linux/tools/lib/bpf/btf_dump.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2
   3/*
   4 * BTF-to-C type converter.
   5 *
   6 * Copyright (c) 2019 Facebook
   7 */
   8
   9#include <stdbool.h>
  10#include <stddef.h>
  11#include <stdlib.h>
  12#include <string.h>
  13#include <errno.h>
  14#include <linux/err.h>
  15#include <linux/btf.h>
  16#include <linux/kernel.h>
  17#include "btf.h"
  18#include "hashmap.h"
  19#include "libbpf.h"
  20#include "libbpf_internal.h"
  21
  22static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
  23static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
  24
  25static const char *pfx(int lvl)
  26{
  27        return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
  28}
  29
  30enum btf_dump_type_order_state {
  31        NOT_ORDERED,
  32        ORDERING,
  33        ORDERED,
  34};
  35
  36enum btf_dump_type_emit_state {
  37        NOT_EMITTED,
  38        EMITTING,
  39        EMITTED,
  40};
  41
  42/* per-type auxiliary state */
  43struct btf_dump_type_aux_state {
  44        /* topological sorting state */
  45        enum btf_dump_type_order_state order_state: 2;
  46        /* emitting state used to determine the need for forward declaration */
  47        enum btf_dump_type_emit_state emit_state: 2;
  48        /* whether forward declaration was already emitted */
  49        __u8 fwd_emitted: 1;
  50        /* whether unique non-duplicate name was already assigned */
  51        __u8 name_resolved: 1;
  52        /* whether type is referenced from any other type */
  53        __u8 referenced: 1;
  54};
  55
  56struct btf_dump {
  57        const struct btf *btf;
  58        const struct btf_ext *btf_ext;
  59        btf_dump_printf_fn_t printf_fn;
  60        struct btf_dump_opts opts;
  61        int ptr_sz;
  62        bool strip_mods;
  63        int last_id;
  64
  65        /* per-type auxiliary state */
  66        struct btf_dump_type_aux_state *type_states;
  67        size_t type_states_cap;
  68        /* per-type optional cached unique name, must be freed, if present */
  69        const char **cached_names;
  70        size_t cached_names_cap;
  71
  72        /* topo-sorted list of dependent type definitions */
  73        __u32 *emit_queue;
  74        int emit_queue_cap;
  75        int emit_queue_cnt;
  76
  77        /*
  78         * stack of type declarations (e.g., chain of modifiers, arrays,
  79         * funcs, etc)
  80         */
  81        __u32 *decl_stack;
  82        int decl_stack_cap;
  83        int decl_stack_cnt;
  84
  85        /* maps struct/union/enum name to a number of name occurrences */
  86        struct hashmap *type_names;
  87        /*
  88         * maps typedef identifiers and enum value names to a number of such
  89         * name occurrences
  90         */
  91        struct hashmap *ident_names;
  92};
  93
  94static size_t str_hash_fn(const void *key, void *ctx)
  95{
  96        return str_hash(key);
  97}
  98
  99static bool str_equal_fn(const void *a, const void *b, void *ctx)
 100{
 101        return strcmp(a, b) == 0;
 102}
 103
 104static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
 105{
 106        return btf__name_by_offset(d->btf, name_off);
 107}
 108
 109static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
 110{
 111        va_list args;
 112
 113        va_start(args, fmt);
 114        d->printf_fn(d->opts.ctx, fmt, args);
 115        va_end(args);
 116}
 117
 118static int btf_dump_mark_referenced(struct btf_dump *d);
 119static int btf_dump_resize(struct btf_dump *d);
 120
 121struct btf_dump *btf_dump__new(const struct btf *btf,
 122                               const struct btf_ext *btf_ext,
 123                               const struct btf_dump_opts *opts,
 124                               btf_dump_printf_fn_t printf_fn)
 125{
 126        struct btf_dump *d;
 127        int err;
 128
 129        d = calloc(1, sizeof(struct btf_dump));
 130        if (!d)
 131                return libbpf_err_ptr(-ENOMEM);
 132
 133        d->btf = btf;
 134        d->btf_ext = btf_ext;
 135        d->printf_fn = printf_fn;
 136        d->opts.ctx = opts ? opts->ctx : NULL;
 137        d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
 138
 139        d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 140        if (IS_ERR(d->type_names)) {
 141                err = PTR_ERR(d->type_names);
 142                d->type_names = NULL;
 143                goto err;
 144        }
 145        d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 146        if (IS_ERR(d->ident_names)) {
 147                err = PTR_ERR(d->ident_names);
 148                d->ident_names = NULL;
 149                goto err;
 150        }
 151
 152        err = btf_dump_resize(d);
 153        if (err)
 154                goto err;
 155
 156        return d;
 157err:
 158        btf_dump__free(d);
 159        return libbpf_err_ptr(err);
 160}
 161
 162static int btf_dump_resize(struct btf_dump *d)
 163{
 164        int err, last_id = btf__get_nr_types(d->btf);
 165
 166        if (last_id <= d->last_id)
 167                return 0;
 168
 169        if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
 170                              sizeof(*d->type_states), last_id + 1))
 171                return -ENOMEM;
 172        if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
 173                              sizeof(*d->cached_names), last_id + 1))
 174                return -ENOMEM;
 175
 176        if (d->last_id == 0) {
 177                /* VOID is special */
 178                d->type_states[0].order_state = ORDERED;
 179                d->type_states[0].emit_state = EMITTED;
 180        }
 181
 182        /* eagerly determine referenced types for anon enums */
 183        err = btf_dump_mark_referenced(d);
 184        if (err)
 185                return err;
 186
 187        d->last_id = last_id;
 188        return 0;
 189}
 190
 191void btf_dump__free(struct btf_dump *d)
 192{
 193        int i;
 194
 195        if (IS_ERR_OR_NULL(d))
 196                return;
 197
 198        free(d->type_states);
 199        if (d->cached_names) {
 200                /* any set cached name is owned by us and should be freed */
 201                for (i = 0; i <= d->last_id; i++) {
 202                        if (d->cached_names[i])
 203                                free((void *)d->cached_names[i]);
 204                }
 205        }
 206        free(d->cached_names);
 207        free(d->emit_queue);
 208        free(d->decl_stack);
 209        hashmap__free(d->type_names);
 210        hashmap__free(d->ident_names);
 211
 212        free(d);
 213}
 214
 215static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
 216static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
 217
 218/*
 219 * Dump BTF type in a compilable C syntax, including all the necessary
 220 * dependent types, necessary for compilation. If some of the dependent types
 221 * were already emitted as part of previous btf_dump__dump_type() invocation
 222 * for another type, they won't be emitted again. This API allows callers to
 223 * filter out BTF types according to user-defined criterias and emitted only
 224 * minimal subset of types, necessary to compile everything. Full struct/union
 225 * definitions will still be emitted, even if the only usage is through
 226 * pointer and could be satisfied with just a forward declaration.
