8563                                                     target_size));
8564                break;
8565
8566        case offsetof(struct __sk_buff, cb[0]) ...
8567             offsetofend(struct __sk_buff, cb[4]) - 1:
8568                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8569                BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8570                              offsetof(struct qdisc_skb_cb, data)) %
8571                             sizeof(__u64));
8572
8573                prog->cb_access = 1;
8574                off  = si->off;
8575                off -= offsetof(struct __sk_buff, cb[0]);
8576                off += offsetof(struct sk_buff, cb);
8577                off += offsetof(struct qdisc_skb_cb, data);
8578                if (type == BPF_WRITE)
8579                        *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8580                                              si->src_reg, off);
8581                else
8582                        *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8583                                              si->src_reg, off);
8584                break;
8585
8586        case offsetof(struct __sk_buff, tc_classid):
8587                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8588
8589                off  = si->off;
8590                off -= offsetof(struct __sk_buff, tc_classid);
8591                off += offsetof(struct sk_buff, cb);
8592                off += offsetof(struct qdisc_skb_cb, tc_classid);
8593                *target_size = 2;
8594                if (type == BPF_WRITE)
8595                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8596                                              si->src_reg, off);
8597                else
8598                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8599                                              si->src_reg, off);
8600                break;
8601
8602        case offsetof(struct __sk_buff, data):
8603                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8604                                      si->dst_reg, si->src_reg,
8605                                      offsetof(struct sk_buff, data));
8606                break;
8607
8608        case offsetof(struct __sk_buff, data_meta):
8609                off  = si->off;
8610                off -= offsetof(struct __sk_buff, data_meta);
8611                off += offsetof(struct sk_buff, cb);
8612                off += offsetof(struct bpf_skb_data_end, data_meta);
8613                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8614                                      si->src_reg, off);
8615                break;
8616
8617        case offsetof(struct __sk_buff, data_end):
8618                off  = si->off;
8619                off -= offsetof(struct __sk_buff, data_end);
8620                off += offsetof(struct sk_buff, cb);
8621                off += offsetof(struct bpf_skb_data_end, data_end);
8622                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8623                                      si->src_reg, off);
8624                break;
8625
8626        case offsetof(struct __sk_buff, tc_index):
8627#ifdef CONFIG_NET_SCHED
8628                if (type == BPF_WRITE)
8629                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8630                                              bpf_target_off(struct sk_buff, tc_index, 2,
8631                                                             target_size));
8632                else
8633                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8634                                              bpf_target_off(struct sk_buff, tc_index, 2,
8635                                                             target_size));
8636#else
8637                *target_size = 2;
8638                if (type == BPF_WRITE)
8639                        *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8640                else
8641                        *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8642#endif
8643                break;
8644
8645        case offsetof(struct __sk_buff, napi_id):
8646#if defined(CONFIG_NET_RX_BUSY_POLL)
8647                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8648                                      bpf_target_off(struct sk_buff, napi_id, 4,
8649                                                     target_size));
8650                *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8651                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8652#else
8653                *target_size = 4;
8654                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8655#endif
8656                break;
8657        case offsetof(struct __sk_buff, family):
8658                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8659
8660                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8661                                      si->dst_reg, si->src_reg,
8662                                      offsetof(struct sk_buff, sk));
8663                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8664                                      bpf_target_off(struct sock_common,
8665                                                     skc_family,
8666                                                     2, target_size));
8667                break;
8668        case offsetof(struct __sk_buff, remote_ip4):
8669                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8670
8671                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8672                                      si->dst_reg, si->src_reg,
8673                                      offsetof(struct sk_buff, sk));
8674                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8675                                      bpf_target_off(struct sock_common,
8676                                                     skc_daddr,
8677                                                     4, target_size));
8678                break;
8679        case offsetof(struct __sk_buff, local_ip4):
8680                BUILD_BUG_ON(sizeof_field(struct sock_common,
8681                                          skc_rcv_saddr) != 4);
8682
8683                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8684                                      si->dst_reg, si->src_reg,
8685                                      offsetof(struct sk_buff, sk));
8686                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8687                                      bpf_target_off(struct sock_common,
8688                                                     skc_rcv_saddr,
8689                                                     4, target_size));
8690                break;
8691        case offsetof(struct __sk_buff, remote_ip6[0]) ...
8692             offsetof(struct __sk_buff, remote_ip6[3]):
8693#if IS_ENABLED(CONFIG_IPV6)
8694                BUILD_BUG_ON(sizeof_field(struct sock_common,
8695                                          skc_v6_daddr.s6_addr32[0]) != 4);
8696
8697                off = si->off;
8698                off -= offsetof(struct __sk_buff, remote_ip6[0]);
8699
8700                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8701                                      si->dst_reg, si->src_reg,
8702                                      offsetof(struct sk_buff, sk));
8703                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8704                                      offsetof(struct sock_common,
8705                                               skc_v6_daddr.s6_addr32[0]) +
8706                                      off);
8707#else
8708                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8709#endif
8710                break;
8711        case offsetof(struct __sk_buff, local_ip6[0]) ...
8712             offsetof(struct __sk_buff, local_ip6[3]):
8713#if IS_ENABLED(CONFIG_IPV6)
8714                BUILD_BUG_ON(sizeof_field(struct sock_common,
8715                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8716
8717                off = si->off;
8718                off -= offsetof(struct __sk_buff, local_ip6[0]);
8719
8720                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8721                                      si->dst_reg, si->src_reg,
8722                                      offsetof(struct sk_buff, sk));
8723                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8724                                      offsetof(struct sock_common,
8725                                               skc_v6_rcv_saddr.s6_addr32[0]) +
8726                                      off);
8727#else
8728                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8729#endif
8730                break;
8731
8732        case offsetof(struct __sk_buff, remote_port):
8733                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8734
8735                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8736                                      si->dst_reg, si->src_reg,
8737                                      offsetof(struct sk_buff, sk));
8738                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8739                                      bpf_target_off(struct sock_common,
8740                                                     skc_dport,
8741                                                     2, target_size));
8742#ifndef __BIG_ENDIAN_BITFIELD
8743                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8744#endif
8745                break;
8746
8747        case offsetof(struct __sk_buff, local_port):
8748                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8749
8750                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8751                                      si->dst_reg, si->src_reg,
8752                                      offsetof(struct sk_buff, sk));
8753                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8754                                      bpf_target_off(struct sock_common,
8755                                                     skc_num, 2, target_size));
8756                break;
8757
8758        case offsetof(struct __sk_buff, tstamp):
8759                BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8760
8761                if (type == BPF_WRITE)
8762                        *insn++ = BPF_STX_MEM(BPF_DW,
8763                                              si->dst_reg, si->src_reg,
8764                                              bpf_target_off(struct sk_buff,
8765                                                             tstamp, 8,
8766                                                             target_size));
8767                else
8768                        *insn++ = BPF_LDX_MEM(BPF_DW,
8769                                              si->dst_reg, si->src_reg,
8770                                              bpf_target_off(struct sk_buff,
8771                                                             tstamp, 8,
8772                                                             target_size));
8773                break;
8774
8775        case offsetof(struct __sk_buff, gso_segs):
8776                insn = bpf_convert_shinfo_access(si, insn);
8777                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8778                                      si->dst_reg, si->dst_reg,
8779                                      bpf_target_off(struct skb_shared_info,
8780                                                     gso_segs, 2,
8781                                                     target_size));
8782                break;
8783        case offsetof(struct __sk_buff, gso_size):
8784                insn = bpf_convert_shinfo_access(si, insn);
8785                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8786                                      si->dst_reg, si->dst_reg,
8787                                      bpf_target_off(struct skb_shared_info,
8788                                                     gso_size, 2,
8789                                                     target_size));
8790                break;
8791        case offsetof(struct __sk_buff, wire_len):
8792                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8793
8794                off = si->off;
8795                off -= offsetof(struct __sk_buff, wire_len);
8796                off += offsetof(struct sk_buff, cb);
8797                off += offsetof(struct qdisc_skb_cb, pkt_len);
8798                *target_size = 4;
8799                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8800                break;
8801
8802        case offsetof(struct __sk_buff, sk):
8803                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8804                                      si->dst_reg, si->src_reg,
8805                                      offsetof(struct sk_buff, sk));
8806                break;
8807        }
8808
8809        return insn - insn_buf;
8810}
8811
8812u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8813                                const struct bpf_insn *si,
8814                                struct bpf_insn *insn_buf,
