linux/net/openvswitch/flow.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2014 Nicira, Inc.
   4 */
   5
   6#include <linux/uaccess.h>
   7#include <linux/netdevice.h>
   8#include <linux/etherdevice.h>
   9#include <linux/if_ether.h>
  10#include <linux/if_vlan.h>
  11#include <net/llc_pdu.h>
  12#include <linux/kernel.h>
  13#include <linux/jhash.h>
  14#include <linux/jiffies.h>
  15#include <linux/llc.h>
  16#include <linux/module.h>
  17#include <linux/in.h>
  18#include <linux/rcupdate.h>
  19#include <linux/cpumask.h>
  20#include <linux/if_arp.h>
  21#include <linux/ip.h>
  22#include <linux/ipv6.h>
  23#include <linux/mpls.h>
  24#include <linux/sctp.h>
  25#include <linux/smp.h>
  26#include <linux/tcp.h>
  27#include <linux/udp.h>
  28#include <linux/icmp.h>
  29#include <linux/icmpv6.h>
  30#include <linux/rculist.h>
  31#include <net/ip.h>
  32#include <net/ip_tunnels.h>
  33#include <net/ipv6.h>
  34#include <net/mpls.h>
  35#include <net/ndisc.h>
  36#include <net/nsh.h>
  37
  38#include "conntrack.h"
  39#include "datapath.h"
  40#include "flow.h"
  41#include "flow_netlink.h"
  42#include "vport.h"
  43
  44u64 ovs_flow_used_time(unsigned long flow_jiffies)
  45{
  46        struct timespec64 cur_ts;
  47        u64 cur_ms, idle_ms;
  48
  49        ktime_get_ts64(&cur_ts);
  50        idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
  51        cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
  52                 cur_ts.tv_nsec / NSEC_PER_MSEC;
  53
  54        return cur_ms - idle_ms;
  55}
  56
  57#define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
  58
  59void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
  60                           const struct sk_buff *skb)
  61{
  62        struct sw_flow_stats *stats;
  63        unsigned int cpu = smp_processor_id();
  64        int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
  65
  66        stats = rcu_dereference(flow->stats[cpu]);
  67
  68        /* Check if already have CPU-specific stats. */
  69        if (likely(stats)) {
  70                spin_lock(&stats->lock);
  71                /* Mark if we write on the pre-allocated stats. */
  72                if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
  73                        flow->stats_last_writer = cpu;
  74        } else {
  75                stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
  76                spin_lock(&stats->lock);
  77
  78                /* If the current CPU is the only writer on the
  79                 * pre-allocated stats keep using them.
  80                 */
  81                if (unlikely(flow->stats_last_writer != cpu)) {
  82                        /* A previous locker may have already allocated the
  83                         * stats, so we need to check again.  If CPU-specific
  84                         * stats were already allocated, we update the pre-
  85                         * allocated stats as we have already locked them.
  86                         */
  87                        if (likely(flow->stats_last_writer != -1) &&
  88                            likely(!rcu_access_pointer(flow->stats[cpu]))) {
  89                                /* Try to allocate CPU-specific stats. */
  90                                struct sw_flow_stats *new_stats;
  91
  92                                new_stats =
  93                                        kmem_cache_alloc_node(flow_stats_cache,
  94                                                              GFP_NOWAIT |
  95                                                              __GFP_THISNODE |
  96                                                              __GFP_NOWARN |
  97                                                              __GFP_NOMEMALLOC,
  98                                                              numa_node_id());
  99                                if (likely(new_stats)) {
 100                                        new_stats->used = jiffies;
 101                                        new_stats->packet_count = 1;
 102                                        new_stats->byte_count = len;
 103                                        new_stats->tcp_flags = tcp_flags;
 104                                        spin_lock_init(&new_stats->lock);
 105
 106                                        rcu_assign_pointer(flow->stats[cpu],
 107                                                           new_stats);
 108                                        cpumask_set_cpu(cpu, &flow->cpu_used_mask);
 109                                        goto unlock;
 110                                }
 111                        }
 112                        flow->stats_last_writer = cpu;
 113                }
 114        }
 115
 116        stats->used = jiffies;
 117        stats->packet_count++;
 118        stats->byte_count += len;
 119        stats->tcp_flags |= tcp_flags;
 120unlock:
 121        spin_unlock(&stats->lock);
 122}
 123
 124/* Must be called with rcu_read_lock or ovs_mutex. */
 125void ovs_flow_stats_get(const struct sw_flow *flow,
 126                        struct ovs_flow_stats *ovs_stats,
 127                        unsigned long *used, __be16 *tcp_flags)
 128{
 129        int cpu;
 130
 131        *used = 0;
 132        *tcp_flags = 0;
 133        memset(ovs_stats, 0, sizeof(*ovs_stats));
 134
 135        /* We open code this to make sure cpu 0 is always considered */
 136        for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
 137                struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
 138
 139                if (stats) {
 140                        /* Local CPU may write on non-local stats, so we must
 141                         * block bottom-halves here.
