linux/net/netfilter/nf_conntrack_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Connection state tracking for netfilter.  This is separated from,
   3   but required by, the NAT layer; it can also be used by an iptables
   4   extension. */
   5
   6/* (C) 1999-2001 Paul `Rusty' Russell
   7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
   8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
   9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/types.h>
  15#include <linux/netfilter.h>
  16#include <linux/module.h>
  17#include <linux/sched.h>
  18#include <linux/skbuff.h>
  19#include <linux/proc_fs.h>
  20#include <linux/vmalloc.h>
  21#include <linux/stddef.h>
  22#include <linux/slab.h>
  23#include <linux/random.h>
  24#include <linux/jhash.h>
  25#include <linux/siphash.h>
  26#include <linux/err.h>
  27#include <linux/percpu.h>
  28#include <linux/moduleparam.h>
  29#include <linux/notifier.h>
  30#include <linux/kernel.h>
  31#include <linux/netdevice.h>
  32#include <linux/socket.h>
  33#include <linux/mm.h>
  34#include <linux/nsproxy.h>
  35#include <linux/rculist_nulls.h>
  36
  37#include <net/netfilter/nf_conntrack.h>
  38#include <net/netfilter/nf_conntrack_l4proto.h>
  39#include <net/netfilter/nf_conntrack_expect.h>
  40#include <net/netfilter/nf_conntrack_helper.h>
  41#include <net/netfilter/nf_conntrack_seqadj.h>
  42#include <net/netfilter/nf_conntrack_core.h>
  43#include <net/netfilter/nf_conntrack_extend.h>
  44#include <net/netfilter/nf_conntrack_acct.h>
  45#include <net/netfilter/nf_conntrack_ecache.h>
  46#include <net/netfilter/nf_conntrack_zones.h>
  47#include <net/netfilter/nf_conntrack_timestamp.h>
  48#include <net/netfilter/nf_conntrack_timeout.h>
  49#include <net/netfilter/nf_conntrack_labels.h>
  50#include <net/netfilter/nf_conntrack_synproxy.h>
  51#include <net/netfilter/nf_nat.h>
  52#include <net/netfilter/nf_nat_helper.h>
  53#include <net/netns/hash.h>
  54#include <net/ip.h>
  55
  56#include "nf_internals.h"
  57
  58__cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
  59EXPORT_SYMBOL_GPL(nf_conntrack_locks);
  60
  61__cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
  62EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
  63
  64struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
  65EXPORT_SYMBOL_GPL(nf_conntrack_hash);
  66
  67struct conntrack_gc_work {
  68        struct delayed_work     dwork;
  69        u32                     next_bucket;
  70        bool                    exiting;
  71        bool                    early_drop;
  72};
  73
  74static __read_mostly struct kmem_cache *nf_conntrack_cachep;
  75static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
  76static __read_mostly bool nf_conntrack_locks_all;
  77
  78#define GC_SCAN_INTERVAL        (120u * HZ)
  79#define GC_SCAN_MAX_DURATION    msecs_to_jiffies(10)
  80
  81static struct conntrack_gc_work conntrack_gc_work;
  82
  83void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
  84{
  85        /* 1) Acquire the lock */
  86        spin_lock(lock);
  87
  88        /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
  89         * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
  90         */
  91        if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
  92                return;
  93
  94        /* fast path failed, unlock */
  95        spin_unlock(lock);
  96
  97        /* Slow path 1) get global lock */
  98        spin_lock(&nf_conntrack_locks_all_lock);
  99
 100        /* Slow path 2) get the lock we want */
 101        spin_lock(lock);
 102
 103        /* Slow path 3) release the global lock */
 104        spin_unlock(&nf_conntrack_locks_all_lock);
 105}
 106EXPORT_SYMBOL_GPL(nf_conntrack_lock);
 107
 108static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
 109{
 110        h1 %= CONNTRACK_LOCKS;
 111        h2 %= CONNTRACK_LOCKS;
 112        spin_unlock(&nf_conntrack_locks[h1]);
 113        if (h1 != h2)
 114                spin_unlock(&nf_conntrack_locks[h2]);
 115}
 116
 117/* return true if we need to recompute hashes (in case hash table was resized) */
 118static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
 119                                     unsigned int h2, unsigned int sequence)
 120{
 121        h1 %= CONNTRACK_LOCKS;
 122        h2 %= CONNTRACK_LOCKS;
 123        if (h1 <= h2) {
 124                nf_conntrack_lock(&nf_conntrack_locks[h1]);
 125                if (h1 != h2)
 126                        spin_lock_nested(&nf_conntrack_locks[h2],
 127                                         SINGLE_DEPTH_NESTING);
 128        } else {
 129                nf_conntrack_lock(&nf_conntrack_locks[h2]);
 130                spin_lock_nested(&nf_conntrack_locks[h1],
 131                                 SINGLE_DEPTH_NESTING);
 132        }
 133        if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
 134                nf_conntrack_double_unlock(h1, h2);
 135                return true;
 136        }
 137        return false;
 138}
 139
 140static void nf_conntrack_all_lock(void)
 141        __acquires(&nf_conntrack_locks_all_lock)
 142{
 143        int i;
 144
 145        spin_lock(&nf_conntrack_locks_all_lock);
 146
 147        /* For nf_contrack_locks_all, only the latest time when another
 148         * CPU will see an update is controlled, by the "release" of the
 149         * spin_lock below.
 150         * The earliest time is not controlled, an thus KCSAN could detect
 151         * a race when nf_conntract_lock() reads the variable.
 152         * WRITE_ONCE() is used to ensure the compiler will not
 153         * optimize the write.
 154         */
 155        WRITE_ONCE(nf_conntrack_locks_all, true);
 156
 157        for (i = 0; i < CONNTRACK_LOCKS; i++) {
 158                spin_lock(&nf_conntrack_locks[i]);
 159
 160                /* This spin_unlock provides the "release" to ensure that
 161                 * nf_conntrack_locks_all==true is visible to everyone that
 162                 * acquired spin_lock(&nf_conntrack_locks[]).
 163                 */
 164                spin_unlock(&nf_conntrack_locks[i]);
 165        }
 166}
 167
 168static void nf_conntrack_all_unlock(void)
 169        __releases(&nf_conntrack_locks_all_lock)
 170{
 171        /* All prior stores must be complete before we clear
 172         * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
 173         * might observe the false value but not the entire
 174         * critical section.
 175         * It pairs with the smp_load_acquire() in nf_conntrack_lock()
 176         */
 177        smp_store_release(&nf_conntrack_locks_all, false);
 178        spin_unlock(&nf_conntrack_locks_all_lock);
 179}
 180
 181unsigned int nf_conntrack_htable_size __read_mostly;
 182EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
 183
 184unsigned int nf_conntrack_max __read_mostly;
 185EXPORT_SYMBOL_GPL(nf_conntrack_max);
 186seqcount_spinlock_t nf_conntrack_generation __read_mostly;
 187static unsigned int nf_conntrack_hash_rnd __read_mostly;
 188
 189static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
 190                              const struct net *net)
 191{
 192        unsigned int n;
 193        u32 seed;
 194
 195        get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
 196
 197        /* The direction must be ignored, so we hash everything up to the
 198         * destination ports (which is a multiple of 4) and treat the last
 199         * three bytes manually.
 200         */
 201        seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
 202        n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
 203        return jhash2((u32 *)tuple, n, seed ^
 204                      (((__force __u16)tuple->dst.u.all << 16) |
 205                      tuple->dst.protonum));
 206}
 207
 208static u32 scale_hash(u32 hash)
 209{
 210        return reciprocal_scale(hash, nf_conntrack_htable_size);
 211}
 212
 213static u32 __hash_conntrack(const struct net *net,
 214                            const struct nf_conntrack_tuple *tuple,
 215                            unsigned int size)
 216{
 217        return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
 218}
 219
 220static u32 hash_conntrack(const struct net *net,
 221                          const struct nf_conntrack_tuple *tuple)
 222{
 223        return scale_hash(hash_conntrack_raw(tuple, net));
 224}
 225
 226static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
 227                                  unsigned int dataoff,
 228                                  struct nf_conntrack_tuple *tuple)
 229{       struct {
 230                __be16 sport;
 231                __be16 dport;
 232        } _inet_hdr, *inet_hdr;
 233
 234        /* Actually only need first 4 bytes to get ports. */
 235        inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
 236        if (!inet_hdr)
 237                return false;
 238
 239        tuple->src.u.udp.port = inet_hdr->sport;
 240        tuple->dst.u.udp.port = inet_hdr->dport;
 241        return true;
 242}
 243
 244static bool
 245nf_ct_get_tuple(const struct sk_buff *skb,
 246                unsigned int nhoff,
 247                unsigned int dataoff,
 248                u_int16_t l3num,
 249                u_int8_t protonum,
 250                struct net *net,
 251                struct nf_conntrack_tuple *tuple)
 252{
 253        unsigned int size;
 254        const __be32 *ap;
 255        __be32 _addrs[8];
 256
 257        memset(tuple, 0, sizeof(*tuple));
 258
 259        tuple->src.l3num = l3num;
 260        switch (l3num) {
 261        case NFPROTO_IPV4:
 262                nhoff += offsetof(struct iphdr, saddr);
 263                size = 2 * sizeof(__be32);
 264                break;
 265        case NFPROTO_IPV6:
 266                nhoff += offsetof(struct ipv6hdr, saddr);
 267                size = sizeof(_addrs);
 268                break;
 269        default:
 270                return true;
 271        }
 272
 273        ap = skb_header_pointer(skb, nhoff, size, _addrs);
 274        if (!ap)
 275                return false;
 276
 277        switch (l3num) {
 278        case NFPROTO_IPV4:
 279                tuple->src.u3.ip = ap[0];
 280                tuple->dst.u3.ip = ap[1];
 281                break;
 282        case NFPROTO_IPV6:
 283                memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
 284                memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
 285                break;
 286        }
 287
 288        tuple->dst.protonum = protonum;
 289        tuple->dst.dir = IP_CT_DIR_ORIGINAL;
 290
 291        switch (protonum) {
 292#if IS_ENABLED(CONFIG_IPV6)
 293        case IPPROTO_ICMPV6:
 294                return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
 295#endif
 296        case IPPROTO_ICMP:
 297                return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
 298#ifdef CONFIG_NF_CT_PROTO_GRE
 299        case IPPROTO_GRE:
 300                return gre_pkt_to_tuple(skb, dataoff, net, tuple);
 301#endif
 302        case IPPROTO_TCP:
 303        case IPPROTO_UDP: /* fallthrough */
 304                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 305#ifdef CONFIG_NF_CT_PROTO_UDPLITE
 306        case IPPROTO_UDPLITE:
 307                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 308#endif
 309#ifdef CONFIG_NF_CT_PROTO_SCTP
 310        case IPPROTO_SCTP:
 311                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 312#endif
 313#ifdef CONFIG_NF_CT_PROTO_DCCP
 314        case IPPROTO_DCCP:
 315                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 316#endif
 317        default:
 318                break;
 319        }
 320
 321        return true;
 322}
 323
 324static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
 325                            u_int8_t *protonum)
 326{
 327        int dataoff = -1;
 328        const struct iphdr *iph;
 329        struct iphdr _iph;
 330
 331        iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
 332        if (!iph)
 333                return -1;
 334
 335        /* Conntrack defragments packets, we might still see fragments
 336         * inside ICMP packets though.