8815                                struct bpf_prog *prog, u32 *target_size)
8816{
8817        struct bpf_insn *insn = insn_buf;
8818        int off;
8819
8820        switch (si->off) {
8821        case offsetof(struct bpf_sock, bound_dev_if):
8822                BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8823
8824                if (type == BPF_WRITE)
8825                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8826                                        offsetof(struct sock, sk_bound_dev_if));
8827                else
8828                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8829                                      offsetof(struct sock, sk_bound_dev_if));
8830                break;
8831
8832        case offsetof(struct bpf_sock, mark):
8833                BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8834
8835                if (type == BPF_WRITE)
8836                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8837                                        offsetof(struct sock, sk_mark));
8838                else
8839                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8840                                      offsetof(struct sock, sk_mark));
8841                break;
8842
8843        case offsetof(struct bpf_sock, priority):
8844                BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8845
8846                if (type == BPF_WRITE)
8847                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8848                                        offsetof(struct sock, sk_priority));
8849                else
8850                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8851                                      offsetof(struct sock, sk_priority));
8852                break;
8853
8854        case offsetof(struct bpf_sock, family):
8855                *insn++ = BPF_LDX_MEM(
8856                        BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8857                        si->dst_reg, si->src_reg,
8858                        bpf_target_off(struct sock_common,
8859                                       skc_family,
8860                                       sizeof_field(struct sock_common,
8861                                                    skc_family),
8862                                       target_size));
8863                break;
8864
8865        case offsetof(struct bpf_sock, type):
8866                *insn++ = BPF_LDX_MEM(
8867                        BPF_FIELD_SIZEOF(struct sock, sk_type),
8868                        si->dst_reg, si->src_reg,
8869                        bpf_target_off(struct sock, sk_type,
8870                                       sizeof_field(struct sock, sk_type),
8871                                       target_size));
8872                break;
8873
8874        case offsetof(struct bpf_sock, protocol):
8875                *insn++ = BPF_LDX_MEM(
8876                        BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8877                        si->dst_reg, si->src_reg,
8878                        bpf_target_off(struct sock, sk_protocol,
8879                                       sizeof_field(struct sock, sk_protocol),
8880                                       target_size));
8881                break;
8882
8883        case offsetof(struct bpf_sock, src_ip4):
8884                *insn++ = BPF_LDX_MEM(
8885                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8886                        bpf_target_off(struct sock_common, skc_rcv_saddr,
8887                                       sizeof_field(struct sock_common,
8888                                                    skc_rcv_saddr),
8889                                       target_size));
8890                break;
8891
8892        case offsetof(struct bpf_sock, dst_ip4):
8893                *insn++ = BPF_LDX_MEM(
8894                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8895                        bpf_target_off(struct sock_common, skc_daddr,
8896                                       sizeof_field(struct sock_common,
8897                                                    skc_daddr),
8898                                       target_size));
8899                break;
8900
8901        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8902#if IS_ENABLED(CONFIG_IPV6)
8903                off = si->off;
8904                off -= offsetof(struct bpf_sock, src_ip6[0]);
8905                *insn++ = BPF_LDX_MEM(
8906                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8907                        bpf_target_off(
8908                                struct sock_common,
8909                                skc_v6_rcv_saddr.s6_addr32[0],
8910                                sizeof_field(struct sock_common,
8911                                             skc_v6_rcv_saddr.s6_addr32[0]),
8912                                target_size) + off);
8913#else
8914                (void)off;
8915                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8916#endif
8917                break;
8918
8919        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8920#if IS_ENABLED(CONFIG_IPV6)
8921                off = si->off;
8922                off -= offsetof(struct bpf_sock, dst_ip6[0]);
8923                *insn++ = BPF_LDX_MEM(
8924                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8925                        bpf_target_off(struct sock_common,
8926                                       skc_v6_daddr.s6_addr32[0],
8927                                       sizeof_field(struct sock_common,
8928                                                    skc_v6_daddr.s6_addr32[0]),
8929                                       target_size) + off);
8930#else
8931                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8932                *target_size = 4;
8933#endif
8934                break;
8935
8936        case offsetof(struct bpf_sock, src_port):
8937                *insn++ = BPF_LDX_MEM(
8938                        BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8939                        si->dst_reg, si->src_reg,
8940                        bpf_target_off(struct sock_common, skc_num,
8941                                       sizeof_field(struct sock_common,
8942                                                    skc_num),
8943                                       target_size));
8944                break;
8945
8946        case offsetof(struct bpf_sock, dst_port):
8947                *insn++ = BPF_LDX_MEM(
8948                        BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8949                        si->dst_reg, si->src_reg,
8950                        bpf_target_off(struct sock_common, skc_dport,
8951                                       sizeof_field(struct sock_common,
8952                                                    skc_dport),
8953                                       target_size));
8954                break;
8955
8956        case offsetof(struct bpf_sock, state):
8957                *insn++ = BPF_LDX_MEM(
8958                        BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8959                        si->dst_reg, si->src_reg,
8960                        bpf_target_off(struct sock_common, skc_state,
8961                                       sizeof_field(struct sock_common,
8962                                                    skc_state),
8963                                       target_size));
8964                break;
8965        case offsetof(struct bpf_sock, rx_queue_mapping):
8966#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
8967                *insn++ = BPF_LDX_MEM(
8968                        BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8969                        si->dst_reg, si->src_reg,
8970                        bpf_target_off(struct sock, sk_rx_queue_mapping,
8971                                       sizeof_field(struct sock,
8972                                                    sk_rx_queue_mapping),
8973                                       target_size));
8974                *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8975                                      1);
8976                *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8977#else
8978                *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8979                *target_size = 2;
8980#endif
8981                break;
8982        }
8983
8984        return insn - insn_buf;
8985}
8986
8987static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8988                                         const struct bpf_insn *si,
8989                                         struct bpf_insn *insn_buf,
8990                                         struct bpf_prog *prog, u32 *target_size)
8991{
8992        struct bpf_insn *insn = insn_buf;
8993
8994        switch (si->off) {
8995        case offsetof(struct __sk_buff, ifindex):
8996                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8997                                      si->dst_reg, si->src_reg,
8998                                      offsetof(struct sk_buff, dev));
8999                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9000                                      bpf_target_off(struct net_device, ifindex, 4,
9001                                                     target_size));
9002                break;
9003        default:
9004                return bpf_convert_ctx_access(type, si, insn_buf, prog,
9005                                              target_size);
9006        }
9007
9008        return insn - insn_buf;
9009}
9010
9011static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9012                                  const struct bpf_insn *si,
9013                                  struct bpf_insn *insn_buf,
9014                                  struct bpf_prog *prog, u32 *target_size)
9015{
9016        struct bpf_insn *insn = insn_buf;
9017
9018        switch (si->off) {
9019        case offsetof(struct xdp_md, data):
9020                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9021                                      si->dst_reg, si->src_reg,
9022                                      offsetof(struct xdp_buff, data));
9023                break;
9024        case offsetof(struct xdp_md, data_meta):
9025                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9026                                      si->dst_reg, si->src_reg,
9027                                      offsetof(struct xdp_buff, data_meta));
9028                break;
9029        case offsetof(struct xdp_md, data_end):
9030                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9031                                      si->dst_reg, si->src_reg,
9032                                      offsetof(struct xdp_buff, data_end));
9033                break;
9034        case offsetof(struct xdp_md, ingress_ifindex):
9035                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9036                                      si->dst_reg, si->src_reg,
9037                                      offsetof(struct xdp_buff, rxq));
9038                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9039                                      si->dst_reg, si->dst_reg,
9040                                      offsetof(struct xdp_rxq_info, dev));
9041                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9042                                      offsetof(struct net_device, ifindex));
9043                break;
9044        case offsetof(struct xdp_md, rx_queue_index):
9045                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9046                                      si->dst_reg, si->src_reg,
9047                                      offsetof(struct xdp_buff, rxq));
9048                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9049                                      offsetof(struct xdp_rxq_info,
9050                                               queue_index));
9051                break;
9052        case offsetof(struct xdp_md, egress_ifindex):
9053                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9054                                      si->dst_reg, si->src_reg,
9055                                      offsetof(struct xdp_buff, txq));
9056                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9057                                      si->dst_reg, si->dst_reg,
9058                                      offsetof(struct xdp_txq_info, dev));
9059                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9060                                      offsetof(struct net_device, ifindex));
9061                break;
9062        }
9063
9064        return insn - insn_buf;
9065}
9066
9067/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9068 * context Structure, F is Field in context structure that contains a pointer
9069 * to Nested Structure of type NS that has the field NF.
9070 *
9071 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9072 * sure that SIZE is not greater than actual size of S.F.NF.
9073 *
9074 * If offset OFF is provided, the load happens from that offset relative to
9075 * offset of NF.
