linux/net/tls/tls_sw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
   5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
   6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
   7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
   8 *
   9 * This software is available to you under a choice of one of two
  10 * licenses.  You may choose to be licensed under the terms of the GNU
  11 * General Public License (GPL) Version 2, available from the file
  12 * COPYING in the main directory of this source tree, or the
  13 * OpenIB.org BSD license below:
  14 *
  15 *     Redistribution and use in source and binary forms, with or
  16 *     without modification, are permitted provided that the following
  17 *     conditions are met:
  18 *
  19 *      - Redistributions of source code must retain the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer.
  22 *
  23 *      - Redistributions in binary form must reproduce the above
  24 *        copyright notice, this list of conditions and the following
  25 *        disclaimer in the documentation and/or other materials
  26 *        provided with the distribution.
  27 *
  28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35 * SOFTWARE.
  36 */
  37
  38#include <linux/sched/signal.h>
  39#include <linux/module.h>
  40#include <linux/splice.h>
  41#include <crypto/aead.h>
  42
  43#include <net/strparser.h>
  44#include <net/tls.h>
  45
  46static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  47                     unsigned int recursion_level)
  48{
  49        int start = skb_headlen(skb);
  50        int i, chunk = start - offset;
  51        struct sk_buff *frag_iter;
  52        int elt = 0;
  53
  54        if (unlikely(recursion_level >= 24))
  55                return -EMSGSIZE;
  56
  57        if (chunk > 0) {
  58                if (chunk > len)
  59                        chunk = len;
  60                elt++;
  61                len -= chunk;
  62                if (len == 0)
  63                        return elt;
  64                offset += chunk;
  65        }
  66
  67        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  68                int end;
  69
  70                WARN_ON(start > offset + len);
  71
  72                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
  73                chunk = end - offset;
  74                if (chunk > 0) {
  75                        if (chunk > len)
  76                                chunk = len;
  77                        elt++;
  78                        len -= chunk;
  79                        if (len == 0)
  80                                return elt;
  81                        offset += chunk;
  82                }
  83                start = end;
  84        }
  85
  86        if (unlikely(skb_has_frag_list(skb))) {
  87                skb_walk_frags(skb, frag_iter) {
  88                        int end, ret;
  89
  90                        WARN_ON(start > offset + len);
  91
  92                        end = start + frag_iter->len;
  93                        chunk = end - offset;
  94                        if (chunk > 0) {
  95                                if (chunk > len)
  96                                        chunk = len;
  97                                ret = __skb_nsg(frag_iter, offset - start, chunk,
  98                                                recursion_level + 1);
  99                                if (unlikely(ret < 0))
 100                                        return ret;
 101                                elt += ret;
 102                                len -= chunk;
 103                                if (len == 0)
 104                                        return elt;
 105                                offset += chunk;
 106                        }
 107                        start = end;
 108                }
 109        }
 110        BUG_ON(len);
 111        return elt;
 112}
 113
 114/* Return the number of scatterlist elements required to completely map the
 115 * skb, or -EMSGSIZE if the recursion depth is exceeded.
 116 */
 117static int skb_nsg(struct sk_buff *skb, int offset, int len)
 118{
 119        return __skb_nsg(skb, offset, len, 0);
 120}
 121
 122static int padding_length(struct tls_sw_context_rx *ctx,
 123                          struct tls_prot_info *prot, struct sk_buff *skb)
 124{
 125        struct strp_msg *rxm = strp_msg(skb);
 126        int sub = 0;
 127
 128        /* Determine zero-padding length */
 129        if (prot->version == TLS_1_3_VERSION) {
 130                char content_type = 0;
 131                int err;
 132                int back = 17;
 133
 134                while (content_type == 0) {
 135                        if (back > rxm->full_len - prot->prepend_size)
 136                                return -EBADMSG;
 137                        err = skb_copy_bits(skb,
 138                                            rxm->offset + rxm->full_len - back,
 139                                            &content_type, 1);
 140                        if (err)
 141                                return err;
 142                        if (content_type)
 143                                break;
 144                        sub++;
 145                        back++;
 146                }
 147                ctx->control = content_type;
 148        }
 149        return sub;
 150}
 151
 152static void tls_decrypt_done(struct crypto_async_request *req, int err)
 153{
 154        struct aead_request *aead_req = (struct aead_request *)req;
 155        struct scatterlist *sgout = aead_req->dst;
 156        struct scatterlist *sgin = aead_req->src;
 157        struct tls_sw_context_rx *ctx;
 158        struct tls_context *tls_ctx;
 159        struct tls_prot_info *prot;
 160        struct scatterlist *sg;
 161        struct sk_buff *skb;
 162        unsigned int pages;
 163        int pending;
 164
 165        skb = (struct sk_buff *)req->data;
 166        tls_ctx = tls_get_ctx(skb->sk);
 167        ctx = tls_sw_ctx_rx(tls_ctx);
 168        prot = &tls_ctx->prot_info;
 169
 170        /* Propagate if there was an err */
 171        if (err) {
 172                if (err == -EBADMSG)
 173                        TLS_INC_STATS(sock_net(skb->sk),
 174                                      LINUX_MIB_TLSDECRYPTERROR);
 175                ctx->async_wait.err = err;
 176                tls_err_abort(skb->sk, err);
 177        } else {
 178                struct strp_msg *rxm = strp_msg(skb);
 179                int pad;
 180
 181                pad = padding_length(ctx, prot, skb);
 182                if (pad < 0) {
 183                        ctx->async_wait.err = pad;
 184                        tls_err_abort(skb->sk, pad);
 185                } else {
 186                        rxm->full_len -= pad;
 187                        rxm->offset += prot->prepend_size;
 188                        rxm->full_len -= prot->overhead_size;
 189                }
 190        }
 191
 192        /* After using skb->sk to propagate sk through crypto async callback
 193         * we need to NULL it again.
 194         */
 195        skb->sk = NULL;
 196
 197
 198        /* Free the destination pages if skb was not decrypted inplace */
 199        if (sgout != sgin) {
 200                /* Skip the first S/G entry as it points to AAD */
 201                for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
 202                        if (!sg)
 203                                break;
 204                        put_page(sg_page(sg));
 205                }
 206        }
 207
 208        kfree(aead_req);
 209
 210        spin_lock_bh(&ctx->decrypt_compl_lock);
 211        pending = atomic_dec_return(&ctx->decrypt_pending);
 212
 213        if (!pending && ctx->async_notify)
 214                complete(&ctx->async_wait.completion);
 215        spin_unlock_bh(&ctx->decrypt_compl_lock);
 216}
 217
 218static int tls_do_decryption(struct sock *sk,
 219                             struct sk_buff *skb,
 220                             struct scatterlist *sgin,
 221                             struct scatterlist *sgout,
 222                             char *iv_recv,
 223                             size_t data_len,
 224                             struct aead_request *aead_req,
 225                             bool async)
 226{
 227        struct tls_context *tls_ctx = tls_get_ctx(sk);
 228        struct tls_prot_info *prot = &tls_ctx->prot_info;
 229        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
 230        int ret;
 231
 232        aead_request_set_tfm(aead_req, ctx->aead_recv);
 233        aead_request_set_ad(aead_req, prot->aad_size);
 234        aead_request_set_crypt(aead_req, sgin, sgout,
 235                               data_len + prot->tag_size,
 236                               (u8 *)iv_recv);
 237
 238        if (async) {
 239                /* Using skb->sk to push sk through to crypto async callback
 240                 * handler. This allows propagating errors up to the socket
 241                 * if needed. It _must_ be cleared in the async handler
 242                 * before consume_skb is called. We _know_ skb->sk is NULL
 243                 * because it is a clone from strparser.
 244                 */
 245                skb->sk = sk;
 246                aead_request_set_callback(aead_req,
 247                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 248                                          tls_decrypt_done, skb);
 249                atomic_inc(&ctx->decrypt_pending);
 250        } else {
 251                aead_request_set_callback(aead_req,
 252                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 253                                          crypto_req_done, &ctx->async_wait);
 254        }
 255
 256        ret = crypto_aead_decrypt(aead_req);
 257        if (ret == -EINPROGRESS) {
 258                if (async)
 259                        return ret;
 260
 261                ret = crypto_wait_req(ret, &ctx->async_wait);
 262        }
 263
 264        if (async)
 265                atomic_dec(&ctx->decrypt_pending);
 266
 267        return ret;
 268}
 269
 270static void tls_trim_both_msgs(struct sock *sk, int target_size)
 271{
 272        struct tls_context *tls_ctx = tls_get_ctx(sk);
 273        struct tls_prot_info *prot = &tls_ctx->prot_info;
 274        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 275        struct tls_rec *rec = ctx->open_rec;
 276
 277        sk_msg_trim(sk, &rec->msg_plaintext, target_size);
 278        if (target_size > 0)
 279                target_size += prot->overhead_size;
 280        sk_msg_trim(sk, &rec->msg_encrypted, target_size);
 281}
 282
 283static int tls_alloc_encrypted_msg(struct sock *sk, int len)
 284{
 285        struct tls_context *tls_ctx = tls_get_ctx(sk);
 286        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 287        struct tls_rec *rec = ctx->open_rec;
 288        struct sk_msg *msg_en = &rec->msg_encrypted;
 289
 290        return sk_msg_alloc(sk, msg_en, len, 0);
 291}
 292
 293static int tls_clone_plaintext_msg(struct sock *sk, int required)
 294{
 295        struct tls_context *tls_ctx = tls_get_ctx(sk);
 296        struct tls_prot_info *prot = &tls_ctx->prot_info;
 297        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 298        struct tls_rec *rec = ctx->open_rec;
 299        struct sk_msg *msg_pl = &rec->msg_plaintext;
 300        struct sk_msg *msg_en = &rec->msg_encrypted;
 301        int skip, len;
 302
 303        /* We add page references worth len bytes from encrypted sg
 304         * at the end of plaintext sg. It is guaranteed that msg_en
 305         * has enough required room (ensured by caller).
 306         */
 307        len = required - msg_pl->sg.size;
 308
 309        /* Skip initial bytes in msg_en's data to be able to use
 310         * same offset of both plain and encrypted data.
