linux/sound/x86/intel_hdmi_audio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *   intel_hdmi_audio.c - Intel HDMI audio driver
   4 *
   5 *  Copyright (C) 2016 Intel Corp
   6 *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
   7 *              Ramesh Babu K V <ramesh.babu@intel.com>
   8 *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
   9 *              Jerome Anand <jerome.anand@intel.com>
  10 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 * ALSA driver for Intel HDMI audio
  14 */
  15
  16#include <linux/types.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/slab.h>
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/delay.h>
  25#include <sound/core.h>
  26#include <sound/asoundef.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/initval.h>
  30#include <sound/control.h>
  31#include <sound/jack.h>
  32#include <drm/drm_edid.h>
  33#include <drm/intel_lpe_audio.h>
  34#include "intel_hdmi_audio.h"
  35
  36#define for_each_pipe(card_ctx, pipe) \
  37        for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
  38#define for_each_port(card_ctx, port) \
  39        for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
  40
  41/*standard module options for ALSA. This module supports only one card*/
  42static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
  43static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
  44static bool single_port;
  45
  46module_param_named(index, hdmi_card_index, int, 0444);
  47MODULE_PARM_DESC(index,
  48                "Index value for INTEL Intel HDMI Audio controller.");
  49module_param_named(id, hdmi_card_id, charp, 0444);
  50MODULE_PARM_DESC(id,
  51                "ID string for INTEL Intel HDMI Audio controller.");
  52module_param(single_port, bool, 0444);
  53MODULE_PARM_DESC(single_port,
  54                "Single-port mode (for compatibility)");
  55
  56/*
  57 * ELD SA bits in the CEA Speaker Allocation data block
  58 */
  59static const int eld_speaker_allocation_bits[] = {
  60        [0] = FL | FR,
  61        [1] = LFE,
  62        [2] = FC,
  63        [3] = RL | RR,
  64        [4] = RC,
  65        [5] = FLC | FRC,
  66        [6] = RLC | RRC,
  67        /* the following are not defined in ELD yet */
  68        [7] = 0,
  69};
  70
  71/*
  72 * This is an ordered list!
  73 *
  74 * The preceding ones have better chances to be selected by
  75 * hdmi_channel_allocation().
  76 */
  77static struct cea_channel_speaker_allocation channel_allocations[] = {
  78/*                        channel:   7     6    5    4    3     2    1    0  */
  79{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
  80                                /* 2.1 */
  81{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
  82                                /* Dolby Surround */
  83{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
  84                                /* surround40 */
  85{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
  86                                /* surround41 */
  87{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
  88                                /* surround50 */
  89{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
  90                                /* surround51 */
  91{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
  92                                /* 6.1 */
  93{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  94                                /* surround71 */
  95{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  96
  97{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
  98{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
  99{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
 100{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
 101{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
 102{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
 103{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
 104{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
 105{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
 106{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 107{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
 108{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
 109{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
 110{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
 111{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
 112{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
 113{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
 114{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
 115{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
 116{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
 117{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 118{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
 119{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 120};
 121
 122static const struct channel_map_table map_tables[] = {
 123        { SNDRV_CHMAP_FL,       0x00,   FL },
 124        { SNDRV_CHMAP_FR,       0x01,   FR },
 125        { SNDRV_CHMAP_RL,       0x04,   RL },
 126        { SNDRV_CHMAP_RR,       0x05,   RR },
 127        { SNDRV_CHMAP_LFE,      0x02,   LFE },
 128        { SNDRV_CHMAP_FC,       0x03,   FC },
 129        { SNDRV_CHMAP_RLC,      0x06,   RLC },
 130        { SNDRV_CHMAP_RRC,      0x07,   RRC },
 131        {} /* terminator */
 132};
 133
 134/* hardware capability structure */
 135static const struct snd_pcm_hardware had_pcm_hardware = {
 136        .info = (SNDRV_PCM_INFO_INTERLEAVED |
 137                SNDRV_PCM_INFO_MMAP |
 138                SNDRV_PCM_INFO_MMAP_VALID |
 139                SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
 140        .formats = (SNDRV_PCM_FMTBIT_S16_LE |
 141                    SNDRV_PCM_FMTBIT_S24_LE |
 142                    SNDRV_PCM_FMTBIT_S32_LE),
 143        .rates = SNDRV_PCM_RATE_32000 |
 144                SNDRV_PCM_RATE_44100 |
 145                SNDRV_PCM_RATE_48000 |
 146                SNDRV_PCM_RATE_88200 |
 147                SNDRV_PCM_RATE_96000 |
 148                SNDRV_PCM_RATE_176400 |
 149                SNDRV_PCM_RATE_192000,
 150        .rate_min = HAD_MIN_RATE,
 151        .rate_max = HAD_MAX_RATE,
 152        .channels_min = HAD_MIN_CHANNEL,
 153        .channels_max = HAD_MAX_CHANNEL,
 154        .buffer_bytes_max = HAD_MAX_BUFFER,
 155        .period_bytes_min = HAD_MIN_PERIOD_BYTES,
 156        .period_bytes_max = HAD_MAX_PERIOD_BYTES,
 157        .periods_min = HAD_MIN_PERIODS,
 158        .periods_max = HAD_MAX_PERIODS,
 159        .fifo_size = HAD_FIFO_SIZE,
 160};
 161
 162/* Get the active PCM substream;
 163 * Call had_substream_put() for unreferecing.
 164 * Don't call this inside had_spinlock, as it takes by itself
 165 */
 166static struct snd_pcm_substream *
 167had_substream_get(struct snd_intelhad *intelhaddata)
 168{
 169        struct snd_pcm_substream *substream;
 170        unsigned long flags;
 171
 172        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 173        substream = intelhaddata->stream_info.substream;
 174        if (substream)
 175                intelhaddata->stream_info.substream_refcount++;
 176        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 177        return substream;
 178}
 179
 180/* Unref the active PCM substream;
 181 * Don't call this inside had_spinlock, as it takes by itself
 182 */
 183static void had_substream_put(struct snd_intelhad *intelhaddata)
 184{
 185        unsigned long flags;
 186
 187        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 188        intelhaddata->stream_info.substream_refcount--;
 189        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 190}
 191
 192static u32 had_config_offset(int pipe)
 193{
 194        switch (pipe) {
 195        default:
 196        case 0:
 197                return AUDIO_HDMI_CONFIG_A;
 198        case 1:
 199                return AUDIO_HDMI_CONFIG_B;
 200        case 2:
 201                return AUDIO_HDMI_CONFIG_C;
 202        }
 203}
 204
 205/* Register access functions */
 206static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
 207                                 int pipe, u32 reg)
 208{
 209        return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
 210}
 211
 212static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
 213                                   int pipe, u32 reg, u32 val)
 214{
 215        iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
 216}
 217
 218static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
 219{
 220        if (!ctx->connected)
 221                *val = 0;
 222        else
 223                *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
 224}
 225
 226static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
 227{
 228        if (ctx->connected)
 229                had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
 230}
 231
 232/*
 233 * enable / disable audio configuration
 234 *
 235 * The normal read/modify should not directly be used on VLV2 for
 236 * updating AUD_CONFIG register.