 142                         */
 143                        spin_lock_bh(&stats->lock);
 144                        if (!*used || time_after(stats->used, *used))
 145                                *used = stats->used;
 146                        *tcp_flags |= stats->tcp_flags;
 147                        ovs_stats->n_packets += stats->packet_count;
 148                        ovs_stats->n_bytes += stats->byte_count;
 149                        spin_unlock_bh(&stats->lock);
 150                }
 151        }
 152}
 153
 154/* Called with ovs_mutex. */
 155void ovs_flow_stats_clear(struct sw_flow *flow)
 156{
 157        int cpu;
 158
 159        /* We open code this to make sure cpu 0 is always considered */
 160        for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
 161                struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
 162
 163                if (stats) {
 164                        spin_lock_bh(&stats->lock);
 165                        stats->used = 0;
 166                        stats->packet_count = 0;
 167                        stats->byte_count = 0;
 168                        stats->tcp_flags = 0;
 169                        spin_unlock_bh(&stats->lock);
 170                }
 171        }
 172}
 173
 174static int check_header(struct sk_buff *skb, int len)
 175{
 176        if (unlikely(skb->len < len))
 177                return -EINVAL;
 178        if (unlikely(!pskb_may_pull(skb, len)))
 179                return -ENOMEM;
 180        return 0;
 181}
 182
 183static bool arphdr_ok(struct sk_buff *skb)
 184{
 185        return pskb_may_pull(skb, skb_network_offset(skb) +
 186                                  sizeof(struct arp_eth_header));
 187}
 188
 189static int check_iphdr(struct sk_buff *skb)
 190{
 191        unsigned int nh_ofs = skb_network_offset(skb);
 192        unsigned int ip_len;
 193        int err;
 194
 195        err = check_header(skb, nh_ofs + sizeof(struct iphdr));
 196        if (unlikely(err))
 197                return err;
 198
 199        ip_len = ip_hdrlen(skb);
 200        if (unlikely(ip_len < sizeof(struct iphdr) ||
 201                     skb->len < nh_ofs + ip_len))
 202                return -EINVAL;
 203
 204        skb_set_transport_header(skb, nh_ofs + ip_len);
 205        return 0;
 206}
 207
 208static bool tcphdr_ok(struct sk_buff *skb)
 209{
 210        int th_ofs = skb_transport_offset(skb);
 211        int tcp_len;
 212
 213        if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
 214                return false;
 215
 216        tcp_len = tcp_hdrlen(skb);
 217        if (unlikely(tcp_len < sizeof(struct tcphdr) ||
 218                     skb->len < th_ofs + tcp_len))
 219                return false;
 220
 221        return true;
 222}
 223
 224static bool udphdr_ok(struct sk_buff *skb)
 225{
 226        return pskb_may_pull(skb, skb_transport_offset(skb) +
 227                                  sizeof(struct udphdr));
 228}
 229
 230static bool sctphdr_ok(struct sk_buff *skb)
 231{
 232        return pskb_may_pull(skb, skb_transport_offset(skb) +
 233                                  sizeof(struct sctphdr));
 234}
 235
 236static bool icmphdr_ok(struct sk_buff *skb)
 237{
 238        return pskb_may_pull(skb, skb_transport_offset(skb) +
 239                                  sizeof(struct icmphdr));
 240}
 241
 242static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
 243{
 244        unsigned short frag_off;
 245        unsigned int payload_ofs = 0;
 246        unsigned int nh_ofs = skb_network_offset(skb);
 247        unsigned int nh_len;
 248        struct ipv6hdr *nh;
 249        int err, nexthdr, flags = 0;
 250
 251        err = check_header(skb, nh_ofs + sizeof(*nh));
