linux/net/ipv4/fib_trie.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET         An implementation of the TCP/IP protocol suite for the LINUX
  24 *              operating system.  INET is implemented using the  BSD Socket
  25 *              interface as the means of communication with the user level.
  26 *
  27 *              IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *              David S. Miller, <davem@davemloft.net>
  34 *              Stephen Hemminger <shemminger@osdl.org>
  35 *              Paul E. McKenney <paulmck@us.ibm.com>
  36 *              Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/skbuff.h>
  56#include <linux/netlink.h>
  57#include <linux/init.h>
  58#include <linux/list.h>
  59#include <linux/slab.h>
  60#include <linux/export.h>
  61#include <linux/vmalloc.h>
  62#include <linux/notifier.h>
  63#include <net/net_namespace.h>
  64#include <net/ip.h>
  65#include <net/protocol.h>
  66#include <net/route.h>
  67#include <net/tcp.h>
  68#include <net/sock.h>
  69#include <net/ip_fib.h>
  70#include <net/fib_notifier.h>
  71#include <trace/events/fib.h>
  72#include "fib_lookup.h"
  73
  74static int call_fib_entry_notifier(struct notifier_block *nb,
  75                                   enum fib_event_type event_type, u32 dst,
  76                                   int dst_len, struct fib_alias *fa,
  77                                   struct netlink_ext_ack *extack)
  78{
  79        struct fib_entry_notifier_info info = {
  80                .info.extack = extack,
  81                .dst = dst,
  82                .dst_len = dst_len,
  83                .fi = fa->fa_info,
  84                .tos = fa->fa_tos,
  85                .type = fa->fa_type,
  86                .tb_id = fa->tb_id,
  87        };
  88        return call_fib4_notifier(nb, event_type, &info.info);
  89}
  90
  91static int call_fib_entry_notifiers(struct net *net,
  92                                    enum fib_event_type event_type, u32 dst,
  93                                    int dst_len, struct fib_alias *fa,
  94                                    struct netlink_ext_ack *extack)
  95{
  96        struct fib_entry_notifier_info info = {
  97                .info.extack = extack,
  98                .dst = dst,
  99                .dst_len = dst_len,
 100                .fi = fa->fa_info,
 101                .tos = fa->fa_tos,
 102                .type = fa->fa_type,
 103                .tb_id = fa->tb_id,
 104        };
 105        return call_fib4_notifiers(net, event_type, &info.info);
 106}
 107
 108#define MAX_STAT_DEPTH 32
 109
 110#define KEYLENGTH       (8*sizeof(t_key))
 111#define KEY_MAX         ((t_key)~0)
 112
 113typedef unsigned int t_key;
 114
 115#define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
 116#define IS_TNODE(n)     ((n)->bits)
 117#define IS_LEAF(n)      (!(n)->bits)
 118
 119struct key_vector {
 120        t_key key;
 121        unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
 122        unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
 123        unsigned char slen;
 124        union {
 125                /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 126                struct hlist_head leaf;
 127                /* This array is valid if (pos | bits) > 0 (TNODE) */
 128                struct key_vector __rcu *tnode[0];
 129        };
 130};
 131
 132struct tnode {
 133        struct rcu_head rcu;
 134        t_key empty_children;           /* KEYLENGTH bits needed */
 135        t_key full_children;            /* KEYLENGTH bits needed */
 136        struct key_vector __rcu *parent;
 137        struct key_vector kv[1];
 138#define tn_bits kv[0].bits
 139};
 140
 141#define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
 142#define LEAF_SIZE       TNODE_SIZE(1)
 143
 144#ifdef CONFIG_IP_FIB_TRIE_STATS
 145struct trie_use_stats {
 146        unsigned int gets;
 147        unsigned int backtrack;
 148        unsigned int semantic_match_passed;
 149        unsigned int semantic_match_miss;
 150        unsigned int null_node_hit;
 151        unsigned int resize_node_skipped;
 152};
 153#endif
 154
 155struct trie_stat {
 156        unsigned int totdepth;
 157        unsigned int maxdepth;
 158        unsigned int tnodes;
 159        unsigned int leaves;
 160        unsigned int nullpointers;
 161        unsigned int prefixes;
 162        unsigned int nodesizes[MAX_STAT_DEPTH];
 163};
 164
 165struct trie {
 166        struct key_vector kv[1];
 167#ifdef CONFIG_IP_FIB_TRIE_STATS
 168        struct trie_use_stats __percpu *stats;
 169#endif
 170};
 171
 172static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 173static unsigned int tnode_free_size;
 174
 175/*
 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 177 * especially useful before resizing the root node with PREEMPT_NONE configs;
 178 * the value was obtained experimentally, aiming to avoid visible slowdown.
 179 */
 180unsigned int sysctl_fib_sync_mem = 512 * 1024;
 181unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 182unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 183
 184static struct kmem_cache *fn_alias_kmem __ro_after_init;
 185static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 186
 187static inline struct tnode *tn_info(struct key_vector *kv)
 188{
 189        return container_of(kv, struct tnode, kv[0]);
 190}
 191
 192/* caller must hold RTNL */
 193#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 194#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 195
 196/* caller must hold RCU read lock or RTNL */
 197#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 198#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 199
 200/* wrapper for rcu_assign_pointer */
 201static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 202{
 203        if (n)
 204                rcu_assign_pointer(tn_info(n)->parent, tp);
 205}
 206
 207#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 208
 209/* This provides us with the number of children in this node, in the case of a
 210 * leaf this will return 0 meaning none of the children are accessible.
 211 */
 212static inline unsigned long child_length(const struct key_vector *tn)
 213{
 214        return (1ul << tn->bits) & ~(1ul);
 215}
 216
 217#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 218
 219static inline unsigned long get_index(t_key key, struct key_vector *kv)
 220{
 221        unsigned long index = key ^ kv->key;
 222
 223        if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 224                return 0;
 225
 226        return index >> kv->pos;
 227}
 228
 229/* To understand this stuff, an understanding of keys and all their bits is
 230 * necessary. Every node in the trie has a key associated with it, but not
 231 * all of the bits in that key are significant.
 232 *
 233 * Consider a node 'n' and its parent 'tp'.
 234 *
 235 * If n is a leaf, every bit in its key is significant. Its presence is
 236 * necessitated by path compression, since during a tree traversal (when
 237 * searching for a leaf - unless we are doing an insertion) we will completely
 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 239 * a potentially successful search, that we have indeed been walking the
 240 * correct key path.
 241 *
 242 * Note that we can never "miss" the correct key in the tree if present by
 243 * following the wrong path. Path compression ensures that segments of the key
 244 * that are the same for all keys with a given prefix are skipped, but the
 245 * skipped part *is* identical for each node in the subtrie below the skipped
 246 * bit! trie_insert() in this implementation takes care of that.
 247 *
 248 * if n is an internal node - a 'tnode' here, the various parts of its key
 249 * have many different meanings.
 250 *
 251 * Example:
 252 * _________________________________________________________________
 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 254 * -----------------------------------------------------------------
 255 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 256 *
 257 * _________________________________________________________________
 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 259 * -----------------------------------------------------------------
 260 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 261 *
 262 * tp->pos = 22
 263 * tp->bits = 3
 264 * n->pos = 13
 265 * n->bits = 4
 266 *
 267 * First, let's just ignore the bits that come before the parent tp, that is
 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 269 * point we do not use them for anything.
 270 *
 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 272 * index into the parent's child array. That is, they will be used to find
 273 * 'n' among tp's children.
 274 *
 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 276 * for the node n.
 277 *
 278 * All the bits we have seen so far are significant to the node n. The rest
 279 * of the bits are really not needed or indeed known in n->key.
 280 *
 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 282 * n's child array, and will of course be different for each child.
 283 *
 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 285 * at this point.
 286 */
 287
 288static const int halve_threshold = 25;
 289static const int inflate_threshold = 50;
 290static const int halve_threshold_root = 15;
 291static const int inflate_threshold_root = 30;
 292
 293static void __alias_free_mem(struct rcu_head *head)
 294{
 295        struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 296        kmem_cache_free(fn_alias_kmem, fa);
 297}
 298
 299static inline void alias_free_mem_rcu(struct fib_alias *fa)
 300{
 301        call_rcu(&fa->rcu, __alias_free_mem);
 302}
 303
 304#define TNODE_VMALLOC_MAX \
 305        ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 306
 307static void __node_free_rcu(struct rcu_head *head)
 308{
 309        struct tnode *n = container_of(head, struct tnode, rcu);
 310
 311        if (!n->tn_bits)
 312                kmem_cache_free(trie_leaf_kmem, n);
 313        else
 314                kvfree(n);
 315}
 316
 317#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 318
 319static struct tnode *tnode_alloc(int bits)
 320{
 321        size_t size;
 322
 323        /* verify bits is within bounds */
 324        if (bits > TNODE_VMALLOC_MAX)
 325                return NULL;
 326
 327        /* determine size and verify it is non-zero and didn't overflow */
 328        size = TNODE_SIZE(1ul << bits);
 329
 330        if (size <= PAGE_SIZE)
 331                return kzalloc(size, GFP_KERNEL);
 332        else
 333                return vzalloc(size);
 334}
 335
 336static inline void empty_child_inc(struct key_vector *n)
 337{
 338        tn_info(n)->empty_children++;
 339
 340        if (!tn_info(n)->empty_children)
 341                tn_info(n)->full_children++;
 342}
 343
 344static inline void empty_child_dec(struct key_vector *n)
 345{
 346        if (!tn_info(n)->empty_children)
 347                tn_info(n)->full_children--;
 348
 349        tn_info(n)->empty_children--;
 350}
 351
 352static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 353{
 354        struct key_vector *l;
 355        struct tnode *kv;
 356
 357        kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 358        if (!kv)
 359                return NULL;
 360
 361        /* initialize key vector */
 362        l = kv->kv;
 363        l->key = key;
 364        l->pos = 0;
 365        l->bits = 0;
 366        l->slen = fa->fa_slen;
 367
 368        /* link leaf to fib alias */
 369        INIT_HLIST_HEAD(&l->leaf);
 370        hlist_add_head(&fa->fa_list, &l->leaf);
 371
 372        return l;
 373}
 374
 375static struct key_vector *tnode_new(t_key key, int pos, int bits)
 376{
 377        unsigned int shift = pos + bits;
 378        struct key_vector *tn;
 379        struct tnode *tnode;
 380
 381        /* verify bits and pos their msb bits clear and values are valid */
 382        BUG_ON(!bits || (shift > KEYLENGTH));
 383
 384        tnode = tnode_alloc(bits);
 385        if (!tnode)
 386                return NULL;
 387
 388        pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 389                 sizeof(struct key_vector *) << bits);
 390
 391        if (bits == KEYLENGTH)
 392                tnode->full_children = 1;
 393        else
 394                tnode->empty_children = 1ul << bits;
 395
 396        tn = tnode->kv;
 397        tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 398        tn->pos = pos;
 399        tn->bits = bits;
 400        tn->slen = pos;
 401
 402        return tn;
 403}
 404
 405/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 406 * and no bits are skipped. See discussion in dyntree paper p. 6
 407 */
 408static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 409{
 410        return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 411}
 412
 413/* Add a child at position i overwriting the old value.
 414 * Update the value of full_children and empty_children.
