linux/security/selinux/ss/services.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *           James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *      Support for enhanced MLS infrastructure.
  11 *      Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *      Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct convert_context_args {
  72        struct selinux_state *state;
  73        struct policydb *oldp;
  74        struct policydb *newp;
  75};
  76
  77struct selinux_policy_convert_data {
  78        struct convert_context_args args;
  79        struct sidtab_convert_params sidtab_params;
  80};
  81
  82/* Forward declaration. */
  83static int context_struct_to_string(struct policydb *policydb,
  84                                    struct context *context,
  85                                    char **scontext,
  86                                    u32 *scontext_len);
  87
  88static int sidtab_entry_to_string(struct policydb *policydb,
  89                                  struct sidtab *sidtab,
  90                                  struct sidtab_entry *entry,
  91                                  char **scontext,
  92                                  u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95                                      struct context *scontext,
  96                                      struct context *tcontext,
  97                                      u16 tclass,
  98                                      struct av_decision *avd,
  99                                      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102                               struct security_class_mapping *map,
 103                               struct selinux_map *out_map)
 104{
 105        u16 i, j;
 106        unsigned k;
 107        bool print_unknown_handle = false;
 108
 109        /* Find number of classes in the input mapping */
 110        if (!map)
 111                return -EINVAL;
 112        i = 0;
 113        while (map[i].name)
 114                i++;
 115
 116        /* Allocate space for the class records, plus one for class zero */
 117        out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118        if (!out_map->mapping)
 119                return -ENOMEM;
 120
 121        /* Store the raw class and permission values */
 122        j = 0;
 123        while (map[j].name) {
 124                struct security_class_mapping *p_in = map + (j++);
 125                struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127                /* An empty class string skips ahead */
 128                if (!strcmp(p_in->name, "")) {
 129                        p_out->num_perms = 0;
 130                        continue;
 131                }
 132
 133                p_out->value = string_to_security_class(pol, p_in->name);
 134                if (!p_out->value) {
 135                        pr_info("SELinux:  Class %s not defined in policy.\n",
 136                               p_in->name);
 137                        if (pol->reject_unknown)
 138                                goto err;
 139                        p_out->num_perms = 0;
 140                        print_unknown_handle = true;
 141                        continue;
 142                }
 143
 144                k = 0;
 145                while (p_in->perms[k]) {
 146                        /* An empty permission string skips ahead */
 147                        if (!*p_in->perms[k]) {
 148                                k++;
 149                                continue;
 150                        }
 151                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152                                                            p_in->perms[k]);
 153                        if (!p_out->perms[k]) {
 154                                pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155                                       p_in->perms[k], p_in->name);
 156                                if (pol->reject_unknown)
 157                                        goto err;
 158                                print_unknown_handle = true;
 159                        }
 160
 161                        k++;
 162                }
 163                p_out->num_perms = k;
 164        }
 165
 166        if (print_unknown_handle)
 167                pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168                       pol->allow_unknown ? "allowed" : "denied");
 169
 170        out_map->size = i;
 171        return 0;
 172err:
 173        kfree(out_map->mapping);
 174        out_map->mapping = NULL;
 175        return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184        if (tclass < map->size)
 185                return map->mapping[tclass].value;
 186
 187        return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195        u16 i;
 196
 197        for (i = 1; i < map->size; i++) {
 198                if (map->mapping[i].value == pol_value)
 199                        return i;
 200        }
 201
 202        return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206                         u16 tclass, struct av_decision *avd,
 207                         int allow_unknown)
 208{
 209        if (tclass < map->size) {
 210                struct selinux_mapping *mapping = &map->mapping[tclass];
 211                unsigned int i, n = mapping->num_perms;
 212                u32 result;
 213
 214                for (i = 0, result = 0; i < n; i++) {
 215                        if (avd->allowed & mapping->perms[i])
 216                                result |= 1<<i;
 217                        if (allow_unknown && !mapping->perms[i])
 218                                result |= 1<<i;
 219                }
 220                avd->allowed = result;
 221
 222                for (i = 0, result = 0; i < n; i++)
 223                        if (avd->auditallow & mapping->perms[i])
 224                                result |= 1<<i;
 225                avd->auditallow = result;
 226
 227                for (i = 0, result = 0; i < n; i++) {
 228                        if (avd->auditdeny & mapping->perms[i])
 229                                result |= 1<<i;
 230                        if (!allow_unknown && !mapping->perms[i])
 231                                result |= 1<<i;
 232                }
 233                /*
 234                 * In case the kernel has a bug and requests a permission
 235                 * between num_perms and the maximum permission number, we
 236                 * should audit that denial
 237                 */
 238                for (; i < (sizeof(u32)*8); i++)
 239                        result |= 1<<i;
 240                avd->auditdeny = result;
 241        }
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246        int mls_enabled;
 247        struct selinux_policy *policy;
 248
 249        if (!selinux_initialized(state))
 250                return 0;
 251
 252        rcu_read_lock();
 253        policy = rcu_dereference(state->policy);
 254        mls_enabled = policy->policydb.mls_enabled;
 255        rcu_read_unlock();
 256        return mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct policydb *policydb,
 271                                struct context *scontext,
 272                                struct context *tcontext,
 273                                struct context *xcontext,
 274                                struct constraint_expr *cexpr)
 275{
 276        u32 val1, val2;
 277        struct context *c;
 278        struct role_datum *r1, *r2;
 279        struct mls_level *l1, *l2;
 280        struct constraint_expr *e;
 281        int s[CEXPR_MAXDEPTH];
 282        int sp = -1;
 283
 284        for (e = cexpr; e; e = e->next) {
 285                switch (e->expr_type) {
 286                case CEXPR_NOT:
 287                        BUG_ON(sp < 0);
 288                        s[sp] = !s[sp];
 289                        break;
 290                case CEXPR_AND:
 291                        BUG_ON(sp < 1);
 292                        sp--;
 293                        s[sp] &= s[sp + 1];
 294                        break;
 295                case CEXPR_OR:
 296                        BUG_ON(sp < 1);
 297                        sp--;
 298                        s[sp] |= s[sp + 1];
 299                        break;
 300                case CEXPR_ATTR:
 301                        if (sp == (CEXPR_MAXDEPTH - 1))
 302                                return 0;
 303                        switch (e->attr) {
 304                        case CEXPR_USER:
 305                                val1 = scontext->user;
 306                                val2 = tcontext->user;
 307                                break;
 308                        case CEXPR_TYPE:
 309                                val1 = scontext->type;
 310                                val2 = tcontext->type;
 311                                break;
 312                        case CEXPR_ROLE:
 313                                val1 = scontext->role;
 314                                val2 = tcontext->role;
 315                                r1 = policydb->role_val_to_struct[val1 - 1];
 316                                r2 = policydb->role_val_to_struct[val2 - 1];
 317                                switch (e->op) {
 318                                case CEXPR_DOM:
 319                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 320                                                                  val2 - 1);
 321                                        continue;
 322                                case CEXPR_DOMBY:
 323                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 324                                                                  val1 - 1);
 325                                        continue;
 326                                case CEXPR_INCOMP:
 327                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328                                                                    val2 - 1) &&
 329                                                   !ebitmap_get_bit(&r2->dominates,
 330                                                                    val1 - 1));
 331                                        continue;
 332                                default:
 333                                        break;
 334                                }
 335                                break;
 336                        case CEXPR_L1L2:
 337                                l1 = &(scontext->range.level[0]);
 338                                l2 = &(tcontext->range.level[0]);
 339                                goto mls_ops;
 340                        case CEXPR_L1H2:
 341                                l1 = &(scontext->range.level[0]);
 342                                l2 = &(tcontext->range.level[1]);
 343                                goto mls_ops;
 344                        case CEXPR_H1L2:
 345                                l1 = &(scontext->range.level[1]);
 346                                l2 = &(tcontext->range.level[0]);
 347                                goto mls_ops;
 348                        case CEXPR_H1H2:
 349                                l1 = &(scontext->range.level[1]);
 350                                l2 = &(tcontext->range.level[1]);
 351                                goto mls_ops;
 352                        case CEXPR_L1H1:
 353                                l1 = &(scontext->range.level[0]);
 354                                l2 = &(scontext->range.level[1]);
 355                                goto mls_ops;
 356                        case CEXPR_L2H2:
 357                                l1 = &(tcontext->range.level[0]);
 358                                l2 = &(tcontext->range.level[1]);
 359                                goto mls_ops;
 360mls_ops:
 361                        switch (e->op) {
 362                        case CEXPR_EQ:
 363                                s[++sp] = mls_level_eq(l1, l2);
 364                                continue;
 365                        case CEXPR_NEQ:
 366                                s[++sp] = !mls_level_eq(l1, l2);
 367                                continue;
 368                        case CEXPR_DOM:
 369                                s[++sp] = mls_level_dom(l1, l2);
 370                                continue;
 371                        case CEXPR_DOMBY:
 372                                s[++sp] = mls_level_dom(l2, l1);
 373                                continue;
 374                        case CEXPR_INCOMP:
 375                                s[++sp] = mls_level_incomp(l2, l1);
 376                                continue;
 377                        default:
 378                                BUG();
 379                                return 0;
 380                        }
 381                        break;
 382                        default:
 383                                BUG();
 384                                return 0;
 385                        }
 386
 387                        switch (e->op) {
 388                        case CEXPR_EQ:
 389                                s[++sp] = (val1 == val2);
 390                                break;
 391                        case CEXPR_NEQ:
 392                                s[++sp] = (val1 != val2);
 393                                break;
 394                        default:
 395                                BUG();
 396                                return 0;
 397                        }
 398                        break;
 399                case CEXPR_NAMES:
 400                        if (sp == (CEXPR_MAXDEPTH-1))
 401                                return 0;
 402                        c = scontext;
 403                        if (e->attr & CEXPR_TARGET)
 404                                c = tcontext;
 405                        else if (e->attr & CEXPR_XTARGET) {
 406                                c = xcontext;
 407                                if (!c) {
 408                                        BUG();
 409                                        return 0;
 410                                }
 411                        }
 412                        if (e->attr & CEXPR_USER)
 413                                val1 = c->user;
 414                        else if (e->attr & CEXPR_ROLE)
 415                                val1 = c->role;
 416                        else if (e->attr & CEXPR_TYPE)
 417                                val1 = c->type;
 418                        else {
 419                                BUG();
 420                                return 0;
 421                        }
 422
 423                        switch (e->op) {
 424                        case CEXPR_EQ:
 425                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426                                break;
 427                        case CEXPR_NEQ:
 428                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429                                break;
 430                        default:
 431                                BUG();
 432                                return 0;
 433                        }
 434                        break;
 435                default:
 436                        BUG();
 437                        return 0;
 438                }
 439        }
 440
 441        BUG_ON(sp != 0);
 442        return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451        struct perm_datum *pdatum = d;
 452        char **permission_names = args;
 453
 454        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456        permission_names[pdatum->value - 1] = (char *)k;
 457
 458        return 0;
 459}
 460
 461static void security_dump_masked_av(struct policydb *policydb,
 462                                    struct context *scontext,
 463                                    struct context *tcontext,
 464                                    u16 tclass,
 465                                    u32 permissions,
 466                                    const char *reason)
 467{
 468        struct common_datum *common_dat;
 469        struct class_datum *tclass_dat;
 470        struct audit_buffer *ab;
 471        char *tclass_name;
 472        char *scontext_name = NULL;
 473        char *tcontext_name = NULL;
 474        char *permission_names[32];
 475        int index;
 476        u32 length;
 477        bool need_comma = false;
 478
 479        if (!permissions)
 480                return;
 481
 482        tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 483        tclass_dat = policydb->class_val_to_struct[tclass - 1];
 484        common_dat = tclass_dat->comdatum;
 485
 486        /* init permission_names */
 487        if (common_dat &&
 488            hashtab_map(&common_dat->permissions.table,
 489                        dump_masked_av_helper, permission_names) < 0)
 490                goto out;
 491
 492        if (hashtab_map(&tclass_dat->permissions.table,
 493                        dump_masked_av_helper, permission_names) < 0)
 494                goto out;
 495
 496        /* get scontext/tcontext in text form */
 497        if (context_struct_to_string(policydb, scontext,
 498                                     &scontext_name, &length) < 0)
 499                goto out;
 500
 501        if (context_struct_to_string(policydb, tcontext,
 502                                     &tcontext_name, &length) < 0)
 503                goto out;
 504
 505        /* audit a message */
 506        ab = audit_log_start(audit_context(),
 507                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508        if (!ab)
 509                goto out;
 510
 511        audit_log_format(ab, "op=security_compute_av reason=%s "
 512                         "scontext=%s tcontext=%s tclass=%s perms=",
 513                         reason, scontext_name, tcontext_name, tclass_name);
 514
 515        for (index = 0; index < 32; index++) {
 516                u32 mask = (1 << index);
 517
 518                if ((mask & permissions) == 0)
 519                        continue;
 520
 521                audit_log_format(ab, "%s%s",
 522                                 need_comma ? "," : "",
 523                                 permission_names[index]
 524                                 ? permission_names[index] : "????");
 525                need_comma = true;
 526        }
 527        audit_log_end(ab);
 528out:
 529        /* release scontext/tcontext */
 530        kfree(tcontext_name);
 531        kfree(scontext_name);
 532
 533        return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct policydb *policydb,
 541                                     struct context *scontext,
 542                                     struct context *tcontext,
 543                                     u16 tclass,
 544                                     struct av_decision *avd)
 545{
 546        struct context lo_scontext;
 547        struct context lo_tcontext, *tcontextp = tcontext;
 548        struct av_decision lo_avd;
 549        struct type_datum *source;
 550        struct type_datum *target;
 551        u32 masked = 0;
 552
 553        source = policydb->type_val_to_struct[scontext->type - 1];
 554        BUG_ON(!source);
 555
 556        if (!source->bounds)
 557                return;
 558
 559        target = policydb->type_val_to_struct[tcontext->type - 1];
 560        BUG_ON(!target);
 561
 562        memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565        lo_scontext.type = source->bounds;
 566
 567        if (target->bounds) {
 568                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569                lo_tcontext.type = target->bounds;
 570                tcontextp = &lo_tcontext;
 571        }
 572
 573        context_struct_compute_av(policydb, &lo_scontext,
 574                                  tcontextp,
 575                                  tclass,
 576                                  &lo_avd,
 577                                  NULL);
 578
 579        masked = ~lo_avd.allowed & avd->allowed;
 580
 581        if (likely(!masked))
 582                return;         /* no masked permission */
 583
 584        /* mask violated permissions */
 585        avd->allowed &= ~masked;
 586
 587        /* audit masked permissions */
 588        security_dump_masked_av(policydb, scontext, tcontext,
 589                                tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597                struct extended_perms *xperms,
 598                struct avtab_node *node)
 599{
 600        unsigned int i;
 601
 602        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603                /* if one or more driver has all permissions allowed */
 604                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607                /* if allowing permissions within a driver */
 608                security_xperm_set(xperms->drivers.p,
 609                                        node->datum.u.xperms->driver);
 610        }
 611
 612        xperms->len = 1;
 613}
 614
 615/*
 616 * Compute access vectors and extended permissions based on a context
 617 * structure pair for the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct policydb *policydb,
 620                                      struct context *scontext,
 621                                      struct context *tcontext,
 622                                      u16 tclass,
 623                                      struct av_decision *avd,
 624                                      struct extended_perms *xperms)
 625{
 626        struct constraint_node *constraint;
 627        struct role_allow *ra;
 628        struct avtab_key avkey;
 629        struct avtab_node *node;
 630        struct class_datum *tclass_datum;
 631        struct ebitmap *sattr, *tattr;
 632        struct ebitmap_node *snode, *tnode;
 633        unsigned int i, j;
 634
 635        avd->allowed = 0;
 636        avd->auditallow = 0;
 637        avd->auditdeny = 0xffffffff;
 638        if (xperms) {
 639                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 640                xperms->len = 0;
 641        }
 642
 643        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 644                if (printk_ratelimit())
 645                        pr_warn("SELinux:  Invalid class %hu\n", tclass);
 646                return;
 647        }
 648
 649        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651        /*
 652         * If a specific type enforcement rule was defined for
 653         * this permission check, then use it.