 227 *
 228 * Dumping is done in two high-level passes:
 229 *   1. Topologically sort type definitions to satisfy C rules of compilation.
 230 *   2. Emit type definitions in C syntax.
 231 *
 232 * Returns 0 on success; <0, otherwise.
 233 */
 234int btf_dump__dump_type(struct btf_dump *d, __u32 id)
 235{
 236        int err, i;
 237
 238        if (id > btf__get_nr_types(d->btf))
 239                return libbpf_err(-EINVAL);
 240
 241        err = btf_dump_resize(d);
 242        if (err)
 243                return libbpf_err(err);
 244
 245        d->emit_queue_cnt = 0;
 246        err = btf_dump_order_type(d, id, false);
 247        if (err < 0)
 248                return libbpf_err(err);
 249
 250        for (i = 0; i < d->emit_queue_cnt; i++)
 251                btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
 252
 253        return 0;
 254}
 255
 256/*
 257 * Mark all types that are referenced from any other type. This is used to
 258 * determine top-level anonymous enums that need to be emitted as an
 259 * independent type declarations.
 260 * Anonymous enums come in two flavors: either embedded in a struct's field
 261 * definition, in which case they have to be declared inline as part of field
 262 * type declaration; or as a top-level anonymous enum, typically used for
 263 * declaring global constants. It's impossible to distinguish between two
 264 * without knowning whether given enum type was referenced from other type:
 265 * top-level anonymous enum won't be referenced by anything, while embedded
 266 * one will.
 267 */
 268static int btf_dump_mark_referenced(struct btf_dump *d)
 269{
 270        int i, j, n = btf__get_nr_types(d->btf);
 271        const struct btf_type *t;
 272        __u16 vlen;
 273
 274        for (i = d->last_id + 1; i <= n; i++) {
 275                t = btf__type_by_id(d->btf, i);
 276                vlen = btf_vlen(t);
 277
 278                switch (btf_kind(t)) {
 279                case BTF_KIND_INT:
 280                case BTF_KIND_ENUM:
 281                case BTF_KIND_FWD:
 282                case BTF_KIND_FLOAT:
 283                        break;
 284
 285                case BTF_KIND_VOLATILE:
 286                case BTF_KIND_CONST:
 287                case BTF_KIND_RESTRICT:
 288                case BTF_KIND_PTR:
 289                case BTF_KIND_TYPEDEF:
 290                case BTF_KIND_FUNC:
 291                case BTF_KIND_VAR:
 292                        d->type_states[t->type].referenced = 1;
 293                        break;
 294
 295                case BTF_KIND_ARRAY: {
 296                        const struct btf_array *a = btf_array(t);
 297
 298                        d->type_states[a->index_type].referenced = 1;
 299                        d->type_states[a->type].referenced = 1;
 300                        break;
 301                }
 302                case BTF_KIND_STRUCT:
 303                case BTF_KIND_UNION: {
 304                        const struct btf_member *m = btf_members(t);
 305
 306                        for (j = 0; j < vlen; j++, m++)
 307                                d->type_states[m->type].referenced = 1;
 308                        break;
 309                }
 310                case BTF_KIND_FUNC_PROTO: {
 311                        const struct btf_param *p = btf_params(t);
 312
 313                        for (j = 0; j < vlen; j++, p++)
 314                                d->type_states[p->type].referenced = 1;
 315                        break;
 316                }
 317                case BTF_KIND_DATASEC: {
 318                        const struct btf_var_secinfo *v = btf_var_secinfos(t);
 319
 320                        for (j = 0; j < vlen; j++, v++)
 321                                d->type_states[v->type].referenced = 1;
 322                        break;
 323                }
 324                default:
 325                        return -EINVAL;
 326                }
 327        }
 328        return 0;
 329}
 330
 331static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
 332{
 333        __u32 *new_queue;
 334        size_t new_cap;
 335
 336        if (d->emit_queue_cnt >= d->emit_queue_cap) {
 337                new_cap = max(16, d->emit_queue_cap * 3 / 2);
 338                new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
 339                if (!new_queue)
 340                        return -ENOMEM;
 341                d->emit_queue = new_queue;
 342                d->emit_queue_cap = new_cap;
 343        }
 344
 345        d->emit_queue[d->emit_queue_cnt++] = id;
 346        return 0;
 347}
 348
 349/*
 350 * Determine order of emitting dependent types and specified type to satisfy
 351 * C compilation rules.  This is done through topological sorting with an
 352 * additional complication which comes from C rules. The main idea for C is
 353 * that if some type is "embedded" into a struct/union, it's size needs to be
 354 * known at the time of definition of containing type. E.g., for:
 355 *
 356 *      struct A {};
 357 *      struct B { struct A x; }
 358 *
 359 * struct A *HAS* to be defined before struct B, because it's "embedded",
 360 * i.e., it is part of struct B layout. But in the following case:
 361 *
 362 *      struct A;
 363 *      struct B { struct A *x; }
 364 *      struct A {};
 365 *
 366 * it's enough to just have a forward declaration of struct A at the time of
 367 * struct B definition, as struct B has a pointer to struct A, so the size of
 368 * field x is known without knowing struct A size: it's sizeof(void *).