 237 * This is because:
 238 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 239 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
 240 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 241 * register. This field should be 1xy binary for configuration with 6 or
 242 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 243 * causes the "channels" field to be updated as 0xy binary resulting in
 244 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 245 * appropriate value when doing read-modify of AUD_CONFIG register.
 246 */
 247static void had_enable_audio(struct snd_intelhad *intelhaddata,
 248                             bool enable)
 249{
 250        /* update the cached value */
 251        intelhaddata->aud_config.regx.aud_en = enable;
 252        had_write_register(intelhaddata, AUD_CONFIG,
 253                           intelhaddata->aud_config.regval);
 254}
 255
 256/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
 257static void had_ack_irqs(struct snd_intelhad *ctx)
 258{
 259        u32 status_reg;
 260
 261        if (!ctx->connected)
 262                return;
 263        had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 264        status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
 265        had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
 266        had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 267}
 268
 269/* Reset buffer pointers */
 270static void had_reset_audio(struct snd_intelhad *intelhaddata)
 271{
 272        had_write_register(intelhaddata, AUD_HDMI_STATUS,
 273                           AUD_HDMI_STATUSG_MASK_FUNCRST);
 274        had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
 275}
 276
 277/*
 278 * initialize audio channel status registers
 279 * This function is called in the prepare callback
 280 */
 281static int had_prog_status_reg(struct snd_pcm_substream *substream,
 282                        struct snd_intelhad *intelhaddata)
 283{
 284        union aud_ch_status_0 ch_stat0 = {.regval = 0};
 285        union aud_ch_status_1 ch_stat1 = {.regval = 0};
 286
 287        ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
 288                                          IEC958_AES0_NONAUDIO) >> 1;
 289        ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
 290                                          IEC958_AES3_CON_CLOCK) >> 4;
 291
 292        switch (substream->runtime->rate) {
 293        case AUD_SAMPLE_RATE_32:
 294                ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
 295                break;
 296
 297        case AUD_SAMPLE_RATE_44_1:
 298                ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
 299                break;
 300        case AUD_SAMPLE_RATE_48:
 301                ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
 302                break;
 303        case AUD_SAMPLE_RATE_88_2:
 304                ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
 305                break;
 306        case AUD_SAMPLE_RATE_96:
 307                ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
 308                break;
 309        case AUD_SAMPLE_RATE_176_4:
 310                ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
 311                break;
 312        case AUD_SAMPLE_RATE_192:
 313                ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
 314                break;
 315
 316        default:
 317                /* control should never come here */
 318                return -EINVAL;
 319        }
 320
 321        had_write_register(intelhaddata,
 322                           AUD_CH_STATUS_0, ch_stat0.regval);
 323
 324        switch (substream->runtime->format) {
 325        case SNDRV_PCM_FORMAT_S16_LE:
 326                ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
 327                ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
 328                break;
 329        case SNDRV_PCM_FORMAT_S24_LE:
 330        case SNDRV_PCM_FORMAT_S32_LE:
 331                ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
 332                ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
 333                break;
 334        default:
 335                return -EINVAL;
 336        }
 337
 338        had_write_register(intelhaddata,
 339                           AUD_CH_STATUS_1, ch_stat1.regval);
 340        return 0;
 341}
 342
 343/*
 344 * function to initialize audio
 345 * registers and buffer configuration registers
 346 * This function is called in the prepare callback
 347 */
 348static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
 349                               struct snd_intelhad *intelhaddata)
 350{
 351        union aud_cfg cfg_val = {.regval = 0};
 352        union aud_buf_config buf_cfg = {.regval = 0};
 353        u8 channels;
 354
 355        had_prog_status_reg(substream, intelhaddata);
 356
 357        buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
 358        buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
 359        buf_cfg.regx.aud_delay = 0;
 360        had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
 361
 362        channels = substream->runtime->channels;
 363        cfg_val.regx.num_ch = channels - 2;
 364        if (channels <= 2)
 365                cfg_val.regx.layout = LAYOUT0;
 366        else
 367                cfg_val.regx.layout = LAYOUT1;
 368
 369        if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
 370                cfg_val.regx.packet_mode = 1;
 371
 372        if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
 373                cfg_val.regx.left_align = 1;
 374
 375        cfg_val.regx.val_bit = 1;
 376
 377        /* fix up the DP bits */
 378        if (intelhaddata->dp_output) {
 379                cfg_val.regx.dp_modei = 1;
 380                cfg_val.regx.set = 1;
 381        }
 382
 383        had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
 384        intelhaddata->aud_config = cfg_val;
 385        return 0;
 386}
 387
 388/*
 389 * Compute derived values in channel_allocations[].
 390 */
 391static void init_channel_allocations(void)
 392{
 393        int i, j;
 394        struct cea_channel_speaker_allocation *p;
 395
 396        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 397                p = channel_allocations + i;
 398                p->channels = 0;
 399                p->spk_mask = 0;
 400                for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
 401                        if (p->speakers[j]) {
 402                                p->channels++;
 403                                p->spk_mask |= p->speakers[j];
 404                        }
 405        }
 406}
 407
 408/*
 409 * The transformation takes two steps:
 410 *
 411 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 412 *            spk_mask => (channel_allocations[])         => ai->CA
 413 *
 414 * TODO: it could select the wrong CA from multiple candidates.
 415 */
 416static int had_channel_allocation(struct snd_intelhad *intelhaddata,
 417                                  int channels)
 418{
 419        int i;
 420        int ca = 0;
 421        int spk_mask = 0;
 422
 423        /*
 424         * CA defaults to 0 for basic stereo audio
 425         */
 426        if (channels <= 2)
 427                return 0;
 428
 429        /*
 430         * expand ELD's speaker allocation mask
 431         *
 432         * ELD tells the speaker mask in a compact(paired) form,
 433         * expand ELD's notions to match the ones used by Audio InfoFrame.
 434         */
 435
 436        for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 437                if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 438                        spk_mask |= eld_speaker_allocation_bits[i];
 439        }
 440
 441        /* search for the first working match in the CA table */
 442        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 443                if (channels == channel_allocations[i].channels &&
 444                (spk_mask & channel_allocations[i].spk_mask) ==
 445                                channel_allocations[i].spk_mask) {
 446                        ca = channel_allocations[i].ca_index;
 447                        break;
 448                }
 449        }
 450
 451        dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
 452
 453        return ca;
 454}
 455
 456/* from speaker bit mask to ALSA API channel position */
 457static int spk_to_chmap(int spk)
 458{
 459        const struct channel_map_table *t = map_tables;
 460
 461        for (; t->map; t++) {
 462                if (t->spk_mask == spk)
 463                        return t->map;
 464        }
 465        return 0;
 466}
 467
 468static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
 469{
 470        int i, c;
 471        int spk_mask = 0;
 472        struct snd_pcm_chmap_elem *chmap;
 473        u8 eld_high, eld_high_mask = 0xF0;
 474        u8 high_msb;
 475
 476        kfree(intelhaddata->chmap->chmap);
 477        intelhaddata->chmap->chmap = NULL;
 478
 479        chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
 480        if (!chmap)
 481                return;
 482
 483        dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
 484                intelhaddata->eld[DRM_ELD_SPEAKER]);
 485
 486        /* WA: Fix the max channel supported to 8 */
 487
 488        /*
 489         * Sink may support more than 8 channels, if eld_high has more than
 490         * one bit set. SOC supports max 8 channels.