 654         */
 655        avkey.target_class = tclass;
 656        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657        sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 659        ebitmap_for_each_positive_bit(sattr, snode, i) {
 660                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661                        avkey.source_type = i + 1;
 662                        avkey.target_type = j + 1;
 663                        for (node = avtab_search_node(&policydb->te_avtab,
 664                                                      &avkey);
 665                             node;
 666                             node = avtab_search_node_next(node, avkey.specified)) {
 667                                if (node->key.specified == AVTAB_ALLOWED)
 668                                        avd->allowed |= node->datum.u.data;
 669                                else if (node->key.specified == AVTAB_AUDITALLOW)
 670                                        avd->auditallow |= node->datum.u.data;
 671                                else if (node->key.specified == AVTAB_AUDITDENY)
 672                                        avd->auditdeny &= node->datum.u.data;
 673                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674                                        services_compute_xperms_drivers(xperms, node);
 675                        }
 676
 677                        /* Check conditional av table for additional permissions */
 678                        cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679                                        avd, xperms);
 680
 681                }
 682        }
 683
 684        /*
 685         * Remove any permissions prohibited by a constraint (this includes
 686         * the MLS policy).
 687         */
 688        constraint = tclass_datum->constraints;
 689        while (constraint) {
 690                if ((constraint->permissions & (avd->allowed)) &&
 691                    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692                                          constraint->expr)) {
 693                        avd->allowed &= ~(constraint->permissions);
 694                }
 695                constraint = constraint->next;
 696        }
 697
 698        /*
 699         * If checking process transition permission and the
 700         * role is changing, then check the (current_role, new_role)
 701         * pair.
 702         */
 703        if (tclass == policydb->process_class &&
 704            (avd->allowed & policydb->process_trans_perms) &&
 705            scontext->role != tcontext->role) {
 706                for (ra = policydb->role_allow; ra; ra = ra->next) {
 707                        if (scontext->role == ra->role &&
 708                            tcontext->role == ra->new_role)
 709                                break;
 710                }
 711                if (!ra)
 712                        avd->allowed &= ~policydb->process_trans_perms;
 713        }
 714
 715        /*
 716         * If the given source and target types have boundary
 717         * constraint, lazy checks have to mask any violated
 718         * permission and notice it to userspace via audit.
 719         */
 720        type_attribute_bounds_av(policydb, scontext, tcontext,
 721                                 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_state *state,
 725                                        struct selinux_policy *policy,
 726                                        struct sidtab_entry *oentry,
 727                                        struct sidtab_entry *nentry,
 728                                        struct sidtab_entry *tentry,
 729                                        u16 tclass)
 730{
 731        struct policydb *p = &policy->policydb;
 732        struct sidtab *sidtab = policy->sidtab;
 733        char *o = NULL, *n = NULL, *t = NULL;
 734        u32 olen, nlen, tlen;
 735
 736        if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 737                goto out;
 738        if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 739                goto out;
 740        if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 741                goto out;
 742        audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 743                  "op=security_validate_transition seresult=denied"
 744                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 745                  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 746out:
 747        kfree(o);
 748        kfree(n);
 749        kfree(t);
 750
 751        if (!enforcing_enabled(state))
 752                return 0;
 753        return -EPERM;
 754}
 755
 756static int security_compute_validatetrans(struct selinux_state *state,
 757                                          u32 oldsid, u32 newsid, u32 tasksid,
 758                                          u16 orig_tclass, bool user)
 759{
 760        struct selinux_policy *policy;
 761        struct policydb *policydb;
 762        struct sidtab *sidtab;
 763        struct sidtab_entry *oentry;
 764        struct sidtab_entry *nentry;
 765        struct sidtab_entry *tentry;
 766        struct class_datum *tclass_datum;
 767        struct constraint_node *constraint;
 768        u16 tclass;
 769        int rc = 0;
 770
 771
 772        if (!selinux_initialized(state))
 773                return 0;
 774
 775        rcu_read_lock();
 776
 777        policy = rcu_dereference(state->policy);
 778        policydb = &policy->policydb;
 779        sidtab = policy->sidtab;
 780
 781        if (!user)
 782                tclass = unmap_class(&policy->map, orig_tclass);
 783        else
 784                tclass = orig_tclass;
 785
 786        if (!tclass || tclass > policydb->p_classes.nprim) {
 787                rc = -EINVAL;
 788                goto out;
 789        }
 790        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 791
 792        oentry = sidtab_search_entry(sidtab, oldsid);
 793        if (!oentry) {
 794                pr_err("SELinux: %s:  unrecognized SID %d\n",
 795                        __func__, oldsid);
 796                rc = -EINVAL;
 797                goto out;
 798        }
 799
 800        nentry = sidtab_search_entry(sidtab, newsid);
 801        if (!nentry) {
 802                pr_err("SELinux: %s:  unrecognized SID %d\n",
 803                        __func__, newsid);
 804                rc = -EINVAL;
 805                goto out;
 806        }
 807
 808        tentry = sidtab_search_entry(sidtab, tasksid);
 809        if (!tentry) {
 810                pr_err("SELinux: %s:  unrecognized SID %d\n",
 811                        __func__, tasksid);
 812                rc = -EINVAL;
 813                goto out;
 814        }
 815
 816        constraint = tclass_datum->validatetrans;
 817        while (constraint) {
 818                if (!constraint_expr_eval(policydb, &oentry->context,
 819                                          &nentry->context, &tentry->context,
 820                                          constraint->expr)) {
 821                        if (user)
 822                                rc = -EPERM;
 823                        else
 824                                rc = security_validtrans_handle_fail(state,
 825                                                                policy,
 826                                                                oentry,
 827                                                                nentry,
 828                                                                tentry,
 829                                                                tclass);
 830                        goto out;
 831                }
 832                constraint = constraint->next;
 833        }
 834
 835out:
 836        rcu_read_unlock();
 837        return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841                                      u32 oldsid, u32 newsid, u32 tasksid,
 842                                      u16 tclass)
 843{
 844        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845                                              tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849                                 u32 oldsid, u32 newsid, u32 tasksid,
 850                                 u16 orig_tclass)
 851{
 852        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853                                              orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @state: SELinux state
 863 * @oldsid : current security identifier
 864 * @newsid : destinated security identifier
 865 */
 866int security_bounded_transition(struct selinux_state *state,
 867                                u32 old_sid, u32 new_sid)
 868{
 869        struct selinux_policy *policy;
 870        struct policydb *policydb;
 871        struct sidtab *sidtab;
 872        struct sidtab_entry *old_entry, *new_entry;
 873        struct type_datum *type;
 874        int index;
 875        int rc;
 876
 877        if (!selinux_initialized(state))
 878                return 0;
 879
 880        rcu_read_lock();
 881        policy = rcu_dereference(state->policy);
 882        policydb = &policy->policydb;
 883        sidtab = policy->sidtab;
 884
 885        rc = -EINVAL;
 886        old_entry = sidtab_search_entry(sidtab, old_sid);
 887        if (!old_entry) {
 888                pr_err("SELinux: %s: unrecognized SID %u\n",
 889                       __func__, old_sid);
 890                goto out;
 891        }
 892
 893        rc = -EINVAL;
 894        new_entry = sidtab_search_entry(sidtab, new_sid);
 895        if (!new_entry) {
 896                pr_err("SELinux: %s: unrecognized SID %u\n",
 897                       __func__, new_sid);
 898                goto out;
 899        }
 900
 901        rc = 0;
 902        /* type/domain unchanged */
 903        if (old_entry->context.type == new_entry->context.type)
 904                goto out;
 905
 906        index = new_entry->context.type;
 907        while (true) {
 908                type = policydb->type_val_to_struct[index - 1];
 909                BUG_ON(!type);
 910
 911                /* not bounded anymore */
 912                rc = -EPERM;
 913                if (!type->bounds)
 914                        break;
 915
 916                /* @newsid is bounded by @oldsid */
 917                rc = 0;
 918                if (type->bounds == old_entry->context.type)
 919                        break;
 920
 921                index = type->bounds;
 922        }
 923
 924        if (rc) {
 925                char *old_name = NULL;
 926                char *new_name = NULL;
 927                u32 length;
 928
 929                if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 930                                            &old_name, &length) &&
 931                    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 932                                            &new_name, &length)) {
 933                        audit_log(audit_context(),
 934                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 935                                  "op=security_bounded_transition "
 936                                  "seresult=denied "
 937                                  "oldcontext=%s newcontext=%s",
 938                                  old_name, new_name);
 939                }
 940                kfree(new_name);
 941                kfree(old_name);
 942        }
 943out:
 944        rcu_read_unlock();
 945
 946        return rc;
 947}
 948
 949static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 950{
 951        avd->allowed = 0;
 952        avd->auditallow = 0;
 953        avd->auditdeny = 0xffffffff;
 954        if (policy)
 955                avd->seqno = policy->latest_granting;
 956        else
 957                avd->seqno = 0;
 958        avd->flags = 0;
 959}
 960
 961void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 962                                        struct avtab_node *node)
 963{
 964        unsigned int i;
 965
 966        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967                if (xpermd->driver != node->datum.u.xperms->driver)
 968                        return;
 969        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 971                                        xpermd->driver))
 972                        return;
 973        } else {
 974                BUG();
 975        }
 976
 977        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 978                xpermd->used |= XPERMS_ALLOWED;
 979                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 980                        memset(xpermd->allowed->p, 0xff,
 981                                        sizeof(xpermd->allowed->p));
 982                }
 983                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 984                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 985                                xpermd->allowed->p[i] |=
 986                                        node->datum.u.xperms->perms.p[i];
 987                }
 988        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 989                xpermd->used |= XPERMS_AUDITALLOW;
 990                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 991                        memset(xpermd->auditallow->p, 0xff,
 992                                        sizeof(xpermd->auditallow->p));
 993                }
 994                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 995                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 996                                xpermd->auditallow->p[i] |=
 997                                        node->datum.u.xperms->perms.p[i];
 998                }
 999        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000                xpermd->used |= XPERMS_DONTAUDIT;
1001                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002                        memset(xpermd->dontaudit->p, 0xff,
1003                                        sizeof(xpermd->dontaudit->p));
1004                }
1005                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007                                xpermd->dontaudit->p[i] |=
1008                                        node->datum.u.xperms->perms.p[i];
1009                }
1010        } else {
1011                BUG();
1012        }
1013}
1014
1015void security_compute_xperms_decision(struct selinux_state *state,
1016                                      u32 ssid,
1017                                      u32 tsid,
1018                                      u16 orig_tclass,
1019                                      u8 driver,
1020                                      struct extended_perms_decision *xpermd)
1021{
1022        struct selinux_policy *policy;
1023        struct policydb *policydb;
1024        struct sidtab *sidtab;
1025        u16 tclass;
1026        struct context *scontext, *tcontext;
1027        struct avtab_key avkey;
1028        struct avtab_node *node;
1029        struct ebitmap *sattr, *tattr;
1030        struct ebitmap_node *snode, *tnode;
1031        unsigned int i, j;
1032
1033        xpermd->driver = driver;
1034        xpermd->used = 0;
1035        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038
1039        rcu_read_lock();
1040        if (!selinux_initialized(state))
1041                goto allow;
1042
1043        policy = rcu_dereference(state->policy);
1044        policydb = &policy->policydb;
1045        sidtab = policy->sidtab;
1046
1047        scontext = sidtab_search(sidtab, ssid);
1048        if (!scontext) {
1049                pr_err("SELinux: %s:  unrecognized SID %d\n",
1050                       __func__, ssid);
1051                goto out;
1052        }
1053
1054        tcontext = sidtab_search(sidtab, tsid);
1055        if (!tcontext) {
1056                pr_err("SELinux: %s:  unrecognized SID %d\n",
1057                       __func__, tsid);
1058                goto out;
1059        }
1060
1061        tclass = unmap_class(&policy->map, orig_tclass);
1062        if (unlikely(orig_tclass && !tclass)) {
1063                if (policydb->allow_unknown)
1064                        goto allow;
1065                goto out;
1066        }
1067
1068
1069        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071                goto out;
1072        }
1073
1074        avkey.target_class = tclass;
1075        avkey.specified = AVTAB_XPERMS;
1076        sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1078        ebitmap_for_each_positive_bit(sattr, snode, i) {
1079                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080                        avkey.source_type = i + 1;
1081                        avkey.target_type = j + 1;
1082                        for (node = avtab_search_node(&policydb->te_avtab,
1083                                                      &avkey);
1084                             node;
1085                             node = avtab_search_node_next(node, avkey.specified))
1086                                services_compute_xperms_decision(xpermd, node);
1087
1088                        cond_compute_xperms(&policydb->te_cond_avtab,
1089                                                &avkey, xpermd);
1090                }
1091        }
1092out:
1093        rcu_read_unlock();
1094        return;
1095allow:
1096        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097        goto out;
1098}
1099
1100/**
1101 * security_compute_av - Compute access vector decisions.