 311         */
 312        skip = prot->prepend_size + msg_pl->sg.size;
 313
 314        return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
 315}
 316
 317static struct tls_rec *tls_get_rec(struct sock *sk)
 318{
 319        struct tls_context *tls_ctx = tls_get_ctx(sk);
 320        struct tls_prot_info *prot = &tls_ctx->prot_info;
 321        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 322        struct sk_msg *msg_pl, *msg_en;
 323        struct tls_rec *rec;
 324        int mem_size;
 325
 326        mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
 327
 328        rec = kzalloc(mem_size, sk->sk_allocation);
 329        if (!rec)
 330                return NULL;
 331
 332        msg_pl = &rec->msg_plaintext;
 333        msg_en = &rec->msg_encrypted;
 334
 335        sk_msg_init(msg_pl);
 336        sk_msg_init(msg_en);
 337
 338        sg_init_table(rec->sg_aead_in, 2);
 339        sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
 340        sg_unmark_end(&rec->sg_aead_in[1]);
 341
 342        sg_init_table(rec->sg_aead_out, 2);
 343        sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
 344        sg_unmark_end(&rec->sg_aead_out[1]);
 345
 346        return rec;
 347}
 348
 349static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
 350{
 351        sk_msg_free(sk, &rec->msg_encrypted);
 352        sk_msg_free(sk, &rec->msg_plaintext);
 353        kfree(rec);
 354}
 355
 356static void tls_free_open_rec(struct sock *sk)
 357{
 358        struct tls_context *tls_ctx = tls_get_ctx(sk);
 359        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 360        struct tls_rec *rec = ctx->open_rec;
 361
 362        if (rec) {
 363                tls_free_rec(sk, rec);
 364                ctx->open_rec = NULL;
 365        }
 366}
 367
 368int tls_tx_records(struct sock *sk, int flags)
 369{
 370        struct tls_context *tls_ctx = tls_get_ctx(sk);
 371        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 372        struct tls_rec *rec, *tmp;
 373        struct sk_msg *msg_en;
 374        int tx_flags, rc = 0;
 375
 376        if (tls_is_partially_sent_record(tls_ctx)) {
 377                rec = list_first_entry(&ctx->tx_list,
 378                                       struct tls_rec, list);
 379
 380                if (flags == -1)
 381                        tx_flags = rec->tx_flags;
 382                else
 383                        tx_flags = flags;
 384
 385                rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
 386                if (rc)
 387                        goto tx_err;
 388
 389                /* Full record has been transmitted.
 390                 * Remove the head of tx_list
 391                 */
 392                list_del(&rec->list);
 393                sk_msg_free(sk, &rec->msg_plaintext);
 394                kfree(rec);
 395        }
 396
 397        /* Tx all ready records */
 398        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
 399                if (READ_ONCE(rec->tx_ready)) {
 400                        if (flags == -1)
 401                                tx_flags = rec->tx_flags;
 402                        else
 403                                tx_flags = flags;
 404
 405                        msg_en = &rec->msg_encrypted;
 406                        rc = tls_push_sg(sk, tls_ctx,
 407                                         &msg_en->sg.data[msg_en->sg.curr],
 408                                         0, tx_flags);
 409                        if (rc)
 410                                goto tx_err;
 411
 412                        list_del(&rec->list);
 413                        sk_msg_free(sk, &rec->msg_plaintext);
 414                        kfree(rec);
 415                } else {
 416                        break;
 417                }
 418        }
 419
 420tx_err:
 421        if (rc < 0 && rc != -EAGAIN)
 422                tls_err_abort(sk, EBADMSG);
 423
 424        return rc;
 425}
 426
 427static void tls_encrypt_done(struct crypto_async_request *req, int err)
 428{
 429        struct aead_request *aead_req = (struct aead_request *)req;
 430        struct sock *sk = req->data;
 431        struct tls_context *tls_ctx = tls_get_ctx(sk);
 432        struct tls_prot_info *prot = &tls_ctx->prot_info;
 433        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 434        struct scatterlist *sge;
 435        struct sk_msg *msg_en;
 436        struct tls_rec *rec;
 437        bool ready = false;
 438        int pending;
 439
 440        rec = container_of(aead_req, struct tls_rec, aead_req);
 441        msg_en = &rec->msg_encrypted;
 442
 443        sge = sk_msg_elem(msg_en, msg_en->sg.curr);
 444        sge->offset -= prot->prepend_size;
 445        sge->length += prot->prepend_size;
 446
 447        /* Check if error is previously set on socket */
 448        if (err || sk->sk_err) {
 449                rec = NULL;
 450
 451                /* If err is already set on socket, return the same code */
 452                if (sk->sk_err) {
 453                        ctx->async_wait.err = sk->sk_err;
 454                } else {
 455                        ctx->async_wait.err = err;
 456                        tls_err_abort(sk, err);
 457                }
 458        }
 459
 460        if (rec) {
 461                struct tls_rec *first_rec;
 462
 463                /* Mark the record as ready for transmission */
 464                smp_store_mb(rec->tx_ready, true);
 465
 466                /* If received record is at head of tx_list, schedule tx */
 467                first_rec = list_first_entry(&ctx->tx_list,
 468                                             struct tls_rec, list);
 469                if (rec == first_rec)
 470                        ready = true;
 471        }
 472
 473        spin_lock_bh(&ctx->encrypt_compl_lock);
 474        pending = atomic_dec_return(&ctx->encrypt_pending);
 475
 476        if (!pending && ctx->async_notify)
 477                complete(&ctx->async_wait.completion);
 478        spin_unlock_bh(&ctx->encrypt_compl_lock);
 479
 480        if (!ready)
 481                return;
 482
 483        /* Schedule the transmission */
 484        if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
 485                schedule_delayed_work(&ctx->tx_work.work, 1);
 486}
 487
 488static int tls_do_encryption(struct sock *sk,
 489                             struct tls_context *tls_ctx,
 490                             struct tls_sw_context_tx *ctx,
 491                             struct aead_request *aead_req,
 492                             size_t data_len, u32 start)
 493{
 494        struct tls_prot_info *prot = &tls_ctx->prot_info;
 495        struct tls_rec *rec = ctx->open_rec;
 496        struct sk_msg *msg_en = &rec->msg_encrypted;
 497        struct scatterlist *sge = sk_msg_elem(msg_en, start);
 498        int rc, iv_offset = 0;
 499
 500        /* For CCM based ciphers, first byte of IV is a constant */
 501        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
 502                rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
 503                iv_offset = 1;
 504        }
 505
 506        memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
 507               prot->iv_size + prot->salt_size);
 508
 509        xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
 510
 511        sge->offset += prot->prepend_size;
 512        sge->length -= prot->prepend_size;
 513
 514        msg_en->sg.curr = start;
 515
 516        aead_request_set_tfm(aead_req, ctx->aead_send);
 517        aead_request_set_ad(aead_req, prot->aad_size);
 518        aead_request_set_crypt(aead_req, rec->sg_aead_in,
 519                               rec->sg_aead_out,
 520                               data_len, rec->iv_data);
 521
 522        aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 523                                  tls_encrypt_done, sk);
 524
 525        /* Add the record in tx_list */
 526        list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
 527        atomic_inc(&ctx->encrypt_pending);
 528
 529        rc = crypto_aead_encrypt(aead_req);
 530        if (!rc || rc != -EINPROGRESS) {
 531                atomic_dec(&ctx->encrypt_pending);
 532                sge->offset -= prot->prepend_size;
 533                sge->length += prot->prepend_size;
 534        }
 535
 536        if (!rc) {
 537                WRITE_ONCE(rec->tx_ready, true);
 538        } else if (rc != -EINPROGRESS) {
 539                list_del(&rec->list);
 540                return rc;
 541        }
 542
 543        /* Unhook the record from context if encryption is not failure */
 544        ctx->open_rec = NULL;
 545        tls_advance_record_sn(sk, prot, &tls_ctx->tx);
 546        return rc;
 547}
 548
 549static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
 550                                 struct tls_rec **to, struct sk_msg *msg_opl,
 551                                 struct sk_msg *msg_oen, u32 split_point,
 552                                 u32 tx_overhead_size, u32 *orig_end)
 553{
 554        u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
 555        struct scatterlist *sge, *osge, *nsge;
 556        u32 orig_size = msg_opl->sg.size;
 557        struct scatterlist tmp = { };
 558        struct sk_msg *msg_npl;
 559        struct tls_rec *new;
 560        int ret;
 561
 562        new = tls_get_rec(sk);
 563        if (!new)
 564                return -ENOMEM;
 565        ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
 566                           tx_overhead_size, 0);
 567        if (ret < 0) {
 568                tls_free_rec(sk, new);
 569                return ret;
 570        }
 571
 572        *orig_end = msg_opl->sg.end;
 573        i = msg_opl->sg.start;
 574        sge = sk_msg_elem(msg_opl, i);
 575        while (apply && sge->length) {
 576                if (sge->length > apply) {
 577                        u32 len = sge->length - apply;
 578
 579                        get_page(sg_page(sge));
 580                        sg_set_page(&tmp, sg_page(sge), len,
 581                                    sge->offset + apply);
 582                        sge->length = apply;
 583                        bytes += apply;
 584                        apply = 0;
 585                } else {
 586                        apply -= sge->length;
 587                        bytes += sge->length;
 588                }
 589
 590                sk_msg_iter_var_next(i);
 591                if (i == msg_opl->sg.end)
 592                        break;
 593                sge = sk_msg_elem(msg_opl, i);
 594        }
 595
 596        msg_opl->sg.end = i;
 597        msg_opl->sg.curr = i;
 598        msg_opl->sg.copybreak = 0;
 599        msg_opl->apply_bytes = 0;
 600        msg_opl->sg.size = bytes;
 601
 602        msg_npl = &new->msg_plaintext;
 603        msg_npl->apply_bytes = apply;
 604        msg_npl->sg.size = orig_size - bytes;
 605
 606        j = msg_npl->sg.start;
 607        nsge = sk_msg_elem(msg_npl, j);
 608        if (tmp.length) {
 609                memcpy(nsge, &tmp, sizeof(*nsge));
 610                sk_msg_iter_var_next(j);
 611                nsge = sk_msg_elem(msg_npl, j);
 612        }
 613
 614        osge = sk_msg_elem(msg_opl, i);
 615        while (osge->length) {
 616                memcpy(nsge, osge, sizeof(*nsge));
 617                sg_unmark_end(nsge);
 618                sk_msg_iter_var_next(i);
 619                sk_msg_iter_var_next(j);
 620                if (i == *orig_end)
 621                        break;
 622                osge = sk_msg_elem(msg_opl, i);
 623                nsge = sk_msg_elem(msg_npl, j);
 624        }
 625
 626        msg_npl->sg.end = j;
 627        msg_npl->sg.curr = j;
 628        msg_npl->sg.copybreak = 0;
 629
 630        *to = new;
 631        return 0;
 632}
 633
 634static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
 635                                  struct tls_rec *from, u32 orig_end)
 636{
 637        struct sk_msg *msg_npl = &from->msg_plaintext;
 638        struct sk_msg *msg_opl = &to->msg_plaintext;
 639        struct scatterlist *osge, *nsge;
 640        u32 i, j;
 641
 642        i = msg_opl->sg.end;
 643        sk_msg_iter_var_prev(i);
 644        j = msg_npl->sg.start;
 645
 646        osge = sk_msg_elem(msg_opl, i);
 647        nsge = sk_msg_elem(msg_npl, j);
 648
 649        if (sg_page(osge) == sg_page(nsge) &&
 650            osge->offset + osge->length == nsge->offset) {
 651                osge->length += nsge->length;
 652                put_page(sg_page(nsge));
 653        }
 654
 655        msg_opl->sg.end = orig_end;
 656        msg_opl->sg.curr = orig_end;
 657        msg_opl->sg.copybreak = 0;
 658        msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
 659        msg_opl->sg.size += msg_npl->sg.size;
 660
 661        sk_msg_free(sk, &to->msg_encrypted);