 415 */
 416static void put_child(struct key_vector *tn, unsigned long i,
 417                      struct key_vector *n)
 418{
 419        struct key_vector *chi = get_child(tn, i);
 420        int isfull, wasfull;
 421
 422        BUG_ON(i >= child_length(tn));
 423
 424        /* update emptyChildren, overflow into fullChildren */
 425        if (!n && chi)
 426                empty_child_inc(tn);
 427        if (n && !chi)
 428                empty_child_dec(tn);
 429
 430        /* update fullChildren */
 431        wasfull = tnode_full(tn, chi);
 432        isfull = tnode_full(tn, n);
 433
 434        if (wasfull && !isfull)
 435                tn_info(tn)->full_children--;
 436        else if (!wasfull && isfull)
 437                tn_info(tn)->full_children++;
 438
 439        if (n && (tn->slen < n->slen))
 440                tn->slen = n->slen;
 441
 442        rcu_assign_pointer(tn->tnode[i], n);
 443}
 444
 445static void update_children(struct key_vector *tn)
 446{
 447        unsigned long i;
 448
 449        /* update all of the child parent pointers */
 450        for (i = child_length(tn); i;) {
 451                struct key_vector *inode = get_child(tn, --i);
 452
 453                if (!inode)
 454                        continue;
 455
 456                /* Either update the children of a tnode that
 457                 * already belongs to us or update the child
 458                 * to point to ourselves.
 459                 */
 460                if (node_parent(inode) == tn)
 461                        update_children(inode);
 462                else
 463                        node_set_parent(inode, tn);
 464        }
 465}
 466
 467static inline void put_child_root(struct key_vector *tp, t_key key,
 468                                  struct key_vector *n)
 469{
 470        if (IS_TRIE(tp))
 471                rcu_assign_pointer(tp->tnode[0], n);
 472        else
 473                put_child(tp, get_index(key, tp), n);
 474}
 475
 476static inline void tnode_free_init(struct key_vector *tn)
 477{
 478        tn_info(tn)->rcu.next = NULL;
 479}
 480
 481static inline void tnode_free_append(struct key_vector *tn,
 482                                     struct key_vector *n)
 483{
 484        tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 485        tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 486}
 487
 488static void tnode_free(struct key_vector *tn)
 489{
 490        struct callback_head *head = &tn_info(tn)->rcu;
 491
 492        while (head) {
 493                head = head->next;
 494                tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 495                node_free(tn);
 496
 497                tn = container_of(head, struct tnode, rcu)->kv;
 498        }
 499
 500        if (tnode_free_size >= sysctl_fib_sync_mem) {
 501                tnode_free_size = 0;
 502                synchronize_rcu();
 503        }
 504}
 505
 506static struct key_vector *replace(struct trie *t,
 507                                  struct key_vector *oldtnode,
 508                                  struct key_vector *tn)
 509{
 510        struct key_vector *tp = node_parent(oldtnode);
 511        unsigned long i;
 512
 513        /* setup the parent pointer out of and back into this node */
 514        NODE_INIT_PARENT(tn, tp);
 515        put_child_root(tp, tn->key, tn);
 516
 517        /* update all of the child parent pointers */
 518        update_children(tn);
 519
 520        /* all pointers should be clean so we are done */
 521        tnode_free(oldtnode);
 522
 523        /* resize children now that oldtnode is freed */
 524        for (i = child_length(tn); i;) {
 525                struct key_vector *inode = get_child(tn, --i);
 526
 527                /* resize child node */
 528                if (tnode_full(tn, inode))
 529                        tn = resize(t, inode);
 530        }
 531
 532        return tp;
 533}
 534
 535static struct key_vector *inflate(struct trie *t,
 536                                  struct key_vector *oldtnode)
 537{
 538        struct key_vector *tn;
 539        unsigned long i;
 540        t_key m;
 541
 542        pr_debug("In inflate\n");
 543
 544        tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 545        if (!tn)
 546                goto notnode;
 547
 548        /* prepare oldtnode to be freed */
 549        tnode_free_init(oldtnode);
 550
 551        /* Assemble all of the pointers in our cluster, in this case that
 552         * represents all of the pointers out of our allocated nodes that
 553         * point to existing tnodes and the links between our allocated
 554         * nodes.
 555         */
 556        for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 557                struct key_vector *inode = get_child(oldtnode, --i);
 558                struct key_vector *node0, *node1;
 559                unsigned long j, k;
 560
 561                /* An empty child */
 562                if (!inode)
 563                        continue;
 564
 565                /* A leaf or an internal node with skipped bits */
 566                if (!tnode_full(oldtnode, inode)) {
 567                        put_child(tn, get_index(inode->key, tn), inode);
 568                        continue;
 569                }
 570
 571                /* drop the node in the old tnode free list */
 572                tnode_free_append(oldtnode, inode);
 573
 574                /* An internal node with two children */
 575                if (inode->bits == 1) {
 576                        put_child(tn, 2 * i + 1, get_child(inode, 1));
 577                        put_child(tn, 2 * i, get_child(inode, 0));
 578                        continue;
 579                }
 580
 581                /* We will replace this node 'inode' with two new
 582                 * ones, 'node0' and 'node1', each with half of the
 583                 * original children. The two new nodes will have
 584                 * a position one bit further down the key and this
 585                 * means that the "significant" part of their keys
 586                 * (see the discussion near the top of this file)
 587                 * will differ by one bit, which will be "0" in
 588                 * node0's key and "1" in node1's key. Since we are
 589                 * moving the key position by one step, the bit that
 590                 * we are moving away from - the bit at position
 591                 * (tn->pos) - is the one that will differ between
 592                 * node0 and node1. So... we synthesize that bit in the
 593                 * two new keys.
 594                 */
 595                node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 596                if (!node1)
 597                        goto nomem;
 598                node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 599
 600                tnode_free_append(tn, node1);
 601                if (!node0)
 602                        goto nomem;
 603                tnode_free_append(tn, node0);
 604
 605                /* populate child pointers in new nodes */
 606                for (k = child_length(inode), j = k / 2; j;) {
 607                        put_child(node1, --j, get_child(inode, --k));
 608                        put_child(node0, j, get_child(inode, j));
 609                        put_child(node1, --j, get_child(inode, --k));
 610                        put_child(node0, j, get_child(inode, j));
 611                }
 612
 613                /* link new nodes to parent */
 614                NODE_INIT_PARENT(node1, tn);
 615                NODE_INIT_PARENT(node0, tn);
 616
 617                /* link parent to nodes */
 618                put_child(tn, 2 * i + 1, node1);
 619                put_child(tn, 2 * i, node0);
 620        }
 621
 622        /* setup the parent pointers into and out of this node */
 623        return replace(t, oldtnode, tn);
 624nomem:
 625        /* all pointers should be clean so we are done */
 626        tnode_free(tn);
 627notnode:
 628        return NULL;
 629}
 630
 631static struct key_vector *halve(struct trie *t,
 632                                struct key_vector *oldtnode)
 633{
 634        struct key_vector *tn;
 635        unsigned long i;
 636
 637        pr_debug("In halve\n");
 638
 639        tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 640        if (!tn)
 641                goto notnode;
 642
 643        /* prepare oldtnode to be freed */
 644        tnode_free_init(oldtnode);
 645
 646        /* Assemble all of the pointers in our cluster, in this case that
 647         * represents all of the pointers out of our allocated nodes that
 648         * point to existing tnodes and the links between our allocated
 649         * nodes.
 650         */
 651        for (i = child_length(oldtnode); i;) {
 652                struct key_vector *node1 = get_child(oldtnode, --i);
 653                struct key_vector *node0 = get_child(oldtnode, --i);
 654                struct key_vector *inode;
 655
 656                /* At least one of the children is empty */
 657                if (!node1 || !node0) {
 658                        put_child(tn, i / 2, node1 ? : node0);
 659                        continue;
 660                }
 661
 662                /* Two nonempty children */
 663                inode = tnode_new(node0->key, oldtnode->pos, 1);
 664                if (!inode)
 665                        goto nomem;
 666                tnode_free_append(tn, inode);
 667
 668                /* initialize pointers out of node */
 669                put_child(inode, 1, node1);
 670                put_child(inode, 0, node0);
 671                NODE_INIT_PARENT(inode, tn);
 672
 673                /* link parent to node */
 674                put_child(tn, i / 2, inode);
 675        }
 676
 677        /* setup the parent pointers into and out of this node */
 678        return replace(t, oldtnode, tn);
 679nomem:
 680        /* all pointers should be clean so we are done */
 681        tnode_free(tn);
 682notnode:
 683        return NULL;
 684}
 685
 686static struct key_vector *collapse(struct trie *t,
 687                                   struct key_vector *oldtnode)
 688{
 689        struct key_vector *n, *tp;
 690        unsigned long i;
 691
 692        /* scan the tnode looking for that one child that might still exist */
 693        for (n = NULL, i = child_length(oldtnode); !n && i;)
 694                n = get_child(oldtnode, --i);
 695
 696        /* compress one level */
 697        tp = node_parent(oldtnode);
 698        put_child_root(tp, oldtnode->key, n);
 699        node_set_parent(n, tp);
 700
 701        /* drop dead node */
 702        node_free(oldtnode);
 703
 704        return tp;
 705}
 706
 707static unsigned char update_suffix(struct key_vector *tn)
 708{
 709        unsigned char slen = tn->pos;
 710        unsigned long stride, i;
 711        unsigned char slen_max;
 712
 713        /* only vector 0 can have a suffix length greater than or equal to
 714         * tn->pos + tn->bits, the second highest node will have a suffix
 715         * length at most of tn->pos + tn->bits - 1
 716         */
 717        slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 718
 719        /* search though the list of children looking for nodes that might
 720         * have a suffix greater than the one we currently have.  This is
 721         * why we start with a stride of 2 since a stride of 1 would
 722         * represent the nodes with suffix length equal to tn->pos
 723         */
 724        for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 725                struct key_vector *n = get_child(tn, i);
 726
 727                if (!n || (n->slen <= slen))
 728                        continue;
 729
 730                /* update stride and slen based on new value */
 731                stride <<= (n->slen - slen);
 732                slen = n->slen;
 733                i &= ~(stride - 1);
 734
 735                /* stop searching if we have hit the maximum possible value */
 736                if (slen >= slen_max)
 737                        break;
 738        }
 739
 740        tn->slen = slen;
 741
 742        return slen;
 743}
 744
 745/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 747 * Telecommunications, page 6:
 748 * "A node is doubled if the ratio of non-empty children to all
 749 * children in the *doubled* node is at least 'high'."
 750 *
 751 * 'high' in this instance is the variable 'inflate_threshold'. It
 752 * is expressed as a percentage, so we multiply it with
 753 * child_length() and instead of multiplying by 2 (since the
 754 * child array will be doubled by inflate()) and multiplying
 755 * the left-hand side by 100 (to handle the percentage thing) we
 756 * multiply the left-hand side by 50.
 757 *
 758 * The left-hand side may look a bit weird: child_length(tn)
 759 * - tn->empty_children is of course the number of non-null children
 760 * in the current node. tn->full_children is the number of "full"
 761 * children, that is non-null tnodes with a skip value of 0.
 762 * All of those will be doubled in the resulting inflated tnode, so
 763 * we just count them one extra time here.
