linux/sound/pci/cmipci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
  33
  34#if IS_REACHABLE(CONFIG_GAMEPORT)
  35#define SUPPORT_JOYSTICK 1
  36#endif
  37
  38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;     /* Enable switches */
  41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
  42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  44#ifdef SUPPORT_JOYSTICK
  45static int joystick_port[SNDRV_CARDS];
  46#endif
  47
  48module_param_array(index, int, NULL, 0444);
  49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  50module_param_array(id, charp, NULL, 0444);
  51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  52module_param_array(enable, bool, NULL, 0444);
  53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  57MODULE_PARM_DESC(fm_port, "FM port.");
  58module_param_array(soft_ac3, bool, NULL, 0444);
  59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  60#ifdef SUPPORT_JOYSTICK
  61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  63#endif
  64
  65/*
  66 * CM8x38 registers definition
  67 */
  68
  69#define CM_REG_FUNCTRL0         0x00
  70#define CM_RST_CH1              0x00080000
  71#define CM_RST_CH0              0x00040000
  72#define CM_CHEN1                0x00020000      /* ch1: enable */
  73#define CM_CHEN0                0x00010000      /* ch0: enable */
  74#define CM_PAUSE1               0x00000008      /* ch1: pause */
  75#define CM_PAUSE0               0x00000004      /* ch0: pause */
  76#define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
  77#define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
  78
  79#define CM_REG_FUNCTRL1         0x04
  80#define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
  81#define CM_DSFC_SHIFT           13
  82#define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
  83#define CM_ASFC_SHIFT           10
  84#define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
  85#define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
  86#define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
  87#define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
  88#define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
  89#define CM_BREQ                 0x00000010      /* bus master enabled */
  90#define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
  91#define CM_UART_EN              0x00000004      /* legacy UART */
  92#define CM_JYSTK_EN             0x00000002      /* legacy joystick */
  93#define CM_ZVPORT               0x00000001      /* ZVPORT */
  94
  95#define CM_REG_CHFORMAT         0x08
  96
  97#define CM_CHB3D5C              0x80000000      /* 5,6 channels */
  98#define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
  99#define CM_CHB3D                0x20000000      /* 4 channels */
 100
 101#define CM_CHIP_MASK1           0x1f000000
 102#define CM_CHIP_037             0x01000000
 103#define CM_SETLAT48             0x00800000      /* set latency timer 48h */
 104#define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
 105#define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
 106#define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
 107#define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
 108#define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
 109/* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
 110
 111#define CM_ADCBITLEN_MASK       0x0000C000      
 112#define CM_ADCBITLEN_16         0x00000000
 113#define CM_ADCBITLEN_15         0x00004000
 114#define CM_ADCBITLEN_14         0x00008000
 115#define CM_ADCBITLEN_13         0x0000C000
 116
 117#define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
 118#define CM_ADCDACLEN_060        0x00000000
 119#define CM_ADCDACLEN_066        0x00001000
 120#define CM_ADCDACLEN_130        0x00002000
 121#define CM_ADCDACLEN_280        0x00003000
 122
 123#define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
 124#define CM_ADCDLEN_ORIGINAL     0x00000000
 125#define CM_ADCDLEN_EXTRA        0x00001000
 126#define CM_ADCDLEN_24K          0x00002000
 127#define CM_ADCDLEN_WEIGHT       0x00003000
 128
 129#define CM_CH1_SRATE_176K       0x00000800
 130#define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
 131#define CM_CH1_SRATE_88K        0x00000400
 132#define CM_CH0_SRATE_176K       0x00000200
 133#define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
 134#define CM_CH0_SRATE_88K        0x00000100
 135#define CM_CH0_SRATE_128K       0x00000300
 136#define CM_CH0_SRATE_MASK       0x00000300
 137
 138#define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
 139#define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
 140#define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
 141#define CM_SPDLOCKED            0x00000010
 142
 143#define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
 144#define CM_CH1FMT_SHIFT         2
 145#define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
 146#define CM_CH0FMT_SHIFT         0
 147
 148#define CM_REG_INT_HLDCLR       0x0C
 149#define CM_CHIP_MASK2           0xff000000
 150#define CM_CHIP_8768            0x20000000
 151#define CM_CHIP_055             0x08000000
 152#define CM_CHIP_039             0x04000000
 153#define CM_CHIP_039_6CH         0x01000000
 154#define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
 155#define CM_TDMA_INT_EN          0x00040000
 156#define CM_CH1_INT_EN           0x00020000
 157#define CM_CH0_INT_EN           0x00010000
 158
 159#define CM_REG_INT_STATUS       0x10
 160#define CM_INTR                 0x80000000
 161#define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
 162#define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
 163#define CM_UARTINT              0x00010000
 164#define CM_LTDMAINT             0x00008000
 165#define CM_HTDMAINT             0x00004000
 166#define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
 167#define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
 168#define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
 169#define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
 170#define CM_CH1BUSY              0x00000008
 171#define CM_CH0BUSY              0x00000004
 172#define CM_CHINT1               0x00000002
 173#define CM_CHINT0               0x00000001
 174
 175#define CM_REG_LEGACY_CTRL      0x14
 176#define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
 177#define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
 178#define CM_VMPU_330             0x00000000
 179#define CM_VMPU_320             0x20000000
 180#define CM_VMPU_310             0x40000000
 181#define CM_VMPU_300             0x60000000
 182#define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
 183#define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
 184#define CM_VSBSEL_220           0x00000000
 185#define CM_VSBSEL_240           0x04000000
 186#define CM_VSBSEL_260           0x08000000
 187#define CM_VSBSEL_280           0x0C000000
 188#define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
 189#define CM_FMSEL_388            0x00000000
 190#define CM_FMSEL_3C8            0x01000000
 191#define CM_FMSEL_3E0            0x02000000
 192#define CM_FMSEL_3E8            0x03000000
 193#define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
 194#define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
 195#define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
 196#define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
 197#define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 198#define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
 199#define CM_C_EECS               0x00040000
 200#define CM_C_EEDI46             0x00020000
 201#define CM_C_EECK46             0x00010000
 202#define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
 203#define CM_CENTR2LIN            0x00004000      /* line-in as center out */
 204#define CM_BASE2LIN             0x00002000      /* line-in as bass out */
 205#define CM_EXBASEN              0x00001000      /* external bass input enable */
 206
 207#define CM_REG_MISC_CTRL        0x18
 208#define CM_PWD                  0x80000000      /* power down */
 209#define CM_RESET                0x40000000
 210#define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
 211#define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
 212#define CM_TXVX                 0x08000000      /* model 037? */
 213#define CM_N4SPK3D              0x04000000      /* copy front to rear */
 214#define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
 215#define CM_SPDIF48K             0x01000000      /* write */
 216#define CM_SPATUS48K            0x01000000      /* read */
 217#define CM_ENDBDAC              0x00800000      /* enable double dac */
 218#define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
 219#define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
 220#define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
 221#define CM_FM_EN                0x00080000      /* enable legacy FM */
 222#define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
 223#define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
 224#define CM_VIDWPDSB             0x00010000      /* model 037? */
 225#define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
 226#define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
 227#define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
 228#define CM_VIDWPPRT             0x00002000      /* model 037? */
 229#define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
 230#define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
 231#define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
 232#define CM_ENCENTER             0x00000080
 233#define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
 234#define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
 235#define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
 236#define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
 237#define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
 238#define CM_UPDDMA_2048          0x00000000
 239#define CM_UPDDMA_1024          0x00000004
 240#define CM_UPDDMA_512           0x00000008
 241#define CM_UPDDMA_256           0x0000000C              
 242#define CM_TWAIT_MASK           0x00000003      /* model 037 */
 243#define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 244#define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
 245
 246#define CM_REG_TDMA_POSITION    0x1C
 247#define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
 248#define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
 249
 250        /* byte */
 251#define CM_REG_MIXER0           0x20
 252#define CM_REG_SBVR             0x20            /* write: sb16 version */
 253#define CM_REG_DEV              0x20            /* read: hardware device version */
 254
 255#define CM_REG_MIXER21          0x21
 256#define CM_UNKNOWN_21_MASK      0x78            /* ? */
 257#define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
 258#define CM_PROINV               0x02            /* SBPro left/right channel switching */
 259#define CM_X_SB16               0x01            /* SB16 compatible */
 260
 261#define CM_REG_SB16_DATA        0x22
 262#define CM_REG_SB16_ADDR        0x23
 263
 264#define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
 265#define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 266#define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
 267#define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
 268
 269#define CM_REG_MIXER1           0x24
 270#define CM_FMMUTE               0x80    /* mute FM */
 271#define CM_FMMUTE_SHIFT         7
 272#define CM_WSMUTE               0x40    /* mute PCM */
 273#define CM_WSMUTE_SHIFT         6
 274#define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
 275#define CM_REAR2LIN_SHIFT       5
 276#define CM_REAR2FRONT           0x10    /* exchange rear/front */
 277#define CM_REAR2FRONT_SHIFT     4
 278#define CM_WAVEINL              0x08    /* digital wave rec. left chan */
 279#define CM_WAVEINL_SHIFT        3
 280#define CM_WAVEINR              0x04    /* digical wave rec. right */
 281#define CM_WAVEINR_SHIFT        2
 282#define CM_X3DEN                0x02    /* 3D surround enable */
 283#define CM_X3DEN_SHIFT          1
 284#define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
 285#define CM_CDPLAY_SHIFT         0
 286
 287#define CM_REG_MIXER2           0x25
 288#define CM_RAUXREN              0x80    /* AUX right capture */
 289#define CM_RAUXREN_SHIFT        7
 290#define CM_RAUXLEN              0x40    /* AUX left capture */
 291#define CM_RAUXLEN_SHIFT        6
 292#define CM_VAUXRM               0x20    /* AUX right mute */
 293#define CM_VAUXRM_SHIFT         5
 294#define CM_VAUXLM               0x10    /* AUX left mute */
 295#define CM_VAUXLM_SHIFT         4
 296#define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
 297#define CM_VADMIC_SHIFT         1
 298#define CM_MICGAINZ             0x01    /* mic boost */
 299#define CM_MICGAINZ_SHIFT       0
 300
 301#define CM_REG_MIXER3           0x24
 302#define CM_REG_AUX_VOL          0x26
 303#define CM_VAUXL_MASK           0xf0
 304#define CM_VAUXR_MASK           0x0f
 305
 306#define CM_REG_MISC             0x27
 307#define CM_UNKNOWN_27_MASK      0xd8    /* ? */
 308#define CM_XGPO1                0x20
 309// #define CM_XGPBIO            0x04
 310#define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
 311#define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
 312#define CM_SPDVALID             0x02    /* spdif input valid check */
 313#define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
 314
 315#define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
 316/*
 317 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 318 * or identical with AC97 codec?
 319 */
 320#define CM_REG_EXTERN_CODEC     CM_REG_AC97
 321
 322/*
 323 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 324 */
 325#define CM_REG_MPU_PCI          0x40
 326
 327/*
 328 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 329 */
 330#define CM_REG_FM_PCI           0x50
 331
 332/*
 333 * access from SB-mixer port
 334 */
 335#define CM_REG_EXTENT_IND       0xf0
 336#define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
 337#define CM_VPHONE_SHIFT         5
 338#define CM_VPHOM                0x10    /* Phone mute control */
 339#define CM_VSPKM                0x08    /* Speaker mute control, default high */
 340#define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
 341#define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
 342#define CM_VADMIC3              0x01    /* Mic record boost */
 343
 344/*
 345 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 346 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 347 * unit (readonly?).