 337         */
 338        if (iph->frag_off & htons(IP_OFFSET))
 339                return -1;
 340
 341        dataoff = nhoff + (iph->ihl << 2);
 342        *protonum = iph->protocol;
 343
 344        /* Check bogus IP headers */
 345        if (dataoff > skb->len) {
 346                pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
 347                         nhoff, iph->ihl << 2, skb->len);
 348                return -1;
 349        }
 350        return dataoff;
 351}
 352
 353#if IS_ENABLED(CONFIG_IPV6)
 354static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
 355                            u8 *protonum)
 356{
 357        int protoff = -1;
 358        unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
 359        __be16 frag_off;
 360        u8 nexthdr;
 361
 362        if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
 363                          &nexthdr, sizeof(nexthdr)) != 0) {
 364                pr_debug("can't get nexthdr\n");
 365                return -1;
 366        }
 367        protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
 368        /*
 369         * (protoff == skb->len) means the packet has not data, just
 370         * IPv6 and possibly extensions headers, but it is tracked anyway
 371         */
 372        if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
 373                pr_debug("can't find proto in pkt\n");
 374                return -1;
 375        }
 376
 377        *protonum = nexthdr;
 378        return protoff;
 379}
 380#endif
 381
 382static int get_l4proto(const struct sk_buff *skb,
 383                       unsigned int nhoff, u8 pf, u8 *l4num)
 384{
 385        switch (pf) {
 386        case NFPROTO_IPV4:
 387                return ipv4_get_l4proto(skb, nhoff, l4num);
 388#if IS_ENABLED(CONFIG_IPV6)
 389        case NFPROTO_IPV6:
 390                return ipv6_get_l4proto(skb, nhoff, l4num);
 391#endif
 392        default:
 393                *l4num = 0;
 394                break;
 395        }
 396        return -1;
 397}
 398
 399bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
 400                       u_int16_t l3num,
 401                       struct net *net, struct nf_conntrack_tuple *tuple)
 402{
 403        u8 protonum;
 404        int protoff;
 405
 406        protoff = get_l4proto(skb, nhoff, l3num, &protonum);
 407        if (protoff <= 0)
 408                return false;
 409
 410        return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
 411}
 412EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
 413
 414bool
 415nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
 416                   const struct nf_conntrack_tuple *orig)
 417{
 418        memset(inverse, 0, sizeof(*inverse));
 419
 420        inverse->src.l3num = orig->src.l3num;
 421
 422        switch (orig->src.l3num) {
 423        case NFPROTO_IPV4:
 424                inverse->src.u3.ip = orig->dst.u3.ip;
 425                inverse->dst.u3.ip = orig->src.u3.ip;
 426                break;
 427        case NFPROTO_IPV6:
 428                inverse->src.u3.in6 = orig->dst.u3.in6;
 429                inverse->dst.u3.in6 = orig->src.u3.in6;
 430                break;
 431        default:
 432                break;
 433        }
 434
 435        inverse->dst.dir = !orig->dst.dir;
 436
 437        inverse->dst.protonum = orig->dst.protonum;
 438
 439        switch (orig->dst.protonum) {
 440        case IPPROTO_ICMP:
 441                return nf_conntrack_invert_icmp_tuple(inverse, orig);
 442#if IS_ENABLED(CONFIG_IPV6)
 443        case IPPROTO_ICMPV6:
 444                return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
 445#endif
 446        }
 447
 448        inverse->src.u.all = orig->dst.u.all;
 449        inverse->dst.u.all = orig->src.u.all;
 450        return true;
 451}
 452EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
 453
 454/* Generate a almost-unique pseudo-id for a given conntrack.
 455 *
 456 * intentionally doesn't re-use any of the seeds used for hash
 457 * table location, we assume id gets exposed to userspace.
 458 *
 459 * Following nf_conn items do not change throughout lifetime
 460 * of the nf_conn:
 461 *
 462 * 1. nf_conn address
 463 * 2. nf_conn->master address (normally NULL)
 464 * 3. the associated net namespace
 465 * 4. the original direction tuple
 466 */
 467u32 nf_ct_get_id(const struct nf_conn *ct)
 468{
 469        static __read_mostly siphash_key_t ct_id_seed;
 470        unsigned long a, b, c, d;
 471
 472        net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
 473
 474        a = (unsigned long)ct;
 475        b = (unsigned long)ct->master;
 476        c = (unsigned long)nf_ct_net(ct);
 477        d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 478                                   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
 479                                   &ct_id_seed);
 480#ifdef CONFIG_64BIT
 481        return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
 482#else
 483        return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
 484#endif
 485}
 486EXPORT_SYMBOL_GPL(nf_ct_get_id);
 487
 488static void
 489clean_from_lists(struct nf_conn *ct)
 490{
 491        pr_debug("clean_from_lists(%p)\n", ct);
 492        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
 493        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
 494
 495        /* Destroy all pending expectations */
 496        nf_ct_remove_expectations(ct);
 497}
 498
 499/* must be called with local_bh_disable */
 500static void nf_ct_add_to_dying_list(struct nf_conn *ct)
 501{
 502        struct ct_pcpu *pcpu;
 503
 504        /* add this conntrack to the (per cpu) dying list */
 505        ct->cpu = smp_processor_id();
 506        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 507
 508        spin_lock(&pcpu->lock);
 509        hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 510                             &pcpu->dying);
 511        spin_unlock(&pcpu->lock);
 512}
 513
 514/* must be called with local_bh_disable */
 515static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
 516{
 517        struct ct_pcpu *pcpu;
 518
 519        /* add this conntrack to the (per cpu) unconfirmed list */
 520        ct->cpu = smp_processor_id();
 521        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 522
 523        spin_lock(&pcpu->lock);
 524        hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 525                             &pcpu->unconfirmed);
 526        spin_unlock(&pcpu->lock);
 527}
 528
 529/* must be called with local_bh_disable */
 530static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
 531{
 532        struct ct_pcpu *pcpu;
 533
 534        /* We overload first tuple to link into unconfirmed or dying list.*/
 535        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 536
 537        spin_lock(&pcpu->lock);
 538        BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
 539        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
 540        spin_unlock(&pcpu->lock);
 541}
 542
 543#define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
 544
 545/* Released via destroy_conntrack() */
 546struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
 547                                 const struct nf_conntrack_zone *zone,
 548                                 gfp_t flags)
 549{
 550        struct nf_conn *tmpl, *p;
 551
 552        if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
 553                tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
 554                if (!tmpl)
 555                        return NULL;
 556
 557                p = tmpl;
 558                tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
 559                if (tmpl != p) {
 560                        tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
 561                        tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
 562                }
 563        } else {
 564                tmpl = kzalloc(sizeof(*tmpl), flags);
 565                if (!tmpl)
 566                        return NULL;
 567        }
 568
 569        tmpl->status = IPS_TEMPLATE;
 570        write_pnet(&tmpl->ct_net, net);
 571        nf_ct_zone_add(tmpl, zone);
 572        atomic_set(&tmpl->ct_general.use, 0);
 573
 574        return tmpl;
 575}
 576EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
 577
 578void nf_ct_tmpl_free(struct nf_conn *tmpl)
 579{
 580        nf_ct_ext_destroy(tmpl);
 581
 582        if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
 583                kfree((char *)tmpl - tmpl->proto.tmpl_padto);
 584        else
 585                kfree(tmpl);
 586}
 587EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
 588
 589static void destroy_gre_conntrack(struct nf_conn *ct)
 590{
 591#ifdef CONFIG_NF_CT_PROTO_GRE
 592        struct nf_conn *master = ct->master;
 593
 594        if (master)
 595                nf_ct_gre_keymap_destroy(master);
 596#endif
 597}
 598
 599static void
 600destroy_conntrack(struct nf_conntrack *nfct)
 601{
 602        struct nf_conn *ct = (struct nf_conn *)nfct;
 603
 604        pr_debug("destroy_conntrack(%p)\n", ct);
 605        WARN_ON(atomic_read(&nfct->use) != 0);
 606
 607        if (unlikely(nf_ct_is_template(ct))) {
 608                nf_ct_tmpl_free(ct);
 609                return;
 610        }
 611
 612        if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
 613                destroy_gre_conntrack(ct);
 614
 615        local_bh_disable();
 616        /* Expectations will have been removed in clean_from_lists,
 617         * except TFTP can create an expectation on the first packet,
 618         * before connection is in the list, so we need to clean here,
 619         * too.
 620         */
 621        nf_ct_remove_expectations(ct);
 622
 623        nf_ct_del_from_dying_or_unconfirmed_list(ct);
 624
 625        local_bh_enable();
 626
 627        if (ct->master)
 628                nf_ct_put(ct->master);
 629
 630        pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
 631        nf_conntrack_free(ct);
 632}
 633
 634static void nf_ct_delete_from_lists(struct nf_conn *ct)
 635{
 636        struct net *net = nf_ct_net(ct);
 637        unsigned int hash, reply_hash;
 638        unsigned int sequence;
 639
 640        nf_ct_helper_destroy(ct);
 641
 642        local_bh_disable();
 643        do {
 644                sequence = read_seqcount_begin(&nf_conntrack_generation);
 645                hash = hash_conntrack(net,
 646                                      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
 647                reply_hash = hash_conntrack(net,
 648                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
 649        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
 650
 651        clean_from_lists(ct);
 652        nf_conntrack_double_unlock(hash, reply_hash);
 653
 654        nf_ct_add_to_dying_list(ct);
 655
 656        local_bh_enable();
 657}
 658
 659bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
 660{
 661        struct nf_conn_tstamp *tstamp;
 662        struct net *net;
 663
 664        if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
 665                return false;
 666
 667        tstamp = nf_conn_tstamp_find(ct);
 668        if (tstamp) {
 669                s32 timeout = ct->timeout - nfct_time_stamp;
 670
 671                tstamp->stop = ktime_get_real_ns();
 672                if (timeout < 0)
 673                        tstamp->stop -= jiffies_to_nsecs(-timeout);
 674        }
 675
 676        if (nf_conntrack_event_report(IPCT_DESTROY, ct,
 677                                    portid, report) < 0) {
 678                /* destroy event was not delivered. nf_ct_put will
 679                 * be done by event cache worker on redelivery.
