linux/security/keys/key.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root          key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root  key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;  /* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;           /* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;        /* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41        printk("__key_check: key %p {%08x} should be {%08x}\n",
  42               key, key->magic, KEY_DEBUG_MAGIC);
  43        BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53        struct key_user *candidate = NULL, *user;
  54        struct rb_node *parent, **p;
  55
  56try_again:
  57        parent = NULL;
  58        p = &key_user_tree.rb_node;
  59        spin_lock(&key_user_lock);
  60
  61        /* search the tree for a user record with a matching UID */
  62        while (*p) {
  63                parent = *p;
  64                user = rb_entry(parent, struct key_user, node);
  65
  66                if (uid_lt(uid, user->uid))
  67                        p = &(*p)->rb_left;
  68                else if (uid_gt(uid, user->uid))
  69                        p = &(*p)->rb_right;
  70                else
  71                        goto found;
  72        }
  73
  74        /* if we get here, we failed to find a match in the tree */
  75        if (!candidate) {
  76                /* allocate a candidate user record if we don't already have
  77                 * one */
  78                spin_unlock(&key_user_lock);
  79
  80                user = NULL;
  81                candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82                if (unlikely(!candidate))
  83                        goto out;
  84
  85                /* the allocation may have scheduled, so we need to repeat the
  86                 * search lest someone else added the record whilst we were
  87                 * asleep */
  88                goto try_again;
  89        }
  90
  91        /* if we get here, then the user record still hadn't appeared on the
  92         * second pass - so we use the candidate record */
  93        refcount_set(&candidate->usage, 1);
  94        atomic_set(&candidate->nkeys, 0);
  95        atomic_set(&candidate->nikeys, 0);
  96        candidate->uid = uid;
  97        candidate->qnkeys = 0;
  98        candidate->qnbytes = 0;
  99        spin_lock_init(&candidate->lock);
 100        mutex_init(&candidate->cons_lock);
 101
 102        rb_link_node(&candidate->node, parent, p);
 103        rb_insert_color(&candidate->node, &key_user_tree);
 104        spin_unlock(&key_user_lock);
 105        user = candidate;
 106        goto out;
 107
 108        /* okay - we found a user record for this UID */
 109found:
 110        refcount_inc(&user->usage);
 111        spin_unlock(&key_user_lock);
 112        kfree(candidate);
 113out:
 114        return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122        if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123                rb_erase(&user->node, &key_user_tree);
 124                spin_unlock(&key_user_lock);
 125
 126                kfree(user);
 127        }
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136        struct rb_node *parent, **p;
 137        struct key *xkey;
 138
 139        /* propose a random serial number and look for a hole for it in the
 140         * serial number tree */
 141        do {
 142                get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144                key->serial >>= 1; /* negative numbers are not permitted */
 145        } while (key->serial < 3);
 146
 147        spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150        parent = NULL;
 151        p = &key_serial_tree.rb_node;
 152
 153        while (*p) {
 154                parent = *p;
 155                xkey = rb_entry(parent, struct key, serial_node);
 156
 157                if (key->serial < xkey->serial)
 158                        p = &(*p)->rb_left;
 159                else if (key->serial > xkey->serial)
 160                        p = &(*p)->rb_right;
 161                else
 162                        goto serial_exists;
 163        }
 164
 165        /* we've found a suitable hole - arrange for this key to occupy it */
 166        rb_link_node(&key->serial_node, parent, p);
 167        rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169        spin_unlock(&key_serial_lock);
 170        return;
 171
 172        /* we found a key with the proposed serial number - walk the tree from
 173         * that point looking for the next unused serial number */
 174serial_exists:
 175        for (;;) {
 176                key->serial++;
 177                if (key->serial < 3) {
 178                        key->serial = 3;
 179                        goto attempt_insertion;
 180                }
 181
 182                parent = rb_next(parent);
 183                if (!parent)
 184                        goto attempt_insertion;
 185
 186                xkey = rb_entry(parent, struct key, serial_node);
 187                if (key->serial < xkey->serial)
 188                        goto attempt_insertion;
 189        }
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226                      kuid_t uid, kgid_t gid, const struct cred *cred,