 764 *
 765 * A clearer way to write this would be:
 766 *
 767 * to_be_doubled = tn->full_children;
 768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 769 *     tn->full_children;
 770 *
 771 * new_child_length = child_length(tn) * 2;
 772 *
 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 774 *      new_child_length;
 775 * if (new_fill_factor >= inflate_threshold)
 776 *
 777 * ...and so on, tho it would mess up the while () loop.
 778 *
 779 * anyway,
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 781 *      inflate_threshold
 782 *
 783 * avoid a division:
 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 785 *      inflate_threshold * new_child_length
 786 *
 787 * expand not_to_be_doubled and to_be_doubled, and shorten:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >= inflate_threshold * new_child_length
 790 *
 791 * expand new_child_length:
 792 * 100 * (child_length(tn) - tn->empty_children +
 793 *    tn->full_children) >=
 794 *      inflate_threshold * child_length(tn) * 2
 795 *
 796 * shorten again:
 797 * 50 * (tn->full_children + child_length(tn) -
 798 *    tn->empty_children) >= inflate_threshold *
 799 *    child_length(tn)
 800 *
 801 */
 802static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 803{
 804        unsigned long used = child_length(tn);
 805        unsigned long threshold = used;
 806
 807        /* Keep root node larger */
 808        threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 809        used -= tn_info(tn)->empty_children;
 810        used += tn_info(tn)->full_children;
 811
 812        /* if bits == KEYLENGTH then pos = 0, and will fail below */
 813
 814        return (used > 1) && tn->pos && ((50 * used) >= threshold);
 815}
 816
 817static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 818{
 819        unsigned long used = child_length(tn);
 820        unsigned long threshold = used;
 821
 822        /* Keep root node larger */
 823        threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 824        used -= tn_info(tn)->empty_children;
 825
 826        /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 827
 828        return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 829}
 830
 831static inline bool should_collapse(struct key_vector *tn)
 832{
 833        unsigned long used = child_length(tn);
 834
 835        used -= tn_info(tn)->empty_children;
 836
 837        /* account for bits == KEYLENGTH case */
 838        if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 839                used -= KEY_MAX;
 840
 841        /* One child or none, time to drop us from the trie */
 842        return used < 2;
 843}
 844
 845#define MAX_WORK 10
 846static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 847{
 848#ifdef CONFIG_IP_FIB_TRIE_STATS
 849        struct trie_use_stats __percpu *stats = t->stats;
 850#endif
 851        struct key_vector *tp = node_parent(tn);
 852        unsigned long cindex = get_index(tn->key, tp);
 853        int max_work = MAX_WORK;
 854
 855        pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 856                 tn, inflate_threshold, halve_threshold);
 857
 858        /* track the tnode via the pointer from the parent instead of
 859         * doing it ourselves.  This way we can let RCU fully do its
 860         * thing without us interfering
 861         */
 862        BUG_ON(tn != get_child(tp, cindex));
 863
 864        /* Double as long as the resulting node has a number of
 865         * nonempty nodes that are above the threshold.
 866         */
 867        while (should_inflate(tp, tn) && max_work) {
 868                tp = inflate(t, tn);
 869                if (!tp) {
 870#ifdef CONFIG_IP_FIB_TRIE_STATS
 871                        this_cpu_inc(stats->resize_node_skipped);
 872#endif
 873                        break;
 874                }
 875
 876                max_work--;
 877                tn = get_child(tp, cindex);
 878        }
 879
 880        /* update parent in case inflate failed */
 881        tp = node_parent(tn);
 882
 883        /* Return if at least one inflate is run */
 884        if (max_work != MAX_WORK)
 885                return tp;
 886
 887        /* Halve as long as the number of empty children in this
 888         * node is above threshold.
 889         */
 890        while (should_halve(tp, tn) && max_work) {
 891                tp = halve(t, tn);
 892                if (!tp) {
 893#ifdef CONFIG_IP_FIB_TRIE_STATS
 894                        this_cpu_inc(stats->resize_node_skipped);
 895#endif
 896                        break;
 897                }
 898
 899                max_work--;
 900                tn = get_child(tp, cindex);
 901        }
 902
 903        /* Only one child remains */
 904        if (should_collapse(tn))
 905                return collapse(t, tn);
 906
 907        /* update parent in case halve failed */
 908        return node_parent(tn);
 909}
 910
 911static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 912{
 913        unsigned char node_slen = tn->slen;
 914
 915        while ((node_slen > tn->pos) && (node_slen > slen)) {
 916                slen = update_suffix(tn);
 917                if (node_slen == slen)
 918                        break;
 919
 920                tn = node_parent(tn);
 921                node_slen = tn->slen;
 922        }
 923}
 924
 925static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 926{
 927        while (tn->slen < slen) {
 928                tn->slen = slen;
 929                tn = node_parent(tn);
 930        }
 931}
 932
 933/* rcu_read_lock needs to be hold by caller from readside */
 934static struct key_vector *fib_find_node(struct trie *t,
 935                                        struct key_vector **tp, u32 key)
 936{
 937        struct key_vector *pn, *n = t->kv;
 938        unsigned long index = 0;
 939
 940        do {
 941                pn = n;
 942                n = get_child_rcu(n, index);
 943
 944                if (!n)
 945                        break;
 946
 947                index = get_cindex(key, n);
 948
 949                /* This bit of code is a bit tricky but it combines multiple
 950                 * checks into a single check.  The prefix consists of the
 951                 * prefix plus zeros for the bits in the cindex. The index
 952                 * is the difference between the key and this value.  From
 953                 * this we can actually derive several pieces of data.
 954                 *   if (index >= (1ul << bits))
 955                 *     we have a mismatch in skip bits and failed
 956                 *   else
 957                 *     we know the value is cindex
 958                 *
 959                 * This check is safe even if bits == KEYLENGTH due to the
 960                 * fact that we can only allocate a node with 32 bits if a
 961                 * long is greater than 32 bits.
 962                 */
 963                if (index >= (1ul << n->bits)) {
 964                        n = NULL;
 965                        break;
 966                }
 967
 968                /* keep searching until we find a perfect match leaf or NULL */
 969        } while (IS_TNODE(n));
 970
 971        *tp = pn;
 972
 973        return n;
 974}
 975
 976/* Return the first fib alias matching TOS with
 977 * priority less than or equal to PRIO.
 978 * If 'find_first' is set, return the first matching
 979 * fib alias, regardless of TOS and priority.
 980 */
 981static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 982                                        u8 tos, u32 prio, u32 tb_id,
 983                                        bool find_first)
 984{
 985        struct fib_alias *fa;
 986
 987        if (!fah)
 988                return NULL;
 989
 990        hlist_for_each_entry(fa, fah, fa_list) {
 991                if (fa->fa_slen < slen)
 992                        continue;
 993                if (fa->fa_slen != slen)
 994                        break;
 995                if (fa->tb_id > tb_id)
 996                        continue;
 997                if (fa->tb_id != tb_id)
 998                        break;
 999                if (find_first)
1000                        return fa;
1001                if (fa->fa_tos > tos)
1002                        continue;
1003                if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004                        return fa;
1005        }
1006
1007        return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013        u8 slen = KEYLENGTH - fri->dst_len;
1014        struct key_vector *l, *tp;
1015        struct fib_table *tb;
1016        struct fib_alias *fa;
1017        struct trie *t;
1018
1019        tb = fib_get_table(net, fri->tb_id);
1020        if (!tb)
1021                return NULL;
1022
1023        t = (struct trie *)tb->tb_data;
1024        l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025        if (!l)
1026                return NULL;
1027
1028        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029                if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030                    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031                    fa->fa_type == fri->type)
1032                        return fa;
1033        }
1034
1035        return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040        struct fib_alias *fa_match;
1041        struct sk_buff *skb;
1042        int err;
1043
1044        rcu_read_lock();
1045
1046        fa_match = fib_find_matching_alias(net, fri);
1047        if (!fa_match)
1048                goto out;
1049
1050        if (fa_match->offload == fri->offload && fa_match->trap == fri->trap &&
1051            fa_match->offload_failed == fri->offload_failed)
1052                goto out;
1053
1054        fa_match->offload = fri->offload;
1055        fa_match->trap = fri->trap;
1056
1057        /* 2 means send notifications only if offload_failed was changed. */
1058        if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 &&
1059            fa_match->offload_failed == fri->offload_failed)
1060                goto out;
1061
1062        fa_match->offload_failed = fri->offload_failed;
1063
1064        if (!net->ipv4.sysctl_fib_notify_on_flag_change)
1065                goto out;
1066
1067        skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1068        if (!skb) {
1069                err = -ENOBUFS;
1070                goto errout;
1071        }
1072
1073        err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1074        if (err < 0) {
1075                /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1076                WARN_ON(err == -EMSGSIZE);
1077                kfree_skb(skb);
1078                goto errout;
1079        }
1080
1081        rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1082        goto out;
1083
1084errout:
1085        rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1086out:
1087        rcu_read_unlock();
1088}
1089EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1090
1091static void trie_rebalance(struct trie *t, struct key_vector *tn)
1092{
1093        while (!IS_TRIE(tn))
1094                tn = resize(t, tn);
1095}
1096
1097static int fib_insert_node(struct trie *t, struct key_vector *tp,
1098                           struct fib_alias *new, t_key key)
1099{
1100        struct key_vector *n, *l;
1101
1102        l = leaf_new(key, new);
1103        if (!l)
1104                goto noleaf;
1105
1106        /* retrieve child from parent node */
1107        n = get_child(tp, get_index(key, tp));
1108
1109        /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1110         *
1111         *  Add a new tnode here
1112         *  first tnode need some special handling
1113         *  leaves us in position for handling as case 3
1114         */
1115        if (n) {
1116                struct key_vector *tn;
1117
1118                tn = tnode_new(key, __fls(key ^ n->key), 1);
1119                if (!tn)
1120                        goto notnode;
1121
1122                /* initialize routes out of node */
1123                NODE_INIT_PARENT(tn, tp);
1124                put_child(tn, get_index(key, tn) ^ 1, n);
1125
1126                /* start adding routes into the node */
1127                put_child_root(tp, key, tn);
1128                node_set_parent(n, tn);
1129
1130                /* parent now has a NULL spot where the leaf can go */
1131                tp = tn;
1132        }
1133
1134        /* Case 3: n is NULL, and will just insert a new leaf */
1135        node_push_suffix(tp, new->fa_slen);
1136        NODE_INIT_PARENT(l, tp);
1137        put_child_root(tp, key, l);
1138        trie_rebalance(t, tp);
1139
1140        return 0;
1141notnode:
1142        node_free(l);
1143noleaf:
1144        return -ENOMEM;
1145}
1146
1147static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1148                            struct key_vector *l, struct fib_alias *new,
1149                            struct fib_alias *fa, t_key key)
1150{
1151        if (!l)
1152                return fib_insert_node(t, tp, new, key);
1153
1154        if (fa) {
1155                hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1156        } else {
1157                struct fib_alias *last;
1158
1159                hlist_for_each_entry(last, &l->leaf, fa_list) {
1160                        if (new->fa_slen < last->fa_slen)
1161                                break;
1162                        if ((new->fa_slen == last->fa_slen) &&
1163                            (new->tb_id > last->tb_id))
1164                                break;
1165                        fa = last;
1166                }
1167
1168                if (fa)
1169                        hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1170                else
1171                        hlist_add_head_rcu(&new->fa_list, &l->leaf);
1172        }
1173
1174        /* if we added to the tail node then we need to update slen */
1175        if (l->slen < new->fa_slen) {
1176                l->slen = new->fa_slen;
1177                node_push_suffix(tp, new->fa_slen);
1178        }
1179
1180        return 0;
1181}
1182
1183static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1184{
1185        if (plen > KEYLENGTH) {
1186                NL_SET_ERR_MSG(extack, "Invalid prefix length");
1187                return false;
1188        }
1189
1190        if ((plen < KEYLENGTH) && (key << plen)) {
1191                NL_SET_ERR_MSG(extack,
1192                               "Invalid prefix for given prefix length");
1193                return false;
1194        }
1195
1196        return true;
1197}
1198
1199static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1200                             struct key_vector *l, struct fib_alias *old);
1201
1202/* Caller must hold RTNL. */
1203int fib_table_insert(struct net *net, struct fib_table *tb,
1204                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1205{
1206        struct trie *t = (struct trie *)tb->tb_data;
1207        struct fib_alias *fa, *new_fa;
1208        struct key_vector *l, *tp;
1209        u16 nlflags = NLM_F_EXCL;
1210        struct fib_info *fi;
1211        u8 plen = cfg->fc_dst_len;
1212        u8 slen = KEYLENGTH - plen;
1213        u8 tos = cfg->fc_tos;
1214        u32 key;
1215        int err;
1216
1217        key = ntohl(cfg->fc_dst);
1218
1219        if (!fib_valid_key_len(key, plen, extack))
1220                return -EINVAL;
1221
1222        pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1223
1224        fi = fib_create_info(cfg, extack);
1225        if (IS_ERR(fi)) {
1226                err = PTR_ERR(fi);
1227                goto err;
1228        }
1229
1230        l = fib_find_node(t, &tp, key);
1231        fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1232                                tb->tb_id, false) : NULL;
1233
1234        /* Now fa, if non-NULL, points to the first fib alias
1235         * with the same keys [prefix,tos,priority], if such key already
1236         * exists or to the node before which we will insert new one.