 491         * Refer eld_speaker_allocation_bits, for sink speaker allocation
 492         */
 493
 494        /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
 495        eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
 496        if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
 497                /* eld_high & (eld_high-1): if more than 1 bit set */
 498                /* 0x1F: 7 channels */
 499                for (i = 1; i < 4; i++) {
 500                        high_msb = eld_high & (0x80 >> i);
 501                        if (high_msb) {
 502                                intelhaddata->eld[DRM_ELD_SPEAKER] &=
 503                                        high_msb | 0xF;
 504                                break;
 505                        }
 506                }
 507        }
 508
 509        for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 510                if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 511                        spk_mask |= eld_speaker_allocation_bits[i];
 512        }
 513
 514        for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 515                if (spk_mask == channel_allocations[i].spk_mask) {
 516                        for (c = 0; c < channel_allocations[i].channels; c++) {
 517                                chmap->map[c] = spk_to_chmap(
 518                                        channel_allocations[i].speakers[
 519                                                (MAX_SPEAKERS - 1) - c]);
 520                        }
 521                        chmap->channels = channel_allocations[i].channels;
 522                        intelhaddata->chmap->chmap = chmap;
 523                        break;
 524                }
 525        }
 526        if (i >= ARRAY_SIZE(channel_allocations))
 527                kfree(chmap);
 528}
 529
 530/*
 531 * ALSA API channel-map control callbacks
 532 */
 533static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
 534                                struct snd_ctl_elem_info *uinfo)
 535{
 536        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 537        uinfo->count = HAD_MAX_CHANNEL;
 538        uinfo->value.integer.min = 0;
 539        uinfo->value.integer.max = SNDRV_CHMAP_LAST;
 540        return 0;
 541}
 542
 543static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
 544                                struct snd_ctl_elem_value *ucontrol)
 545{
 546        struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
 547        struct snd_intelhad *intelhaddata = info->private_data;
 548        int i;
 549        const struct snd_pcm_chmap_elem *chmap;
 550
 551        memset(ucontrol->value.integer.value, 0,
 552               sizeof(long) * HAD_MAX_CHANNEL);
 553        mutex_lock(&intelhaddata->mutex);
 554        if (!intelhaddata->chmap->chmap) {
 555                mutex_unlock(&intelhaddata->mutex);
 556                return 0;
 557        }
 558
 559        chmap = intelhaddata->chmap->chmap;
 560        for (i = 0; i < chmap->channels; i++)
 561                ucontrol->value.integer.value[i] = chmap->map[i];
 562        mutex_unlock(&intelhaddata->mutex);
 563
 564        return 0;
 565}
 566
 567static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
 568                                                struct snd_pcm *pcm)
 569{
 570        int err;
 571
 572        err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
 573                        NULL, 0, (unsigned long)intelhaddata,
 574                        &intelhaddata->chmap);
 575        if (err < 0)
 576                return err;
 577
 578        intelhaddata->chmap->private_data = intelhaddata;
 579        intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
 580        intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
 581        intelhaddata->chmap->chmap = NULL;
 582        return 0;
 583}
 584
 585/*
 586 * Initialize Data Island Packets registers
 587 * This function is called in the prepare callback
 588 */
 589static void had_prog_dip(struct snd_pcm_substream *substream,
 590                         struct snd_intelhad *intelhaddata)
 591{
 592        int i;
 593        union aud_ctrl_st ctrl_state = {.regval = 0};
 594        union aud_info_frame2 frame2 = {.regval = 0};
 595        union aud_info_frame3 frame3 = {.regval = 0};
 596        u8 checksum = 0;
 597        u32 info_frame;
 598        int channels;
 599        int ca;
 600
 601        channels = substream->runtime->channels;
 602
 603        had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 604
 605        ca = had_channel_allocation(intelhaddata, channels);
 606        if (intelhaddata->dp_output) {
 607                info_frame = DP_INFO_FRAME_WORD1;
 608                frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
 609        } else {
 610                info_frame = HDMI_INFO_FRAME_WORD1;
 611                frame2.regx.chnl_cnt = substream->runtime->channels - 1;
 612                frame3.regx.chnl_alloc = ca;
 613
 614                /* Calculte the byte wide checksum for all valid DIP words */
 615                for (i = 0; i < BYTES_PER_WORD; i++)
 616                        checksum += (info_frame >> (i * 8)) & 0xff;
 617                for (i = 0; i < BYTES_PER_WORD; i++)
 618                        checksum += (frame2.regval >> (i * 8)) & 0xff;
 619                for (i = 0; i < BYTES_PER_WORD; i++)
 620                        checksum += (frame3.regval >> (i * 8)) & 0xff;
 621
 622                frame2.regx.chksum = -(checksum);
 623        }
 624
 625        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
 626        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
 627        had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
 628
 629        /* program remaining DIP words with zero */
 630        for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
 631                had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
 632
 633        ctrl_state.regx.dip_freq = 1;
 634        ctrl_state.regx.dip_en_sta = 1;
 635        had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 636}
 637
 638static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
 639{
 640        u32 maud_val;
 641
 642        /* Select maud according to DP 1.2 spec */
 643        if (link_rate == DP_2_7_GHZ) {
 644                switch (aud_samp_freq) {
 645                case AUD_SAMPLE_RATE_32:
 646                        maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
 647                        break;
 648
 649                case AUD_SAMPLE_RATE_44_1:
 650                        maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
 651                        break;
 652
 653                case AUD_SAMPLE_RATE_48:
 654                        maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
 655                        break;
 656
 657                case AUD_SAMPLE_RATE_88_2:
 658                        maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
 659                        break;
 660
 661                case AUD_SAMPLE_RATE_96:
 662                        maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
 663                        break;
 664
 665                case AUD_SAMPLE_RATE_176_4:
 666                        maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
 667                        break;
 668
 669                case HAD_MAX_RATE:
 670                        maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
 671                        break;
 672
 673                default:
 674                        maud_val = -EINVAL;
 675                        break;
 676                }
 677        } else if (link_rate == DP_1_62_GHZ) {
 678                switch (aud_samp_freq) {
 679                case AUD_SAMPLE_RATE_32:
 680                        maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
 681                        break;
 682
 683                case AUD_SAMPLE_RATE_44_1:
 684                        maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
 685                        break;
 686
 687                case AUD_SAMPLE_RATE_48:
 688                        maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
 689                        break;
 690
 691                case AUD_SAMPLE_RATE_88_2:
 692                        maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
 693                        break;
 694
 695                case AUD_SAMPLE_RATE_96:
 696                        maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
 697                        break;
 698
 699                case AUD_SAMPLE_RATE_176_4:
 700                        maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
 701                        break;
 702
 703                case HAD_MAX_RATE:
 704                        maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
 705                        break;
 706
 707                default:
 708                        maud_val = -EINVAL;
 709                        break;
 710                }
 711        } else
 712                maud_val = -EINVAL;
 713
 714        return maud_val;
 715}
 716
 717/*
 718 * Program HDMI audio CTS value
 719 *
 720 * @aud_samp_freq: sampling frequency of audio data
 721 * @tmds: sampling frequency of the display data
 722 * @link_rate: DP link rate
 723 * @n_param: N value, depends on aud_samp_freq
 724 * @intelhaddata: substream private data
 725 *
 726 * Program CTS register based on the audio and display sampling frequency
 727 */
 728static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
 729                         u32 n_param, struct snd_intelhad *intelhaddata)
 730{
 731        u32 cts_val;
 732        u64 dividend, divisor;
 733
 734        if (intelhaddata->dp_output) {
 735                /* Substitute cts_val with Maud according to DP 1.2 spec*/
 736                cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
 737        } else {
 738                /* Calculate CTS according to HDMI 1.3a spec*/
 739                dividend = (u64)tmds * n_param*1000;
 740                divisor = 128 * aud_samp_freq;
 741                cts_val = div64_u64(dividend, divisor);
 742        }
 743        dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
 744                 tmds, n_param, cts_val);
 745        had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
 746}
 747
 748static int had_calculate_n_value(u32 aud_samp_freq)
 749{
 750        int n_val;
 751
 752        /* Select N according to HDMI 1.3a spec*/
 753        switch (aud_samp_freq) {
 754        case AUD_SAMPLE_RATE_32:
 755                n_val = 4096;
 756                break;
 757
 758        case AUD_SAMPLE_RATE_44_1:
 759                n_val = 6272;
 760                break;
 761
 762        case AUD_SAMPLE_RATE_48:
 763                n_val = 6144;
 764                break;
 765
 766        case AUD_SAMPLE_RATE_88_2:
 767                n_val = 12544;
 768                break;
 769
 770        case AUD_SAMPLE_RATE_96:
 771                n_val = 12288;
 772                break;
 773
 774        case AUD_SAMPLE_RATE_176_4:
 775                n_val = 25088;
 776                break;
 777
 778        case HAD_MAX_RATE:
 779                n_val = 24576;
 780                break;
 781
 782        default:
 783                n_val = -EINVAL;
 784                break;
 785        }
 786        return n_val;
 787}
 788
 789/*
 790 * Program HDMI audio N value
 791 *
 792 * @aud_samp_freq: sampling frequency of audio data
 793 * @n_param: N value, depends on aud_samp_freq
 794 * @intelhaddata: substream private data
 795 *
 796 * This function is called in the prepare callback.
 797 * It programs based on the audio and display sampling frequency
 798 */
 799static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
 800                      struct snd_intelhad *intelhaddata)
 801{
 802        int n_val;
 803
 804        if (intelhaddata->dp_output) {
 805                /*
 806                 * According to DP specs, Maud and Naud values hold
 807                 * a relationship, which is stated as:
 808                 * Maud/Naud = 512 * fs / f_LS_Clk
 809                 * where, fs is the sampling frequency of the audio stream
 810                 * and Naud is 32768 for Async clock.
 811                 */
 812
 813                n_val = DP_NAUD_VAL;
 814        } else
 815                n_val = had_calculate_n_value(aud_samp_freq);
 816
 817        if (n_val < 0)
 818                return n_val;
 819
 820        had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
 821        *n_param = n_val;
 822        return 0;
 823}
 824
 825/*
 826 * PCM ring buffer handling
 827 *
 828 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
 829 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
 830 * moves at each period elapsed.  The below illustrates how it works:
 831 *
 832 * At time=0
 833 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 834 *  BD  | 0 | 1 | 2 | 3 |
 835 *
 836 * At time=1 (period elapsed)
 837 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 838 *  BD      | 1 | 2 | 3 | 0 |
 839 *
 840 * At time=2 (second period elapsed)
 841 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 842 *  BD          | 2 | 3 | 0 | 1 |
 843 *
 844 * The bd_head field points to the index of the BD to be read.  It's also the
 845 * position to be filled at next.  The pcm_head and the pcm_filled fields
 846 * point to the indices of the current position and of the next position to
 847 * be filled, respectively.  For PCM buffer there are both _head and _filled
 848 * because they may be difference when nperiods > 4.  For example, in the
 849 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
 850 *
 851 * pcm_head (=1) --v               v-- pcm_filled (=5)
 852 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 853 *       BD      | 1 | 2 | 3 | 0 |
 854 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
 855 *
 856 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
 857 * the hardware skips those BDs in the loop.
 858 *
 859 * An exceptional setup is the case with nperiods=1.  Since we have to update
 860 * BDs after finishing one BD processing, we'd need at least two BDs, where
 861 * both BDs point to the same content, the same address, the same size of the
 862 * whole PCM buffer.
 863 */
 864
 865#define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
 866#define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
 867
 868/* Set up a buffer descriptor at the "filled" position */
 869static void had_prog_bd(struct snd_pcm_substream *substream,
 870                        struct snd_intelhad *intelhaddata)
 871{
 872        int idx = intelhaddata->bd_head;
 873        int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
 874        u32 addr = substream->runtime->dma_addr + ofs;
 875
 876        addr |= AUD_BUF_VALID;
 877        if (!substream->runtime->no_period_wakeup)
 878                addr |= AUD_BUF_INTR_EN;
 879        had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
 880        had_write_register(intelhaddata, AUD_BUF_LEN(idx),
 881                           intelhaddata->period_bytes);
 882
 883        /* advance the indices to the next */
 884        intelhaddata->bd_head++;
 885        intelhaddata->bd_head %= intelhaddata->num_bds;
 886        intelhaddata->pcmbuf_filled++;
 887        intelhaddata->pcmbuf_filled %= substream->runtime->periods;
 888}
 889
 890/* invalidate a buffer descriptor with the given index */
 891static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
 892                              int idx)
 893{
 894        had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
 895        had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
 896}
 897
 898/* Initial programming of ring buffer */
 899static void had_init_ringbuf(struct snd_pcm_substream *substream,
 900                             struct snd_intelhad *intelhaddata)
 901{
 902        struct snd_pcm_runtime *runtime = substream->runtime;
 903        int i, num_periods;
 904
 905        num_periods = runtime->periods;
 906        intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
 907        /* set the minimum 2 BDs for num_periods=1 */
 908        intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
 909        intelhaddata->period_bytes =
 910                frames_to_bytes(runtime, runtime->period_size);
 911        WARN_ON(intelhaddata->period_bytes & 0x3f);
 912
 913        intelhaddata->bd_head = 0;
 914        intelhaddata->pcmbuf_head = 0;
 915        intelhaddata->pcmbuf_filled = 0;
 916
 917        for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
 918                if (i < intelhaddata->num_bds)
 919                        had_prog_bd(substream, intelhaddata);
 920                else /* invalidate the rest */
 921                        had_invalidate_bd(intelhaddata, i);
 922        }
 923
 924        intelhaddata->bd_head = 0; /* reset at head again before starting */
 925}
 926
 927/* process a bd, advance to the next */
 928static void had_advance_ringbuf(struct snd_pcm_substream *substream,
 929                                struct snd_intelhad *intelhaddata)
 930{
 931        int num_periods = substream->runtime->periods;
 932
 933        /* reprogram the next buffer */
 934        had_prog_bd(substream, intelhaddata);
 935
 936        /* proceed to next */
 937        intelhaddata->pcmbuf_head++;
 938        intelhaddata->pcmbuf_head %= num_periods;
 939}
 940
 941/* process the current BD(s);
 942 * returns the current PCM buffer byte position, or -EPIPE for underrun.