 227                      key_perm_t perm, unsigned long flags,
 228                      struct key_restriction *restrict_link)
 229{
 230        struct key_user *user = NULL;
 231        struct key *key;
 232        size_t desclen, quotalen;
 233        int ret;
 234
 235        key = ERR_PTR(-EINVAL);
 236        if (!desc || !*desc)
 237                goto error;
 238
 239        if (type->vet_description) {
 240                ret = type->vet_description(desc);
 241                if (ret < 0) {
 242                        key = ERR_PTR(ret);
 243                        goto error;
 244                }
 245        }
 246
 247        desclen = strlen(desc);
 248        quotalen = desclen + 1 + type->def_datalen;
 249
 250        /* get hold of the key tracking for this user */
 251        user = key_user_lookup(uid);
 252        if (!user)
 253                goto no_memory_1;
 254
 255        /* check that the user's quota permits allocation of another key and
 256         * its description */
 257        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258                unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259                        key_quota_root_maxkeys : key_quota_maxkeys;
 260                unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261                        key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263                spin_lock(&user->lock);
 264                if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265                        if (user->qnkeys + 1 > maxkeys ||
 266                            user->qnbytes + quotalen > maxbytes ||
 267                            user->qnbytes + quotalen < user->qnbytes)
 268                                goto no_quota;
 269                }
 270
 271                user->qnkeys++;
 272                user->qnbytes += quotalen;
 273                spin_unlock(&user->lock);
 274        }
 275
 276        /* allocate and initialise the key and its description */
 277        key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278        if (!key)
 279                goto no_memory_2;
 280
 281        key->index_key.desc_len = desclen;
 282        key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283        if (!key->index_key.description)
 284                goto no_memory_3;
 285        key->index_key.type = type;
 286        key_set_index_key(&key->index_key);
 287
 288        refcount_set(&key->usage, 1);
 289        init_rwsem(&key->sem);
 290        lockdep_set_class(&key->sem, &type->lock_class);
 291        key->user = user;
 292        key->quotalen = quotalen;
 293        key->datalen = type->def_datalen;
 294        key->uid = uid;
 295        key->gid = gid;
 296        key->perm = perm;
 297        key->restrict_link = restrict_link;
 298        key->last_used_at = ktime_get_real_seconds();
 299
 300        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301                key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302        if (flags & KEY_ALLOC_BUILT_IN)
 303                key->flags |= 1 << KEY_FLAG_BUILTIN;
 304        if (flags & KEY_ALLOC_UID_KEYRING)
 305                key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306        if (flags & KEY_ALLOC_SET_KEEP)
 307                key->flags |= 1 << KEY_FLAG_KEEP;
 308
 309#ifdef KEY_DEBUGGING
 310        key->magic = KEY_DEBUG_MAGIC;
 311#endif
 312
 313        /* let the security module know about the key */
 314        ret = security_key_alloc(key, cred, flags);
 315        if (ret < 0)
 316                goto security_error;
 317
 318        /* publish the key by giving it a serial number */
 319        refcount_inc(&key->domain_tag->usage);
 320        atomic_inc(&user->nkeys);
 321        key_alloc_serial(key);
 322
 323error:
 324        return key;
 325
 326security_error:
 327        kfree(key->description);
 328        kmem_cache_free(key_jar, key);
 329        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 330                spin_lock(&user->lock);
 331                user->qnkeys--;
 332                user->qnbytes -= quotalen;
 333                spin_unlock(&user->lock);
 334        }
 335        key_user_put(user);
 336        key = ERR_PTR(ret);
 337        goto error;
 338
 339no_memory_3:
 340        kmem_cache_free(key_jar, key);
 341no_memory_2:
 342        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 343                spin_lock(&user->lock);
 344                user->qnkeys--;
 345                user->qnbytes -= quotalen;
 346                spin_unlock(&user->lock);
 347        }
 348        key_user_put(user);
 349no_memory_1:
 350        key = ERR_PTR(-ENOMEM);
 351        goto error;
 352
 353no_quota:
 354        spin_unlock(&user->lock);
 355        key_user_put(user);
 356        key = ERR_PTR(-EDQUOT);
 357        goto error;
 358}
 359EXPORT_SYMBOL(key_alloc);
 360
 361/**
 362 * key_payload_reserve - Adjust data quota reservation for the key's payload
 363 * @key: The key to make the reservation for.
 364 * @datalen: The amount of data payload the caller now wants.
 365 *
 366 * Adjust the amount of the owning user's key data quota that a key reserves.
 367 * If the amount is increased, then -EDQUOT may be returned if there isn't
 368 * enough free quota available.
 369 *
 370 * If successful, 0 is returned.