 680                 */
 681                nf_ct_delete_from_lists(ct);
 682                nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
 683                return false;
 684        }
 685
 686        net = nf_ct_net(ct);
 687        if (nf_conntrack_ecache_dwork_pending(net))
 688                nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
 689        nf_ct_delete_from_lists(ct);
 690        nf_ct_put(ct);
 691        return true;
 692}
 693EXPORT_SYMBOL_GPL(nf_ct_delete);
 694
 695static inline bool
 696nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
 697                const struct nf_conntrack_tuple *tuple,
 698                const struct nf_conntrack_zone *zone,
 699                const struct net *net)
 700{
 701        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 702
 703        /* A conntrack can be recreated with the equal tuple,
 704         * so we need to check that the conntrack is confirmed
 705         */
 706        return nf_ct_tuple_equal(tuple, &h->tuple) &&
 707               nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
 708               nf_ct_is_confirmed(ct) &&
 709               net_eq(net, nf_ct_net(ct));
 710}
 711
 712static inline bool
 713nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
 714{
 715        return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 716                                 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
 717               nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
 718                                 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
 719               nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
 720               nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
 721               net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
 722}
 723
 724/* caller must hold rcu readlock and none of the nf_conntrack_locks */
 725static void nf_ct_gc_expired(struct nf_conn *ct)
 726{
 727        if (!atomic_inc_not_zero(&ct->ct_general.use))
 728                return;
 729
 730        if (nf_ct_should_gc(ct))
 731                nf_ct_kill(ct);
 732
 733        nf_ct_put(ct);
 734}
 735
 736/*
 737 * Warning :
 738 * - Caller must take a reference on returned object
 739 *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
 740 */
 741static struct nf_conntrack_tuple_hash *
 742____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
 743                      const struct nf_conntrack_tuple *tuple, u32 hash)
 744{
 745        struct nf_conntrack_tuple_hash *h;
 746        struct hlist_nulls_head *ct_hash;
 747        struct hlist_nulls_node *n;
 748        unsigned int bucket, hsize;
 749
 750begin:
 751        nf_conntrack_get_ht(&ct_hash, &hsize);
 752        bucket = reciprocal_scale(hash, hsize);
 753
 754        hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
 755                struct nf_conn *ct;
 756
 757                ct = nf_ct_tuplehash_to_ctrack(h);
 758                if (nf_ct_is_expired(ct)) {
 759                        nf_ct_gc_expired(ct);
 760                        continue;
 761                }
 762
 763                if (nf_ct_key_equal(h, tuple, zone, net))
 764                        return h;
 765        }
 766        /*
 767         * if the nulls value we got at the end of this lookup is
 768         * not the expected one, we must restart lookup.
 769         * We probably met an item that was moved to another chain.
 770         */
 771        if (get_nulls_value(n) != bucket) {
 772                NF_CT_STAT_INC_ATOMIC(net, search_restart);
 773                goto begin;
 774        }
 775
 776        return NULL;
 777}
 778
 779/* Find a connection corresponding to a tuple. */
 780static struct nf_conntrack_tuple_hash *
 781__nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
 782                        const struct nf_conntrack_tuple *tuple, u32 hash)
 783{
 784        struct nf_conntrack_tuple_hash *h;
 785        struct nf_conn *ct;
 786
 787        rcu_read_lock();
 788
 789        h = ____nf_conntrack_find(net, zone, tuple, hash);
 790        if (h) {
 791                /* We have a candidate that matches the tuple we're interested
 792                 * in, try to obtain a reference and re-check tuple
 793                 */
 794                ct = nf_ct_tuplehash_to_ctrack(h);
 795                if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
 796                        if (likely(nf_ct_key_equal(h, tuple, zone, net)))
 797                                goto found;
 798
 799                        /* TYPESAFE_BY_RCU recycled the candidate */
 800                        nf_ct_put(ct);
 801                }
 802
 803                h = NULL;
 804        }
 805found:
 806        rcu_read_unlock();
 807
 808        return h;
 809}
 810
 811struct nf_conntrack_tuple_hash *
 812nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
 813                      const struct nf_conntrack_tuple *tuple)
 814{
 815        return __nf_conntrack_find_get(net, zone, tuple,
 816                                       hash_conntrack_raw(tuple, net));
 817}
 818EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
 819
 820static void __nf_conntrack_hash_insert(struct nf_conn *ct,
 821                                       unsigned int hash,
 822                                       unsigned int reply_hash)
 823{
 824        hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 825                           &nf_conntrack_hash[hash]);
 826        hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
 827                           &nf_conntrack_hash[reply_hash]);
 828}
 829
 830int
 831nf_conntrack_hash_check_insert(struct nf_conn *ct)
 832{
 833        const struct nf_conntrack_zone *zone;
 834        struct net *net = nf_ct_net(ct);
 835        unsigned int hash, reply_hash;
 836        struct nf_conntrack_tuple_hash *h;
 837        struct hlist_nulls_node *n;
 838        unsigned int sequence;
 839
 840        zone = nf_ct_zone(ct);
 841
 842        local_bh_disable();
 843        do {
 844                sequence = read_seqcount_begin(&nf_conntrack_generation);
 845                hash = hash_conntrack(net,
 846                                      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
 847                reply_hash = hash_conntrack(net,
 848                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
 849        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
 850
 851        /* See if there's one in the list already, including reverse */
 852        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
 853                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 854                                    zone, net))
 855                        goto out;
 856
 857        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
 858                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
 859                                    zone, net))
 860                        goto out;
 861
 862        smp_wmb();
 863        /* The caller holds a reference to this object */
 864        atomic_set(&ct->ct_general.use, 2);
 865        __nf_conntrack_hash_insert(ct, hash, reply_hash);
 866        nf_conntrack_double_unlock(hash, reply_hash);
 867        NF_CT_STAT_INC(net, insert);
 868        local_bh_enable();
 869        return 0;
 870
 871out:
 872        nf_conntrack_double_unlock(hash, reply_hash);
 873        local_bh_enable();
 874        return -EEXIST;
 875}
 876EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
 877
 878void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
 879                    unsigned int bytes)
 880{
 881        struct nf_conn_acct *acct;
 882
 883        acct = nf_conn_acct_find(ct);
 884        if (acct) {
 885                struct nf_conn_counter *counter = acct->counter;
 886
 887                atomic64_add(packets, &counter[dir].packets);
 888                atomic64_add(bytes, &counter[dir].bytes);
 889        }
 890}
 891EXPORT_SYMBOL_GPL(nf_ct_acct_add);
 892
 893static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
 894                             const struct nf_conn *loser_ct)
 895{
 896        struct nf_conn_acct *acct;
 897
 898        acct = nf_conn_acct_find(loser_ct);
 899        if (acct) {
 900                struct nf_conn_counter *counter = acct->counter;
 901                unsigned int bytes;
 902
 903                /* u32 should be fine since we must have seen one packet. */
 904                bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
 905                nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
 906        }
 907}
 908
 909static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
 910{
 911        struct nf_conn_tstamp *tstamp;
 912
 913        atomic_inc(&ct->ct_general.use);
 914        ct->status |= IPS_CONFIRMED;
 915
 916        /* set conntrack timestamp, if enabled. */
 917        tstamp = nf_conn_tstamp_find(ct);
 918        if (tstamp)
 919                tstamp->start = ktime_get_real_ns();
 920}
 921
 922/* caller must hold locks to prevent concurrent changes */
 923static int __nf_ct_resolve_clash(struct sk_buff *skb,
 924                                 struct nf_conntrack_tuple_hash *h)
 925{
 926        /* This is the conntrack entry already in hashes that won race. */
 927        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 928        enum ip_conntrack_info ctinfo;
 929        struct nf_conn *loser_ct;
 930
 931        loser_ct = nf_ct_get(skb, &ctinfo);
 932
 933        if (nf_ct_is_dying(ct))
 934                return NF_DROP;
 935
 936        if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
 937            nf_ct_match(ct, loser_ct)) {
 938                struct net *net = nf_ct_net(ct);
 939
 940                nf_conntrack_get(&ct->ct_general);
 941
 942                nf_ct_acct_merge(ct, ctinfo, loser_ct);
 943                nf_ct_add_to_dying_list(loser_ct);
 944                nf_conntrack_put(&loser_ct->ct_general);
 945                nf_ct_set(skb, ct, ctinfo);
 946
 947                NF_CT_STAT_INC(net, clash_resolve);
 948                return NF_ACCEPT;
 949        }
 950
 951        return NF_DROP;
 952}
 953
 954/**
 955 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
 956 *
 957 * @skb: skb that causes the collision
 958 * @repl_idx: hash slot for reply direction
 959 *
 960 * Called when origin or reply direction had a clash.
 961 * The skb can be handled without packet drop provided the reply direction
 962 * is unique or there the existing entry has the identical tuple in both
 963 * directions.
 964 *
 965 * Caller must hold conntrack table locks to prevent concurrent updates.
 966 *
 967 * Returns NF_DROP if the clash could not be handled.
 968 */
 969static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
 970{
 971        struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
 972        const struct nf_conntrack_zone *zone;
 973        struct nf_conntrack_tuple_hash *h;
 974        struct hlist_nulls_node *n;
 975        struct net *net;
 976
 977        zone = nf_ct_zone(loser_ct);
 978        net = nf_ct_net(loser_ct);
 979
 980        /* Reply direction must never result in a clash, unless both origin
 981         * and reply tuples are identical.
 982         */
 983        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
 984                if (nf_ct_key_equal(h,
 985                                    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
 986                                    zone, net))
 987                        return __nf_ct_resolve_clash(skb, h);
 988        }
 989
 990        /* We want the clashing entry to go away real soon: 1 second timeout. */
 991        loser_ct->timeout = nfct_time_stamp + HZ;
 992
 993        /* IPS_NAT_CLASH removes the entry automatically on the first
 994         * reply.  Also prevents UDP tracker from moving the entry to
 995         * ASSURED state, i.e. the entry can always be evicted under
 996         * pressure.
 997         */
 998        loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
 999
1000        __nf_conntrack_insert_prepare(loser_ct);
1001
1002        /* fake add for ORIGINAL dir: we want lookups to only find the entry
1003         * already in the table.  This also hides the clashing entry from
1004         * ctnetlink iteration, i.e. conntrack -L won't show them.
1005         */
1006        hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1007
1008        hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1009                                 &nf_conntrack_hash[repl_idx]);
1010
1011        NF_CT_STAT_INC(net, clash_resolve);
1012        return NF_ACCEPT;
1013}
1014
1015/**
1016 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1017 *
1018 * @skb: skb that causes the clash
1019 * @h: tuplehash of the clashing entry already in table
1020 * @reply_hash: hash slot for reply direction
1021 *
1022 * A conntrack entry can be inserted to the connection tracking table
1023 * if there is no existing entry with an identical tuple.