 369 *
 370 * Unfortunately, there are some trickier cases we need to handle, e.g.:
 371 *
 372 *      struct A {}; // if this was forward-declaration: compilation error
 373 *      struct B {
 374 *              struct { // anonymous struct
 375 *                      struct A y;
 376 *              } *x;
 377 *      };
 378 *
 379 * In this case, struct B's field x is a pointer, so it's size is known
 380 * regardless of the size of (anonymous) struct it points to. But because this
 381 * struct is anonymous and thus defined inline inside struct B, *and* it
 382 * embeds struct A, compiler requires full definition of struct A to be known
 383 * before struct B can be defined. This creates a transitive dependency
 384 * between struct A and struct B. If struct A was forward-declared before
 385 * struct B definition and fully defined after struct B definition, that would
 386 * trigger compilation error.
 387 *
 388 * All this means that while we are doing topological sorting on BTF type
 389 * graph, we need to determine relationships between different types (graph
 390 * nodes):
 391 *   - weak link (relationship) between X and Y, if Y *CAN* be
 392 *   forward-declared at the point of X definition;
 393 *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 394 *
 395 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 396 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 397 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 398 * Weak/strong relationship is determined recursively during DFS traversal and
 399 * is returned as a result from btf_dump_order_type().
 400 *
 401 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 402 * but it is not guaranteeing that no extraneous forward declarations will be
 403 * emitted.
 404 *
 405 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 406 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 407 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 408 * entire graph path, so depending where from one came to that BTF type, it
 409 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 410 * once they are processed, there is no need to do it again, so they are
 411 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 412 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 413 * in any case, once those are processed, no need to do it again, as the
 414 * result won't change.
 415 *
 416 * Returns:
 417 *   - 1, if type is part of strong link (so there is strong topological
 418 *   ordering requirements);
 419 *   - 0, if type is part of weak link (so can be satisfied through forward
 420 *   declaration);
 421 *   - <0, on error (e.g., unsatisfiable type loop detected).
 422 */
 423static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
 424{
 425        /*
 426         * Order state is used to detect strong link cycles, but only for BTF
 427         * kinds that are or could be an independent definition (i.e.,
 428         * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
 429         * func_protos, modifiers are just means to get to these definitions.
 430         * Int/void don't need definitions, they are assumed to be always
 431         * properly defined.  We also ignore datasec, var, and funcs for now.
 432         * So for all non-defining kinds, we never even set ordering state,
 433         * for defining kinds we set ORDERING and subsequently ORDERED if it
 434         * forms a strong link.
 435         */
 436        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 437        const struct btf_type *t;
 438        __u16 vlen;
 439        int err, i;
 440
 441        /* return true, letting typedefs know that it's ok to be emitted */
 442        if (tstate->order_state == ORDERED)
 443                return 1;
 444
 445        t = btf__type_by_id(d->btf, id);
 446
 447        if (tstate->order_state == ORDERING) {
 448                /* type loop, but resolvable through fwd declaration */
 449                if (btf_is_composite(t) && through_ptr && t->name_off != 0)
 450                        return 0;
 451                pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
 452                return -ELOOP;
 453        }
 454
 455        switch (btf_kind(t)) {
 456        case BTF_KIND_INT:
 457        case BTF_KIND_FLOAT:
 458                tstate->order_state = ORDERED;
 459                return 0;
 460
 461        case BTF_KIND_PTR:
 462                err = btf_dump_order_type(d, t->type, true);
 463                tstate->order_state = ORDERED;
 464                return err;
 465
 466        case BTF_KIND_ARRAY:
 467                return btf_dump_order_type(d, btf_array(t)->type, false);
 468
 469        case BTF_KIND_STRUCT:
 470        case BTF_KIND_UNION: {
 471                const struct btf_member *m = btf_members(t);
 472                /*
 473                 * struct/union is part of strong link, only if it's embedded
 474                 * (so no ptr in a path) or it's anonymous (so has to be
 475                 * defined inline, even if declared through ptr)
 476                 */
 477                if (through_ptr && t->name_off != 0)
 478                        return 0;
 479
 480                tstate->order_state = ORDERING;
 481
 482                vlen = btf_vlen(t);
 483                for (i = 0; i < vlen; i++, m++) {
 484                        err = btf_dump_order_type(d, m->type, false);
 485                        if (err < 0)
 486                                return err;
 487                }
 488
 489                if (t->name_off != 0) {
 490                        err = btf_dump_add_emit_queue_id(d, id);
 491                        if (err < 0)
 492                                return err;
 493                }
 494
 495                tstate->order_state = ORDERED;
 496                return 1;
 497        }
 498        case BTF_KIND_ENUM:
 499        case BTF_KIND_FWD:
 500                /*
 501                 * non-anonymous or non-referenced enums are top-level
 502                 * declarations and should be emitted. Same logic can be
 503                 * applied to FWDs, it won't hurt anyways.