1237         *
1238         * If fa is NULL, we will need to allocate a new one and
1239         * insert to the tail of the section matching the suffix length
1240         * of the new alias.
1241         */
1242
1243        if (fa && fa->fa_tos == tos &&
1244            fa->fa_info->fib_priority == fi->fib_priority) {
1245                struct fib_alias *fa_first, *fa_match;
1246
1247                err = -EEXIST;
1248                if (cfg->fc_nlflags & NLM_F_EXCL)
1249                        goto out;
1250
1251                nlflags &= ~NLM_F_EXCL;
1252
1253                /* We have 2 goals:
1254                 * 1. Find exact match for type, scope, fib_info to avoid
1255                 * duplicate routes
1256                 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1257                 */
1258                fa_match = NULL;
1259                fa_first = fa;
1260                hlist_for_each_entry_from(fa, fa_list) {
1261                        if ((fa->fa_slen != slen) ||
1262                            (fa->tb_id != tb->tb_id) ||
1263                            (fa->fa_tos != tos))
1264                                break;
1265                        if (fa->fa_info->fib_priority != fi->fib_priority)
1266                                break;
1267                        if (fa->fa_type == cfg->fc_type &&
1268                            fa->fa_info == fi) {
1269                                fa_match = fa;
1270                                break;
1271                        }
1272                }
1273
1274                if (cfg->fc_nlflags & NLM_F_REPLACE) {
1275                        struct fib_info *fi_drop;
1276                        u8 state;
1277
1278                        nlflags |= NLM_F_REPLACE;
1279                        fa = fa_first;
1280                        if (fa_match) {
1281                                if (fa == fa_match)
1282                                        err = 0;
1283                                goto out;
1284                        }
1285                        err = -ENOBUFS;
1286                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1287                        if (!new_fa)
1288                                goto out;
1289
1290                        fi_drop = fa->fa_info;
1291                        new_fa->fa_tos = fa->fa_tos;
1292                        new_fa->fa_info = fi;
1293                        new_fa->fa_type = cfg->fc_type;
1294                        state = fa->fa_state;
1295                        new_fa->fa_state = state & ~FA_S_ACCESSED;
1296                        new_fa->fa_slen = fa->fa_slen;
1297                        new_fa->tb_id = tb->tb_id;
1298                        new_fa->fa_default = -1;
1299                        new_fa->offload = 0;
1300                        new_fa->trap = 0;
1301                        new_fa->offload_failed = 0;
1302
1303                        hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1304
1305                        if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1306                                           tb->tb_id, true) == new_fa) {
1307                                enum fib_event_type fib_event;
1308
1309                                fib_event = FIB_EVENT_ENTRY_REPLACE;
1310                                err = call_fib_entry_notifiers(net, fib_event,
1311                                                               key, plen,
1312                                                               new_fa, extack);
1313                                if (err) {
1314                                        hlist_replace_rcu(&new_fa->fa_list,
1315                                                          &fa->fa_list);
1316                                        goto out_free_new_fa;
1317                                }
1318                        }
1319
1320                        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1321                                  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1322
1323                        alias_free_mem_rcu(fa);
1324
1325                        fib_release_info(fi_drop);
1326                        if (state & FA_S_ACCESSED)
1327                                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1328
1329                        goto succeeded;
1330                }
1331                /* Error if we find a perfect match which
1332                 * uses the same scope, type, and nexthop
1333                 * information.
1334                 */
1335                if (fa_match)
1336                        goto out;
1337
1338                if (cfg->fc_nlflags & NLM_F_APPEND)
1339                        nlflags |= NLM_F_APPEND;
1340                else
1341                        fa = fa_first;
1342        }
1343        err = -ENOENT;
1344        if (!(cfg->fc_nlflags & NLM_F_CREATE))
1345                goto out;
1346
1347        nlflags |= NLM_F_CREATE;
1348        err = -ENOBUFS;
1349        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1350        if (!new_fa)
1351                goto out;
1352
1353        new_fa->fa_info = fi;
1354        new_fa->fa_tos = tos;
1355        new_fa->fa_type = cfg->fc_type;
1356        new_fa->fa_state = 0;
1357        new_fa->fa_slen = slen;
1358        new_fa->tb_id = tb->tb_id;
1359        new_fa->fa_default = -1;
1360        new_fa->offload = 0;
1361        new_fa->trap = 0;
1362        new_fa->offload_failed = 0;
1363
1364        /* Insert new entry to the list. */
1365        err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1366        if (err)
1367                goto out_free_new_fa;
1368
1369        /* The alias was already inserted, so the node must exist. */
1370        l = l ? l : fib_find_node(t, &tp, key);
1371        if (WARN_ON_ONCE(!l))
1372                goto out_free_new_fa;
1373
1374        if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1375            new_fa) {
1376                enum fib_event_type fib_event;
1377
1378                fib_event = FIB_EVENT_ENTRY_REPLACE;
1379                err = call_fib_entry_notifiers(net, fib_event, key, plen,
1380                                               new_fa, extack);
1381                if (err)
1382                        goto out_remove_new_fa;
1383        }
1384
1385        if (!plen)
1386                tb->tb_num_default++;
1387
1388        rt_cache_flush(cfg->fc_nlinfo.nl_net);
1389        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1390                  &cfg->fc_nlinfo, nlflags);
1391succeeded:
1392        return 0;
1393
1394out_remove_new_fa:
1395        fib_remove_alias(t, tp, l, new_fa);
1396out_free_new_fa:
1397        kmem_cache_free(fn_alias_kmem, new_fa);
1398out:
1399        fib_release_info(fi);
1400err:
1401        return err;
1402}
1403
1404static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1405{
1406        t_key prefix = n->key;
1407
1408        return (key ^ prefix) & (prefix | -prefix);
1409}
1410
1411bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1412                         const struct flowi4 *flp)
1413{
1414        if (nhc->nhc_flags & RTNH_F_DEAD)
1415                return false;
1416
1417        if (ip_ignore_linkdown(nhc->nhc_dev) &&
1418            nhc->nhc_flags & RTNH_F_LINKDOWN &&
1419            !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1420                return false;
1421
1422        if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1423                if (flp->flowi4_oif &&
1424                    flp->flowi4_oif != nhc->nhc_oif)
1425                        return false;
1426        }
1427
1428        return true;
1429}
1430
1431/* should be called with rcu_read_lock */
1432int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1433                     struct fib_result *res, int fib_flags)
1434{
1435        struct trie *t = (struct trie *) tb->tb_data;
1436#ifdef CONFIG_IP_FIB_TRIE_STATS
1437        struct trie_use_stats __percpu *stats = t->stats;
1438#endif
1439        const t_key key = ntohl(flp->daddr);
1440        struct key_vector *n, *pn;
1441        struct fib_alias *fa;
1442        unsigned long index;
1443        t_key cindex;
1444
1445        pn = t->kv;
1446        cindex = 0;
1447
1448        n = get_child_rcu(pn, cindex);
1449        if (!n) {
1450                trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1451                return -EAGAIN;
1452        }
1453
1454#ifdef CONFIG_IP_FIB_TRIE_STATS
1455        this_cpu_inc(stats->gets);
1456#endif
1457
1458        /* Step 1: Travel to the longest prefix match in the trie */
1459        for (;;) {
1460                index = get_cindex(key, n);
1461
1462                /* This bit of code is a bit tricky but it combines multiple
1463                 * checks into a single check.  The prefix consists of the
1464                 * prefix plus zeros for the "bits" in the prefix. The index
1465                 * is the difference between the key and this value.  From
1466                 * this we can actually derive several pieces of data.
1467                 *   if (index >= (1ul << bits))
1468                 *     we have a mismatch in skip bits and failed
1469                 *   else
1470                 *     we know the value is cindex
1471                 *
1472                 * This check is safe even if bits == KEYLENGTH due to the
1473                 * fact that we can only allocate a node with 32 bits if a
1474                 * long is greater than 32 bits.
1475                 */
1476                if (index >= (1ul << n->bits))
1477                        break;
1478
1479                /* we have found a leaf. Prefixes have already been compared */
1480                if (IS_LEAF(n))
1481                        goto found;
1482
1483                /* only record pn and cindex if we are going to be chopping
1484                 * bits later.  Otherwise we are just wasting cycles.
1485                 */
1486                if (n->slen > n->pos) {
1487                        pn = n;
1488                        cindex = index;
1489                }
1490
1491                n = get_child_rcu(n, index);
1492                if (unlikely(!n))
1493                        goto backtrace;
1494        }
1495
1496        /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1497        for (;;) {
1498                /* record the pointer where our next node pointer is stored */
1499                struct key_vector __rcu **cptr = n->tnode;
1500
1501                /* This test verifies that none of the bits that differ
1502                 * between the key and the prefix exist in the region of
1503                 * the lsb and higher in the prefix.