 371 */
 372int key_payload_reserve(struct key *key, size_t datalen)
 373{
 374        int delta = (int)datalen - key->datalen;
 375        int ret = 0;
 376
 377        key_check(key);
 378
 379        /* contemplate the quota adjustment */
 380        if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 381                unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 382                        key_quota_root_maxbytes : key_quota_maxbytes;
 383
 384                spin_lock(&key->user->lock);
 385
 386                if (delta > 0 &&
 387                    (key->user->qnbytes + delta > maxbytes ||
 388                     key->user->qnbytes + delta < key->user->qnbytes)) {
 389                        ret = -EDQUOT;
 390                }
 391                else {
 392                        key->user->qnbytes += delta;
 393                        key->quotalen += delta;
 394                }
 395                spin_unlock(&key->user->lock);
 396        }
 397
 398        /* change the recorded data length if that didn't generate an error */
 399        if (ret == 0)
 400                key->datalen = datalen;
 401
 402        return ret;
 403}
 404EXPORT_SYMBOL(key_payload_reserve);
 405
 406/*
 407 * Change the key state to being instantiated.
 408 */
 409static void mark_key_instantiated(struct key *key, int reject_error)
 410{
 411        /* Commit the payload before setting the state; barrier versus
 412         * key_read_state().
 413         */
 414        smp_store_release(&key->state,
 415                          (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 416}
 417
 418/*
 419 * Instantiate a key and link it into the target keyring atomically.  Must be
 420 * called with the target keyring's semaphore writelocked.  The target key's
 421 * semaphore need not be locked as instantiation is serialised by
 422 * key_construction_mutex.
 423 */
 424static int __key_instantiate_and_link(struct key *key,
 425                                      struct key_preparsed_payload *prep,
 426                                      struct key *keyring,
 427                                      struct key *authkey,
 428                                      struct assoc_array_edit **_edit)
 429{
 430        int ret, awaken;
 431
 432        key_check(key);
 433        key_check(keyring);
 434
 435        awaken = 0;
 436        ret = -EBUSY;
 437
 438        mutex_lock(&key_construction_mutex);
 439
 440        /* can't instantiate twice */
 441        if (key->state == KEY_IS_UNINSTANTIATED) {
 442                /* instantiate the key */
 443                ret = key->type->instantiate(key, prep);
 444
 445                if (ret == 0) {
 446                        /* mark the key as being instantiated */
 447                        atomic_inc(&key->user->nikeys);
 448                        mark_key_instantiated(key, 0);
 449                        notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 450
 451                        if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 452                                awaken = 1;
 453
 454                        /* and link it into the destination keyring */
 455                        if (keyring) {
 456                                if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 457                                        set_bit(KEY_FLAG_KEEP, &key->flags);
 458
 459                                __key_link(keyring, key, _edit);
 460                        }
 461
 462                        /* disable the authorisation key */
 463                        if (authkey)
 464                                key_invalidate(authkey);
 465
 466                        if (prep->expiry != TIME64_MAX) {
 467                                key->expiry = prep->expiry;
 468                                key_schedule_gc(prep->expiry + key_gc_delay);
 469                        }
 470                }
 471        }
 472
 473        mutex_unlock(&key_construction_mutex);
 474
 475        /* wake up anyone waiting for a key to be constructed */
 476        if (awaken)
 477                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 478
 479        return ret;
 480}
 481
 482/**
 483 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 484 * @key: The key to instantiate.
 485 * @data: The data to use to instantiate the keyring.
 486 * @datalen: The length of @data.
 487 * @keyring: Keyring to create a link in on success (or NULL).
 488 * @authkey: The authorisation token permitting instantiation.
 489 *
 490 * Instantiate a key that's in the uninstantiated state using the provided data
 491 * and, if successful, link it in to the destination keyring if one is
 492 * supplied.
 493 *
 494 * If successful, 0 is returned, the authorisation token is revoked and anyone
 495 * waiting for the key is woken up.  If the key was already instantiated,
 496 * -EBUSY will be returned.