 348 */
 349#define CM_REG_PLL              0xf8
 350
 351/*
 352 * extended registers
 353 */
 354#define CM_REG_CH0_FRAME1       0x80    /* write: base address */
 355#define CM_REG_CH0_FRAME2       0x84    /* read: current address */
 356#define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
 357#define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
 358
 359#define CM_REG_EXT_MISC         0x90
 360#define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
 361#define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
 362#define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
 363#define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
 364#define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
 365#define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
 366#define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
 367#define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
 368
 369/*
 370 * size of i/o region
 371 */
 372#define CM_EXTENT_CODEC   0x100
 373#define CM_EXTENT_MIDI    0x2
 374#define CM_EXTENT_SYNTH   0x4
 375
 376
 377/*
 378 * channels for playback / capture
 379 */
 380#define CM_CH_PLAY      0
 381#define CM_CH_CAPT      1
 382
 383/*
 384 * flags to check device open/close
 385 */
 386#define CM_OPEN_NONE    0
 387#define CM_OPEN_CH_MASK 0x01
 388#define CM_OPEN_DAC     0x10
 389#define CM_OPEN_ADC     0x20
 390#define CM_OPEN_SPDIF   0x40
 391#define CM_OPEN_MCHAN   0x80
 392#define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
 393#define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
 394#define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 395#define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
 396#define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 397#define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 398
 399
 400#if CM_CH_PLAY == 1
 401#define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
 402#define CM_PLAYBACK_SPDF        CM_SPDF_1
 403#define CM_CAPTURE_SPDF         CM_SPDF_0
 404#else
 405#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 406#define CM_PLAYBACK_SPDF        CM_SPDF_0
 407#define CM_CAPTURE_SPDF         CM_SPDF_1
 408#endif
 409
 410
 411/*
 412 * driver data
 413 */
 414
 415struct cmipci_pcm {
 416        struct snd_pcm_substream *substream;
 417        u8 running;             /* dac/adc running? */
 418        u8 fmt;                 /* format bits */
 419        u8 is_dac;
 420        u8 needs_silencing;
 421        unsigned int dma_size;  /* in frames */
 422        unsigned int shift;
 423        unsigned int ch;        /* channel (0/1) */
 424        unsigned int offset;    /* physical address of the buffer */
 425};
 426
 427/* mixer elements toggled/resumed during ac3 playback */
 428struct cmipci_mixer_auto_switches {
 429        const char *name;       /* switch to toggle */
 430        int toggle_on;          /* value to change when ac3 mode */
 431};
 432static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 433        {"PCM Playback Switch", 0},
 434        {"IEC958 Output Switch", 1},
 435        {"IEC958 Mix Analog", 0},
 436        // {"IEC958 Out To DAC", 1}, // no longer used
 437        {"IEC958 Loop", 0},
 438};
 439#define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
 440
 441struct cmipci {
 442        struct snd_card *card;
 443
 444        struct pci_dev *pci;
 445        unsigned int device;    /* device ID */
 446        int irq;
 447
 448        unsigned long iobase;
 449        unsigned int ctrl;      /* FUNCTRL0 current value */
 450
 451        struct snd_pcm *pcm;            /* DAC/ADC PCM */
 452        struct snd_pcm *pcm2;   /* 2nd DAC */
 453        struct snd_pcm *pcm_spdif;      /* SPDIF */
 454
 455        int chip_version;
 456        int max_channels;
 457        unsigned int can_ac3_sw: 1;
 458        unsigned int can_ac3_hw: 1;
 459        unsigned int can_multi_ch: 1;
 460        unsigned int can_96k: 1;        /* samplerate above 48k */
 461        unsigned int do_soft_ac3: 1;
 462
 463        unsigned int spdif_playback_avail: 1;   /* spdif ready? */
 464        unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
 465        int spdif_counter;      /* for software AC3 */
 466
 467        unsigned int dig_status;
 468        unsigned int dig_pcm_status;
 469
 470        struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 471
 472        int opened[2];  /* open mode */
 473        struct mutex open_mutex;
 474
 475        unsigned int mixer_insensitive: 1;
 476        struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 477        int mixer_res_status[CM_SAVED_MIXERS];
 478
 479        struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
 480
 481        /* external MIDI */
 482        struct snd_rawmidi *rmidi;
 483
 484#ifdef SUPPORT_JOYSTICK
 485        struct gameport *gameport;
 486#endif
 487
 488        spinlock_t reg_lock;
 489
 490#ifdef CONFIG_PM_SLEEP
 491        unsigned int saved_regs[0x20];
 492        unsigned char saved_mixers[0x20];
 493#endif
 494};
 495
 496
 497/* read/write operations for dword register */
 498static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 499{
 500        outl(data, cm->iobase + cmd);
 501}
 502
 503static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 504{
 505        return inl(cm->iobase + cmd);
 506}
 507
 508/* read/write operations for word register */
 509static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 510{
 511        outw(data, cm->iobase + cmd);
 512}
 513
 514static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 515{
 516        return inw(cm->iobase + cmd);
 517}
 518
 519/* read/write operations for byte register */
 520static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 521{
 522        outb(data, cm->iobase + cmd);
 523}
 524
 525static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 526{
 527        return inb(cm->iobase + cmd);
 528}
 529
 530/* bit operations for dword register */
 531static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 532{
 533        unsigned int val, oval;
 534        val = oval = inl(cm->iobase + cmd);
 535        val |= flag;
 536        if (val == oval)
 537                return 0;
 538        outl(val, cm->iobase + cmd);
 539        return 1;
 540}
 541
 542static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 543{
 544        unsigned int val, oval;
 545        val = oval = inl(cm->iobase + cmd);
 546        val &= ~flag;
 547        if (val == oval)
 548                return 0;
 549        outl(val, cm->iobase + cmd);
 550        return 1;
 551}
 552
 553/* bit operations for byte register */
 554static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 555{
 556        unsigned char val, oval;
 557        val = oval = inb(cm->iobase + cmd);
 558        val |= flag;
 559        if (val == oval)
 560                return 0;
 561        outb(val, cm->iobase + cmd);
 562        return 1;
 563}
 564
 565static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 566{
 567        unsigned char val, oval;
 568        val = oval = inb(cm->iobase + cmd);
 569        val &= ~flag;
 570        if (val == oval)
 571                return 0;
 572        outb(val, cm->iobase + cmd);
 573        return 1;
 574}
 575
 576
 577/*
 578 * PCM interface
 579 */
 580
 581/*
 582 * calculate frequency
 583 */
 584
 585static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 586
 587static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 588{
 589        unsigned int i;
 590
 591        for (i = 0; i < ARRAY_SIZE(rates); i++) {
 592                if (rates[i] == rate)
 593                        return i;
 594        }
 595        snd_BUG();
 596        return 0;
 597}
 598
 599#ifdef USE_VAR48KRATE
 600/*
 601 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 602 * does it this way .. maybe not.  Never get any information from C-Media about
 603 * that <werner@suse.de>.
 604 */
 605static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 606{
 607        unsigned int delta, tolerance;
 608        int xm, xn, xr;
 609
 610        for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 611                rate <<= 1;
 612        *n = -1;
 613        if (*r > 0xff)
 614                goto out;
 615        tolerance = rate*CM_TOLERANCE_RATE;
 616
 617        for (xn = (1+2); xn < (0x1f+2); xn++) {
 618                for (xm = (1+2); xm < (0xff+2); xm++) {
 619                        xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 620
 621                        if (xr < rate)
 622                                delta = rate - xr;
 623                        else
 624                                delta = xr - rate;
 625
 626                        /*
 627                         * If we found one, remember this,
 628                         * and try to find a closer one
 629                         */
 630                        if (delta < tolerance) {
 631                                tolerance = delta;
 632                                *m = xm - 2;
 633                                *n = xn - 2;
 634                        }
 635                }
 636        }
 637out:
 638        return (*n > -1);
 639}
 640
 641/*
 642 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 643 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 644 * at the register CM_REG_FUNCTRL1 (0x04).
 645 * Problem: other ways are also possible (any information about that?)
 646 */
 647static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 648{
 649        unsigned int reg = CM_REG_PLL + slot;
 650        /*
 651         * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 652         * for DSFC/ASFC (000 up to 111).
 653         */
 654
 655        /* FIXME: Init (Do we've to set an other register first before programming?) */
 656
 657        /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 658        snd_cmipci_write_b(cm, reg, rate>>8);
 659        snd_cmipci_write_b(cm, reg, rate&0xff);
 660
 661        /* FIXME: Setup (Do we've to set an other register first to enable this?) */
 662}
 663#endif /* USE_VAR48KRATE */
 664
 665static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 666                                          struct snd_pcm_hw_params *hw_params)
 667{
 668        struct cmipci *cm = snd_pcm_substream_chip(substream);
 669        if (params_channels(hw_params) > 2) {
 670                mutex_lock(&cm->open_mutex);
 671                if (cm->opened[CM_CH_PLAY]) {
 672                        mutex_unlock(&cm->open_mutex);
 673                        return -EBUSY;
 674                }
 675                /* reserve the channel A */
 676                cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 677                mutex_unlock(&cm->open_mutex);
 678        }
 679        return 0;
 680}
 681
 682static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 683{
 684        int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 685        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 686        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 687        udelay(10);
 688}
 689
 690
 691/*
 692 */
 693
 694static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 695static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 696        .count = 3,
 697        .list = hw_channels,
 698        .mask = 0,
 699};
 700static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 701        .count = 4,
 702        .list = hw_channels,
 703        .mask = 0,
 704};
 705static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 706        .count = 5,
 707        .list = hw_channels,
 708        .mask = 0,
 709};
 710
 711static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 712{
 713        if (channels > 2) {
 714                if (!cm->can_multi_ch || !rec->ch)
 715                        return -EINVAL;
 716                if (rec->fmt != 0x03) /* stereo 16bit only */
 717                        return -EINVAL;
 718        }
 719
 720        if (cm->can_multi_ch) {
 721                spin_lock_irq(&cm->reg_lock);
 722                if (channels > 2) {
 723                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 724                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 725                } else {
 726                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 727                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 728                }
 729                if (channels == 8)
 730                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 731                else
 732                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 733                if (channels == 6) {
 734                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 735                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 736                } else {
 737                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 738                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 739                }
 740                if (channels == 4)
 741                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 742                else
 743                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 744                spin_unlock_irq(&cm->reg_lock);
 745        }
 746        return 0;
 747}
 748
 749
 750/*
 751 * prepare playback/capture channel
 752 * channel to be used must have been set in rec->ch.