1504                 */
1505                if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1506                        goto backtrace;
1507
1508                /* exit out and process leaf */
1509                if (unlikely(IS_LEAF(n)))
1510                        break;
1511
1512                /* Don't bother recording parent info.  Since we are in
1513                 * prefix match mode we will have to come back to wherever
1514                 * we started this traversal anyway
1515                 */
1516
1517                while ((n = rcu_dereference(*cptr)) == NULL) {
1518backtrace:
1519#ifdef CONFIG_IP_FIB_TRIE_STATS
1520                        if (!n)
1521                                this_cpu_inc(stats->null_node_hit);
1522#endif
1523                        /* If we are at cindex 0 there are no more bits for
1524                         * us to strip at this level so we must ascend back
1525                         * up one level to see if there are any more bits to
1526                         * be stripped there.
1527                         */
1528                        while (!cindex) {
1529                                t_key pkey = pn->key;
1530
1531                                /* If we don't have a parent then there is
1532                                 * nothing for us to do as we do not have any
1533                                 * further nodes to parse.
1534                                 */
1535                                if (IS_TRIE(pn)) {
1536                                        trace_fib_table_lookup(tb->tb_id, flp,
1537                                                               NULL, -EAGAIN);
1538                                        return -EAGAIN;
1539                                }
1540#ifdef CONFIG_IP_FIB_TRIE_STATS
1541                                this_cpu_inc(stats->backtrack);
1542#endif
1543                                /* Get Child's index */
1544                                pn = node_parent_rcu(pn);
1545                                cindex = get_index(pkey, pn);
1546                        }
1547
1548                        /* strip the least significant bit from the cindex */
1549                        cindex &= cindex - 1;
1550
1551                        /* grab pointer for next child node */
1552                        cptr = &pn->tnode[cindex];
1553                }
1554        }
1555
1556found:
1557        /* this line carries forward the xor from earlier in the function */
1558        index = key ^ n->key;
1559
1560        /* Step 3: Process the leaf, if that fails fall back to backtracing */
1561        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1562                struct fib_info *fi = fa->fa_info;
1563                struct fib_nh_common *nhc;
1564                int nhsel, err;
1565
1566                if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1567                        if (index >= (1ul << fa->fa_slen))
1568                                continue;
1569                }
1570                if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1571                        continue;
1572                if (fi->fib_dead)
1573                        continue;
1574                if (fa->fa_info->fib_scope < flp->flowi4_scope)
1575                        continue;
1576                fib_alias_accessed(fa);
1577                err = fib_props[fa->fa_type].error;
1578                if (unlikely(err < 0)) {
1579out_reject:
1580#ifdef CONFIG_IP_FIB_TRIE_STATS
1581                        this_cpu_inc(stats->semantic_match_passed);
1582#endif
1583                        trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1584                        return err;
1585                }
1586                if (fi->fib_flags & RTNH_F_DEAD)
1587                        continue;
1588
1589                if (unlikely(fi->nh)) {
1590                        if (nexthop_is_blackhole(fi->nh)) {
1591                                err = fib_props[RTN_BLACKHOLE].error;
1592                                goto out_reject;
1593                        }
1594
1595                        nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1596                                                     &nhsel);
1597                        if (nhc)
1598                                goto set_result;
1599                        goto miss;
1600                }
1601
1602                for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1603                        nhc = fib_info_nhc(fi, nhsel);
1604
1605                        if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1606                                continue;
1607set_result:
1608                        if (!(fib_flags & FIB_LOOKUP_NOREF))
1609                                refcount_inc(&fi->fib_clntref);
1610
1611                        res->prefix = htonl(n->key);
1612                        res->prefixlen = KEYLENGTH - fa->fa_slen;
1613                        res->nh_sel = nhsel;
1614                        res->nhc = nhc;
1615                        res->type = fa->fa_type;
1616                        res->scope = fi->fib_scope;
1617                        res->fi = fi;
1618                        res->table = tb;
1619                        res->fa_head = &n->leaf;
1620#ifdef CONFIG_IP_FIB_TRIE_STATS
1621                        this_cpu_inc(stats->semantic_match_passed);
1622#endif
1623                        trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1624
1625                        return err;
1626                }
1627        }
1628miss:
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630        this_cpu_inc(stats->semantic_match_miss);
1631#endif
1632        goto backtrace;
1633}
1634EXPORT_SYMBOL_GPL(fib_table_lookup);
1635
1636static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1637                             struct key_vector *l, struct fib_alias *old)
1638{
1639        /* record the location of the previous list_info entry */
1640        struct hlist_node **pprev = old->fa_list.pprev;
1641        struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1642
1643        /* remove the fib_alias from the list */
1644        hlist_del_rcu(&old->fa_list);
1645
1646        /* if we emptied the list this leaf will be freed and we can sort
1647         * out parent suffix lengths as a part of trie_rebalance
1648         */
1649        if (hlist_empty(&l->leaf)) {
1650                if (tp->slen == l->slen)
1651                        node_pull_suffix(tp, tp->pos);
1652                put_child_root(tp, l->key, NULL);
1653                node_free(l);
1654                trie_rebalance(t, tp);
1655                return;
1656        }
1657
1658        /* only access fa if it is pointing at the last valid hlist_node */
1659        if (*pprev)
1660                return;
1661
1662        /* update the trie with the latest suffix length */
1663        l->slen = fa->fa_slen;
1664        node_pull_suffix(tp, fa->fa_slen);
1665}
1666
1667static void fib_notify_alias_delete(struct net *net, u32 key,
1668                                    struct hlist_head *fah,
1669                                    struct fib_alias *fa_to_delete,
1670                                    struct netlink_ext_ack *extack)
1671{
1672        struct fib_alias *fa_next, *fa_to_notify;
1673        u32 tb_id = fa_to_delete->tb_id;
1674        u8 slen = fa_to_delete->fa_slen;
1675        enum fib_event_type fib_event;
1676
1677        /* Do not notify if we do not care about the route. */
1678        if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1679                return;
1680
1681        /* Determine if the route should be replaced by the next route in the
1682         * list.
1683         */
1684        fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1685                                   struct fib_alias, fa_list);
1686        if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1687                fib_event = FIB_EVENT_ENTRY_REPLACE;
1688                fa_to_notify = fa_next;
1689        } else {
1690                fib_event = FIB_EVENT_ENTRY_DEL;
1691                fa_to_notify = fa_to_delete;
1692        }
1693        call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1694                                 fa_to_notify, extack);
1695}
1696
1697/* Caller must hold RTNL. */
1698int fib_table_delete(struct net *net, struct fib_table *tb,
1699                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1700{
1701        struct trie *t = (struct trie *) tb->tb_data;
1702        struct fib_alias *fa, *fa_to_delete;
1703        struct key_vector *l, *tp;
1704        u8 plen = cfg->fc_dst_len;
1705        u8 slen = KEYLENGTH - plen;
1706        u8 tos = cfg->fc_tos;
1707        u32 key;
1708
1709        key = ntohl(cfg->fc_dst);
1710
1711        if (!fib_valid_key_len(key, plen, extack))
1712                return -EINVAL;
1713
1714        l = fib_find_node(t, &tp, key);
1715        if (!l)
1716                return -ESRCH;
1717
1718        fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1719        if (!fa)
1720                return -ESRCH;
1721
1722        pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1723
1724        fa_to_delete = NULL;
1725        hlist_for_each_entry_from(fa, fa_list) {
1726                struct fib_info *fi = fa->fa_info;
1727
1728                if ((fa->fa_slen != slen) ||
1729                    (fa->tb_id != tb->tb_id) ||
1730                    (fa->fa_tos != tos))
1731                        break;
1732
1733                if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1734                    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1735                     fa->fa_info->fib_scope == cfg->fc_scope) &&
1736                    (!cfg->fc_prefsrc ||
1737                     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1738                    (!cfg->fc_protocol ||
1739                     fi->fib_protocol == cfg->fc_protocol) &&
1740                    fib_nh_match(net, cfg, fi, extack) == 0 &&
1741                    fib_metrics_match(cfg, fi)) {
1742                        fa_to_delete = fa;
1743                        break;
1744                }
1745        }
1746
1747        if (!fa_to_delete)
1748                return -ESRCH;
1749
1750        fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1751        rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1752                  &cfg->fc_nlinfo, 0);
1753
1754        if (!plen)
1755                tb->tb_num_default--;
1756
1757        fib_remove_alias(t, tp, l, fa_to_delete);
1758
1759        if (fa_to_delete->fa_state & FA_S_ACCESSED)
1760                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1761
1762        fib_release_info(fa_to_delete->fa_info);
1763        alias_free_mem_rcu(fa_to_delete);
1764        return 0;
1765}
1766
1767/* Scan for the next leaf starting at the provided key value */
1768static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1769{
1770        struct key_vector *pn, *n = *tn;
1771        unsigned long cindex;
1772
1773        /* this loop is meant to try and find the key in the trie */
1774        do {
1775                /* record parent and next child index */
1776                pn = n;
1777                cindex = (key > pn->key) ? get_index(key, pn) : 0;
1778
1779                if (cindex >> pn->bits)
1780                        break;
1781
1782                /* descend into the next child */
1783                n = get_child_rcu(pn, cindex++);
1784                if (!n)
1785                        break;
1786
1787                /* guarantee forward progress on the keys */
1788                if (IS_LEAF(n) && (n->key >= key))
1789                        goto found;
1790        } while (IS_TNODE(n));
1791
1792        /* this loop will search for the next leaf with a greater key */
1793        while (!IS_TRIE(pn)) {
1794                /* if we exhausted the parent node we will need to climb */
1795                if (cindex >= (1ul << pn->bits)) {
1796                        t_key pkey = pn->key;
1797
1798                        pn = node_parent_rcu(pn);
1799                        cindex = get_index(pkey, pn) + 1;
1800                        continue;
1801                }
1802
1803                /* grab the next available node */
1804                n = get_child_rcu(pn, cindex++);
1805                if (!n)
1806                        continue;
1807
1808                /* no need to compare keys since we bumped the index */
1809                if (IS_LEAF(n))
1810                        goto found;
1811
1812                /* Rescan start scanning in new node */
1813                pn = n;
1814                cindex = 0;
1815        }
1816
1817        *tn = pn;
1818        return NULL; /* Root of trie */
1819found:
1820        /* if we are at the limit for keys just return NULL for the tnode */
1821        *tn = pn;
1822        return n;
1823}
1824
1825static void fib_trie_free(struct fib_table *tb)
1826{
1827        struct trie *t = (struct trie *)tb->tb_data;
1828        struct key_vector *pn = t->kv;
1829        unsigned long cindex = 1;
1830        struct hlist_node *tmp;
1831        struct fib_alias *fa;
1832
1833        /* walk trie in reverse order and free everything */
1834        for (;;) {
1835                struct key_vector *n;
1836
1837                if (!(cindex--)) {
1838                        t_key pkey = pn->key;
1839
1840                        if (IS_TRIE(pn))
1841                                break;
1842
1843                        n = pn;
1844                        pn = node_parent(pn);
1845
1846                        /* drop emptied tnode */
1847                        put_child_root(pn, n->key, NULL);
1848                        node_free(n);
1849
1850                        cindex = get_index(pkey, pn);
1851
1852                        continue;
1853                }
1854
1855                /* grab the next available node */
1856                n = get_child(pn, cindex);
1857                if (!n)
1858                        continue;
1859
1860                if (IS_TNODE(n)) {
1861                        /* record pn and cindex for leaf walking */
1862                        pn = n;
1863                        cindex = 1ul << n->bits;
1864
1865                        continue;
1866                }
1867
1868                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1869                        hlist_del_rcu(&fa->fa_list);
1870                        alias_free_mem_rcu(fa);
1871                }
1872
1873                put_child_root(pn, n->key, NULL);
1874                node_free(n);
1875        }
1876
1877#ifdef CONFIG_IP_FIB_TRIE_STATS
1878        free_percpu(t->stats);
1879#endif
1880        kfree(tb);
1881}
1882
1883struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1884{
1885        struct trie *ot = (struct trie *)oldtb->tb_data;
1886        struct key_vector *l, *tp = ot->kv;
1887        struct fib_table *local_tb;
1888        struct fib_alias *fa;
1889        struct trie *lt;
1890        t_key key = 0;
1891
1892        if (oldtb->tb_data == oldtb->__data)
1893                return oldtb;
1894
1895        local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1896        if (!local_tb)
1897                return NULL;
1898
1899        lt = (struct trie *)local_tb->tb_data;
1900
1901        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1902                struct key_vector *local_l = NULL, *local_tp;
1903
1904                hlist_for_each_entry(fa, &l->leaf, fa_list) {
1905                        struct fib_alias *new_fa;
1906
1907                        if (local_tb->tb_id != fa->tb_id)
1908                                continue;