1102 * @state: SELinux state
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
1112void security_compute_av(struct selinux_state *state,
1113                         u32 ssid,
1114                         u32 tsid,
1115                         u16 orig_tclass,
1116                         struct av_decision *avd,
1117                         struct extended_perms *xperms)
1118{
1119        struct selinux_policy *policy;
1120        struct policydb *policydb;
1121        struct sidtab *sidtab;
1122        u16 tclass;
1123        struct context *scontext = NULL, *tcontext = NULL;
1124
1125        rcu_read_lock();
1126        policy = rcu_dereference(state->policy);
1127        avd_init(policy, avd);
1128        xperms->len = 0;
1129        if (!selinux_initialized(state))
1130                goto allow;
1131
1132        policydb = &policy->policydb;
1133        sidtab = policy->sidtab;
1134
1135        scontext = sidtab_search(sidtab, ssid);
1136        if (!scontext) {
1137                pr_err("SELinux: %s:  unrecognized SID %d\n",
1138                       __func__, ssid);
1139                goto out;
1140        }
1141
1142        /* permissive domain? */
1143        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144                avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146        tcontext = sidtab_search(sidtab, tsid);
1147        if (!tcontext) {
1148                pr_err("SELinux: %s:  unrecognized SID %d\n",
1149                       __func__, tsid);
1150                goto out;
1151        }
1152
1153        tclass = unmap_class(&policy->map, orig_tclass);
1154        if (unlikely(orig_tclass && !tclass)) {
1155                if (policydb->allow_unknown)
1156                        goto allow;
1157                goto out;
1158        }
1159        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160                                  xperms);
1161        map_decision(&policy->map, orig_tclass, avd,
1162                     policydb->allow_unknown);
1163out:
1164        rcu_read_unlock();
1165        return;
1166allow:
1167        avd->allowed = 0xffffffff;
1168        goto out;
1169}
1170
1171void security_compute_av_user(struct selinux_state *state,
1172                              u32 ssid,
1173                              u32 tsid,
1174                              u16 tclass,
1175                              struct av_decision *avd)
1176{
1177        struct selinux_policy *policy;
1178        struct policydb *policydb;
1179        struct sidtab *sidtab;
1180        struct context *scontext = NULL, *tcontext = NULL;
1181
1182        rcu_read_lock();
1183        policy = rcu_dereference(state->policy);
1184        avd_init(policy, avd);
1185        if (!selinux_initialized(state))
1186                goto allow;
1187
1188        policydb = &policy->policydb;
1189        sidtab = policy->sidtab;
1190
1191        scontext = sidtab_search(sidtab, ssid);
1192        if (!scontext) {
1193                pr_err("SELinux: %s:  unrecognized SID %d\n",
1194                       __func__, ssid);
1195                goto out;
1196        }
1197
1198        /* permissive domain? */
1199        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200                avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202        tcontext = sidtab_search(sidtab, tsid);
1203        if (!tcontext) {
1204                pr_err("SELinux: %s:  unrecognized SID %d\n",
1205                       __func__, tsid);
1206                goto out;
1207        }
1208
1209        if (unlikely(!tclass)) {
1210                if (policydb->allow_unknown)
1211                        goto allow;
1212                goto out;
1213        }
1214
1215        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216                                  NULL);
1217 out:
1218        rcu_read_unlock();
1219        return;
1220allow:
1221        avd->allowed = 0xffffffff;
1222        goto out;
1223}
1224
1225/*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size.  Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
1232static int context_struct_to_string(struct policydb *p,
1233                                    struct context *context,
1234                                    char **scontext, u32 *scontext_len)
1235{
1236        char *scontextp;
1237
1238        if (scontext)
1239                *scontext = NULL;
1240        *scontext_len = 0;
1241
1242        if (context->len) {
1243                *scontext_len = context->len;
1244                if (scontext) {
1245                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1246                        if (!(*scontext))
1247                                return -ENOMEM;
1248                }
1249                return 0;
1250        }
1251
1252        /* Compute the size of the context. */
1253        *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254        *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255        *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256        *scontext_len += mls_compute_context_len(p, context);
1257
1258        if (!scontext)
1259                return 0;
1260
1261        /* Allocate space for the context; caller must free this space. */
1262        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263        if (!scontextp)
1264                return -ENOMEM;
1265        *scontext = scontextp;
1266
1267        /*
1268         * Copy the user name, role name and type name into the context.
1269         */
1270        scontextp += sprintf(scontextp, "%s:%s:%s",
1271                sym_name(p, SYM_USERS, context->user - 1),
1272                sym_name(p, SYM_ROLES, context->role - 1),
1273                sym_name(p, SYM_TYPES, context->type - 1));
1274
1275        mls_sid_to_context(p, context, &scontextp);
1276
1277        *scontextp = 0;
1278
1279        return 0;
1280}
1281
1282static int sidtab_entry_to_string(struct policydb *p,
1283                                  struct sidtab *sidtab,
1284                                  struct sidtab_entry *entry,
1285                                  char **scontext, u32 *scontext_len)
1286{
1287        int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289        if (rc != -ENOENT)
1290                return rc;
1291
1292        rc = context_struct_to_string(p, &entry->context, scontext,
1293                                      scontext_len);
1294        if (!rc && scontext)
1295                sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296        return rc;
1297}
1298
1299#include "initial_sid_to_string.h"
1300
1301int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302{
1303        struct selinux_policy *policy;
1304        int rc;
1305
1306        if (!selinux_initialized(state)) {
1307                pr_err("SELinux: %s:  called before initial load_policy\n",
1308                       __func__);
1309                return -EINVAL;
1310        }
1311
1312        rcu_read_lock();
1313        policy = rcu_dereference(state->policy);
1314        rc = sidtab_hash_stats(policy->sidtab, page);
1315        rcu_read_unlock();
1316
1317        return rc;
1318}
1319
1320const char *security_get_initial_sid_context(u32 sid)
1321{
1322        if (unlikely(sid > SECINITSID_NUM))
1323                return NULL;
1324        return initial_sid_to_string[sid];
1325}
1326
1327static int security_sid_to_context_core(struct selinux_state *state,
1328                                        u32 sid, char **scontext,
1329                                        u32 *scontext_len, int force,
1330                                        int only_invalid)
1331{
1332        struct selinux_policy *policy;
1333        struct policydb *policydb;
1334        struct sidtab *sidtab;
1335        struct sidtab_entry *entry;
1336        int rc = 0;
1337
1338        if (scontext)
1339                *scontext = NULL;
1340        *scontext_len  = 0;
1341
1342        if (!selinux_initialized(state)) {
1343                if (sid <= SECINITSID_NUM) {
1344                        char *scontextp;
1345                        const char *s = initial_sid_to_string[sid];
1346
1347                        if (!s)
1348                                return -EINVAL;
1349                        *scontext_len = strlen(s) + 1;
1350                        if (!scontext)
1351                                return 0;
1352                        scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353                        if (!scontextp)
1354                                return -ENOMEM;
1355                        *scontext = scontextp;
1356                        return 0;
1357                }
1358                pr_err("SELinux: %s:  called before initial "
1359                       "load_policy on unknown SID %d\n", __func__, sid);
1360                return -EINVAL;
1361        }
1362        rcu_read_lock();
1363        policy = rcu_dereference(state->policy);
1364        policydb = &policy->policydb;
1365        sidtab = policy->sidtab;
1366
1367        if (force)
1368                entry = sidtab_search_entry_force(sidtab, sid);
1369        else
1370                entry = sidtab_search_entry(sidtab, sid);
1371        if (!entry) {
1372                pr_err("SELinux: %s:  unrecognized SID %d\n",
1373                        __func__, sid);
1374                rc = -EINVAL;
1375                goto out_unlock;
1376        }
1377        if (only_invalid && !entry->context.len)
1378                goto out_unlock;
1379
1380        rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381                                    scontext_len);
1382
1383out_unlock:
1384        rcu_read_unlock();
1385        return rc;
1386
1387}
1388
1389/**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @state: SELinux state
1392 * @sid: security identifier, SID
1393 * @scontext: security context
1394 * @scontext_len: length in bytes
1395 *
1396 * Write the string representation of the context associated with @sid
1397 * into a dynamically allocated string of the correct size.  Set @scontext
1398 * to point to this string and set @scontext_len to the length of the string.
1399 */
1400int security_sid_to_context(struct selinux_state *state,
1401                            u32 sid, char **scontext, u32 *scontext_len)
1402{
1403        return security_sid_to_context_core(state, sid, scontext,
1404                                            scontext_len, 0, 0);
1405}
1406
1407int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408                                  char **scontext, u32 *scontext_len)
1409{
1410        return security_sid_to_context_core(state, sid, scontext,
1411                                            scontext_len, 1, 0);
1412}
1413
1414/**
1415 * security_sid_to_context_inval - Obtain a context for a given SID if it
1416 *                                 is invalid.
1417 * @state: SELinux state
1418 * @sid: security identifier, SID
1419 * @scontext: security context
1420 * @scontext_len: length in bytes
1421 *
1422 * Write the string representation of the context associated with @sid
1423 * into a dynamically allocated string of the correct size, but only if the
1424 * context is invalid in the current policy.  Set @scontext to point to
1425 * this string (or NULL if the context is valid) and set @scontext_len to
1426 * the length of the string (or 0 if the context is valid).
1427 */
1428int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429                                  char **scontext, u32 *scontext_len)
1430{
1431        return security_sid_to_context_core(state, sid, scontext,
1432                                            scontext_len, 1, 1);
1433}
1434
1435/*
1436 * Caveat:  Mutates scontext.
1437 */
1438static int string_to_context_struct(struct policydb *pol,
1439                                    struct sidtab *sidtabp,
1440                                    char *scontext,
1441                                    struct context *ctx,
1442                                    u32 def_sid)
1443{
1444        struct role_datum *role;
1445        struct type_datum *typdatum;
1446        struct user_datum *usrdatum;
1447        char *scontextp, *p, oldc;
1448        int rc = 0;
1449
1450        context_init(ctx);
1451
1452        /* Parse the security context. */
1453
1454        rc = -EINVAL;
1455        scontextp = (char *) scontext;
1456
1457        /* Extract the user. */
1458        p = scontextp;
1459        while (*p && *p != ':')
1460                p++;
1461
1462        if (*p == 0)
1463                goto out;
1464
1465        *p++ = 0;
1466
1467        usrdatum = symtab_search(&pol->p_users, scontextp);
1468        if (!usrdatum)
1469                goto out;
1470
1471        ctx->user = usrdatum->value;
1472
1473        /* Extract role. */
1474        scontextp = p;
1475        while (*p && *p != ':')
1476                p++;
1477
1478        if (*p == 0)
1479                goto out;
1480
1481        *p++ = 0;
1482
1483        role = symtab_search(&pol->p_roles, scontextp);
1484        if (!role)
1485                goto out;
1486        ctx->role = role->value;
1487
1488        /* Extract type. */
1489        scontextp = p;
1490        while (*p && *p != ':')
1491                p++;
1492        oldc = *p;
1493        *p++ = 0;
1494
1495        typdatum = symtab_search(&pol->p_types, scontextp);
1496        if (!typdatum || typdatum->attribute)
1497                goto out;
1498
1499        ctx->type = typdatum->value;
1500
1501        rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502        if (rc)
1503                goto out;
1504
1505        /* Check the validity of the new context. */
1506        rc = -EINVAL;
1507        if (!policydb_context_isvalid(pol, ctx))
1508                goto out;
1509        rc = 0;
1510out:
1511        if (rc)
1512                context_destroy(ctx);
1513        return rc;
1514}
1515
1516static int security_context_to_sid_core(struct selinux_state *state,
1517                                        const char *scontext, u32 scontext_len,
1518                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519                                        int force)
1520{
1521        struct selinux_policy *policy;
1522        struct policydb *policydb;
1523        struct sidtab *sidtab;
1524        char *scontext2, *str = NULL;
1525        struct context context;
1526        int rc = 0;
1527
1528        /* An empty security context is never valid. */
1529        if (!scontext_len)
1530                return -EINVAL;
1531
1532        /* Copy the string to allow changes and ensure a NUL terminator */
1533        scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534        if (!scontext2)
1535                return -ENOMEM;
1536
1537        if (!selinux_initialized(state)) {
1538                int i;
1539
1540                for (i = 1; i < SECINITSID_NUM; i++) {
1541                        const char *s = initial_sid_to_string[i];
1542
1543                        if (s && !strcmp(s, scontext2)) {
1544                                *sid = i;
1545                                goto out;
1546                        }
1547                }
1548                *sid = SECINITSID_KERNEL;
1549                goto out;
1550        }
1551        *sid = SECSID_NULL;
1552
1553        if (force) {
1554                /* Save another copy for storing in uninterpreted form */
1555                rc = -ENOMEM;
1556                str = kstrdup(scontext2, gfp_flags);
1557                if (!str)
1558                        goto out;
1559        }
1560retry:
1561        rcu_read_lock();
1562        policy = rcu_dereference(state->policy);
1563        policydb = &policy->policydb;
1564        sidtab = policy->sidtab;
1565        rc = string_to_context_struct(policydb, sidtab, scontext2,
1566                                      &context, def_sid);
1567        if (rc == -EINVAL && force) {
1568                context.str = str;
1569                context.len = strlen(str) + 1;
1570                str = NULL;
1571        } else if (rc)
1572                goto out_unlock;
1573        rc = sidtab_context_to_sid(sidtab, &context, sid);
1574        if (rc == -ESTALE) {
1575                rcu_read_unlock();
1576                if (context.str) {
1577                        str = context.str;
1578                        context.str = NULL;
1579                }
1580                context_destroy(&context);
1581                goto retry;
1582        }
1583        context_destroy(&context);
1584out_unlock:
1585        rcu_read_unlock();
1586out:
1587        kfree(scontext2);
1588        kfree(str);
1589        return rc;
1590}
1591
1592/**
1593 * security_context_to_sid - Obtain a SID for a given security context.
1594 * @state: SELinux state
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
1605int security_context_to_sid(struct selinux_state *state,
1606                            const char *scontext, u32 scontext_len, u32 *sid,
1607                            gfp_t gfp)
1608{
1609        return security_context_to_sid_core(state, scontext, scontext_len,
1610                                            sid, SECSID_NULL, gfp, 0);
1611}
1612
1613int security_context_str_to_sid(struct selinux_state *state,
1614                                const char *scontext, u32 *sid, gfp_t gfp)
1615{
1616        return security_context_to_sid(state, scontext, strlen(scontext),
1617                                       sid, gfp);
1618}
1619
1620/**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @state: SELinux state
1625 * @scontext: security context
1626 * @scontext_len: length in bytes
1627 * @sid: security identifier, SID
1628 * @def_sid: default SID to assign on error
1629 *
1630 * Obtains a SID associated with the security context that
1631 * has the string representation specified by @scontext.