 662        sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
 663
 664        kfree(from);
 665}
 666
 667static int tls_push_record(struct sock *sk, int flags,
 668                           unsigned char record_type)
 669{
 670        struct tls_context *tls_ctx = tls_get_ctx(sk);
 671        struct tls_prot_info *prot = &tls_ctx->prot_info;
 672        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 673        struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
 674        u32 i, split_point, orig_end;
 675        struct sk_msg *msg_pl, *msg_en;
 676        struct aead_request *req;
 677        bool split;
 678        int rc;
 679
 680        if (!rec)
 681                return 0;
 682
 683        msg_pl = &rec->msg_plaintext;
 684        msg_en = &rec->msg_encrypted;
 685
 686        split_point = msg_pl->apply_bytes;
 687        split = split_point && split_point < msg_pl->sg.size;
 688        if (unlikely((!split &&
 689                      msg_pl->sg.size +
 690                      prot->overhead_size > msg_en->sg.size) ||
 691                     (split &&
 692                      split_point +
 693                      prot->overhead_size > msg_en->sg.size))) {
 694                split = true;
 695                split_point = msg_en->sg.size;
 696        }
 697        if (split) {
 698                rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
 699                                           split_point, prot->overhead_size,
 700                                           &orig_end);
 701                if (rc < 0)
 702                        return rc;
 703                /* This can happen if above tls_split_open_record allocates
 704                 * a single large encryption buffer instead of two smaller
 705                 * ones. In this case adjust pointers and continue without
 706                 * split.
 707                 */
 708                if (!msg_pl->sg.size) {
 709                        tls_merge_open_record(sk, rec, tmp, orig_end);
 710                        msg_pl = &rec->msg_plaintext;
 711                        msg_en = &rec->msg_encrypted;
 712                        split = false;
 713                }
 714                sk_msg_trim(sk, msg_en, msg_pl->sg.size +
 715                            prot->overhead_size);
 716        }
 717
 718        rec->tx_flags = flags;
 719        req = &rec->aead_req;
 720
 721        i = msg_pl->sg.end;
 722        sk_msg_iter_var_prev(i);
 723
 724        rec->content_type = record_type;
 725        if (prot->version == TLS_1_3_VERSION) {
 726                /* Add content type to end of message.  No padding added */
 727                sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
 728                sg_mark_end(&rec->sg_content_type);
 729                sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
 730                         &rec->sg_content_type);
 731        } else {
 732                sg_mark_end(sk_msg_elem(msg_pl, i));
 733        }
 734
 735        if (msg_pl->sg.end < msg_pl->sg.start) {
 736                sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
 737                         MAX_SKB_FRAGS - msg_pl->sg.start + 1,
 738                         msg_pl->sg.data);
 739        }
 740
 741        i = msg_pl->sg.start;
 742        sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
 743
 744        i = msg_en->sg.end;
 745        sk_msg_iter_var_prev(i);
 746        sg_mark_end(sk_msg_elem(msg_en, i));
 747
 748        i = msg_en->sg.start;
 749        sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
 750
 751        tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
 752                     tls_ctx->tx.rec_seq, record_type, prot);
 753
 754        tls_fill_prepend(tls_ctx,
 755                         page_address(sg_page(&msg_en->sg.data[i])) +
 756                         msg_en->sg.data[i].offset,
 757                         msg_pl->sg.size + prot->tail_size,
 758                         record_type);
 759
 760        tls_ctx->pending_open_record_frags = false;
 761
 762        rc = tls_do_encryption(sk, tls_ctx, ctx, req,
 763                               msg_pl->sg.size + prot->tail_size, i);
 764        if (rc < 0) {
 765                if (rc != -EINPROGRESS) {
 766                        tls_err_abort(sk, EBADMSG);
 767                        if (split) {
 768                                tls_ctx->pending_open_record_frags = true;
 769                                tls_merge_open_record(sk, rec, tmp, orig_end);
 770                        }
 771                }
 772                ctx->async_capable = 1;
 773                return rc;
 774        } else if (split) {
 775                msg_pl = &tmp->msg_plaintext;
 776                msg_en = &tmp->msg_encrypted;
 777                sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
 778                tls_ctx->pending_open_record_frags = true;
 779                ctx->open_rec = tmp;
 780        }
 781
 782        return tls_tx_records(sk, flags);
 783}
 784
 785static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
 786                               bool full_record, u8 record_type,
 787                               ssize_t *copied, int flags)
 788{
 789        struct tls_context *tls_ctx = tls_get_ctx(sk);
 790        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 791        struct sk_msg msg_redir = { };
 792        struct sk_psock *psock;
 793        struct sock *sk_redir;
 794        struct tls_rec *rec;
 795        bool enospc, policy;
 796        int err = 0, send;
 797        u32 delta = 0;
 798
 799        policy = !(flags & MSG_SENDPAGE_NOPOLICY);
 800        psock = sk_psock_get(sk);
 801        if (!psock || !policy) {
 802                err = tls_push_record(sk, flags, record_type);
 803                if (err && sk->sk_err == EBADMSG) {
 804                        *copied -= sk_msg_free(sk, msg);
 805                        tls_free_open_rec(sk);
 806                        err = -sk->sk_err;
 807                }
 808                if (psock)
 809                        sk_psock_put(sk, psock);
 810                return err;
 811        }
 812more_data:
 813        enospc = sk_msg_full(msg);
 814        if (psock->eval == __SK_NONE) {
 815                delta = msg->sg.size;
 816                psock->eval = sk_psock_msg_verdict(sk, psock, msg);
 817                delta -= msg->sg.size;
 818        }
 819        if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
 820            !enospc && !full_record) {
 821                err = -ENOSPC;
 822                goto out_err;
 823        }
 824        msg->cork_bytes = 0;
 825        send = msg->sg.size;
 826        if (msg->apply_bytes && msg->apply_bytes < send)
 827                send = msg->apply_bytes;
 828
 829        switch (psock->eval) {
 830        case __SK_PASS:
 831                err = tls_push_record(sk, flags, record_type);
 832                if (err && sk->sk_err == EBADMSG) {
 833                        *copied -= sk_msg_free(sk, msg);
 834                        tls_free_open_rec(sk);
 835                        err = -sk->sk_err;
 836                        goto out_err;
 837                }
 838                break;
 839        case __SK_REDIRECT:
 840                sk_redir = psock->sk_redir;
 841                memcpy(&msg_redir, msg, sizeof(*msg));
 842                if (msg->apply_bytes < send)
 843                        msg->apply_bytes = 0;
 844                else
 845                        msg->apply_bytes -= send;
 846                sk_msg_return_zero(sk, msg, send);
 847                msg->sg.size -= send;
 848                release_sock(sk);
 849                err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
 850                lock_sock(sk);
 851                if (err < 0) {
 852                        *copied -= sk_msg_free_nocharge(sk, &msg_redir);
 853                        msg->sg.size = 0;
 854                }
 855                if (msg->sg.size == 0)
 856                        tls_free_open_rec(sk);
 857                break;
 858        case __SK_DROP:
 859        default:
 860                sk_msg_free_partial(sk, msg, send);
 861                if (msg->apply_bytes < send)
 862                        msg->apply_bytes = 0;
 863                else
 864                        msg->apply_bytes -= send;
 865                if (msg->sg.size == 0)
 866                        tls_free_open_rec(sk);
 867                *copied -= (send + delta);
 868                err = -EACCES;
 869        }
 870
 871        if (likely(!err)) {
 872                bool reset_eval = !ctx->open_rec;
 873
 874                rec = ctx->open_rec;
 875                if (rec) {
 876                        msg = &rec->msg_plaintext;
 877                        if (!msg->apply_bytes)
 878                                reset_eval = true;
 879                }
 880                if (reset_eval) {
 881                        psock->eval = __SK_NONE;
 882                        if (psock->sk_redir) {
 883                                sock_put(psock->sk_redir);
 884                                psock->sk_redir = NULL;
 885                        }
 886                }
 887                if (rec)
 888                        goto more_data;
 889        }
 890 out_err:
 891        sk_psock_put(sk, psock);
 892        return err;
 893}
 894
 895static int tls_sw_push_pending_record(struct sock *sk, int flags)
 896{
 897        struct tls_context *tls_ctx = tls_get_ctx(sk);
 898        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 899        struct tls_rec *rec = ctx->open_rec;
 900        struct sk_msg *msg_pl;
 901        size_t copied;
 902
 903        if (!rec)
 904                return 0;
 905
 906        msg_pl = &rec->msg_plaintext;
 907        copied = msg_pl->sg.size;
 908        if (!copied)
 909                return 0;
 910
 911        return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
 912                                   &copied, flags);
 913}
 914
 915int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 916{
 917        long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
 918        struct tls_context *tls_ctx = tls_get_ctx(sk);
 919        struct tls_prot_info *prot = &tls_ctx->prot_info;
 920        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 921        bool async_capable = ctx->async_capable;
 922        unsigned char record_type = TLS_RECORD_TYPE_DATA;
 923        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
 924        bool eor = !(msg->msg_flags & MSG_MORE);
 925        size_t try_to_copy;
 926        ssize_t copied = 0;
 927        struct sk_msg *msg_pl, *msg_en;
 928        struct tls_rec *rec;
 929        int required_size;
 930        int num_async = 0;
 931        bool full_record;
 932        int record_room;
 933        int num_zc = 0;
 934        int orig_size;
 935        int ret = 0;
 936        int pending;
 937
 938        if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
 939                               MSG_CMSG_COMPAT))
 940                return -EOPNOTSUPP;
 941
 942        mutex_lock(&tls_ctx->tx_lock);
 943        lock_sock(sk);
 944
 945        if (unlikely(msg->msg_controllen)) {
 946                ret = tls_proccess_cmsg(sk, msg, &record_type);
 947                if (ret) {
 948                        if (ret == -EINPROGRESS)
 949                                num_async++;
 950                        else if (ret != -EAGAIN)
 951                                goto send_end;
 952                }
 953        }
 954
 955        while (msg_data_left(msg)) {
 956                if (sk->sk_err) {
 957                        ret = -sk->sk_err;
 958                        goto send_end;
 959                }
 960
 961                if (ctx->open_rec)
 962                        rec = ctx->open_rec;
 963                else
 964                        rec = ctx->open_rec = tls_get_rec(sk);
 965                if (!rec) {
 966                        ret = -ENOMEM;
 967                        goto send_end;
 968                }
 969
 970                msg_pl = &rec->msg_plaintext;
 971                msg_en = &rec->msg_encrypted;
 972
 973                orig_size = msg_pl->sg.size;
 974                full_record = false;
 975                try_to_copy = msg_data_left(msg);
 976                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
 977                if (try_to_copy >= record_room) {
 978                        try_to_copy = record_room;
 979                        full_record = true;
 980                }
 981
 982                required_size = msg_pl->sg.size + try_to_copy +
 983                                prot->overhead_size;
 984
 985                if (!sk_stream_memory_free(sk))
 986                        goto wait_for_sndbuf;
 987
 988alloc_encrypted:
 989                ret = tls_alloc_encrypted_msg(sk, required_size);