1909
1910                        /* clone fa for new local table */
1911                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1912                        if (!new_fa)
1913                                goto out;
1914
1915                        memcpy(new_fa, fa, sizeof(*fa));
1916
1917                        /* insert clone into table */
1918                        if (!local_l)
1919                                local_l = fib_find_node(lt, &local_tp, l->key);
1920
1921                        if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1922                                             NULL, l->key)) {
1923                                kmem_cache_free(fn_alias_kmem, new_fa);
1924                                goto out;
1925                        }
1926                }
1927
1928                /* stop loop if key wrapped back to 0 */
1929                key = l->key + 1;
1930                if (key < l->key)
1931                        break;
1932        }
1933
1934        return local_tb;
1935out:
1936        fib_trie_free(local_tb);
1937
1938        return NULL;
1939}
1940
1941/* Caller must hold RTNL */
1942void fib_table_flush_external(struct fib_table *tb)
1943{
1944        struct trie *t = (struct trie *)tb->tb_data;
1945        struct key_vector *pn = t->kv;
1946        unsigned long cindex = 1;
1947        struct hlist_node *tmp;
1948        struct fib_alias *fa;
1949
1950        /* walk trie in reverse order */
1951        for (;;) {
1952                unsigned char slen = 0;
1953                struct key_vector *n;
1954
1955                if (!(cindex--)) {
1956                        t_key pkey = pn->key;
1957
1958                        /* cannot resize the trie vector */
1959                        if (IS_TRIE(pn))
1960                                break;
1961
1962                        /* update the suffix to address pulled leaves */
1963                        if (pn->slen > pn->pos)
1964                                update_suffix(pn);
1965
1966                        /* resize completed node */
1967                        pn = resize(t, pn);
1968                        cindex = get_index(pkey, pn);
1969
1970                        continue;
1971                }
1972
1973                /* grab the next available node */
1974                n = get_child(pn, cindex);
1975                if (!n)
1976                        continue;
1977
1978                if (IS_TNODE(n)) {
1979                        /* record pn and cindex for leaf walking */
1980                        pn = n;
1981                        cindex = 1ul << n->bits;
1982
1983                        continue;
1984                }
1985
1986                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1987                        /* if alias was cloned to local then we just
1988                         * need to remove the local copy from main
1989                         */
1990                        if (tb->tb_id != fa->tb_id) {
1991                                hlist_del_rcu(&fa->fa_list);
1992                                alias_free_mem_rcu(fa);
1993                                continue;
1994                        }
1995
1996                        /* record local slen */
1997                        slen = fa->fa_slen;
1998                }
1999
2000                /* update leaf slen */
2001                n->slen = slen;
2002
2003                if (hlist_empty(&n->leaf)) {
2004                        put_child_root(pn, n->key, NULL);
2005                        node_free(n);
2006                }
2007        }
2008}
2009
2010/* Caller must hold RTNL. */
2011int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2012{
2013        struct trie *t = (struct trie *)tb->tb_data;
2014        struct key_vector *pn = t->kv;
2015        unsigned long cindex = 1;
2016        struct hlist_node *tmp;
2017        struct fib_alias *fa;
2018        int found = 0;
2019
2020        /* walk trie in reverse order */
2021        for (;;) {
2022                unsigned char slen = 0;
2023                struct key_vector *n;
2024
2025                if (!(cindex--)) {
2026                        t_key pkey = pn->key;
2027
2028                        /* cannot resize the trie vector */
2029                        if (IS_TRIE(pn))
2030                                break;
2031
2032                        /* update the suffix to address pulled leaves */
2033                        if (pn->slen > pn->pos)
2034                                update_suffix(pn);
2035
2036                        /* resize completed node */
2037                        pn = resize(t, pn);
2038                        cindex = get_index(pkey, pn);
2039
2040                        continue;
2041                }
2042
2043                /* grab the next available node */
2044                n = get_child(pn, cindex);
2045                if (!n)
2046                        continue;
2047
2048                if (IS_TNODE(n)) {
2049                        /* record pn and cindex for leaf walking */
2050                        pn = n;
2051                        cindex = 1ul << n->bits;
2052
2053                        continue;
2054                }
2055
2056                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2057                        struct fib_info *fi = fa->fa_info;
2058
2059                        if (!fi || tb->tb_id != fa->tb_id ||
2060                            (!(fi->fib_flags & RTNH_F_DEAD) &&
2061                             !fib_props[fa->fa_type].error)) {
2062                                slen = fa->fa_slen;
2063                                continue;
2064                        }
2065
2066                        /* Do not flush error routes if network namespace is
2067                         * not being dismantled
2068                         */
2069                        if (!flush_all && fib_props[fa->fa_type].error) {
2070                                slen = fa->fa_slen;
2071                                continue;
2072                        }
2073
2074                        fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2075                                                NULL);
2076                        hlist_del_rcu(&fa->fa_list);
2077                        fib_release_info(fa->fa_info);
2078                        alias_free_mem_rcu(fa);
2079                        found++;
2080                }
2081
2082                /* update leaf slen */
2083                n->slen = slen;
2084
2085                if (hlist_empty(&n->leaf)) {
2086                        put_child_root(pn, n->key, NULL);
2087                        node_free(n);
2088                }
2089        }
2090
2091        pr_debug("trie_flush found=%d\n", found);
2092        return found;
2093}
2094
2095/* derived from fib_trie_free */
2096static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2097                                     struct nl_info *info)
2098{
2099        struct trie *t = (struct trie *)tb->tb_data;
2100        struct key_vector *pn = t->kv;
2101        unsigned long cindex = 1;
2102        struct fib_alias *fa;
2103
2104        for (;;) {
2105                struct key_vector *n;
2106
2107                if (!(cindex--)) {
2108                        t_key pkey = pn->key;
2109
2110                        if (IS_TRIE(pn))
2111                                break;
2112
2113                        pn = node_parent(pn);
2114                        cindex = get_index(pkey, pn);
2115                        continue;
2116                }
2117
2118                /* grab the next available node */
2119                n = get_child(pn, cindex);
2120                if (!n)
2121                        continue;
2122
2123                if (IS_TNODE(n)) {
2124                        /* record pn and cindex for leaf walking */
2125                        pn = n;
2126                        cindex = 1ul << n->bits;
2127
2128                        continue;
2129                }
2130
2131                hlist_for_each_entry(fa, &n->leaf, fa_list) {
2132                        struct fib_info *fi = fa->fa_info;
2133
2134                        if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2135                                continue;
2136
2137                        rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2138                                  KEYLENGTH - fa->fa_slen, tb->tb_id,
2139                                  info, NLM_F_REPLACE);
2140                }
2141        }
2142}
2143
2144void fib_info_notify_update(struct net *net, struct nl_info *info)
2145{
2146        unsigned int h;
2147
2148        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2149                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2150                struct fib_table *tb;
2151
2152                hlist_for_each_entry_rcu(tb, head, tb_hlist,
2153                                         lockdep_rtnl_is_held())
2154                        __fib_info_notify_update(net, tb, info);
2155        }
2156}
2157
2158static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2159                           struct notifier_block *nb,
2160                           struct netlink_ext_ack *extack)
2161{
2162        struct fib_alias *fa;
2163        int last_slen = -1;
2164        int err;
2165
2166        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2167                struct fib_info *fi = fa->fa_info;
2168
2169                if (!fi)
2170                        continue;
2171
2172                /* local and main table can share the same trie,
2173                 * so don't notify twice for the same entry.
2174                 */
2175                if (tb->tb_id != fa->tb_id)
2176                        continue;
2177
2178                if (fa->fa_slen == last_slen)
2179                        continue;
2180
2181                last_slen = fa->fa_slen;
2182                err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2183                                              l->key, KEYLENGTH - fa->fa_slen,
2184                                              fa, extack);
2185                if (err)
2186                        return err;
2187        }
2188        return 0;
2189}
2190
2191static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2192                            struct netlink_ext_ack *extack)
2193{
2194        struct trie *t = (struct trie *)tb->tb_data;
2195        struct key_vector *l, *tp = t->kv;
2196        t_key key = 0;
2197        int err;
2198
2199        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2200                err = fib_leaf_notify(l, tb, nb, extack);
2201                if (err)
2202                        return err;
2203
2204                key = l->key + 1;
2205                /* stop in case of wrap around */
2206                if (key < l->key)
2207                        break;
2208        }
2209        return 0;
2210}
2211
2212int fib_notify(struct net *net, struct notifier_block *nb,
2213               struct netlink_ext_ack *extack)
2214{
2215        unsigned int h;
2216        int err;
2217
2218        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2219                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2220                struct fib_table *tb;
2221
2222                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2223                        err = fib_table_notify(tb, nb, extack);
2224                        if (err)
2225                                return err;
2226                }
2227        }
2228        return 0;
2229}
2230
2231static void __trie_free_rcu(struct rcu_head *head)
2232{
2233        struct fib_table *tb = container_of(head, struct fib_table, rcu);
2234#ifdef CONFIG_IP_FIB_TRIE_STATS
2235        struct trie *t = (struct trie *)tb->tb_data;
2236
2237        if (tb->tb_data == tb->__data)
2238                free_percpu(t->stats);
2239#endif /* CONFIG_IP_FIB_TRIE_STATS */
2240        kfree(tb);
2241}
2242
2243void fib_free_table(struct fib_table *tb)
2244{
2245        call_rcu(&tb->rcu, __trie_free_rcu);
2246}
2247
2248static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2249                             struct sk_buff *skb, struct netlink_callback *cb,
2250                             struct fib_dump_filter *filter)
2251{
2252        unsigned int flags = NLM_F_MULTI;
2253        __be32 xkey = htonl(l->key);
2254        int i, s_i, i_fa, s_fa, err;
2255        struct fib_alias *fa;
2256
2257        if (filter->filter_set ||
2258            !filter->dump_exceptions || !filter->dump_routes)
2259                flags |= NLM_F_DUMP_FILTERED;
2260
2261        s_i = cb->args[4];
2262        s_fa = cb->args[5];
2263        i = 0;
2264
2265        /* rcu_read_lock is hold by caller */
2266        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2267                struct fib_info *fi = fa->fa_info;
2268
2269                if (i < s_i)
2270                        goto next;
2271
2272                i_fa = 0;
2273
2274                if (tb->tb_id != fa->tb_id)
2275                        goto next;
2276
2277                if (filter->filter_set) {
2278                        if (filter->rt_type && fa->fa_type != filter->rt_type)
2279                                goto next;
2280
2281                        if ((filter->protocol &&
2282                             fi->fib_protocol != filter->protocol))
2283                                goto next;
2284
2285                        if (filter->dev &&
2286                            !fib_info_nh_uses_dev(fi, filter->dev))
2287                                goto next;
2288                }
2289
2290                if (filter->dump_routes) {
2291                        if (!s_fa) {
2292                                struct fib_rt_info fri;
2293
2294                                fri.fi = fi;
2295                                fri.tb_id = tb->tb_id;
2296                                fri.dst = xkey;
2297                                fri.dst_len = KEYLENGTH - fa->fa_slen;
2298                                fri.tos = fa->fa_tos;
2299                                fri.type = fa->fa_type;
2300                                fri.offload = fa->offload;
2301                                fri.trap = fa->trap;
2302                                fri.offload_failed = fa->offload_failed;
2303                                err = fib_dump_info(skb,
2304                                                    NETLINK_CB(cb->skb).portid,
2305                                                    cb->nlh->nlmsg_seq,
2306                                                    RTM_NEWROUTE, &fri, flags);
2307                                if (err < 0)
2308                                        goto stop;
2309                        }
2310
2311                        i_fa++;
2312                }
2313
2314                if (filter->dump_exceptions) {
2315                        err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2316                                                 &i_fa, s_fa, flags);
2317                        if (err < 0)
2318                                goto stop;
2319                }
2320
2321next:
2322                i++;
2323        }
2324
2325        cb->args[4] = i;
2326        return skb->len;
2327
2328stop:
2329        cb->args[4] = i;
2330        cb->args[5] = i_fa;
2331        return err;
2332}
2333
2334/* rcu_read_lock needs to be hold by caller from readside */
2335int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2336                   struct netlink_callback *cb, struct fib_dump_filter *filter)
2337{
2338        struct trie *t = (struct trie *)tb->tb_data;
2339        struct key_vector *l, *tp = t->kv;
2340        /* Dump starting at last key.