9076 */
9077#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9078        do {                                                                   \
9079                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9080                                      si->src_reg, offsetof(S, F));            \
9081                *insn++ = BPF_LDX_MEM(                                         \
9082                        SIZE, si->dst_reg, si->dst_reg,                        \
9083                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9084                                       target_size)                            \
9085                                + OFF);                                        \
9086        } while (0)
9087
9088#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9089        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9090                                             BPF_FIELD_SIZEOF(NS, NF), 0)
9091
9092/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9093 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9094 *
9095 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9096 * "register" since two registers available in convert_ctx_access are not
9097 * enough: we can't override neither SRC, since it contains value to store, nor
9098 * DST since it contains pointer to context that may be used by later
9099 * instructions. But we need a temporary place to save pointer to nested
9100 * structure whose field we want to store to.
9101 */
9102#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9103        do {                                                                   \
9104                int tmp_reg = BPF_REG_9;                                       \
9105                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9106                        --tmp_reg;                                             \
9107                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9108                        --tmp_reg;                                             \
9109                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9110                                      offsetof(S, TF));                        \
9111                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9112                                      si->dst_reg, offsetof(S, F));            \
9113                *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9114                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9115                                       target_size)                            \
9116                                + OFF);                                        \
9117                *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9118                                      offsetof(S, TF));                        \
9119        } while (0)
9120
9121#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9122                                                      TF)                      \
9123        do {                                                                   \
9124                if (type == BPF_WRITE) {                                       \
9125                        SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9126                                                         OFF, TF);             \
9127                } else {                                                       \
9128                        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9129                                S, NS, F, NF, SIZE, OFF);  \
9130                }                                                              \
9131        } while (0)
9132
9133#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9134        SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9135                S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9136
9137static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9138                                        const struct bpf_insn *si,
9139                                        struct bpf_insn *insn_buf,
9140                                        struct bpf_prog *prog, u32 *target_size)
9141{
9142        int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9143        struct bpf_insn *insn = insn_buf;
9144
9145        switch (si->off) {
9146        case offsetof(struct bpf_sock_addr, user_family):
9147                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9148                                            struct sockaddr, uaddr, sa_family);
9149                break;
9150
9151        case offsetof(struct bpf_sock_addr, user_ip4):
9152                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9153                        struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9154                        sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9155                break;
9156
9157        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9158                off = si->off;
9159                off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9160                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9161                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9162                        sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9163                        tmp_reg);
9164                break;
9165
9166        case offsetof(struct bpf_sock_addr, user_port):
9167                /* To get port we need to know sa_family first and then treat
9168                 * sockaddr as either sockaddr_in or sockaddr_in6.
9169                 * Though we can simplify since port field has same offset and
9170                 * size in both structures.
9171                 * Here we check this invariant and use just one of the
9172                 * structures if it's true.
9173                 */
9174                BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9175                             offsetof(struct sockaddr_in6, sin6_port));
9176                BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9177                             sizeof_field(struct sockaddr_in6, sin6_port));
9178                /* Account for sin6_port being smaller than user_port. */
9179                port_size = min(port_size, BPF_LDST_BYTES(si));
9180                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9181                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9182                        sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9183                break;
9184
9185        case offsetof(struct bpf_sock_addr, family):
9186                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9187                                            struct sock, sk, sk_family);
9188                break;
9189
9190        case offsetof(struct bpf_sock_addr, type):
9191                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9192                                            struct sock, sk, sk_type);
9193                break;
9194
9195        case offsetof(struct bpf_sock_addr, protocol):
9196                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9197                                            struct sock, sk, sk_protocol);
9198                break;
9199
9200        case offsetof(struct bpf_sock_addr, msg_src_ip4):
9201                /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9202                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9203                        struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9204                        s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9205                break;
9206
9207        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9208                                msg_src_ip6[3]):
9209                off = si->off;
9210                off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9211                /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9212                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9213                        struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9214                        s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9215                break;
9216        case offsetof(struct bpf_sock_addr, sk):
9217                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9218                                      si->dst_reg, si->src_reg,
9219                                      offsetof(struct bpf_sock_addr_kern, sk));
9220                break;
9221        }
9222
9223        return insn - insn_buf;
9224}
9225
9226static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9227                                       const struct bpf_insn *si,
9228                                       struct bpf_insn *insn_buf,
9229                                       struct bpf_prog *prog,
9230                                       u32 *target_size)
9231{
9232        struct bpf_insn *insn = insn_buf;
9233        int off;
9234
9235/* Helper macro for adding read access to tcp_sock or sock fields. */
9236#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9237        do {                                                                  \
9238                int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9239                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9240                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9241                if (si->dst_reg == reg || si->src_reg == reg)                 \
9242                        reg--;                                                \
9243                if (si->dst_reg == reg || si->src_reg == reg)                 \
9244                        reg--;                                                \
9245                if (si->dst_reg == si->src_reg) {                             \
9246                        *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9247                                          offsetof(struct bpf_sock_ops_kern,  \
9248                                          temp));                             \
9249                        fullsock_reg = reg;                                   \
9250                        jmp += 2;                                             \
9251                }                                                             \
9252                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9253                                                struct bpf_sock_ops_kern,     \
9254                                                is_fullsock),                 \
9255                                      fullsock_reg, si->src_reg,              \
9256                                      offsetof(struct bpf_sock_ops_kern,      \
9257                                               is_fullsock));                 \
9258                *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9259                if (si->dst_reg == si->src_reg)                               \
9260                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9261                                      offsetof(struct bpf_sock_ops_kern,      \
9262                                      temp));                                 \
9263                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9264                                                struct bpf_sock_ops_kern, sk),\
9265                                      si->dst_reg, si->src_reg,               \
9266                                      offsetof(struct bpf_sock_ops_kern, sk));\
9267                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9268                                                       OBJ_FIELD),            \
9269                                      si->dst_reg, si->dst_reg,               \
9270                                      offsetof(OBJ, OBJ_FIELD));              \
9271                if (si->dst_reg == si->src_reg) {                             \
9272                        *insn++ = BPF_JMP_A(1);                               \
9273                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9274                                      offsetof(struct bpf_sock_ops_kern,      \
9275                                      temp));                                 \
9276                }                                                             \
9277        } while (0)
9278
9279#define SOCK_OPS_GET_SK()                                                             \
9280        do {                                                                  \
9281                int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9282                if (si->dst_reg == reg || si->src_reg == reg)                 \
9283                        reg--;                                                \
9284                if (si->dst_reg == reg || si->src_reg == reg)                 \
9285                        reg--;                                                \
9286                if (si->dst_reg == si->src_reg) {                             \
9287                        *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9288                                          offsetof(struct bpf_sock_ops_kern,  \
9289                                          temp));                             \
9290                        fullsock_reg = reg;                                   \
9291                        jmp += 2;                                             \
9292                }                                                             \
9293                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9294                                                struct bpf_sock_ops_kern,     \
9295                                                is_fullsock),                 \
9296                                      fullsock_reg, si->src_reg,              \
9297                                      offsetof(struct bpf_sock_ops_kern,      \
9298                                               is_fullsock));                 \
9299                *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9300                if (si->dst_reg == si->src_reg)                               \
9301                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9302                                      offsetof(struct bpf_sock_ops_kern,      \
9303                                      temp));                                 \
9304                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9305                                                struct bpf_sock_ops_kern, sk),\
9306                                      si->dst_reg, si->src_reg,               \
9307                                      offsetof(struct bpf_sock_ops_kern, sk));\
9308                if (si->dst_reg == si->src_reg) {                             \
9309                        *insn++ = BPF_JMP_A(1);                               \
9310                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9311                                      offsetof(struct bpf_sock_ops_kern,      \
9312                                      temp));                                 \
9313                }                                                             \
9314        } while (0)
9315
9316#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9317                SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9318
9319/* Helper macro for adding write access to tcp_sock or sock fields.
9320 * The macro is called with two registers, dst_reg which contains a pointer
9321 * to ctx (context) and src_reg which contains the value that should be
9322 * stored. However, we need an additional register since we cannot overwrite
9323 * dst_reg because it may be used later in the program.
9324 * Instead we "borrow" one of the other register. We first save its value
9325 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9326 * it at the end of the macro.