 252        if (unlikely(err))
 253                return err;
 254
 255        nh = ipv6_hdr(skb);
 256
 257        key->ip.proto = NEXTHDR_NONE;
 258        key->ip.tos = ipv6_get_dsfield(nh);
 259        key->ip.ttl = nh->hop_limit;
 260        key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 261        key->ipv6.addr.src = nh->saddr;
 262        key->ipv6.addr.dst = nh->daddr;
 263
 264        nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
 265        if (flags & IP6_FH_F_FRAG) {
 266                if (frag_off) {
 267                        key->ip.frag = OVS_FRAG_TYPE_LATER;
 268                        key->ip.proto = nexthdr;
 269                        return 0;
 270                }
 271                key->ip.frag = OVS_FRAG_TYPE_FIRST;
 272        } else {
 273                key->ip.frag = OVS_FRAG_TYPE_NONE;
 274        }
 275
 276        /* Delayed handling of error in ipv6_find_hdr() as it
 277         * always sets flags and frag_off to a valid value which may be
 278         * used to set key->ip.frag above.
 279         */
 280        if (unlikely(nexthdr < 0))
 281                return -EPROTO;
 282
 283        nh_len = payload_ofs - nh_ofs;
 284        skb_set_transport_header(skb, nh_ofs + nh_len);
 285        key->ip.proto = nexthdr;
 286        return nh_len;
 287}
 288
 289static bool icmp6hdr_ok(struct sk_buff *skb)
 290{
 291        return pskb_may_pull(skb, skb_transport_offset(skb) +
 292                                  sizeof(struct icmp6hdr));
 293}
 294
 295/**
 296 * parse_vlan_tag - Parse vlan tag from vlan header.
 297 * @skb: skb containing frame to parse
 298 * @key_vh: pointer to parsed vlan tag
 299 * @untag_vlan: should the vlan header be removed from the frame
 300 *
 301 * Return: ERROR on memory error.
 302 * %0 if it encounters a non-vlan or incomplete packet.
 303 * %1 after successfully parsing vlan tag.
 304 */
 305static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
 306                          bool untag_vlan)
 307{
 308        struct vlan_head *vh = (struct vlan_head *)skb->data;
 309
 310        if (likely(!eth_type_vlan(vh->tpid)))
 311                return 0;
 312
 313        if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
 314                return 0;
 315
 316        if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
 317                                 sizeof(__be16))))
 318                return -ENOMEM;
 319
 320        vh = (struct vlan_head *)skb->data;
 321        key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
 322        key_vh->tpid = vh->tpid;
 323
 324        if (unlikely(untag_vlan)) {
 325                int offset = skb->data - skb_mac_header(skb);
 326                u16 tci;
 327                int err;
 328
 329                __skb_push(skb, offset);
 330                err = __skb_vlan_pop(skb, &tci);
 331                __skb_pull(skb, offset);
 332                if (err)
 333                        return err;
 334                __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
 335        } else {
 336                __skb_pull(skb, sizeof(struct vlan_head));
 337        }
 338        return 1;
 339}
 340
 341static void clear_vlan(struct sw_flow_key *key)
 342{
 343        key->eth.vlan.tci = 0;
 344        key->eth.vlan.tpid = 0;
 345        key->eth.cvlan.tci = 0;
 346        key->eth.cvlan.tpid = 0;
 347}
 348
 349static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 350{
 351        int res;
 352
 353        if (skb_vlan_tag_present(skb)) {
 354                key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
 355                key->eth.vlan.tpid = skb->vlan_proto;