1632 * The default SID is passed to the MLS layer to be used to allow
1633 * kernel labeling of the MLS field if the MLS field is not present
1634 * (for upgrading to MLS without full relabel).
1635 * Implicitly forces adding of the context even if it cannot be mapped yet.
1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637 * memory is available, or 0 on success.
1638 */
1639int security_context_to_sid_default(struct selinux_state *state,
1640                                    const char *scontext, u32 scontext_len,
1641                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1642{
1643        return security_context_to_sid_core(state, scontext, scontext_len,
1644                                            sid, def_sid, gfp_flags, 1);
1645}
1646
1647int security_context_to_sid_force(struct selinux_state *state,
1648                                  const char *scontext, u32 scontext_len,
1649                                  u32 *sid)
1650{
1651        return security_context_to_sid_core(state, scontext, scontext_len,
1652                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1653}
1654
1655static int compute_sid_handle_invalid_context(
1656        struct selinux_state *state,
1657        struct selinux_policy *policy,
1658        struct sidtab_entry *sentry,
1659        struct sidtab_entry *tentry,
1660        u16 tclass,
1661        struct context *newcontext)
1662{
1663        struct policydb *policydb = &policy->policydb;
1664        struct sidtab *sidtab = policy->sidtab;
1665        char *s = NULL, *t = NULL, *n = NULL;
1666        u32 slen, tlen, nlen;
1667        struct audit_buffer *ab;
1668
1669        if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1670                goto out;
1671        if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1672                goto out;
1673        if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1674                goto out;
1675        ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1676        audit_log_format(ab,
1677                         "op=security_compute_sid invalid_context=");
1678        /* no need to record the NUL with untrusted strings */
1679        audit_log_n_untrustedstring(ab, n, nlen - 1);
1680        audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1681                         s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1682        audit_log_end(ab);
1683out:
1684        kfree(s);
1685        kfree(t);
1686        kfree(n);
1687        if (!enforcing_enabled(state))
1688                return 0;
1689        return -EACCES;
1690}
1691
1692static void filename_compute_type(struct policydb *policydb,
1693                                  struct context *newcontext,
1694                                  u32 stype, u32 ttype, u16 tclass,
1695                                  const char *objname)
1696{
1697        struct filename_trans_key ft;
1698        struct filename_trans_datum *datum;
1699
1700        /*
1701         * Most filename trans rules are going to live in specific directories
1702         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1703         * if the ttype does not contain any rules.
1704         */
1705        if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1706                return;
1707
1708        ft.ttype = ttype;
1709        ft.tclass = tclass;
1710        ft.name = objname;
1711
1712        datum = policydb_filenametr_search(policydb, &ft);
1713        while (datum) {
1714                if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1715                        newcontext->type = datum->otype;
1716                        return;
1717                }
1718                datum = datum->next;
1719        }
1720}
1721
1722static int security_compute_sid(struct selinux_state *state,
1723                                u32 ssid,
1724                                u32 tsid,
1725                                u16 orig_tclass,
1726                                u32 specified,
1727                                const char *objname,
1728                                u32 *out_sid,
1729                                bool kern)
1730{
1731        struct selinux_policy *policy;
1732        struct policydb *policydb;
1733        struct sidtab *sidtab;
1734        struct class_datum *cladatum;
1735        struct context *scontext, *tcontext, newcontext;
1736        struct sidtab_entry *sentry, *tentry;
1737        struct avtab_key avkey;
1738        struct avtab_datum *avdatum;
1739        struct avtab_node *node;
1740        u16 tclass;
1741        int rc = 0;
1742        bool sock;
1743
1744        if (!selinux_initialized(state)) {
1745                switch (orig_tclass) {
1746                case SECCLASS_PROCESS: /* kernel value */
1747                        *out_sid = ssid;
1748                        break;
1749                default:
1750                        *out_sid = tsid;
1751                        break;
1752                }
1753                goto out;
1754        }
1755
1756retry:
1757        cladatum = NULL;
1758        context_init(&newcontext);
1759
1760        rcu_read_lock();
1761
1762        policy = rcu_dereference(state->policy);
1763
1764        if (kern) {
1765                tclass = unmap_class(&policy->map, orig_tclass);
1766                sock = security_is_socket_class(orig_tclass);
1767        } else {
1768                tclass = orig_tclass;
1769                sock = security_is_socket_class(map_class(&policy->map,
1770                                                          tclass));
1771        }
1772
1773        policydb = &policy->policydb;
1774        sidtab = policy->sidtab;
1775
1776        sentry = sidtab_search_entry(sidtab, ssid);
1777        if (!sentry) {
1778                pr_err("SELinux: %s:  unrecognized SID %d\n",
1779                       __func__, ssid);
1780                rc = -EINVAL;
1781                goto out_unlock;
1782        }
1783        tentry = sidtab_search_entry(sidtab, tsid);
1784        if (!tentry) {
1785                pr_err("SELinux: %s:  unrecognized SID %d\n",
1786                       __func__, tsid);
1787                rc = -EINVAL;
1788                goto out_unlock;
1789        }
1790
1791        scontext = &sentry->context;
1792        tcontext = &tentry->context;
1793
1794        if (tclass && tclass <= policydb->p_classes.nprim)
1795                cladatum = policydb->class_val_to_struct[tclass - 1];
1796
1797        /* Set the user identity. */
1798        switch (specified) {
1799        case AVTAB_TRANSITION:
1800        case AVTAB_CHANGE:
1801                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1802                        newcontext.user = tcontext->user;
1803                } else {
1804                        /* notice this gets both DEFAULT_SOURCE and unset */
1805                        /* Use the process user identity. */
1806                        newcontext.user = scontext->user;
1807                }
1808                break;
1809        case AVTAB_MEMBER:
1810                /* Use the related object owner. */
1811                newcontext.user = tcontext->user;
1812                break;
1813        }
1814
1815        /* Set the role to default values. */
1816        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1817                newcontext.role = scontext->role;
1818        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1819                newcontext.role = tcontext->role;
1820        } else {
1821                if ((tclass == policydb->process_class) || sock)
1822                        newcontext.role = scontext->role;
1823                else
1824                        newcontext.role = OBJECT_R_VAL;
1825        }
1826
1827        /* Set the type to default values. */
1828        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1829                newcontext.type = scontext->type;
1830        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1831                newcontext.type = tcontext->type;
1832        } else {
1833                if ((tclass == policydb->process_class) || sock) {
1834                        /* Use the type of process. */
1835                        newcontext.type = scontext->type;
1836                } else {
1837                        /* Use the type of the related object. */
1838                        newcontext.type = tcontext->type;
1839                }
1840        }
1841
1842        /* Look for a type transition/member/change rule. */
1843        avkey.source_type = scontext->type;
1844        avkey.target_type = tcontext->type;
1845        avkey.target_class = tclass;
1846        avkey.specified = specified;
1847        avdatum = avtab_search(&policydb->te_avtab, &avkey);
1848
1849        /* If no permanent rule, also check for enabled conditional rules */
1850        if (!avdatum) {
1851                node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1852                for (; node; node = avtab_search_node_next(node, specified)) {
1853                        if (node->key.specified & AVTAB_ENABLED) {
1854                                avdatum = &node->datum;
1855                                break;
1856                        }
1857                }
1858        }
1859
1860        if (avdatum) {
1861                /* Use the type from the type transition/member/change rule. */
1862                newcontext.type = avdatum->u.data;
1863        }
1864
1865        /* if we have a objname this is a file trans check so check those rules */
1866        if (objname)
1867                filename_compute_type(policydb, &newcontext, scontext->type,
1868                                      tcontext->type, tclass, objname);
1869
1870        /* Check for class-specific changes. */
1871        if (specified & AVTAB_TRANSITION) {
1872                /* Look for a role transition rule. */
1873                struct role_trans_datum *rtd;
1874                struct role_trans_key rtk = {
1875                        .role = scontext->role,
1876                        .type = tcontext->type,
1877                        .tclass = tclass,
1878                };
1879
1880                rtd = policydb_roletr_search(policydb, &rtk);
1881                if (rtd)
1882                        newcontext.role = rtd->new_role;
1883        }
1884
1885        /* Set the MLS attributes.
1886           This is done last because it may allocate memory. */
1887        rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1888                             &newcontext, sock);
1889        if (rc)
1890                goto out_unlock;
1891
1892        /* Check the validity of the context. */
1893        if (!policydb_context_isvalid(policydb, &newcontext)) {
1894                rc = compute_sid_handle_invalid_context(state, policy, sentry,
1895                                                        tentry, tclass,
1896                                                        &newcontext);
1897                if (rc)
1898                        goto out_unlock;
1899        }
1900        /* Obtain the sid for the context. */
1901        rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1902        if (rc == -ESTALE) {
1903                rcu_read_unlock();
1904                context_destroy(&newcontext);
1905                goto retry;
1906        }
1907out_unlock:
1908        rcu_read_unlock();
1909        context_destroy(&newcontext);
1910out:
1911        return rc;
1912}
1913
1914/**
1915 * security_transition_sid - Compute the SID for a new subject/object.
1916 * @state: SELinux state
1917 * @ssid: source security identifier
1918 * @tsid: target security identifier
1919 * @tclass: target security class
1920 * @out_sid: security identifier for new subject/object
1921 *
1922 * Compute a SID to use for labeling a new subject or object in the
1923 * class @tclass based on a SID pair (@ssid, @tsid).
1924 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1925 * if insufficient memory is available, or %0 if the new SID was
1926 * computed successfully.
1927 */
1928int security_transition_sid(struct selinux_state *state,
1929                            u32 ssid, u32 tsid, u16 tclass,
1930                            const struct qstr *qstr, u32 *out_sid)
1931{
1932        return security_compute_sid(state, ssid, tsid, tclass,
1933                                    AVTAB_TRANSITION,
1934                                    qstr ? qstr->name : NULL, out_sid, true);
1935}
1936
1937int security_transition_sid_user(struct selinux_state *state,
1938                                 u32 ssid, u32 tsid, u16 tclass,
1939                                 const char *objname, u32 *out_sid)
1940{
1941        return security_compute_sid(state, ssid, tsid, tclass,
1942                                    AVTAB_TRANSITION,
1943                                    objname, out_sid, false);
1944}
1945
1946/**
1947 * security_member_sid - Compute the SID for member selection.
1948 * @ssid: source security identifier
1949 * @tsid: target security identifier
1950 * @tclass: target security class
1951 * @out_sid: security identifier for selected member
1952 *
1953 * Compute a SID to use when selecting a member of a polyinstantiated
1954 * object of class @tclass based on a SID pair (@ssid, @tsid).
1955 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1956 * if insufficient memory is available, or %0 if the SID was
1957 * computed successfully.
1958 */
1959int security_member_sid(struct selinux_state *state,
1960                        u32 ssid,
1961                        u32 tsid,
1962                        u16 tclass,
1963                        u32 *out_sid)
1964{
1965        return security_compute_sid(state, ssid, tsid, tclass,
1966                                    AVTAB_MEMBER, NULL,
1967                                    out_sid, false);
1968}
1969
1970/**
1971 * security_change_sid - Compute the SID for object relabeling.
1972 * @state: SELinux state
1973 * @ssid: source security identifier
1974 * @tsid: target security identifier
1975 * @tclass: target security class
1976 * @out_sid: security identifier for selected member
1977 *
1978 * Compute a SID to use for relabeling an object of class @tclass
1979 * based on a SID pair (@ssid, @tsid).
1980 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1981 * if insufficient memory is available, or %0 if the SID was
1982 * computed successfully.
1983 */
1984int security_change_sid(struct selinux_state *state,
1985                        u32 ssid,
1986                        u32 tsid,
1987                        u16 tclass,
1988                        u32 *out_sid)
1989{
1990        return security_compute_sid(state,
1991                                    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992                                    out_sid, false);
1993}
1994
1995static inline int convert_context_handle_invalid_context(
1996        struct selinux_state *state,
1997        struct policydb *policydb,
1998        struct context *context)
1999{
2000        char *s;
2001        u32 len;
2002
2003        if (enforcing_enabled(state))
2004                return -EINVAL;
2005
2006        if (!context_struct_to_string(policydb, context, &s, &len)) {
2007                pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2008                        s);
2009                kfree(s);
2010        }
2011        return 0;
2012}
2013
2014/*
2015 * Convert the values in the security context
2016 * structure `oldc' from the values specified
2017 * in the policy `p->oldp' to the values specified
2018 * in the policy `p->newp', storing the new context
2019 * in `newc'.  Verify that the context is valid
2020 * under the new policy.
2021 */
2022static int convert_context(struct context *oldc, struct context *newc, void *p)
2023{
2024        struct convert_context_args *args;
2025        struct ocontext *oc;
2026        struct role_datum *role;
2027        struct type_datum *typdatum;
2028        struct user_datum *usrdatum;
2029        char *s;
2030        u32 len;
2031        int rc;
2032
2033        args = p;
2034
2035        if (oldc->str) {
2036                s = kstrdup(oldc->str, GFP_KERNEL);
2037                if (!s)
2038                        return -ENOMEM;
2039
2040                rc = string_to_context_struct(args->newp, NULL, s,
2041                                              newc, SECSID_NULL);
2042                if (rc == -EINVAL) {
2043                        /*
2044                         * Retain string representation for later mapping.
2045                         *
2046                         * IMPORTANT: We need to copy the contents of oldc->str
2047                         * back into s again because string_to_context_struct()
2048                         * may have garbled it.
2049                         */
2050                        memcpy(s, oldc->str, oldc->len);
2051                        context_init(newc);
2052                        newc->str = s;
2053                        newc->len = oldc->len;
2054                        return 0;
2055                }
2056                kfree(s);
2057                if (rc) {
2058                        /* Other error condition, e.g. ENOMEM. */
2059                        pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2060                               oldc->str, -rc);
2061                        return rc;
2062                }
2063                pr_info("SELinux:  Context %s became valid (mapped).\n",
2064                        oldc->str);
2065                return 0;
2066        }
2067
2068        context_init(newc);
2069
2070        /* Convert the user. */
2071        usrdatum = symtab_search(&args->newp->p_users,
2072                                 sym_name(args->oldp,
2073                                          SYM_USERS, oldc->user - 1));
2074        if (!usrdatum)
2075                goto bad;
2076        newc->user = usrdatum->value;
2077
2078        /* Convert the role. */
2079        role = symtab_search(&args->newp->p_roles,
2080                             sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2081        if (!role)
2082                goto bad;
2083        newc->role = role->value;
2084
2085        /* Convert the type. */
2086        typdatum = symtab_search(&args->newp->p_types,
2087                                 sym_name(args->oldp,
2088                                          SYM_TYPES, oldc->type - 1));
2089        if (!typdatum)
2090                goto bad;
2091        newc->type = typdatum->value;
2092
2093        /* Convert the MLS fields if dealing with MLS policies */
2094        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2095                rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2096                if (rc)
2097                        goto bad;
2098        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2099                /*
2100                 * Switching between non-MLS and MLS policy:
2101                 * ensure that the MLS fields of the context for all
2102                 * existing entries in the sidtab are filled in with a
2103                 * suitable default value, likely taken from one of the
2104                 * initial SIDs.