 753 */
 754static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 755                                 struct snd_pcm_substream *substream)
 756{
 757        unsigned int reg, freq, freq_ext, val;
 758        unsigned int period_size;
 759        struct snd_pcm_runtime *runtime = substream->runtime;
 760
 761        rec->fmt = 0;
 762        rec->shift = 0;
 763        if (snd_pcm_format_width(runtime->format) >= 16) {
 764                rec->fmt |= 0x02;
 765                if (snd_pcm_format_width(runtime->format) > 16)
 766                        rec->shift++; /* 24/32bit */
 767        }
 768        if (runtime->channels > 1)
 769                rec->fmt |= 0x01;
 770        if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 771                dev_dbg(cm->card->dev, "cannot set dac channels\n");
 772                return -EINVAL;
 773        }
 774
 775        rec->offset = runtime->dma_addr;
 776        /* buffer and period sizes in frame */
 777        rec->dma_size = runtime->buffer_size << rec->shift;
 778        period_size = runtime->period_size << rec->shift;
 779        if (runtime->channels > 2) {
 780                /* multi-channels */
 781                rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 782                period_size = (period_size * runtime->channels) / 2;
 783        }
 784
 785        spin_lock_irq(&cm->reg_lock);
 786
 787        /* set buffer address */
 788        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 789        snd_cmipci_write(cm, reg, rec->offset);
 790        /* program sample counts */
 791        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 792        snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 793        snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 794
 795        /* set adc/dac flag */
 796        val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 797        if (rec->is_dac)
 798                cm->ctrl &= ~val;
 799        else
 800                cm->ctrl |= val;
 801        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 802        /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 803
 804        /* set sample rate */
 805        freq = 0;
 806        freq_ext = 0;
 807        if (runtime->rate > 48000)
 808                switch (runtime->rate) {
 809                case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 810                case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 811                case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 812                default:     snd_BUG(); break;
 813                }
 814        else
 815                freq = snd_cmipci_rate_freq(runtime->rate);
 816        val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 817        if (rec->ch) {
 818                val &= ~CM_DSFC_MASK;
 819                val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 820        } else {
 821                val &= ~CM_ASFC_MASK;
 822                val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 823        }
 824        snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 825        dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 826
 827        /* set format */
 828        val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 829        if (rec->ch) {
 830                val &= ~CM_CH1FMT_MASK;
 831                val |= rec->fmt << CM_CH1FMT_SHIFT;
 832        } else {
 833                val &= ~CM_CH0FMT_MASK;
 834                val |= rec->fmt << CM_CH0FMT_SHIFT;
 835        }
 836        if (cm->can_96k) {
 837                val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 838                val |= freq_ext << (rec->ch * 2);
 839        }
 840        snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 841        dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 842
 843        if (!rec->is_dac && cm->chip_version) {
 844                if (runtime->rate > 44100)
 845                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 846                else
 847                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 848        }
 849
 850        rec->running = 0;
 851        spin_unlock_irq(&cm->reg_lock);
 852
 853        return 0;
 854}
 855
 856/*
 857 * PCM trigger/stop
 858 */
 859static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 860                                  int cmd)
 861{
 862        unsigned int inthld, chen, reset, pause;
 863        int result = 0;
 864
 865        inthld = CM_CH0_INT_EN << rec->ch;
 866        chen = CM_CHEN0 << rec->ch;
 867        reset = CM_RST_CH0 << rec->ch;
 868        pause = CM_PAUSE0 << rec->ch;
 869
 870        spin_lock(&cm->reg_lock);
 871        switch (cmd) {
 872        case SNDRV_PCM_TRIGGER_START:
 873                rec->running = 1;
 874                /* set interrupt */
 875                snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 876                cm->ctrl |= chen;
 877                /* enable channel */
 878                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 879                dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 880                break;
 881        case SNDRV_PCM_TRIGGER_STOP:
 882                rec->running = 0;
 883                /* disable interrupt */
 884                snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 885                /* reset */
 886                cm->ctrl &= ~chen;
 887                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 888                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 889                rec->needs_silencing = rec->is_dac;
 890                break;
 891        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 892        case SNDRV_PCM_TRIGGER_SUSPEND:
 893                cm->ctrl |= pause;
 894                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 895                break;
 896        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 897        case SNDRV_PCM_TRIGGER_RESUME:
 898                cm->ctrl &= ~pause;
 899                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 900                break;
 901        default:
 902                result = -EINVAL;
 903                break;
 904        }
 905        spin_unlock(&cm->reg_lock);
 906        return result;
 907}
 908
 909/*
 910 * return the current pointer
 911 */
 912static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 913                                                struct snd_pcm_substream *substream)
 914{
 915        size_t ptr;
 916        unsigned int reg, rem, tries;
 917
 918        if (!rec->running)
 919                return 0;
 920#if 1 // this seems better..
 921        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 922        for (tries = 0; tries < 3; tries++) {
 923                rem = snd_cmipci_read_w(cm, reg);
 924                if (rem < rec->dma_size)
 925                        goto ok;
 926        } 
 927        dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 928        return SNDRV_PCM_POS_XRUN;
 929ok:
 930        ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 931#else
 932        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 933        ptr = snd_cmipci_read(cm, reg) - rec->offset;
 934        ptr = bytes_to_frames(substream->runtime, ptr);
 935#endif
 936        if (substream->runtime->channels > 2)
 937                ptr = (ptr * 2) / substream->runtime->channels;
 938        return ptr;
 939}
 940
 941/*
 942 * playback
 943 */
 944
 945static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 946                                       int cmd)
 947{
 948        struct cmipci *cm = snd_pcm_substream_chip(substream);
 949        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 950}
 951
 952static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 953{
 954        struct cmipci *cm = snd_pcm_substream_chip(substream);
 955        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 956}
 957
 958
 959
 960/*
 961 * capture
 962 */
 963
 964static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 965                                     int cmd)
 966{
 967        struct cmipci *cm = snd_pcm_substream_chip(substream);
 968        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 969}
 970
 971static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 972{
 973        struct cmipci *cm = snd_pcm_substream_chip(substream);
 974        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 975}
 976
 977
 978/*
 979 * hw preparation for spdif
 980 */
 981
 982static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 983                                         struct snd_ctl_elem_info *uinfo)
 984{
 985        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 986        uinfo->count = 1;
 987        return 0;
 988}
 989
 990static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
 991                                        struct snd_ctl_elem_value *ucontrol)
 992{
 993        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
 994        int i;
 995
 996        spin_lock_irq(&chip->reg_lock);
 997        for (i = 0; i < 4; i++)
 998                ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
 999        spin_unlock_irq(&chip->reg_lock);
1000        return 0;
1001}
1002
1003static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1004                                         struct snd_ctl_elem_value *ucontrol)
1005{
1006        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1007        int i, change;
1008        unsigned int val;
1009
1010        val = 0;
1011        spin_lock_irq(&chip->reg_lock);
1012        for (i = 0; i < 4; i++)
1013                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1014        change = val != chip->dig_status;
1015        chip->dig_status = val;
1016        spin_unlock_irq(&chip->reg_lock);
1017        return change;
1018}
1019
1020static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1021{
1022        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1023        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1024        .info =         snd_cmipci_spdif_default_info,
1025        .get =          snd_cmipci_spdif_default_get,
1026        .put =          snd_cmipci_spdif_default_put
1027};
1028
1029static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1030                                      struct snd_ctl_elem_info *uinfo)
1031{
1032        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1033        uinfo->count = 1;
1034        return 0;
1035}
1036
1037static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1038                                     struct snd_ctl_elem_value *ucontrol)
1039{
1040        ucontrol->value.iec958.status[0] = 0xff;
1041        ucontrol->value.iec958.status[1] = 0xff;
1042        ucontrol->value.iec958.status[2] = 0xff;
1043        ucontrol->value.iec958.status[3] = 0xff;
1044        return 0;
1045}
1046
1047static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1048{
1049        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1050        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1051        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1052        .info =         snd_cmipci_spdif_mask_info,
1053        .get =          snd_cmipci_spdif_mask_get,
1054};
1055
1056static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1057                                        struct snd_ctl_elem_info *uinfo)
1058{
1059        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1060        uinfo->count = 1;
1061        return 0;
1062}
1063
1064static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1065                                       struct snd_ctl_elem_value *ucontrol)
1066{
1067        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1068        int i;
1069
1070        spin_lock_irq(&chip->reg_lock);
1071        for (i = 0; i < 4; i++)
1072                ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1073        spin_unlock_irq(&chip->reg_lock);
1074        return 0;
1075}
1076
1077static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1078                                       struct snd_ctl_elem_value *ucontrol)
1079{
1080        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1081        int i, change;
1082        unsigned int val;
1083
1084        val = 0;
1085        spin_lock_irq(&chip->reg_lock);
1086        for (i = 0; i < 4; i++)
1087                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1088        change = val != chip->dig_pcm_status;
1089        chip->dig_pcm_status = val;
1090        spin_unlock_irq(&chip->reg_lock);
1091        return change;
1092}
1093
1094static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1095{
1096        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1097        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1098        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1099        .info =         snd_cmipci_spdif_stream_info,
1100        .get =          snd_cmipci_spdif_stream_get,
1101        .put =          snd_cmipci_spdif_stream_put
1102};
1103
1104/*
1105 */
1106
1107/* save mixer setting and mute for AC3 playback */
1108static int save_mixer_state(struct cmipci *cm)
1109{
1110        if (! cm->mixer_insensitive) {
1111                struct snd_ctl_elem_value *val;
1112                unsigned int i;
1113
1114                val = kmalloc(sizeof(*val), GFP_KERNEL);
1115                if (!val)
1116                        return -ENOMEM;
1117                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1118                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1119                        if (ctl) {
1120                                int event;
1121                                memset(val, 0, sizeof(*val));
1122                                ctl->get(ctl, val);
1123                                cm->mixer_res_status[i] = val->value.integer.value[0];
1124                                val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1125                                event = SNDRV_CTL_EVENT_MASK_INFO;
1126                                if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1127                                        ctl->put(ctl, val); /* toggle */
1128                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1129                                }
1130                                ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1131                                snd_ctl_notify(cm->card, event, &ctl->id);
1132                        }
1133                }
1134                kfree(val);
1135                cm->mixer_insensitive = 1;
1136        }
1137        return 0;
1138}
1139
1140
1141/* restore the previously saved mixer status */
1142static void restore_mixer_state(struct cmipci *cm)
1143{
1144        if (cm->mixer_insensitive) {
1145                struct snd_ctl_elem_value *val;
1146                unsigned int i;
1147
1148                val = kmalloc(sizeof(*val), GFP_KERNEL);
1149                if (!val)
1150                        return;
1151                cm->mixer_insensitive = 0; /* at first clear this;
1152                                              otherwise the changes will be ignored */
1153                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1154                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1155                        if (ctl) {
1156                                int event;
1157
1158                                memset(val, 0, sizeof(*val));
1159                                ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1160                                ctl->get(ctl, val);
1161                                event = SNDRV_CTL_EVENT_MASK_INFO;
1162                                if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1163                                        val->value.integer.value[0] = cm->mixer_res_status[i];
1164                                        ctl->put(ctl, val);
1165                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1166                                }
1167                                snd_ctl_notify(cm->card, event, &ctl->id);
1168                        }
1169                }
1170                kfree(val);
1171        }
1172}
1173
1174/* spinlock held! */
1175static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1176{
1177        if (do_ac3) {
1178                /* AC3EN for 037 */
1179                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1180                /* AC3EN for 039 */
1181                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1182        
1183                if (cm->can_ac3_hw) {
1184                        /* SPD24SEL for 037, 0x02 */
1185                        /* SPD24SEL for 039, 0x20, but cannot be set */
1186                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1187                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188                } else { /* can_ac3_sw */
1189                        /* SPD32SEL for 037 & 039, 0x20 */
1190                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1191                        /* set 176K sample rate to fix 033 HW bug */
1192                        if (cm->chip_version == 33) {
1193                                if (rate >= 48000) {
1194                                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1195                                } else {
1196                                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1197                                }
1198                        }
1199                }
1200
1201        } else {
1202                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1203                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1204
1205                if (cm->can_ac3_hw) {
1206                        /* chip model >= 37 */
1207                        if (snd_pcm_format_width(subs->runtime->format) > 16) {
1208                                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209                                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210                        } else {
1211                                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1212                                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1213                        }
1214                } else {
1215                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1218                }
1219        }
1220}
1221
1222static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1223{
1224        int rate, err;
1225
1226        rate = subs->runtime->rate;
1227
1228        if (up && do_ac3) {
1229                err = save_mixer_state(cm);
1230                if (err < 0)
1231                        return err;
1232        }
1233
1234        spin_lock_irq(&cm->reg_lock);
1235        cm->spdif_playback_avail = up;
1236        if (up) {
1237                /* they are controlled via "IEC958 Output Switch" */
1238                /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1239                /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1240                if (cm->spdif_playback_enabled)
1241                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1242                setup_ac3(cm, subs, do_ac3, rate);
1243
1244                if (rate == 48000 || rate == 96000)
1245                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1246                else
1247                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1248                if (rate > 48000)
1249                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1250                else
1251                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1252        } else {
1253                /* they are controlled via "IEC958 Output Switch" */
1254                /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1255                /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1256                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1257                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1258                setup_ac3(cm, subs, 0, 0);
1259        }
1260        spin_unlock_irq(&cm->reg_lock);
1261        return 0;
1262}
1263
1264
1265/*
1266 * preparation
1267 */
1268
1269/* playback - enable spdif only on the certain condition */
1270static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1271{
1272        struct cmipci *cm = snd_pcm_substream_chip(substream);
1273        int rate = substream->runtime->rate;
1274        int err, do_spdif, do_ac3 = 0;
1275
1276        do_spdif = (rate >= 44100 && rate <= 96000 &&
1277                    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1278                    substream->runtime->channels == 2);
1279        if (do_spdif && cm->can_ac3_hw) 
1280                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1281        err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1282        if (err < 0)
1283                return err;
1284        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1285}
1286
1287/* playback  (via device #2) - enable spdif always */
1288static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1289{
1290        struct cmipci *cm = snd_pcm_substream_chip(substream);
1291        int err, do_ac3;
1292
1293        if (cm->can_ac3_hw) 
1294                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1295        else
1296                do_ac3 = 1; /* doesn't matter */
1297        err = setup_spdif_playback(cm, substream, 1, do_ac3);
1298        if (err < 0)
1299                return err;
1300        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301}
1302
1303/*
1304 * Apparently, the samples last played on channel A stay in some buffer, even
1305 * after the channel is reset, and get added to the data for the rear DACs when
1306 * playing a multichannel stream on channel B.  This is likely to generate
1307 * wraparounds and thus distortions.