 504                 */
 505                if (t->name_off != 0 || !tstate->referenced) {
 506                        err = btf_dump_add_emit_queue_id(d, id);
 507                        if (err)
 508                                return err;
 509                }
 510                tstate->order_state = ORDERED;
 511                return 1;
 512
 513        case BTF_KIND_TYPEDEF: {
 514                int is_strong;
 515
 516                is_strong = btf_dump_order_type(d, t->type, through_ptr);
 517                if (is_strong < 0)
 518                        return is_strong;
 519
 520                /* typedef is similar to struct/union w.r.t. fwd-decls */
 521                if (through_ptr && !is_strong)
 522                        return 0;
 523
 524                /* typedef is always a named definition */
 525                err = btf_dump_add_emit_queue_id(d, id);
 526                if (err)
 527                        return err;
 528
 529                d->type_states[id].order_state = ORDERED;
 530                return 1;
 531        }
 532        case BTF_KIND_VOLATILE:
 533        case BTF_KIND_CONST:
 534        case BTF_KIND_RESTRICT:
 535                return btf_dump_order_type(d, t->type, through_ptr);
 536
 537        case BTF_KIND_FUNC_PROTO: {
 538                const struct btf_param *p = btf_params(t);
 539                bool is_strong;
 540
 541                err = btf_dump_order_type(d, t->type, through_ptr);
 542                if (err < 0)
 543                        return err;
 544                is_strong = err > 0;
 545
 546                vlen = btf_vlen(t);
 547                for (i = 0; i < vlen; i++, p++) {
 548                        err = btf_dump_order_type(d, p->type, through_ptr);
 549                        if (err < 0)
 550                                return err;
 551                        if (err > 0)
 552                                is_strong = true;
 553                }
 554                return is_strong;
 555        }
 556        case BTF_KIND_FUNC:
 557        case BTF_KIND_VAR:
 558        case BTF_KIND_DATASEC:
 559                d->type_states[id].order_state = ORDERED;
 560                return 0;
 561
 562        default:
 563                return -EINVAL;
 564        }
 565}
 566
 567static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
 568                                          const struct btf_type *t);
 569
 570static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 571                                     const struct btf_type *t);
 572static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
 573                                     const struct btf_type *t, int lvl);
 574
 575static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 576                                   const struct btf_type *t);
 577static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 578                                   const struct btf_type *t, int lvl);
 579
 580static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 581                                  const struct btf_type *t);
 582
 583static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 584                                      const struct btf_type *t, int lvl);
 585
 586/* a local view into a shared stack */
 587struct id_stack {
 588        const __u32 *ids;
 589        int cnt;
 590};
 591
 592static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 593                                    const char *fname, int lvl);
 594static void btf_dump_emit_type_chain(struct btf_dump *d,
 595                                     struct id_stack *decl_stack,
 596                                     const char *fname, int lvl);
 597
 598static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
 599static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
 600static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 601                                 const char *orig_name);
 602
 603static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
 604{
 605        const struct btf_type *t = btf__type_by_id(d->btf, id);
 606
 607        /* __builtin_va_list is a compiler built-in, which causes compilation
 608         * errors, when compiling w/ different compiler, then used to compile
 609         * original code (e.g., GCC to compile kernel, Clang to use generated
 610         * C header from BTF). As it is built-in, it should be already defined
 611         * properly internally in compiler.
 612         */
 613        if (t->name_off == 0)
 614                return false;
 615        return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
 616}
 617
 618/*
 619 * Emit C-syntax definitions of types from chains of BTF types.
 620 *
 621 * High-level handling of determining necessary forward declarations are handled
 622 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 623 * declarations/definitions in C syntax  are handled by a combo of
 624 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 625 * corresponding btf_dump_emit_*_{def,fwd}() functions.
 626 *
 627 * We also keep track of "containing struct/union type ID" to determine when
 628 * we reference it from inside and thus can avoid emitting unnecessary forward
 629 * declaration.
 630 *
 631 * This algorithm is designed in such a way, that even if some error occurs
 632 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 633 * that doesn't comply to C rules completely), algorithm will try to proceed
 634 * and produce as much meaningful output as possible.
 635 */
 636static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
 637{
 638        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 639        bool top_level_def = cont_id == 0;
 640        const struct btf_type *t;
 641        __u16 kind;
 642
 643        if (tstate->emit_state == EMITTED)
 644                return;
 645
 646        t = btf__type_by_id(d->btf, id);
 647        kind = btf_kind(t);
 648
 649        if (tstate->emit_state == EMITTING) {
 650                if (tstate->fwd_emitted)
 651                        return;
 652
 653                switch (kind) {
 654                case BTF_KIND_STRUCT:
 655                case BTF_KIND_UNION:
 656                        /*
 657                         * if we are referencing a struct/union that we are
 658                         * part of - then no need for fwd declaration
 659                         */
 660                        if (id == cont_id)
 661                                return;
 662                        if (t->name_off == 0) {
 663                                pr_warn("anonymous struct/union loop, id:[%u]\n",
 664                                        id);
 665                                return;
 666                        }
 667                        btf_dump_emit_struct_fwd(d, id, t);
 668                        btf_dump_printf(d, ";\n\n");
 669                        tstate->fwd_emitted = 1;
 670                        break;
 671                case BTF_KIND_TYPEDEF:
 672                        /*
 673                         * for typedef fwd_emitted means typedef definition
 674                         * was emitted, but it can be used only for "weak"
 675                         * references through pointer only, not for embedding
 676                         */
 677                        if (!btf_dump_is_blacklisted(d, id)) {
 678                                btf_dump_emit_typedef_def(d, id, t, 0);
 679                                btf_dump_printf(d, ";\n\n");
 680                        }
 681                        tstate->fwd_emitted = 1;
 682                        break;
 683                default:
 684                        break;
 685                }
 686
 687                return;
 688        }
 689
 690        switch (kind) {
 691        case BTF_KIND_INT:
 692                /* Emit type alias definitions if necessary */
 693                btf_dump_emit_missing_aliases(d, id, t);
 694
 695                tstate->emit_state = EMITTED;
 696                break;
 697        case BTF_KIND_ENUM:
 698                if (top_level_def) {
 699                        btf_dump_emit_enum_def(d, id, t, 0);
 700                        btf_dump_printf(d, ";\n\n");
 701                }
 702                tstate->emit_state = EMITTED;
 703                break;
 704        case BTF_KIND_PTR:
 705        case BTF_KIND_VOLATILE:
 706        case BTF_KIND_CONST:
 707        case BTF_KIND_RESTRICT:
 708                btf_dump_emit_type(d, t->type, cont_id);
 709                break;
 710        case BTF_KIND_ARRAY:
 711                btf_dump_emit_type(d, btf_array(t)->type, cont_id);
 712                break;
 713        case BTF_KIND_FWD:
 714                btf_dump_emit_fwd_def(d, id, t);
 715                btf_dump_printf(d, ";\n\n");
 716                tstate->emit_state = EMITTED;
 717                break;
 718        case BTF_KIND_TYPEDEF:
 719                tstate->emit_state = EMITTING;
 720                btf_dump_emit_type(d, t->type, id);
 721                /*
 722                 * typedef can server as both definition and forward
 723                 * declaration; at this stage someone depends on
 724                 * typedef as a forward declaration (refers to it
 725                 * through pointer), so unless we already did it,
 726                 * emit typedef as a forward declaration
 727                 */
 728                if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
 729                        btf_dump_emit_typedef_def(d, id, t, 0);
 730                        btf_dump_printf(d, ";\n\n");
 731                }
 732                tstate->emit_state = EMITTED;
 733                break;
 734        case BTF_KIND_STRUCT:
 735        case BTF_KIND_UNION:
 736                tstate->emit_state = EMITTING;
 737                /* if it's a top-level struct/union definition or struct/union
 738                 * is anonymous, then in C we'll be emitting all fields and
 739                 * their types (as opposed to just `struct X`), so we need to
 740                 * make sure that all types, referenced from struct/union
 741                 * members have necessary forward-declarations, where
 742                 * applicable
 743                 */
 744                if (top_level_def || t->name_off == 0) {
 745                        const struct btf_member *m = btf_members(t);
 746                        __u16 vlen = btf_vlen(t);
 747                        int i, new_cont_id;
 748
 749                        new_cont_id = t->name_off == 0 ? cont_id : id;
 750                        for (i = 0; i < vlen; i++, m++)
 751                                btf_dump_emit_type(d, m->type, new_cont_id);
 752                } else if (!tstate->fwd_emitted && id != cont_id) {
 753                        btf_dump_emit_struct_fwd(d, id, t);
 754                        btf_dump_printf(d, ";\n\n");
 755                        tstate->fwd_emitted = 1;
 756                }
 757
 758                if (top_level_def) {
 759                        btf_dump_emit_struct_def(d, id, t, 0);
 760                        btf_dump_printf(d, ";\n\n");
 761                        tstate->emit_state = EMITTED;
 762                } else {
 763                        tstate->emit_state = NOT_EMITTED;
 764                }
 765                break;
 766        case BTF_KIND_FUNC_PROTO: {
 767                const struct btf_param *p = btf_params(t);
 768                __u16 vlen = btf_vlen(t);
 769                int i;
 770
 771                btf_dump_emit_type(d, t->type, cont_id);
 772                for (i = 0; i < vlen; i++, p++)
 773                        btf_dump_emit_type(d, p->type, cont_id);
 774
 775                break;
 776        }
 777        default:
 778                break;
 779        }
 780}
 781
 782static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
 783                                 const struct btf_type *t)
 784{
 785        const struct btf_member *m;
 786        int align, i, bit_sz;
 787        __u16 vlen;
 788
 789        align = btf__align_of(btf, id);
 790        /* size of a non-packed struct has to be a multiple of its alignment*/
 791        if (align && t->size % align)
 792                return true;
 793
 794        m = btf_members(t);
 795        vlen = btf_vlen(t);
 796        /* all non-bitfield fields have to be naturally aligned */
 797        for (i = 0; i < vlen; i++, m++) {
 798                align = btf__align_of(btf, m->type);
 799                bit_sz = btf_member_bitfield_size(t, i);
 800                if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
 801                        return true;
 802        }
 803
 804        /*
 805         * if original struct was marked as packed, but its layout is
 806         * naturally aligned, we'll detect that it's not packed
 807         */
 808        return false;
 809}
 810
 811static int chip_away_bits(int total, int at_most)
 812{
 813        return total % at_most ? : at_most;
 814}
 815
 816static void btf_dump_emit_bit_padding(const struct btf_dump *d,
 817                                      int cur_off, int m_off, int m_bit_sz,
 818                                      int align, int lvl)
 819{
 820        int off_diff = m_off - cur_off;
 821        int ptr_bits = d->ptr_sz * 8;
 822
 823        if (off_diff <= 0)
 824                /* no gap */
 825                return;
 826        if (m_bit_sz == 0 && off_diff < align * 8)
 827                /* natural padding will take care of a gap */
 828                return;
 829
 830        while (off_diff > 0) {
 831                const char *pad_type;
 832                int pad_bits;
 833
 834                if (ptr_bits > 32 && off_diff > 32) {
 835                        pad_type = "long";
 836                        pad_bits = chip_away_bits(off_diff, ptr_bits);
 837                } else if (off_diff > 16) {
 838                        pad_type = "int";
 839                        pad_bits = chip_away_bits(off_diff, 32);
 840                } else if (off_diff > 8) {
 841                        pad_type = "short";
 842                        pad_bits = chip_away_bits(off_diff, 16);
 843                } else {
 844                        pad_type = "char";
 845                        pad_bits = chip_away_bits(off_diff, 8);
 846                }
 847                btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
 848                off_diff -= pad_bits;
 849        }
 850}
 851
 852static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 853                                     const struct btf_type *t)
 854{
 855        btf_dump_printf(d, "%s %s",
 856                        btf_is_struct(t) ? "struct" : "union",
 857                        btf_dump_type_name(d, id));
 858}
 859
 860static void btf_dump_emit_struct_def(struct btf_dump *d,
 861                                     __u32 id,
 862                                     const struct btf_type *t,
 863                                     int lvl)
 864{
 865        const struct btf_member *m = btf_members(t);
 866        bool is_struct = btf_is_struct(t);
 867        int align, i, packed, off = 0;
 868        __u16 vlen = btf_vlen(t);
 869
 870        packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
 871
 872        btf_dump_printf(d, "%s%s%s {",
 873                        is_struct ? "struct" : "union",
 874                        t->name_off ? " " : "",
 875                        btf_dump_type_name(d, id));
 876
 877        for (i = 0; i < vlen; i++, m++) {
 878                const char *fname;
 879                int m_off, m_sz;
 880
 881                fname = btf_name_of(d, m->name_off);
 882                m_sz = btf_member_bitfield_size(t, i);
 883                m_off = btf_member_bit_offset(t, i);
 884                align = packed ? 1 : btf__align_of(d->btf, m->type);
 885
 886                btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
 887                btf_dump_printf(d, "\n%s", pfx(lvl + 1));
 888                btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
 889
 890                if (m_sz) {
 891                        btf_dump_printf(d, ": %d", m_sz);
 892                        off = m_off + m_sz;
 893                } else {
 894                        m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
 895                        off = m_off + m_sz * 8;
 896                }
 897                btf_dump_printf(d, ";");
 898        }
 899
 900        /* pad at the end, if necessary */
 901        if (is_struct) {
 902                align = packed ? 1 : btf__align_of(d->btf, id);
 903                btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
 904                                          lvl + 1);
 905        }
 906
 907        if (vlen)
 908                btf_dump_printf(d, "\n");
 909        btf_dump_printf(d, "%s}", pfx(lvl));
 910        if (packed)
 911                btf_dump_printf(d, " __attribute__((packed))");
 912}
 913
 914static const char *missing_base_types[][2] = {
 915        /*
 916         * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
 917         * SIMD intrinsics. Alias them to standard base types.