1024 *
1025 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1026 * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1027 * will find the already-existing entry.
1028 *
1029 * The major problem with such packet drop is the extra delay added by
1030 * the packet loss -- it will take some time for a retransmit to occur
1031 * (or the sender to time out when waiting for a reply).
1032 *
1033 * This function attempts to handle the situation without packet drop.
1034 *
1035 * If @skb has no NAT transformation or if the colliding entries are
1036 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1037 * and @skb is associated with the conntrack entry already in the table.
1038 *
1039 * Failing that, the new, unconfirmed conntrack is still added to the table
1040 * provided that the collision only occurs in the ORIGINAL direction.
1041 * The new entry will be added only in the non-clashing REPLY direction,
1042 * so packets in the ORIGINAL direction will continue to match the existing
1043 * entry.  The new entry will also have a fixed timeout so it expires --
1044 * due to the collision, it will only see reply traffic.
1045 *
1046 * Returns NF_DROP if the clash could not be resolved.
1047 */
1048static __cold noinline int
1049nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1050                    u32 reply_hash)
1051{
1052        /* This is the conntrack entry already in hashes that won race. */
1053        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1054        const struct nf_conntrack_l4proto *l4proto;
1055        enum ip_conntrack_info ctinfo;
1056        struct nf_conn *loser_ct;
1057        struct net *net;
1058        int ret;
1059
1060        loser_ct = nf_ct_get(skb, &ctinfo);
1061        net = nf_ct_net(loser_ct);
1062
1063        l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1064        if (!l4proto->allow_clash)
1065                goto drop;
1066
1067        ret = __nf_ct_resolve_clash(skb, h);
1068        if (ret == NF_ACCEPT)
1069                return ret;
1070
1071        ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1072        if (ret == NF_ACCEPT)
1073                return ret;
1074
1075drop:
1076        nf_ct_add_to_dying_list(loser_ct);
1077        NF_CT_STAT_INC(net, drop);
1078        NF_CT_STAT_INC(net, insert_failed);
1079        return NF_DROP;
1080}
1081
1082/* Confirm a connection given skb; places it in hash table */
1083int
1084__nf_conntrack_confirm(struct sk_buff *skb)
1085{
1086        const struct nf_conntrack_zone *zone;
1087        unsigned int hash, reply_hash;
1088        struct nf_conntrack_tuple_hash *h;
1089        struct nf_conn *ct;
1090        struct nf_conn_help *help;
1091        struct hlist_nulls_node *n;
1092        enum ip_conntrack_info ctinfo;
1093        struct net *net;
1094        unsigned int sequence;
1095        int ret = NF_DROP;
1096
1097        ct = nf_ct_get(skb, &ctinfo);
1098        net = nf_ct_net(ct);
1099
1100        /* ipt_REJECT uses nf_conntrack_attach to attach related
1101           ICMP/TCP RST packets in other direction.  Actual packet
1102           which created connection will be IP_CT_NEW or for an
1103           expected connection, IP_CT_RELATED. */
1104        if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1105                return NF_ACCEPT;
1106
1107        zone = nf_ct_zone(ct);
1108        local_bh_disable();
1109
1110        do {
1111                sequence = read_seqcount_begin(&nf_conntrack_generation);
1112                /* reuse the hash saved before */
1113                hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1114                hash = scale_hash(hash);
1115                reply_hash = hash_conntrack(net,
1116                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1117
1118        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1119
1120        /* We're not in hash table, and we refuse to set up related
1121         * connections for unconfirmed conns.  But packet copies and
1122         * REJECT will give spurious warnings here.
1123         */
1124
1125        /* Another skb with the same unconfirmed conntrack may
1126         * win the race. This may happen for bridge(br_flood)
1127         * or broadcast/multicast packets do skb_clone with
1128         * unconfirmed conntrack.
1129         */
1130        if (unlikely(nf_ct_is_confirmed(ct))) {
1131                WARN_ON_ONCE(1);
1132                nf_conntrack_double_unlock(hash, reply_hash);
1133                local_bh_enable();
1134                return NF_DROP;
1135        }
1136
1137        pr_debug("Confirming conntrack %p\n", ct);
1138        /* We have to check the DYING flag after unlink to prevent
1139         * a race against nf_ct_get_next_corpse() possibly called from
1140         * user context, else we insert an already 'dead' hash, blocking
1141         * further use of that particular connection -JM.
1142         */
1143        nf_ct_del_from_dying_or_unconfirmed_list(ct);
1144
1145        if (unlikely(nf_ct_is_dying(ct))) {
1146                nf_ct_add_to_dying_list(ct);
1147                NF_CT_STAT_INC(net, insert_failed);
1148                goto dying;
1149        }
1150
1151        /* See if there's one in the list already, including reverse:
1152           NAT could have grabbed it without realizing, since we're
1153           not in the hash.  If there is, we lost race. */
1154        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1155                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1156                                    zone, net))
1157                        goto out;
1158
1159        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1160                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1161                                    zone, net))
1162                        goto out;
1163
1164        /* Timer relative to confirmation time, not original
1165           setting time, otherwise we'd get timer wrap in
1166           weird delay cases. */
1167        ct->timeout += nfct_time_stamp;
1168
1169        __nf_conntrack_insert_prepare(ct);
1170
1171        /* Since the lookup is lockless, hash insertion must be done after
1172         * starting the timer and setting the CONFIRMED bit. The RCU barriers
1173         * guarantee that no other CPU can find the conntrack before the above
1174         * stores are visible.
1175         */
1176        __nf_conntrack_hash_insert(ct, hash, reply_hash);
1177        nf_conntrack_double_unlock(hash, reply_hash);
1178        local_bh_enable();
1179
1180        help = nfct_help(ct);
1181        if (help && help->helper)
1182                nf_conntrack_event_cache(IPCT_HELPER, ct);
1183
1184        nf_conntrack_event_cache(master_ct(ct) ?
1185                                 IPCT_RELATED : IPCT_NEW, ct);
1186        return NF_ACCEPT;
1187
1188out:
1189        ret = nf_ct_resolve_clash(skb, h, reply_hash);
1190dying:
1191        nf_conntrack_double_unlock(hash, reply_hash);
1192        local_bh_enable();
1193        return ret;
1194}
1195EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1196
1197/* Returns true if a connection correspondings to the tuple (required
1198   for NAT). */
1199int
1200nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1201                         const struct nf_conn *ignored_conntrack)
1202{
1203        struct net *net = nf_ct_net(ignored_conntrack);
1204        const struct nf_conntrack_zone *zone;
1205        struct nf_conntrack_tuple_hash *h;
1206        struct hlist_nulls_head *ct_hash;
1207        unsigned int hash, hsize;
1208        struct hlist_nulls_node *n;
1209        struct nf_conn *ct;
1210
1211        zone = nf_ct_zone(ignored_conntrack);
1212
1213        rcu_read_lock();
1214 begin:
1215        nf_conntrack_get_ht(&ct_hash, &hsize);
1216        hash = __hash_conntrack(net, tuple, hsize);
1217
1218        hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1219                ct = nf_ct_tuplehash_to_ctrack(h);
1220
1221                if (ct == ignored_conntrack)
1222                        continue;
1223
1224                if (nf_ct_is_expired(ct)) {
1225                        nf_ct_gc_expired(ct);
1226                        continue;
1227                }
1228
1229                if (nf_ct_key_equal(h, tuple, zone, net)) {
1230                        /* Tuple is taken already, so caller will need to find
1231                         * a new source port to use.
1232                         *
1233                         * Only exception:
1234                         * If the *original tuples* are identical, then both
1235                         * conntracks refer to the same flow.
1236                         * This is a rare situation, it can occur e.g. when
1237                         * more than one UDP packet is sent from same socket
1238                         * in different threads.
1239                         *
1240                         * Let nf_ct_resolve_clash() deal with this later.
1241                         */
1242                        if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1243                                              &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1244                                              nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1245                                continue;
1246
1247                        NF_CT_STAT_INC_ATOMIC(net, found);
1248                        rcu_read_unlock();
1249                        return 1;
1250                }
1251        }
1252
1253        if (get_nulls_value(n) != hash) {
1254                NF_CT_STAT_INC_ATOMIC(net, search_restart);
1255                goto begin;
1256        }
1257
1258        rcu_read_unlock();
1259
1260        return 0;
1261}
1262EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1263
1264#define NF_CT_EVICTION_RANGE    8
1265
1266/* There's a small race here where we may free a just-assured
1267   connection.  Too bad: we're in trouble anyway. */
1268static unsigned int early_drop_list(struct net *net,
1269                                    struct hlist_nulls_head *head)
1270{
1271        struct nf_conntrack_tuple_hash *h;
1272        struct hlist_nulls_node *n;
1273        unsigned int drops = 0;
1274        struct nf_conn *tmp;
1275
1276        hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1277                tmp = nf_ct_tuplehash_to_ctrack(h);
1278
1279                if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1280                        continue;
1281
1282                if (nf_ct_is_expired(tmp)) {
1283                        nf_ct_gc_expired(tmp);
1284                        continue;
1285                }
1286
1287                if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1288                    !net_eq(nf_ct_net(tmp), net) ||
1289                    nf_ct_is_dying(tmp))
1290                        continue;
1291
1292                if (!atomic_inc_not_zero(&tmp->ct_general.use))
1293                        continue;
1294
1295                /* kill only if still in same netns -- might have moved due to
1296                 * SLAB_TYPESAFE_BY_RCU rules.
1297                 *
1298                 * We steal the timer reference.  If that fails timer has
1299                 * already fired or someone else deleted it. Just drop ref
1300                 * and move to next entry.