 356        } else {
 357                /* Parse outer vlan tag in the non-accelerated case. */
 358                res = parse_vlan_tag(skb, &key->eth.vlan, true);
 359                if (res <= 0)
 360                        return res;
 361        }
 362
 363        /* Parse inner vlan tag. */
 364        res = parse_vlan_tag(skb, &key->eth.cvlan, false);
 365        if (res <= 0)
 366                return res;
 367
 368        return 0;
 369}
 370
 371static __be16 parse_ethertype(struct sk_buff *skb)
 372{
 373        struct llc_snap_hdr {
 374                u8  dsap;  /* Always 0xAA */
 375                u8  ssap;  /* Always 0xAA */
 376                u8  ctrl;
 377                u8  oui[3];
 378                __be16 ethertype;
 379        };
 380        struct llc_snap_hdr *llc;
 381        __be16 proto;
 382
 383        proto = *(__be16 *) skb->data;
 384        __skb_pull(skb, sizeof(__be16));
 385
 386        if (eth_proto_is_802_3(proto))
 387                return proto;
 388
 389        if (skb->len < sizeof(struct llc_snap_hdr))
 390                return htons(ETH_P_802_2);
 391
 392        if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
 393                return htons(0);
 394
 395        llc = (struct llc_snap_hdr *) skb->data;
 396        if (llc->dsap != LLC_SAP_SNAP ||
 397            llc->ssap != LLC_SAP_SNAP ||
 398            (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
 399                return htons(ETH_P_802_2);
 400
 401        __skb_pull(skb, sizeof(struct llc_snap_hdr));
 402
 403        if (eth_proto_is_802_3(llc->ethertype))
 404                return llc->ethertype;
 405
 406        return htons(ETH_P_802_2);
 407}
 408
 409static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
 410                        int nh_len)
 411{
 412        struct icmp6hdr *icmp = icmp6_hdr(skb);
 413
 414        /* The ICMPv6 type and code fields use the 16-bit transport port
 415         * fields, so we need to store them in 16-bit network byte order.
 416         */
 417        key->tp.src = htons(icmp->icmp6_type);
 418        key->tp.dst = htons(icmp->icmp6_code);
 419        memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
 420
 421        if (icmp->icmp6_code == 0 &&
 422            (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
 423             icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 424                int icmp_len = skb->len - skb_transport_offset(skb);
 425                struct nd_msg *nd;
 426                int offset;
 427
 428                /* In order to process neighbor discovery options, we need the
 429                 * entire packet.
 430                 */
 431                if (unlikely(icmp_len < sizeof(*nd)))
 432                        return 0;
 433
 434                if (unlikely(skb_linearize(skb)))
 435                        return -ENOMEM;
 436
 437                nd = (struct nd_msg *)skb_transport_header(skb);
 438                key->ipv6.nd.target = nd->target;
 439
 440                icmp_len -= sizeof(*nd);
 441                offset = 0;
 442                while (icmp_len >= 8) {
 443                        struct nd_opt_hdr *nd_opt =
 444                                 (struct nd_opt_hdr *)(nd->opt + offset);
 445                        int opt_len = nd_opt->nd_opt_len * 8;
 446
 447                        if (unlikely(!opt_len || opt_len > icmp_len))
 448                                return 0;
 449
 450                        /* Store the link layer address if the appropriate
 451                         * option is provided.  It is considered an error if
 452                         * the same link layer option is specified twice.