 990                if (ret) {
 991                        if (ret != -ENOSPC)
 992                                goto wait_for_memory;
 993
 994                        /* Adjust try_to_copy according to the amount that was
 995                         * actually allocated. The difference is due
 996                         * to max sg elements limit
 997                         */
 998                        try_to_copy -= required_size - msg_en->sg.size;
 999                        full_record = true;
1000                }
1001
1002                if (!is_kvec && (full_record || eor) && !async_capable) {
1003                        u32 first = msg_pl->sg.end;
1004
1005                        ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006                                                        msg_pl, try_to_copy);
1007                        if (ret)
1008                                goto fallback_to_reg_send;
1009
1010                        num_zc++;
1011                        copied += try_to_copy;
1012
1013                        sk_msg_sg_copy_set(msg_pl, first);
1014                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015                                                  record_type, &copied,
1016                                                  msg->msg_flags);
1017                        if (ret) {
1018                                if (ret == -EINPROGRESS)
1019                                        num_async++;
1020                                else if (ret == -ENOMEM)
1021                                        goto wait_for_memory;
1022                                else if (ctx->open_rec && ret == -ENOSPC)
1023                                        goto rollback_iter;
1024                                else if (ret != -EAGAIN)
1025                                        goto send_end;
1026                        }
1027                        continue;
1028rollback_iter:
1029                        copied -= try_to_copy;
1030                        sk_msg_sg_copy_clear(msg_pl, first);
1031                        iov_iter_revert(&msg->msg_iter,
1032                                        msg_pl->sg.size - orig_size);
1033fallback_to_reg_send:
1034                        sk_msg_trim(sk, msg_pl, orig_size);
1035                }
1036
1037                required_size = msg_pl->sg.size + try_to_copy;
1038
1039                ret = tls_clone_plaintext_msg(sk, required_size);
1040                if (ret) {
1041                        if (ret != -ENOSPC)
1042                                goto send_end;
1043
1044                        /* Adjust try_to_copy according to the amount that was
1045                         * actually allocated. The difference is due
1046                         * to max sg elements limit
1047                         */
1048                        try_to_copy -= required_size - msg_pl->sg.size;
1049                        full_record = true;
1050                        sk_msg_trim(sk, msg_en,
1051                                    msg_pl->sg.size + prot->overhead_size);
1052                }
1053
1054                if (try_to_copy) {
1055                        ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056                                                       msg_pl, try_to_copy);
1057                        if (ret < 0)
1058                                goto trim_sgl;
1059                }
1060
1061                /* Open records defined only if successfully copied, otherwise
1062                 * we would trim the sg but not reset the open record frags.
1063                 */
1064                tls_ctx->pending_open_record_frags = true;
1065                copied += try_to_copy;
1066                if (full_record || eor) {
1067                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068                                                  record_type, &copied,
1069                                                  msg->msg_flags);
1070                        if (ret) {
1071                                if (ret == -EINPROGRESS)
1072                                        num_async++;
1073                                else if (ret == -ENOMEM)
1074                                        goto wait_for_memory;
1075                                else if (ret != -EAGAIN) {
1076                                        if (ret == -ENOSPC)
1077                                                ret = 0;
1078                                        goto send_end;
1079                                }
1080                        }
1081                }
1082
1083                continue;
1084
1085wait_for_sndbuf:
1086                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087wait_for_memory:
1088                ret = sk_stream_wait_memory(sk, &timeo);
1089                if (ret) {
1090trim_sgl:
1091                        if (ctx->open_rec)
1092                                tls_trim_both_msgs(sk, orig_size);
1093                        goto send_end;
1094                }
1095
1096                if (ctx->open_rec && msg_en->sg.size < required_size)
1097                        goto alloc_encrypted;
1098        }
1099
1100        if (!num_async) {
1101                goto send_end;
1102        } else if (num_zc) {
1103                /* Wait for pending encryptions to get completed */
1104                spin_lock_bh(&ctx->encrypt_compl_lock);
1105                ctx->async_notify = true;
1106
1107                pending = atomic_read(&ctx->encrypt_pending);
1108                spin_unlock_bh(&ctx->encrypt_compl_lock);
1109                if (pending)
1110                        crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111                else
1112                        reinit_completion(&ctx->async_wait.completion);
1113
1114                /* There can be no concurrent accesses, since we have no
1115                 * pending encrypt operations
1116                 */
1117                WRITE_ONCE(ctx->async_notify, false);
1118
1119                if (ctx->async_wait.err) {
1120                        ret = ctx->async_wait.err;
1121                        copied = 0;
1122                }
1123        }
1124
1125        /* Transmit if any encryptions have completed */
1126        if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127                cancel_delayed_work(&ctx->tx_work.work);
1128                tls_tx_records(sk, msg->msg_flags);
1129        }
1130
1131send_end:
1132        ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134        release_sock(sk);
1135        mutex_unlock(&tls_ctx->tx_lock);
1136        return copied > 0 ? copied : ret;
1137}
1138
1139static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140                              int offset, size_t size, int flags)
1141{
1142        long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143        struct tls_context *tls_ctx = tls_get_ctx(sk);
1144        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145        struct tls_prot_info *prot = &tls_ctx->prot_info;
1146        unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147        struct sk_msg *msg_pl;
1148        struct tls_rec *rec;
1149        int num_async = 0;
1150        ssize_t copied = 0;
1151        bool full_record;
1152        int record_room;
1153        int ret = 0;
1154        bool eor;
1155
1156        eor = !(flags & MSG_SENDPAGE_NOTLAST);
1157        sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159        /* Call the sk_stream functions to manage the sndbuf mem. */
1160        while (size > 0) {
1161                size_t copy, required_size;
1162
1163                if (sk->sk_err) {
1164                        ret = -sk->sk_err;
1165                        goto sendpage_end;
1166                }
1167
1168                if (ctx->open_rec)
1169                        rec = ctx->open_rec;
1170                else
1171                        rec = ctx->open_rec = tls_get_rec(sk);
1172                if (!rec) {
1173                        ret = -ENOMEM;
1174                        goto sendpage_end;
1175                }
1176
1177                msg_pl = &rec->msg_plaintext;
1178
1179                full_record = false;
1180                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181                copy = size;
1182                if (copy >= record_room) {
1183                        copy = record_room;
1184                        full_record = true;
1185                }
1186
1187                required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189                if (!sk_stream_memory_free(sk))
1190                        goto wait_for_sndbuf;
1191alloc_payload:
1192                ret = tls_alloc_encrypted_msg(sk, required_size);
1193                if (ret) {
1194                        if (ret != -ENOSPC)
1195                                goto wait_for_memory;
1196
1197                        /* Adjust copy according to the amount that was
1198                         * actually allocated. The difference is due
1199                         * to max sg elements limit
1200                         */
1201                        copy -= required_size - msg_pl->sg.size;
1202                        full_record = true;
1203                }
1204
1205                sk_msg_page_add(msg_pl, page, copy, offset);
1206                sk_mem_charge(sk, copy);
1207
1208                offset += copy;
1209                size -= copy;
1210                copied += copy;
1211
1212                tls_ctx->pending_open_record_frags = true;
1213                if (full_record || eor || sk_msg_full(msg_pl)) {
1214                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215                                                  record_type, &copied, flags);
1216                        if (ret) {
1217                                if (ret == -EINPROGRESS)
1218                                        num_async++;
1219                                else if (ret == -ENOMEM)
1220                                        goto wait_for_memory;
1221                                else if (ret != -EAGAIN) {
1222                                        if (ret == -ENOSPC)
1223                                                ret = 0;
1224                                        goto sendpage_end;
1225                                }
1226                        }
1227                }
1228                continue;
1229wait_for_sndbuf:
1230                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231wait_for_memory:
1232                ret = sk_stream_wait_memory(sk, &timeo);
1233                if (ret) {
1234                        if (ctx->open_rec)
1235                                tls_trim_both_msgs(sk, msg_pl->sg.size);
1236                        goto sendpage_end;
1237                }
1238
1239                if (ctx->open_rec)
1240                        goto alloc_payload;
1241        }
1242
1243        if (num_async) {
1244                /* Transmit if any encryptions have completed */
1245                if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246                        cancel_delayed_work(&ctx->tx_work.work);
1247                        tls_tx_records(sk, flags);
1248                }
1249        }
1250sendpage_end:
1251        ret = sk_stream_error(sk, flags, ret);
1252        return copied > 0 ? copied : ret;
1253}
1254
1255int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256                           int offset, size_t size, int flags)
1257{
1258        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260                      MSG_NO_SHARED_FRAGS))
1261                return -EOPNOTSUPP;
1262
1263        return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264}
1265
1266int tls_sw_sendpage(struct sock *sk, struct page *page,
1267                    int offset, size_t size, int flags)
1268{
1269        struct tls_context *tls_ctx = tls_get_ctx(sk);
1270        int ret;
1271
1272        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274                return -EOPNOTSUPP;
1275
1276        mutex_lock(&tls_ctx->tx_lock);
1277        lock_sock(sk);
1278        ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279        release_sock(sk);
1280        mutex_unlock(&tls_ctx->tx_lock);
1281        return ret;
1282}
1283
1284static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285                                     bool nonblock, long timeo, int *err)
1286{
1287        struct tls_context *tls_ctx = tls_get_ctx(sk);
1288        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289        struct sk_buff *skb;
1290        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291
1292        while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1293                if (sk->sk_err) {
1294                        *err = sock_error(sk);
1295                        return NULL;
1296                }
1297
1298                if (!skb_queue_empty(&sk->sk_receive_queue)) {