9327 */
9328#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9329        do {                                                                  \
9330                int reg = BPF_REG_9;                                          \
9331                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9332                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9333                if (si->dst_reg == reg || si->src_reg == reg)                 \
9334                        reg--;                                                \
9335                if (si->dst_reg == reg || si->src_reg == reg)                 \
9336                        reg--;                                                \
9337                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9338                                      offsetof(struct bpf_sock_ops_kern,      \
9339                                               temp));                        \
9340                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9341                                                struct bpf_sock_ops_kern,     \
9342                                                is_fullsock),                 \
9343                                      reg, si->dst_reg,                       \
9344                                      offsetof(struct bpf_sock_ops_kern,      \
9345                                               is_fullsock));                 \
9346                *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9347                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9348                                                struct bpf_sock_ops_kern, sk),\
9349                                      reg, si->dst_reg,                       \
9350                                      offsetof(struct bpf_sock_ops_kern, sk));\
9351                *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9352                                      reg, si->src_reg,                       \
9353                                      offsetof(OBJ, OBJ_FIELD));              \
9354                *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9355                                      offsetof(struct bpf_sock_ops_kern,      \
9356                                               temp));                        \
9357        } while (0)
9358
9359#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9360        do {                                                                  \
9361                if (TYPE == BPF_WRITE)                                        \
9362                        SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9363                else                                                          \
9364                        SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9365        } while (0)
9366
9367        if (insn > insn_buf)
9368                return insn - insn_buf;
9369
9370        switch (si->off) {
9371        case offsetof(struct bpf_sock_ops, op):
9372                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9373                                                       op),
9374                                      si->dst_reg, si->src_reg,
9375                                      offsetof(struct bpf_sock_ops_kern, op));
9376                break;
9377
9378        case offsetof(struct bpf_sock_ops, replylong[0]) ...
9379             offsetof(struct bpf_sock_ops, replylong[3]):
9380                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9381                             sizeof_field(struct bpf_sock_ops_kern, reply));
9382                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9383                             sizeof_field(struct bpf_sock_ops_kern, replylong));
9384                off = si->off;
9385                off -= offsetof(struct bpf_sock_ops, replylong[0]);
9386                off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9387                if (type == BPF_WRITE)
9388                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9389                                              off);
9390                else
9391                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9392                                              off);
9393                break;
9394
9395        case offsetof(struct bpf_sock_ops, family):
9396                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9397
9398                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9399                                              struct bpf_sock_ops_kern, sk),
9400                                      si->dst_reg, si->src_reg,
9401                                      offsetof(struct bpf_sock_ops_kern, sk));
9402                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9403                                      offsetof(struct sock_common, skc_family));
9404                break;
9405
9406        case offsetof(struct bpf_sock_ops, remote_ip4):
9407                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9408
9409                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9410                                                struct bpf_sock_ops_kern, sk),
9411                                      si->dst_reg, si->src_reg,
9412                                      offsetof(struct bpf_sock_ops_kern, sk));
9413                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9414                                      offsetof(struct sock_common, skc_daddr));
9415                break;
9416
9417        case offsetof(struct bpf_sock_ops, local_ip4):
9418                BUILD_BUG_ON(sizeof_field(struct sock_common,
9419                                          skc_rcv_saddr) != 4);
9420
9421                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9422                                              struct bpf_sock_ops_kern, sk),
9423                                      si->dst_reg, si->src_reg,
9424                                      offsetof(struct bpf_sock_ops_kern, sk));
9425                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9426                                      offsetof(struct sock_common,
9427                                               skc_rcv_saddr));
9428                break;
9429
9430        case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9431             offsetof(struct bpf_sock_ops, remote_ip6[3]):
9432#if IS_ENABLED(CONFIG_IPV6)
9433                BUILD_BUG_ON(sizeof_field(struct sock_common,
9434                                          skc_v6_daddr.s6_addr32[0]) != 4);
9435
9436                off = si->off;
9437                off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9438                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9439                                                struct bpf_sock_ops_kern, sk),
9440                                      si->dst_reg, si->src_reg,
9441                                      offsetof(struct bpf_sock_ops_kern, sk));
9442                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9443                                      offsetof(struct sock_common,
9444                                               skc_v6_daddr.s6_addr32[0]) +
9445                                      off);
9446#else
9447                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9448#endif
9449                break;
9450
9451        case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9452             offsetof(struct bpf_sock_ops, local_ip6[3]):
9453#if IS_ENABLED(CONFIG_IPV6)
9454                BUILD_BUG_ON(sizeof_field(struct sock_common,
9455                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9456
9457                off = si->off;
9458                off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9459                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9460                                                struct bpf_sock_ops_kern, sk),
9461                                      si->dst_reg, si->src_reg,
9462                                      offsetof(struct bpf_sock_ops_kern, sk));
9463                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9464                                      offsetof(struct sock_common,
9465                                               skc_v6_rcv_saddr.s6_addr32[0]) +
9466                                      off);
9467#else
9468                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9469#endif
9470                break;
9471
9472        case offsetof(struct bpf_sock_ops, remote_port):
9473                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9474
9475                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9476                                                struct bpf_sock_ops_kern, sk),
9477                                      si->dst_reg, si->src_reg,
9478                                      offsetof(struct bpf_sock_ops_kern, sk));
9479                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9480                                      offsetof(struct sock_common, skc_dport));
9481#ifndef __BIG_ENDIAN_BITFIELD
9482                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9483#endif
9484                break;
9485
9486        case offsetof(struct bpf_sock_ops, local_port):
9487                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9488
9489                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9490                                                struct bpf_sock_ops_kern, sk),
9491                                      si->dst_reg, si->src_reg,
9492                                      offsetof(struct bpf_sock_ops_kern, sk));
9493                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9494                                      offsetof(struct sock_common, skc_num));
9495                break;
9496
9497        case offsetof(struct bpf_sock_ops, is_fullsock):
9498                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9499                                                struct bpf_sock_ops_kern,
9500                                                is_fullsock),
9501                                      si->dst_reg, si->src_reg,
9502                                      offsetof(struct bpf_sock_ops_kern,
9503                                               is_fullsock));
9504                break;
9505
9506        case offsetof(struct bpf_sock_ops, state):
9507                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9508
9509                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9510                                                struct bpf_sock_ops_kern, sk),
9511                                      si->dst_reg, si->src_reg,
9512                                      offsetof(struct bpf_sock_ops_kern, sk));
9513                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9514                                      offsetof(struct sock_common, skc_state));
9515                break;
9516
9517        case offsetof(struct bpf_sock_ops, rtt_min):
9518                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9519                             sizeof(struct minmax));
9520                BUILD_BUG_ON(sizeof(struct minmax) <
9521                             sizeof(struct minmax_sample));
9522
9523                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9524                                                struct bpf_sock_ops_kern, sk),
9525                                      si->dst_reg, si->src_reg,
9526                                      offsetof(struct bpf_sock_ops_kern, sk));
9527                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9528                                      offsetof(struct tcp_sock, rtt_min) +
9529                                      sizeof_field(struct minmax_sample, t));
9530                break;
9531
9532        case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9533                SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9534                                   struct tcp_sock);
9535                break;
9536
9537        case offsetof(struct bpf_sock_ops, sk_txhash):
9538                SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9539                                          struct sock, type);
9540                break;
9541        case offsetof(struct bpf_sock_ops, snd_cwnd):