 918         */
 919        { "__Poly8_t",          "unsigned char" },
 920        { "__Poly16_t",         "unsigned short" },
 921        { "__Poly64_t",         "unsigned long long" },
 922        { "__Poly128_t",        "unsigned __int128" },
 923};
 924
 925static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
 926                                          const struct btf_type *t)
 927{
 928        const char *name = btf_dump_type_name(d, id);
 929        int i;
 930
 931        for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
 932                if (strcmp(name, missing_base_types[i][0]) == 0) {
 933                        btf_dump_printf(d, "typedef %s %s;\n\n",
 934                                        missing_base_types[i][1], name);
 935                        break;
 936                }
 937        }
 938}
 939
 940static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 941                                   const struct btf_type *t)
 942{
 943        btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
 944}
 945
 946static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 947                                   const struct btf_type *t,
 948                                   int lvl)
 949{
 950        const struct btf_enum *v = btf_enum(t);
 951        __u16 vlen = btf_vlen(t);
 952        const char *name;
 953        size_t dup_cnt;
 954        int i;
 955
 956        btf_dump_printf(d, "enum%s%s",
 957                        t->name_off ? " " : "",
 958                        btf_dump_type_name(d, id));
 959
 960        if (vlen) {
 961                btf_dump_printf(d, " {");
 962                for (i = 0; i < vlen; i++, v++) {
 963                        name = btf_name_of(d, v->name_off);
 964                        /* enumerators share namespace with typedef idents */
 965                        dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 966                        if (dup_cnt > 1) {
 967                                btf_dump_printf(d, "\n%s%s___%zu = %u,",
 968                                                pfx(lvl + 1), name, dup_cnt,
 969                                                (__u32)v->val);
 970                        } else {
 971                                btf_dump_printf(d, "\n%s%s = %u,",
 972                                                pfx(lvl + 1), name,
 973                                                (__u32)v->val);
 974                        }
 975                }
 976                btf_dump_printf(d, "\n%s}", pfx(lvl));
 977        }
 978}
 979
 980static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 981                                  const struct btf_type *t)
 982{
 983        const char *name = btf_dump_type_name(d, id);
 984
 985        if (btf_kflag(t))
 986                btf_dump_printf(d, "union %s", name);
 987        else
 988                btf_dump_printf(d, "struct %s", name);
 989}
 990
 991static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 992                                     const struct btf_type *t, int lvl)
 993{
 994        const char *name = btf_dump_ident_name(d, id);
 995
 996        /*
 997         * Old GCC versions are emitting invalid typedef for __gnuc_va_list
 998         * pointing to VOID. This generates warnings from btf_dump() and
 999         * results in uncompilable header file, so we are fixing it up here
1000         * with valid typedef into __builtin_va_list.
1001         */
1002        if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1003                btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1004                return;
1005        }
1006
1007        btf_dump_printf(d, "typedef ");
1008        btf_dump_emit_type_decl(d, t->type, name, lvl);
1009}
1010
1011static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1012{
1013        __u32 *new_stack;
1014        size_t new_cap;
1015
1016        if (d->decl_stack_cnt >= d->decl_stack_cap) {
1017                new_cap = max(16, d->decl_stack_cap * 3 / 2);
1018                new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1019                if (!new_stack)
1020                        return -ENOMEM;
1021                d->decl_stack = new_stack;
1022                d->decl_stack_cap = new_cap;
1023        }
1024
1025        d->decl_stack[d->decl_stack_cnt++] = id;
1026
1027        return 0;
1028}
1029
1030/*
1031 * Emit type declaration (e.g., field type declaration in a struct or argument
1032 * declaration in function prototype) in correct C syntax.
1033 *
1034 * For most types it's trivial, but there are few quirky type declaration
1035 * cases worth mentioning:
1036 *   - function prototypes (especially nesting of function prototypes);
1037 *   - arrays;
1038 *   - const/volatile/restrict for pointers vs other types.
1039 *
1040 * For a good discussion of *PARSING* C syntax (as a human), see
1041 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1042 * Ch.3 "Unscrambling Declarations in C".
1043 *
1044 * It won't help with BTF to C conversion much, though, as it's an opposite
1045 * problem. So we came up with this algorithm in reverse to van der Linden's
1046 * parsing algorithm. It goes from structured BTF representation of type
1047 * declaration to a valid compilable C syntax.
1048 *
1049 * For instance, consider this C typedef:
1050 *      typedef const int * const * arr[10] arr_t;
1051 * It will be represented in BTF with this chain of BTF types:
1052 *      [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1053 *
1054 * Notice how [const] modifier always goes before type it modifies in BTF type
1055 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1056 * the right of pointers, but to the left of other types. There are also other
1057 * quirks, like function pointers, arrays of them, functions returning other
1058 * functions, etc.
1059 *
1060 * We handle that by pushing all the types to a stack, until we hit "terminal"
1061 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1062 * top of a stack, modifiers are handled differently. Array/function pointers
1063 * have also wildly different syntax and how nesting of them are done. See
1064 * code for authoritative definition.
1065 *
1066 * To avoid allocating new stack for each independent chain of BTF types, we
1067 * share one bigger stack, with each chain working only on its own local view
1068 * of a stack frame. Some care is required to "pop" stack frames after
1069 * processing type declaration chain.