1299                        __strp_unpause(&ctx->strp);
1300                        if (ctx->recv_pkt)
1301                                return ctx->recv_pkt;
1302                }
1303
1304                if (sk->sk_shutdown & RCV_SHUTDOWN)
1305                        return NULL;
1306
1307                if (sock_flag(sk, SOCK_DONE))
1308                        return NULL;
1309
1310                if (nonblock || !timeo) {
1311                        *err = -EAGAIN;
1312                        return NULL;
1313                }
1314
1315                add_wait_queue(sk_sleep(sk), &wait);
1316                sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1317                sk_wait_event(sk, &timeo,
1318                              ctx->recv_pkt != skb ||
1319                              !sk_psock_queue_empty(psock),
1320                              &wait);
1321                sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322                remove_wait_queue(sk_sleep(sk), &wait);
1323
1324                /* Handle signals */
1325                if (signal_pending(current)) {
1326                        *err = sock_intr_errno(timeo);
1327                        return NULL;
1328                }
1329        }
1330
1331        return skb;
1332}
1333
1334static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1335                               int length, int *pages_used,
1336                               unsigned int *size_used,
1337                               struct scatterlist *to,
1338                               int to_max_pages)
1339{
1340        int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1341        struct page *pages[MAX_SKB_FRAGS];
1342        unsigned int size = *size_used;
1343        ssize_t copied, use;
1344        size_t offset;
1345
1346        while (length > 0) {
1347                i = 0;
1348                maxpages = to_max_pages - num_elem;
1349                if (maxpages == 0) {
1350                        rc = -EFAULT;
1351                        goto out;
1352                }
1353                copied = iov_iter_get_pages(from, pages,
1354                                            length,
1355                                            maxpages, &offset);
1356                if (copied <= 0) {
1357                        rc = -EFAULT;
1358                        goto out;
1359                }
1360
1361                iov_iter_advance(from, copied);
1362
1363                length -= copied;
1364                size += copied;
1365                while (copied) {
1366                        use = min_t(int, copied, PAGE_SIZE - offset);
1367
1368                        sg_set_page(&to[num_elem],
1369                                    pages[i], use, offset);
1370                        sg_unmark_end(&to[num_elem]);
1371                        /* We do not uncharge memory from this API */
1372
1373                        offset = 0;
1374                        copied -= use;
1375
1376                        i++;
1377                        num_elem++;
1378                }
1379        }
1380        /* Mark the end in the last sg entry if newly added */
1381        if (num_elem > *pages_used)
1382                sg_mark_end(&to[num_elem - 1]);
1383out:
1384        if (rc)
1385                iov_iter_revert(from, size - *size_used);
1386        *size_used = size;
1387        *pages_used = num_elem;
1388
1389        return rc;
1390}
1391
1392/* This function decrypts the input skb into either out_iov or in out_sg
1393 * or in skb buffers itself. The input parameter 'zc' indicates if
1394 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1395 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1396 * NULL, then the decryption happens inside skb buffers itself, i.e.
1397 * zero-copy gets disabled and 'zc' is updated.
1398 */
1399
1400static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1401                            struct iov_iter *out_iov,
1402                            struct scatterlist *out_sg,
1403                            int *chunk, bool *zc, bool async)
1404{
1405        struct tls_context *tls_ctx = tls_get_ctx(sk);
1406        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1407        struct tls_prot_info *prot = &tls_ctx->prot_info;
1408        struct strp_msg *rxm = strp_msg(skb);
1409        int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1410        struct aead_request *aead_req;
1411        struct sk_buff *unused;
1412        u8 *aad, *iv, *mem = NULL;
1413        struct scatterlist *sgin = NULL;
1414        struct scatterlist *sgout = NULL;
1415        const int data_len = rxm->full_len - prot->overhead_size +
1416                             prot->tail_size;
1417        int iv_offset = 0;
1418
1419        if (*zc && (out_iov || out_sg)) {
1420                if (out_iov)
1421                        n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1422                else
1423                        n_sgout = sg_nents(out_sg);
1424                n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1425                                 rxm->full_len - prot->prepend_size);
1426        } else {
1427                n_sgout = 0;
1428                *zc = false;
1429                n_sgin = skb_cow_data(skb, 0, &unused);
1430        }
1431
1432        if (n_sgin < 1)
1433                return -EBADMSG;
1434
1435        /* Increment to accommodate AAD */
1436        n_sgin = n_sgin + 1;
1437
1438        nsg = n_sgin + n_sgout;
1439
1440        aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1441        mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1442        mem_size = mem_size + prot->aad_size;
1443        mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1444
1445        /* Allocate a single block of memory which contains
1446         * aead_req || sgin[] || sgout[] || aad || iv.
1447         * This order achieves correct alignment for aead_req, sgin, sgout.
1448         */
1449        mem = kmalloc(mem_size, sk->sk_allocation);
1450        if (!mem)
1451                return -ENOMEM;
1452
1453        /* Segment the allocated memory */
1454        aead_req = (struct aead_request *)mem;
1455        sgin = (struct scatterlist *)(mem + aead_size);
1456        sgout = sgin + n_sgin;
1457        aad = (u8 *)(sgout + n_sgout);
1458        iv = aad + prot->aad_size;
1459
1460        /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1461        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1462                iv[0] = 2;
1463                iv_offset = 1;
1464        }
1465
1466        /* Prepare IV */
1467        err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1468                            iv + iv_offset + prot->salt_size,
1469                            prot->iv_size);
1470        if (err < 0) {
1471                kfree(mem);
1472                return err;
1473        }
1474        if (prot->version == TLS_1_3_VERSION ||
1475            prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1476                memcpy(iv + iv_offset, tls_ctx->rx.iv,
1477                       crypto_aead_ivsize(ctx->aead_recv));
1478        else
1479                memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1480
1481        xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1482
1483        /* Prepare AAD */
1484        tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1485                     prot->tail_size,
1486                     tls_ctx->rx.rec_seq, ctx->control, prot);
1487
1488        /* Prepare sgin */
1489        sg_init_table(sgin, n_sgin);
1490        sg_set_buf(&sgin[0], aad, prot->aad_size);
1491        err = skb_to_sgvec(skb, &sgin[1],
1492                           rxm->offset + prot->prepend_size,
1493                           rxm->full_len - prot->prepend_size);
1494        if (err < 0) {
1495                kfree(mem);
1496                return err;
1497        }
1498
1499        if (n_sgout) {
1500                if (out_iov) {
1501                        sg_init_table(sgout, n_sgout);
1502                        sg_set_buf(&sgout[0], aad, prot->aad_size);
1503
1504                        *chunk = 0;
1505                        err = tls_setup_from_iter(sk, out_iov, data_len,
1506                                                  &pages, chunk, &sgout[1],
1507                                                  (n_sgout - 1));
1508                        if (err < 0)
1509                                goto fallback_to_reg_recv;
1510                } else if (out_sg) {
1511                        memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1512                } else {
1513                        goto fallback_to_reg_recv;
1514                }
1515        } else {
1516fallback_to_reg_recv:
1517                sgout = sgin;
1518                pages = 0;
1519                *chunk = data_len;
1520                *zc = false;
1521        }
1522
1523        /* Prepare and submit AEAD request */
1524        err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1525                                data_len, aead_req, async);
1526        if (err == -EINPROGRESS)
1527                return err;
1528
1529        /* Release the pages in case iov was mapped to pages */
1530        for (; pages > 0; pages--)
1531                put_page(sg_page(&sgout[pages]));
1532
1533        kfree(mem);
1534        return err;
1535}
1536
1537static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1538                              struct iov_iter *dest, int *chunk, bool *zc,
1539                              bool async)
1540{
1541        struct tls_context *tls_ctx = tls_get_ctx(sk);
1542        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1543        struct tls_prot_info *prot = &tls_ctx->prot_info;
1544        struct strp_msg *rxm = strp_msg(skb);
1545        int pad, err = 0;
1546
1547        if (!ctx->decrypted) {
1548                if (tls_ctx->rx_conf == TLS_HW) {
1549                        err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1550                        if (err < 0)
1551                                return err;
1552                }
1553
1554                /* Still not decrypted after tls_device */
1555                if (!ctx->decrypted) {
1556                        err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1557                                               async);
1558                        if (err < 0) {
1559                                if (err == -EINPROGRESS)
1560                                        tls_advance_record_sn(sk, prot,
1561                                                              &tls_ctx->rx);
1562                                else if (err == -EBADMSG)
1563                                        TLS_INC_STATS(sock_net(sk),
1564                                                      LINUX_MIB_TLSDECRYPTERROR);
1565                                return err;
1566                        }
1567                } else {
1568                        *zc = false;
1569                }
1570
1571                pad = padding_length(ctx, prot, skb);
1572                if (pad < 0)
1573                        return pad;
1574
1575                rxm->full_len -= pad;
1576                rxm->offset += prot->prepend_size;
1577                rxm->full_len -= prot->overhead_size;
1578                tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1579                ctx->decrypted = 1;
1580                ctx->saved_data_ready(sk);
1581        } else {
1582                *zc = false;
1583        }
1584
1585        return err;
1586}
1587
1588int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1589                struct scatterlist *sgout)
1590{
1591        bool zc = true;
1592        int chunk;
1593
1594        return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1595}
1596
1597static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1598                               unsigned int len)
1599{
1600        struct tls_context *tls_ctx = tls_get_ctx(sk);
1601        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1602
1603        if (skb) {
1604                struct strp_msg *rxm = strp_msg(skb);
1605
1606                if (len < rxm->full_len) {
1607                        rxm->offset += len;
1608                        rxm->full_len -= len;
1609                        return false;
1610                }
1611                consume_skb(skb);
1612        }
1613
1614        /* Finished with message */
1615        ctx->recv_pkt = NULL;
1616        __strp_unpause(&ctx->strp);
1617
1618        return true;
1619}
1620
1621/* This function traverses the rx_list in tls receive context to copies the
1622 * decrypted records into the buffer provided by caller zero copy is not
1623 * true. Further, the records are removed from the rx_list if it is not a peek
1624 * case and the record has been consumed completely.