 497 */
 498int key_instantiate_and_link(struct key *key,
 499                             const void *data,
 500                             size_t datalen,
 501                             struct key *keyring,
 502                             struct key *authkey)
 503{
 504        struct key_preparsed_payload prep;
 505        struct assoc_array_edit *edit = NULL;
 506        int ret;
 507
 508        memset(&prep, 0, sizeof(prep));
 509        prep.orig_description = key->description;
 510        prep.data = data;
 511        prep.datalen = datalen;
 512        prep.quotalen = key->type->def_datalen;
 513        prep.expiry = TIME64_MAX;
 514        if (key->type->preparse) {
 515                ret = key->type->preparse(&prep);
 516                if (ret < 0)
 517                        goto error;
 518        }
 519
 520        if (keyring) {
 521                ret = __key_link_lock(keyring, &key->index_key);
 522                if (ret < 0)
 523                        goto error;
 524
 525                ret = __key_link_begin(keyring, &key->index_key, &edit);
 526                if (ret < 0)
 527                        goto error_link_end;
 528
 529                if (keyring->restrict_link && keyring->restrict_link->check) {
 530                        struct key_restriction *keyres = keyring->restrict_link;
 531
 532                        ret = keyres->check(keyring, key->type, &prep.payload,
 533                                            keyres->key);
 534                        if (ret < 0)
 535                                goto error_link_end;
 536                }
 537        }
 538
 539        ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 540
 541error_link_end:
 542        if (keyring)
 543                __key_link_end(keyring, &key->index_key, edit);
 544
 545error:
 546        if (key->type->preparse)
 547                key->type->free_preparse(&prep);
 548        return ret;
 549}
 550
 551EXPORT_SYMBOL(key_instantiate_and_link);
 552
 553/**
 554 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 555 * @key: The key to instantiate.
 556 * @timeout: The timeout on the negative key.
 557 * @error: The error to return when the key is hit.
 558 * @keyring: Keyring to create a link in on success (or NULL).
 559 * @authkey: The authorisation token permitting instantiation.
 560 *
 561 * Negatively instantiate a key that's in the uninstantiated state and, if
 562 * successful, set its timeout and stored error and link it in to the
 563 * destination keyring if one is supplied.  The key and any links to the key
 564 * will be automatically garbage collected after the timeout expires.
 565 *
 566 * Negative keys are used to rate limit repeated request_key() calls by causing
 567 * them to return the stored error code (typically ENOKEY) until the negative
 568 * key expires.
 569 *
 570 * If successful, 0 is returned, the authorisation token is revoked and anyone
 571 * waiting for the key is woken up.  If the key was already instantiated,
 572 * -EBUSY will be returned.
 573 */
 574int key_reject_and_link(struct key *key,
 575                        unsigned timeout,
 576                        unsigned error,
 577                        struct key *keyring,
 578                        struct key *authkey)
 579{
 580        struct assoc_array_edit *edit = NULL;
 581        int ret, awaken, link_ret = 0;
 582
 583        key_check(key);
 584        key_check(keyring);
 585
 586        awaken = 0;
 587        ret = -EBUSY;
 588
 589        if (keyring) {
 590                if (keyring->restrict_link)
 591                        return -EPERM;
 592
 593                link_ret = __key_link_lock(keyring, &key->index_key);
 594                if (link_ret == 0) {
 595                        link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 596                        if (link_ret < 0)
 597                                __key_link_end(keyring, &key->index_key, edit);
 598                }
 599        }
 600
 601        mutex_lock(&key_construction_mutex);
 602
 603        /* can't instantiate twice */
 604        if (key->state == KEY_IS_UNINSTANTIATED) {
 605                /* mark the key as being negatively instantiated */
 606                atomic_inc(&key->user->nikeys);
 607                mark_key_instantiated(key, -error);
 608                notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 609                key->expiry = ktime_get_real_seconds() + timeout;
 610                key_schedule_gc(key->expiry + key_gc_delay);
 611
 612                if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 613                        awaken = 1;
 614
 615                ret = 0;
 616
 617                /* and link it into the destination keyring */
 618                if (keyring && link_ret == 0)
 619                        __key_link(keyring, key, &edit);
 620
 621                /* disable the authorisation key */
 622                if (authkey)
 623                        key_invalidate(authkey);
 624        }
 625
 626        mutex_unlock(&key_construction_mutex);
 627
 628        if (keyring && link_ret == 0)
 629                __key_link_end(keyring, &key->index_key, edit);
 630
 631        /* wake up anyone waiting for a key to be constructed */
 632        if (awaken)
 633                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 634
 635        return ret == 0 ? link_ret : ret;
 636}
 637EXPORT_SYMBOL(key_reject_and_link);
 638
 639/**
 640 * key_put - Discard a reference to a key.
 641 * @key: The key to discard a reference from.
 642 *
 643 * Discard a reference to a key, and when all the references are gone, we
 644 * schedule the cleanup task to come and pull it out of the tree in process
 645 * context at some later time.
 646 */
 647void key_put(struct key *key)
 648{
 649        if (key) {
 650                key_check(key);
 651
 652                if (refcount_dec_and_test(&key->usage))
 653                        schedule_work(&key_gc_work);
 654        }
 655}
 656EXPORT_SYMBOL(key_put);
 657
 658/*
 659 * Find a key by its serial number.