1070 */
1071int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1072                             const struct btf_dump_emit_type_decl_opts *opts)
1073{
1074        const char *fname;
1075        int lvl, err;
1076
1077        if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1078                return libbpf_err(-EINVAL);
1079
1080        err = btf_dump_resize(d);
1081        if (err)
1082                return libbpf_err(err);
1083
1084        fname = OPTS_GET(opts, field_name, "");
1085        lvl = OPTS_GET(opts, indent_level, 0);
1086        d->strip_mods = OPTS_GET(opts, strip_mods, false);
1087        btf_dump_emit_type_decl(d, id, fname, lvl);
1088        d->strip_mods = false;
1089        return 0;
1090}
1091
1092static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1093                                    const char *fname, int lvl)
1094{
1095        struct id_stack decl_stack;
1096        const struct btf_type *t;
1097        int err, stack_start;
1098
1099        stack_start = d->decl_stack_cnt;
1100        for (;;) {
1101                t = btf__type_by_id(d->btf, id);
1102                if (d->strip_mods && btf_is_mod(t))
1103                        goto skip_mod;
1104
1105                err = btf_dump_push_decl_stack_id(d, id);
1106                if (err < 0) {
1107                        /*
1108                         * if we don't have enough memory for entire type decl
1109                         * chain, restore stack, emit warning, and try to
1110                         * proceed nevertheless
1111                         */
1112                        pr_warn("not enough memory for decl stack:%d", err);
1113                        d->decl_stack_cnt = stack_start;
1114                        return;
1115                }
1116skip_mod:
1117                /* VOID */
1118                if (id == 0)
1119                        break;
1120
1121                switch (btf_kind(t)) {
1122                case BTF_KIND_PTR:
1123                case BTF_KIND_VOLATILE:
1124                case BTF_KIND_CONST:
1125                case BTF_KIND_RESTRICT:
1126                case BTF_KIND_FUNC_PROTO:
1127                        id = t->type;
1128                        break;
1129                case BTF_KIND_ARRAY:
1130                        id = btf_array(t)->type;
1131                        break;
1132                case BTF_KIND_INT:
1133                case BTF_KIND_ENUM:
1134                case BTF_KIND_FWD:
1135                case BTF_KIND_STRUCT:
1136                case BTF_KIND_UNION:
1137                case BTF_KIND_TYPEDEF:
1138                case BTF_KIND_FLOAT:
1139                        goto done;
1140                default:
1141                        pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1142                                btf_kind(t), id);
1143                        goto done;
1144                }
1145        }
1146done:
1147        /*
1148         * We might be inside a chain of declarations (e.g., array of function
1149         * pointers returning anonymous (so inlined) structs, having another
1150         * array field). Each of those needs its own "stack frame" to handle
1151         * emitting of declarations. Those stack frames are non-overlapping
1152         * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1153         * handle this set of nested stacks, we create a view corresponding to
1154         * our own "stack frame" and work with it as an independent stack.
1155         * We'll need to clean up after emit_type_chain() returns, though.
1156         */
1157        decl_stack.ids = d->decl_stack + stack_start;
1158        decl_stack.cnt = d->decl_stack_cnt - stack_start;
1159        btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1160        /*
1161         * emit_type_chain() guarantees that it will pop its entire decl_stack
1162         * frame before returning. But it works with a read-only view into
1163         * decl_stack, so it doesn't actually pop anything from the
1164         * perspective of shared btf_dump->decl_stack, per se. We need to
1165         * reset decl_stack state to how it was before us to avoid it growing
1166         * all the time.
1167         */
1168        d->decl_stack_cnt = stack_start;
1169}
1170
1171static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1172{
1173        const struct btf_type *t;
1174        __u32 id;
1175
1176        while (decl_stack->cnt) {
1177                id = decl_stack->ids[decl_stack->cnt - 1];
1178                t = btf__type_by_id(d->btf, id);
1179
1180                switch (btf_kind(t)) {
1181                case BTF_KIND_VOLATILE:
1182                        btf_dump_printf(d, "volatile ");
1183                        break;
1184                case BTF_KIND_CONST:
1185                        btf_dump_printf(d, "const ");
1186                        break;
1187                case BTF_KIND_RESTRICT:
1188                        btf_dump_printf(d, "restrict ");
1189                        break;
1190                default:
1191                        return;
1192                }
1193                decl_stack->cnt--;
1194        }
1195}
1196
1197static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1198{
1199        const struct btf_type *t;
1200        __u32 id;
1201
1202        while (decl_stack->cnt) {
1203                id = decl_stack->ids[decl_stack->cnt - 1];
1204                t = btf__type_by_id(d->btf, id);
1205                if (!btf_is_mod(t))
1206                        return;
1207                decl_stack->cnt--;
1208        }
1209}
1210
1211static void btf_dump_emit_name(const struct btf_dump *d,
1212                               const char *name, bool last_was_ptr)
1213{
1214        bool separate = name[0] && !last_was_ptr;
1215
1216        btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1217}
1218
1219static void btf_dump_emit_type_chain(struct btf_dump *d,
1220                                     struct id_stack *decls,
1221                                     const char *fname, int lvl)
1222{
1223        /*
1224         * last_was_ptr is used to determine if we need to separate pointer
1225         * asterisk (*) from previous part of type signature with space, so
1226         * that we get `int ***`, instead of `int * * *`. We default to true
1227         * for cases where we have single pointer in a chain. E.g., in ptr ->
1228         * func_proto case. func_proto will start a new emit_type_chain call
1229         * with just ptr, which should be emitted as (*) or (*<fname>), so we
1230         * don't want to prepend space for that last pointer.