1308 * To avoid this, we play at least one zero sample after the actual stream has
1309 * stopped.
1310 */
1311static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1312{
1313        struct snd_pcm_runtime *runtime = rec->substream->runtime;
1314        unsigned int reg, val;
1315
1316        if (rec->needs_silencing && runtime && runtime->dma_area) {
1317                /* set up a small silence buffer */
1318                memset(runtime->dma_area, 0, PAGE_SIZE);
1319                reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1320                val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1321                snd_cmipci_write(cm, reg, val);
1322        
1323                /* configure for 16 bits, 2 channels, 8 kHz */
1324                if (runtime->channels > 2)
1325                        set_dac_channels(cm, rec, 2);
1326                spin_lock_irq(&cm->reg_lock);
1327                val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1328                val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1329                val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1330                snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1331                val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1332                val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1333                val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1334                if (cm->can_96k)
1335                        val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1336                snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1337        
1338                /* start stream (we don't need interrupts) */
1339                cm->ctrl |= CM_CHEN0 << rec->ch;
1340                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1341                spin_unlock_irq(&cm->reg_lock);
1342
1343                msleep(1);
1344
1345                /* stop and reset stream */
1346                spin_lock_irq(&cm->reg_lock);
1347                cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1348                val = CM_RST_CH0 << rec->ch;
1349                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1350                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1351                spin_unlock_irq(&cm->reg_lock);
1352
1353                rec->needs_silencing = 0;
1354        }
1355}
1356
1357static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1358{
1359        struct cmipci *cm = snd_pcm_substream_chip(substream);
1360        setup_spdif_playback(cm, substream, 0, 0);
1361        restore_mixer_state(cm);
1362        snd_cmipci_silence_hack(cm, &cm->channel[0]);
1363        return 0;
1364}
1365
1366static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1367{
1368        struct cmipci *cm = snd_pcm_substream_chip(substream);
1369        snd_cmipci_silence_hack(cm, &cm->channel[1]);
1370        return 0;
1371}
1372
1373/* capture */
1374static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1375{
1376        struct cmipci *cm = snd_pcm_substream_chip(substream);
1377        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1378}
1379
1380/* capture with spdif (via device #2) */
1381static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1382{
1383        struct cmipci *cm = snd_pcm_substream_chip(substream);
1384
1385        spin_lock_irq(&cm->reg_lock);
1386        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1387        if (cm->can_96k) {
1388                if (substream->runtime->rate > 48000)
1389                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1390                else
1391                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1392        }
1393        if (snd_pcm_format_width(substream->runtime->format) > 16)
1394                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1395        else
1396                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1397
1398        spin_unlock_irq(&cm->reg_lock);
1399
1400        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401}
1402
1403static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1404{
1405        struct cmipci *cm = snd_pcm_substream_chip(subs);
1406
1407        spin_lock_irq(&cm->reg_lock);
1408        snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1409        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410        spin_unlock_irq(&cm->reg_lock);
1411
1412        return 0;
1413}
1414
1415
1416/*
1417 * interrupt handler
1418 */
1419static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1420{
1421        struct cmipci *cm = dev_id;
1422        unsigned int status, mask = 0;
1423        
1424        /* fastpath out, to ease interrupt sharing */
1425        status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1426        if (!(status & CM_INTR))
1427                return IRQ_NONE;
1428
1429        /* acknowledge interrupt */
1430        spin_lock(&cm->reg_lock);
1431        if (status & CM_CHINT0)
1432                mask |= CM_CH0_INT_EN;
1433        if (status & CM_CHINT1)
1434                mask |= CM_CH1_INT_EN;
1435        snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1436        snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1437        spin_unlock(&cm->reg_lock);
1438
1439        if (cm->rmidi && (status & CM_UARTINT))
1440                snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1441
1442        if (cm->pcm) {
1443                if ((status & CM_CHINT0) && cm->channel[0].running)
1444                        snd_pcm_period_elapsed(cm->channel[0].substream);
1445                if ((status & CM_CHINT1) && cm->channel[1].running)
1446                        snd_pcm_period_elapsed(cm->channel[1].substream);
1447        }
1448        return IRQ_HANDLED;
1449}
1450
1451/*
1452 * h/w infos
1453 */
1454
1455/* playback on channel A */
1456static const struct snd_pcm_hardware snd_cmipci_playback =
1457{
1458        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1459                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1460                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1461        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1462        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1463        .rate_min =             5512,
1464        .rate_max =             48000,
1465        .channels_min =         1,
1466        .channels_max =         2,
1467        .buffer_bytes_max =     (128*1024),
1468        .period_bytes_min =     64,
1469        .period_bytes_max =     (128*1024),
1470        .periods_min =          2,
1471        .periods_max =          1024,
1472        .fifo_size =            0,
1473};
1474
1475/* capture on channel B */
1476static const struct snd_pcm_hardware snd_cmipci_capture =
1477{
1478        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1479                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1480                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1481        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1482        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1483        .rate_min =             5512,
1484        .rate_max =             48000,
1485        .channels_min =         1,
1486        .channels_max =         2,
1487        .buffer_bytes_max =     (128*1024),
1488        .period_bytes_min =     64,
1489        .period_bytes_max =     (128*1024),
1490        .periods_min =          2,
1491        .periods_max =          1024,
1492        .fifo_size =            0,
1493};
1494
1495/* playback on channel B - stereo 16bit only? */
1496static const struct snd_pcm_hardware snd_cmipci_playback2 =
1497{
1498        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1499                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1500                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1501        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1502        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1503        .rate_min =             5512,
1504        .rate_max =             48000,
1505        .channels_min =         2,
1506        .channels_max =         2,
1507        .buffer_bytes_max =     (128*1024),
1508        .period_bytes_min =     64,
1509        .period_bytes_max =     (128*1024),
1510        .periods_min =          2,
1511        .periods_max =          1024,
1512        .fifo_size =            0,
1513};
1514
1515/* spdif playback on channel A */
1516static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1517{
1518        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1519                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1520                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1521        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1522        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1523        .rate_min =             44100,
1524        .rate_max =             48000,
1525        .channels_min =         2,
1526        .channels_max =         2,
1527        .buffer_bytes_max =     (128*1024),
1528        .period_bytes_min =     64,
1529        .period_bytes_max =     (128*1024),
1530        .periods_min =          2,
1531        .periods_max =          1024,
1532        .fifo_size =            0,
1533};
1534
1535/* spdif playback on channel A (32bit, IEC958 subframes) */
1536static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1537{
1538        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1539                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1540                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1541        .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1542        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1543        .rate_min =             44100,
1544        .rate_max =             48000,
1545        .channels_min =         2,
1546        .channels_max =         2,
1547        .buffer_bytes_max =     (128*1024),
1548        .period_bytes_min =     64,
1549        .period_bytes_max =     (128*1024),
1550        .periods_min =          2,
1551        .periods_max =          1024,
1552        .fifo_size =            0,
1553};
1554
1555/* spdif capture on channel B */
1556static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1557{
1558        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1559                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1560                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1561        .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1562                                SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1563        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1564        .rate_min =             44100,
1565        .rate_max =             48000,
1566        .channels_min =         2,
1567        .channels_max =         2,
1568        .buffer_bytes_max =     (128*1024),
1569        .period_bytes_min =     64,
1570        .period_bytes_max =     (128*1024),
1571        .periods_min =          2,
1572        .periods_max =          1024,
1573        .fifo_size =            0,
1574};
1575
1576static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1577                        32000, 44100, 48000, 88200, 96000, 128000 };
1578static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1579                .count = ARRAY_SIZE(rate_constraints),
1580                .list = rate_constraints,
1581                .mask = 0,
1582};
1583
1584/*
1585 * check device open/close
1586 */
1587static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1588{
1589        int ch = mode & CM_OPEN_CH_MASK;
1590
1591        /* FIXME: a file should wait until the device becomes free
1592         * when it's opened on blocking mode.  however, since the current
1593         * pcm framework doesn't pass file pointer before actually opened,
1594         * we can't know whether blocking mode or not in open callback..