1301                 */
1302                if (net_eq(nf_ct_net(tmp), net) &&
1303                    nf_ct_is_confirmed(tmp) &&
1304                    nf_ct_delete(tmp, 0, 0))
1305                        drops++;
1306
1307                nf_ct_put(tmp);
1308        }
1309
1310        return drops;
1311}
1312
1313static noinline int early_drop(struct net *net, unsigned int hash)
1314{
1315        unsigned int i, bucket;
1316
1317        for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1318                struct hlist_nulls_head *ct_hash;
1319                unsigned int hsize, drops;
1320
1321                rcu_read_lock();
1322                nf_conntrack_get_ht(&ct_hash, &hsize);
1323                if (!i)
1324                        bucket = reciprocal_scale(hash, hsize);
1325                else
1326                        bucket = (bucket + 1) % hsize;
1327
1328                drops = early_drop_list(net, &ct_hash[bucket]);
1329                rcu_read_unlock();
1330
1331                if (drops) {
1332                        NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1333                        return true;
1334                }
1335        }
1336
1337        return false;
1338}
1339
1340static bool gc_worker_skip_ct(const struct nf_conn *ct)
1341{
1342        return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1343}
1344
1345static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1346{
1347        const struct nf_conntrack_l4proto *l4proto;
1348
1349        if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1350                return true;
1351
1352        l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1353        if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1354                return true;
1355
1356        return false;
1357}
1358
1359static void gc_worker(struct work_struct *work)
1360{
1361        unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION;
1362        unsigned int i, hashsz, nf_conntrack_max95 = 0;
1363        unsigned long next_run = GC_SCAN_INTERVAL;
1364        struct conntrack_gc_work *gc_work;
1365        gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1366
1367        i = gc_work->next_bucket;
1368        if (gc_work->early_drop)
1369                nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1370
1371        do {
1372                struct nf_conntrack_tuple_hash *h;
1373                struct hlist_nulls_head *ct_hash;
1374                struct hlist_nulls_node *n;
1375                struct nf_conn *tmp;
1376
1377                rcu_read_lock();
1378
1379                nf_conntrack_get_ht(&ct_hash, &hashsz);
1380                if (i >= hashsz) {
1381                        rcu_read_unlock();
1382                        break;
1383                }
1384
1385                hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1386                        struct nf_conntrack_net *cnet;
1387                        struct net *net;
1388
1389                        tmp = nf_ct_tuplehash_to_ctrack(h);
1390
1391                        if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1392                                nf_ct_offload_timeout(tmp);
1393                                continue;
1394                        }
1395
1396                        if (nf_ct_is_expired(tmp)) {
1397                                nf_ct_gc_expired(tmp);
1398                                continue;
1399                        }
1400
1401                        if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1402                                continue;
1403
1404                        net = nf_ct_net(tmp);
1405                        cnet = nf_ct_pernet(net);
1406                        if (atomic_read(&cnet->count) < nf_conntrack_max95)
1407                                continue;
1408
1409                        /* need to take reference to avoid possible races */
1410                        if (!atomic_inc_not_zero(&tmp->ct_general.use))
1411                                continue;
1412
1413                        if (gc_worker_skip_ct(tmp)) {
1414                                nf_ct_put(tmp);
1415                                continue;
1416                        }
1417
1418                        if (gc_worker_can_early_drop(tmp))
1419                                nf_ct_kill(tmp);
1420
1421                        nf_ct_put(tmp);
1422                }
1423
1424                /* could check get_nulls_value() here and restart if ct
1425                 * was moved to another chain.  But given gc is best-effort
1426                 * we will just continue with next hash slot.
1427                 */
1428                rcu_read_unlock();
1429                cond_resched();
1430                i++;
1431
1432                if (time_after(jiffies, end_time) && i < hashsz) {
1433                        gc_work->next_bucket = i;
1434                        next_run = 0;
1435                        break;
1436                }
1437        } while (i < hashsz);
1438
1439        if (gc_work->exiting)
1440                return;
1441
1442        /*
1443         * Eviction will normally happen from the packet path, and not
1444         * from this gc worker.
1445         *
1446         * This worker is only here to reap expired entries when system went
1447         * idle after a busy period.
1448         */
1449        if (next_run) {
1450                gc_work->early_drop = false;
1451                gc_work->next_bucket = 0;
1452        }
1453        queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1454}
1455
1456static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1457{
1458        INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1459        gc_work->exiting = false;
1460}
1461
1462static struct nf_conn *
1463__nf_conntrack_alloc(struct net *net,
1464                     const struct nf_conntrack_zone *zone,
1465                     const struct nf_conntrack_tuple *orig,
1466                     const struct nf_conntrack_tuple *repl,
1467                     gfp_t gfp, u32 hash)
1468{
1469        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1470        unsigned int ct_count;
1471        struct nf_conn *ct;
1472
1473        /* We don't want any race condition at early drop stage */
1474        ct_count = atomic_inc_return(&cnet->count);
1475
1476        if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1477                if (!early_drop(net, hash)) {
1478                        if (!conntrack_gc_work.early_drop)
1479                                conntrack_gc_work.early_drop = true;
1480                        atomic_dec(&cnet->count);
1481                        net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1482                        return ERR_PTR(-ENOMEM);
1483                }
1484        }
1485
1486        /*
1487         * Do not use kmem_cache_zalloc(), as this cache uses
1488         * SLAB_TYPESAFE_BY_RCU.
1489         */
1490        ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1491        if (ct == NULL)
1492                goto out;
1493
1494        spin_lock_init(&ct->lock);
1495        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1496        ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1497        ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1498        /* save hash for reusing when confirming */
1499        *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1500        ct->status = 0;
1501        ct->timeout = 0;
1502        write_pnet(&ct->ct_net, net);
1503        memset(&ct->__nfct_init_offset, 0,
1504               offsetof(struct nf_conn, proto) -
1505               offsetof(struct nf_conn, __nfct_init_offset));
1506
1507        nf_ct_zone_add(ct, zone);
1508
1509        /* Because we use RCU lookups, we set ct_general.use to zero before
1510         * this is inserted in any list.
1511         */
1512        atomic_set(&ct->ct_general.use, 0);
1513        return ct;
1514out:
1515        atomic_dec(&cnet->count);
1516        return ERR_PTR(-ENOMEM);
1517}
1518
1519struct nf_conn *nf_conntrack_alloc(struct net *net,
1520                                   const struct nf_conntrack_zone *zone,
1521                                   const struct nf_conntrack_tuple *orig,
1522                                   const struct nf_conntrack_tuple *repl,
1523                                   gfp_t gfp)
1524{
1525        return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1526}
1527EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1528
1529void nf_conntrack_free(struct nf_conn *ct)
1530{
1531        struct net *net = nf_ct_net(ct);
1532        struct nf_conntrack_net *cnet;
1533
1534        /* A freed object has refcnt == 0, that's
1535         * the golden rule for SLAB_TYPESAFE_BY_RCU
1536         */
1537        WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1538
1539        nf_ct_ext_destroy(ct);
1540        kmem_cache_free(nf_conntrack_cachep, ct);
1541        cnet = nf_ct_pernet(net);
1542
1543        smp_mb__before_atomic();
1544        atomic_dec(&cnet->count);
1545}
1546EXPORT_SYMBOL_GPL(nf_conntrack_free);
1547
1548
1549/* Allocate a new conntrack: we return -ENOMEM if classification
1550   failed due to stress.  Otherwise it really is unclassifiable. */
1551static noinline struct nf_conntrack_tuple_hash *
1552init_conntrack(struct net *net, struct nf_conn *tmpl,
1553               const struct nf_conntrack_tuple *tuple,
1554               struct sk_buff *skb,
1555               unsigned int dataoff, u32 hash)
1556{
1557        struct nf_conn *ct;
1558        struct nf_conn_help *help;
1559        struct nf_conntrack_tuple repl_tuple;
1560        struct nf_conntrack_ecache *ecache;
1561        struct nf_conntrack_expect *exp = NULL;
1562        const struct nf_conntrack_zone *zone;
1563        struct nf_conn_timeout *timeout_ext;
1564        struct nf_conntrack_zone tmp;
1565        struct nf_conntrack_net *cnet;
1566
1567        if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1568                pr_debug("Can't invert tuple.\n");
1569                return NULL;
1570        }
1571
1572        zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1573        ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1574                                  hash);
1575        if (IS_ERR(ct))
1576                return (struct nf_conntrack_tuple_hash *)ct;
1577
1578        if (!nf_ct_add_synproxy(ct, tmpl)) {
1579                nf_conntrack_free(ct);
1580                return ERR_PTR(-ENOMEM);
1581        }
1582
1583        timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1584
1585        if (timeout_ext)
1586                nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1587                                      GFP_ATOMIC);
1588
1589        nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1590        nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1591        nf_ct_labels_ext_add(ct);
1592
1593        ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1594        nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1595                                 ecache ? ecache->expmask : 0,
1596                             GFP_ATOMIC);
1597
1598        local_bh_disable();
1599        cnet = nf_ct_pernet(net);
1600        if (cnet->expect_count) {
1601                spin_lock(&nf_conntrack_expect_lock);
1602                exp = nf_ct_find_expectation(net, zone, tuple);
1603                if (exp) {
1604                        pr_debug("expectation arrives ct=%p exp=%p\n",
1605                                 ct, exp);
1606                        /* Welcome, Mr. Bond.  We've been expecting you... */
1607                        __set_bit(IPS_EXPECTED_BIT, &ct->status);
1608                        /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1609                        ct->master = exp->master;
1610                        if (exp->helper) {
1611                                help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1612                                if (help)
1613                                        rcu_assign_pointer(help->helper, exp->helper);
1614                        }
1615
1616#ifdef CONFIG_NF_CONNTRACK_MARK
1617                        ct->mark = exp->master->mark;
1618#endif
1619#ifdef CONFIG_NF_CONNTRACK_SECMARK
1620                        ct->secmark = exp->master->secmark;
1621#endif
1622                        NF_CT_STAT_INC(net, expect_new);
1623                }
1624                spin_unlock(&nf_conntrack_expect_lock);
1625        }
1626        if (!exp)
1627                __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1628
1629        /* Now it is inserted into the unconfirmed list, bump refcount */
1630        nf_conntrack_get(&ct->ct_general);
1631        nf_ct_add_to_unconfirmed_list(ct);
1632
1633        local_bh_enable();
1634
1635        if (exp) {
1636                if (exp->expectfn)
1637                        exp->expectfn(ct, exp);
1638                nf_ct_expect_put(exp);
1639        }
1640
1641        return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1642}
1643
1644/* On success, returns 0, sets skb->_nfct | ctinfo */
1645static int
1646resolve_normal_ct(struct nf_conn *tmpl,
1647                  struct sk_buff *skb,
1648                  unsigned int dataoff,
1649                  u_int8_t protonum,
1650                  const struct nf_hook_state *state)
1651{
1652        const struct nf_conntrack_zone *zone;
1653        struct nf_conntrack_tuple tuple;
1654        struct nf_conntrack_tuple_hash *h;
1655        enum ip_conntrack_info ctinfo;
1656        struct nf_conntrack_zone tmp;
1657        struct nf_conn *ct;
1658        u32 hash;
1659
1660        if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1661                             dataoff, state->pf, protonum, state->net,
1662                             &tuple)) {
1663                pr_debug("Can't get tuple\n");
1664                return 0;
1665        }
1666
1667        /* look for tuple match */
1668        zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1669        hash = hash_conntrack_raw(&tuple, state->net);
1670        h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1671        if (!h) {
1672                h = init_conntrack(state->net, tmpl, &tuple,
1673                                   skb, dataoff, hash);
1674                if (!h)
1675                        return 0;
1676                if (IS_ERR(h))
1677                        return PTR_ERR(h);
1678        }
1679        ct = nf_ct_tuplehash_to_ctrack(h);
1680
1681        /* It exists; we have (non-exclusive) reference. */
1682        if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1683                ctinfo = IP_CT_ESTABLISHED_REPLY;
1684        } else {
1685                /* Once we've had two way comms, always ESTABLISHED. */
1686                if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1687                        pr_debug("normal packet for %p\n", ct);
1688                        ctinfo = IP_CT_ESTABLISHED;
1689                } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1690                        pr_debug("related packet for %p\n", ct);
1691                        ctinfo = IP_CT_RELATED;
1692                } else {
1693                        pr_debug("new packet for %p\n", ct);
1694                        ctinfo = IP_CT_NEW;
1695                }
1696        }
1697        nf_ct_set(skb, ct, ctinfo);
1698        return 0;
1699}
1700
1701/*
1702 * icmp packets need special treatment to handle error messages that are
1703 * related to a connection.