 943 */
 944static int had_process_ringbuf(struct snd_pcm_substream *substream,
 945                               struct snd_intelhad *intelhaddata)
 946{
 947        int len, processed;
 948        unsigned long flags;
 949
 950        processed = 0;
 951        spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 952        for (;;) {
 953                /* get the remaining bytes on the buffer */
 954                had_read_register(intelhaddata,
 955                                  AUD_BUF_LEN(intelhaddata->bd_head),
 956                                  &len);
 957                if (len < 0 || len > intelhaddata->period_bytes) {
 958                        dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
 959                                len);
 960                        len = -EPIPE;
 961                        goto out;
 962                }
 963
 964                if (len > 0) /* OK, this is the current buffer */
 965                        break;
 966
 967                /* len=0 => already empty, check the next buffer */
 968                if (++processed >= intelhaddata->num_bds) {
 969                        len = -EPIPE; /* all empty? - report underrun */
 970                        goto out;
 971                }
 972                had_advance_ringbuf(substream, intelhaddata);
 973        }
 974
 975        len = intelhaddata->period_bytes - len;
 976        len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
 977 out:
 978        spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 979        return len;
 980}
 981
 982/* called from irq handler */
 983static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
 984{
 985        struct snd_pcm_substream *substream;
 986
 987        substream = had_substream_get(intelhaddata);
 988        if (!substream)
 989                return; /* no stream? - bail out */
 990
 991        if (!intelhaddata->connected) {
 992                snd_pcm_stop_xrun(substream);
 993                goto out; /* disconnected? - bail out */
 994        }
 995
 996        /* process or stop the stream */
 997        if (had_process_ringbuf(substream, intelhaddata) < 0)
 998                snd_pcm_stop_xrun(substream);
 999        else
1000                snd_pcm_period_elapsed(substream);
1001
1002 out:
1003        had_substream_put(intelhaddata);
1004}
1005
1006/*
1007 * The interrupt status 'sticky' bits might not be cleared by
1008 * setting '1' to that bit once...
1009 */
1010static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1011{
1012        int i;
1013        u32 val;
1014
1015        for (i = 0; i < 100; i++) {
1016                /* clear bit30, 31 AUD_HDMI_STATUS */
1017                had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1018                if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1019                        return;
1020                udelay(100);
1021                cond_resched();
1022                had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1023        }
1024        dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1025}
1026
1027/* Perform some reset procedure but only when need_reset is set;
1028 * this is called from prepare or hw_free callbacks once after trigger STOP
1029 * or underrun has been processed in order to settle down the h/w state.
1030 */
1031static void had_do_reset(struct snd_intelhad *intelhaddata)
1032{
1033        if (!intelhaddata->need_reset || !intelhaddata->connected)
1034                return;
1035
1036        /* Reset buffer pointers */
1037        had_reset_audio(intelhaddata);
1038        wait_clear_underrun_bit(intelhaddata);
1039        intelhaddata->need_reset = false;
1040}
1041
1042/* called from irq handler */
1043static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1044{
1045        struct snd_pcm_substream *substream;
1046
1047        /* Report UNDERRUN error to above layers */
1048        substream = had_substream_get(intelhaddata);
1049        if (substream) {
1050                snd_pcm_stop_xrun(substream);
1051                had_substream_put(intelhaddata);
1052        }
1053        intelhaddata->need_reset = true;
1054}
1055
1056/*
1057 * ALSA PCM open callback
1058 */
1059static int had_pcm_open(struct snd_pcm_substream *substream)
1060{
1061        struct snd_intelhad *intelhaddata;
1062        struct snd_pcm_runtime *runtime;
1063        int retval;
1064
1065        intelhaddata = snd_pcm_substream_chip(substream);
1066        runtime = substream->runtime;
1067
1068        pm_runtime_get_sync(intelhaddata->dev);
1069
1070        /* set the runtime hw parameter with local snd_pcm_hardware struct */
1071        runtime->hw = had_pcm_hardware;
1072
1073        retval = snd_pcm_hw_constraint_integer(runtime,
1074                         SNDRV_PCM_HW_PARAM_PERIODS);
1075        if (retval < 0)
1076                goto error;
1077
1078        /* Make sure, that the period size is always aligned
1079         * 64byte boundary
1080         */
1081        retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1082                        SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1083        if (retval < 0)
1084                goto error;
1085
1086        retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1087        if (retval < 0)
1088                goto error;
1089
1090        /* expose PCM substream */
1091        spin_lock_irq(&intelhaddata->had_spinlock);
1092        intelhaddata->stream_info.substream = substream;
1093        intelhaddata->stream_info.substream_refcount++;
1094        spin_unlock_irq(&intelhaddata->had_spinlock);
1095
1096        return retval;
1097 error:
1098        pm_runtime_mark_last_busy(intelhaddata->dev);
1099        pm_runtime_put_autosuspend(intelhaddata->dev);
1100        return retval;
1101}
1102
1103/*
1104 * ALSA PCM close callback
1105 */
1106static int had_pcm_close(struct snd_pcm_substream *substream)
1107{
1108        struct snd_intelhad *intelhaddata;
1109
1110        intelhaddata = snd_pcm_substream_chip(substream);
1111
1112        /* unreference and sync with the pending PCM accesses */
1113        spin_lock_irq(&intelhaddata->had_spinlock);
1114        intelhaddata->stream_info.substream = NULL;
1115        intelhaddata->stream_info.substream_refcount--;
1116        while (intelhaddata->stream_info.substream_refcount > 0) {
1117                spin_unlock_irq(&intelhaddata->had_spinlock);
1118                cpu_relax();
1119                spin_lock_irq(&intelhaddata->had_spinlock);
1120        }
1121        spin_unlock_irq(&intelhaddata->had_spinlock);
1122
1123        pm_runtime_mark_last_busy(intelhaddata->dev);
1124        pm_runtime_put_autosuspend(intelhaddata->dev);
1125        return 0;
1126}
1127
1128/*
1129 * ALSA PCM hw_params callback
1130 */
1131static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1132                             struct snd_pcm_hw_params *hw_params)
1133{
1134        struct snd_intelhad *intelhaddata;
1135        int buf_size;
1136
1137        intelhaddata = snd_pcm_substream_chip(substream);
1138        buf_size = params_buffer_bytes(hw_params);
1139        dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1140                __func__, buf_size);
1141        return 0;
1142}
1143
1144/*
1145 * ALSA PCM hw_free callback
1146 */
1147static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1148{
1149        struct snd_intelhad *intelhaddata;
1150
1151        intelhaddata = snd_pcm_substream_chip(substream);
1152        had_do_reset(intelhaddata);
1153
1154        return 0;
1155}
1156
1157/*
1158 * ALSA PCM trigger callback
1159 */
1160static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1161{
1162        int retval = 0;
1163        struct snd_intelhad *intelhaddata;
1164
1165        intelhaddata = snd_pcm_substream_chip(substream);
1166
1167        spin_lock(&intelhaddata->had_spinlock);
1168        switch (cmd) {
1169        case SNDRV_PCM_TRIGGER_START:
1170        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1171        case SNDRV_PCM_TRIGGER_RESUME:
1172                /* Enable Audio */
1173                had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1174                had_enable_audio(intelhaddata, true);
1175                break;
1176
1177        case SNDRV_PCM_TRIGGER_STOP:
1178        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1179                /* Disable Audio */
1180                had_enable_audio(intelhaddata, false);
1181                intelhaddata->need_reset = true;
1182                break;
1183
1184        default:
1185                retval = -EINVAL;
1186        }
1187        spin_unlock(&intelhaddata->had_spinlock);
1188        return retval;
1189}
1190
1191/*
1192 * ALSA PCM prepare callback