 453                         */
 454                        if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
 455                            && opt_len == 8) {
 456                                if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
 457                                        goto invalid;
 458                                ether_addr_copy(key->ipv6.nd.sll,
 459                                                &nd->opt[offset+sizeof(*nd_opt)]);
 460                        } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
 461                                   && opt_len == 8) {
 462                                if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
 463                                        goto invalid;
 464                                ether_addr_copy(key->ipv6.nd.tll,
 465                                                &nd->opt[offset+sizeof(*nd_opt)]);
 466                        }
 467
 468                        icmp_len -= opt_len;
 469                        offset += opt_len;
 470                }
 471        }
 472
 473        return 0;
 474
 475invalid:
 476        memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
 477        memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
 478        memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
 479
 480        return 0;
 481}
 482
 483static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 484{
 485        struct nshhdr *nh;
 486        unsigned int nh_ofs = skb_network_offset(skb);
 487        u8 version, length;
 488        int err;
 489
 490        err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
 491        if (unlikely(err))
 492                return err;
 493
 494        nh = nsh_hdr(skb);
 495        version = nsh_get_ver(nh);
 496        length = nsh_hdr_len(nh);
 497
 498        if (version != 0)
 499                return -EINVAL;
 500
 501        err = check_header(skb, nh_ofs + length);
 502        if (unlikely(err))
 503                return err;
 504
 505        nh = nsh_hdr(skb);
 506        key->nsh.base.flags = nsh_get_flags(nh);
 507        key->nsh.base.ttl = nsh_get_ttl(nh);
 508        key->nsh.base.mdtype = nh->mdtype;
 509        key->nsh.base.np = nh->np;
 510        key->nsh.base.path_hdr = nh->path_hdr;
 511        switch (key->nsh.base.mdtype) {
 512        case NSH_M_TYPE1:
 513                if (length != NSH_M_TYPE1_LEN)
 514                        return -EINVAL;
 515                memcpy(key->nsh.context, nh->md1.context,
 516                       sizeof(nh->md1));
 517                break;
 518        case NSH_M_TYPE2:
 519                memset(key->nsh.context, 0,
 520                       sizeof(nh->md1));
 521                break;
 522        default:
 523                return -EINVAL;
 524        }
 525
 526        return 0;
 527}
 528
 529/**
 530 * key_extract_l3l4 - extracts L3/L4 header information.
 531 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 532 *       L3 header
 533 * @key: output flow key
 534 *
 535 * Return: %0 if successful, otherwise a negative errno value.
 536 */
 537static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 538{
 539        int error;
 540
 541        /* Network layer. */
 542        if (key->eth.type == htons(ETH_P_IP)) {
 543                struct iphdr *nh;
 544                __be16 offset;
 545
 546                error = check_iphdr(skb);
 547                if (unlikely(error)) {
 548                        memset(&key->ip, 0, sizeof(key->ip));
 549                        memset(&key->ipv4, 0, sizeof(key->ipv4));
 550                        if (error == -EINVAL) {
 551                                skb->transport_header = skb->network_header;
 552                                error = 0;
 553                        }
 554                        return error;
 555                }
 556
 557                nh = ip_hdr(skb);
 558                key->ipv4.addr.src = nh->saddr;
 559                key->ipv4.addr.dst = nh->daddr;
 560
 561                key->ip.proto = nh->protocol;
 562                key->ip.tos = nh->tos;
 563                key->ip.ttl = nh->ttl;
 564
 565                offset = nh->frag_off & htons(IP_OFFSET);
 566                if (offset) {
 567                        key->ip.frag = OVS_FRAG_TYPE_LATER;
 568                        memset(&key->tp, 0, sizeof(key->tp));
 569                        return 0;
 570                }
 571                if (nh->frag_off & htons(IP_MF) ||
 572                        skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 573                        key->ip.frag = OVS_FRAG_TYPE_FIRST;
 574                else
 575                        key->ip.frag = OVS_FRAG_TYPE_NONE;
 576
 577                /* Transport layer. */
 578                if (key->ip.proto == IPPROTO_TCP) {
 579                        if (tcphdr_ok(skb)) {
 580                                struct tcphdr *tcp = tcp_hdr(skb);
 581                                key->tp.src = tcp->source;
 582                                key->tp.dst = tcp->dest;
 583                                key->tp.flags = TCP_FLAGS_BE16(tcp);
 584                        } else {
 585                                memset(&key->tp, 0, sizeof(key->tp));
 586                        }
 587
 588                } else if (key->ip.proto == IPPROTO_UDP) {
 589                        if (udphdr_ok(skb)) {