1704 *
1705 * Callers need to check if skb has a conntrack assigned when this
1706 * helper returns; in such case skb belongs to an already known connection.
1707 */
1708static unsigned int __cold
1709nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1710                         struct sk_buff *skb,
1711                         unsigned int dataoff,
1712                         u8 protonum,
1713                         const struct nf_hook_state *state)
1714{
1715        int ret;
1716
1717        if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1718                ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1719#if IS_ENABLED(CONFIG_IPV6)
1720        else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1721                ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1722#endif
1723        else
1724                return NF_ACCEPT;
1725
1726        if (ret <= 0)
1727                NF_CT_STAT_INC_ATOMIC(state->net, error);
1728
1729        return ret;
1730}
1731
1732static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1733                          enum ip_conntrack_info ctinfo)
1734{
1735        const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1736
1737        if (!timeout)
1738                timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1739
1740        nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1741        return NF_ACCEPT;
1742}
1743
1744/* Returns verdict for packet, or -1 for invalid. */
1745static int nf_conntrack_handle_packet(struct nf_conn *ct,
1746                                      struct sk_buff *skb,
1747                                      unsigned int dataoff,
1748                                      enum ip_conntrack_info ctinfo,
1749                                      const struct nf_hook_state *state)
1750{
1751        switch (nf_ct_protonum(ct)) {
1752        case IPPROTO_TCP:
1753                return nf_conntrack_tcp_packet(ct, skb, dataoff,
1754                                               ctinfo, state);
1755        case IPPROTO_UDP:
1756                return nf_conntrack_udp_packet(ct, skb, dataoff,
1757                                               ctinfo, state);
1758        case IPPROTO_ICMP:
1759                return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1760#if IS_ENABLED(CONFIG_IPV6)
1761        case IPPROTO_ICMPV6:
1762                return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1763#endif
1764#ifdef CONFIG_NF_CT_PROTO_UDPLITE
1765        case IPPROTO_UDPLITE:
1766                return nf_conntrack_udplite_packet(ct, skb, dataoff,
1767                                                   ctinfo, state);
1768#endif
1769#ifdef CONFIG_NF_CT_PROTO_SCTP
1770        case IPPROTO_SCTP:
1771                return nf_conntrack_sctp_packet(ct, skb, dataoff,
1772                                                ctinfo, state);
1773#endif
1774#ifdef CONFIG_NF_CT_PROTO_DCCP
1775        case IPPROTO_DCCP:
1776                return nf_conntrack_dccp_packet(ct, skb, dataoff,
1777                                                ctinfo, state);
1778#endif
1779#ifdef CONFIG_NF_CT_PROTO_GRE
1780        case IPPROTO_GRE:
1781                return nf_conntrack_gre_packet(ct, skb, dataoff,
1782                                               ctinfo, state);
1783#endif
1784        }
1785
1786        return generic_packet(ct, skb, ctinfo);
1787}
1788
1789unsigned int
1790nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1791{
1792        enum ip_conntrack_info ctinfo;
1793        struct nf_conn *ct, *tmpl;
1794        u_int8_t protonum;
1795        int dataoff, ret;
1796
1797        tmpl = nf_ct_get(skb, &ctinfo);
1798        if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1799                /* Previously seen (loopback or untracked)?  Ignore. */
1800                if ((tmpl && !nf_ct_is_template(tmpl)) ||
1801                     ctinfo == IP_CT_UNTRACKED)
1802                        return NF_ACCEPT;
1803                skb->_nfct = 0;
1804        }
1805
1806        /* rcu_read_lock()ed by nf_hook_thresh */
1807        dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1808        if (dataoff <= 0) {
1809                pr_debug("not prepared to track yet or error occurred\n");
1810                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1811                ret = NF_ACCEPT;
1812                goto out;
1813        }
1814
1815        if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1816                ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1817                                               protonum, state);
1818                if (ret <= 0) {
1819                        ret = -ret;
1820                        goto out;
1821                }
1822                /* ICMP[v6] protocol trackers may assign one conntrack. */
1823                if (skb->_nfct)
1824                        goto out;
1825        }
1826repeat:
1827        ret = resolve_normal_ct(tmpl, skb, dataoff,
1828                                protonum, state);
1829        if (ret < 0) {
1830                /* Too stressed to deal. */
1831                NF_CT_STAT_INC_ATOMIC(state->net, drop);
1832                ret = NF_DROP;
1833                goto out;
1834        }
1835
1836        ct = nf_ct_get(skb, &ctinfo);
1837        if (!ct) {
1838                /* Not valid part of a connection */
1839                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1840                ret = NF_ACCEPT;
1841                goto out;
1842        }
1843
1844        ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1845        if (ret <= 0) {
1846                /* Invalid: inverse of the return code tells
1847                 * the netfilter core what to do */
1848                pr_debug("nf_conntrack_in: Can't track with proto module\n");
1849                nf_conntrack_put(&ct->ct_general);
1850                skb->_nfct = 0;
1851                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1852                if (ret == -NF_DROP)
1853                        NF_CT_STAT_INC_ATOMIC(state->net, drop);
1854                /* Special case: TCP tracker reports an attempt to reopen a
1855                 * closed/aborted connection. We have to go back and create a
1856                 * fresh conntrack.
1857                 */
1858                if (ret == -NF_REPEAT)
1859                        goto repeat;
1860                ret = -ret;
1861                goto out;
1862        }
1863
1864        if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1865            !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1866                nf_conntrack_event_cache(IPCT_REPLY, ct);
1867out:
1868        if (tmpl)
1869                nf_ct_put(tmpl);
1870
1871        return ret;
1872}
1873EXPORT_SYMBOL_GPL(nf_conntrack_in);
1874
1875/* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1876   implicitly racy: see __nf_conntrack_confirm */
1877void nf_conntrack_alter_reply(struct nf_conn *ct,
1878                              const struct nf_conntrack_tuple *newreply)
1879{
1880        struct nf_conn_help *help = nfct_help(ct);
1881
1882        /* Should be unconfirmed, so not in hash table yet */
1883        WARN_ON(nf_ct_is_confirmed(ct));
1884
1885        pr_debug("Altering reply tuple of %p to ", ct);
1886        nf_ct_dump_tuple(newreply);
1887
1888        ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1889        if (ct->master || (help && !hlist_empty(&help->expectations)))
1890                return;
1891
1892        rcu_read_lock();
1893        __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1894        rcu_read_unlock();
1895}
1896EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1897
1898/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1899void __nf_ct_refresh_acct(struct nf_conn *ct,
1900                          enum ip_conntrack_info ctinfo,
1901                          const struct sk_buff *skb,
1902                          u32 extra_jiffies,
1903                          bool do_acct)
1904{
1905        /* Only update if this is not a fixed timeout */
1906        if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1907                goto acct;
1908
1909        /* If not in hash table, timer will not be active yet */
1910        if (nf_ct_is_confirmed(ct))
1911                extra_jiffies += nfct_time_stamp;
1912
1913        if (READ_ONCE(ct->timeout) != extra_jiffies)
1914                WRITE_ONCE(ct->timeout, extra_jiffies);
1915acct:
1916        if (do_acct)
1917                nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1918}
1919EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1920
1921bool nf_ct_kill_acct(struct nf_conn *ct,
1922                     enum ip_conntrack_info ctinfo,
1923                     const struct sk_buff *skb)
1924{
1925        nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1926
1927        return nf_ct_delete(ct, 0, 0);
1928}
1929EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1930
1931#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1932
1933#include <linux/netfilter/nfnetlink.h>
1934#include <linux/netfilter/nfnetlink_conntrack.h>
1935#include <linux/mutex.h>
1936
1937/* Generic function for tcp/udp/sctp/dccp and alike. */
1938int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1939                               const struct nf_conntrack_tuple *tuple)
1940{
1941        if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1942            nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1943                goto nla_put_failure;
1944        return 0;
1945
1946nla_put_failure:
1947        return -1;
1948}
1949EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1950
1951const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1952        [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1953        [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1954};
1955EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1956
1957int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1958                               struct nf_conntrack_tuple *t,
1959                               u_int32_t flags)
1960{
1961        if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
1962                if (!tb[CTA_PROTO_SRC_PORT])
1963                        return -EINVAL;
1964
1965                t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1966        }
1967
1968        if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
1969                if (!tb[CTA_PROTO_DST_PORT])
1970                        return -EINVAL;
1971
1972                t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1973        }
1974
1975        return 0;
1976}
1977EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1978
1979unsigned int nf_ct_port_nlattr_tuple_size(void)
1980{
1981        static unsigned int size __read_mostly;
1982
1983        if (!size)
1984                size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1985
1986        return size;
1987}
1988EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1989#endif
1990
1991/* Used by ipt_REJECT and ip6t_REJECT. */
1992static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1993{
1994        struct nf_conn *ct;
1995        enum ip_conntrack_info ctinfo;
1996
1997        /* This ICMP is in reverse direction to the packet which caused it */
1998        ct = nf_ct_get(skb, &ctinfo);
1999        if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2000                ctinfo = IP_CT_RELATED_REPLY;
2001        else
2002                ctinfo = IP_CT_RELATED;
2003
2004        /* Attach to new skbuff, and increment count */
2005        nf_ct_set(nskb, ct, ctinfo);
2006        nf_conntrack_get(skb_nfct(nskb));
2007}
2008
2009static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2010                                 struct nf_conn *ct,
2011                                 enum ip_conntrack_info ctinfo)
2012{
2013        struct nf_conntrack_tuple_hash *h;
2014        struct nf_conntrack_tuple tuple;
2015        struct nf_nat_hook *nat_hook;
2016        unsigned int status;
2017        int dataoff;
2018        u16 l3num;
2019        u8 l4num;
2020
2021        l3num = nf_ct_l3num(ct);
2022
2023        dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2024        if (dataoff <= 0)
2025                return -1;
2026
2027        if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2028                             l4num, net, &tuple))
2029                return -1;
2030
2031        if (ct->status & IPS_SRC_NAT) {
2032                memcpy(tuple.src.u3.all,
2033                       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2034                       sizeof(tuple.src.u3.all));
2035                tuple.src.u.all =
2036                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2037        }
2038
2039        if (ct->status & IPS_DST_NAT) {
2040                memcpy(tuple.dst.u3.all,
2041                       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2042                       sizeof(tuple.dst.u3.all));
2043                tuple.dst.u.all =
2044                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2045        }
2046
2047        h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2048        if (!h)
2049                return 0;
2050
2051        /* Store status bits of the conntrack that is clashing to re-do NAT
2052         * mangling according to what it has been done already to this packet.