2341         * Note: 0.0.0.0/0 (ie default) is first key.
2342         */
2343        int count = cb->args[2];
2344        t_key key = cb->args[3];
2345
2346        /* First time here, count and key are both always 0. Count > 0
2347         * and key == 0 means the dump has wrapped around and we are done.
2348         */
2349        if (count && !key)
2350                return skb->len;
2351
2352        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2353                int err;
2354
2355                err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2356                if (err < 0) {
2357                        cb->args[3] = key;
2358                        cb->args[2] = count;
2359                        return err;
2360                }
2361
2362                ++count;
2363                key = l->key + 1;
2364
2365                memset(&cb->args[4], 0,
2366                       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2367
2368                /* stop loop if key wrapped back to 0 */
2369                if (key < l->key)
2370                        break;
2371        }
2372
2373        cb->args[3] = key;
2374        cb->args[2] = count;
2375
2376        return skb->len;
2377}
2378
2379void __init fib_trie_init(void)
2380{
2381        fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2382                                          sizeof(struct fib_alias),
2383                                          0, SLAB_PANIC, NULL);
2384
2385        trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2386                                           LEAF_SIZE,
2387                                           0, SLAB_PANIC, NULL);
2388}
2389
2390struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2391{
2392        struct fib_table *tb;
2393        struct trie *t;
2394        size_t sz = sizeof(*tb);
2395
2396        if (!alias)
2397                sz += sizeof(struct trie);
2398
2399        tb = kzalloc(sz, GFP_KERNEL);
2400        if (!tb)
2401                return NULL;
2402
2403        tb->tb_id = id;
2404        tb->tb_num_default = 0;
2405        tb->tb_data = (alias ? alias->__data : tb->__data);
2406
2407        if (alias)
2408                return tb;
2409
2410        t = (struct trie *) tb->tb_data;
2411        t->kv[0].pos = KEYLENGTH;
2412        t->kv[0].slen = KEYLENGTH;
2413#ifdef CONFIG_IP_FIB_TRIE_STATS
2414        t->stats = alloc_percpu(struct trie_use_stats);
2415        if (!t->stats) {
2416                kfree(tb);
2417                tb = NULL;
2418        }
2419#endif
2420
2421        return tb;
2422}
2423
2424#ifdef CONFIG_PROC_FS
2425/* Depth first Trie walk iterator */
2426struct fib_trie_iter {
2427        struct seq_net_private p;
2428        struct fib_table *tb;
2429        struct key_vector *tnode;
2430        unsigned int index;
2431        unsigned int depth;
2432};
2433
2434static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2435{
2436        unsigned long cindex = iter->index;
2437        struct key_vector *pn = iter->tnode;
2438        t_key pkey;
2439
2440        pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2441                 iter->tnode, iter->index, iter->depth);
2442
2443        while (!IS_TRIE(pn)) {
2444                while (cindex < child_length(pn)) {
2445                        struct key_vector *n = get_child_rcu(pn, cindex++);
2446
2447                        if (!n)
2448                                continue;
2449
2450                        if (IS_LEAF(n)) {
2451                                iter->tnode = pn;
2452                                iter->index = cindex;
2453                        } else {
2454                                /* push down one level */
2455                                iter->tnode = n;
2456                                iter->index = 0;
2457                                ++iter->depth;
2458                        }
2459
2460                        return n;
2461                }
2462
2463                /* Current node exhausted, pop back up */
2464                pkey = pn->key;
2465                pn = node_parent_rcu(pn);
2466                cindex = get_index(pkey, pn) + 1;
2467                --iter->depth;
2468        }
2469
2470        /* record root node so further searches know we are done */
2471        iter->tnode = pn;
2472        iter->index = 0;
2473
2474        return NULL;
2475}
2476
2477static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2478                                             struct trie *t)
2479{
2480        struct key_vector *n, *pn;
2481
2482        if (!t)
2483                return NULL;
2484
2485        pn = t->kv;
2486        n = rcu_dereference(pn->tnode[0]);
2487        if (!n)
2488                return NULL;
2489
2490        if (IS_TNODE(n)) {
2491                iter->tnode = n;
2492                iter->index = 0;
2493                iter->depth = 1;
2494        } else {
2495                iter->tnode = pn;
2496                iter->index = 0;
2497                iter->depth = 0;
2498        }
2499
2500        return n;
2501}
2502
2503static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2504{
2505        struct key_vector *n;
2506        struct fib_trie_iter iter;
2507
2508        memset(s, 0, sizeof(*s));
2509
2510        rcu_read_lock();
2511        for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2512                if (IS_LEAF(n)) {
2513                        struct fib_alias *fa;
2514
2515                        s->leaves++;
2516                        s->totdepth += iter.depth;
2517                        if (iter.depth > s->maxdepth)
2518                                s->maxdepth = iter.depth;
2519
2520                        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2521                                ++s->prefixes;
2522                } else {
2523                        s->tnodes++;
2524                        if (n->bits < MAX_STAT_DEPTH)
2525                                s->nodesizes[n->bits]++;
2526                        s->nullpointers += tn_info(n)->empty_children;
2527                }
2528        }
2529        rcu_read_unlock();
2530}
2531
2532/*
2533 *      This outputs /proc/net/fib_triestats
2534 */
2535static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2536{
2537        unsigned int i, max, pointers, bytes, avdepth;
2538
2539        if (stat->leaves)
2540                avdepth = stat->totdepth*100 / stat->leaves;
2541        else
2542                avdepth = 0;
2543
2544        seq_printf(seq, "\tAver depth:     %u.%02d\n",
2545                   avdepth / 100, avdepth % 100);
2546        seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2547
2548        seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2549        bytes = LEAF_SIZE * stat->leaves;
2550
2551        seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2552        bytes += sizeof(struct fib_alias) * stat->prefixes;
2553
2554        seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2555        bytes += TNODE_SIZE(0) * stat->tnodes;
2556
2557        max = MAX_STAT_DEPTH;
2558        while (max > 0 && stat->nodesizes[max-1] == 0)
2559                max--;
2560
2561        pointers = 0;
2562        for (i = 1; i < max; i++)
2563                if (stat->nodesizes[i] != 0) {
2564                        seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2565                        pointers += (1<<i) * stat->nodesizes[i];
2566                }
2567        seq_putc(seq, '\n');
2568        seq_printf(seq, "\tPointers: %u\n", pointers);
2569
2570        bytes += sizeof(struct key_vector *) * pointers;
2571        seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2572        seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2573}
2574
2575#ifdef CONFIG_IP_FIB_TRIE_STATS
2576static void trie_show_usage(struct seq_file *seq,
2577                            const struct trie_use_stats __percpu *stats)
2578{
2579        struct trie_use_stats s = { 0 };
2580        int cpu;
2581
2582        /* loop through all of the CPUs and gather up the stats */
2583        for_each_possible_cpu(cpu) {
2584                const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2585
2586                s.gets += pcpu->gets;
2587                s.backtrack += pcpu->backtrack;
2588                s.semantic_match_passed += pcpu->semantic_match_passed;
2589                s.semantic_match_miss += pcpu->semantic_match_miss;
2590                s.null_node_hit += pcpu->null_node_hit;
2591                s.resize_node_skipped += pcpu->resize_node_skipped;
2592        }
2593
2594        seq_printf(seq, "\nCounters:\n---------\n");
2595        seq_printf(seq, "gets = %u\n", s.gets);
2596        seq_printf(seq, "backtracks = %u\n", s.backtrack);
2597        seq_printf(seq, "semantic match passed = %u\n",
2598                   s.semantic_match_passed);
2599        seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2600        seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2601        seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2602}
2603#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2604
2605static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2606{
2607        if (tb->tb_id == RT_TABLE_LOCAL)
2608                seq_puts(seq, "Local:\n");
2609        else if (tb->tb_id == RT_TABLE_MAIN)
2610                seq_puts(seq, "Main:\n");
2611        else
2612                seq_printf(seq, "Id %d:\n", tb->tb_id);
2613}
2614
2615
2616static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2617{
2618        struct net *net = (struct net *)seq->private;
2619        unsigned int h;
2620
2621        seq_printf(seq,
2622                   "Basic info: size of leaf:"
2623                   " %zd bytes, size of tnode: %zd bytes.\n",
2624                   LEAF_SIZE, TNODE_SIZE(0));
2625
2626        rcu_read_lock();
2627        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2628                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2629                struct fib_table *tb;
2630
2631                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2632                        struct trie *t = (struct trie *) tb->tb_data;
2633                        struct trie_stat stat;
2634
2635                        if (!t)
2636                                continue;
2637
2638                        fib_table_print(seq, tb);
2639
2640                        trie_collect_stats(t, &stat);
2641                        trie_show_stats(seq, &stat);
2642#ifdef CONFIG_IP_FIB_TRIE_STATS
2643                        trie_show_usage(seq, t->stats);
2644#endif
2645                }
2646                cond_resched_rcu();
2647        }
2648        rcu_read_unlock();
2649
2650        return 0;
2651}
2652
2653static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2654{
2655        struct fib_trie_iter *iter = seq->private;
2656        struct net *net = seq_file_net(seq);
2657        loff_t idx = 0;
2658        unsigned int h;
2659
2660        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2661                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2662                struct fib_table *tb;
2663
2664                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2665                        struct key_vector *n;
2666
2667                        for (n = fib_trie_get_first(iter,
2668                                                    (struct trie *) tb->tb_data);
2669                             n; n = fib_trie_get_next(iter))
2670                                if (pos == idx++) {
2671                                        iter->tb = tb;
2672                                        return n;
2673                                }
2674                }
2675        }
2676
2677        return NULL;
2678}
2679
2680static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2681        __acquires(RCU)
2682{
2683        rcu_read_lock();
2684        return fib_trie_get_idx(seq, *pos);
2685}
2686
2687static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2688{
2689        struct fib_trie_iter *iter = seq->private;
2690        struct net *net = seq_file_net(seq);