2105                 */
2106                oc = args->newp->ocontexts[OCON_ISID];
2107                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2108                        oc = oc->next;
2109                if (!oc) {
2110                        pr_err("SELinux:  unable to look up"
2111                                " the initial SIDs list\n");
2112                        goto bad;
2113                }
2114                rc = mls_range_set(newc, &oc->context[0].range);
2115                if (rc)
2116                        goto bad;
2117        }
2118
2119        /* Check the validity of the new context. */
2120        if (!policydb_context_isvalid(args->newp, newc)) {
2121                rc = convert_context_handle_invalid_context(args->state,
2122                                                        args->oldp,
2123                                                        oldc);
2124                if (rc)
2125                        goto bad;
2126        }
2127
2128        return 0;
2129bad:
2130        /* Map old representation to string and save it. */
2131        rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2132        if (rc)
2133                return rc;
2134        context_destroy(newc);
2135        newc->str = s;
2136        newc->len = len;
2137        pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2138                newc->str);
2139        return 0;
2140}
2141
2142static void security_load_policycaps(struct selinux_state *state,
2143                                struct selinux_policy *policy)
2144{
2145        struct policydb *p;
2146        unsigned int i;
2147        struct ebitmap_node *node;
2148
2149        p = &policy->policydb;
2150
2151        for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2152                WRITE_ONCE(state->policycap[i],
2153                        ebitmap_get_bit(&p->policycaps, i));
2154
2155        for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2156                pr_info("SELinux:  policy capability %s=%d\n",
2157                        selinux_policycap_names[i],
2158                        ebitmap_get_bit(&p->policycaps, i));
2159
2160        ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2161                if (i >= ARRAY_SIZE(selinux_policycap_names))
2162                        pr_info("SELinux:  unknown policy capability %u\n",
2163                                i);
2164        }
2165}
2166
2167static int security_preserve_bools(struct selinux_policy *oldpolicy,
2168                                struct selinux_policy *newpolicy);
2169
2170static void selinux_policy_free(struct selinux_policy *policy)
2171{
2172        if (!policy)
2173                return;
2174
2175        sidtab_destroy(policy->sidtab);
2176        kfree(policy->map.mapping);
2177        policydb_destroy(&policy->policydb);
2178        kfree(policy->sidtab);
2179        kfree(policy);
2180}
2181
2182static void selinux_policy_cond_free(struct selinux_policy *policy)
2183{
2184        cond_policydb_destroy_dup(&policy->policydb);
2185        kfree(policy);
2186}
2187
2188void selinux_policy_cancel(struct selinux_state *state,
2189                           struct selinux_load_state *load_state)
2190{
2191        struct selinux_policy *oldpolicy;
2192
2193        oldpolicy = rcu_dereference_protected(state->policy,
2194                                        lockdep_is_held(&state->policy_mutex));
2195
2196        sidtab_cancel_convert(oldpolicy->sidtab);
2197        selinux_policy_free(load_state->policy);
2198        kfree(load_state->convert_data);
2199}
2200
2201static void selinux_notify_policy_change(struct selinux_state *state,
2202                                        u32 seqno)
2203{
2204        /* Flush external caches and notify userspace of policy load */
2205        avc_ss_reset(state->avc, seqno);
2206        selnl_notify_policyload(seqno);
2207        selinux_status_update_policyload(state, seqno);
2208        selinux_netlbl_cache_invalidate();
2209        selinux_xfrm_notify_policyload();
2210        selinux_ima_measure_state_locked(state);
2211}
2212
2213void selinux_policy_commit(struct selinux_state *state,
2214                           struct selinux_load_state *load_state)
2215{
2216        struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217        unsigned long flags;
2218        u32 seqno;
2219
2220        oldpolicy = rcu_dereference_protected(state->policy,
2221                                        lockdep_is_held(&state->policy_mutex));
2222
2223        /* If switching between different policy types, log MLS status */
2224        if (oldpolicy) {
2225                if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226                        pr_info("SELinux: Disabling MLS support...\n");
2227                else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228                        pr_info("SELinux: Enabling MLS support...\n");
2229        }
2230
2231        /* Set latest granting seqno for new policy. */
2232        if (oldpolicy)
2233                newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234        else
2235                newpolicy->latest_granting = 1;
2236        seqno = newpolicy->latest_granting;
2237
2238        /* Install the new policy. */
2239        if (oldpolicy) {
2240                sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241                rcu_assign_pointer(state->policy, newpolicy);
2242                sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243        } else {
2244                rcu_assign_pointer(state->policy, newpolicy);
2245        }
2246
2247        /* Load the policycaps from the new policy */
2248        security_load_policycaps(state, newpolicy);
2249
2250        if (!selinux_initialized(state)) {
2251                /*
2252                 * After first policy load, the security server is
2253                 * marked as initialized and ready to handle requests and
2254                 * any objects created prior to policy load are then labeled.
2255                 */
2256                selinux_mark_initialized(state);
2257                selinux_complete_init();
2258        }
2259
2260        /* Free the old policy */
2261        synchronize_rcu();
2262        selinux_policy_free(oldpolicy);
2263        kfree(load_state->convert_data);
2264
2265        /* Notify others of the policy change */
2266        selinux_notify_policy_change(state, seqno);
2267}
2268
2269/**
2270 * security_load_policy - Load a security policy configuration.
2271 * @state: SELinux state
2272 * @data: binary policy data
2273 * @len: length of data in bytes
2274 *
2275 * Load a new set of security policy configuration data,
2276 * validate it and convert the SID table as necessary.
2277 * This function will flush the access vector cache after
2278 * loading the new policy.
2279 */
2280int security_load_policy(struct selinux_state *state, void *data, size_t len,
2281                         struct selinux_load_state *load_state)
2282{
2283        struct selinux_policy *newpolicy, *oldpolicy;
2284        struct selinux_policy_convert_data *convert_data;
2285        int rc = 0;
2286        struct policy_file file = { data, len }, *fp = &file;
2287
2288        newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2289        if (!newpolicy)
2290                return -ENOMEM;
2291
2292        newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2293        if (!newpolicy->sidtab) {
2294                rc = -ENOMEM;
2295                goto err_policy;
2296        }
2297
2298        rc = policydb_read(&newpolicy->policydb, fp);
2299        if (rc)
2300                goto err_sidtab;
2301
2302        newpolicy->policydb.len = len;
2303        rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2304                                &newpolicy->map);
2305        if (rc)
2306                goto err_policydb;
2307
2308        rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2309        if (rc) {
2310                pr_err("SELinux:  unable to load the initial SIDs\n");
2311                goto err_mapping;
2312        }
2313
2314        if (!selinux_initialized(state)) {
2315                /* First policy load, so no need to preserve state from old policy */
2316                load_state->policy = newpolicy;
2317                load_state->convert_data = NULL;
2318                return 0;
2319        }
2320
2321        oldpolicy = rcu_dereference_protected(state->policy,
2322                                        lockdep_is_held(&state->policy_mutex));
2323
2324        /* Preserve active boolean values from the old policy */
2325        rc = security_preserve_bools(oldpolicy, newpolicy);
2326        if (rc) {
2327                pr_err("SELinux:  unable to preserve booleans\n");
2328                goto err_free_isids;
2329        }
2330
2331        convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332        if (!convert_data) {
2333                rc = -ENOMEM;
2334                goto err_free_isids;
2335        }
2336
2337        /*
2338         * Convert the internal representations of contexts
2339         * in the new SID table.
2340         */
2341        convert_data->args.state = state;
2342        convert_data->args.oldp = &oldpolicy->policydb;
2343        convert_data->args.newp = &newpolicy->policydb;
2344
2345        convert_data->sidtab_params.func = convert_context;
2346        convert_data->sidtab_params.args = &convert_data->args;
2347        convert_data->sidtab_params.target = newpolicy->sidtab;
2348
2349        rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2350        if (rc) {
2351                pr_err("SELinux:  unable to convert the internal"
2352                        " representation of contexts in the new SID"
2353                        " table\n");
2354                goto err_free_convert_data;
2355        }
2356
2357        load_state->policy = newpolicy;
2358        load_state->convert_data = convert_data;
2359        return 0;
2360
2361err_free_convert_data:
2362        kfree(convert_data);
2363err_free_isids:
2364        sidtab_destroy(newpolicy->sidtab);
2365err_mapping:
2366        kfree(newpolicy->map.mapping);
2367err_policydb:
2368        policydb_destroy(&newpolicy->policydb);
2369err_sidtab:
2370        kfree(newpolicy->sidtab);
2371err_policy:
2372        kfree(newpolicy);
2373
2374        return rc;
2375}
2376
2377/**
2378 * security_port_sid - Obtain the SID for a port.
2379 * @state: SELinux state
2380 * @protocol: protocol number
2381 * @port: port number
2382 * @out_sid: security identifier
2383 */
2384int security_port_sid(struct selinux_state *state,
2385                      u8 protocol, u16 port, u32 *out_sid)
2386{
2387        struct selinux_policy *policy;
2388        struct policydb *policydb;
2389        struct sidtab *sidtab;
2390        struct ocontext *c;
2391        int rc;
2392
2393        if (!selinux_initialized(state)) {
2394                *out_sid = SECINITSID_PORT;
2395                return 0;
2396        }
2397
2398retry:
2399        rc = 0;
2400        rcu_read_lock();
2401        policy = rcu_dereference(state->policy);
2402        policydb = &policy->policydb;
2403        sidtab = policy->sidtab;
2404
2405        c = policydb->ocontexts[OCON_PORT];
2406        while (c) {
2407                if (c->u.port.protocol == protocol &&
2408                    c->u.port.low_port <= port &&
2409                    c->u.port.high_port >= port)
2410                        break;
2411                c = c->next;
2412        }
2413
2414        if (c) {
2415                if (!c->sid[0]) {
2416                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2417                                                   &c->sid[0]);
2418                        if (rc == -ESTALE) {
2419                                rcu_read_unlock();
2420                                goto retry;
2421                        }
2422                        if (rc)
2423                                goto out;
2424                }
2425                *out_sid = c->sid[0];
2426        } else {
2427                *out_sid = SECINITSID_PORT;
2428        }
2429
2430out:
2431        rcu_read_unlock();
2432        return rc;
2433}
2434
2435/**
2436 * security_ib_pkey_sid - Obtain the SID for a pkey.
2437 * @state: SELinux state
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(struct selinux_state *state,
2443                         u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444{
2445        struct selinux_policy *policy;
2446        struct policydb *policydb;
2447        struct sidtab *sidtab;
2448        struct ocontext *c;
2449        int rc;
2450
2451        if (!selinux_initialized(state)) {
2452                *out_sid = SECINITSID_UNLABELED;
2453                return 0;
2454        }
2455
2456retry:
2457        rc = 0;
2458        rcu_read_lock();
2459        policy = rcu_dereference(state->policy);
2460        policydb = &policy->policydb;
2461        sidtab = policy->sidtab;
2462
2463        c = policydb->ocontexts[OCON_IBPKEY];
2464        while (c) {
2465                if (c->u.ibpkey.low_pkey <= pkey_num &&
2466                    c->u.ibpkey.high_pkey >= pkey_num &&
2467                    c->u.ibpkey.subnet_prefix == subnet_prefix)
2468                        break;
2469
2470                c = c->next;
2471        }
2472
2473        if (c) {
2474                if (!c->sid[0]) {
2475                        rc = sidtab_context_to_sid(sidtab,
2476                                                   &c->context[0],
2477                                                   &c->sid[0]);
2478                        if (rc == -ESTALE) {
2479                                rcu_read_unlock();
2480                                goto retry;
2481                        }
2482                        if (rc)
2483                                goto out;
2484                }
2485                *out_sid = c->sid[0];
2486        } else
2487                *out_sid = SECINITSID_UNLABELED;
2488
2489out:
2490        rcu_read_unlock();
2491        return rc;
2492}
2493
2494/**
2495 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2496 * @state: SELinux state
2497 * @dev_name: device name
2498 * @port: port number
2499 * @out_sid: security identifier
2500 */
2501int security_ib_endport_sid(struct selinux_state *state,
2502                            const char *dev_name, u8 port_num, u32 *out_sid)
2503{
2504        struct selinux_policy *policy;
2505        struct policydb *policydb;
2506        struct sidtab *sidtab;
2507        struct ocontext *c;
2508        int rc;
2509
2510        if (!selinux_initialized(state)) {
2511                *out_sid = SECINITSID_UNLABELED;
2512                return 0;
2513        }
2514
2515retry:
2516        rc = 0;
2517        rcu_read_lock();
2518        policy = rcu_dereference(state->policy);
2519        policydb = &policy->policydb;
2520        sidtab = policy->sidtab;
2521
2522        c = policydb->ocontexts[OCON_IBENDPORT];
2523        while (c) {
2524                if (c->u.ibendport.port == port_num &&
2525                    !strncmp(c->u.ibendport.dev_name,
2526                             dev_name,
2527                             IB_DEVICE_NAME_MAX))
2528                        break;
2529
2530                c = c->next;
2531        }
2532
2533        if (c) {
2534                if (!c->sid[0]) {
2535                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2536                                                   &c->sid[0]);
2537                        if (rc == -ESTALE) {
2538                                rcu_read_unlock();
2539                                goto retry;
2540                        }
2541                        if (rc)
2542                                goto out;
2543                }
2544                *out_sid = c->sid[0];
2545        } else
2546                *out_sid = SECINITSID_UNLABELED;
2547
2548out:
2549        rcu_read_unlock();
2550        return rc;
2551}
2552
2553/**
2554 * security_netif_sid - Obtain the SID for a network interface.