 660 */
 661struct key *key_lookup(key_serial_t id)
 662{
 663        struct rb_node *n;
 664        struct key *key;
 665
 666        spin_lock(&key_serial_lock);
 667
 668        /* search the tree for the specified key */
 669        n = key_serial_tree.rb_node;
 670        while (n) {
 671                key = rb_entry(n, struct key, serial_node);
 672
 673                if (id < key->serial)
 674                        n = n->rb_left;
 675                else if (id > key->serial)
 676                        n = n->rb_right;
 677                else
 678                        goto found;
 679        }
 680
 681not_found:
 682        key = ERR_PTR(-ENOKEY);
 683        goto error;
 684
 685found:
 686        /* A key is allowed to be looked up only if someone still owns a
 687         * reference to it - otherwise it's awaiting the gc.
 688         */
 689        if (!refcount_inc_not_zero(&key->usage))
 690                goto not_found;
 691
 692error:
 693        spin_unlock(&key_serial_lock);
 694        return key;
 695}
 696
 697/*
 698 * Find and lock the specified key type against removal.
 699 *
 700 * We return with the sem read-locked if successful.  If the type wasn't
 701 * available -ENOKEY is returned instead.
 702 */
 703struct key_type *key_type_lookup(const char *type)
 704{
 705        struct key_type *ktype;
 706
 707        down_read(&key_types_sem);
 708
 709        /* look up the key type to see if it's one of the registered kernel
 710         * types */
 711        list_for_each_entry(ktype, &key_types_list, link) {
 712                if (strcmp(ktype->name, type) == 0)
 713                        goto found_kernel_type;
 714        }
 715
 716        up_read(&key_types_sem);
 717        ktype = ERR_PTR(-ENOKEY);
 718
 719found_kernel_type:
 720        return ktype;
 721}
 722
 723void key_set_timeout(struct key *key, unsigned timeout)
 724{
 725        time64_t expiry = 0;
 726
 727        /* make the changes with the locks held to prevent races */
 728        down_write(&key->sem);
 729
 730        if (timeout > 0)
 731                expiry = ktime_get_real_seconds() + timeout;
 732
 733        key->expiry = expiry;
 734        key_schedule_gc(key->expiry + key_gc_delay);
 735
 736        up_write(&key->sem);
 737}
 738EXPORT_SYMBOL_GPL(key_set_timeout);
 739
 740/*
 741 * Unlock a key type locked by key_type_lookup().
 742 */
 743void key_type_put(struct key_type *ktype)
 744{
 745        up_read(&key_types_sem);
 746}
 747
 748/*
 749 * Attempt to update an existing key.
 750 *
 751 * The key is given to us with an incremented refcount that we need to discard
 752 * if we get an error.
 753 */
 754static inline key_ref_t __key_update(key_ref_t key_ref,
 755                                     struct key_preparsed_payload *prep)
 756{
 757        struct key *key = key_ref_to_ptr(key_ref);
 758        int ret;
 759
 760        /* need write permission on the key to update it */
 761        ret = key_permission(key_ref, KEY_NEED_WRITE);
 762        if (ret < 0)
 763                goto error;
 764
 765        ret = -EEXIST;
 766        if (!key->type->update)
 767                goto error;
 768
 769        down_write(&key->sem);
 770
 771        ret = key->type->update(key, prep);
 772        if (ret == 0) {
 773                /* Updating a negative key positively instantiates it */
 774                mark_key_instantiated(key, 0);
 775                notify_key(key, NOTIFY_KEY_UPDATED, 0);
 776        }
 777
 778        up_write(&key->sem);
 779
 780        if (ret < 0)
 781                goto error;
 782out:
 783        return key_ref;
 784
 785error:
 786        key_put(key);
 787        key_ref = ERR_PTR(ret);
 788        goto out;
 789}
 790
 791/**
 792 * key_create_or_update - Update or create and instantiate a key.
 793 * @keyring_ref: A pointer to the destination keyring with possession flag.
 794 * @type: The type of key.
 795 * @description: The searchable description for the key.
 796 * @payload: The data to use to instantiate or update the key.
 797 * @plen: The length of @payload.
 798 * @perm: The permissions mask for a new key.
 799 * @flags: The quota flags for a new key.
 800 *
 801 * Search the destination keyring for a key of the same description and if one
 802 * is found, update it, otherwise create and instantiate a new one and create a
 803 * link to it from that keyring.
 804 *
 805 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 806 * concocted.