1625 */
1626static int process_rx_list(struct tls_sw_context_rx *ctx,
1627                           struct msghdr *msg,
1628                           u8 *control,
1629                           bool *cmsg,
1630                           size_t skip,
1631                           size_t len,
1632                           bool zc,
1633                           bool is_peek)
1634{
1635        struct sk_buff *skb = skb_peek(&ctx->rx_list);
1636        u8 ctrl = *control;
1637        u8 msgc = *cmsg;
1638        struct tls_msg *tlm;
1639        ssize_t copied = 0;
1640
1641        /* Set the record type in 'control' if caller didn't pass it */
1642        if (!ctrl && skb) {
1643                tlm = tls_msg(skb);
1644                ctrl = tlm->control;
1645        }
1646
1647        while (skip && skb) {
1648                struct strp_msg *rxm = strp_msg(skb);
1649                tlm = tls_msg(skb);
1650
1651                /* Cannot process a record of different type */
1652                if (ctrl != tlm->control)
1653                        return 0;
1654
1655                if (skip < rxm->full_len)
1656                        break;
1657
1658                skip = skip - rxm->full_len;
1659                skb = skb_peek_next(skb, &ctx->rx_list);
1660        }
1661
1662        while (len && skb) {
1663                struct sk_buff *next_skb;
1664                struct strp_msg *rxm = strp_msg(skb);
1665                int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1666
1667                tlm = tls_msg(skb);
1668
1669                /* Cannot process a record of different type */
1670                if (ctrl != tlm->control)
1671                        return 0;
1672
1673                /* Set record type if not already done. For a non-data record,
1674                 * do not proceed if record type could not be copied.
1675                 */
1676                if (!msgc) {
1677                        int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1678                                            sizeof(ctrl), &ctrl);
1679                        msgc = true;
1680                        if (ctrl != TLS_RECORD_TYPE_DATA) {
1681                                if (cerr || msg->msg_flags & MSG_CTRUNC)
1682                                        return -EIO;
1683
1684                                *cmsg = msgc;
1685                        }
1686                }
1687
1688                if (!zc || (rxm->full_len - skip) > len) {
1689                        int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1690                                                    msg, chunk);
1691                        if (err < 0)
1692                                return err;
1693                }
1694
1695                len = len - chunk;
1696                copied = copied + chunk;
1697
1698                /* Consume the data from record if it is non-peek case*/
1699                if (!is_peek) {
1700                        rxm->offset = rxm->offset + chunk;
1701                        rxm->full_len = rxm->full_len - chunk;
1702
1703                        /* Return if there is unconsumed data in the record */
1704                        if (rxm->full_len - skip)
1705                                break;
1706                }
1707
1708                /* The remaining skip-bytes must lie in 1st record in rx_list.
1709                 * So from the 2nd record, 'skip' should be 0.
1710                 */
1711                skip = 0;
1712
1713                if (msg)
1714                        msg->msg_flags |= MSG_EOR;
1715
1716                next_skb = skb_peek_next(skb, &ctx->rx_list);
1717
1718                if (!is_peek) {
1719                        skb_unlink(skb, &ctx->rx_list);
1720                        consume_skb(skb);
1721                }
1722
1723                skb = next_skb;
1724        }
1725
1726        *control = ctrl;
1727        return copied;
1728}
1729
1730int tls_sw_recvmsg(struct sock *sk,
1731                   struct msghdr *msg,
1732                   size_t len,
1733                   int nonblock,
1734                   int flags,
1735                   int *addr_len)
1736{
1737        struct tls_context *tls_ctx = tls_get_ctx(sk);
1738        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1739        struct tls_prot_info *prot = &tls_ctx->prot_info;
1740        struct sk_psock *psock;
1741        unsigned char control = 0;
1742        ssize_t decrypted = 0;
1743        struct strp_msg *rxm;
1744        struct tls_msg *tlm;
1745        struct sk_buff *skb;
1746        ssize_t copied = 0;
1747        bool cmsg = false;
1748        int target, err = 0;
1749        long timeo;
1750        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1751        bool is_peek = flags & MSG_PEEK;
1752        bool bpf_strp_enabled;
1753        int num_async = 0;
1754        int pending;
1755
1756        flags |= nonblock;
1757
1758        if (unlikely(flags & MSG_ERRQUEUE))
1759                return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1760
1761        psock = sk_psock_get(sk);
1762        lock_sock(sk);
1763        bpf_strp_enabled = sk_psock_strp_enabled(psock);
1764
1765        /* Process pending decrypted records. It must be non-zero-copy */
1766        err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1767                              is_peek);
1768        if (err < 0) {
1769                tls_err_abort(sk, err);
1770                goto end;
1771        } else {
1772                copied = err;
1773        }
1774
1775        if (len <= copied)
1776                goto recv_end;
1777
1778        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1779        len = len - copied;
1780        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1781
1782        while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1783                bool retain_skb = false;
1784                bool zc = false;
1785                int to_decrypt;
1786                int chunk = 0;
1787                bool async_capable;
1788                bool async = false;
1789
1790                skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1791                if (!skb) {
1792                        if (psock) {
1793                                int ret = sk_msg_recvmsg(sk, psock, msg, len,
1794                                                         flags);
1795
1796                                if (ret > 0) {
1797                                        decrypted += ret;
1798                                        len -= ret;
1799                                        continue;
1800                                }
1801                        }
1802                        goto recv_end;
1803                } else {
1804                        tlm = tls_msg(skb);
1805                        if (prot->version == TLS_1_3_VERSION)
1806                                tlm->control = 0;
1807                        else
1808                                tlm->control = ctx->control;
1809                }
1810
1811                rxm = strp_msg(skb);
1812
1813                to_decrypt = rxm->full_len - prot->overhead_size;
1814
1815                if (to_decrypt <= len && !is_kvec && !is_peek &&
1816                    ctx->control == TLS_RECORD_TYPE_DATA &&
1817                    prot->version != TLS_1_3_VERSION &&
1818                    !bpf_strp_enabled)
1819                        zc = true;
1820
1821                /* Do not use async mode if record is non-data */
1822                if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1823                        async_capable = ctx->async_capable;
1824                else
1825                        async_capable = false;
1826
1827                err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1828                                         &chunk, &zc, async_capable);
1829                if (err < 0 && err != -EINPROGRESS) {
1830                        tls_err_abort(sk, EBADMSG);
1831                        goto recv_end;
1832                }
1833
1834                if (err == -EINPROGRESS) {
1835                        async = true;
1836                        num_async++;
1837                } else if (prot->version == TLS_1_3_VERSION) {
1838                        tlm->control = ctx->control;
1839                }
1840
1841                /* If the type of records being processed is not known yet,
1842                 * set it to record type just dequeued. If it is already known,
1843                 * but does not match the record type just dequeued, go to end.
1844                 * We always get record type here since for tls1.2, record type
1845                 * is known just after record is dequeued from stream parser.
1846                 * For tls1.3, we disable async.