2555 * @state: SELinux state
2556 * @name: interface name
2557 * @if_sid: interface SID
2558 */
2559int security_netif_sid(struct selinux_state *state,
2560                       char *name, u32 *if_sid)
2561{
2562        struct selinux_policy *policy;
2563        struct policydb *policydb;
2564        struct sidtab *sidtab;
2565        int rc;
2566        struct ocontext *c;
2567
2568        if (!selinux_initialized(state)) {
2569                *if_sid = SECINITSID_NETIF;
2570                return 0;
2571        }
2572
2573retry:
2574        rc = 0;
2575        rcu_read_lock();
2576        policy = rcu_dereference(state->policy);
2577        policydb = &policy->policydb;
2578        sidtab = policy->sidtab;
2579
2580        c = policydb->ocontexts[OCON_NETIF];
2581        while (c) {
2582                if (strcmp(name, c->u.name) == 0)
2583                        break;
2584                c = c->next;
2585        }
2586
2587        if (c) {
2588                if (!c->sid[0] || !c->sid[1]) {
2589                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2590                                                   &c->sid[0]);
2591                        if (rc == -ESTALE) {
2592                                rcu_read_unlock();
2593                                goto retry;
2594                        }
2595                        if (rc)
2596                                goto out;
2597                        rc = sidtab_context_to_sid(sidtab, &c->context[1],
2598                                                   &c->sid[1]);
2599                        if (rc == -ESTALE) {
2600                                rcu_read_unlock();
2601                                goto retry;
2602                        }
2603                        if (rc)
2604                                goto out;
2605                }
2606                *if_sid = c->sid[0];
2607        } else
2608                *if_sid = SECINITSID_NETIF;
2609
2610out:
2611        rcu_read_unlock();
2612        return rc;
2613}
2614
2615static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2616{
2617        int i, fail = 0;
2618
2619        for (i = 0; i < 4; i++)
2620                if (addr[i] != (input[i] & mask[i])) {
2621                        fail = 1;
2622                        break;
2623                }
2624
2625        return !fail;
2626}
2627
2628/**
2629 * security_node_sid - Obtain the SID for a node (host).
2630 * @state: SELinux state
2631 * @domain: communication domain aka address family
2632 * @addrp: address
2633 * @addrlen: address length in bytes
2634 * @out_sid: security identifier
2635 */
2636int security_node_sid(struct selinux_state *state,
2637                      u16 domain,
2638                      void *addrp,
2639                      u32 addrlen,
2640                      u32 *out_sid)
2641{
2642        struct selinux_policy *policy;
2643        struct policydb *policydb;
2644        struct sidtab *sidtab;
2645        int rc;
2646        struct ocontext *c;
2647
2648        if (!selinux_initialized(state)) {
2649                *out_sid = SECINITSID_NODE;
2650                return 0;
2651        }
2652
2653retry:
2654        rcu_read_lock();
2655        policy = rcu_dereference(state->policy);
2656        policydb = &policy->policydb;
2657        sidtab = policy->sidtab;
2658
2659        switch (domain) {
2660        case AF_INET: {
2661                u32 addr;
2662
2663                rc = -EINVAL;
2664                if (addrlen != sizeof(u32))
2665                        goto out;
2666
2667                addr = *((u32 *)addrp);
2668
2669                c = policydb->ocontexts[OCON_NODE];
2670                while (c) {
2671                        if (c->u.node.addr == (addr & c->u.node.mask))
2672                                break;
2673                        c = c->next;
2674                }
2675                break;
2676        }
2677
2678        case AF_INET6:
2679                rc = -EINVAL;
2680                if (addrlen != sizeof(u64) * 2)
2681                        goto out;
2682                c = policydb->ocontexts[OCON_NODE6];
2683                while (c) {
2684                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2685                                                c->u.node6.mask))
2686                                break;
2687                        c = c->next;
2688                }
2689                break;
2690
2691        default:
2692                rc = 0;
2693                *out_sid = SECINITSID_NODE;
2694                goto out;
2695        }
2696
2697        if (c) {
2698                if (!c->sid[0]) {
2699                        rc = sidtab_context_to_sid(sidtab,
2700                                                   &c->context[0],
2701                                                   &c->sid[0]);
2702                        if (rc == -ESTALE) {
2703                                rcu_read_unlock();
2704                                goto retry;
2705                        }
2706                        if (rc)
2707                                goto out;
2708                }
2709                *out_sid = c->sid[0];
2710        } else {
2711                *out_sid = SECINITSID_NODE;
2712        }
2713
2714        rc = 0;
2715out:
2716        rcu_read_unlock();
2717        return rc;
2718}
2719
2720#define SIDS_NEL 25
2721
2722/**
2723 * security_get_user_sids - Obtain reachable SIDs for a user.
2724 * @state: SELinux state
2725 * @fromsid: starting SID
2726 * @username: username
2727 * @sids: array of reachable SIDs for user
2728 * @nel: number of elements in @sids
2729 *
2730 * Generate the set of SIDs for legal security contexts
2731 * for a given user that can be reached by @fromsid.
2732 * Set *@sids to point to a dynamically allocated
2733 * array containing the set of SIDs.  Set *@nel to the
2734 * number of elements in the array.
2735 */
2736
2737int security_get_user_sids(struct selinux_state *state,
2738                           u32 fromsid,
2739                           char *username,
2740                           u32 **sids,
2741                           u32 *nel)
2742{
2743        struct selinux_policy *policy;
2744        struct policydb *policydb;
2745        struct sidtab *sidtab;
2746        struct context *fromcon, usercon;
2747        u32 *mysids = NULL, *mysids2, sid;
2748        u32 i, j, mynel, maxnel = SIDS_NEL;
2749        struct user_datum *user;
2750        struct role_datum *role;
2751        struct ebitmap_node *rnode, *tnode;
2752        int rc;
2753
2754        *sids = NULL;
2755        *nel = 0;
2756
2757        if (!selinux_initialized(state))
2758                return 0;
2759
2760        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2761        if (!mysids)
2762                return -ENOMEM;
2763
2764retry:
2765        mynel = 0;
2766        rcu_read_lock();
2767        policy = rcu_dereference(state->policy);
2768        policydb = &policy->policydb;
2769        sidtab = policy->sidtab;
2770
2771        context_init(&usercon);
2772
2773        rc = -EINVAL;
2774        fromcon = sidtab_search(sidtab, fromsid);
2775        if (!fromcon)
2776                goto out_unlock;
2777
2778        rc = -EINVAL;
2779        user = symtab_search(&policydb->p_users, username);
2780        if (!user)
2781                goto out_unlock;
2782
2783        usercon.user = user->value;
2784
2785        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2786                role = policydb->role_val_to_struct[i];
2787                usercon.role = i + 1;
2788                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2789                        usercon.type = j + 1;
2790
2791                        if (mls_setup_user_range(policydb, fromcon, user,
2792                                                 &usercon))
2793                                continue;
2794
2795                        rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2796                        if (rc == -ESTALE) {
2797                                rcu_read_unlock();
2798                                goto retry;
2799                        }
2800                        if (rc)
2801                                goto out_unlock;
2802                        if (mynel < maxnel) {
2803                                mysids[mynel++] = sid;
2804                        } else {
2805                                rc = -ENOMEM;
2806                                maxnel += SIDS_NEL;
2807                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2808                                if (!mysids2)
2809                                        goto out_unlock;
2810                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2811                                kfree(mysids);
2812                                mysids = mysids2;
2813                                mysids[mynel++] = sid;
2814                        }
2815                }
2816        }
2817        rc = 0;
2818out_unlock:
2819        rcu_read_unlock();
2820        if (rc || !mynel) {
2821                kfree(mysids);
2822                return rc;
2823        }
2824
2825        rc = -ENOMEM;
2826        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2827        if (!mysids2) {
2828                kfree(mysids);
2829                return rc;
2830        }
2831        for (i = 0, j = 0; i < mynel; i++) {
2832                struct av_decision dummy_avd;
2833                rc = avc_has_perm_noaudit(state,
2834                                          fromsid, mysids[i],
2835                                          SECCLASS_PROCESS, /* kernel value */
2836                                          PROCESS__TRANSITION, AVC_STRICT,
2837                                          &dummy_avd);
2838                if (!rc)
2839                        mysids2[j++] = mysids[i];
2840                cond_resched();
2841        }
2842        kfree(mysids);
2843        *sids = mysids2;
2844        *nel = j;
2845        return 0;
2846}
2847
2848/**
2849 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2850 * @fstype: filesystem type
2851 * @path: path from root of mount
2852 * @sclass: file security class
2853 * @sid: SID for path
2854 *
2855 * Obtain a SID to use for a file in a filesystem that
2856 * cannot support xattr or use a fixed labeling behavior like
2857 * transition SIDs or task SIDs.
2858 *
2859 * WARNING: This function may return -ESTALE, indicating that the caller
2860 * must retry the operation after re-acquiring the policy pointer!
2861 */
2862static inline int __security_genfs_sid(struct selinux_policy *policy,
2863                                       const char *fstype,
2864                                       char *path,
2865                                       u16 orig_sclass,
2866                                       u32 *sid)
2867{
2868        struct policydb *policydb = &policy->policydb;
2869        struct sidtab *sidtab = policy->sidtab;
2870        int len;
2871        u16 sclass;
2872        struct genfs *genfs;
2873        struct ocontext *c;
2874        int rc, cmp = 0;
2875
2876        while (path[0] == '/' && path[1] == '/')
2877                path++;
2878
2879        sclass = unmap_class(&policy->map, orig_sclass);
2880        *sid = SECINITSID_UNLABELED;
2881
2882        for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883                cmp = strcmp(fstype, genfs->fstype);
2884                if (cmp <= 0)
2885                        break;
2886        }
2887
2888        rc = -ENOENT;
2889        if (!genfs || cmp)
2890                goto out;
2891
2892        for (c = genfs->head; c; c = c->next) {
2893                len = strlen(c->u.name);
2894                if ((!c->v.sclass || sclass == c->v.sclass) &&
2895                    (strncmp(c->u.name, path, len) == 0))
2896                        break;
2897        }
2898
2899        rc = -ENOENT;
2900        if (!c)
2901                goto out;
2902
2903        if (!c->sid[0]) {
2904                rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2905                if (rc)
2906                        goto out;
2907        }
2908
2909        *sid = c->sid[0];
2910        rc = 0;
2911out:
2912        return rc;
2913}
2914
2915/**
2916 * security_genfs_sid - Obtain a SID for a file in a filesystem
2917 * @state: SELinux state
2918 * @fstype: filesystem type
2919 * @path: path from root of mount
2920 * @sclass: file security class
2921 * @sid: SID for path
2922 *
2923 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2924 * it afterward.
2925 */
2926int security_genfs_sid(struct selinux_state *state,
2927                       const char *fstype,
2928                       char *path,
2929                       u16 orig_sclass,
2930                       u32 *sid)
2931{
2932        struct selinux_policy *policy;
2933        int retval;
2934
2935        if (!selinux_initialized(state)) {
2936                *sid = SECINITSID_UNLABELED;
2937                return 0;
2938        }
2939
2940        do {
2941                rcu_read_lock();
2942                policy = rcu_dereference(state->policy);
2943                retval = __security_genfs_sid(policy, fstype, path,
2944                                              orig_sclass, sid);
2945                rcu_read_unlock();
2946        } while (retval == -ESTALE);
2947        return retval;
2948}
2949
2950int selinux_policy_genfs_sid(struct selinux_policy *policy,
2951                        const char *fstype,
2952                        char *path,
2953                        u16 orig_sclass,
2954                        u32 *sid)
2955{
2956        /* no lock required, policy is not yet accessible by other threads */
2957        return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2958}
2959
2960/**
2961 * security_fs_use - Determine how to handle labeling for a filesystem.
2962 * @state: SELinux state
2963 * @sb: superblock in question
2964 */
2965int security_fs_use(struct selinux_state *state, struct super_block *sb)
2966{
2967        struct selinux_policy *policy;
2968        struct policydb *policydb;
2969        struct sidtab *sidtab;
2970        int rc;
2971        struct ocontext *c;
2972        struct superblock_security_struct *sbsec = selinux_superblock(sb);
2973        const char *fstype = sb->s_type->name;
2974
2975        if (!selinux_initialized(state)) {
2976                sbsec->behavior = SECURITY_FS_USE_NONE;
2977                sbsec->sid = SECINITSID_UNLABELED;
2978                return 0;
2979        }
2980
2981retry:
2982        rc = 0;
2983        rcu_read_lock();
2984        policy = rcu_dereference(state->policy);
2985        policydb = &policy->policydb;
2986        sidtab = policy->sidtab;
2987
2988        c = policydb->ocontexts[OCON_FSUSE];
2989        while (c) {
2990                if (strcmp(fstype, c->u.name) == 0)
2991                        break;
2992                c = c->next;
2993        }
2994
2995        if (c) {
2996                sbsec->behavior = c->v.behavior;
2997                if (!c->sid[0]) {
2998                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2999                                                   &c->sid[0]);
3000                        if (rc == -ESTALE) {
3001                                rcu_read_unlock();
3002                                goto retry;
3003                        }
3004                        if (rc)
3005                                goto out;
3006                }
3007                sbsec->sid = c->sid[0];
3008        } else {
3009                rc = __security_genfs_sid(policy, fstype, "/",
3010                                        SECCLASS_DIR, &sbsec->sid);
3011                if (rc == -ESTALE) {
3012                        rcu_read_unlock();
3013                        goto retry;
3014                }
3015                if (rc) {
3016                        sbsec->behavior = SECURITY_FS_USE_NONE;
3017                        rc = 0;
3018                } else {
3019                        sbsec->behavior = SECURITY_FS_USE_GENFS;
3020                }
3021        }
3022
3023out:
3024        rcu_read_unlock();
3025        return rc;
3026}
3027
3028int security_get_bools(struct selinux_policy *policy,
3029                       u32 *len, char ***names, int **values)
3030{
3031        struct policydb *policydb;
3032        u32 i;
3033        int rc;
3034
3035        policydb = &policy->policydb;
3036
3037        *names = NULL;
3038        *values = NULL;
3039
3040        rc = 0;
3041        *len = policydb->p_bools.nprim;
3042        if (!*len)
3043                goto out;
3044
3045        rc = -ENOMEM;
3046        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3047        if (!*names)
3048                goto err;
3049
3050        rc = -ENOMEM;
3051        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3052        if (!*values)
3053                goto err;
3054
3055        for (i = 0; i < *len; i++) {
3056                (*values)[i] = policydb->bool_val_to_struct[i]->state;
3057
3058                rc = -ENOMEM;
3059                (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3060                                      GFP_ATOMIC);
3061                if (!(*names)[i])
3062                        goto err;
3063        }
3064        rc = 0;
3065out:
3066        return rc;
3067err:
3068        if (*names) {
3069                for (i = 0; i < *len; i++)
3070                        kfree((*names)[i]);
3071                kfree(*names);
3072        }
3073        kfree(*values);
3074        *len = 0;
3075        *names = NULL;
3076        *values = NULL;
3077        goto out;
3078}
3079
3080
3081int security_set_bools(struct selinux_state *state, u32 len, int *values)
3082{
3083        struct selinux_policy *newpolicy, *oldpolicy;
3084        int rc;
3085        u32 i, seqno = 0;
3086
3087        if (!selinux_initialized(state))
3088                return -EINVAL;
3089
3090        oldpolicy = rcu_dereference_protected(state->policy,
3091                                        lockdep_is_held(&state->policy_mutex));
3092
3093        /* Consistency check on number of booleans, should never fail */
3094        if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3095                return -EINVAL;
3096
3097        newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3098        if (!newpolicy)
3099                return -ENOMEM;
3100
3101        /*
3102         * Deep copy only the parts of the policydb that might be
3103         * modified as a result of changing booleans.