2053         */
2054        status = ct->status;
2055
2056        nf_ct_put(ct);
2057        ct = nf_ct_tuplehash_to_ctrack(h);
2058        nf_ct_set(skb, ct, ctinfo);
2059
2060        nat_hook = rcu_dereference(nf_nat_hook);
2061        if (!nat_hook)
2062                return 0;
2063
2064        if (status & IPS_SRC_NAT &&
2065            nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2066                                IP_CT_DIR_ORIGINAL) == NF_DROP)
2067                return -1;
2068
2069        if (status & IPS_DST_NAT &&
2070            nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2071                                IP_CT_DIR_ORIGINAL) == NF_DROP)
2072                return -1;
2073
2074        return 0;
2075}
2076
2077/* This packet is coming from userspace via nf_queue, complete the packet
2078 * processing after the helper invocation in nf_confirm().
2079 */
2080static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2081                               enum ip_conntrack_info ctinfo)
2082{
2083        const struct nf_conntrack_helper *helper;
2084        const struct nf_conn_help *help;
2085        int protoff;
2086
2087        help = nfct_help(ct);
2088        if (!help)
2089                return 0;
2090
2091        helper = rcu_dereference(help->helper);
2092        if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2093                return 0;
2094
2095        switch (nf_ct_l3num(ct)) {
2096        case NFPROTO_IPV4:
2097                protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2098                break;
2099#if IS_ENABLED(CONFIG_IPV6)
2100        case NFPROTO_IPV6: {
2101                __be16 frag_off;
2102                u8 pnum;
2103
2104                pnum = ipv6_hdr(skb)->nexthdr;
2105                protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2106                                           &frag_off);
2107                if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2108                        return 0;
2109                break;
2110        }
2111#endif
2112        default:
2113                return 0;
2114        }
2115
2116        if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2117            !nf_is_loopback_packet(skb)) {
2118                if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2119                        NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2120                        return -1;
2121                }
2122        }
2123
2124        /* We've seen it coming out the other side: confirm it */
2125        return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2126}
2127
2128static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2129{
2130        enum ip_conntrack_info ctinfo;
2131        struct nf_conn *ct;
2132        int err;
2133
2134        ct = nf_ct_get(skb, &ctinfo);
2135        if (!ct)
2136                return 0;
2137
2138        if (!nf_ct_is_confirmed(ct)) {
2139                err = __nf_conntrack_update(net, skb, ct, ctinfo);
2140                if (err < 0)
2141                        return err;
2142
2143                ct = nf_ct_get(skb, &ctinfo);
2144        }
2145
2146        return nf_confirm_cthelper(skb, ct, ctinfo);
2147}
2148
2149static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2150                                       const struct sk_buff *skb)
2151{
2152        const struct nf_conntrack_tuple *src_tuple;
2153        const struct nf_conntrack_tuple_hash *hash;
2154        struct nf_conntrack_tuple srctuple;
2155        enum ip_conntrack_info ctinfo;
2156        struct nf_conn *ct;
2157
2158        ct = nf_ct_get(skb, &ctinfo);
2159        if (ct) {
2160                src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2161                memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2162                return true;
2163        }
2164
2165        if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2166                               NFPROTO_IPV4, dev_net(skb->dev),
2167                               &srctuple))
2168                return false;
2169
2170        hash = nf_conntrack_find_get(dev_net(skb->dev),
2171                                     &nf_ct_zone_dflt,
2172                                     &srctuple);
2173        if (!hash)
2174                return false;
2175
2176        ct = nf_ct_tuplehash_to_ctrack(hash);
2177        src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2178        memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2179        nf_ct_put(ct);
2180
2181        return true;
2182}
2183
2184/* Bring out ya dead! */
2185static struct nf_conn *
2186get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2187                void *data, unsigned int *bucket)
2188{
2189        struct nf_conntrack_tuple_hash *h;
2190        struct nf_conn *ct;
2191        struct hlist_nulls_node *n;
2192        spinlock_t *lockp;
2193
2194        for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2195                lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2196                local_bh_disable();
2197                nf_conntrack_lock(lockp);
2198                if (*bucket < nf_conntrack_htable_size) {
2199                        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2200                                if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2201                                        continue;
2202                                /* All nf_conn objects are added to hash table twice, one
2203                                 * for original direction tuple, once for the reply tuple.
2204                                 *
2205                                 * Exception: In the IPS_NAT_CLASH case, only the reply
2206                                 * tuple is added (the original tuple already existed for
2207                                 * a different object).
2208                                 *
2209                                 * We only need to call the iterator once for each
2210                                 * conntrack, so we just use the 'reply' direction
2211                                 * tuple while iterating.
2212                                 */
2213                                ct = nf_ct_tuplehash_to_ctrack(h);
2214                                if (iter(ct, data))
2215                                        goto found;
2216                        }
2217                }
2218                spin_unlock(lockp);
2219                local_bh_enable();
2220                cond_resched();
2221        }
2222
2223        return NULL;
2224found:
2225        atomic_inc(&ct->ct_general.use);
2226        spin_unlock(lockp);
2227        local_bh_enable();
2228        return ct;
2229}
2230
2231static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2232                                  void *data, u32 portid, int report)
2233{
2234        unsigned int bucket = 0, sequence;
2235        struct nf_conn *ct;
2236
2237        might_sleep();
2238
2239        for (;;) {
2240                sequence = read_seqcount_begin(&nf_conntrack_generation);
2241
2242                while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2243                        /* Time to push up daises... */
2244
2245                        nf_ct_delete(ct, portid, report);
2246                        nf_ct_put(ct);
2247                        cond_resched();
2248                }
2249
2250                if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2251                        break;
2252                bucket = 0;
2253        }
2254}
2255
2256struct iter_data {
2257        int (*iter)(struct nf_conn *i, void *data);
2258        void *data;
2259        struct net *net;
2260};
2261
2262static int iter_net_only(struct nf_conn *i, void *data)
2263{
2264        struct iter_data *d = data;
2265
2266        if (!net_eq(d->net, nf_ct_net(i)))
2267                return 0;
2268
2269        return d->iter(i, d->data);
2270}
2271
2272static void
2273__nf_ct_unconfirmed_destroy(struct net *net)
2274{
2275        int cpu;
2276
2277        for_each_possible_cpu(cpu) {
2278                struct nf_conntrack_tuple_hash *h;
2279                struct hlist_nulls_node *n;
2280                struct ct_pcpu *pcpu;
2281
2282                pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2283
2284                spin_lock_bh(&pcpu->lock);
2285                hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2286                        struct nf_conn *ct;
2287
2288                        ct = nf_ct_tuplehash_to_ctrack(h);
2289
2290                        /* we cannot call iter() on unconfirmed list, the
2291                         * owning cpu can reallocate ct->ext at any time.
2292                         */
2293                        set_bit(IPS_DYING_BIT, &ct->status);
2294                }
2295                spin_unlock_bh(&pcpu->lock);
2296                cond_resched();
2297        }
2298}
2299
2300void nf_ct_unconfirmed_destroy(struct net *net)
2301{
2302        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2303
2304        might_sleep();
2305
2306        if (atomic_read(&cnet->count) > 0) {
2307                __nf_ct_unconfirmed_destroy(net);
2308                nf_queue_nf_hook_drop(net);
2309                synchronize_net();
2310        }
2311}
2312EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2313
2314void nf_ct_iterate_cleanup_net(struct net *net,
2315                               int (*iter)(struct nf_conn *i, void *data),
2316                               void *data, u32 portid, int report)
2317{
2318        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2319        struct iter_data d;
2320
2321        might_sleep();
2322
2323        if (atomic_read(&cnet->count) == 0)
2324                return;
2325
2326        d.iter = iter;
2327        d.data = data;
2328        d.net = net;
2329
2330        nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2331}
2332EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2333
2334/**
2335 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2336 * @iter: callback to invoke for each conntrack
2337 * @data: data to pass to @iter
2338 *
2339 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2340 * unconfirmed list as dying (so they will not be inserted into
2341 * main table).
2342 *
2343 * Can only be called in module exit path.
2344 */
2345void
2346nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2347{
2348        struct net *net;
2349
2350        down_read(&net_rwsem);
2351        for_each_net(net) {
2352                struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2353
2354                if (atomic_read(&cnet->count) == 0)
2355                        continue;
2356                __nf_ct_unconfirmed_destroy(net);
2357                nf_queue_nf_hook_drop(net);
2358        }
2359        up_read(&net_rwsem);
2360
2361        /* Need to wait for netns cleanup worker to finish, if its
2362         * running -- it might have deleted a net namespace from
2363         * the global list, so our __nf_ct_unconfirmed_destroy() might
2364         * not have affected all namespaces.
2365         */
2366        net_ns_barrier();
2367
2368        /* a conntrack could have been unlinked from unconfirmed list
2369         * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2370         * This makes sure its inserted into conntrack table.
2371         */
2372        synchronize_net();
2373
2374        nf_ct_iterate_cleanup(iter, data, 0, 0);
2375}
2376EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2377
2378static int kill_all(struct nf_conn *i, void *data)
2379{
2380        return net_eq(nf_ct_net(i), data);
2381}
2382
2383void nf_conntrack_cleanup_start(void)
2384{
2385        conntrack_gc_work.exiting = true;
2386        RCU_INIT_POINTER(ip_ct_attach, NULL);
2387}
2388
2389void nf_conntrack_cleanup_end(void)
2390{
2391        RCU_INIT_POINTER(nf_ct_hook, NULL);
2392        cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2393        kvfree(nf_conntrack_hash);
2394
2395        nf_conntrack_proto_fini();
2396        nf_conntrack_seqadj_fini();
2397        nf_conntrack_labels_fini();
2398        nf_conntrack_helper_fini();
2399        nf_conntrack_timeout_fini();
2400        nf_conntrack_ecache_fini();
2401        nf_conntrack_tstamp_fini();
2402        nf_conntrack_acct_fini();
2403        nf_conntrack_expect_fini();
2404
2405        kmem_cache_destroy(nf_conntrack_cachep);
2406}
2407
2408/*
2409 * Mishearing the voices in his head, our hero wonders how he's
2410 * supposed to kill the mall.