 590                                struct udphdr *udp = udp_hdr(skb);
 591                                key->tp.src = udp->source;
 592                                key->tp.dst = udp->dest;
 593                        } else {
 594                                memset(&key->tp, 0, sizeof(key->tp));
 595                        }
 596                } else if (key->ip.proto == IPPROTO_SCTP) {
 597                        if (sctphdr_ok(skb)) {
 598                                struct sctphdr *sctp = sctp_hdr(skb);
 599                                key->tp.src = sctp->source;
 600                                key->tp.dst = sctp->dest;
 601                        } else {
 602                                memset(&key->tp, 0, sizeof(key->tp));
 603                        }
 604                } else if (key->ip.proto == IPPROTO_ICMP) {
 605                        if (icmphdr_ok(skb)) {
 606                                struct icmphdr *icmp = icmp_hdr(skb);
 607                                /* The ICMP type and code fields use the 16-bit
 608                                 * transport port fields, so we need to store
 609                                 * them in 16-bit network byte order. */
 610                                key->tp.src = htons(icmp->type);
 611                                key->tp.dst = htons(icmp->code);
 612                        } else {
 613                                memset(&key->tp, 0, sizeof(key->tp));
 614                        }
 615                }
 616
 617        } else if (key->eth.type == htons(ETH_P_ARP) ||
 618                   key->eth.type == htons(ETH_P_RARP)) {
 619                struct arp_eth_header *arp;
 620                bool arp_available = arphdr_ok(skb);
 621
 622                arp = (struct arp_eth_header *)skb_network_header(skb);
 623
 624                if (arp_available &&
 625                    arp->ar_hrd == htons(ARPHRD_ETHER) &&
 626                    arp->ar_pro == htons(ETH_P_IP) &&
 627                    arp->ar_hln == ETH_ALEN &&
 628                    arp->ar_pln == 4) {
 629
 630                        /* We only match on the lower 8 bits of the opcode. */
 631                        if (ntohs(arp->ar_op) <= 0xff)
 632                                key->ip.proto = ntohs(arp->ar_op);
 633                        else
 634                                key->ip.proto = 0;
 635
 636                        memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
 637                        memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
 638                        ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
 639                        ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
 640                } else {
 641                        memset(&key->ip, 0, sizeof(key->ip));
 642                        memset(&key->ipv4, 0, sizeof(key->ipv4));
 643                }
 644        } else if (eth_p_mpls(key->eth.type)) {
 645                u8 label_count = 1;
 646
 647                memset(&key->mpls, 0, sizeof(key->mpls));
 648                skb_set_inner_network_header(skb, skb->mac_len);
 649                while (1) {
 650                        __be32 lse;
 651
 652                        error = check_header(skb, skb->mac_len +
 653                                             label_count * MPLS_HLEN);
 654                        if (unlikely(error))
 655                                return 0;
 656
 657                        memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
 658
 659                        if (label_count <= MPLS_LABEL_DEPTH)
 660                                memcpy(&key->mpls.lse[label_count - 1], &lse,
 661                                       MPLS_HLEN);
 662
 663                        skb_set_inner_network_header(skb, skb->mac_len +
 664                                                     label_count * MPLS_HLEN);
 665                        if (lse & htonl(MPLS_LS_S_MASK))
 666                                break;
 667
 668                        label_count++;
 669                }
 670                if (label_count > MPLS_LABEL_DEPTH)
 671                        label_count = MPLS_LABEL_DEPTH;
 672
 673                key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
 674        } else if (key->eth.type == htons(ETH_P_IPV6)) {
 675                int nh_len;             /* IPv6 Header + Extensions */
 676
 677                nh_len = parse_ipv6hdr(skb, key);
 678                if (unlikely(nh_len < 0)) {
 679                        switch (nh_len) {
 680                        case -EINVAL:
 681                                memset(&key->ip, 0, sizeof(key->ip));
 682                                memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
 683                                fallthrough;
 684                        case -EPROTO:
 685                                skb->transport_header = skb->network_header;
 686                                error = 0;
 687                                break;
 688                        default:
 689                                error = nh_len;
 690                        }
 691                        return error;
 692                }
 693
 694                if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
 695                        memset(&key->tp, 0, sizeof(key->tp));
 696                        return 0;