1595         */
1596        mutex_lock(&cm->open_mutex);
1597        if (cm->opened[ch]) {
1598                mutex_unlock(&cm->open_mutex);
1599                return -EBUSY;
1600        }
1601        cm->opened[ch] = mode;
1602        cm->channel[ch].substream = subs;
1603        if (! (mode & CM_OPEN_DAC)) {
1604                /* disable dual DAC mode */
1605                cm->channel[ch].is_dac = 0;
1606                spin_lock_irq(&cm->reg_lock);
1607                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1608                spin_unlock_irq(&cm->reg_lock);
1609        }
1610        mutex_unlock(&cm->open_mutex);
1611        return 0;
1612}
1613
1614static void close_device_check(struct cmipci *cm, int mode)
1615{
1616        int ch = mode & CM_OPEN_CH_MASK;
1617
1618        mutex_lock(&cm->open_mutex);
1619        if (cm->opened[ch] == mode) {
1620                if (cm->channel[ch].substream) {
1621                        snd_cmipci_ch_reset(cm, ch);
1622                        cm->channel[ch].running = 0;
1623                        cm->channel[ch].substream = NULL;
1624                }
1625                cm->opened[ch] = 0;
1626                if (! cm->channel[ch].is_dac) {
1627                        /* enable dual DAC mode again */
1628                        cm->channel[ch].is_dac = 1;
1629                        spin_lock_irq(&cm->reg_lock);
1630                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631                        spin_unlock_irq(&cm->reg_lock);
1632                }
1633        }
1634        mutex_unlock(&cm->open_mutex);
1635}
1636
1637/*
1638 */
1639
1640static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1641{
1642        struct cmipci *cm = snd_pcm_substream_chip(substream);
1643        struct snd_pcm_runtime *runtime = substream->runtime;
1644        int err;
1645
1646        err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1647        if (err < 0)
1648                return err;
1649        runtime->hw = snd_cmipci_playback;
1650        if (cm->chip_version == 68) {
1651                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1652                                     SNDRV_PCM_RATE_96000;
1653                runtime->hw.rate_max = 96000;
1654        } else if (cm->chip_version == 55) {
1655                err = snd_pcm_hw_constraint_list(runtime, 0,
1656                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1657                if (err < 0)
1658                        return err;
1659                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1660                runtime->hw.rate_max = 128000;
1661        }
1662        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1663        cm->dig_pcm_status = cm->dig_status;
1664        return 0;
1665}
1666
1667static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1668{
1669        struct cmipci *cm = snd_pcm_substream_chip(substream);
1670        struct snd_pcm_runtime *runtime = substream->runtime;
1671        int err;
1672
1673        err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1674        if (err < 0)
1675                return err;
1676        runtime->hw = snd_cmipci_capture;
1677        if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1678                runtime->hw.rate_min = 41000;
1679                runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1680        } else if (cm->chip_version == 55) {
1681                err = snd_pcm_hw_constraint_list(runtime, 0,
1682                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1683                if (err < 0)
1684                        return err;
1685                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1686                runtime->hw.rate_max = 128000;
1687        }
1688        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1689        return 0;
1690}
1691
1692static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1693{
1694        struct cmipci *cm = snd_pcm_substream_chip(substream);
1695        struct snd_pcm_runtime *runtime = substream->runtime;
1696        int err;
1697
1698        /* use channel B */
1699        err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1700        if (err < 0)
1701                return err;
1702        runtime->hw = snd_cmipci_playback2;
1703        mutex_lock(&cm->open_mutex);
1704        if (! cm->opened[CM_CH_PLAY]) {
1705                if (cm->can_multi_ch) {
1706                        runtime->hw.channels_max = cm->max_channels;
1707                        if (cm->max_channels == 4)
1708                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1709                        else if (cm->max_channels == 6)
1710                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1711                        else if (cm->max_channels == 8)
1712                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1713                }
1714        }
1715        mutex_unlock(&cm->open_mutex);
1716        if (cm->chip_version == 68) {
1717                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1718                                     SNDRV_PCM_RATE_96000;
1719                runtime->hw.rate_max = 96000;
1720        } else if (cm->chip_version == 55) {
1721                err = snd_pcm_hw_constraint_list(runtime, 0,
1722                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1723                if (err < 0)
1724                        return err;
1725                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1726                runtime->hw.rate_max = 128000;
1727        }
1728        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1729        return 0;
1730}
1731
1732static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1733{
1734        struct cmipci *cm = snd_pcm_substream_chip(substream);
1735        struct snd_pcm_runtime *runtime = substream->runtime;
1736        int err;
1737
1738        /* use channel A */
1739        err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1740        if (err < 0)
1741                return err;
1742        if (cm->can_ac3_hw) {
1743                runtime->hw = snd_cmipci_playback_spdif;
1744                if (cm->chip_version >= 37) {
1745                        runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1746                        snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1747                }
1748                if (cm->can_96k) {
1749                        runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1750                                             SNDRV_PCM_RATE_96000;
1751                        runtime->hw.rate_max = 96000;
1752                }
1753        } else {
1754                runtime->hw = snd_cmipci_playback_iec958_subframe;
1755        }
1756        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1757        cm->dig_pcm_status = cm->dig_status;
1758        return 0;
1759}
1760
1761static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1762{
1763        struct cmipci *cm = snd_pcm_substream_chip(substream);
1764        struct snd_pcm_runtime *runtime = substream->runtime;
1765        int err;
1766
1767        /* use channel B */
1768        err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1769        if (err < 0)
1770                return err;
1771        runtime->hw = snd_cmipci_capture_spdif;
1772        if (cm->can_96k && !(cm->chip_version == 68)) {
1773                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1774                                     SNDRV_PCM_RATE_96000;
1775                runtime->hw.rate_max = 96000;
1776        }
1777        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1778        return 0;
1779}
1780
1781
1782/*
1783 */
1784
1785static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1786{
1787        struct cmipci *cm = snd_pcm_substream_chip(substream);
1788        close_device_check(cm, CM_OPEN_PLAYBACK);
1789        return 0;
1790}
1791
1792static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1793{
1794        struct cmipci *cm = snd_pcm_substream_chip(substream);
1795        close_device_check(cm, CM_OPEN_CAPTURE);
1796        return 0;
1797}
1798
1799static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1800{
1801        struct cmipci *cm = snd_pcm_substream_chip(substream);
1802        close_device_check(cm, CM_OPEN_PLAYBACK2);
1803        close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1804        return 0;
1805}
1806
1807static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1808{
1809        struct cmipci *cm = snd_pcm_substream_chip(substream);
1810        close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1811        return 0;
1812}
1813
1814static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1815{
1816        struct cmipci *cm = snd_pcm_substream_chip(substream);
1817        close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1818        return 0;
1819}
1820
1821
1822/*
1823 */
1824
1825static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1826        .open =         snd_cmipci_playback_open,
1827        .close =        snd_cmipci_playback_close,
1828        .hw_free =      snd_cmipci_playback_hw_free,
1829        .prepare =      snd_cmipci_playback_prepare,
1830        .trigger =      snd_cmipci_playback_trigger,
1831        .pointer =      snd_cmipci_playback_pointer,
1832};
1833
1834static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1835        .open =         snd_cmipci_capture_open,
1836        .close =        snd_cmipci_capture_close,
1837        .prepare =      snd_cmipci_capture_prepare,
1838        .trigger =      snd_cmipci_capture_trigger,
1839        .pointer =      snd_cmipci_capture_pointer,
1840};
1841
1842static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1843        .open =         snd_cmipci_playback2_open,
1844        .close =        snd_cmipci_playback2_close,
1845        .hw_params =    snd_cmipci_playback2_hw_params,
1846        .hw_free =      snd_cmipci_playback2_hw_free,
1847        .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1848        .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1849        .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1850};
1851
1852static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1853        .open =         snd_cmipci_playback_spdif_open,
1854        .close =        snd_cmipci_playback_spdif_close,
1855        .hw_free =      snd_cmipci_playback_hw_free,
1856        .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1857        .trigger =      snd_cmipci_playback_trigger,
1858        .pointer =      snd_cmipci_playback_pointer,
1859};
1860
1861static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1862        .open =         snd_cmipci_capture_spdif_open,
1863        .close =        snd_cmipci_capture_spdif_close,
1864        .hw_free =      snd_cmipci_capture_spdif_hw_free,
1865        .prepare =      snd_cmipci_capture_spdif_prepare,
1866        .trigger =      snd_cmipci_capture_trigger,
1867        .pointer =      snd_cmipci_capture_pointer,
1868};
1869
1870
1871/*
1872 */
1873
1874static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1875{
1876        struct snd_pcm *pcm;
1877        int err;
1878
1879        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1880        if (err < 0)
1881                return err;
1882
1883        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1884        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1885
1886        pcm->private_data = cm;
1887        pcm->info_flags = 0;
1888        strcpy(pcm->name, "C-Media PCI DAC/ADC");
1889        cm->pcm = pcm;
1890
1891        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1892                                       &cm->pci->dev, 64*1024, 128*1024);
1893
1894        return 0;
1895}
1896
1897static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1898{
1899        struct snd_pcm *pcm;
1900        int err;
1901
1902        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1903        if (err < 0)
1904                return err;
1905
1906        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1907
1908        pcm->private_data = cm;
1909        pcm->info_flags = 0;
1910        strcpy(pcm->name, "C-Media PCI 2nd DAC");
1911        cm->pcm2 = pcm;
1912
1913        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1914                                       &cm->pci->dev, 64*1024, 128*1024);
1915
1916        return 0;
1917}
1918
1919static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1920{
1921        struct snd_pcm *pcm;
1922        int err;
1923
1924        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1925        if (err < 0)
1926                return err;
1927
1928        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1929        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1930
1931        pcm->private_data = cm;
1932        pcm->info_flags = 0;
1933        strcpy(pcm->name, "C-Media PCI IEC958");
1934        cm->pcm_spdif = pcm;
1935
1936        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1937                                       &cm->pci->dev, 64*1024, 128*1024);
1938
1939        err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1940                                     snd_pcm_alt_chmaps, cm->max_channels, 0,
1941                                     NULL);
1942        if (err < 0)
1943                return err;
1944
1945        return 0;
1946}
1947
1948/*
1949 * mixer interface:
1950 * - CM8338/8738 has a compatible mixer interface with SB16, but
1951 *   lack of some elements like tone control, i/o gain and AGC.