9542                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9543                break;
9544        case offsetof(struct bpf_sock_ops, srtt_us):
9545                SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9546                break;
9547        case offsetof(struct bpf_sock_ops, snd_ssthresh):
9548                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9549                break;
9550        case offsetof(struct bpf_sock_ops, rcv_nxt):
9551                SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9552                break;
9553        case offsetof(struct bpf_sock_ops, snd_nxt):
9554                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9555                break;
9556        case offsetof(struct bpf_sock_ops, snd_una):
9557                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9558                break;
9559        case offsetof(struct bpf_sock_ops, mss_cache):
9560                SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9561                break;
9562        case offsetof(struct bpf_sock_ops, ecn_flags):
9563                SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9564                break;
9565        case offsetof(struct bpf_sock_ops, rate_delivered):
9566                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9567                break;
9568        case offsetof(struct bpf_sock_ops, rate_interval_us):
9569                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9570                break;
9571        case offsetof(struct bpf_sock_ops, packets_out):
9572                SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9573                break;
9574        case offsetof(struct bpf_sock_ops, retrans_out):
9575                SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9576                break;
9577        case offsetof(struct bpf_sock_ops, total_retrans):
9578                SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9579                break;
9580        case offsetof(struct bpf_sock_ops, segs_in):
9581                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9582                break;
9583        case offsetof(struct bpf_sock_ops, data_segs_in):
9584                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9585                break;
9586        case offsetof(struct bpf_sock_ops, segs_out):
9587                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9588                break;
9589        case offsetof(struct bpf_sock_ops, data_segs_out):
9590                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9591                break;
9592        case offsetof(struct bpf_sock_ops, lost_out):
9593                SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9594                break;
9595        case offsetof(struct bpf_sock_ops, sacked_out):
9596                SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9597                break;
9598        case offsetof(struct bpf_sock_ops, bytes_received):
9599                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9600                break;
9601        case offsetof(struct bpf_sock_ops, bytes_acked):
9602                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9603                break;
9604        case offsetof(struct bpf_sock_ops, sk):
9605                SOCK_OPS_GET_SK();
9606                break;
9607        case offsetof(struct bpf_sock_ops, skb_data_end):
9608                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9609                                                       skb_data_end),
9610                                      si->dst_reg, si->src_reg,
9611                                      offsetof(struct bpf_sock_ops_kern,
9612                                               skb_data_end));
9613                break;
9614        case offsetof(struct bpf_sock_ops, skb_data):
9615                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9616                                                       skb),
9617                                      si->dst_reg, si->src_reg,
9618                                      offsetof(struct bpf_sock_ops_kern,
9619                                               skb));
9620                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9621                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9622                                      si->dst_reg, si->dst_reg,
9623                                      offsetof(struct sk_buff, data));
9624                break;
9625        case offsetof(struct bpf_sock_ops, skb_len):
9626                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9627                                                       skb),
9628                                      si->dst_reg, si->src_reg,
9629                                      offsetof(struct bpf_sock_ops_kern,
9630                                               skb));
9631                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9632                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9633                                      si->dst_reg, si->dst_reg,
9634                                      offsetof(struct sk_buff, len));
9635                break;
9636        case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9637                off = offsetof(struct sk_buff, cb);
9638                off += offsetof(struct tcp_skb_cb, tcp_flags);
9639                *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9640                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9641                                                       skb),
9642                                      si->dst_reg, si->src_reg,
9643                                      offsetof(struct bpf_sock_ops_kern,
9644                                               skb));
9645                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9646                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9647                                                       tcp_flags),
9648                                      si->dst_reg, si->dst_reg, off);
9649                break;
9650        }
9651        return insn - insn_buf;
9652}
9653
9654/* data_end = skb->data + skb_headlen() */
9655static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9656                                                    struct bpf_insn *insn)
9657{
9658        /* si->dst_reg = skb->data */
9659        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9660                              si->dst_reg, si->src_reg,
9661                              offsetof(struct sk_buff, data));
9662        /* AX = skb->len */
9663        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9664                              BPF_REG_AX, si->src_reg,
9665                              offsetof(struct sk_buff, len));
9666        /* si->dst_reg = skb->data + skb->len */
9667        *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9668        /* AX = skb->data_len */
9669        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9670                              BPF_REG_AX, si->src_reg,
9671                              offsetof(struct sk_buff, data_len));
9672        /* si->dst_reg = skb->data + skb->len - skb->data_len */
9673        *insn++ = BPF_ALU64_REG(BPF_SUB, si->dst_reg, BPF_REG_AX);
9674
9675        return insn;
9676}
9677
9678static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9679                                     const struct bpf_insn *si,
9680                                     struct bpf_insn *insn_buf,
9681                                     struct bpf_prog *prog, u32 *target_size)
9682{
9683        struct bpf_insn *insn = insn_buf;
9684
9685        switch (si->off) {
9686        case offsetof(struct __sk_buff, data_end):
9687                insn = bpf_convert_data_end_access(si, insn);
9688                break;
9689        default:
9690                return bpf_convert_ctx_access(type, si, insn_buf, prog,
9691                                              target_size);
9692        }
9693
9694        return insn - insn_buf;
9695}
9696
9697static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9698                                     const struct bpf_insn *si,
9699                                     struct bpf_insn *insn_buf,
9700                                     struct bpf_prog *prog, u32 *target_size)
9701{
9702        struct bpf_insn *insn = insn_buf;
9703#if IS_ENABLED(CONFIG_IPV6)
9704        int off;
9705#endif
9706
9707        /* convert ctx uses the fact sg element is first in struct */
9708        BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9709
9710        switch (si->off) {
9711        case offsetof(struct sk_msg_md, data):
9712                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9713                                      si->dst_reg, si->src_reg,
9714                                      offsetof(struct sk_msg, data));
9715                break;
9716        case offsetof(struct sk_msg_md, data_end):
9717                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9718                                      si->dst_reg, si->src_reg,
9719                                      offsetof(struct sk_msg, data_end));
9720                break;
9721        case offsetof(struct sk_msg_md, family):
9722                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9723
9724                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9725                                              struct sk_msg, sk),
9726                                      si->dst_reg, si->src_reg,
9727                                      offsetof(struct sk_msg, sk));
9728                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9729                                      offsetof(struct sock_common, skc_family));
9730                break;
9731
9732        case offsetof(struct sk_msg_md, remote_ip4):
9733                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9734
9735                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9736                                                struct sk_msg, sk),
9737                                      si->dst_reg, si->src_reg,
9738                                      offsetof(struct sk_msg, sk));
9739                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9740                                      offsetof(struct sock_common, skc_daddr));
9741                break;
9742
9743        case offsetof(struct sk_msg_md, local_ip4):
9744                BUILD_BUG_ON(sizeof_field(struct sock_common,
9745                                          skc_rcv_saddr) != 4);
9746
9747                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9748                                              struct sk_msg, sk),
9749                                      si->dst_reg, si->src_reg,
9750                                      offsetof(struct sk_msg, sk));
9751                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9752                                      offsetof(struct sock_common,
9753                                               skc_rcv_saddr));
9754                break;
9755
9756        case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9757             offsetof(struct sk_msg_md, remote_ip6[3]):
9758#if IS_ENABLED(CONFIG_IPV6)
9759                BUILD_BUG_ON(sizeof_field(struct sock_common,
9760                                          skc_v6_daddr.s6_addr32[0]) != 4);
9761
9762                off = si->off;
9763                off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9764                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9765                                                struct sk_msg, sk),
9766                                      si->dst_reg, si->src_reg,
9767                                      offsetof(struct sk_msg, sk));
9768                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9769                                      offsetof(struct sock_common,
9770                                               skc_v6_daddr.s6_addr32[0]) +
9771                                      off);
9772#else
9773                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9774#endif
9775                break;
9776
9777        case offsetof(struct sk_msg_md, local_ip6[0]) ...