1193 */
1194static int had_pcm_prepare(struct snd_pcm_substream *substream)
1195{
1196        int retval;
1197        u32 disp_samp_freq, n_param;
1198        u32 link_rate = 0;
1199        struct snd_intelhad *intelhaddata;
1200        struct snd_pcm_runtime *runtime;
1201
1202        intelhaddata = snd_pcm_substream_chip(substream);
1203        runtime = substream->runtime;
1204
1205        dev_dbg(intelhaddata->dev, "period_size=%d\n",
1206                (int)frames_to_bytes(runtime, runtime->period_size));
1207        dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1208        dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1209                (int)snd_pcm_lib_buffer_bytes(substream));
1210        dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1211        dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1212
1213        had_do_reset(intelhaddata);
1214
1215        /* Get N value in KHz */
1216        disp_samp_freq = intelhaddata->tmds_clock_speed;
1217
1218        retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1219        if (retval) {
1220                dev_err(intelhaddata->dev,
1221                        "programming N value failed %#x\n", retval);
1222                goto prep_end;
1223        }
1224
1225        if (intelhaddata->dp_output)
1226                link_rate = intelhaddata->link_rate;
1227
1228        had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1229                     n_param, intelhaddata);
1230
1231        had_prog_dip(substream, intelhaddata);
1232
1233        retval = had_init_audio_ctrl(substream, intelhaddata);
1234
1235        /* Prog buffer address */
1236        had_init_ringbuf(substream, intelhaddata);
1237
1238        /*
1239         * Program channel mapping in following order:
1240         * FL, FR, C, LFE, RL, RR
1241         */
1242
1243        had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1244
1245prep_end:
1246        return retval;
1247}
1248
1249/*
1250 * ALSA PCM pointer callback
1251 */
1252static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1253{
1254        struct snd_intelhad *intelhaddata;
1255        int len;
1256
1257        intelhaddata = snd_pcm_substream_chip(substream);
1258
1259        if (!intelhaddata->connected)
1260                return SNDRV_PCM_POS_XRUN;
1261
1262        len = had_process_ringbuf(substream, intelhaddata);
1263        if (len < 0)
1264                return SNDRV_PCM_POS_XRUN;
1265        len = bytes_to_frames(substream->runtime, len);
1266        /* wrapping may happen when periods=1 */
1267        len %= substream->runtime->buffer_size;
1268        return len;
1269}
1270
1271/*
1272 * ALSA PCM mmap callback
1273 */
1274static int had_pcm_mmap(struct snd_pcm_substream *substream,
1275                        struct vm_area_struct *vma)
1276{
1277        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1278        return remap_pfn_range(vma, vma->vm_start,
1279                        substream->dma_buffer.addr >> PAGE_SHIFT,
1280                        vma->vm_end - vma->vm_start, vma->vm_page_prot);
1281}
1282
1283/*
1284 * ALSA PCM ops
1285 */
1286static const struct snd_pcm_ops had_pcm_ops = {
1287        .open =         had_pcm_open,
1288        .close =        had_pcm_close,
1289        .hw_params =    had_pcm_hw_params,
1290        .hw_free =      had_pcm_hw_free,
1291        .prepare =      had_pcm_prepare,
1292        .trigger =      had_pcm_trigger,
1293        .pointer =      had_pcm_pointer,
1294        .mmap =         had_pcm_mmap,
1295};
1296
1297/* process mode change of the running stream; called in mutex */
1298static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1299{
1300        struct snd_pcm_substream *substream;
1301        int retval = 0;
1302        u32 disp_samp_freq, n_param;
1303        u32 link_rate = 0;
1304
1305        substream = had_substream_get(intelhaddata);
1306        if (!substream)
1307                return 0;
1308
1309        /* Disable Audio */
1310        had_enable_audio(intelhaddata, false);
1311
1312        /* Update CTS value */
1313        disp_samp_freq = intelhaddata->tmds_clock_speed;
1314
1315        retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1316        if (retval) {
1317                dev_err(intelhaddata->dev,
1318                        "programming N value failed %#x\n", retval);
1319                goto out;
1320        }
1321
1322        if (intelhaddata->dp_output)
1323                link_rate = intelhaddata->link_rate;
1324
1325        had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1326                     n_param, intelhaddata);
1327
1328        /* Enable Audio */
1329        had_enable_audio(intelhaddata, true);
1330
1331out:
1332        had_substream_put(intelhaddata);
1333        return retval;
1334}
1335
1336/* process hot plug, called from wq with mutex locked */
1337static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1338{
1339        struct snd_pcm_substream *substream;
1340
1341        spin_lock_irq(&intelhaddata->had_spinlock);
1342        if (intelhaddata->connected) {
1343                dev_dbg(intelhaddata->dev, "Device already connected\n");
1344                spin_unlock_irq(&intelhaddata->had_spinlock);
1345                return;
1346        }
1347
1348        /* Disable Audio */
1349        had_enable_audio(intelhaddata, false);
1350
1351        intelhaddata->connected = true;
1352        dev_dbg(intelhaddata->dev,
1353                "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1354                        __func__, __LINE__);
1355        spin_unlock_irq(&intelhaddata->had_spinlock);
1356
1357        had_build_channel_allocation_map(intelhaddata);
1358
1359        /* Report to above ALSA layer */
1360        substream = had_substream_get(intelhaddata);
1361        if (substream) {
1362                snd_pcm_stop_xrun(substream);
1363                had_substream_put(intelhaddata);
1364        }
1365
1366        snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1367}
1368
1369/* process hot unplug, called from wq with mutex locked */
1370static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1371{
1372        struct snd_pcm_substream *substream;
1373
1374        spin_lock_irq(&intelhaddata->had_spinlock);
1375        if (!intelhaddata->connected) {
1376                dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1377                spin_unlock_irq(&intelhaddata->had_spinlock);
1378                return;
1379
1380        }
1381
1382        /* Disable Audio */
1383        had_enable_audio(intelhaddata, false);
1384
1385        intelhaddata->connected = false;
1386        dev_dbg(intelhaddata->dev,
1387                "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1388                        __func__, __LINE__);
1389        spin_unlock_irq(&intelhaddata->had_spinlock);
1390
1391        kfree(intelhaddata->chmap->chmap);
1392        intelhaddata->chmap->chmap = NULL;
1393
1394        /* Report to above ALSA layer */
1395        substream = had_substream_get(intelhaddata);
1396        if (substream) {
1397                snd_pcm_stop_xrun(substream);
1398                had_substream_put(intelhaddata);
1399        }
1400
1401        snd_jack_report(intelhaddata->jack, 0);
1402}
1403
1404/*
1405 * ALSA iec958 and ELD controls
1406 */
1407
1408static int had_iec958_info(struct snd_kcontrol *kcontrol,
1409                                struct snd_ctl_elem_info *uinfo)
1410{
1411        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1412        uinfo->count = 1;
1413        return 0;
1414}
1415
1416static int had_iec958_get(struct snd_kcontrol *kcontrol,
1417                                struct snd_ctl_elem_value *ucontrol)
1418{
1419        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1420
1421        mutex_lock(&intelhaddata->mutex);
1422        ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1423        ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1424        ucontrol->value.iec958.status[2] =
1425                                        (intelhaddata->aes_bits >> 16) & 0xff;
1426        ucontrol->value.iec958.status[3] =
1427                                        (intelhaddata->aes_bits >> 24) & 0xff;
1428        mutex_unlock(&intelhaddata->mutex);
1429        return 0;
1430}
1431
1432static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1433                                struct snd_ctl_elem_value *ucontrol)
1434{
1435        ucontrol->value.iec958.status[0] = 0xff;
1436        ucontrol->value.iec958.status[1] = 0xff;
1437        ucontrol->value.iec958.status[2] = 0xff;
1438        ucontrol->value.iec958.status[3] = 0xff;
1439        return 0;
1440}
1441
1442static int had_iec958_put(struct snd_kcontrol *kcontrol,