3104         */
3105        rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3106        if (rc) {
3107                kfree(newpolicy);
3108                return -ENOMEM;
3109        }
3110
3111        /* Update the boolean states in the copy */
3112        for (i = 0; i < len; i++) {
3113                int new_state = !!values[i];
3114                int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3115
3116                if (new_state != old_state) {
3117                        audit_log(audit_context(), GFP_ATOMIC,
3118                                AUDIT_MAC_CONFIG_CHANGE,
3119                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
3120                                sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3121                                new_state,
3122                                old_state,
3123                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
3124                                audit_get_sessionid(current));
3125                        newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3126                }
3127        }
3128
3129        /* Re-evaluate the conditional rules in the copy */
3130        evaluate_cond_nodes(&newpolicy->policydb);
3131
3132        /* Set latest granting seqno for new policy */
3133        newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3134        seqno = newpolicy->latest_granting;
3135
3136        /* Install the new policy */
3137        rcu_assign_pointer(state->policy, newpolicy);
3138
3139        /*
3140         * Free the conditional portions of the old policydb
3141         * that were copied for the new policy, and the oldpolicy
3142         * structure itself but not what it references.
3143         */
3144        synchronize_rcu();
3145        selinux_policy_cond_free(oldpolicy);
3146
3147        /* Notify others of the policy change */
3148        selinux_notify_policy_change(state, seqno);
3149        return 0;
3150}
3151
3152int security_get_bool_value(struct selinux_state *state,
3153                            u32 index)
3154{
3155        struct selinux_policy *policy;
3156        struct policydb *policydb;
3157        int rc;
3158        u32 len;
3159
3160        if (!selinux_initialized(state))
3161                return 0;
3162
3163        rcu_read_lock();
3164        policy = rcu_dereference(state->policy);
3165        policydb = &policy->policydb;
3166
3167        rc = -EFAULT;
3168        len = policydb->p_bools.nprim;
3169        if (index >= len)
3170                goto out;
3171
3172        rc = policydb->bool_val_to_struct[index]->state;
3173out:
3174        rcu_read_unlock();
3175        return rc;
3176}
3177
3178static int security_preserve_bools(struct selinux_policy *oldpolicy,
3179                                struct selinux_policy *newpolicy)
3180{
3181        int rc, *bvalues = NULL;
3182        char **bnames = NULL;
3183        struct cond_bool_datum *booldatum;
3184        u32 i, nbools = 0;
3185
3186        rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3187        if (rc)
3188                goto out;
3189        for (i = 0; i < nbools; i++) {
3190                booldatum = symtab_search(&newpolicy->policydb.p_bools,
3191                                        bnames[i]);
3192                if (booldatum)
3193                        booldatum->state = bvalues[i];
3194        }
3195        evaluate_cond_nodes(&newpolicy->policydb);
3196
3197out:
3198        if (bnames) {
3199                for (i = 0; i < nbools; i++)
3200                        kfree(bnames[i]);
3201        }
3202        kfree(bnames);
3203        kfree(bvalues);
3204        return rc;
3205}
3206
3207/*
3208 * security_sid_mls_copy() - computes a new sid based on the given
3209 * sid and the mls portion of mls_sid.
3210 */
3211int security_sid_mls_copy(struct selinux_state *state,
3212                          u32 sid, u32 mls_sid, u32 *new_sid)
3213{
3214        struct selinux_policy *policy;
3215        struct policydb *policydb;
3216        struct sidtab *sidtab;
3217        struct context *context1;
3218        struct context *context2;
3219        struct context newcon;
3220        char *s;
3221        u32 len;
3222        int rc;
3223
3224        if (!selinux_initialized(state)) {
3225                *new_sid = sid;
3226                return 0;
3227        }
3228
3229retry:
3230        rc = 0;
3231        context_init(&newcon);
3232
3233        rcu_read_lock();
3234        policy = rcu_dereference(state->policy);
3235        policydb = &policy->policydb;
3236        sidtab = policy->sidtab;
3237
3238        if (!policydb->mls_enabled) {
3239                *new_sid = sid;
3240                goto out_unlock;
3241        }
3242
3243        rc = -EINVAL;
3244        context1 = sidtab_search(sidtab, sid);
3245        if (!context1) {
3246                pr_err("SELinux: %s:  unrecognized SID %d\n",
3247                        __func__, sid);
3248                goto out_unlock;
3249        }
3250
3251        rc = -EINVAL;
3252        context2 = sidtab_search(sidtab, mls_sid);
3253        if (!context2) {
3254                pr_err("SELinux: %s:  unrecognized SID %d\n",
3255                        __func__, mls_sid);
3256                goto out_unlock;
3257        }
3258
3259        newcon.user = context1->user;
3260        newcon.role = context1->role;
3261        newcon.type = context1->type;
3262        rc = mls_context_cpy(&newcon, context2);
3263        if (rc)
3264                goto out_unlock;
3265
3266        /* Check the validity of the new context. */
3267        if (!policydb_context_isvalid(policydb, &newcon)) {
3268                rc = convert_context_handle_invalid_context(state, policydb,
3269                                                        &newcon);
3270                if (rc) {
3271                        if (!context_struct_to_string(policydb, &newcon, &s,
3272                                                      &len)) {
3273                                struct audit_buffer *ab;
3274
3275                                ab = audit_log_start(audit_context(),
3276                                                     GFP_ATOMIC,
3277                                                     AUDIT_SELINUX_ERR);
3278                                audit_log_format(ab,
3279                                                 "op=security_sid_mls_copy invalid_context=");
3280                                /* don't record NUL with untrusted strings */
3281                                audit_log_n_untrustedstring(ab, s, len - 1);
3282                                audit_log_end(ab);
3283                                kfree(s);
3284                        }
3285                        goto out_unlock;
3286                }
3287        }
3288        rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3289        if (rc == -ESTALE) {
3290                rcu_read_unlock();
3291                context_destroy(&newcon);
3292                goto retry;
3293        }
3294out_unlock:
3295        rcu_read_unlock();
3296        context_destroy(&newcon);
3297        return rc;
3298}
3299
3300/**
3301 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3302 * @state: SELinux state
3303 * @nlbl_sid: NetLabel SID
3304 * @nlbl_type: NetLabel labeling protocol type
3305 * @xfrm_sid: XFRM SID
3306 *
3307 * Description:
3308 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3309 * resolved into a single SID it is returned via @peer_sid and the function
3310 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3311 * returns a negative value.  A table summarizing the behavior is below:
3312 *
3313 *                                 | function return |      @sid
3314 *   ------------------------------+-----------------+-----------------
3315 *   no peer labels                |        0        |    SECSID_NULL
3316 *   single peer label             |        0        |    <peer_label>
3317 *   multiple, consistent labels   |        0        |    <peer_label>
3318 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3319 *
3320 */
3321int security_net_peersid_resolve(struct selinux_state *state,
3322                                 u32 nlbl_sid, u32 nlbl_type,
3323                                 u32 xfrm_sid,
3324                                 u32 *peer_sid)
3325{
3326        struct selinux_policy *policy;
3327        struct policydb *policydb;
3328        struct sidtab *sidtab;
3329        int rc;
3330        struct context *nlbl_ctx;
3331        struct context *xfrm_ctx;
3332
3333        *peer_sid = SECSID_NULL;
3334
3335        /* handle the common (which also happens to be the set of easy) cases
3336         * right away, these two if statements catch everything involving a
3337         * single or absent peer SID/label */
3338        if (xfrm_sid == SECSID_NULL) {
3339                *peer_sid = nlbl_sid;
3340                return 0;
3341        }
3342        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3343         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3344         * is present */
3345        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3346                *peer_sid = xfrm_sid;
3347                return 0;
3348        }
3349
3350        if (!selinux_initialized(state))
3351                return 0;
3352
3353        rcu_read_lock();
3354        policy = rcu_dereference(state->policy);
3355        policydb = &policy->policydb;
3356        sidtab = policy->sidtab;
3357
3358        /*
3359         * We don't need to check initialized here since the only way both
3360         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3361         * security server was initialized and state->initialized was true.
3362         */
3363        if (!policydb->mls_enabled) {
3364                rc = 0;
3365                goto out;
3366        }
3367
3368        rc = -EINVAL;
3369        nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3370        if (!nlbl_ctx) {
3371                pr_err("SELinux: %s:  unrecognized SID %d\n",
3372                       __func__, nlbl_sid);
3373                goto out;
3374        }
3375        rc = -EINVAL;
3376        xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3377        if (!xfrm_ctx) {
3378                pr_err("SELinux: %s:  unrecognized SID %d\n",
3379                       __func__, xfrm_sid);
3380                goto out;
3381        }
3382        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3383        if (rc)
3384                goto out;
3385
3386        /* at present NetLabel SIDs/labels really only carry MLS
3387         * information so if the MLS portion of the NetLabel SID
3388         * matches the MLS portion of the labeled XFRM SID/label
3389         * then pass along the XFRM SID as it is the most
3390         * expressive */
3391        *peer_sid = xfrm_sid;
3392out:
3393        rcu_read_unlock();
3394        return rc;
3395}
3396
3397static int get_classes_callback(void *k, void *d, void *args)
3398{
3399        struct class_datum *datum = d;
3400        char *name = k, **classes = args;
3401        int value = datum->value - 1;
3402
3403        classes[value] = kstrdup(name, GFP_ATOMIC);
3404        if (!classes[value])
3405                return -ENOMEM;
3406
3407        return 0;
3408}
3409
3410int security_get_classes(struct selinux_policy *policy,
3411                         char ***classes, int *nclasses)
3412{
3413        struct policydb *policydb;
3414        int rc;
3415
3416        policydb = &policy->policydb;
3417
3418        rc = -ENOMEM;
3419        *nclasses = policydb->p_classes.nprim;
3420        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3421        if (!*classes)
3422                goto out;
3423
3424        rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3425                         *classes);
3426        if (rc) {
3427                int i;
3428                for (i = 0; i < *nclasses; i++)
3429                        kfree((*classes)[i]);
3430                kfree(*classes);
3431        }
3432
3433out:
3434        return rc;
3435}
3436
3437static int get_permissions_callback(void *k, void *d, void *args)
3438{
3439        struct perm_datum *datum = d;
3440        char *name = k, **perms = args;
3441        int value = datum->value - 1;
3442
3443        perms[value] = kstrdup(name, GFP_ATOMIC);
3444        if (!perms[value])
3445                return -ENOMEM;
3446
3447        return 0;
3448}
3449
3450int security_get_permissions(struct selinux_policy *policy,
3451                             char *class, char ***perms, int *nperms)
3452{
3453        struct policydb *policydb;
3454        int rc, i;
3455        struct class_datum *match;
3456
3457        policydb = &policy->policydb;
3458
3459        rc = -EINVAL;
3460        match = symtab_search(&policydb->p_classes, class);
3461        if (!match) {
3462                pr_err("SELinux: %s:  unrecognized class %s\n",
3463                        __func__, class);
3464                goto out;
3465        }
3466
3467        rc = -ENOMEM;
3468        *nperms = match->permissions.nprim;
3469        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3470        if (!*perms)
3471                goto out;
3472
3473        if (match->comdatum) {
3474                rc = hashtab_map(&match->comdatum->permissions.table,
3475                                 get_permissions_callback, *perms);
3476                if (rc)
3477                        goto err;
3478        }
3479
3480        rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3481                         *perms);
3482        if (rc)
3483                goto err;
3484
3485out:
3486        return rc;
3487
3488err:
3489        for (i = 0; i < *nperms; i++)
3490                kfree((*perms)[i]);
3491        kfree(*perms);
3492        return rc;
3493}
3494
3495int security_get_reject_unknown(struct selinux_state *state)
3496{
3497        struct selinux_policy *policy;
3498        int value;
3499
3500        if (!selinux_initialized(state))
3501                return 0;
3502
3503        rcu_read_lock();
3504        policy = rcu_dereference(state->policy);
3505        value = policy->policydb.reject_unknown;
3506        rcu_read_unlock();
3507        return value;
3508}
3509
3510int security_get_allow_unknown(struct selinux_state *state)
3511{
3512        struct selinux_policy *policy;
3513        int value;
3514
3515        if (!selinux_initialized(state))
3516                return 0;
3517
3518        rcu_read_lock();
3519        policy = rcu_dereference(state->policy);
3520        value = policy->policydb.allow_unknown;
3521        rcu_read_unlock();
3522        return value;
3523}
3524
3525/**
3526 * security_policycap_supported - Check for a specific policy capability
3527 * @state: SELinux state
3528 * @req_cap: capability
3529 *
3530 * Description:
3531 * This function queries the currently loaded policy to see if it supports the
3532 * capability specified by @req_cap.  Returns true (1) if the capability is
3533 * supported, false (0) if it isn't supported.