9778             offsetof(struct sk_msg_md, local_ip6[3]):
9779#if IS_ENABLED(CONFIG_IPV6)
9780                BUILD_BUG_ON(sizeof_field(struct sock_common,
9781                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9782
9783                off = si->off;
9784                off -= offsetof(struct sk_msg_md, local_ip6[0]);
9785                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9786                                                struct sk_msg, sk),
9787                                      si->dst_reg, si->src_reg,
9788                                      offsetof(struct sk_msg, sk));
9789                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9790                                      offsetof(struct sock_common,
9791                                               skc_v6_rcv_saddr.s6_addr32[0]) +
9792                                      off);
9793#else
9794                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9795#endif
9796                break;
9797
9798        case offsetof(struct sk_msg_md, remote_port):
9799                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9800
9801                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9802                                                struct sk_msg, sk),
9803                                      si->dst_reg, si->src_reg,
9804                                      offsetof(struct sk_msg, sk));
9805                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9806                                      offsetof(struct sock_common, skc_dport));
9807#ifndef __BIG_ENDIAN_BITFIELD
9808                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9809#endif
9810                break;
9811
9812        case offsetof(struct sk_msg_md, local_port):
9813                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9814
9815                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9816                                                struct sk_msg, sk),
9817                                      si->dst_reg, si->src_reg,
9818                                      offsetof(struct sk_msg, sk));
9819                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9820                                      offsetof(struct sock_common, skc_num));
9821                break;
9822
9823        case offsetof(struct sk_msg_md, size):
9824                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9825                                      si->dst_reg, si->src_reg,
9826                                      offsetof(struct sk_msg_sg, size));
9827                break;
9828
9829        case offsetof(struct sk_msg_md, sk):
9830                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9831                                      si->dst_reg, si->src_reg,
9832                                      offsetof(struct sk_msg, sk));
9833                break;
9834        }
9835
9836        return insn - insn_buf;
9837}
9838
9839const struct bpf_verifier_ops sk_filter_verifier_ops = {
9840        .get_func_proto         = sk_filter_func_proto,
9841        .is_valid_access        = sk_filter_is_valid_access,
9842        .convert_ctx_access     = bpf_convert_ctx_access,
9843        .gen_ld_abs             = bpf_gen_ld_abs,
9844};
9845
9846const struct bpf_prog_ops sk_filter_prog_ops = {
9847        .test_run               = bpf_prog_test_run_skb,
9848};
9849
9850const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9851        .get_func_proto         = tc_cls_act_func_proto,
9852        .is_valid_access        = tc_cls_act_is_valid_access,
9853        .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9854        .gen_prologue           = tc_cls_act_prologue,
9855        .gen_ld_abs             = bpf_gen_ld_abs,
9856        .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
9857};
9858
9859const struct bpf_prog_ops tc_cls_act_prog_ops = {
9860        .test_run               = bpf_prog_test_run_skb,
9861};
9862
9863const struct bpf_verifier_ops xdp_verifier_ops = {
9864        .get_func_proto         = xdp_func_proto,
9865        .is_valid_access        = xdp_is_valid_access,
9866        .convert_ctx_access     = xdp_convert_ctx_access,
9867        .gen_prologue           = bpf_noop_prologue,
9868};
9869
9870const struct bpf_prog_ops xdp_prog_ops = {
9871        .test_run               = bpf_prog_test_run_xdp,
9872};
9873
9874const struct bpf_verifier_ops cg_skb_verifier_ops = {
9875        .get_func_proto         = cg_skb_func_proto,
9876        .is_valid_access        = cg_skb_is_valid_access,
9877        .convert_ctx_access     = bpf_convert_ctx_access,
9878};
9879
9880const struct bpf_prog_ops cg_skb_prog_ops = {
9881        .test_run               = bpf_prog_test_run_skb,
9882};
9883
9884const struct bpf_verifier_ops lwt_in_verifier_ops = {
9885        .get_func_proto         = lwt_in_func_proto,
9886        .is_valid_access        = lwt_is_valid_access,
9887        .convert_ctx_access     = bpf_convert_ctx_access,
9888};
9889
9890const struct bpf_prog_ops lwt_in_prog_ops = {
9891        .test_run               = bpf_prog_test_run_skb,
9892};
9893
9894const struct bpf_verifier_ops lwt_out_verifier_ops = {
9895        .get_func_proto         = lwt_out_func_proto,
9896        .is_valid_access        = lwt_is_valid_access,
9897        .convert_ctx_access     = bpf_convert_ctx_access,
9898};
9899
9900const struct bpf_prog_ops lwt_out_prog_ops = {
9901        .test_run               = bpf_prog_test_run_skb,
9902};
9903
9904const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9905        .get_func_proto         = lwt_xmit_func_proto,
9906        .is_valid_access        = lwt_is_valid_access,
9907        .convert_ctx_access     = bpf_convert_ctx_access,
9908        .gen_prologue           = tc_cls_act_prologue,
9909};
9910
9911const struct bpf_prog_ops lwt_xmit_prog_ops = {
9912        .test_run               = bpf_prog_test_run_skb,
9913};
9914
9915const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9916        .get_func_proto         = lwt_seg6local_func_proto,
9917        .is_valid_access        = lwt_is_valid_access,
9918        .convert_ctx_access     = bpf_convert_ctx_access,
9919};
9920
9921const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9922        .test_run               = bpf_prog_test_run_skb,
9923};
9924
9925const struct bpf_verifier_ops cg_sock_verifier_ops = {
9926        .get_func_proto         = sock_filter_func_proto,
9927        .is_valid_access        = sock_filter_is_valid_access,
9928        .convert_ctx_access     = bpf_sock_convert_ctx_access,
9929};
9930
9931const struct bpf_prog_ops cg_sock_prog_ops = {
9932};
9933
9934const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9935        .get_func_proto         = sock_addr_func_proto,
9936        .is_valid_access        = sock_addr_is_valid_access,
9937        .convert_ctx_access     = sock_addr_convert_ctx_access,
9938};
9939
9940const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9941};
9942
9943const struct bpf_verifier_ops sock_ops_verifier_ops = {
9944        .get_func_proto         = sock_ops_func_proto,
9945        .is_valid_access        = sock_ops_is_valid_access,
9946        .convert_ctx_access     = sock_ops_convert_ctx_access,
9947};
9948
9949const struct bpf_prog_ops sock_ops_prog_ops = {
9950};
9951
9952const struct bpf_verifier_ops sk_skb_verifier_ops = {
9953        .get_func_proto         = sk_skb_func_proto,
9954        .is_valid_access        = sk_skb_is_valid_access,
9955        .convert_ctx_access     = sk_skb_convert_ctx_access,
9956        .gen_prologue           = sk_skb_prologue,
9957};
9958
9959const struct bpf_prog_ops sk_skb_prog_ops = {
9960};
9961
9962const struct bpf_verifier_ops sk_msg_verifier_ops = {
9963        .get_func_proto         = sk_msg_func_proto,
9964        .is_valid_access        = sk_msg_is_valid_access,
9965        .convert_ctx_access     = sk_msg_convert_ctx_access,
9966        .gen_prologue           = bpf_noop_prologue,
9967};
9968
9969const struct bpf_prog_ops sk_msg_prog_ops = {
9970};
9971
9972const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9973        .get_func_proto         = flow_dissector_func_proto,
9974        .is_valid_access        = flow_dissector_is_valid_access,
9975        .convert_ctx_access     = flow_dissector_convert_ctx_access,
9976};
9977
9978const struct bpf_prog_ops flow_dissector_prog_ops = {
9979        .test_run               = bpf_prog_test_run_flow_dissector,
9980};
9981
9982int sk_detach_filter(struct sock *sk)
9983{
9984        int ret = -ENOENT;
9985        struct sk_filter *filter;
9986
9987        if (sock_flag(sk, SOCK_FILTER_LOCKED))
9988                return -EPERM;
9989
9990        filter = rcu_dereference_protected(sk->sk_filter,
9991                                           lockdep_sock_is_held(sk));
9992        if (filter) {
9993                RCU_INIT_POINTER(sk->sk_filter, NULL);
9994                sk_filter_uncharge(sk, filter);
9995                ret = 0;
9996        }
9997
9998        return ret;
9999}
10000EXPORT_SYMBOL_GPL(sk_detach_filter);
10001
10002int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10003                  unsigned int len)
10004{
10005        struct sock_fprog_kern *fprog;
10006        struct sk_filter *filter;
10007        int ret = 0;
10008
10009        lock_sock(sk);
10010        filter = rcu_dereference_protected(sk->sk_filter,
10011                                           lockdep_sock_is_held(sk));
10012        if (!filter)
10013                goto out;
10014
10015        /* We're copying the filter that has been originally attached,
10016         * so no conversion/decode needed anymore. eBPF programs that
10017         * have no original program cannot be dumped through this.
10018         */
10019        ret = -EACCES;
10020        fprog = filter->prog->orig_prog;
10021        if (!fprog)
10022                goto out;
10023
10024        ret = fprog->len;
10025        if (!len)
10026                /* User space only enquires number of filter blocks. */
10027                goto out;
10028
10029        ret = -EINVAL;
10030        if (len < fprog->len)
10031                goto out;
10032
10033        ret = -EFAULT;
10034        if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10035                goto out;
10036
10037        /* Instead of bytes, the API requests to return the number
10038         * of filter blocks.
10039         */
10040        ret = fprog->len;
10041out:
10042        release_sock(sk);
10043        return ret;
10044}
10045
10046#ifdef CONFIG_INET
10047static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10048                                    struct sock_reuseport *reuse,
10049                                    struct sock *sk, struct sk_buff *skb,
10050                                    struct sock *migrating_sk,
10051                                    u32 hash)
10052{
10053        reuse_kern->skb = skb;
10054        reuse_kern->sk = sk;
10055        reuse_kern->selected_sk = NULL;
10056        reuse_kern->migrating_sk = migrating_sk;
10057        reuse_kern->data_end = skb->data + skb_headlen(skb);
10058        reuse_kern->hash = hash;
10059        reuse_kern->reuseport_id = reuse->reuseport_id;
10060        reuse_kern->bind_inany = reuse->bind_inany;
10061}
10062
10063struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10064                                  struct bpf_prog *prog, struct sk_buff *skb,
10065                                  struct sock *migrating_sk,
10066                                  u32 hash)
10067{
10068        struct sk_reuseport_kern reuse_kern;
10069        enum sk_action action;
10070
10071        bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10072        action = BPF_PROG_RUN(prog, &reuse_kern);
10073
10074        if (action == SK_PASS)
10075                return reuse_kern.selected_sk;
10076        else
10077                return ERR_PTR(-ECONNREFUSED);
10078}
10079
10080BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10081           struct bpf_map *, map, void *, key, u32, flags)
10082{
10083        bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10084        struct sock_reuseport *reuse;
10085        struct sock *selected_sk;
10086
10087        selected_sk = map->ops->map_lookup_elem(map, key);
10088        if (!selected_sk)
10089                return -ENOENT;
10090
10091        reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10092        if (!reuse) {
10093                /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10094                if (sk_is_refcounted(selected_sk))
10095                        sock_put(selected_sk);
10096
10097                /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10098                 * The only (!reuse) case here is - the sk has already been
10099                 * unhashed (e.g. by close()), so treat it as -ENOENT.