 697                }
 698                if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
 699                        key->ip.frag = OVS_FRAG_TYPE_FIRST;
 700
 701                /* Transport layer. */
 702                if (key->ip.proto == NEXTHDR_TCP) {
 703                        if (tcphdr_ok(skb)) {
 704                                struct tcphdr *tcp = tcp_hdr(skb);
 705                                key->tp.src = tcp->source;
 706                                key->tp.dst = tcp->dest;
 707                                key->tp.flags = TCP_FLAGS_BE16(tcp);
 708                        } else {
 709                                memset(&key->tp, 0, sizeof(key->tp));
 710                        }
 711                } else if (key->ip.proto == NEXTHDR_UDP) {
 712                        if (udphdr_ok(skb)) {
 713                                struct udphdr *udp = udp_hdr(skb);
 714                                key->tp.src = udp->source;
 715                                key->tp.dst = udp->dest;
 716                        } else {
 717                                memset(&key->tp, 0, sizeof(key->tp));
 718                        }
 719                } else if (key->ip.proto == NEXTHDR_SCTP) {
 720                        if (sctphdr_ok(skb)) {
 721                                struct sctphdr *sctp = sctp_hdr(skb);
 722                                key->tp.src = sctp->source;
 723                                key->tp.dst = sctp->dest;
 724                        } else {
 725                                memset(&key->tp, 0, sizeof(key->tp));
 726                        }
 727                } else if (key->ip.proto == NEXTHDR_ICMP) {
 728                        if (icmp6hdr_ok(skb)) {
 729                                error = parse_icmpv6(skb, key, nh_len);
 730                                if (error)
 731                                        return error;
 732                        } else {
 733                                memset(&key->tp, 0, sizeof(key->tp));
 734                        }
 735                }
 736        } else if (key->eth.type == htons(ETH_P_NSH)) {
 737                error = parse_nsh(skb, key);
 738                if (error)
 739                        return error;
 740        }
 741        return 0;
 742}
 743
 744/**
 745 * key_extract - extracts a flow key from an Ethernet frame.
 746 * @skb: sk_buff that contains the frame, with skb->data pointing to the
 747 * Ethernet header
 748 * @key: output flow key
 749 *
 750 * The caller must ensure that skb->len >= ETH_HLEN.
 751 *
 752 * Initializes @skb header fields as follows:
 753 *
 754 *    - skb->mac_header: the L2 header.
 755 *
 756 *    - skb->network_header: just past the L2 header, or just past the
 757 *      VLAN header, to the first byte of the L2 payload.
 758 *
 759 *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
 760 *      on output, then just past the IP header, if one is present and
 761 *      of a correct length, otherwise the same as skb->network_header.
 762 *      For other key->eth.type values it is left untouched.
 763 *
 764 *    - skb->protocol: the type of the data starting at skb->network_header.
 765 *      Equals to key->eth.type.
 766 *
 767 * Return: %0 if successful, otherwise a negative errno value.
 768 */
 769static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
 770{
 771        struct ethhdr *eth;
 772
 773        /* Flags are always used as part of stats */
 774        key->tp.flags = 0;
 775
 776        skb_reset_mac_header(skb);
 777
 778        /* Link layer. */
 779        clear_vlan(key);
 780        if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
 781                if (unlikely(eth_type_vlan(skb->protocol)))
 782                        return -EINVAL;
 783
 784                skb_reset_network_header(skb);
 785                key->eth.type = skb->protocol;
 786        } else {
 787                eth = eth_hdr(skb);
 788                ether_addr_copy(key->eth.src, eth->h_source);
 789                ether_addr_copy(key->eth.dst, eth->h_dest);
 790
 791                __skb_pull(skb, 2 * ETH_ALEN);
 792                /* We are going to push all headers that we pull, so no need to
 793                 * update skb->csum here.
 794                 */
 795
 796                if (unlikely(parse_vlan(skb, key)))
 797                        return -ENOMEM;
 798
 799                key->eth.type = parse_ethertype(skb);
 800                if (unlikely(key->eth.type == htons(0)))
 801                        return -ENOMEM;
 802
 803                /* Multiple tagged packets need to retain TPID to satisfy
 804                 * skb_vlan_pop(), which will later shift the ethertype into
 805                 * skb->protocol.
 806                 */
 807                if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
 808                        skb->protocol = key->eth.cvlan.tpid;
 809                else
 810                        skb->protocol = key->eth.type;
 811
 812                skb_reset_network_header(skb);
 813                __skb_push(skb, skb->data - skb_mac_header(skb));
 814        }
 815
 816        skb_reset_mac_len(skb);
 817
 818        /* Fill out L3/L4 key info, if any */
 819        return key_extract_l3l4(skb, key);
 820}
 821
 822/* In the case of conntrack fragment handling it expects L3 headers,
 823 * add a helper.