2691        struct fib_table *tb = iter->tb;
2692        struct hlist_node *tb_node;
2693        unsigned int h;
2694        struct key_vector *n;
2695
2696        ++*pos;
2697        /* next node in same table */
2698        n = fib_trie_get_next(iter);
2699        if (n)
2700                return n;
2701
2702        /* walk rest of this hash chain */
2703        h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2704        while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2705                tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2706                n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2707                if (n)
2708                        goto found;
2709        }
2710
2711        /* new hash chain */
2712        while (++h < FIB_TABLE_HASHSZ) {
2713                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2714                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2715                        n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2716                        if (n)
2717                                goto found;
2718                }
2719        }
2720        return NULL;
2721
2722found:
2723        iter->tb = tb;
2724        return n;
2725}
2726
2727static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2728        __releases(RCU)
2729{
2730        rcu_read_unlock();
2731}
2732
2733static void seq_indent(struct seq_file *seq, int n)
2734{
2735        while (n-- > 0)
2736                seq_puts(seq, "   ");
2737}
2738
2739static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2740{
2741        switch (s) {
2742        case RT_SCOPE_UNIVERSE: return "universe";
2743        case RT_SCOPE_SITE:     return "site";
2744        case RT_SCOPE_LINK:     return "link";
2745        case RT_SCOPE_HOST:     return "host";
2746        case RT_SCOPE_NOWHERE:  return "nowhere";
2747        default:
2748                snprintf(buf, len, "scope=%d", s);
2749                return buf;
2750        }
2751}
2752
2753static const char *const rtn_type_names[__RTN_MAX] = {
2754        [RTN_UNSPEC] = "UNSPEC",
2755        [RTN_UNICAST] = "UNICAST",
2756        [RTN_LOCAL] = "LOCAL",
2757        [RTN_BROADCAST] = "BROADCAST",
2758        [RTN_ANYCAST] = "ANYCAST",
2759        [RTN_MULTICAST] = "MULTICAST",
2760        [RTN_BLACKHOLE] = "BLACKHOLE",
2761        [RTN_UNREACHABLE] = "UNREACHABLE",
2762        [RTN_PROHIBIT] = "PROHIBIT",
2763        [RTN_THROW] = "THROW",
2764        [RTN_NAT] = "NAT",
2765        [RTN_XRESOLVE] = "XRESOLVE",
2766};
2767
2768static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2769{
2770        if (t < __RTN_MAX && rtn_type_names[t])
2771                return rtn_type_names[t];
2772        snprintf(buf, len, "type %u", t);
2773        return buf;
2774}
2775
2776/* Pretty print the trie */
2777static int fib_trie_seq_show(struct seq_file *seq, void *v)
2778{
2779        const struct fib_trie_iter *iter = seq->private;
2780        struct key_vector *n = v;
2781
2782        if (IS_TRIE(node_parent_rcu(n)))
2783                fib_table_print(seq, iter->tb);
2784
2785        if (IS_TNODE(n)) {
2786                __be32 prf = htonl(n->key);
2787
2788                seq_indent(seq, iter->depth-1);
2789                seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2790                           &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2791                           tn_info(n)->full_children,
2792                           tn_info(n)->empty_children);
2793        } else {
2794                __be32 val = htonl(n->key);
2795                struct fib_alias *fa;
2796
2797                seq_indent(seq, iter->depth);
2798                seq_printf(seq, "  |-- %pI4\n", &val);
2799
2800                hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2801                        char buf1[32], buf2[32];
2802
2803                        seq_indent(seq, iter->depth + 1);
2804                        seq_printf(seq, "  /%zu %s %s",
2805                                   KEYLENGTH - fa->fa_slen,
2806                                   rtn_scope(buf1, sizeof(buf1),
2807                                             fa->fa_info->fib_scope),
2808                                   rtn_type(buf2, sizeof(buf2),
2809                                            fa->fa_type));
2810                        if (fa->fa_tos)
2811                                seq_printf(seq, " tos=%d", fa->fa_tos);
2812                        seq_putc(seq, '\n');
2813                }
2814        }
2815
2816        return 0;
2817}
2818
2819static const struct seq_operations fib_trie_seq_ops = {
2820        .start  = fib_trie_seq_start,
2821        .next   = fib_trie_seq_next,
2822        .stop   = fib_trie_seq_stop,
2823        .show   = fib_trie_seq_show,
2824};
2825
2826struct fib_route_iter {
2827        struct seq_net_private p;
2828        struct fib_table *main_tb;
2829        struct key_vector *tnode;
2830        loff_t  pos;
2831        t_key   key;
2832};
2833
2834static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2835                                            loff_t pos)
2836{
2837        struct key_vector *l, **tp = &iter->tnode;
2838        t_key key;
2839
2840        /* use cached location of previously found key */
2841        if (iter->pos > 0 && pos >= iter->pos) {
2842                key = iter->key;
2843        } else {
2844                iter->pos = 1;
2845                key = 0;
2846        }
2847
2848        pos -= iter->pos;
2849
2850        while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2851                key = l->key + 1;
2852                iter->pos++;
2853                l = NULL;
2854
2855                /* handle unlikely case of a key wrap */
2856                if (!key)
2857                        break;
2858        }
2859
2860        if (l)
2861                iter->key = l->key;     /* remember it */
2862        else
2863                iter->pos = 0;          /* forget it */
2864
2865        return l;
2866}
2867
2868static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2869        __acquires(RCU)
2870{
2871        struct fib_route_iter *iter = seq->private;
2872        struct fib_table *tb;
2873        struct trie *t;
2874
2875        rcu_read_lock();
2876
2877        tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2878        if (!tb)
2879                return NULL;
2880
2881        iter->main_tb = tb;
2882        t = (struct trie *)tb->tb_data;
2883        iter->tnode = t->kv;
2884
2885        if (*pos != 0)
2886                return fib_route_get_idx(iter, *pos);
2887
2888        iter->pos = 0;
2889        iter->key = KEY_MAX;
2890
2891        return SEQ_START_TOKEN;
2892}
2893
2894static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895{
2896        struct fib_route_iter *iter = seq->private;
2897        struct key_vector *l = NULL;
2898        t_key key = iter->key + 1;
2899
2900        ++*pos;
2901
2902        /* only allow key of 0 for start of sequence */
2903        if ((v == SEQ_START_TOKEN) || key)
2904                l = leaf_walk_rcu(&iter->tnode, key);
2905
2906        if (l) {
2907                iter->key = l->key;
2908                iter->pos++;
2909        } else {
2910                iter->pos = 0;
2911        }
2912
2913        return l;
2914}
2915
2916static void fib_route_seq_stop(struct seq_file *seq, void *v)
2917        __releases(RCU)
2918{
2919        rcu_read_unlock();
2920}
2921
2922static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2923{
2924        unsigned int flags = 0;
2925
2926        if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2927                flags = RTF_REJECT;
2928        if (fi) {
2929                const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2930
2931                if (nhc->nhc_gw.ipv4)
2932                        flags |= RTF_GATEWAY;
2933        }
2934        if (mask == htonl(0xFFFFFFFF))
2935                flags |= RTF_HOST;
2936        flags |= RTF_UP;
2937        return flags;
2938}
2939
2940/*
2941 *      This outputs /proc/net/route.
2942 *      The format of the file is not supposed to be changed
2943 *      and needs to be same as fib_hash output to avoid breaking
2944 *      legacy utilities
2945 */
2946static int fib_route_seq_show(struct seq_file *seq, void *v)
2947{
2948        struct fib_route_iter *iter = seq->private;
2949        struct fib_table *tb = iter->main_tb;
2950        struct fib_alias *fa;
2951        struct key_vector *l = v;
2952        __be32 prefix;
2953
2954        if (v == SEQ_START_TOKEN) {
2955                seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2956                           "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2957                           "\tWindow\tIRTT");
2958                return 0;
2959        }
2960
2961        prefix = htonl(l->key);
2962
2963        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2964                struct fib_info *fi = fa->fa_info;
2965                __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2966                unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2967
2968                if ((fa->fa_type == RTN_BROADCAST) ||
2969                    (fa->fa_type == RTN_MULTICAST))
2970                        continue;
2971
2972                if (fa->tb_id != tb->tb_id)
2973                        continue;
2974
2975                seq_setwidth(seq, 127);
2976
2977                if (fi) {
2978                        struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2979                        __be32 gw = 0;
2980
2981                        if (nhc->nhc_gw_family == AF_INET)
2982                                gw = nhc->nhc_gw.ipv4;
2983
2984                        seq_printf(seq,
2985                                   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2986                                   "%d\t%08X\t%d\t%u\t%u",
2987                                   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2988                                   prefix, gw, flags, 0, 0,
2989                                   fi->fib_priority,
2990                                   mask,
2991                                   (fi->fib_advmss ?
2992                                    fi->fib_advmss + 40 : 0),
2993                                   fi->fib_window,
2994                                   fi->fib_rtt >> 3);
2995                } else {
2996                        seq_printf(seq,
2997                                   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2998                                   "%d\t%08X\t%d\t%u\t%u",
2999                                   prefix, 0, flags, 0, 0, 0,
3000                                   mask, 0, 0, 0);
3001                }
3002                seq_pad(seq, '\n');
3003        }
3004
3005        return 0;
3006}
3007
3008static const struct seq_operations fib_route_seq_ops = {
3009        .start  = fib_route_seq_start,
3010        .next   = fib_route_seq_next,
3011        .stop   = fib_route_seq_stop,
3012        .show   = fib_route_seq_show,
3013};
3014
3015int __net_init fib_proc_init(struct net *net)
3016{
3017        if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3018                        sizeof(struct fib_trie_iter)))
3019                goto out1;
3020
3021        if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3022                        fib_triestat_seq_show, NULL))
3023                goto out2;
3024
3025        if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3026                        sizeof(struct fib_route_iter)))
3027                goto out3;
3028
3029        return 0;
3030
3031out3:
3032        remove_proc_entry("fib_triestat", net->proc_net);
3033out2:
3034        remove_proc_entry("fib_trie", net->proc_net);
3035out1:
3036        return -ENOMEM;
3037}
3038
3039void __net_exit fib_proc_exit(struct net *net)
3040{
3041        remove_proc_entry("fib_trie", net->proc_net);
3042        remove_proc_entry("fib_triestat", net->proc_net);
3043        remove_proc_entry("route", net->proc_net);
3044}
3045
3046#endif /* CONFIG_PROC_FS */
3047