10100                 *
10101                 * Other maps (e.g. sock_map) do not provide this guarantee and
10102                 * the sk may never be in the reuseport group to begin with.
10103                 */
10104                return is_sockarray ? -ENOENT : -EINVAL;
10105        }
10106
10107        if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10108                struct sock *sk = reuse_kern->sk;
10109
10110                if (sk->sk_protocol != selected_sk->sk_protocol)
10111                        return -EPROTOTYPE;
10112                else if (sk->sk_family != selected_sk->sk_family)
10113                        return -EAFNOSUPPORT;
10114
10115                /* Catch all. Likely bound to a different sockaddr. */
10116                return -EBADFD;
10117        }
10118
10119        reuse_kern->selected_sk = selected_sk;
10120
10121        return 0;
10122}
10123
10124static const struct bpf_func_proto sk_select_reuseport_proto = {
10125        .func           = sk_select_reuseport,
10126        .gpl_only       = false,
10127        .ret_type       = RET_INTEGER,
10128        .arg1_type      = ARG_PTR_TO_CTX,
10129        .arg2_type      = ARG_CONST_MAP_PTR,
10130        .arg3_type      = ARG_PTR_TO_MAP_KEY,
10131        .arg4_type      = ARG_ANYTHING,
10132};
10133
10134BPF_CALL_4(sk_reuseport_load_bytes,
10135           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10136           void *, to, u32, len)
10137{
10138        return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10139}
10140
10141static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10142        .func           = sk_reuseport_load_bytes,
10143        .gpl_only       = false,
10144        .ret_type       = RET_INTEGER,
10145        .arg1_type      = ARG_PTR_TO_CTX,
10146        .arg2_type      = ARG_ANYTHING,
10147        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10148        .arg4_type      = ARG_CONST_SIZE,
10149};
10150
10151BPF_CALL_5(sk_reuseport_load_bytes_relative,
10152           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10153           void *, to, u32, len, u32, start_header)
10154{
10155        return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10156                                               len, start_header);
10157}
10158
10159static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10160        .func           = sk_reuseport_load_bytes_relative,
10161        .gpl_only       = false,
10162        .ret_type       = RET_INTEGER,
10163        .arg1_type      = ARG_PTR_TO_CTX,
10164        .arg2_type      = ARG_ANYTHING,
10165        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10166        .arg4_type      = ARG_CONST_SIZE,
10167        .arg5_type      = ARG_ANYTHING,
10168};
10169
10170static const struct bpf_func_proto *
10171sk_reuseport_func_proto(enum bpf_func_id func_id,
10172                        const struct bpf_prog *prog)
10173{
10174        switch (func_id) {
10175        case BPF_FUNC_sk_select_reuseport:
10176                return &sk_select_reuseport_proto;
10177        case BPF_FUNC_skb_load_bytes:
10178                return &sk_reuseport_load_bytes_proto;
10179        case BPF_FUNC_skb_load_bytes_relative:
10180                return &sk_reuseport_load_bytes_relative_proto;
10181        case BPF_FUNC_get_socket_cookie:
10182                return &bpf_get_socket_ptr_cookie_proto;
10183        default:
10184                return bpf_base_func_proto(func_id);
10185        }
10186}
10187
10188static bool
10189sk_reuseport_is_valid_access(int off, int size,
10190                             enum bpf_access_type type,
10191                             const struct bpf_prog *prog,
10192                             struct bpf_insn_access_aux *info)
10193{
10194        const u32 size_default = sizeof(__u32);
10195
10196        if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10197            off % size || type != BPF_READ)
10198                return false;
10199
10200        switch (off) {
10201        case offsetof(struct sk_reuseport_md, data):
10202                info->reg_type = PTR_TO_PACKET;
10203                return size == sizeof(__u64);
10204
10205        case offsetof(struct sk_reuseport_md, data_end):
10206                info->reg_type = PTR_TO_PACKET_END;
10207                return size == sizeof(__u64);
10208
10209        case offsetof(struct sk_reuseport_md, hash):
10210                return size == size_default;
10211
10212        case offsetof(struct sk_reuseport_md, sk):
10213                info->reg_type = PTR_TO_SOCKET;
10214                return size == sizeof(__u64);
10215
10216        case offsetof(struct sk_reuseport_md, migrating_sk):
10217                info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10218                return size == sizeof(__u64);
10219
10220        /* Fields that allow narrowing */
10221        case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10222                if (size < sizeof_field(struct sk_buff, protocol))
10223                        return false;
10224                fallthrough;
10225        case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10226        case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10227        case bpf_ctx_range(struct sk_reuseport_md, len):
10228                bpf_ctx_record_field_size(info, size_default);
10229                return bpf_ctx_narrow_access_ok(off, size, size_default);
10230
10231        default:
10232                return false;
10233        }
10234}
10235
10236#define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10237        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10238                              si->dst_reg, si->src_reg,                 \
10239                              bpf_target_off(struct sk_reuseport_kern, F, \
10240                                             sizeof_field(struct sk_reuseport_kern, F), \
10241                                             target_size));             \
10242        })
10243
10244#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10245        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10246                                    struct sk_buff,                     \
10247                                    skb,                                \
10248                                    SKB_FIELD)
10249
10250#define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10251        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10252                                    struct sock,                        \
10253                                    sk,                                 \
10254                                    SK_FIELD)
10255
10256static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10257                                           const struct bpf_insn *si,
10258                                           struct bpf_insn *insn_buf,
10259                                           struct bpf_prog *prog,
10260                                           u32 *target_size)
10261{
10262        struct bpf_insn *insn = insn_buf;
10263
10264        switch (si->off) {
10265        case offsetof(struct sk_reuseport_md, data):
10266                SK_REUSEPORT_LOAD_SKB_FIELD(data);
10267                break;
10268
10269        case offsetof(struct sk_reuseport_md, len):
10270                SK_REUSEPORT_LOAD_SKB_FIELD(len);
10271                break;
10272
10273        case offsetof(struct sk_reuseport_md, eth_protocol):
10274                SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10275                break;
10276
10277        case offsetof(struct sk_reuseport_md, ip_protocol):
10278                SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10279                break;
10280
10281        case offsetof(struct sk_reuseport_md, data_end):
10282                SK_REUSEPORT_LOAD_FIELD(data_end);
10283                break;
10284
10285        case offsetof(struct sk_reuseport_md, hash):
10286                SK_REUSEPORT_LOAD_FIELD(hash);
10287                break;
10288
10289        case offsetof(struct sk_reuseport_md, bind_inany):
10290                SK_REUSEPORT_LOAD_FIELD(bind_inany);
10291                break;
10292
10293        case offsetof(struct sk_reuseport_md, sk):
10294                SK_REUSEPORT_LOAD_FIELD(sk);
10295                break;
10296
10297        case offsetof(struct sk_reuseport_md, migrating_sk):
10298                SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10299                break;
10300        }
10301
10302        return insn - insn_buf;
10303}
10304
10305const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10306        .get_func_proto         = sk_reuseport_func_proto,
10307        .is_valid_access        = sk_reuseport_is_valid_access,
10308        .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10309};
10310
10311const struct bpf_prog_ops sk_reuseport_prog_ops = {
10312};
10313
10314DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10315EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10316
10317BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10318           struct sock *, sk, u64, flags)
10319{
10320        if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10321                               BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10322                return -EINVAL;
10323        if (unlikely(sk && sk_is_refcounted(sk)))
10324                return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10325        if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10326                return -ESOCKTNOSUPPORT; /* reject connected sockets */
10327
10328        /* Check if socket is suitable for packet L3/L4 protocol */
10329        if (sk && sk->sk_protocol != ctx->protocol)
10330                return -EPROTOTYPE;
10331        if (sk && sk->sk_family != ctx->family &&
10332            (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10333                return -EAFNOSUPPORT;
10334
10335        if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10336                return -EEXIST;
10337
10338        /* Select socket as lookup result */
10339        ctx->selected_sk = sk;
10340        ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10341        return 0;
10342}
10343
10344static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10345        .func           = bpf_sk_lookup_assign,
10346        .gpl_only       = false,
10347        .ret_type       = RET_INTEGER,
10348        .arg1_type      = ARG_PTR_TO_CTX,
10349        .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10350        .arg3_type      = ARG_ANYTHING,
10351};
10352
10353static const struct bpf_func_proto *
10354sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10355{
10356        switch (func_id) {
10357        case BPF_FUNC_perf_event_output:
10358                return &bpf_event_output_data_proto;
10359        case BPF_FUNC_sk_assign:
10360                return &bpf_sk_lookup_assign_proto;
10361        case BPF_FUNC_sk_release:
10362                return &bpf_sk_release_proto;
10363        default:
10364                return bpf_sk_base_func_proto(func_id);
10365        }
10366}
10367
10368static bool sk_lookup_is_valid_access(int off, int size,
10369                                      enum bpf_access_type type,
10370                                      const struct bpf_prog *prog,
10371                                      struct bpf_insn_access_aux *info)
10372{
10373        if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10374                return false;
10375        if (off % size != 0)
10376                return false;
10377        if (type != BPF_READ)
10378                return false;
10379
10380        switch (off) {
10381        case offsetof(struct bpf_sk_lookup, sk):
10382                info->reg_type = PTR_TO_SOCKET_OR_NULL;
10383                return size == sizeof(__u64);
10384
10385        case bpf_ctx_range(struct bpf_sk_lookup, family):