 807 *
 808 * Returns a pointer to the new key if successful, -ENODEV if the key type
 809 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 810 * caller isn't permitted to modify the keyring or the LSM did not permit
 811 * creation of the key.
 812 *
 813 * On success, the possession flag from the keyring ref will be tacked on to
 814 * the key ref before it is returned.
 815 */
 816key_ref_t key_create_or_update(key_ref_t keyring_ref,
 817                               const char *type,
 818                               const char *description,
 819                               const void *payload,
 820                               size_t plen,
 821                               key_perm_t perm,
 822                               unsigned long flags)
 823{
 824        struct keyring_index_key index_key = {
 825                .description    = description,
 826        };
 827        struct key_preparsed_payload prep;
 828        struct assoc_array_edit *edit = NULL;
 829        const struct cred *cred = current_cred();
 830        struct key *keyring, *key = NULL;
 831        key_ref_t key_ref;
 832        int ret;
 833        struct key_restriction *restrict_link = NULL;
 834
 835        /* look up the key type to see if it's one of the registered kernel
 836         * types */
 837        index_key.type = key_type_lookup(type);
 838        if (IS_ERR(index_key.type)) {
 839                key_ref = ERR_PTR(-ENODEV);
 840                goto error;
 841        }
 842
 843        key_ref = ERR_PTR(-EINVAL);
 844        if (!index_key.type->instantiate ||
 845            (!index_key.description && !index_key.type->preparse))
 846                goto error_put_type;
 847
 848        keyring = key_ref_to_ptr(keyring_ref);
 849
 850        key_check(keyring);
 851
 852        if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 853                restrict_link = keyring->restrict_link;
 854
 855        key_ref = ERR_PTR(-ENOTDIR);
 856        if (keyring->type != &key_type_keyring)
 857                goto error_put_type;
 858
 859        memset(&prep, 0, sizeof(prep));
 860        prep.orig_description = description;
 861        prep.data = payload;
 862        prep.datalen = plen;
 863        prep.quotalen = index_key.type->def_datalen;
 864        prep.expiry = TIME64_MAX;
 865        if (index_key.type->preparse) {
 866                ret = index_key.type->preparse(&prep);
 867                if (ret < 0) {
 868                        key_ref = ERR_PTR(ret);
 869                        goto error_free_prep;
 870                }
 871                if (!index_key.description)
 872                        index_key.description = prep.description;
 873                key_ref = ERR_PTR(-EINVAL);
 874                if (!index_key.description)
 875                        goto error_free_prep;
 876        }
 877        index_key.desc_len = strlen(index_key.description);
 878        key_set_index_key(&index_key);
 879
 880        ret = __key_link_lock(keyring, &index_key);
 881        if (ret < 0) {
 882                key_ref = ERR_PTR(ret);
 883                goto error_free_prep;
 884        }
 885
 886        ret = __key_link_begin(keyring, &index_key, &edit);
 887        if (ret < 0) {
 888                key_ref = ERR_PTR(ret);
 889                goto error_link_end;
 890        }
 891
 892        if (restrict_link && restrict_link->check) {
 893                ret = restrict_link->check(keyring, index_key.type,
 894                                           &prep.payload, restrict_link->key);
 895                if (ret < 0) {
 896                        key_ref = ERR_PTR(ret);
 897                        goto error_link_end;
 898                }
 899        }
 900
 901        /* if we're going to allocate a new key, we're going to have
 902         * to modify the keyring */
 903        ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 904        if (ret < 0) {
 905                key_ref = ERR_PTR(ret);
 906                goto error_link_end;
 907        }
 908
 909        /* if it's possible to update this type of key, search for an existing
 910         * key of the same type and description in the destination keyring and
 911         * update that instead if possible
 912         */
 913        if (index_key.type->update) {
 914                key_ref = find_key_to_update(keyring_ref, &index_key);
 915                if (key_ref)
 916                        goto found_matching_key;
 917        }
 918
 919        /* if the client doesn't provide, decide on the permissions we want */
 920        if (perm == KEY_PERM_UNDEF) {
 921                perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 922                perm |= KEY_USR_VIEW;
 923
 924                if (index_key.type->read)
 925                        perm |= KEY_POS_READ;
 926
 927                if (index_key.type == &key_type_keyring ||
 928                    index_key.type->update)
 929                        perm |= KEY_POS_WRITE;
 930        }
 931
 932        /* allocate a new key */
 933        key = key_alloc(index_key.type, index_key.description,
 934                        cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 935        if (IS_ERR(key)) {
 936                key_ref = ERR_CAST(key);
 937                goto error_link_end;
 938        }
 939