2411 */
2412void nf_conntrack_cleanup_net(struct net *net)
2413{
2414        LIST_HEAD(single);
2415
2416        list_add(&net->exit_list, &single);
2417        nf_conntrack_cleanup_net_list(&single);
2418}
2419
2420void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2421{
2422        int busy;
2423        struct net *net;
2424
2425        /*
2426         * This makes sure all current packets have passed through
2427         *  netfilter framework.  Roll on, two-stage module
2428         *  delete...
2429         */
2430        synchronize_net();
2431i_see_dead_people:
2432        busy = 0;
2433        list_for_each_entry(net, net_exit_list, exit_list) {
2434                struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2435
2436                nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2437                if (atomic_read(&cnet->count) != 0)
2438                        busy = 1;
2439        }
2440        if (busy) {
2441                schedule();
2442                goto i_see_dead_people;
2443        }
2444
2445        list_for_each_entry(net, net_exit_list, exit_list) {
2446                nf_conntrack_ecache_pernet_fini(net);
2447                nf_conntrack_expect_pernet_fini(net);
2448                free_percpu(net->ct.stat);
2449                free_percpu(net->ct.pcpu_lists);
2450        }
2451}
2452
2453void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2454{
2455        struct hlist_nulls_head *hash;
2456        unsigned int nr_slots, i;
2457
2458        if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2459                return NULL;
2460
2461        BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2462        nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2463
2464        hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2465
2466        if (hash && nulls)
2467                for (i = 0; i < nr_slots; i++)
2468                        INIT_HLIST_NULLS_HEAD(&hash[i], i);
2469
2470        return hash;
2471}
2472EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2473
2474int nf_conntrack_hash_resize(unsigned int hashsize)
2475{
2476        int i, bucket;
2477        unsigned int old_size;
2478        struct hlist_nulls_head *hash, *old_hash;
2479        struct nf_conntrack_tuple_hash *h;
2480        struct nf_conn *ct;
2481
2482        if (!hashsize)
2483                return -EINVAL;
2484
2485        hash = nf_ct_alloc_hashtable(&hashsize, 1);
2486        if (!hash)
2487                return -ENOMEM;
2488
2489        old_size = nf_conntrack_htable_size;
2490        if (old_size == hashsize) {
2491                kvfree(hash);
2492                return 0;
2493        }
2494
2495        local_bh_disable();
2496        nf_conntrack_all_lock();
2497        write_seqcount_begin(&nf_conntrack_generation);
2498
2499        /* Lookups in the old hash might happen in parallel, which means we
2500         * might get false negatives during connection lookup. New connections
2501         * created because of a false negative won't make it into the hash
2502         * though since that required taking the locks.
2503         */
2504
2505        for (i = 0; i < nf_conntrack_htable_size; i++) {
2506                while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2507                        h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2508                                              struct nf_conntrack_tuple_hash, hnnode);
2509                        ct = nf_ct_tuplehash_to_ctrack(h);
2510                        hlist_nulls_del_rcu(&h->hnnode);
2511                        bucket = __hash_conntrack(nf_ct_net(ct),
2512                                                  &h->tuple, hashsize);
2513                        hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2514                }
2515        }
2516        old_size = nf_conntrack_htable_size;
2517        old_hash = nf_conntrack_hash;
2518
2519        nf_conntrack_hash = hash;
2520        nf_conntrack_htable_size = hashsize;
2521
2522        write_seqcount_end(&nf_conntrack_generation);
2523        nf_conntrack_all_unlock();
2524        local_bh_enable();
2525
2526        synchronize_net();
2527        kvfree(old_hash);
2528        return 0;
2529}
2530
2531int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2532{
2533        unsigned int hashsize;
2534        int rc;
2535
2536        if (current->nsproxy->net_ns != &init_net)
2537                return -EOPNOTSUPP;
2538
2539        /* On boot, we can set this without any fancy locking. */
2540        if (!nf_conntrack_hash)
2541                return param_set_uint(val, kp);
2542
2543        rc = kstrtouint(val, 0, &hashsize);
2544        if (rc)
2545                return rc;
2546
2547        return nf_conntrack_hash_resize(hashsize);
2548}
2549
2550static __always_inline unsigned int total_extension_size(void)
2551{
2552        /* remember to add new extensions below */
2553        BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2554
2555        return sizeof(struct nf_ct_ext) +
2556               sizeof(struct nf_conn_help)
2557#if IS_ENABLED(CONFIG_NF_NAT)
2558                + sizeof(struct nf_conn_nat)
2559#endif
2560                + sizeof(struct nf_conn_seqadj)
2561                + sizeof(struct nf_conn_acct)
2562#ifdef CONFIG_NF_CONNTRACK_EVENTS
2563                + sizeof(struct nf_conntrack_ecache)
2564#endif
2565#ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2566                + sizeof(struct nf_conn_tstamp)
2567#endif
2568#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2569                + sizeof(struct nf_conn_timeout)
2570#endif
2571#ifdef CONFIG_NF_CONNTRACK_LABELS
2572                + sizeof(struct nf_conn_labels)
2573#endif
2574#if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2575                + sizeof(struct nf_conn_synproxy)
2576#endif
2577        ;
2578};
2579
2580int nf_conntrack_init_start(void)
2581{
2582        unsigned long nr_pages = totalram_pages();
2583        int max_factor = 8;
2584        int ret = -ENOMEM;
2585        int i;
2586
2587        /* struct nf_ct_ext uses u8 to store offsets/size */
2588        BUILD_BUG_ON(total_extension_size() > 255u);
2589
2590        seqcount_spinlock_init(&nf_conntrack_generation,
2591                               &nf_conntrack_locks_all_lock);
2592
2593        for (i = 0; i < CONNTRACK_LOCKS; i++)
2594                spin_lock_init(&nf_conntrack_locks[i]);
2595
2596        if (!nf_conntrack_htable_size) {
2597                /* Idea from tcp.c: use 1/16384 of memory.
2598                 * On i386: 32MB machine has 512 buckets.
2599                 * >= 1GB machines have 16384 buckets.
2600                 * >= 4GB machines have 65536 buckets.
2601                 */
2602                nf_conntrack_htable_size
2603                        = (((nr_pages << PAGE_SHIFT) / 16384)
2604                           / sizeof(struct hlist_head));
2605                if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2606                        nf_conntrack_htable_size = 65536;
2607                else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2608                        nf_conntrack_htable_size = 16384;
2609                if (nf_conntrack_htable_size < 32)
2610                        nf_conntrack_htable_size = 32;
2611
2612                /* Use a max. factor of four by default to get the same max as
2613                 * with the old struct list_heads. When a table size is given
2614                 * we use the old value of 8 to avoid reducing the max.
2615                 * entries. */
2616                max_factor = 4;
2617        }
2618
2619        nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2620        if (!nf_conntrack_hash)
2621                return -ENOMEM;
2622
2623        nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2624
2625        nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2626                                                sizeof(struct nf_conn),
2627                                                NFCT_INFOMASK + 1,
2628                                                SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2629        if (!nf_conntrack_cachep)
2630                goto err_cachep;
2631
2632        ret = nf_conntrack_expect_init();
2633        if (ret < 0)
2634                goto err_expect;
2635
2636        ret = nf_conntrack_acct_init();
2637        if (ret < 0)
2638                goto err_acct;
2639
2640        ret = nf_conntrack_tstamp_init();
2641        if (ret < 0)
2642                goto err_tstamp;
2643
2644        ret = nf_conntrack_ecache_init();
2645        if (ret < 0)
2646                goto err_ecache;
2647
2648        ret = nf_conntrack_timeout_init();
2649        if (ret < 0)
2650                goto err_timeout;
2651
2652        ret = nf_conntrack_helper_init();
2653        if (ret < 0)
2654                goto err_helper;
2655
2656        ret = nf_conntrack_labels_init();
2657        if (ret < 0)
2658                goto err_labels;
2659
2660        ret = nf_conntrack_seqadj_init();
2661        if (ret < 0)
2662                goto err_seqadj;
2663
2664        ret = nf_conntrack_proto_init();
2665        if (ret < 0)
2666                goto err_proto;
2667
2668        conntrack_gc_work_init(&conntrack_gc_work);
2669        queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2670
2671        return 0;
2672
2673err_proto:
2674        nf_conntrack_seqadj_fini();
2675err_seqadj:
2676        nf_conntrack_labels_fini();
2677err_labels:
2678        nf_conntrack_helper_fini();
2679err_helper:
2680        nf_conntrack_timeout_fini();
2681err_timeout:
2682        nf_conntrack_ecache_fini();
2683err_ecache:
2684        nf_conntrack_tstamp_fini();
2685err_tstamp:
2686        nf_conntrack_acct_fini();
2687err_acct:
2688        nf_conntrack_expect_fini();
2689err_expect:
2690        kmem_cache_destroy(nf_conntrack_cachep);
2691err_cachep:
2692        kvfree(nf_conntrack_hash);
2693        return ret;
2694}
2695
2696static struct nf_ct_hook nf_conntrack_hook = {
2697        .update         = nf_conntrack_update,
2698        .destroy        = destroy_conntrack,
2699        .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2700};
2701
2702void nf_conntrack_init_end(void)
2703{
2704        /* For use by REJECT target */
2705        RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2706        RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2707}
2708
2709/*
2710 * We need to use special "null" values, not used in hash table
2711 */
2712#define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2713#define DYING_NULLS_VAL         ((1<<30)+1)
2714
2715int nf_conntrack_init_net(struct net *net)
2716{
2717        struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2718        int ret = -ENOMEM;
2719        int cpu;
2720
2721        BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2722        BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2723        atomic_set(&cnet->count, 0);
2724
2725        net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2726        if (!net->ct.pcpu_lists)
2727                goto err_stat;
2728
2729        for_each_possible_cpu(cpu) {
2730                struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2731
2732                spin_lock_init(&pcpu->lock);
2733                INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2734                INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2735        }
2736
2737        net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2738        if (!net->ct.stat)
2739                goto err_pcpu_lists;
2740
2741        ret = nf_conntrack_expect_pernet_init(net);
2742        if (ret < 0)
2743                goto err_expect;
2744
2745        nf_conntrack_acct_pernet_init(net);
2746        nf_conntrack_tstamp_pernet_init(net);
2747        nf_conntrack_ecache_pernet_init(net);
2748        nf_conntrack_helper_pernet_init(net);
2749        nf_conntrack_proto_pernet_init(net);
2750
2751        return 0;
2752
2753err_expect:
2754        free_percpu(net->ct.stat);
2755err_pcpu_lists:
2756        free_percpu(net->ct.pcpu_lists);
2757err_stat:
2758        return ret;
2759}
2760