1952 * - Access to native registers:
1953 *   - A 3D switch
1954 *   - Output mute switches
1955 */
1956
1957static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1958{
1959        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1960        outb(data, s->iobase + CM_REG_SB16_DATA);
1961}
1962
1963static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1964{
1965        unsigned char v;
1966
1967        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1968        v = inb(s->iobase + CM_REG_SB16_DATA);
1969        return v;
1970}
1971
1972/*
1973 * general mixer element
1974 */
1975struct cmipci_sb_reg {
1976        unsigned int left_reg, right_reg;
1977        unsigned int left_shift, right_shift;
1978        unsigned int mask;
1979        unsigned int invert: 1;
1980        unsigned int stereo: 1;
1981};
1982
1983#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1984 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1985
1986#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1987{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1988  .info = snd_cmipci_info_volume, \
1989  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1990  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1991}
1992
1993#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1994#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1995#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1996#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1997
1998static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1999{
2000        r->left_reg = val & 0xff;
2001        r->right_reg = (val >> 8) & 0xff;
2002        r->left_shift = (val >> 16) & 0x07;
2003        r->right_shift = (val >> 19) & 0x07;
2004        r->invert = (val >> 22) & 1;
2005        r->stereo = (val >> 23) & 1;
2006        r->mask = (val >> 24) & 0xff;
2007}
2008
2009static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2010                                  struct snd_ctl_elem_info *uinfo)
2011{
2012        struct cmipci_sb_reg reg;
2013
2014        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2015        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2016        uinfo->count = reg.stereo + 1;
2017        uinfo->value.integer.min = 0;
2018        uinfo->value.integer.max = reg.mask;
2019        return 0;
2020}
2021 
2022static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2023                                 struct snd_ctl_elem_value *ucontrol)
2024{
2025        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2026        struct cmipci_sb_reg reg;
2027        int val;
2028
2029        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2030        spin_lock_irq(&cm->reg_lock);
2031        val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2032        if (reg.invert)
2033                val = reg.mask - val;
2034        ucontrol->value.integer.value[0] = val;
2035        if (reg.stereo) {
2036                val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2037                if (reg.invert)
2038                        val = reg.mask - val;
2039                ucontrol->value.integer.value[1] = val;
2040        }
2041        spin_unlock_irq(&cm->reg_lock);
2042        return 0;
2043}
2044
2045static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2046                                 struct snd_ctl_elem_value *ucontrol)
2047{
2048        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2049        struct cmipci_sb_reg reg;
2050        int change;
2051        int left, right, oleft, oright;
2052
2053        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2054        left = ucontrol->value.integer.value[0] & reg.mask;
2055        if (reg.invert)
2056                left = reg.mask - left;
2057        left <<= reg.left_shift;
2058        if (reg.stereo) {
2059                right = ucontrol->value.integer.value[1] & reg.mask;
2060                if (reg.invert)
2061                        right = reg.mask - right;
2062                right <<= reg.right_shift;
2063        } else
2064                right = 0;
2065        spin_lock_irq(&cm->reg_lock);
2066        oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2067        left |= oleft & ~(reg.mask << reg.left_shift);
2068        change = left != oleft;
2069        if (reg.stereo) {
2070                if (reg.left_reg != reg.right_reg) {
2071                        snd_cmipci_mixer_write(cm, reg.left_reg, left);
2072                        oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2073                } else
2074                        oright = left;
2075                right |= oright & ~(reg.mask << reg.right_shift);
2076                change |= right != oright;
2077                snd_cmipci_mixer_write(cm, reg.right_reg, right);
2078        } else
2079                snd_cmipci_mixer_write(cm, reg.left_reg, left);
2080        spin_unlock_irq(&cm->reg_lock);
2081        return change;
2082}
2083
2084/*
2085 * input route (left,right) -> (left,right)
2086 */
2087#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2088{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2089  .info = snd_cmipci_info_input_sw, \
2090  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2091  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2092}
2093
2094static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2095                                    struct snd_ctl_elem_info *uinfo)
2096{
2097        uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2098        uinfo->count = 4;
2099        uinfo->value.integer.min = 0;
2100        uinfo->value.integer.max = 1;
2101        return 0;
2102}
2103 
2104static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2105                                   struct snd_ctl_elem_value *ucontrol)
2106{
2107        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2108        struct cmipci_sb_reg reg;
2109        int val1, val2;
2110
2111        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2112        spin_lock_irq(&cm->reg_lock);
2113        val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2114        val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2115        spin_unlock_irq(&cm->reg_lock);
2116        ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2117        ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2118        ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2119        ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2120        return 0;
2121}
2122
2123static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2124                                   struct snd_ctl_elem_value *ucontrol)
2125{
2126        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2127        struct cmipci_sb_reg reg;
2128        int change;
2129        int val1, val2, oval1, oval2;
2130
2131        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2132        spin_lock_irq(&cm->reg_lock);
2133        oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2134        oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2135        val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2136        val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2137        val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2138        val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2139        val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2140        val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2141        change = val1 != oval1 || val2 != oval2;
2142        snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2143        snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2144        spin_unlock_irq(&cm->reg_lock);
2145        return change;
2146}
2147
2148/*
2149 * native mixer switches/volumes
2150 */
2151
2152#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2153{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2154  .info = snd_cmipci_info_native_mixer, \
2155  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2156  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2157}
2158
2159#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2160{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2161  .info = snd_cmipci_info_native_mixer, \
2162  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2163  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2164}
2165
2166#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2167{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2168  .info = snd_cmipci_info_native_mixer, \
2169  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2170  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2171}
2172
2173#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2174{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2175  .info = snd_cmipci_info_native_mixer, \
2176  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2177  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2178}
2179
2180static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2181                                        struct snd_ctl_elem_info *uinfo)
2182{
2183        struct cmipci_sb_reg reg;
2184
2185        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2186        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2187        uinfo->count = reg.stereo + 1;
2188        uinfo->value.integer.min = 0;
2189        uinfo->value.integer.max = reg.mask;
2190        return 0;
2191
2192}
2193
2194static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2195                                       struct snd_ctl_elem_value *ucontrol)
2196{
2197        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2198        struct cmipci_sb_reg reg;
2199        unsigned char oreg, val;
2200
2201        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2202        spin_lock_irq(&cm->reg_lock);
2203        oreg = inb(cm->iobase + reg.left_reg);
2204        val = (oreg >> reg.left_shift) & reg.mask;
2205        if (reg.invert)
2206                val = reg.mask - val;
2207        ucontrol->value.integer.value[0] = val;
2208        if (reg.stereo) {
2209                val = (oreg >> reg.right_shift) & reg.mask;
2210                if (reg.invert)
2211                        val = reg.mask - val;
2212                ucontrol->value.integer.value[1] = val;
2213        }
2214        spin_unlock_irq(&cm->reg_lock);
2215        return 0;
2216}
2217
2218static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2219                                       struct snd_ctl_elem_value *ucontrol)
2220{
2221        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2222        struct cmipci_sb_reg reg;
2223        unsigned char oreg, nreg, val;
2224
2225        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2226        spin_lock_irq(&cm->reg_lock);
2227        oreg = inb(cm->iobase + reg.left_reg);
2228        val = ucontrol->value.integer.value[0] & reg.mask;
2229        if (reg.invert)
2230                val = reg.mask - val;
2231        nreg = oreg & ~(reg.mask << reg.left_shift);
2232        nreg |= (val << reg.left_shift);
2233        if (reg.stereo) {
2234                val = ucontrol->value.integer.value[1] & reg.mask;
2235                if (reg.invert)
2236                        val = reg.mask - val;
2237                nreg &= ~(reg.mask << reg.right_shift);
2238                nreg |= (val << reg.right_shift);
2239        }
2240        outb(nreg, cm->iobase + reg.left_reg);
2241        spin_unlock_irq(&cm->reg_lock);
2242        return (nreg != oreg);
2243}
2244
2245/*
2246 * special case - check mixer sensitivity
2247 */
2248static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2249                                                 struct snd_ctl_elem_value *ucontrol)
2250{
2251        //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2252        return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2253}
2254
2255static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2256                                                 struct snd_ctl_elem_value *ucontrol)
2257{
2258        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2259        if (cm->mixer_insensitive) {
2260                /* ignored */
2261                return 0;
2262        }
2263        return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2264}
2265
2266
2267static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2268        CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2269        CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2270        CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2271        //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2272        { /* switch with sensitivity */
2273                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2274                .name = "PCM Playback Switch",
2275                .info = snd_cmipci_info_native_mixer,
2276                .get = snd_cmipci_get_native_mixer_sensitive,
2277                .put = snd_cmipci_put_native_mixer_sensitive,
2278                .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2279        },
2280        CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2281        CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2282        CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2283        CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2284        CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2285        CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2286        CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2287        CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2288        CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2289        CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2290        CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2291        CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2292        CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2293        CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2294        CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2295        CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2296        CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2297        CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2298        CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2299        CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2300        CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2301        CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2302        CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2303};
2304
2305/*
2306 * other switches
2307 */
2308
2309struct cmipci_switch_args {
2310        int reg;                /* register index */
2311        unsigned int mask;      /* mask bits */
2312        unsigned int mask_on;   /* mask bits to turn on */
2313        unsigned int is_byte: 1;                /* byte access? */
2314        unsigned int ac3_sensitive: 1;  /* access forbidden during
2315                                         * non-audio operation?
2316                                         */
2317};
2318
2319#define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2320
2321static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2322                                   struct snd_ctl_elem_value *ucontrol,
2323                                   struct cmipci_switch_args *args)
2324{
2325        unsigned int val;
2326        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2327
2328        spin_lock_irq(&cm->reg_lock);
2329        if (args->ac3_sensitive && cm->mixer_insensitive) {
2330                ucontrol->value.integer.value[0] = 0;
2331                spin_unlock_irq(&cm->reg_lock);
2332                return 0;
2333        }
2334        if (args->is_byte)
2335                val = inb(cm->iobase + args->reg);
2336        else
2337                val = snd_cmipci_read(cm, args->reg);
2338        ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2339        spin_unlock_irq(&cm->reg_lock);
2340        return 0;
2341}
2342
2343static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2344                                  struct snd_ctl_elem_value *ucontrol)
2345{
2346        struct cmipci_switch_args *args;
2347        args = (struct cmipci_switch_args *)kcontrol->private_value;
2348        if (snd_BUG_ON(!args))
2349                return -EINVAL;
2350        return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2351}
2352
2353static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2354                                   struct snd_ctl_elem_value *ucontrol,
2355                                   struct cmipci_switch_args *args)
2356{
2357        unsigned int val;
2358        int change;
2359        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2360
2361        spin_lock_irq(&cm->reg_lock);
2362        if (args->ac3_sensitive && cm->mixer_insensitive) {
2363                /* ignored */
2364                spin_unlock_irq(&cm->reg_lock);
2365                return 0;
2366        }
2367        if (args->is_byte)
2368                val = inb(cm->iobase + args->reg);
2369        else
2370                val = snd_cmipci_read(cm, args->reg);
2371        change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2372                        args->mask_on : (args->mask & ~args->mask_on));
2373        if (change) {
2374                val &= ~args->mask;
2375                if (ucontrol->value.integer.value[0])
2376                        val |= args->mask_on;
2377                else
2378                        val |= (args->mask & ~args->mask_on);
2379                if (args->is_byte)
2380                        outb((unsigned char)val, cm->iobase + args->reg);
2381                else
2382                        snd_cmipci_write(cm, args->reg, val);
2383        }
2384        spin_unlock_irq(&cm->reg_lock);
2385        return change;
2386}
2387
2388static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2389                                  struct snd_ctl_elem_value *ucontrol)
2390{
2391        struct cmipci_switch_args *args;
2392        args = (struct cmipci_switch_args *)kcontrol->private_value;
2393        if (snd_BUG_ON(!args))
2394                return -EINVAL;
2395        return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2396}
2397
2398#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2399static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2400  .reg = xreg, \
2401  .mask = xmask, \
2402  .mask_on = xmask_on, \
2403  .is_byte = xis_byte, \
2404  .ac3_sensitive = xac3, \
2405}
2406        
2407#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2408        DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2409
2410#if 0 /* these will be controlled in pcm device */
2411DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2412DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2413#endif
2414DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2415DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2416DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2417DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2418DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2419DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2420DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2421DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2422// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2423DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2424DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2425/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2426DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2427DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2428#if CM_CH_PLAY == 1
2429DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2430#else
2431DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2432#endif
2433DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2434// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2435// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2436// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2437DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2438
2439#define DEFINE_SWITCH(sname, stype, sarg) \
2440{ .name = sname, \
2441  .iface = stype, \
2442  .info = snd_cmipci_uswitch_info, \
2443  .get = snd_cmipci_uswitch_get, \
2444  .put = snd_cmipci_uswitch_put, \
2445  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2446}
2447
2448#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2449#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2450
2451
2452/*
2453 * callbacks for spdif output switch
2454 * needs toggle two registers..