3534 *
3535 */
3536int security_policycap_supported(struct selinux_state *state,
3537                                 unsigned int req_cap)
3538{
3539        struct selinux_policy *policy;
3540        int rc;
3541
3542        if (!selinux_initialized(state))
3543                return 0;
3544
3545        rcu_read_lock();
3546        policy = rcu_dereference(state->policy);
3547        rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3548        rcu_read_unlock();
3549
3550        return rc;
3551}
3552
3553struct selinux_audit_rule {
3554        u32 au_seqno;
3555        struct context au_ctxt;
3556};
3557
3558void selinux_audit_rule_free(void *vrule)
3559{
3560        struct selinux_audit_rule *rule = vrule;
3561
3562        if (rule) {
3563                context_destroy(&rule->au_ctxt);
3564                kfree(rule);
3565        }
3566}
3567
3568int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3569{
3570        struct selinux_state *state = &selinux_state;
3571        struct selinux_policy *policy;
3572        struct policydb *policydb;
3573        struct selinux_audit_rule *tmprule;
3574        struct role_datum *roledatum;
3575        struct type_datum *typedatum;
3576        struct user_datum *userdatum;
3577        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3578        int rc = 0;
3579
3580        *rule = NULL;
3581
3582        if (!selinux_initialized(state))
3583                return -EOPNOTSUPP;
3584
3585        switch (field) {
3586        case AUDIT_SUBJ_USER:
3587        case AUDIT_SUBJ_ROLE:
3588        case AUDIT_SUBJ_TYPE:
3589        case AUDIT_OBJ_USER:
3590        case AUDIT_OBJ_ROLE:
3591        case AUDIT_OBJ_TYPE:
3592                /* only 'equals' and 'not equals' fit user, role, and type */
3593                if (op != Audit_equal && op != Audit_not_equal)
3594                        return -EINVAL;
3595                break;
3596        case AUDIT_SUBJ_SEN:
3597        case AUDIT_SUBJ_CLR:
3598        case AUDIT_OBJ_LEV_LOW:
3599        case AUDIT_OBJ_LEV_HIGH:
3600                /* we do not allow a range, indicated by the presence of '-' */
3601                if (strchr(rulestr, '-'))
3602                        return -EINVAL;
3603                break;
3604        default:
3605                /* only the above fields are valid */
3606                return -EINVAL;
3607        }
3608
3609        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3610        if (!tmprule)
3611                return -ENOMEM;
3612
3613        context_init(&tmprule->au_ctxt);
3614
3615        rcu_read_lock();
3616        policy = rcu_dereference(state->policy);
3617        policydb = &policy->policydb;
3618
3619        tmprule->au_seqno = policy->latest_granting;
3620
3621        switch (field) {
3622        case AUDIT_SUBJ_USER:
3623        case AUDIT_OBJ_USER:
3624                rc = -EINVAL;
3625                userdatum = symtab_search(&policydb->p_users, rulestr);
3626                if (!userdatum)
3627                        goto out;
3628                tmprule->au_ctxt.user = userdatum->value;
3629                break;
3630        case AUDIT_SUBJ_ROLE:
3631        case AUDIT_OBJ_ROLE:
3632                rc = -EINVAL;
3633                roledatum = symtab_search(&policydb->p_roles, rulestr);
3634                if (!roledatum)
3635                        goto out;
3636                tmprule->au_ctxt.role = roledatum->value;
3637                break;
3638        case AUDIT_SUBJ_TYPE:
3639        case AUDIT_OBJ_TYPE:
3640                rc = -EINVAL;
3641                typedatum = symtab_search(&policydb->p_types, rulestr);
3642                if (!typedatum)
3643                        goto out;
3644                tmprule->au_ctxt.type = typedatum->value;
3645                break;
3646        case AUDIT_SUBJ_SEN:
3647        case AUDIT_SUBJ_CLR:
3648        case AUDIT_OBJ_LEV_LOW:
3649        case AUDIT_OBJ_LEV_HIGH:
3650                rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3651                                     GFP_ATOMIC);
3652                if (rc)
3653                        goto out;
3654                break;
3655        }
3656        rc = 0;
3657out:
3658        rcu_read_unlock();
3659
3660        if (rc) {
3661                selinux_audit_rule_free(tmprule);
3662                tmprule = NULL;
3663        }
3664
3665        *rule = tmprule;
3666
3667        return rc;
3668}
3669
3670/* Check to see if the rule contains any selinux fields */
3671int selinux_audit_rule_known(struct audit_krule *rule)
3672{
3673        int i;
3674
3675        for (i = 0; i < rule->field_count; i++) {
3676                struct audit_field *f = &rule->fields[i];
3677                switch (f->type) {
3678                case AUDIT_SUBJ_USER:
3679                case AUDIT_SUBJ_ROLE:
3680                case AUDIT_SUBJ_TYPE:
3681                case AUDIT_SUBJ_SEN:
3682                case AUDIT_SUBJ_CLR:
3683                case AUDIT_OBJ_USER:
3684                case AUDIT_OBJ_ROLE:
3685                case AUDIT_OBJ_TYPE:
3686                case AUDIT_OBJ_LEV_LOW:
3687                case AUDIT_OBJ_LEV_HIGH:
3688                        return 1;
3689                }
3690        }
3691
3692        return 0;
3693}
3694
3695int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3696{
3697        struct selinux_state *state = &selinux_state;
3698        struct selinux_policy *policy;
3699        struct context *ctxt;
3700        struct mls_level *level;
3701        struct selinux_audit_rule *rule = vrule;
3702        int match = 0;
3703
3704        if (unlikely(!rule)) {
3705                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3706                return -ENOENT;
3707        }
3708
3709        if (!selinux_initialized(state))
3710                return 0;
3711
3712        rcu_read_lock();
3713
3714        policy = rcu_dereference(state->policy);
3715
3716        if (rule->au_seqno < policy->latest_granting) {
3717                match = -ESTALE;
3718                goto out;
3719        }
3720
3721        ctxt = sidtab_search(policy->sidtab, sid);
3722        if (unlikely(!ctxt)) {
3723                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3724                          sid);
3725                match = -ENOENT;
3726                goto out;
3727        }
3728
3729        /* a field/op pair that is not caught here will simply fall through
3730           without a match */
3731        switch (field) {
3732        case AUDIT_SUBJ_USER:
3733        case AUDIT_OBJ_USER:
3734                switch (op) {
3735                case Audit_equal:
3736                        match = (ctxt->user == rule->au_ctxt.user);
3737                        break;
3738                case Audit_not_equal:
3739                        match = (ctxt->user != rule->au_ctxt.user);
3740                        break;
3741                }
3742                break;
3743        case AUDIT_SUBJ_ROLE:
3744        case AUDIT_OBJ_ROLE:
3745                switch (op) {
3746                case Audit_equal:
3747                        match = (ctxt->role == rule->au_ctxt.role);
3748                        break;
3749                case Audit_not_equal:
3750                        match = (ctxt->role != rule->au_ctxt.role);
3751                        break;
3752                }
3753                break;
3754        case AUDIT_SUBJ_TYPE:
3755        case AUDIT_OBJ_TYPE:
3756                switch (op) {
3757                case Audit_equal:
3758                        match = (ctxt->type == rule->au_ctxt.type);
3759                        break;
3760                case Audit_not_equal:
3761                        match = (ctxt->type != rule->au_ctxt.type);
3762                        break;
3763                }
3764                break;
3765        case AUDIT_SUBJ_SEN:
3766        case AUDIT_SUBJ_CLR:
3767        case AUDIT_OBJ_LEV_LOW:
3768        case AUDIT_OBJ_LEV_HIGH:
3769                level = ((field == AUDIT_SUBJ_SEN ||
3770                          field == AUDIT_OBJ_LEV_LOW) ?
3771                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3772                switch (op) {
3773                case Audit_equal:
3774                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3775                                             level);
3776                        break;
3777                case Audit_not_equal:
3778                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3779                                              level);
3780                        break;
3781                case Audit_lt:
3782                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3783                                               level) &&
3784                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3785                                               level));
3786                        break;
3787                case Audit_le:
3788                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3789                                              level);
3790                        break;
3791                case Audit_gt:
3792                        match = (mls_level_dom(level,
3793                                              &rule->au_ctxt.range.level[0]) &&
3794                                 !mls_level_eq(level,
3795                                               &rule->au_ctxt.range.level[0]));
3796                        break;
3797                case Audit_ge:
3798                        match = mls_level_dom(level,
3799                                              &rule->au_ctxt.range.level[0]);
3800                        break;
3801                }
3802        }
3803
3804out:
3805        rcu_read_unlock();
3806        return match;
3807}
3808
3809static int aurule_avc_callback(u32 event)
3810{
3811        if (event == AVC_CALLBACK_RESET)
3812                return audit_update_lsm_rules();
3813        return 0;
3814}
3815
3816static int __init aurule_init(void)
3817{
3818        int err;
3819
3820        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3821        if (err)
3822                panic("avc_add_callback() failed, error %d\n", err);
3823
3824        return err;
3825}
3826__initcall(aurule_init);
3827
3828#ifdef CONFIG_NETLABEL
3829/**
3830 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3831 * @secattr: the NetLabel packet security attributes
3832 * @sid: the SELinux SID
3833 *
3834 * Description:
3835 * Attempt to cache the context in @ctx, which was derived from the packet in
3836 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3837 * already been initialized.
3838 *
3839 */
3840static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3841                                      u32 sid)
3842{
3843        u32 *sid_cache;
3844
3845        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3846        if (sid_cache == NULL)
3847                return;
3848        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3849        if (secattr->cache == NULL) {
3850                kfree(sid_cache);
3851                return;
3852        }
3853
3854        *sid_cache = sid;
3855        secattr->cache->free = kfree;
3856        secattr->cache->data = sid_cache;
3857        secattr->flags |= NETLBL_SECATTR_CACHE;
3858}
3859
3860/**
3861 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3862 * @state: SELinux state
3863 * @secattr: the NetLabel packet security attributes
3864 * @sid: the SELinux SID
3865 *
3866 * Description:
3867 * Convert the given NetLabel security attributes in @secattr into a
3868 * SELinux SID.  If the @secattr field does not contain a full SELinux
3869 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3870 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3871 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3872 * conversion for future lookups.  Returns zero on success, negative values on
3873 * failure.
3874 *
3875 */
3876int security_netlbl_secattr_to_sid(struct selinux_state *state,
3877                                   struct netlbl_lsm_secattr *secattr,
3878                                   u32 *sid)
3879{
3880        struct selinux_policy *policy;
3881        struct policydb *policydb;
3882        struct sidtab *sidtab;
3883        int rc;
3884        struct context *ctx;
3885        struct context ctx_new;
3886
3887        if (!selinux_initialized(state)) {
3888                *sid = SECSID_NULL;
3889                return 0;
3890        }
3891
3892retry:
3893        rc = 0;
3894        rcu_read_lock();
3895        policy = rcu_dereference(state->policy);
3896        policydb = &policy->policydb;
3897        sidtab = policy->sidtab;
3898
3899        if (secattr->flags & NETLBL_SECATTR_CACHE)
3900                *sid = *(u32 *)secattr->cache->data;
3901        else if (secattr->flags & NETLBL_SECATTR_SECID)
3902                *sid = secattr->attr.secid;
3903        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3904                rc = -EIDRM;
3905                ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3906                if (ctx == NULL)
3907                        goto out;
3908
3909                context_init(&ctx_new);
3910                ctx_new.user = ctx->user;
3911                ctx_new.role = ctx->role;
3912                ctx_new.type = ctx->type;
3913                mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3914                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3915                        rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3916                        if (rc)
3917                                goto out;
3918                }
3919                rc = -EIDRM;
3920                if (!mls_context_isvalid(policydb, &ctx_new)) {
3921                        ebitmap_destroy(&ctx_new.range.level[0].cat);
3922                        goto out;
3923                }
3924
3925                rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3926                ebitmap_destroy(&ctx_new.range.level[0].cat);
3927                if (rc == -ESTALE) {
3928                        rcu_read_unlock();
3929                        goto retry;
3930                }
3931                if (rc)
3932                        goto out;
3933
3934                security_netlbl_cache_add(secattr, *sid);
3935        } else
3936                *sid = SECSID_NULL;
3937
3938out:
3939        rcu_read_unlock();
3940        return rc;
3941}
3942
3943/**
3944 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3945 * @state: SELinux state
3946 * @sid: the SELinux SID
3947 * @secattr: the NetLabel packet security attributes
3948 *
3949 * Description:
3950 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3951 * Returns zero on success, negative values on failure.
3952 *
3953 */
3954int security_netlbl_sid_to_secattr(struct selinux_state *state,
3955                                   u32 sid, struct netlbl_lsm_secattr *secattr)
3956{
3957        struct selinux_policy *policy;
3958        struct policydb *policydb;
3959        int rc;
3960        struct context *ctx;
3961
3962        if (!selinux_initialized(state))
3963                return 0;
3964
3965        rcu_read_lock();
3966        policy = rcu_dereference(state->policy);
3967        policydb = &policy->policydb;
3968
3969        rc = -ENOENT;
3970        ctx = sidtab_search(policy->sidtab, sid);
3971        if (ctx == NULL)
3972                goto out;
3973
3974        rc = -ENOMEM;
3975        secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3976                                  GFP_ATOMIC);
3977        if (secattr->domain == NULL)
3978                goto out;
3979
3980        secattr->attr.secid = sid;
3981        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3982        mls_export_netlbl_lvl(policydb, ctx, secattr);
3983        rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3984out:
3985        rcu_read_unlock();
3986        return rc;
3987}
3988#endif /* CONFIG_NETLABEL */
3989
3990/**
3991 * __security_read_policy - read the policy.
3992 * @policy: SELinux policy
3993 * @data: binary policy data
3994 * @len: length of data in bytes
3995 *
3996 */
3997static int __security_read_policy(struct selinux_policy *policy,
3998                                  void *data, size_t *len)
3999{
4000        int rc;
4001        struct policy_file fp;
4002
4003        fp.data = data;
4004        fp.len = *len;
4005
4006        rc = policydb_write(&policy->policydb, &fp);
4007        if (rc)
4008                return rc;
4009
4010        *len = (unsigned long)fp.data - (unsigned long)data;
4011        return 0;
4012}
4013
4014/**
4015 * security_read_policy - read the policy.
4016 * @state: selinux_state
4017 * @data: binary policy data
4018 * @len: length of data in bytes
4019 *
4020 */
4021int security_read_policy(struct selinux_state *state,
4022                         void **data, size_t *len)
4023{
4024        struct selinux_policy *policy;
4025
4026        policy = rcu_dereference_protected(
4027                        state->policy, lockdep_is_held(&state->policy_mutex));
4028        if (!policy)
4029                return -EINVAL;
4030
4031        *len = policy->policydb.len;
4032        *data = vmalloc_user(*len);
4033        if (!*data)
4034                return -ENOMEM;
4035
4036        return __security_read_policy(policy, *data, len);
4037}
4038
4039/**
4040 * security_read_state_kernel - read the policy.
4041 * @state: selinux_state
4042 * @data: binary policy data
4043 * @len: length of data in bytes
4044 *
4045 * Allocates kernel memory for reading SELinux policy.
4046 * This function is for internal use only and should not
4047 * be used for returning data to user space.
4048 *
4049 * This function must be called with policy_mutex held.
4050 */
4051int security_read_state_kernel(struct selinux_state *state,
4052                               void **data, size_t *len)
4053{
4054        struct selinux_policy *policy;
4055
4056        policy = rcu_dereference_protected(
4057                        state->policy, lockdep_is_held(&state->policy_mutex));
4058        if (!policy)
4059                return -EINVAL;
4060
4061        *len = policy->policydb.len;
4062        *data = vmalloc(*len);
4063        if (!*data)
4064                return -ENOMEM;
4065
4066        return __security_read_policy(policy, *data, len);
4067}
4068