1847                 */
1848
1849                if (!control)
1850                        control = tlm->control;
1851                else if (control != tlm->control)
1852                        goto recv_end;
1853
1854                if (!cmsg) {
1855                        int cerr;
1856
1857                        cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1858                                        sizeof(control), &control);
1859                        cmsg = true;
1860                        if (control != TLS_RECORD_TYPE_DATA) {
1861                                if (cerr || msg->msg_flags & MSG_CTRUNC) {
1862                                        err = -EIO;
1863                                        goto recv_end;
1864                                }
1865                        }
1866                }
1867
1868                if (async)
1869                        goto pick_next_record;
1870
1871                if (!zc) {
1872                        if (bpf_strp_enabled) {
1873                                err = sk_psock_tls_strp_read(psock, skb);
1874                                if (err != __SK_PASS) {
1875                                        rxm->offset = rxm->offset + rxm->full_len;
1876                                        rxm->full_len = 0;
1877                                        if (err == __SK_DROP)
1878                                                consume_skb(skb);
1879                                        ctx->recv_pkt = NULL;
1880                                        __strp_unpause(&ctx->strp);
1881                                        continue;
1882                                }
1883                        }
1884
1885                        if (rxm->full_len > len) {
1886                                retain_skb = true;
1887                                chunk = len;
1888                        } else {
1889                                chunk = rxm->full_len;
1890                        }
1891
1892                        err = skb_copy_datagram_msg(skb, rxm->offset,
1893                                                    msg, chunk);
1894                        if (err < 0)
1895                                goto recv_end;
1896
1897                        if (!is_peek) {
1898                                rxm->offset = rxm->offset + chunk;
1899                                rxm->full_len = rxm->full_len - chunk;
1900                        }
1901                }
1902
1903pick_next_record:
1904                if (chunk > len)
1905                        chunk = len;
1906
1907                decrypted += chunk;
1908                len -= chunk;
1909
1910                /* For async or peek case, queue the current skb */
1911                if (async || is_peek || retain_skb) {
1912                        skb_queue_tail(&ctx->rx_list, skb);
1913                        skb = NULL;
1914                }
1915
1916                if (tls_sw_advance_skb(sk, skb, chunk)) {
1917                        /* Return full control message to
1918                         * userspace before trying to parse
1919                         * another message type
1920                         */
1921                        msg->msg_flags |= MSG_EOR;
1922                        if (control != TLS_RECORD_TYPE_DATA)
1923                                goto recv_end;
1924                } else {
1925                        break;
1926                }
1927        }
1928
1929recv_end:
1930        if (num_async) {
1931                /* Wait for all previously submitted records to be decrypted */
1932                spin_lock_bh(&ctx->decrypt_compl_lock);
1933                ctx->async_notify = true;
1934                pending = atomic_read(&ctx->decrypt_pending);
1935                spin_unlock_bh(&ctx->decrypt_compl_lock);
1936                if (pending) {
1937                        err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1938                        if (err) {
1939                                /* one of async decrypt failed */
1940                                tls_err_abort(sk, err);
1941                                copied = 0;
1942                                decrypted = 0;
1943                                goto end;
1944                        }
1945                } else {
1946                        reinit_completion(&ctx->async_wait.completion);
1947                }
1948
1949                /* There can be no concurrent accesses, since we have no
1950                 * pending decrypt operations
1951                 */
1952                WRITE_ONCE(ctx->async_notify, false);
1953
1954                /* Drain records from the rx_list & copy if required */
1955                if (is_peek || is_kvec)
1956                        err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1957                                              decrypted, false, is_peek);
1958                else
1959                        err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1960                                              decrypted, true, is_peek);
1961                if (err < 0) {
1962                        tls_err_abort(sk, err);
1963                        copied = 0;
1964                        goto end;
1965                }
1966        }
1967
1968        copied += decrypted;
1969
1970end:
1971        release_sock(sk);
1972        if (psock)
1973                sk_psock_put(sk, psock);
1974        return copied ? : err;
1975}
1976
1977ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1978                           struct pipe_inode_info *pipe,
1979                           size_t len, unsigned int flags)
1980{
1981        struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1982        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1983        struct strp_msg *rxm = NULL;
1984        struct sock *sk = sock->sk;
1985        struct sk_buff *skb;
1986        ssize_t copied = 0;
1987        int err = 0;
1988        long timeo;
1989        int chunk;
1990        bool zc = false;
1991
1992        lock_sock(sk);
1993
1994        timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1995
1996        skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
1997        if (!skb)
1998                goto splice_read_end;
1999
2000        if (!ctx->decrypted) {
2001                err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2002
2003                /* splice does not support reading control messages */
2004                if (ctx->control != TLS_RECORD_TYPE_DATA) {
2005                        err = -EINVAL;
2006                        goto splice_read_end;
2007                }
2008
2009                if (err < 0) {
2010                        tls_err_abort(sk, EBADMSG);
2011                        goto splice_read_end;
2012                }
2013                ctx->decrypted = 1;
2014        }
2015        rxm = strp_msg(skb);
2016
2017        chunk = min_t(unsigned int, rxm->full_len, len);
2018        copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2019        if (copied < 0)
2020                goto splice_read_end;
2021
2022        tls_sw_advance_skb(sk, skb, copied);
2023
2024splice_read_end:
2025        release_sock(sk);
2026        return copied ? : err;
2027}
2028
2029bool tls_sw_stream_read(const struct sock *sk)
2030{
2031        struct tls_context *tls_ctx = tls_get_ctx(sk);
2032        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2033        bool ingress_empty = true;
2034        struct sk_psock *psock;
2035
2036        rcu_read_lock();
2037        psock = sk_psock(sk);
2038        if (psock)
2039                ingress_empty = list_empty(&psock->ingress_msg);
2040        rcu_read_unlock();
2041
2042        return !ingress_empty || ctx->recv_pkt ||
2043                !skb_queue_empty(&ctx->rx_list);
2044}
2045
2046static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2047{
2048        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2049        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2050        struct tls_prot_info *prot = &tls_ctx->prot_info;
2051        char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2052        struct strp_msg *rxm = strp_msg(skb);
2053        size_t cipher_overhead;
2054        size_t data_len = 0;
2055        int ret;
2056
2057        /* Verify that we have a full TLS header, or wait for more data */
2058        if (rxm->offset + prot->prepend_size > skb->len)
2059                return 0;
2060
2061        /* Sanity-check size of on-stack buffer. */
2062        if (WARN_ON(prot->prepend_size > sizeof(header))) {
2063                ret = -EINVAL;
2064                goto read_failure;
2065        }
2066
2067        /* Linearize header to local buffer */
2068        ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2069
2070        if (ret < 0)
2071                goto read_failure;
2072
2073        ctx->control = header[0];
2074
2075        data_len = ((header[4] & 0xFF) | (header[3] << 8));
2076
2077        cipher_overhead = prot->tag_size;
2078        if (prot->version != TLS_1_3_VERSION &&
2079            prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2080                cipher_overhead += prot->iv_size;
2081
2082        if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2083            prot->tail_size) {
2084                ret = -EMSGSIZE;
2085                goto read_failure;
2086        }
2087        if (data_len < cipher_overhead) {
2088                ret = -EBADMSG;
2089                goto read_failure;
2090        }
2091
2092        /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2093        if (header[1] != TLS_1_2_VERSION_MINOR ||
2094            header[2] != TLS_1_2_VERSION_MAJOR) {
2095                ret = -EINVAL;
2096                goto read_failure;
2097        }
2098
2099        tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2100                                     TCP_SKB_CB(skb)->seq + rxm->offset);
2101        return data_len + TLS_HEADER_SIZE;
2102
2103read_failure:
2104        tls_err_abort(strp->sk, ret);
2105
2106        return ret;
2107}
2108
2109static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2110{
2111        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2112        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2113
2114        ctx->decrypted = 0;
2115
2116        ctx->recv_pkt = skb;
2117        strp_pause(strp);
2118
2119        ctx->saved_data_ready(strp->sk);
2120}
2121
2122static void tls_data_ready(struct sock *sk)
2123{
2124        struct tls_context *tls_ctx = tls_get_ctx(sk);
2125        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126        struct sk_psock *psock;
2127
2128        strp_data_ready(&ctx->strp);
2129
2130        psock = sk_psock_get(sk);
2131        if (psock) {
2132                if (!list_empty(&psock->ingress_msg))
2133                        ctx->saved_data_ready(sk);
2134                sk_psock_put(sk, psock);
2135        }
2136}
2137
2138void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2139{
2140        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2141
2142        set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2143        set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2144        cancel_delayed_work_sync(&ctx->tx_work.work);
2145}
2146
2147void tls_sw_release_resources_tx(struct sock *sk)
2148{
2149        struct tls_context *tls_ctx = tls_get_ctx(sk);
2150        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2151        struct tls_rec *rec, *tmp;
2152        int pending;
2153
2154        /* Wait for any pending async encryptions to complete */
2155        spin_lock_bh(&ctx->encrypt_compl_lock);
2156        ctx->async_notify = true;
2157        pending = atomic_read(&ctx->encrypt_pending);
2158        spin_unlock_bh(&ctx->encrypt_compl_lock);
2159
2160        if (pending)
2161                crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2162
2163        tls_tx_records(sk, -1);
2164
2165        /* Free up un-sent records in tx_list. First, free
2166         * the partially sent record if any at head of tx_list.
2167         */
2168        if (tls_ctx->partially_sent_record) {
2169                tls_free_partial_record(sk, tls_ctx);
2170                rec = list_first_entry(&ctx->tx_list,
2171                                       struct tls_rec, list);
2172                list_del(&rec->list);
2173                sk_msg_free(sk, &rec->msg_plaintext);
2174                kfree(rec);
2175        }
2176
2177        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2178                list_del(&rec->list);
2179                sk_msg_free(sk, &rec->msg_encrypted);
2180                sk_msg_free(sk, &rec->msg_plaintext);
2181                kfree(rec);
2182        }
2183
2184        crypto_free_aead(ctx->aead_send);
2185        tls_free_open_rec(sk);
2186}
2187
2188void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2189{
2190        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2191
2192        kfree(ctx);
2193}
2194
2195void tls_sw_release_resources_rx(struct sock *sk)
2196{
2197        struct tls_context *tls_ctx = tls_get_ctx(sk);
2198        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2199
2200        kfree(tls_ctx->rx.rec_seq);
2201        kfree(tls_ctx->rx.iv);
2202
2203        if (ctx->aead_recv) {
2204                kfree_skb(ctx->recv_pkt);
2205                ctx->recv_pkt = NULL;
2206                skb_queue_purge(&ctx->rx_list);
2207                crypto_free_aead(ctx->aead_recv);
2208                strp_stop(&ctx->strp);
2209                /* If tls_sw_strparser_arm() was not called (cleanup paths)
2210                 * we still want to strp_stop(), but sk->sk_data_ready was
2211                 * never swapped.