2455 */
2456static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2457                                        struct snd_ctl_elem_value *ucontrol)
2458{
2459        int changed;
2460        changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2461        changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2462        return changed;
2463}
2464
2465static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2466                                        struct snd_ctl_elem_value *ucontrol)
2467{
2468        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2469        int changed;
2470        changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2471        changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2472        if (changed) {
2473                if (ucontrol->value.integer.value[0]) {
2474                        if (chip->spdif_playback_avail)
2475                                snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2476                } else {
2477                        if (chip->spdif_playback_avail)
2478                                snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2479                }
2480        }
2481        chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2482        return changed;
2483}
2484
2485
2486static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2487                                        struct snd_ctl_elem_info *uinfo)
2488{
2489        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2490        static const char *const texts[3] = {
2491                "Line-In", "Rear Output", "Bass Output"
2492        };
2493
2494        return snd_ctl_enum_info(uinfo, 1,
2495                                 cm->chip_version >= 39 ? 3 : 2, texts);
2496}
2497
2498static inline unsigned int get_line_in_mode(struct cmipci *cm)
2499{
2500        unsigned int val;
2501        if (cm->chip_version >= 39) {
2502                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2503                if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2504                        return 2;
2505        }
2506        val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2507        if (val & CM_REAR2LIN)
2508                return 1;
2509        return 0;
2510}
2511
2512static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2513                                       struct snd_ctl_elem_value *ucontrol)
2514{
2515        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516
2517        spin_lock_irq(&cm->reg_lock);
2518        ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2519        spin_unlock_irq(&cm->reg_lock);
2520        return 0;
2521}
2522
2523static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2524                                       struct snd_ctl_elem_value *ucontrol)
2525{
2526        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2527        int change;
2528
2529        spin_lock_irq(&cm->reg_lock);
2530        if (ucontrol->value.enumerated.item[0] == 2)
2531                change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2532        else
2533                change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2534        if (ucontrol->value.enumerated.item[0] == 1)
2535                change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2536        else
2537                change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2538        spin_unlock_irq(&cm->reg_lock);
2539        return change;
2540}
2541
2542static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2543                                       struct snd_ctl_elem_info *uinfo)
2544{
2545        static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2546
2547        return snd_ctl_enum_info(uinfo, 1, 2, texts);
2548}
2549
2550static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2551                                      struct snd_ctl_elem_value *ucontrol)
2552{
2553        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2554        /* same bit as spdi_phase */
2555        spin_lock_irq(&cm->reg_lock);
2556        ucontrol->value.enumerated.item[0] = 
2557                (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2558        spin_unlock_irq(&cm->reg_lock);
2559        return 0;
2560}
2561
2562static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2563                                      struct snd_ctl_elem_value *ucontrol)
2564{
2565        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2566        int change;
2567
2568        spin_lock_irq(&cm->reg_lock);
2569        if (ucontrol->value.enumerated.item[0])
2570                change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2571        else
2572                change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2573        spin_unlock_irq(&cm->reg_lock);
2574        return change;
2575}
2576
2577/* both for CM8338/8738 */
2578static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2579        DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2580        {
2581                .name = "Line-In Mode",
2582                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2583                .info = snd_cmipci_line_in_mode_info,
2584                .get = snd_cmipci_line_in_mode_get,
2585                .put = snd_cmipci_line_in_mode_put,
2586        },
2587};
2588
2589/* for non-multichannel chips */
2590static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2591DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2592
2593/* only for CM8738 */
2594static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2595#if 0 /* controlled in pcm device */
2596        DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2597        DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2598        DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2599#endif
2600        // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2601        { .name = "IEC958 Output Switch",
2602          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2603          .info = snd_cmipci_uswitch_info,
2604          .get = snd_cmipci_spdout_enable_get,
2605          .put = snd_cmipci_spdout_enable_put,
2606        },
2607        DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2608        DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2609        DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2610//      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2611        DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2612        DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2613};
2614
2615/* only for model 033/037 */
2616static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2617        DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2618        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2619        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2620};
2621
2622/* only for model 039 or later */
2623static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2624        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2625        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2626        {
2627                .name = "Mic-In Mode",
2628                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629                .info = snd_cmipci_mic_in_mode_info,
2630                .get = snd_cmipci_mic_in_mode_get,
2631                .put = snd_cmipci_mic_in_mode_put,
2632        }
2633};
2634
2635/* card control switches */
2636static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2637DEFINE_CARD_SWITCH("Modem", modem);
2638
2639
2640static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2641{
2642        struct snd_card *card;
2643        const struct snd_kcontrol_new *sw;
2644        struct snd_kcontrol *kctl;
2645        unsigned int idx;
2646        int err;
2647
2648        if (snd_BUG_ON(!cm || !cm->card))
2649                return -EINVAL;
2650
2651        card = cm->card;
2652
2653        strcpy(card->mixername, "CMedia PCI");
2654
2655        spin_lock_irq(&cm->reg_lock);
2656        snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2657        spin_unlock_irq(&cm->reg_lock);
2658
2659        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2660                if (cm->chip_version == 68) {   // 8768 has no PCM volume
2661                        if (!strcmp(snd_cmipci_mixers[idx].name,
2662                                "PCM Playback Volume"))
2663                                continue;
2664                }
2665                err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2666                if (err < 0)
2667                        return err;
2668        }
2669
2670        /* mixer switches */
2671        sw = snd_cmipci_mixer_switches;
2672        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2673                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2674                if (err < 0)
2675                        return err;
2676        }
2677        if (! cm->can_multi_ch) {
2678                err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2679                if (err < 0)
2680                        return err;
2681        }
2682        if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2683            cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2684                sw = snd_cmipci_8738_mixer_switches;
2685                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2686                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2687                        if (err < 0)
2688                                return err;
2689                }
2690                if (cm->can_ac3_hw) {
2691                        kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2692                        err = snd_ctl_add(card, kctl);
2693                        if (err < 0)
2694                                return err;
2695                        kctl->id.device = pcm_spdif_device;
2696                        kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2697                        err = snd_ctl_add(card, kctl);
2698                        if (err < 0)
2699                                return err;
2700                        kctl->id.device = pcm_spdif_device;
2701                        kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2702                        err = snd_ctl_add(card, kctl);
2703                        if (err < 0)
2704                                return err;
2705                        kctl->id.device = pcm_spdif_device;
2706                }
2707                if (cm->chip_version <= 37) {
2708                        sw = snd_cmipci_old_mixer_switches;
2709                        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2710                                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2711                                if (err < 0)
2712                                        return err;
2713                        }
2714                }
2715        }
2716        if (cm->chip_version >= 39) {
2717                sw = snd_cmipci_extra_mixer_switches;
2718                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2719                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2720                        if (err < 0)
2721                                return err;
2722                }
2723        }
2724
2725        /* card switches */
2726        /*
2727         * newer chips don't have the register bits to force modem link
2728         * detection; the bit that was FLINKON now mutes CH1
2729         */
2730        if (cm->chip_version < 39) {
2731                err = snd_ctl_add(cm->card,
2732                                  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2733                if (err < 0)
2734                        return err;
2735        }
2736
2737        for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2738                struct snd_ctl_elem_id elem_id;
2739                struct snd_kcontrol *ctl;
2740                memset(&elem_id, 0, sizeof(elem_id));
2741                elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2742                strcpy(elem_id.name, cm_saved_mixer[idx].name);
2743                ctl = snd_ctl_find_id(cm->card, &elem_id);
2744                if (ctl)
2745                        cm->mixer_res_ctl[idx] = ctl;
2746        }
2747
2748        return 0;
2749}
2750
2751
2752/*
2753 * proc interface
2754 */
2755
2756static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2757                                 struct snd_info_buffer *buffer)
2758{
2759        struct cmipci *cm = entry->private_data;
2760        int i, v;
2761        
2762        snd_iprintf(buffer, "%s\n", cm->card->longname);
2763        for (i = 0; i < 0x94; i++) {
2764                if (i == 0x28)
2765                        i = 0x90;
2766                v = inb(cm->iobase + i);
2767                if (i % 4 == 0)
2768                        snd_iprintf(buffer, "\n%02x:", i);
2769                snd_iprintf(buffer, " %02x", v);
2770        }
2771        snd_iprintf(buffer, "\n");
2772}
2773
2774static void snd_cmipci_proc_init(struct cmipci *cm)
2775{
2776        snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2777}
2778
2779static const struct pci_device_id snd_cmipci_ids[] = {
2780        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2781        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2782        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2783        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2784        {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2785        {0,},
2786};
2787
2788
2789/*
2790 * check chip version and capabilities
2791 * driver name is modified according to the chip model
2792 */
2793static void query_chip(struct cmipci *cm)
2794{
2795        unsigned int detect;
2796
2797        /* check reg 0Ch, bit 24-31 */
2798        detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2799        if (! detect) {
2800                /* check reg 08h, bit 24-28 */
2801                detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2802                switch (detect) {
2803                case 0:
2804                        cm->chip_version = 33;
2805                        if (cm->do_soft_ac3)
2806                                cm->can_ac3_sw = 1;
2807                        else
2808                                cm->can_ac3_hw = 1;
2809                        break;
2810                case CM_CHIP_037:
2811                        cm->chip_version = 37;
2812                        cm->can_ac3_hw = 1;
2813                        break;
2814                default:
2815                        cm->chip_version = 39;
2816                        cm->can_ac3_hw = 1;
2817                        break;
2818                }
2819                cm->max_channels = 2;
2820        } else {
2821                if (detect & CM_CHIP_039) {
2822                        cm->chip_version = 39;
2823                        if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2824                                cm->max_channels = 6;
2825                        else
2826                                cm->max_channels = 4;
2827                } else if (detect & CM_CHIP_8768) {
2828                        cm->chip_version = 68;
2829                        cm->max_channels = 8;
2830                        cm->can_96k = 1;
2831                } else {
2832                        cm->chip_version = 55;
2833                        cm->max_channels = 6;
2834                        cm->can_96k = 1;
2835                }
2836                cm->can_ac3_hw = 1;
2837                cm->can_multi_ch = 1;
2838        }
2839}
2840
2841#ifdef SUPPORT_JOYSTICK
2842static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2843{
2844        static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2845        struct gameport *gp;
2846        struct resource *r = NULL;
2847        int i, io_port = 0;
2848
2849        if (joystick_port[dev] == 0)
2850                return -ENODEV;
2851
2852        if (joystick_port[dev] == 1) { /* auto-detect */
2853                for (i = 0; ports[i]; i++) {
2854                        io_port = ports[i];
2855                        r = request_region(io_port, 1, "CMIPCI gameport");
2856                        if (r)
2857                                break;
2858                }
2859        } else {
2860                io_port = joystick_port[dev];
2861                r = request_region(io_port, 1, "CMIPCI gameport");
2862        }
2863
2864        if (!r) {
2865                dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2866                return -EBUSY;
2867        }
2868
2869        cm->gameport = gp = gameport_allocate_port();
2870        if (!gp) {
2871                dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2872                release_and_free_resource(r);
2873                return -ENOMEM;
2874        }
2875        gameport_set_name(gp, "C-Media Gameport");
2876        gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2877        gameport_set_dev_parent(gp, &cm->pci->dev);
2878        gp->io = io_port;
2879        gameport_set_port_data(gp, r);
2880
2881        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2882
2883        gameport_register_port(cm->gameport);
2884
2885        return 0;
2886}
2887
2888static void snd_cmipci_free_gameport(struct cmipci *cm)
2889{
2890        if (cm->gameport) {
2891                struct resource *r = gameport_get_port_data(cm->gameport);
2892
2893                gameport_unregister_port(cm->gameport);
2894                cm->gameport = NULL;
2895
2896                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2897                release_and_free_resource(r);
2898        }
2899}
2900#else
2901static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2902static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2903#endif
2904
2905static int snd_cmipci_free(struct cmipci *cm)
2906{
2907        if (cm->irq >= 0) {