1443                                struct snd_ctl_elem_value *ucontrol)
1444{
1445        unsigned int val;
1446        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1447        int changed = 0;
1448
1449        val = (ucontrol->value.iec958.status[0] << 0) |
1450                (ucontrol->value.iec958.status[1] << 8) |
1451                (ucontrol->value.iec958.status[2] << 16) |
1452                (ucontrol->value.iec958.status[3] << 24);
1453        mutex_lock(&intelhaddata->mutex);
1454        if (intelhaddata->aes_bits != val) {
1455                intelhaddata->aes_bits = val;
1456                changed = 1;
1457        }
1458        mutex_unlock(&intelhaddata->mutex);
1459        return changed;
1460}
1461
1462static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1463                            struct snd_ctl_elem_info *uinfo)
1464{
1465        uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1466        uinfo->count = HDMI_MAX_ELD_BYTES;
1467        return 0;
1468}
1469
1470static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1471                           struct snd_ctl_elem_value *ucontrol)
1472{
1473        struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1474
1475        mutex_lock(&intelhaddata->mutex);
1476        memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1477               HDMI_MAX_ELD_BYTES);
1478        mutex_unlock(&intelhaddata->mutex);
1479        return 0;
1480}
1481
1482static const struct snd_kcontrol_new had_controls[] = {
1483        {
1484                .access = SNDRV_CTL_ELEM_ACCESS_READ,
1485                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1486                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1487                .info = had_iec958_info, /* shared */
1488                .get = had_iec958_mask_get,
1489        },
1490        {
1491                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1492                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1493                .info = had_iec958_info,
1494                .get = had_iec958_get,
1495                .put = had_iec958_put,
1496        },
1497        {
1498                .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1499                           SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1500                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1501                .name = "ELD",
1502                .info = had_ctl_eld_info,
1503                .get = had_ctl_eld_get,
1504        },
1505};
1506
1507/*
1508 * audio interrupt handler
1509 */
1510static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1511{
1512        struct snd_intelhad_card *card_ctx = dev_id;
1513        u32 audio_stat[3] = {};
1514        int pipe, port;
1515
1516        for_each_pipe(card_ctx, pipe) {
1517                /* use raw register access to ack IRQs even while disconnected */
1518                audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1519                                                         AUD_HDMI_STATUS) &
1520                        (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1521
1522                if (audio_stat[pipe])
1523                        had_write_register_raw(card_ctx, pipe,
1524                                               AUD_HDMI_STATUS, audio_stat[pipe]);
1525        }
1526
1527        for_each_port(card_ctx, port) {
1528                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1529                int pipe = ctx->pipe;
1530
1531                if (pipe < 0)
1532                        continue;
1533
1534                if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1535                        had_process_buffer_done(ctx);
1536                if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1537                        had_process_buffer_underrun(ctx);
1538        }
1539
1540        return IRQ_HANDLED;
1541}
1542
1543/*
1544 * monitor plug/unplug notification from i915; just kick off the work
1545 */
1546static void notify_audio_lpe(struct platform_device *pdev, int port)
1547{
1548        struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1549        struct snd_intelhad *ctx;
1550
1551        ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1552        if (single_port)
1553                ctx->port = port;
1554
1555        schedule_work(&ctx->hdmi_audio_wq);
1556}
1557
1558/* the work to handle monitor hot plug/unplug */
1559static void had_audio_wq(struct work_struct *work)
1560{
1561        struct snd_intelhad *ctx =
1562                container_of(work, struct snd_intelhad, hdmi_audio_wq);
1563        struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1564        struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1565
1566        pm_runtime_get_sync(ctx->dev);
1567        mutex_lock(&ctx->mutex);
1568        if (ppdata->pipe < 0) {
1569                dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1570                        __func__, ctx->port);
1571
1572                memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1573
1574                ctx->dp_output = false;
1575                ctx->tmds_clock_speed = 0;
1576                ctx->link_rate = 0;
1577
1578                /* Shut down the stream */
1579                had_process_hot_unplug(ctx);
1580
1581                ctx->pipe = -1;
1582        } else {
1583                dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1584                        __func__, ctx->port, ppdata->ls_clock);
1585
1586                memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1587
1588                ctx->dp_output = ppdata->dp_output;
1589                if (ctx->dp_output) {
1590                        ctx->tmds_clock_speed = 0;
1591                        ctx->link_rate = ppdata->ls_clock;
1592                } else {
1593                        ctx->tmds_clock_speed = ppdata->ls_clock;
1594                        ctx->link_rate = 0;
1595                }
1596
1597                /*
1598                 * Shut down the stream before we change
1599                 * the pipe assignment for this pcm device
1600                 */
1601                had_process_hot_plug(ctx);
1602
1603                ctx->pipe = ppdata->pipe;
1604
1605                /* Restart the stream if necessary */
1606                had_process_mode_change(ctx);
1607        }
1608
1609        mutex_unlock(&ctx->mutex);
1610        pm_runtime_mark_last_busy(ctx->dev);
1611        pm_runtime_put_autosuspend(ctx->dev);
1612}
1613
1614/*
1615 * Jack interface
1616 */
1617static int had_create_jack(struct snd_intelhad *ctx,
1618                           struct snd_pcm *pcm)
1619{
1620        char hdmi_str[32];
1621        int err;
1622
1623        snprintf(hdmi_str, sizeof(hdmi_str),
1624                 "HDMI/DP,pcm=%d", pcm->device);
1625
1626        err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1627                           SND_JACK_AVOUT, &ctx->jack,
1628                           true, false);
1629        if (err < 0)
1630                return err;
1631        ctx->jack->private_data = ctx;
1632        return 0;
1633}
1634
1635/*
1636 * PM callbacks
1637 */
1638
1639static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1640{
1641        struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1642
1643        snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1644
1645        return 0;
1646}
1647
1648static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1649{
1650        struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1651
1652        pm_runtime_mark_last_busy(dev);
1653
1654        snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1655
1656        return 0;
1657}
1658
1659/* release resources */
1660static void hdmi_lpe_audio_free(struct snd_card *card)
1661{
1662        struct snd_intelhad_card *card_ctx = card->private_data;
1663        struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1664        int port;
1665
1666        spin_lock_irq(&pdata->lpe_audio_slock);
1667        pdata->notify_audio_lpe = NULL;
1668        spin_unlock_irq(&pdata->lpe_audio_slock);
1669
1670        for_each_port(card_ctx, port) {
1671                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1672
1673                cancel_work_sync(&ctx->hdmi_audio_wq);
1674        }
1675
1676        if (card_ctx->mmio_start)
1677                iounmap(card_ctx->mmio_start);
1678        if (card_ctx->irq >= 0)
1679                free_irq(card_ctx->irq, card_ctx);
1680}
1681
1682/*
1683 * hdmi_lpe_audio_probe - start bridge with i915
1684 *
1685 * This function is called when the i915 driver creates the
1686 * hdmi-lpe-audio platform device.