 940        /* instantiate it and link it into the target keyring */
 941        ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 942        if (ret < 0) {
 943                key_put(key);
 944                key_ref = ERR_PTR(ret);
 945                goto error_link_end;
 946        }
 947
 948        ima_post_key_create_or_update(keyring, key, payload, plen,
 949                                      flags, true);
 950
 951        key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 952
 953error_link_end:
 954        __key_link_end(keyring, &index_key, edit);
 955error_free_prep:
 956        if (index_key.type->preparse)
 957                index_key.type->free_preparse(&prep);
 958error_put_type:
 959        key_type_put(index_key.type);
 960error:
 961        return key_ref;
 962
 963 found_matching_key:
 964        /* we found a matching key, so we're going to try to update it
 965         * - we can drop the locks first as we have the key pinned
 966         */
 967        __key_link_end(keyring, &index_key, edit);
 968
 969        key = key_ref_to_ptr(key_ref);
 970        if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 971                ret = wait_for_key_construction(key, true);
 972                if (ret < 0) {
 973                        key_ref_put(key_ref);
 974                        key_ref = ERR_PTR(ret);
 975                        goto error_free_prep;
 976                }
 977        }
 978
 979        key_ref = __key_update(key_ref, &prep);
 980
 981        if (!IS_ERR(key_ref))
 982                ima_post_key_create_or_update(keyring, key,
 983                                              payload, plen,
 984                                              flags, false);
 985
 986        goto error_free_prep;
 987}
 988EXPORT_SYMBOL(key_create_or_update);
 989
 990/**
 991 * key_update - Update a key's contents.
 992 * @key_ref: The pointer (plus possession flag) to the key.
 993 * @payload: The data to be used to update the key.
 994 * @plen: The length of @payload.
 995 *
 996 * Attempt to update the contents of a key with the given payload data.  The
 997 * caller must be granted Write permission on the key.  Negative keys can be
 998 * instantiated by this method.
 999 *
1000 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1001 * type does not support updating.  The key type may return other errors.
1002 */
1003int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1004{
1005        struct key_preparsed_payload prep;
1006        struct key *key = key_ref_to_ptr(key_ref);
1007        int ret;
1008
1009        key_check(key);
1010
1011        /* the key must be writable */
1012        ret = key_permission(key_ref, KEY_NEED_WRITE);
1013        if (ret < 0)
1014                return ret;
1015
1016        /* attempt to update it if supported */
1017        if (!key->type->update)
1018                return -EOPNOTSUPP;
1019
1020        memset(&prep, 0, sizeof(prep));
1021        prep.data = payload;
1022        prep.datalen = plen;
1023        prep.quotalen = key->type->def_datalen;
1024        prep.expiry = TIME64_MAX;
1025        if (key->type->preparse) {
1026                ret = key->type->preparse(&prep);
1027                if (ret < 0)
1028                        goto error;
1029        }
1030
1031        down_write(&key->sem);
1032
1033        ret = key->type->update(key, &prep);
1034        if (ret == 0) {
1035                /* Updating a negative key positively instantiates it */
1036                mark_key_instantiated(key, 0);
1037                notify_key(key, NOTIFY_KEY_UPDATED, 0);
1038        }
1039
1040        up_write(&key->sem);
1041
1042error:
1043        if (key->type->preparse)
1044                key->type->free_preparse(&prep);
1045        return ret;
1046}
1047EXPORT_SYMBOL(key_update);
1048
1049/**
1050 * key_revoke - Revoke a key.
1051 * @key: The key to be revoked.
1052 *
1053 * Mark a key as being revoked and ask the type to free up its resources.  The
1054 * revocation timeout is set and the key and all its links will be
1055 * automatically garbage collected after key_gc_delay amount of time if they
1056 * are not manually dealt with first.
1057 */
1058void key_revoke(struct key *key)
1059{
1060        time64_t time;
1061
1062        key_check(key);
1063
1064        /* make sure no one's trying to change or use the key when we mark it
1065         * - we tell lockdep that we might nest because we might be revoking an
1066         *   authorisation key whilst holding the sem on a key we've just
1067         *   instantiated
1068         */
1069        down_write_nested(&key->sem, 1);
1070        if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1071                notify_key(key, NOTIFY_KEY_REVOKED, 0);
1072                if (key->type->revoke)
1073                        key->type->revoke(key);
1074
1075                /* set the death time to no more than the expiry time */
1076                time = ktime_get_real_seconds();
1077                if (key->revoked_at == 0 || key->revoked_at > time) {
1078                        key->revoked_at = time;
1079                        key_schedule_gc(key->revoked_at + key_gc_delay);
1080                }
1081        }
1082
1083        up_write(&key->sem);
1084}
1085EXPORT_SYMBOL(key_revoke);
1086
1087/**
1088 * key_invalidate - Invalidate a key.