1231         */
1232        bool last_was_ptr = true;
1233        const struct btf_type *t;
1234        const char *name;
1235        __u16 kind;
1236        __u32 id;
1237
1238        while (decls->cnt) {
1239                id = decls->ids[--decls->cnt];
1240                if (id == 0) {
1241                        /* VOID is a special snowflake */
1242                        btf_dump_emit_mods(d, decls);
1243                        btf_dump_printf(d, "void");
1244                        last_was_ptr = false;
1245                        continue;
1246                }
1247
1248                t = btf__type_by_id(d->btf, id);
1249                kind = btf_kind(t);
1250
1251                switch (kind) {
1252                case BTF_KIND_INT:
1253                case BTF_KIND_FLOAT:
1254                        btf_dump_emit_mods(d, decls);
1255                        name = btf_name_of(d, t->name_off);
1256                        btf_dump_printf(d, "%s", name);
1257                        break;
1258                case BTF_KIND_STRUCT:
1259                case BTF_KIND_UNION:
1260                        btf_dump_emit_mods(d, decls);
1261                        /* inline anonymous struct/union */
1262                        if (t->name_off == 0)
1263                                btf_dump_emit_struct_def(d, id, t, lvl);
1264                        else
1265                                btf_dump_emit_struct_fwd(d, id, t);
1266                        break;
1267                case BTF_KIND_ENUM:
1268                        btf_dump_emit_mods(d, decls);
1269                        /* inline anonymous enum */
1270                        if (t->name_off == 0)
1271                                btf_dump_emit_enum_def(d, id, t, lvl);
1272                        else
1273                                btf_dump_emit_enum_fwd(d, id, t);
1274                        break;
1275                case BTF_KIND_FWD:
1276                        btf_dump_emit_mods(d, decls);
1277                        btf_dump_emit_fwd_def(d, id, t);
1278                        break;
1279                case BTF_KIND_TYPEDEF:
1280                        btf_dump_emit_mods(d, decls);
1281                        btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1282                        break;
1283                case BTF_KIND_PTR:
1284                        btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1285                        break;
1286                case BTF_KIND_VOLATILE:
1287                        btf_dump_printf(d, " volatile");
1288                        break;
1289                case BTF_KIND_CONST:
1290                        btf_dump_printf(d, " const");
1291                        break;
1292                case BTF_KIND_RESTRICT:
1293                        btf_dump_printf(d, " restrict");
1294                        break;
1295                case BTF_KIND_ARRAY: {
1296                        const struct btf_array *a = btf_array(t);
1297                        const struct btf_type *next_t;
1298                        __u32 next_id;
1299                        bool multidim;
1300                        /*
1301                         * GCC has a bug
1302                         * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1303                         * which causes it to emit extra const/volatile
1304                         * modifiers for an array, if array's element type has
1305                         * const/volatile modifiers. Clang doesn't do that.
1306                         * In general, it doesn't seem very meaningful to have
1307                         * a const/volatile modifier for array, so we are
1308                         * going to silently skip them here.
1309                         */
1310                        btf_dump_drop_mods(d, decls);
1311
1312                        if (decls->cnt == 0) {
1313                                btf_dump_emit_name(d, fname, last_was_ptr);
1314                                btf_dump_printf(d, "[%u]", a->nelems);
1315                                return;
1316                        }
1317
1318                        next_id = decls->ids[decls->cnt - 1];
1319                        next_t = btf__type_by_id(d->btf, next_id);
1320                        multidim = btf_is_array(next_t);
1321                        /* we need space if we have named non-pointer */
1322                        if (fname[0] && !last_was_ptr)
1323                                btf_dump_printf(d, " ");
1324                        /* no parentheses for multi-dimensional array */
1325                        if (!multidim)
1326                                btf_dump_printf(d, "(");
1327                        btf_dump_emit_type_chain(d, decls, fname, lvl);
1328                        if (!multidim)
1329                                btf_dump_printf(d, ")");
1330                        btf_dump_printf(d, "[%u]", a->nelems);
1331                        return;
1332                }
1333                case BTF_KIND_FUNC_PROTO: {
1334                        const struct btf_param *p = btf_params(t);
1335                        __u16 vlen = btf_vlen(t);
1336                        int i;
1337
1338                        /*
1339                         * GCC emits extra volatile qualifier for
1340                         * __attribute__((noreturn)) function pointers. Clang
1341                         * doesn't do it. It's a GCC quirk for backwards
1342                         * compatibility with code written for GCC <2.5. So,
1343                         * similarly to extra qualifiers for array, just drop
1344                         * them, instead of handling them.
1345                         */
1346                        btf_dump_drop_mods(d, decls);
1347                        if (decls->cnt) {
1348                                btf_dump_printf(d, " (");
1349                                btf_dump_emit_type_chain(d, decls, fname, lvl);
1350                                btf_dump_printf(d, ")");
1351                        } else {
1352                                btf_dump_emit_name(d, fname, last_was_ptr);
1353                        }
1354                        btf_dump_printf(d, "(");
1355                        /*
1356                         * Clang for BPF target generates func_proto with no
1357                         * args as a func_proto with a single void arg (e.g.,
1358                         * `int (*f)(void)` vs just `int (*f)()`). We are
1359                         * going to pretend there are no args for such case.
1360                         */
1361                        if (vlen == 1 && p->type == 0) {
1362                                btf_dump_printf(d, ")");
1363                                return;
1364                        }
1365
1366                        for (i = 0; i < vlen; i++, p++) {
1367                                if (i > 0)
1368                                        btf_dump_printf(d, ", ");
1369
1370                                /* last arg of type void is vararg */
1371                                if (i == vlen - 1 && p->type == 0) {
1372                                        btf_dump_printf(d, "...");
1373                                        break;
1374                                }
1375
1376                                name = btf_name_of(d, p->name_off);
1377                                btf_dump_emit_type_decl(d, p->type, name, lvl);
1378                        }
1379
1380                        btf_dump_printf(d, ")");
1381                        return;
1382                }
1383                default:
1384                        pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1385                                kind, id);
1386                        return;
1387                }
1388
1389                last_was_ptr = kind == BTF_KIND_PTR;
1390        }
1391
1392        btf_dump_emit_name(d, fname, last_was_ptr);
1393}
1394
1395/* return number of duplicates (occurrences) of a given name */
1396static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1397                                 const char *orig_name)
1398{
1399        size_t dup_cnt = 0;
1400
1401        hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1402        dup_cnt++;
1403        hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1404
1405        return dup_cnt;
1406}
1407
1408static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1409                                         struct hashmap *name_map)
1410{
1411        struct btf_dump_type_aux_state *s = &d->type_states[id];
1412        const struct btf_type *t = btf__type_by_id(d->btf, id);
1413        const char *orig_name = btf_name_of(d, t->name_off);
1414        const char **cached_name = &d->cached_names[id];
1415        size_t dup_cnt;
1416
1417        if (t->name_off == 0)
1418                return "";
1419
1420        if (s->name_resolved)
1421                return *cached_name ? *cached_name : orig_name;
1422
1423        dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1424        if (dup_cnt > 1) {
1425                const size_t max_len = 256;
1426                char new_name[max_len];
1427
1428                snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1429                *cached_name = strdup(new_name);
1430        }
1431
1432        s->name_resolved = 1;
1433        return *cached_name ? *cached_name : orig_name;
1434}
1435
1436static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1437{
1438        return btf_dump_resolve_name(d, id, d->type_names);
1439}
1440
1441static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1442{
1443        return btf_dump_resolve_name(d, id, d->ident_names);
1444}
1445