2212                 */
2213                if (ctx->saved_data_ready) {
2214                        write_lock_bh(&sk->sk_callback_lock);
2215                        sk->sk_data_ready = ctx->saved_data_ready;
2216                        write_unlock_bh(&sk->sk_callback_lock);
2217                }
2218        }
2219}
2220
2221void tls_sw_strparser_done(struct tls_context *tls_ctx)
2222{
2223        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224
2225        strp_done(&ctx->strp);
2226}
2227
2228void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2229{
2230        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231
2232        kfree(ctx);
2233}
2234
2235void tls_sw_free_resources_rx(struct sock *sk)
2236{
2237        struct tls_context *tls_ctx = tls_get_ctx(sk);
2238
2239        tls_sw_release_resources_rx(sk);
2240        tls_sw_free_ctx_rx(tls_ctx);
2241}
2242
2243/* The work handler to transmitt the encrypted records in tx_list */
2244static void tx_work_handler(struct work_struct *work)
2245{
2246        struct delayed_work *delayed_work = to_delayed_work(work);
2247        struct tx_work *tx_work = container_of(delayed_work,
2248                                               struct tx_work, work);
2249        struct sock *sk = tx_work->sk;
2250        struct tls_context *tls_ctx = tls_get_ctx(sk);
2251        struct tls_sw_context_tx *ctx;
2252
2253        if (unlikely(!tls_ctx))
2254                return;
2255
2256        ctx = tls_sw_ctx_tx(tls_ctx);
2257        if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2258                return;
2259
2260        if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2261                return;
2262        mutex_lock(&tls_ctx->tx_lock);
2263        lock_sock(sk);
2264        tls_tx_records(sk, -1);
2265        release_sock(sk);
2266        mutex_unlock(&tls_ctx->tx_lock);
2267}
2268
2269void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2270{
2271        struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2272
2273        /* Schedule the transmission if tx list is ready */
2274        if (is_tx_ready(tx_ctx) &&
2275            !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2276                schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2277}
2278
2279void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2280{
2281        struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2282
2283        write_lock_bh(&sk->sk_callback_lock);
2284        rx_ctx->saved_data_ready = sk->sk_data_ready;
2285        sk->sk_data_ready = tls_data_ready;
2286        write_unlock_bh(&sk->sk_callback_lock);
2287
2288        strp_check_rcv(&rx_ctx->strp);
2289}
2290
2291int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2292{
2293        struct tls_context *tls_ctx = tls_get_ctx(sk);
2294        struct tls_prot_info *prot = &tls_ctx->prot_info;
2295        struct tls_crypto_info *crypto_info;
2296        struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2297        struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2298        struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2299        struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2300        struct tls_sw_context_tx *sw_ctx_tx = NULL;
2301        struct tls_sw_context_rx *sw_ctx_rx = NULL;
2302        struct cipher_context *cctx;
2303        struct crypto_aead **aead;
2304        struct strp_callbacks cb;
2305        u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2306        struct crypto_tfm *tfm;
2307        char *iv, *rec_seq, *key, *salt, *cipher_name;
2308        size_t keysize;
2309        int rc = 0;
2310
2311        if (!ctx) {
2312                rc = -EINVAL;
2313                goto out;
2314        }
2315
2316        if (tx) {
2317                if (!ctx->priv_ctx_tx) {
2318                        sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2319                        if (!sw_ctx_tx) {
2320                                rc = -ENOMEM;
2321                                goto out;
2322                        }
2323                        ctx->priv_ctx_tx = sw_ctx_tx;
2324                } else {
2325                        sw_ctx_tx =
2326                                (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2327                }
2328        } else {
2329                if (!ctx->priv_ctx_rx) {
2330                        sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2331                        if (!sw_ctx_rx) {
2332                                rc = -ENOMEM;
2333                                goto out;
2334                        }
2335                        ctx->priv_ctx_rx = sw_ctx_rx;
2336                } else {
2337                        sw_ctx_rx =
2338                                (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2339                }
2340        }
2341
2342        if (tx) {
2343                crypto_init_wait(&sw_ctx_tx->async_wait);
2344                spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2345                crypto_info = &ctx->crypto_send.info;
2346                cctx = &ctx->tx;
2347                aead = &sw_ctx_tx->aead_send;
2348                INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2349                INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2350                sw_ctx_tx->tx_work.sk = sk;
2351        } else {
2352                crypto_init_wait(&sw_ctx_rx->async_wait);
2353                spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2354                crypto_info = &ctx->crypto_recv.info;
2355                cctx = &ctx->rx;
2356                skb_queue_head_init(&sw_ctx_rx->rx_list);
2357                aead = &sw_ctx_rx->aead_recv;
2358        }
2359
2360        switch (crypto_info->cipher_type) {
2361        case TLS_CIPHER_AES_GCM_128: {
2362                nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2363                tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2364                iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2365                iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2366                rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2367                rec_seq =
2368                 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2369                gcm_128_info =
2370                        (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2371                keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2372                key = gcm_128_info->key;
2373                salt = gcm_128_info->salt;
2374                salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2375                cipher_name = "gcm(aes)";
2376                break;
2377        }
2378        case TLS_CIPHER_AES_GCM_256: {
2379                nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2380                tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2381                iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2382                iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2383                rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2384                rec_seq =
2385                 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2386                gcm_256_info =
2387                        (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2388                keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2389                key = gcm_256_info->key;
2390                salt = gcm_256_info->salt;
2391                salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2392                cipher_name = "gcm(aes)";
2393                break;
2394        }
2395        case TLS_CIPHER_AES_CCM_128: {
2396                nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2397                tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2398                iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2399                iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2400                rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2401                rec_seq =
2402                ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2403                ccm_128_info =
2404                (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2405                keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2406                key = ccm_128_info->key;
2407                salt = ccm_128_info->salt;
2408                salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2409                cipher_name = "ccm(aes)";
2410                break;
2411        }
2412        case TLS_CIPHER_CHACHA20_POLY1305: {
2413                chacha20_poly1305_info = (void *)crypto_info;
2414                nonce_size = 0;
2415                tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2416                iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2417                iv = chacha20_poly1305_info->iv;
2418                rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2419                rec_seq = chacha20_poly1305_info->rec_seq;
2420                keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2421                key = chacha20_poly1305_info->key;
2422                salt = chacha20_poly1305_info->salt;
2423                salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2424                cipher_name = "rfc7539(chacha20,poly1305)";
2425                break;
2426        }
2427        default:
2428                rc = -EINVAL;
2429                goto free_priv;
2430        }
2431
2432        /* Sanity-check the sizes for stack allocations. */
2433        if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2434            rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2435                rc = -EINVAL;
2436                goto free_priv;
2437        }
2438
2439        if (crypto_info->version == TLS_1_3_VERSION) {
2440                nonce_size = 0;
2441                prot->aad_size = TLS_HEADER_SIZE;
2442                prot->tail_size = 1;
2443        } else {
2444                prot->aad_size = TLS_AAD_SPACE_SIZE;
2445                prot->tail_size = 0;
2446        }
2447
2448        prot->version = crypto_info->version;
2449        prot->cipher_type = crypto_info->cipher_type;
2450        prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2451        prot->tag_size = tag_size;
2452        prot->overhead_size = prot->prepend_size +
2453                              prot->tag_size + prot->tail_size;
2454        prot->iv_size = iv_size;
2455        prot->salt_size = salt_size;
2456        cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2457        if (!cctx->iv) {
2458                rc = -ENOMEM;
2459                goto free_priv;
2460        }
2461        /* Note: 128 & 256 bit salt are the same size */
2462        prot->rec_seq_size = rec_seq_size;
2463        memcpy(cctx->iv, salt, salt_size);
2464        memcpy(cctx->iv + salt_size, iv, iv_size);
2465        cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2466        if (!cctx->rec_seq) {
2467                rc = -ENOMEM;
2468                goto free_iv;
2469        }
2470
2471        if (!*aead) {
2472                *aead = crypto_alloc_aead(cipher_name, 0, 0);
2473                if (IS_ERR(*aead)) {
2474                        rc = PTR_ERR(*aead);
2475                        *aead = NULL;
2476                        goto free_rec_seq;
2477                }
2478        }
2479
2480        ctx->push_pending_record = tls_sw_push_pending_record;
2481
2482        rc = crypto_aead_setkey(*aead, key, keysize);
2483
2484        if (rc)
2485                goto free_aead;
2486
2487        rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2488        if (rc)
2489                goto free_aead;
2490
2491        if (sw_ctx_rx) {
2492                tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2493
2494                if (crypto_info->version == TLS_1_3_VERSION)
2495                        sw_ctx_rx->async_capable = 0;
2496                else
2497                        sw_ctx_rx->async_capable =
2498                                !!(tfm->__crt_alg->cra_flags &
2499                                   CRYPTO_ALG_ASYNC);
2500
2501                /* Set up strparser */
2502                memset(&cb, 0, sizeof(cb));
2503                cb.rcv_msg = tls_queue;
2504                cb.parse_msg = tls_read_size;
2505
2506                strp_init(&sw_ctx_rx->strp, sk, &cb);
2507        }
2508
2509        goto out;
2510
2511free_aead:
2512        crypto_free_aead(*aead);
2513        *aead = NULL;
2514free_rec_seq:
2515        kfree(cctx->rec_seq);
2516        cctx->rec_seq = NULL;
2517free_iv:
2518        kfree(cctx->iv);
2519        cctx->iv = NULL;
2520free_priv:
2521        if (tx) {
2522                kfree(ctx->priv_ctx_tx);
2523                ctx->priv_ctx_tx = NULL;
2524        } else {
2525                kfree(ctx->priv_ctx_rx);
2526                ctx->priv_ctx_rx = NULL;
2527        }
2528out:
2529        return rc;
2530}
2531