1089 * @key: The key to be invalidated.
1090 *
1091 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1092 * is ignored by all searches and other operations from this point.
1093 */
1094void key_invalidate(struct key *key)
1095{
1096        kenter("%d", key_serial(key));
1097
1098        key_check(key);
1099
1100        if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101                down_write_nested(&key->sem, 1);
1102                if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1103                        notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1104                        key_schedule_gc_links();
1105                }
1106                up_write(&key->sem);
1107        }
1108}
1109EXPORT_SYMBOL(key_invalidate);
1110
1111/**
1112 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1113 * @key: The key to be instantiated
1114 * @prep: The preparsed data to load.
1115 *
1116 * Instantiate a key from preparsed data.  We assume we can just copy the data
1117 * in directly and clear the old pointers.
1118 *
1119 * This can be pointed to directly by the key type instantiate op pointer.
1120 */
1121int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1122{
1123        int ret;
1124
1125        pr_devel("==>%s()\n", __func__);
1126
1127        ret = key_payload_reserve(key, prep->quotalen);
1128        if (ret == 0) {
1129                rcu_assign_keypointer(key, prep->payload.data[0]);
1130                key->payload.data[1] = prep->payload.data[1];
1131                key->payload.data[2] = prep->payload.data[2];
1132                key->payload.data[3] = prep->payload.data[3];
1133                prep->payload.data[0] = NULL;
1134                prep->payload.data[1] = NULL;
1135                prep->payload.data[2] = NULL;
1136                prep->payload.data[3] = NULL;
1137        }
1138        pr_devel("<==%s() = %d\n", __func__, ret);
1139        return ret;
1140}
1141EXPORT_SYMBOL(generic_key_instantiate);
1142
1143/**
1144 * register_key_type - Register a type of key.
1145 * @ktype: The new key type.
1146 *
1147 * Register a new key type.
1148 *
1149 * Returns 0 on success or -EEXIST if a type of this name already exists.
1150 */
1151int register_key_type(struct key_type *ktype)
1152{
1153        struct key_type *p;
1154        int ret;
1155
1156        memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1157
1158        ret = -EEXIST;
1159        down_write(&key_types_sem);
1160
1161        /* disallow key types with the same name */
1162        list_for_each_entry(p, &key_types_list, link) {
1163                if (strcmp(p->name, ktype->name) == 0)
1164                        goto out;
1165        }
1166
1167        /* store the type */
1168        list_add(&ktype->link, &key_types_list);
1169
1170        pr_notice("Key type %s registered\n", ktype->name);
1171        ret = 0;
1172
1173out:
1174        up_write(&key_types_sem);
1175        return ret;
1176}
1177EXPORT_SYMBOL(register_key_type);
1178
1179/**
1180 * unregister_key_type - Unregister a type of key.
1181 * @ktype: The key type.
1182 *
1183 * Unregister a key type and mark all the extant keys of this type as dead.
1184 * Those keys of this type are then destroyed to get rid of their payloads and
1185 * they and their links will be garbage collected as soon as possible.
1186 */
1187void unregister_key_type(struct key_type *ktype)
1188{
1189        down_write(&key_types_sem);
1190        list_del_init(&ktype->link);
1191        downgrade_write(&key_types_sem);
1192        key_gc_keytype(ktype);
1193        pr_notice("Key type %s unregistered\n", ktype->name);
1194        up_read(&key_types_sem);
1195}
1196EXPORT_SYMBOL(unregister_key_type);
1197
1198/*
1199 * Initialise the key management state.
1200 */
1201void __init key_init(void)
1202{
1203        /* allocate a slab in which we can store keys */
1204        key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1205                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1206
1207        /* add the special key types */
1208        list_add_tail(&key_type_keyring.link, &key_types_list);
1209        list_add_tail(&key_type_dead.link, &key_types_list);
1210        list_add_tail(&key_type_user.link, &key_types_list);
1211        list_add_tail(&key_type_logon.link, &key_types_list);
1212
1213        /* record the root user tracking */
1214        rb_link_node(&root_key_user.node,
1215                     NULL,
1216                     &key_user_tree.rb_node);
1217
1218        rb_insert_color(&root_key_user.node,
1219                        &key_user_tree);
1220}
1221