 824 */
 825int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
 826{
 827        return key_extract_l3l4(skb, key);
 828}
 829
 830int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
 831{
 832        int res;
 833
 834        res = key_extract(skb, key);
 835        if (!res)
 836                key->mac_proto &= ~SW_FLOW_KEY_INVALID;
 837
 838        return res;
 839}
 840
 841static int key_extract_mac_proto(struct sk_buff *skb)
 842{
 843        switch (skb->dev->type) {
 844        case ARPHRD_ETHER:
 845                return MAC_PROTO_ETHERNET;
 846        case ARPHRD_NONE:
 847                if (skb->protocol == htons(ETH_P_TEB))
 848                        return MAC_PROTO_ETHERNET;
 849                return MAC_PROTO_NONE;
 850        }
 851        WARN_ON_ONCE(1);
 852        return -EINVAL;
 853}
 854
 855int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
 856                         struct sk_buff *skb, struct sw_flow_key *key)
 857{
 858#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 859        struct tc_skb_ext *tc_ext;
 860#endif
 861        bool post_ct = false;
 862        int res, err;
 863
 864        /* Extract metadata from packet. */
 865        if (tun_info) {
 866                key->tun_proto = ip_tunnel_info_af(tun_info);
 867                memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
 868
 869                if (tun_info->options_len) {
 870                        BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
 871                                                   8)) - 1
 872                                        > sizeof(key->tun_opts));
 873
 874                        ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
 875                                                tun_info);
 876                        key->tun_opts_len = tun_info->options_len;
 877                } else {
 878                        key->tun_opts_len = 0;
 879                }
 880        } else  {
 881                key->tun_proto = 0;
 882                key->tun_opts_len = 0;
 883                memset(&key->tun_key, 0, sizeof(key->tun_key));
 884        }
 885
 886        key->phy.priority = skb->priority;
 887        key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
 888        key->phy.skb_mark = skb->mark;
 889        key->ovs_flow_hash = 0;
 890        res = key_extract_mac_proto(skb);
 891        if (res < 0)
 892                return res;
 893        key->mac_proto = res;
 894
 895#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 896        if (static_branch_unlikely(&tc_recirc_sharing_support)) {
 897                tc_ext = skb_ext_find(skb, TC_SKB_EXT);
 898                key->recirc_id = tc_ext ? tc_ext->chain : 0;
 899                OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
 900                post_ct = tc_ext ? tc_ext->post_ct : false;
 901        } else {
 902                key->recirc_id = 0;
 903        }
 904#else
 905        key->recirc_id = 0;
 906#endif
 907
 908        err = key_extract(skb, key);
 909        if (!err)
 910                ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
 911        return err;
 912}
 913
 914int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
 915                                   struct sk_buff *skb,
 916                                   struct sw_flow_key *key, bool log)
 917{
 918        const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
 919        u64 attrs = 0;
 920        int err;
 921
 922        err = parse_flow_nlattrs(attr, a, &attrs, log);
 923        if (err)
 924                return -EINVAL;
 925
 926        /* Extract metadata from netlink attributes. */
 927        err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
 928        if (err)
 929                return err;
 930
 931        /* key_extract assumes that skb->protocol is set-up for
 932         * layer 3 packets which is the case for other callers,
 933         * in particular packets received from the network stack.
 934         * Here the correct value can be set from the metadata
 935         * extracted above.
 936         * For L2 packet key eth type would be zero. skb protocol
 937         * would be set to correct value later during key-extact.
 938         */
 939
 940        skb->protocol = key->eth.type;
 941        err = key_extract(skb, key);
 942        if (err)
 943                return err;
 944
 945        /* Check that we have conntrack original direction tuple metadata only
 946         * for packets for which it makes sense.  Otherwise the key may be
 947         * corrupted due to overlapping key fields.
 948         */
 949        if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
 950            key->eth.type != htons(ETH_P_IP))
 951                return -EINVAL;
 952        if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
 953            (key->eth.type != htons(ETH_P_IPV6) ||
 954             sw_flow_key_is_nd(key)))
 955                return -EINVAL;
 956
 957        return 0;
 958}
 959