2908                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2909                snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2910                snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2911                snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2912                snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2913                snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2914                snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2915
2916                /* reset mixer */
2917                snd_cmipci_mixer_write(cm, 0, 0);
2918
2919                free_irq(cm->irq, cm);
2920        }
2921
2922        snd_cmipci_free_gameport(cm);
2923        pci_release_regions(cm->pci);
2924        pci_disable_device(cm->pci);
2925        kfree(cm);
2926        return 0;
2927}
2928
2929static int snd_cmipci_dev_free(struct snd_device *device)
2930{
2931        struct cmipci *cm = device->device_data;
2932        return snd_cmipci_free(cm);
2933}
2934
2935static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2936{
2937        long iosynth;
2938        unsigned int val;
2939        struct snd_opl3 *opl3;
2940        int err;
2941
2942        if (!fm_port)
2943                goto disable_fm;
2944
2945        if (cm->chip_version >= 39) {
2946                /* first try FM regs in PCI port range */
2947                iosynth = cm->iobase + CM_REG_FM_PCI;
2948                err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2949                                      OPL3_HW_OPL3, 1, &opl3);
2950        } else {
2951                err = -EIO;
2952        }
2953        if (err < 0) {
2954                /* then try legacy ports */
2955                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2956                iosynth = fm_port;
2957                switch (iosynth) {
2958                case 0x3E8: val |= CM_FMSEL_3E8; break;
2959                case 0x3E0: val |= CM_FMSEL_3E0; break;
2960                case 0x3C8: val |= CM_FMSEL_3C8; break;
2961                case 0x388: val |= CM_FMSEL_388; break;
2962                default:
2963                        goto disable_fm;
2964                }
2965                snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2966                /* enable FM */
2967                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2968
2969                if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2970                                    OPL3_HW_OPL3, 0, &opl3) < 0) {
2971                        dev_err(cm->card->dev,
2972                                "no OPL device at %#lx, skipping...\n",
2973                                iosynth);
2974                        goto disable_fm;
2975                }
2976        }
2977        err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2978        if (err < 0) {
2979                dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2980                return err;
2981        }
2982        return 0;
2983
2984 disable_fm:
2985        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2986        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2987        return 0;
2988}
2989
2990static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2991                             int dev, struct cmipci **rcmipci)
2992{
2993        struct cmipci *cm;
2994        int err;
2995        static const struct snd_device_ops ops = {
2996                .dev_free =     snd_cmipci_dev_free,
2997        };
2998        unsigned int val;
2999        long iomidi = 0;
3000        int integrated_midi = 0;
3001        char modelstr[16];
3002        int pcm_index, pcm_spdif_index;
3003        static const struct pci_device_id intel_82437vx[] = {
3004                { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3005                { },
3006        };
3007
3008        *rcmipci = NULL;
3009
3010        err = pci_enable_device(pci);
3011        if (err < 0)
3012                return err;
3013
3014        cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3015        if (cm == NULL) {
3016                pci_disable_device(pci);
3017                return -ENOMEM;
3018        }
3019
3020        spin_lock_init(&cm->reg_lock);
3021        mutex_init(&cm->open_mutex);
3022        cm->device = pci->device;
3023        cm->card = card;
3024        cm->pci = pci;
3025        cm->irq = -1;
3026        cm->channel[0].ch = 0;
3027        cm->channel[1].ch = 1;
3028        cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3029
3030        err = pci_request_regions(pci, card->driver);
3031        if (err < 0) {
3032                kfree(cm);
3033                pci_disable_device(pci);
3034                return err;
3035        }
3036        cm->iobase = pci_resource_start(pci, 0);
3037
3038        if (request_irq(pci->irq, snd_cmipci_interrupt,
3039                        IRQF_SHARED, KBUILD_MODNAME, cm)) {
3040                dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3041                snd_cmipci_free(cm);
3042                return -EBUSY;
3043        }
3044        cm->irq = pci->irq;
3045        card->sync_irq = cm->irq;
3046
3047        pci_set_master(cm->pci);
3048
3049        /*
3050         * check chip version, max channels and capabilities
3051         */
3052
3053        cm->chip_version = 0;
3054        cm->max_channels = 2;
3055        cm->do_soft_ac3 = soft_ac3[dev];
3056
3057        if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3058            pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3059                query_chip(cm);
3060        /* added -MCx suffix for chip supporting multi-channels */
3061        if (cm->can_multi_ch)
3062                sprintf(cm->card->driver + strlen(cm->card->driver),
3063                        "-MC%d", cm->max_channels);
3064        else if (cm->can_ac3_sw)
3065                strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3066
3067        cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3068        cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3069
3070#if CM_CH_PLAY == 1
3071        cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3072#else
3073        cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3074#endif
3075
3076        /* initialize codec registers */
3077        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3078        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3079        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3080        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3081        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3082        snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3083        snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3084
3085        snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3086        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3087#if CM_CH_PLAY == 1
3088        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3089#else
3090        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091#endif
3092        if (cm->chip_version) {
3093                snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3094                snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3095        }
3096        /* Set Bus Master Request */
3097        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3098
3099        /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3100        switch (pci->device) {
3101        case PCI_DEVICE_ID_CMEDIA_CM8738:
3102        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3103                if (!pci_dev_present(intel_82437vx)) 
3104                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3105                break;
3106        default:
3107                break;
3108        }
3109
3110        if (cm->chip_version < 68) {
3111                val = pci->device < 0x110 ? 8338 : 8738;
3112        } else {
3113                switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3114                case 0:
3115                        val = 8769;
3116                        break;
3117                case 2:
3118                        val = 8762;
3119                        break;
3120                default:
3121                        switch ((pci->subsystem_vendor << 16) |
3122                                pci->subsystem_device) {
3123                        case 0x13f69761:
3124                        case 0x584d3741:
3125                        case 0x584d3751:
3126                        case 0x584d3761:
3127                        case 0x584d3771:
3128                        case 0x72848384:
3129                                val = 8770;
3130                                break;
3131                        default:
3132                                val = 8768;
3133                                break;
3134                        }
3135                }
3136        }
3137        sprintf(card->shortname, "C-Media CMI%d", val);
3138        if (cm->chip_version < 68)
3139                sprintf(modelstr, " (model %d)", cm->chip_version);
3140        else
3141                modelstr[0] = '\0';
3142        sprintf(card->longname, "%s%s at %#lx, irq %i",
3143                card->shortname, modelstr, cm->iobase, cm->irq);
3144
3145        err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops);
3146        if (err < 0) {
3147                snd_cmipci_free(cm);
3148                return err;
3149        }
3150
3151        if (cm->chip_version >= 39) {
3152                val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3153                if (val != 0x00 && val != 0xff) {
3154                        if (mpu_port[dev])
3155                                iomidi = cm->iobase + CM_REG_MPU_PCI;
3156                        integrated_midi = 1;
3157                }
3158        }
3159        if (!integrated_midi) {
3160                val = 0;
3161                iomidi = mpu_port[dev];
3162                switch (iomidi) {
3163                case 0x320: val = CM_VMPU_320; break;
3164                case 0x310: val = CM_VMPU_310; break;
3165                case 0x300: val = CM_VMPU_300; break;
3166                case 0x330: val = CM_VMPU_330; break;
3167                default:
3168                            iomidi = 0; break;
3169                }
3170                if (iomidi > 0) {
3171                        snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3172                        /* enable UART */
3173                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3174                        if (inb(iomidi + 1) == 0xff) {
3175                                dev_err(cm->card->dev,
3176                                        "cannot enable MPU-401 port at %#lx\n",
3177                                        iomidi);
3178                                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3179                                                     CM_UART_EN);
3180                                iomidi = 0;
3181                        }
3182                }
3183        }
3184
3185        if (cm->chip_version < 68) {
3186                err = snd_cmipci_create_fm(cm, fm_port[dev]);
3187                if (err < 0)
3188                        return err;
3189        }
3190
3191        /* reset mixer */
3192        snd_cmipci_mixer_write(cm, 0, 0);
3193
3194        snd_cmipci_proc_init(cm);
3195
3196        /* create pcm devices */
3197        pcm_index = pcm_spdif_index = 0;
3198        err = snd_cmipci_pcm_new(cm, pcm_index);
3199        if (err < 0)
3200                return err;
3201        pcm_index++;
3202        err = snd_cmipci_pcm2_new(cm, pcm_index);
3203        if (err < 0)
3204                return err;
3205        pcm_index++;
3206        if (cm->can_ac3_hw || cm->can_ac3_sw) {
3207                pcm_spdif_index = pcm_index;
3208                err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3209                if (err < 0)
3210                        return err;
3211        }
3212
3213        /* create mixer interface & switches */
3214        err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3215        if (err < 0)
3216                return err;
3217
3218        if (iomidi > 0) {
3219                err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3220                                          iomidi,
3221                                          (integrated_midi ?
3222                                           MPU401_INFO_INTEGRATED : 0) |
3223                                          MPU401_INFO_IRQ_HOOK,
3224                                          -1, &cm->rmidi);
3225                if (err < 0)
3226                        dev_err(cm->card->dev,
3227                                "no UART401 device at 0x%lx\n", iomidi);
3228        }
3229
3230#ifdef USE_VAR48KRATE
3231        for (val = 0; val < ARRAY_SIZE(rates); val++)
3232                snd_cmipci_set_pll(cm, rates[val], val);
3233
3234        /*
3235         * (Re-)Enable external switch spdo_48k
3236         */
3237        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3238#endif /* USE_VAR48KRATE */
3239
3240        if (snd_cmipci_create_gameport(cm, dev) < 0)
3241                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3242
3243        *rcmipci = cm;
3244        return 0;
3245}
3246
3247/*
3248 */
3249
3250MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3251
3252static int snd_cmipci_probe(struct pci_dev *pci,
3253                            const struct pci_device_id *pci_id)
3254{
3255        static int dev;
3256        struct snd_card *card;
3257        struct cmipci *cm;
3258        int err;
3259
3260        if (dev >= SNDRV_CARDS)
3261                return -ENODEV;
3262        if (! enable[dev]) {
3263                dev++;
3264                return -ENOENT;
3265        }
3266
3267        err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3268                           0, &card);
3269        if (err < 0)
3270                return err;
3271        
3272        switch (pci->device) {
3273        case PCI_DEVICE_ID_CMEDIA_CM8738:
3274        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3275                strcpy(card->driver, "CMI8738");
3276                break;
3277        case PCI_DEVICE_ID_CMEDIA_CM8338A:
3278        case PCI_DEVICE_ID_CMEDIA_CM8338B:
3279                strcpy(card->driver, "CMI8338");
3280                break;
3281        default:
3282                strcpy(card->driver, "CMIPCI");
3283                break;
3284        }
3285
3286        err = snd_cmipci_create(card, pci, dev, &cm);
3287        if (err < 0)
3288                goto free_card;
3289
3290        card->private_data = cm;
3291
3292        err = snd_card_register(card);
3293        if (err < 0)
3294                goto free_card;
3295
3296        pci_set_drvdata(pci, card);
3297        dev++;
3298        return 0;
3299
3300free_card:
3301        snd_card_free(card);
3302        return err;
3303}
3304
3305static void snd_cmipci_remove(struct pci_dev *pci)
3306{
3307        snd_card_free(pci_get_drvdata(pci));
3308}
3309
3310
3311#ifdef CONFIG_PM_SLEEP
3312/*
3313 * power management
3314 */
3315static const unsigned char saved_regs[] = {
3316        CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3317        CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3318        CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3319        CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3320        CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3321};
3322
3323static const unsigned char saved_mixers[] = {
3324        SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3325        SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3326        SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3327        SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3328        SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3329        SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3330        CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3331        SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3332};
3333
3334static int snd_cmipci_suspend(struct device *dev)
3335{
3336        struct snd_card *card = dev_get_drvdata(dev);
3337        struct cmipci *cm = card->private_data;
3338        int i;
3339
3340        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3341        
3342        /* save registers */
3343        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3344                cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3345        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3346                cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3347
3348        /* disable ints */
3349        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3350        return 0;
3351}
3352
3353static int snd_cmipci_resume(struct device *dev)
3354{
3355        struct snd_card *card = dev_get_drvdata(dev);
3356        struct cmipci *cm = card->private_data;
3357        int i;
3358
3359        /* reset / initialize to a sane state */
3360        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3361        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3362        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3363        snd_cmipci_mixer_write(cm, 0, 0);
3364
3365        /* restore registers */
3366        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3367                snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3368        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3369                snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3370
3371        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3372        return 0;
3373}
3374
3375static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3376#define SND_CMIPCI_PM_OPS       &snd_cmipci_pm
3377#else
3378#define SND_CMIPCI_PM_OPS       NULL
3379#endif /* CONFIG_PM_SLEEP */
3380
3381static struct pci_driver cmipci_driver = {
3382        .name = KBUILD_MODNAME,
3383        .id_table = snd_cmipci_ids,
3384        .probe = snd_cmipci_probe,
3385        .remove = snd_cmipci_remove,
3386        .driver = {
3387                .pm = SND_CMIPCI_PM_OPS,
3388        },
3389};
3390        
3391module_pci_driver(cmipci_driver);
3392