10386        case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10387        case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10388        case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10389        case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10390        case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10391        case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10392        case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10393                bpf_ctx_record_field_size(info, sizeof(__u32));
10394                return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10395
10396        default:
10397                return false;
10398        }
10399}
10400
10401static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10402                                        const struct bpf_insn *si,
10403                                        struct bpf_insn *insn_buf,
10404                                        struct bpf_prog *prog,
10405                                        u32 *target_size)
10406{
10407        struct bpf_insn *insn = insn_buf;
10408
10409        switch (si->off) {
10410        case offsetof(struct bpf_sk_lookup, sk):
10411                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10412                                      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10413                break;
10414
10415        case offsetof(struct bpf_sk_lookup, family):
10416                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10417                                      bpf_target_off(struct bpf_sk_lookup_kern,
10418                                                     family, 2, target_size));
10419                break;
10420
10421        case offsetof(struct bpf_sk_lookup, protocol):
10422                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10423                                      bpf_target_off(struct bpf_sk_lookup_kern,
10424                                                     protocol, 2, target_size));
10425                break;
10426
10427        case offsetof(struct bpf_sk_lookup, remote_ip4):
10428                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10429                                      bpf_target_off(struct bpf_sk_lookup_kern,
10430                                                     v4.saddr, 4, target_size));
10431                break;
10432
10433        case offsetof(struct bpf_sk_lookup, local_ip4):
10434                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10435                                      bpf_target_off(struct bpf_sk_lookup_kern,
10436                                                     v4.daddr, 4, target_size));
10437                break;
10438
10439        case bpf_ctx_range_till(struct bpf_sk_lookup,
10440                                remote_ip6[0], remote_ip6[3]): {
10441#if IS_ENABLED(CONFIG_IPV6)
10442                int off = si->off;
10443
10444                off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10445                off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10446                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10447                                      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10448                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10449                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10450#else
10451                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10452#endif
10453                break;
10454        }
10455        case bpf_ctx_range_till(struct bpf_sk_lookup,
10456                                local_ip6[0], local_ip6[3]): {
10457#if IS_ENABLED(CONFIG_IPV6)
10458                int off = si->off;
10459
10460                off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10461                off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10462                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10463                                      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10464                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10465                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10466#else
10467                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10468#endif
10469                break;
10470        }
10471        case offsetof(struct bpf_sk_lookup, remote_port):
10472                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10473                                      bpf_target_off(struct bpf_sk_lookup_kern,
10474                                                     sport, 2, target_size));
10475                break;
10476
10477        case offsetof(struct bpf_sk_lookup, local_port):
10478                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10479                                      bpf_target_off(struct bpf_sk_lookup_kern,
10480                                                     dport, 2, target_size));
10481                break;
10482        }
10483
10484        return insn - insn_buf;
10485}
10486
10487const struct bpf_prog_ops sk_lookup_prog_ops = {
10488        .test_run = bpf_prog_test_run_sk_lookup,
10489};
10490
10491const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10492        .get_func_proto         = sk_lookup_func_proto,
10493        .is_valid_access        = sk_lookup_is_valid_access,
10494        .convert_ctx_access     = sk_lookup_convert_ctx_access,
10495};
10496
10497#endif /* CONFIG_INET */
10498
10499DEFINE_BPF_DISPATCHER(xdp)
10500
10501void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10502{
10503        bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10504}
10505
10506#ifdef CONFIG_DEBUG_INFO_BTF
10507BTF_ID_LIST_GLOBAL(btf_sock_ids)
10508#define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10509BTF_SOCK_TYPE_xxx
10510#undef BTF_SOCK_TYPE
10511#else
10512u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10513#endif
10514
10515BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10516{
10517        /* tcp6_sock type is not generated in dwarf and hence btf,
10518         * trigger an explicit type generation here.
10519         */
10520        BTF_TYPE_EMIT(struct tcp6_sock);
10521        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10522            sk->sk_family == AF_INET6)
10523                return (unsigned long)sk;
10524
10525        return (unsigned long)NULL;
10526}
10527
10528const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10529        .func                   = bpf_skc_to_tcp6_sock,
10530        .gpl_only               = false,
10531        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10532        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10533        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10534};
10535
10536BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10537{
10538        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10539                return (unsigned long)sk;
10540
10541        return (unsigned long)NULL;
10542}
10543
10544const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10545        .func                   = bpf_skc_to_tcp_sock,
10546        .gpl_only               = false,
10547        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10548        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10549        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10550};
10551
10552BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10553{
10554        /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10555         * generated if CONFIG_INET=n. Trigger an explicit generation here.
10556         */
10557        BTF_TYPE_EMIT(struct inet_timewait_sock);
10558        BTF_TYPE_EMIT(struct tcp_timewait_sock);
10559
10560#ifdef CONFIG_INET
10561        if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10562                return (unsigned long)sk;
10563#endif
10564
10565#if IS_BUILTIN(CONFIG_IPV6)
10566        if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10567                return (unsigned long)sk;
10568#endif
10569
10570        return (unsigned long)NULL;
10571}
10572
10573const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10574        .func                   = bpf_skc_to_tcp_timewait_sock,
10575        .gpl_only               = false,
10576        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10577        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10578        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10579};
10580
10581BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10582{
10583#ifdef CONFIG_INET
10584        if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10585                return (unsigned long)sk;
10586#endif
10587
10588#if IS_BUILTIN(CONFIG_IPV6)
10589        if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10590                return (unsigned long)sk;
10591#endif
10592
10593        return (unsigned long)NULL;
10594}
10595
10596const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10597        .func                   = bpf_skc_to_tcp_request_sock,
10598        .gpl_only               = false,
10599        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10600        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10601        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10602};
10603
10604BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10605{
10606        /* udp6_sock type is not generated in dwarf and hence btf,
10607         * trigger an explicit type generation here.
10608         */
10609        BTF_TYPE_EMIT(struct udp6_sock);
10610        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10611            sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10612                return (unsigned long)sk;
10613
10614        return (unsigned long)NULL;
10615}
10616
10617const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10618        .func                   = bpf_skc_to_udp6_sock,
10619        .gpl_only               = false,
10620        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10621        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10622        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10623};
10624
10625BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10626{
10627        return (unsigned long)sock_from_file(file);
10628}
10629
10630BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10631BTF_ID(struct, socket)
10632BTF_ID(struct, file)
10633
10634const struct bpf_func_proto bpf_sock_from_file_proto = {
10635        .func           = bpf_sock_from_file,
10636        .gpl_only       = false,
10637        .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10638        .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10639        .arg1_type      = ARG_PTR_TO_BTF_ID,
10640        .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10641};
10642
10643static const struct bpf_func_proto *
10644bpf_sk_base_func_proto(enum bpf_func_id func_id)
10645{
10646        const struct bpf_func_proto *func;
10647
10648        switch (func_id) {
10649        case BPF_FUNC_skc_to_tcp6_sock:
10650                func = &bpf_skc_to_tcp6_sock_proto;
10651                break;
10652        case BPF_FUNC_skc_to_tcp_sock:
10653                func = &bpf_skc_to_tcp_sock_proto;
10654                break;
10655        case BPF_FUNC_skc_to_tcp_timewait_sock:
10656                func = &bpf_skc_to_tcp_timewait_sock_proto;
10657                break;
10658        case BPF_FUNC_skc_to_tcp_request_sock:
10659                func = &bpf_skc_to_tcp_request_sock_proto;
10660                break;
10661        case BPF_FUNC_skc_to_udp6_sock:
10662                func = &bpf_skc_to_udp6_sock_proto;
10663                break;
10664        default:
10665                return bpf_base_func_proto(func_id);
10666        }
10667
10668        if (!perfmon_capable())
10669                return NULL;
10670
10671        return func;
10672}
10673