1687 */
1688static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1689{
1690        struct snd_card *card;
1691        struct snd_intelhad_card *card_ctx;
1692        struct snd_intelhad *ctx;
1693        struct snd_pcm *pcm;
1694        struct intel_hdmi_lpe_audio_pdata *pdata;
1695        int irq;
1696        struct resource *res_mmio;
1697        int port, ret;
1698
1699        pdata = pdev->dev.platform_data;
1700        if (!pdata) {
1701                dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1702                return -EINVAL;
1703        }
1704
1705        /* get resources */
1706        irq = platform_get_irq(pdev, 0);
1707        if (irq < 0)
1708                return irq;
1709
1710        res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1711        if (!res_mmio) {
1712                dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1713                return -ENXIO;
1714        }
1715
1716        /* create a card instance with ALSA framework */
1717        ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1718                           THIS_MODULE, sizeof(*card_ctx), &card);
1719        if (ret)
1720                return ret;
1721
1722        card_ctx = card->private_data;
1723        card_ctx->dev = &pdev->dev;
1724        card_ctx->card = card;
1725        strcpy(card->driver, INTEL_HAD);
1726        strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1727        strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1728
1729        card_ctx->irq = -1;
1730
1731        card->private_free = hdmi_lpe_audio_free;
1732
1733        platform_set_drvdata(pdev, card_ctx);
1734
1735        card_ctx->num_pipes = pdata->num_pipes;
1736        card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1737
1738        for_each_port(card_ctx, port) {
1739                ctx = &card_ctx->pcm_ctx[port];
1740                ctx->card_ctx = card_ctx;
1741                ctx->dev = card_ctx->dev;
1742                ctx->port = single_port ? -1 : port;
1743                ctx->pipe = -1;
1744
1745                spin_lock_init(&ctx->had_spinlock);
1746                mutex_init(&ctx->mutex);
1747                INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1748        }
1749
1750        dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1751                __func__, (unsigned int)res_mmio->start,
1752                (unsigned int)res_mmio->end);
1753
1754        card_ctx->mmio_start = ioremap(res_mmio->start,
1755                                               (size_t)(resource_size(res_mmio)));
1756        if (!card_ctx->mmio_start) {
1757                dev_err(&pdev->dev, "Could not get ioremap\n");
1758                ret = -EACCES;
1759                goto err;
1760        }
1761
1762        /* setup interrupt handler */
1763        ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1764                          pdev->name, card_ctx);
1765        if (ret < 0) {
1766                dev_err(&pdev->dev, "request_irq failed\n");
1767                goto err;
1768        }
1769
1770        card_ctx->irq = irq;
1771
1772        /* only 32bit addressable */
1773        dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1774
1775        init_channel_allocations();
1776
1777        card_ctx->num_pipes = pdata->num_pipes;
1778        card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1779
1780        for_each_port(card_ctx, port) {
1781                int i;
1782
1783                ctx = &card_ctx->pcm_ctx[port];
1784                ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1785                                  MAX_CAP_STREAMS, &pcm);
1786                if (ret)
1787                        goto err;
1788
1789                /* setup private data which can be retrieved when required */
1790                pcm->private_data = ctx;
1791                pcm->info_flags = 0;
1792                strscpy(pcm->name, card->shortname, strlen(card->shortname));
1793                /* setup the ops for playback */
1794                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1795
1796                /* allocate dma pages;
1797                 * try to allocate 600k buffer as default which is large enough
1798                 */
1799                snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_UC,
1800                                               card->dev, HAD_DEFAULT_BUFFER,
1801                                               HAD_MAX_BUFFER);
1802
1803                /* create controls */
1804                for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1805                        struct snd_kcontrol *kctl;
1806
1807                        kctl = snd_ctl_new1(&had_controls[i], ctx);
1808                        if (!kctl) {
1809                                ret = -ENOMEM;
1810                                goto err;
1811                        }
1812
1813                        kctl->id.device = pcm->device;
1814
1815                        ret = snd_ctl_add(card, kctl);
1816                        if (ret < 0)
1817                                goto err;
1818                }
1819
1820                /* Register channel map controls */
1821                ret = had_register_chmap_ctls(ctx, pcm);
1822                if (ret < 0)
1823                        goto err;
1824
1825                ret = had_create_jack(ctx, pcm);
1826                if (ret < 0)
1827                        goto err;
1828        }
1829
1830        ret = snd_card_register(card);
1831        if (ret)
1832                goto err;
1833
1834        spin_lock_irq(&pdata->lpe_audio_slock);
1835        pdata->notify_audio_lpe = notify_audio_lpe;
1836        spin_unlock_irq(&pdata->lpe_audio_slock);
1837
1838        pm_runtime_use_autosuspend(&pdev->dev);
1839        pm_runtime_mark_last_busy(&pdev->dev);
1840
1841        dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1842        for_each_port(card_ctx, port) {
1843                struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1844
1845                schedule_work(&ctx->hdmi_audio_wq);
1846        }
1847
1848        return 0;
1849
1850err:
1851        snd_card_free(card);
1852        return ret;
1853}
1854
1855/*
1856 * hdmi_lpe_audio_remove - stop bridge with i915
1857 *
1858 * This function is called when the platform device is destroyed.
1859 */
1860static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1861{
1862        struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1863
1864        snd_card_free(card_ctx->card);
1865        return 0;
1866}
1867
1868static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1869        SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1870};
1871
1872static struct platform_driver hdmi_lpe_audio_driver = {
1873        .driver         = {
1874                .name  = "hdmi-lpe-audio",
1875                .pm = &hdmi_lpe_audio_pm,
1876        },
1877        .probe          = hdmi_lpe_audio_probe,
1878        .remove         = hdmi_lpe_audio_remove,
1879};
1880
1881module_platform_driver(hdmi_lpe_audio_driver);
1882MODULE_ALIAS("platform:hdmi_lpe_audio");
1883
1884MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1885MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1886MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1887MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1888MODULE_DESCRIPTION("Intel HDMI Audio driver");
1889MODULE_LICENSE("GPL v2");
1890